WO2009031994A1 - Faucet type valve with backflow control in handle structure - Google Patents
Faucet type valve with backflow control in handle structure Download PDFInfo
- Publication number
- WO2009031994A1 WO2009031994A1 PCT/US2007/019422 US2007019422W WO2009031994A1 WO 2009031994 A1 WO2009031994 A1 WO 2009031994A1 US 2007019422 W US2007019422 W US 2007019422W WO 2009031994 A1 WO2009031994 A1 WO 2009031994A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seat
- stopper
- combination
- lip
- valve
- Prior art date
Links
- 238000007789 sealing Methods 0.000 claims abstract description 16
- 239000007788 liquid Substances 0.000 claims abstract description 10
- 239000012530 fluid Substances 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims 2
- 239000002245 particle Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K1/00—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
- F16K1/02—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with screw-spindle
- F16K1/06—Special arrangements for improving the flow, e.g. special shape of passages or casings
- F16K1/10—Special arrangements for improving the flow, e.g. special shape of passages or casings in which the spindle is inclined to the general direction of flow
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03C—DOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
- E03C1/00—Domestic plumbing installations for fresh water or waste water; Sinks
- E03C1/02—Plumbing installations for fresh water
- E03C1/04—Water-basin installations specially adapted to wash-basins or baths
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03C—DOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
- E03C1/00—Domestic plumbing installations for fresh water or waste water; Sinks
- E03C1/02—Plumbing installations for fresh water
- E03C1/10—Devices for preventing contamination of drinking-water pipes, e.g. means for aerating self-closing flushing valves
- E03C1/104—Devices for preventing contamination of drinking-water pipes, e.g. means for aerating self-closing flushing valves using a single check valve
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03C—DOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
- E03C1/00—Domestic plumbing installations for fresh water or waste water; Sinks
- E03C1/02—Plumbing installations for fresh water
- E03C1/10—Devices for preventing contamination of drinking-water pipes, e.g. means for aerating self-closing flushing valves
- E03C1/108—Devices for preventing contamination of drinking-water pipes, e.g. means for aerating self-closing flushing valves having an aerating valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K1/00—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
- F16K1/02—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with screw-spindle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K1/00—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
- F16K1/32—Details
- F16K1/34—Cutting-off parts, e.g. valve members, seats
- F16K1/36—Valve members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K25/00—Details relating to contact between valve members and seats
Definitions
- This invention relates generally to valves such as faucet valves, and more particularly to improvements in sealing off of flow through a faucet when foreign material or particles reside at sealing surfaces.
- the improved faucet valve includes: a) a valve chamber, having a flow inlet and a flow outlet, b) a valve operator outside the chamber, c) a stopper in the chamber and operatively connected with the operator, as for example a handle, for movement toward and away from seat structure in the chamber, to control flow from the valve via said outlet, d) and the seat structure including first and second seats, the stopper located to seat on the first seat. e) there being a flexible sealing lip carried by the stopper to sealingly engage the second seat when the stopper seats on the first seat.
- the lip typically tapers toward an annular edge that flexes when engaging the second seat.
- the lip is typically configured with taper to seal off against said second seat and also to asymmetrically flex and seal off against or about a foreign element on the second seat.
- a further object is to provide telescopically interfitting parts, which are relatively movable, one part connected to the handle, and the other part carrying the stopper and such parts typically being tubular.
- the one part has threaded connection to the chamber, for advancing that one part toward the seat, in response to handle rotation.
- Said one part may define a drain port to drain fluid from the interior of said one tubular part in which the other part projects.
- Yet another object includes provision of a compression spring within the interior of said one part, the spring acting to urge said other part toward the seat.
- the spring may be configured and located to cushion engagement of the stopper by said one part, and via the other part, as the handle is rotated.
- a further object is to provide passages in the relatively movable parts to supply exterior air to flow past the stopper via said lip, in closed position of the stopper, with the lip engaging a fouling element.
- Fig. 1 is a view taken in section through a faucet valve in closed, i.e. OFF condition
- Fig. 2 is a view like Fig. 1, but showing the valve in open, i.e. ON condition;
- Fig. 3 is a view of the Fig. 2 valve, in a back siphonage condition, with exterior air flowing past the closed stopper via the lip engaging a fouling particle;
- Fig. 4 is a view like Fig. 3, showing liquid flow through drain passages to the exterior, with the stopper in closed condition;
- Fig. 5 is a view of the valve stopper and seats in detail, during closed condition
- Fig. 6 is a view like Fig. 5, showing lip sealing during particle fouling;
- Fig. 6a is an elevation on lines 6a-6a of Fig. 6: and
- Fig. 7 is an axial section taken through a stopper, showing typical dimensions.
- the structure shown in combination includes: a) a valve chamber 10 having a flow inlet 11 from a liquid supply 12, and a flow outlet 13; b) a valve operator 14, such as a rotary handle 15, outside the chamber; c) a stopper 16 in the chamber and operatively connected, at 17, with the operator 14, for movement toward and away from seat structure 18 in the chamber, to control flow from the valve via the outlet; d) the seat structure including first and second seats, 21 and 22, the stopper located to seat on or against the first seat 21 in closed position as shown; e) the stopper carrying a flexible lip 20 to sealingly engage the second seat when the stopper forcibly seats on the first seat.
- the lip 20 is annular, and extends about a stopper annular surface 24 that engages the annular first seat 21 at 24a.
- Seat 21 may project above the level of seat 22, and into a pocket or recess 26 formed by surface 24, lip 20 and an annular shoulder 27 defined by the stopper 16.
- Pocket 26 radially spaces lip sealing at 20a from load or forcible seating at 24a, to make sure that the lip 20 does not engage the projecting seat 24a, which would interfere with lip function.
- the lip tapers radially outwardly, and axially, at 20b, toward an annular edge 20c that flexes when engaging the second seat, and to controlled extent determined by axial positioning of seating at 24a.
- the lip is configured with axial and radial tapered elongation or dimensioning not only to seal off against the second seat 22, but also to asymmetrically and locally flex and seal off against a foreign particle or particles 30 that may lodge at a locus between 22 and 24, as seen in Figs. 6 and 6a disturbing sealing at locus 24a. In that event, the lip assures sealing as seen in Fig. 6a with lip flexing and sealing against the second seat and about the foreign particle. This prevents liquid at the downstream side 40 of the stopper from being siphoned back to the liquid supply side at 41 and 41a. Under those conditions as seen in Fig. 3, air is admitted to the valve downstream side 40 and flows past the lip seal, to break the back siphoning effect. See air flow arrows 42, and no downstream liquid at 40, in Fig. 3, is siphoned back into the supply side 41 and 41a, even if the valve is fouled as by a foreign particle or particles, as referred to.
- That structure includes axially telescopically interfitting parts 35 and 36 which are relatively movable, axially, one part 35 connected to handle 15, and the other part 36 connected to the stopper.
- tubular part 35 is typically thread connected at 38 to the valve body 39 attached at 48 to the chamber 10 that contains the stopper.
- part 35 advances from retracted position as seen in Fig. 2 (valve open position) toward the interior 10a of the chamber, as seen in Fig. 1, and relative to part 36, to close the stopper toward the seats as referred to.
- Fig. 1 represents closed, i.e. OFF condition of the valve, as also seen in Fig.
- a bevel surface 35a on the lower end of a part 35 sealingly engages an O-ring seal 61 on part 36, near the stopper, to close off communication of fluid pressure in downstream chamber interior 10a to a side wall port 63 in tubular part or stem 36, and to a drain port 65 in the wall 36b of part 36.
- Fig. 2 ON configuration of the valve, the part 35 is fully retracted by the control handle, and the pressure of flowing supply liquid is exerted on the stopper to push it and part 36 bodily away from the seats, allowing flow through the valve as indicated by arrows 70 in Fig. 2.
- Supply liquid pressure exertion on the stopper pushes the seal 61 against the bevel surface 60, blocking escape of liquid via ports 63 and 65.
- Fig. 4 shows the condition that suction exists at the supply side 41 of the stopper, back pressure at interior 10a then being relieved via ports 63 and 65, as shown.
- Drain port 65 is closed in Fig. 1, whereby loose material cannot become clogged, when the stopper seats on the first seat. Note that beveled surface 60 is retracted away from seal 61 on part 36. A compression spring 80 in the interior 36c of part 35 exerts axial pressure on part 36, tending to close the stopper against the seats.
- Fig. 7 shows the dimensions of a particularly advantageous unitary stopper and sealing lip 20 configuration.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Check Valves (AREA)
- Lift Valve (AREA)
Abstract
In a valve, the combination comprising a valve chamber, having a flow inlet and a flow outlet, a valve operator outside the chamber, a stopper in the chamber and operatively connected with the operator for movement toward and away from seat structure in the chamber, to control flow from the valve via the outlet, and the seat structure including first and second seats, the stopper located to seat on the first seat, there being a flexible sealing lip carried by the stopper to sealingly engage the second seat when the stopper sets on the first seat. Relatively movable parts define said operative connection, with configuration and relative movement to allow air inflow to break back siphonage of liquid, and to allow back pressure relief via drain passages.
Description
FAUCET TYPE VALVE WITH BACKFLOW CONTROL
IN HANDLE STRUCTURE
BACKGROUND OF THE INVENTION
This invention relates generally to valves such as faucet valves, and more particularly to improvements in sealing off of flow through a faucet when foreign material or particles reside at sealing surfaces.
There is need for improvements in faucet valves, which will ensure sealing when foreign particles are carried in or by the fluid flow through the valves. In particular, there is need for such reliable sealing improvements when foreign particles become inadvertently wedged or seated between stopper and seat surfaces.
SUMMARY OF THE INVENTION
It is a major object of the invention to provide a solution to the problems referred to, and to meet the need for the stated improvements in a faucet type valve. Basically, the improved faucet valve provided includes: a) a valve chamber, having a flow inlet and a flow outlet, b) a valve operator outside the chamber, c) a stopper in the chamber and operatively connected with the operator, as for example a handle, for movement toward and away from seat structure in the chamber, to control flow from the valve via said outlet, d) and the seat structure including first and second seats, the stopper located to seat on the first seat. e) there being a flexible sealing lip carried by the stopper to sealingly engage the second seat when the stopper seats on the first seat.
It is another object of the invention to provide an annular sealing lip which extends about a stopper annular surface that engages the first seat. As will be seen, the lip typically tapers toward an annular edge that flexes when engaging the second seat. Further, the lip is typically configured with taper to seal off against said second seat and also to asymmetrically flex and seal off against or about a foreign element on the second seat.
A further object is to provide telescopically interfitting parts, which are relatively movable, one part connected to the handle, and the other part carrying the stopper and such parts typically being tubular. Typically, the one part has threaded connection to the chamber, for advancing that one part toward the seat, in response to handle rotation. Said one part may define a drain port to drain fluid from the interior of said one tubular part in which the other part projects.
Yet another object includes provision of a compression spring within the interior of said one part, the spring acting to urge said other part toward the seat. The spring may be configured and located to cushion engagement of the stopper by said one part, and via the other part, as the handle is rotated. A further object is to provide passages in the relatively movable parts to supply exterior air to flow past the stopper via said lip, in closed position of the stopper, with the lip engaging a fouling element.
These and other objects and advantages of the invention, as well as the details of an illustrative embodiment, will be more fully understood from the following specification and drawings, in which:
DRAWING DESCRIPTION
Fig. 1 is a view taken in section through a faucet valve in closed, i.e. OFF condition;
Fig. 2 is a view like Fig. 1, but showing the valve in open, i.e. ON condition;
Fig. 3 is a view of the Fig. 2 valve, in a back siphonage condition, with exterior air flowing past the closed stopper via the lip engaging a fouling particle; Fig. 4 is a view like Fig. 3, showing liquid flow through drain passages to the exterior, with the stopper in closed condition;
Fig. 5 is a view of the valve stopper and seats in detail, during closed condition;
Fig. 6 is a view like Fig. 5, showing lip sealing during particle fouling; Fig. 6a is an elevation on lines 6a-6a of Fig. 6: and
Fig. 7 is an axial section taken through a stopper, showing typical dimensions.
DETAILED DESCRIPTION
Referring first to Fig. 5, the structure shown in combination includes: a) a valve chamber 10 having a flow inlet 11 from a liquid supply 12, and a flow outlet 13; b) a valve operator 14, such as a rotary handle 15, outside the chamber; c) a stopper 16 in the chamber and operatively connected, at 17, with the operator 14, for movement toward and away from seat structure 18 in the chamber, to control flow from the valve via the outlet; d) the seat structure including first and second seats, 21 and 22, the stopper located to seat on or against the first seat 21 in closed position as shown; e) the stopper carrying a flexible lip 20 to sealingly engage the second seat when the stopper forcibly seats on the first seat.
As shown, the lip 20 is annular, and extends about a stopper annular surface 24 that engages the annular first seat 21 at 24a. Seat 21 may project above the level of seat 22, and into a pocket or recess 26 formed by surface 24, lip 20 and an annular shoulder 27 defined by the stopper 16. Pocket 26 radially spaces lip sealing at 20a from load or forcible seating at 24a, to make sure that the lip 20 does not engage the projecting seat 24a, which would interfere with lip function. Also, the lip tapers radially outwardly, and axially, at 20b, toward an annular edge 20c that flexes when engaging the second seat, and to controlled extent determined by axial positioning of seating at 24a. The lip is configured with axial and radial tapered elongation or dimensioning not only to seal off against the second seat 22, but also to asymmetrically and locally flex and seal off against a foreign particle or particles 30 that may lodge at a locus between 22 and 24, as seen in Figs. 6 and 6a disturbing sealing at locus 24a. In that event, the lip assures sealing as seen in Fig. 6a with lip flexing and sealing against the second seat and about the foreign particle. This prevents liquid at the downstream side 40 of the stopper from being siphoned back to the liquid supply side at 41 and 41a. Under those conditions as seen in Fig. 3, air is admitted to the valve downstream side 40 and flows past the lip seal, to break the back siphoning effect. See air flow arrows 42, and no downstream liquid at 40, in Fig. 3, is siphoned back into the
supply side 41 and 41a, even if the valve is fouled as by a foreign particle or particles, as referred to.
Of particular advantage is the structure of the operative connection 17 between operator 14 (as for example a rotary handle 15), and the stopper 16, as shown in Fig. 5. That structure includes axially telescopically interfitting parts 35 and 36 which are relatively movable, axially, one part 35 connected to handle 15, and the other part 36 connected to the stopper. As shown, tubular part 35 is typically thread connected at 38 to the valve body 39 attached at 48 to the chamber 10 that contains the stopper.
Accordingly, as the handle is rotated in one direction, part 35 advances from retracted position as seen in Fig. 2 (valve open position) toward the interior 10a of the chamber, as seen in Fig. 1, and relative to part 36, to close the stopper toward the seats as referred to.
Therefore, Fig. 1 represents closed, i.e. OFF condition of the valve, as also seen in Fig.
5.
At that time, a bevel surface 35a on the lower end of a part 35 sealingly engages an O-ring seal 61 on part 36, near the stopper, to close off communication of fluid pressure in downstream chamber interior 10a to a side wall port 63 in tubular part or stem 36, and to a drain port 65 in the wall 36b of part 36.
However, in Fig. 2 ON configuration of the valve, the part 35 is fully retracted by the control handle, and the pressure of flowing supply liquid is exerted on the stopper to push it and part 36 bodily away from the seats, allowing flow through the valve as indicated by arrows 70 in Fig. 2. Supply liquid pressure exertion on the stopper, pushes the seal 61 against the bevel surface 60, blocking escape of liquid via ports 63 and 65. Fig. 4 shows the condition that suction exists at the supply side 41 of the stopper, back pressure at interior 10a then being relieved via ports 63 and 65, as shown.
Drain port 65 is closed in Fig. 1, whereby loose material cannot become clogged, when the stopper seats on the first seat. Note that beveled surface 60 is retracted away from seal 61 on part 36. A compression spring 80 in the interior 36c of part 35 exerts axial pressure on part 36, tending to close the stopper against the seats.
Fig. 7 shows the dimensions of a particularly advantageous unitary stopper and sealing lip 20 configuration.
Claims
1. In a valve, the combination comprising a) a valve chamber, having a flow inlet and a flow outlet, b) a valve operator outside the chamber, c) a stopper in the chamber and operatively connected with the operator for movement toward and away from seat structure in the chamber, to move toward and control flow from the valve via said outlet, d) and said seat structure including first and second seats, said stopper located to seat on the first seat, e) there being a flexible sealing lip carried by the stopper to sealingly engage the second seat when the stopper seats on the first seat.
2. The combination of claim 1 wherein the lip is annular and extends about a stopper annular surface that engages the first seat.
3. The combination of claim 2 wherein the lip tapers toward an annular edge that flexes when engaging the second seat.
4. The combination of claim 2 wherein the lip is configured with taper to seal off against said second seat and also to asymmetrically flex and seal off against a foreign element lodged on the second seat.
5. The combination of claim 1 including telescopically interfitting parts, which are relatively movable, one part connected to the handle, and the other part carrying the stopper.
6. The combination of claim 5 wherein said one part has threaded connection to the chamber, for advancing said one part toward the seat, in response to handle rotation.
7. The combination of claim 5 wherein said one part defines a drain port to drain fluid from the interior of said one part wherein said other part projects.
8. The combination of claim 7 wherein said parts have a sealing position or positions in which communication from the chamber interior to said drain port is blocked.
9. The combination of claim 5 including a compression spring within the interior of said one part within which said other part projects, said spring acting to yieldably urge said other part toward the seat.
10. The combination of claim 9 wherein said spring is configured and located to cushion valve closing forces exerted on the stopper by said one part, and via the other part as the handle is rotated.
11. The combination of claim 5 wherein said parts define interconnecting passages to supply exterior air to flow past the stopper via said lip, in closed position of the stopper, to break liquid back siphonage.
12. For use in a valve having seat structure having first and second seats, the combination comprising a) a stopper having a non-metallic body movable toward and away from said seat structure, b) the stopper adapted to seat on the first seat, c) there being a flexible sealing lip carried by the stopper to sealingly engage the second seat when the stopper seats on the first seat.
13. The combination of claim 1 wherein the lip is annular and extends about a stopper annular surface that engages the first seat.
14. The combination of claim 13 wherein the lip tapers toward an annular edge that flexes when engaging the second seat.
15. The combination of claim 13 wherein the lip is configured with taper to seal off against said second seat and also to asymmetrically flex and seal off against a foreign element lodged on the second seat.
16. The combination of claim 14 wherein the lip is angled to flex outwardly away from said body in response to engagement with said second seat.
17. The combination of claim 14 wherein the lip is integral with said body and has thickness that decreases along the lip length that tapers toward said edge.
18. The combination of claim 17 wherein the lip has thickness t that decreases from a maximum value t, proximate said body and in a direction toward said edge, the lip having a length 1 in said direction, and wherein: l>2t,
19. The combination of claim 12 wherein the body has an annular recess sunk therein extending from said lip toward an axis defined by the body, said recess having an annular interior wall located to press against the second seat upon closing of the valve, and at which time the lip is flexed in response to engagement with the first seat.
20. The combination of claim 7 wherein said drain port is closed when the stopper seats on the first seat.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/US2007/019422 WO2009031994A1 (en) | 2007-09-06 | 2007-09-06 | Faucet type valve with backflow control in handle structure |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/US2007/019422 WO2009031994A1 (en) | 2007-09-06 | 2007-09-06 | Faucet type valve with backflow control in handle structure |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2009031994A1 true WO2009031994A1 (en) | 2009-03-12 |
Family
ID=40429148
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2007/019422 WO2009031994A1 (en) | 2007-09-06 | 2007-09-06 | Faucet type valve with backflow control in handle structure |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2009031994A1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2369207A1 (en) * | 2010-03-09 | 2011-09-28 | R. Nussbaum AG | Valve |
| WO2012012829A3 (en) * | 2010-07-29 | 2012-03-22 | Pride Technologies International Pty Ltd | A jumper valve |
| EP2689198A4 (en) * | 2011-03-24 | 2014-08-20 | Braathen Thor Frølich | ENHANCED COMBINED VALVE |
| WO2016075698A1 (en) * | 2014-11-16 | 2016-05-19 | Bermad Cs Ltd. | Deluge valve with valve seat drain |
| CN106286859A (en) * | 2016-11-01 | 2017-01-04 | 成都秦川科技发展有限公司 | A kind of low-power consumption electromechanical valve and gas meter, flow meter |
| JP2018040485A (en) * | 2016-09-09 | 2018-03-15 | アイシン精機株式会社 | Fluid control valve |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1847385A (en) * | 1930-05-26 | 1932-03-01 | Dengler Benjamin Franklin | Valve |
| US3054422A (en) * | 1958-09-26 | 1962-09-18 | Pellegrino E Napolitano | Fluid seal for pressure responsive valve |
| US3929150A (en) * | 1974-10-09 | 1975-12-30 | Mansfield Sanitary Inc | Sillcock incorporating an antisiphon and backflow preventer |
| US5533546A (en) * | 1991-02-26 | 1996-07-09 | Valvtec Pty Limited | Assembly for prevention of backflow in valves |
| US5752542A (en) * | 1996-01-22 | 1998-05-19 | Hoeptner, Iii; Herbert W. | Back flow preventing adjustable valve apparatus |
-
2007
- 2007-09-06 WO PCT/US2007/019422 patent/WO2009031994A1/en active Application Filing
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1847385A (en) * | 1930-05-26 | 1932-03-01 | Dengler Benjamin Franklin | Valve |
| US3054422A (en) * | 1958-09-26 | 1962-09-18 | Pellegrino E Napolitano | Fluid seal for pressure responsive valve |
| US3929150A (en) * | 1974-10-09 | 1975-12-30 | Mansfield Sanitary Inc | Sillcock incorporating an antisiphon and backflow preventer |
| US5533546A (en) * | 1991-02-26 | 1996-07-09 | Valvtec Pty Limited | Assembly for prevention of backflow in valves |
| US5752542A (en) * | 1996-01-22 | 1998-05-19 | Hoeptner, Iii; Herbert W. | Back flow preventing adjustable valve apparatus |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2369207A1 (en) * | 2010-03-09 | 2011-09-28 | R. Nussbaum AG | Valve |
| WO2012012829A3 (en) * | 2010-07-29 | 2012-03-22 | Pride Technologies International Pty Ltd | A jumper valve |
| EP2689198A4 (en) * | 2011-03-24 | 2014-08-20 | Braathen Thor Frølich | ENHANCED COMBINED VALVE |
| WO2016075698A1 (en) * | 2014-11-16 | 2016-05-19 | Bermad Cs Ltd. | Deluge valve with valve seat drain |
| EA033529B1 (en) * | 2014-11-16 | 2019-10-31 | Bermad Cs Ltd | Deluge valve with valve seat drain |
| JP2018040485A (en) * | 2016-09-09 | 2018-03-15 | アイシン精機株式会社 | Fluid control valve |
| CN106286859A (en) * | 2016-11-01 | 2017-01-04 | 成都秦川科技发展有限公司 | A kind of low-power consumption electromechanical valve and gas meter, flow meter |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7237569B2 (en) | Ball check valve | |
| EP1664957B1 (en) | Side spray diverter valve | |
| WO2009031994A1 (en) | Faucet type valve with backflow control in handle structure | |
| US8167587B2 (en) | Pump assembly with reversible one-way valves | |
| US10718103B2 (en) | Push-button diverter valve | |
| CA2601074A1 (en) | Fluid flow control device | |
| US7409964B2 (en) | Faucet type valve with backflow control in handle structure | |
| KR100984231B1 (en) | Pressure reducing valve for bidet | |
| CN1085808C (en) | Faucet | |
| US9816636B2 (en) | Rigid piston retrofit for a diaphragm flush valve | |
| US6761183B1 (en) | Back flow preventing adjustable valve apparatus with fluid escape | |
| US10145092B2 (en) | Device for preventing backflow | |
| CN111094821A (en) | Valve device | |
| US6857446B1 (en) | Flow controlling dual hydrant | |
| WO1998006910A1 (en) | Improved mains pressure flusher valve | |
| US9759344B2 (en) | Flush valve seat | |
| CN114645962A (en) | Freeze-proof outer wall diverter valve with system separator | |
| US9052028B2 (en) | Flush valve pressure balance | |
| US8333364B1 (en) | Stopper elastomeric sleeve assembly into standard valve | |
| EP1683996A1 (en) | Filter for a flush tank float-controlled fill tap | |
| US9222584B2 (en) | Rigid piston retrofit for a diaphragm flush valve | |
| CN118581954A (en) | Frost-proof exterior faucet valve with system separator | |
| US12066119B2 (en) | Automatic drain valve | |
| US9127778B2 (en) | Flush valve | |
| JP3116279U (en) | Self-flowing free rotating nozzle |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07837794 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 07837794 Country of ref document: EP Kind code of ref document: A1 |