WO2009101658A1 - Timed-release pharmaceutical preparation - Google Patents
Timed-release pharmaceutical preparation Download PDFInfo
- Publication number
- WO2009101658A1 WO2009101658A1 PCT/JP2008/001707 JP2008001707W WO2009101658A1 WO 2009101658 A1 WO2009101658 A1 WO 2009101658A1 JP 2008001707 W JP2008001707 W JP 2008001707W WO 2009101658 A1 WO2009101658 A1 WO 2009101658A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- manufactured
- water
- produced
- mesh
- coating liquid
- Prior art date
Links
- 239000000825 pharmaceutical preparation Substances 0.000 title abstract 2
- 238000002360 preparation method Methods 0.000 claims abstract description 225
- 239000003814 drug Substances 0.000 claims abstract description 96
- 229940079593 drug Drugs 0.000 claims abstract description 93
- 239000000126 substance Substances 0.000 claims abstract description 28
- 229920003176 water-insoluble polymer Polymers 0.000 claims abstract description 14
- 238000000576 coating method Methods 0.000 claims description 285
- 239000011248 coating agent Substances 0.000 claims description 284
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 172
- 229940031703 low substituted hydroxypropyl cellulose Drugs 0.000 claims description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 49
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 28
- 239000000454 talc Substances 0.000 claims description 27
- 229910052623 talc Inorganic materials 0.000 claims description 27
- 235000012222 talc Nutrition 0.000 claims description 27
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 18
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims description 15
- 239000001856 Ethyl cellulose Substances 0.000 claims description 14
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 14
- 229920001249 ethyl cellulose Polymers 0.000 claims description 14
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 14
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 claims description 13
- 229920000642 polymer Polymers 0.000 claims description 13
- 229920001897 terpolymer Polymers 0.000 claims description 11
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims description 10
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 9
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 9
- 229920006027 ternary co-polymer Polymers 0.000 claims description 9
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 6
- 229920002678 cellulose Polymers 0.000 claims description 5
- 239000001913 cellulose Substances 0.000 claims description 5
- 235000019359 magnesium stearate Nutrition 0.000 claims description 5
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 4
- 229920002785 Croscarmellose sodium Polymers 0.000 claims description 4
- 229920002472 Starch Polymers 0.000 claims description 4
- VJHCJDRQFCCTHL-UHFFFAOYSA-N acetic acid 2,3,4,5,6-pentahydroxyhexanal Chemical compound CC(O)=O.OCC(O)C(O)C(O)C(O)C=O VJHCJDRQFCCTHL-UHFFFAOYSA-N 0.000 claims description 4
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 claims description 4
- 235000013539 calcium stearate Nutrition 0.000 claims description 4
- 239000008116 calcium stearate Substances 0.000 claims description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 4
- 229950008138 carmellose Drugs 0.000 claims description 4
- 229960001681 croscarmellose sodium Drugs 0.000 claims description 4
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 239000008107 starch Substances 0.000 claims description 4
- 235000019698 starch Nutrition 0.000 claims description 4
- SZYJELPVAFJOGJ-UHFFFAOYSA-N trimethylamine hydrochloride Chemical group Cl.CN(C)C SZYJELPVAFJOGJ-UHFFFAOYSA-N 0.000 claims description 4
- 238000005550 wet granulation Methods 0.000 claims description 4
- 239000005995 Aluminium silicate Substances 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- 235000012211 aluminium silicate Nutrition 0.000 claims description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 3
- 239000001506 calcium phosphate Substances 0.000 claims description 3
- 229910000389 calcium phosphate Inorganic materials 0.000 claims description 3
- 235000011010 calcium phosphates Nutrition 0.000 claims description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 3
- 229940024546 aluminum hydroxide gel Drugs 0.000 claims description 2
- SMYKVLBUSSNXMV-UHFFFAOYSA-K aluminum;trihydroxide;hydrate Chemical compound O.[OH-].[OH-].[OH-].[Al+3] SMYKVLBUSSNXMV-UHFFFAOYSA-K 0.000 claims description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 claims description 2
- 239000001095 magnesium carbonate Substances 0.000 claims description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- MPNXSZJPSVBLHP-UHFFFAOYSA-N 2-chloro-n-phenylpyridine-3-carboxamide Chemical compound ClC1=NC=CC=C1C(=O)NC1=CC=CC=C1 MPNXSZJPSVBLHP-UHFFFAOYSA-N 0.000 claims 1
- 230000000977 initiatory effect Effects 0.000 abstract 2
- 239000000945 filler Substances 0.000 abstract 1
- 239000008187 granular material Substances 0.000 description 198
- 239000007788 liquid Substances 0.000 description 164
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 158
- 238000010828 elution Methods 0.000 description 144
- 239000000203 mixture Substances 0.000 description 89
- 239000007787 solid Substances 0.000 description 88
- 229960000278 theophylline Drugs 0.000 description 79
- 238000009472 formulation Methods 0.000 description 78
- 235000019441 ethanol Nutrition 0.000 description 67
- 238000012360 testing method Methods 0.000 description 53
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 51
- 235000010724 Wisteria floribunda Nutrition 0.000 description 48
- CIVCELMLGDGMKZ-UHFFFAOYSA-N 2,4-dichloro-6-methylpyridine-3-carboxylic acid Chemical compound CC1=CC(Cl)=C(C(O)=O)C(Cl)=N1 CIVCELMLGDGMKZ-UHFFFAOYSA-N 0.000 description 42
- 229960000525 diphenhydramine hydrochloride Drugs 0.000 description 42
- 239000012085 test solution Substances 0.000 description 40
- 239000007864 aqueous solution Substances 0.000 description 38
- 238000005096 rolling process Methods 0.000 description 36
- 239000011162 core material Substances 0.000 description 33
- 239000000243 solution Substances 0.000 description 31
- 238000007922 dissolution test Methods 0.000 description 30
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 29
- 229960001948 caffeine Drugs 0.000 description 28
- 238000002156 mixing Methods 0.000 description 27
- 239000002245 particle Substances 0.000 description 27
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 23
- 238000005507 spraying Methods 0.000 description 22
- SPCKHVPPRJWQRZ-UHFFFAOYSA-N 2-benzhydryloxy-n,n-dimethylethanamine;2-hydroxypropane-1,2,3-tricarboxylic acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 SPCKHVPPRJWQRZ-UHFFFAOYSA-N 0.000 description 19
- 229960000520 diphenhydramine Drugs 0.000 description 19
- 229920001577 copolymer Polymers 0.000 description 18
- 238000010586 diagram Methods 0.000 description 18
- 229920003134 Eudragit® polymer Polymers 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 13
- 239000008213 purified water Substances 0.000 description 13
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 10
- 238000005469 granulation Methods 0.000 description 10
- 230000003179 granulation Effects 0.000 description 10
- 229960001680 ibuprofen Drugs 0.000 description 10
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 9
- 238000004090 dissolution Methods 0.000 description 9
- 238000013270 controlled release Methods 0.000 description 8
- 230000036470 plasma concentration Effects 0.000 description 8
- 239000000654 additive Substances 0.000 description 7
- GDCRSXZBSIRSFR-UHFFFAOYSA-N ethyl prop-2-enoate;2-methylprop-2-enoic acid Chemical compound CC(=C)C(O)=O.CCOC(=O)C=C GDCRSXZBSIRSFR-UHFFFAOYSA-N 0.000 description 7
- 210000001035 gastrointestinal tract Anatomy 0.000 description 7
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000003405 delayed action preparation Substances 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 6
- 230000000873 masking effect Effects 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- 229920003135 Eudragit® L 100-55 Polymers 0.000 description 5
- 229920003151 Eudragit® RL polymer Polymers 0.000 description 5
- 229920003152 Eudragit® RS polymer Polymers 0.000 description 5
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- FSXVSUSRJXIJHB-UHFFFAOYSA-M ethyl prop-2-enoate;methyl 2-methylprop-2-enoate;trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium;chloride Chemical compound [Cl-].CCOC(=O)C=C.COC(=O)C(C)=C.CC(=C)C(=O)OCC[N+](C)(C)C FSXVSUSRJXIJHB-UHFFFAOYSA-M 0.000 description 5
- 239000008101 lactose Substances 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- DNKKLDKIFMDAPT-UHFFFAOYSA-N n,n-dimethylmethanamine;2-methylprop-2-enoic acid Chemical compound CN(C)C.CC(=C)C(O)=O.CC(=C)C(O)=O DNKKLDKIFMDAPT-UHFFFAOYSA-N 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000012798 spherical particle Substances 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- DBAKFASWICGISY-BTJKTKAUSA-N Chlorpheniramine maleate Chemical compound OC(=O)\C=C/C(O)=O.C=1C=CC=NC=1C(CCN(C)C)C1=CC=C(Cl)C=C1 DBAKFASWICGISY-BTJKTKAUSA-N 0.000 description 4
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 4
- 229940046978 chlorpheniramine maleate Drugs 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 210000000813 small intestine Anatomy 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 241000282472 Canis lupus familiaris Species 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 235000019658 bitter taste Nutrition 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- -1 hydroxypropoxyl group Chemical group 0.000 description 3
- 210000002429 large intestine Anatomy 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 229960005489 paracetamol Drugs 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 210000002784 stomach Anatomy 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 235000019640 taste Nutrition 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 206010010904 Convulsion Diseases 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 230000002744 anti-aggregatory effect Effects 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 229940127219 anticoagulant drug Drugs 0.000 description 2
- 239000003472 antidiabetic agent Substances 0.000 description 2
- 239000002220 antihypertensive agent Substances 0.000 description 2
- 229940030600 antihypertensive agent Drugs 0.000 description 2
- 239000003524 antilipemic agent Substances 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 208000006673 asthma Diseases 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004503 fine granule Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 229940126904 hypoglycaemic agent Drugs 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 238000005563 spheronization Methods 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 235000015961 tonic Nutrition 0.000 description 2
- 230000001256 tonic effect Effects 0.000 description 2
- 229940124549 vasodilator Drugs 0.000 description 2
- 239000003071 vasodilator agent Substances 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- AKNNEGZIBPJZJG-MSOLQXFVSA-N (-)-noscapine Chemical compound CN1CCC2=CC=3OCOC=3C(OC)=C2[C@@H]1[C@@H]1C2=CC=C(OC)C(OC)=C2C(=O)O1 AKNNEGZIBPJZJG-MSOLQXFVSA-N 0.000 description 1
- 239000001096 (4-ethenyl-1-azabicyclo[2.2.2]octan-7-yl)-(6-methoxyquinolin-4-yl)methanol hydrochloride Substances 0.000 description 1
- YQSHYGCCYVPRDI-UHFFFAOYSA-N (4-propan-2-ylphenyl)methanamine Chemical compound CC(C)C1=CC=C(CN)C=C1 YQSHYGCCYVPRDI-UHFFFAOYSA-N 0.000 description 1
- ZGSZBVAEVPSPFM-FFHNEAJVSA-N (4r,4ar,7s,7ar,12bs)-9-methoxy-3-methyl-2,4,4a,5,6,7,7a,13-octahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-7-ol;2,3-dihydroxybutanedioic acid Chemical compound OC(=O)C(O)C(O)C(O)=O.C([C@H]1[C@H](N(CC[C@@]112)C)C3)C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC ZGSZBVAEVPSPFM-FFHNEAJVSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- NNKXWRRDHYTHFP-HZQSTTLBSA-N (r)-[(2s,4s,5r)-5-ethenyl-1-azabicyclo[2.2.2]octan-2-yl]-(6-methoxyquinolin-4-yl)methanol;hydron;dichloride Chemical compound Cl.Cl.C([C@H]([C@H](C1)C=C)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 NNKXWRRDHYTHFP-HZQSTTLBSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- FEDJGPQLLNQAIY-UHFFFAOYSA-N 2-[(6-oxo-1h-pyridazin-3-yl)oxy]acetic acid Chemical compound OC(=O)COC=1C=CC(=O)NN=1 FEDJGPQLLNQAIY-UHFFFAOYSA-N 0.000 description 1
- MEAPRSDUXBHXGD-UHFFFAOYSA-N 3-chloro-n-(4-propan-2-ylphenyl)propanamide Chemical compound CC(C)C1=CC=C(NC(=O)CCCl)C=C1 MEAPRSDUXBHXGD-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- AKJDEXBCRLOVTH-UHFFFAOYSA-N Carbetapentane citrate Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C=1C=CC=CC=1C1(C(=O)OCCOCCN(CC)CC)CCCC1 AKJDEXBCRLOVTH-UHFFFAOYSA-N 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- FDJCVHVKXFIEPJ-JCNFZFLDSA-N Delapril hydrochloride Chemical compound Cl.C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N(CC(O)=O)C1CC2=CC=CC=C2C1)CC1=CC=CC=C1 FDJCVHVKXFIEPJ-JCNFZFLDSA-N 0.000 description 1
- 206010012335 Dependence Diseases 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- WDJUZGPOPHTGOT-OAXVISGBSA-N Digitoxin Natural products O([C@H]1[C@@H](C)O[C@@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@@](C)([C@H](C6=CC(=O)OC6)CC5)CC4)CC3)CC2)C[C@H]1O)[C@H]1O[C@@H](C)[C@H](O[C@H]2O[C@@H](C)[C@@H](O)[C@@H](O)C2)[C@@H](O)C1 WDJUZGPOPHTGOT-OAXVISGBSA-N 0.000 description 1
- 206010013710 Drug interaction Diseases 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- KTNROWWHOBZQGK-UHFFFAOYSA-N Etilefrine hydrochloride (TN) Chemical compound [Cl-].CC[NH2+]CC(O)C1=CC=CC(O)=C1 KTNROWWHOBZQGK-UHFFFAOYSA-N 0.000 description 1
- 229920003139 Eudragit® L 100 Polymers 0.000 description 1
- 229920003136 Eudragit® L polymer Polymers 0.000 description 1
- 229920003141 Eudragit® S 100 Polymers 0.000 description 1
- 229920003137 Eudragit® S polymer Polymers 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 229920003114 HPC-L Polymers 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- XZTYGFHCIAKPGJ-UHFFFAOYSA-N Meclofenoxate Chemical compound CN(C)CCOC(=O)COC1=CC=C(Cl)C=C1 XZTYGFHCIAKPGJ-UHFFFAOYSA-N 0.000 description 1
- 206010069140 Myocardial depression Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000978776 Senegalia senegal Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 239000000150 Sympathomimetic Substances 0.000 description 1
- DDNCQMVWWZOMLN-IRLDBZIGSA-N Vinpocetine Chemical compound C1=CC=C2C(CCN3CCC4)=C5[C@@H]3[C@]4(CC)C=C(C(=O)OCC)N5C2=C1 DDNCQMVWWZOMLN-IRLDBZIGSA-N 0.000 description 1
- NTCYWJCEOILKNG-ROLPUNSJSA-N [(1r,2s)-1-hydroxy-1-phenylpropan-2-yl]-dimethylazanium;chloride Chemical compound Cl.CN(C)[C@@H](C)[C@H](O)C1=CC=CC=C1 NTCYWJCEOILKNG-ROLPUNSJSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229960000852 alprenolol hydrochloride Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000954 anitussive effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 239000003416 antiarrhythmic agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 239000003430 antimalarial agent Substances 0.000 description 1
- 229940033495 antimalarials Drugs 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 239000003907 antipyretic analgesic agent Substances 0.000 description 1
- 239000003434 antitussive agent Substances 0.000 description 1
- 229940124584 antitussives Drugs 0.000 description 1
- 239000003699 antiulcer agent Substances 0.000 description 1
- 239000002249 anxiolytic agent Substances 0.000 description 1
- 230000000949 anxiolytic effect Effects 0.000 description 1
- 229940005530 anxiolytics Drugs 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 210000000467 autonomic pathway Anatomy 0.000 description 1
- IWVTXAGTHUECPN-ANBBSHPLSA-N bacampicillin hydrochloride Chemical compound [H+].[Cl-].C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)[C@H](C(S3)(C)C)C(=O)OC(C)OC(=O)OCC)=CC=CC=C1 IWVTXAGTHUECPN-ANBBSHPLSA-N 0.000 description 1
- 229960005412 bacampicillin hydrochloride Drugs 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 229940124630 bronchodilator Drugs 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- FAPWYRCQGJNNSJ-UBKPKTQASA-L calcium D-pantothenic acid Chemical compound [Ca+2].OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O.OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O FAPWYRCQGJNNSJ-UBKPKTQASA-L 0.000 description 1
- 229960002079 calcium pantothenate Drugs 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229940098391 carbetapentane citrate Drugs 0.000 description 1
- 239000000496 cardiotonic agent Substances 0.000 description 1
- QYIYFLOTGYLRGG-GPCCPHFNSA-N cefaclor Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CS[C@@H]32)C(O)=O)=O)N)=CC=CC=C1 QYIYFLOTGYLRGG-GPCCPHFNSA-N 0.000 description 1
- 229960005361 cefaclor Drugs 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- ZPEIMTDSQAKGNT-UHFFFAOYSA-N chlorpromazine Chemical compound C1=C(Cl)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZPEIMTDSQAKGNT-UHFFFAOYSA-N 0.000 description 1
- 229960001076 chlorpromazine Drugs 0.000 description 1
- CCGSUNCLSOWKJO-UHFFFAOYSA-N cimetidine Chemical compound N#CNC(=N/C)\NCCSCC1=NC=N[C]1C CCGSUNCLSOWKJO-UHFFFAOYSA-N 0.000 description 1
- 229960001380 cimetidine Drugs 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 229960003782 dextromethorphan hydrobromide Drugs 0.000 description 1
- 230000002478 diastatic effect Effects 0.000 description 1
- 229960003529 diazepam Drugs 0.000 description 1
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 1
- 229960001193 diclofenac sodium Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- WDJUZGPOPHTGOT-XUDUSOBPSA-N digitoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)CC5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O WDJUZGPOPHTGOT-XUDUSOBPSA-N 0.000 description 1
- 229960000648 digitoxin Drugs 0.000 description 1
- 229960000920 dihydrocodeine Drugs 0.000 description 1
- 229960005316 diltiazem hydrochloride Drugs 0.000 description 1
- 229960001056 dimemorfan Drugs 0.000 description 1
- KBEZZLAAKIIPFK-NJAFHUGGSA-N dimemorfan Chemical compound C1C2=CC=C(C)C=C2[C@@]23CCN(C)[C@@H]1[C@H]2CCCC3 KBEZZLAAKIIPFK-NJAFHUGGSA-N 0.000 description 1
- 229940120889 dipyrone Drugs 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- 229940073563 dl- methylephedrine hydrochloride Drugs 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- JQPARKNWUCPYTK-UHFFFAOYSA-M ethyl(trimethyl)azanium;2-methylprop-2-enoate Chemical compound CC[N+](C)(C)C.CC(=C)C([O-])=O JQPARKNWUCPYTK-UHFFFAOYSA-M 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- LPEPZBJOKDYZAD-UHFFFAOYSA-N flufenamic acid Chemical compound OC(=O)C1=CC=CC=C1NC1=CC=CC(C(F)(F)F)=C1 LPEPZBJOKDYZAD-UHFFFAOYSA-N 0.000 description 1
- 229960004369 flufenamic acid Drugs 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 229950006836 fursultiamine Drugs 0.000 description 1
- JTLXCMOFVBXEKD-FOWTUZBSSA-N fursultiamine Chemical compound C1CCOC1CSSC(\CCO)=C(/C)N(C=O)CC1=CN=C(C)N=C1N JTLXCMOFVBXEKD-FOWTUZBSSA-N 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 230000030136 gastric emptying Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 1
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 description 1
- 229920000639 hydroxypropylmethylcellulose acetate succinate Polymers 0.000 description 1
- 230000000147 hypnotic effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 208000030603 inherited susceptibility to asthma Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 229960000991 ketoprofen Drugs 0.000 description 1
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 229960002983 loperamide hydrochloride Drugs 0.000 description 1
- PGYPOBZJRVSMDS-UHFFFAOYSA-N loperamide hydrochloride Chemical compound Cl.C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)N(C)C)CCN(CC1)CCC1(O)C1=CC=C(Cl)C=C1 PGYPOBZJRVSMDS-UHFFFAOYSA-N 0.000 description 1
- 210000003750 lower gastrointestinal tract Anatomy 0.000 description 1
- 229960003511 macrogol Drugs 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229960001637 meclofenoxate hydrochloride Drugs 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- DJGAAPFSPWAYTJ-UHFFFAOYSA-M metamizole sodium Chemical compound [Na+].O=C1C(N(CS([O-])(=O)=O)C)=C(C)N(C)N1C1=CC=CC=C1 DJGAAPFSPWAYTJ-UHFFFAOYSA-M 0.000 description 1
- CMUHZRATLMUDJI-UHFFFAOYSA-N methyl 2h-pyridine-1-carboxylate Chemical compound COC(=O)N1CC=CC=C1 CMUHZRATLMUDJI-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229940035363 muscle relaxants Drugs 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 239000003158 myorelaxant agent Substances 0.000 description 1
- 229960004708 noscapine Drugs 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 210000004798 organs belonging to the digestive system Anatomy 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229960000293 pirenzepine hydrochloride Drugs 0.000 description 1
- FFNMBRCFFADNAO-UHFFFAOYSA-N pirenzepine hydrochloride Chemical compound [H+].[H+].[Cl-].[Cl-].C1CN(C)CCN1CC(=O)N1C2=NC=CC=C2NC(=O)C2=CC=CC=C21 FFNMBRCFFADNAO-UHFFFAOYSA-N 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 229960002244 promethazine hydrochloride Drugs 0.000 description 1
- XXPDBLUZJRXNNZ-UHFFFAOYSA-N promethazine hydrochloride Chemical compound Cl.C1=CC=C2N(CC(C)N(C)C)C3=CC=CC=C3SC2=C1 XXPDBLUZJRXNNZ-UHFFFAOYSA-N 0.000 description 1
- 229960004604 propranolol hydrochloride Drugs 0.000 description 1
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol hydrochloride Natural products C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000004089 psychotropic agent Substances 0.000 description 1
- 229960001811 quinine hydrochloride Drugs 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000004202 respiratory function Effects 0.000 description 1
- 229940125723 sedative agent Drugs 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- JGMJQSFLQWGYMQ-UHFFFAOYSA-M sodium;2,6-dichloro-n-phenylaniline;acetate Chemical compound [Na+].CC([O-])=O.ClC1=CC=CC(Cl)=C1NC1=CC=CC=C1 JGMJQSFLQWGYMQ-UHFFFAOYSA-M 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 238000009495 sugar coating Methods 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 229940127230 sympathomimetic drug Drugs 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 1
- 229960000344 thiamine hydrochloride Drugs 0.000 description 1
- 235000019190 thiamine hydrochloride Nutrition 0.000 description 1
- 239000011747 thiamine hydrochloride Substances 0.000 description 1
- 229960000716 tonics Drugs 0.000 description 1
- 229960000401 tranexamic acid Drugs 0.000 description 1
- GYDJEQRTZSCIOI-LJGSYFOKSA-N tranexamic acid Chemical compound NC[C@H]1CC[C@H](C(O)=O)CC1 GYDJEQRTZSCIOI-LJGSYFOKSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 229960000744 vinpocetine Drugs 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/28—Dragees; Coated pills or tablets, e.g. with film or compression coating
- A61K9/2806—Coating materials
Definitions
- the present invention relates to a time-release preparation capable of freely adjusting the time at which a drug starts to be released from the preparation and the drug release rate after the start of drug release.
- timed release control technology that can precisely control the starting time of the main drug release after taking is required.
- methods such as (i) membrane disruption type, (ii) membrane detachment type, (iii) membrane dissolution type, and (iv) membrane permeation type have been proposed, but are still in practical use. Has not reached.
- asthma attacks are said to concentrate from midnight to early morning, when respiratory function is most reduced. Even if regular preparations or sustained-release preparations are taken at bedtime, the effective plasma concentration range will be less than or equal to the effective plasma concentration range from midnight to early morning when seizures occur, but by taking a timed release preparation at midnight The plasma concentration can be maximized early in the morning.
- the time-release preparation can be administered in advance while avoiding a time zone in which it is difficult to take.
- myocardial infarction, depression, and seizures are also time-dependent.
- the drug can be administered to the lower part of the small intestine or the large intestine, and by setting the release start time to several minutes, it can be used for masking drugs having an unpleasant taste. Furthermore, it can also be used to avoid drug interactions between drugs that interfere with each other's efficacy when taken simultaneously.
- a time-release preparation is a preparation in which a water-swellable substance and a drug are attached around the core particles and coated with a mixed film of ethyl cellulose and talc. In which the drug is destroyed and the drug is released (Patent Documents 1 and 2).
- a film of a preparation for obtaining a lag time until the start of release uses a water-repellent salt such as a metal salt of a fatty acid such as magnesium stearate and calcium stearate and an acrylic acid polymer (Patent Document 3), or Eudragit RS The thing (patent document 4) etc. which utilized the interaction of (made by Degussa Japan) and an organic acid are proposed.
- these preparations are achieved by producing a multi-layered granule having a drug layer, a swelling agent layer, a controlled release layer, etc. on a lactose isospherical granule (for example, Nonparel 101; manufactured by Freund Sangyo Co., Ltd.). Therefore, advanced formulation techniques are required to produce these timed release formulations. For this reason, it has been extremely difficult to accurately control the lag time (the time during which no drug is released) and the drug release after the lag time. Therefore, there has been a strong demand for a time-release preparation that does not require advanced preparation techniques and is easy to manufacture.
- a lactose isospherical granule for example, Nonparel 101; manufactured by Freund Sangyo Co., Ltd.
- the present invention provides a timed release preparation characterized in that a central core containing a drug and a water-swellable substance is coated with a film containing a water-insoluble polymer and a water-insoluble excipient.
- the central core containing a drug and a water-swellable substance is coated only with a film containing a water-insoluble polymer and a water-insoluble excipient, so that the time when the drug starts to be released from the preparation and the drug It is possible to provide a time-release preparation capable of freely adjusting the drug release rate after the start of release.
- the composition of the film, the coating amount, and the mixing ratio of the water-swellable substance in the central core regardless of the pH change in the gastrointestinal tract, it is a pH-independent type that can release the drug quickly after a set lag time Timed release formulation, and within lag time within 5 minutes, 10 minutes and 15 minutes, and within 12 minutes, 15 minutes and 20 minutes after lag time (preferably within 5 minutes, 10 minutes and 15 minutes, respectively)
- Masking-type timed release formulation capable of releasing more than 80% of the drug contained in the drug, and further, does not release the drug in the acidic and neutral regions, and releases the drug after a certain lag time only in the alkaline region to It is possible to provide a controlled release site-controlled timed release formulation and the like.
- Fig. 1 shows the calculation method of lag time (time when drug is not released), T 80% (time when elution amount reaches 80%), T 80% -lag time (release of time-release preparation) from the dissolution curve. It is a figure for demonstrating.
- 2 is a diagram showing an elution curve of the preparation obtained in Example 1.
- FIG. 3 is a diagram showing elution curves of the preparations obtained in Example 2 and Reference Example 1.
- FIG. 4 is a diagram showing elution curves of the preparations obtained in Example 3 and Reference Example 2.
- FIG. 5 is a diagram showing an elution curve of the preparation obtained in Example 4.
- FIG. 6 is a diagram showing an elution curve of the preparation obtained in Example 5.
- FIG. 7 is a view showing an elution curve of the preparation obtained in Example 6.
- FIG. 8 shows the dissolution curve of the preparation obtained in Example 7.
- FIG. 9 is a diagram showing an elution curve of the preparation obtained in Reference Example 3.
- FIG. 10 is a view showing an elution curve of the preparation obtained in Example 8.
- FIG. 11 is a view showing an elution curve of the preparation obtained in Example 9.
- FIG. 12 shows the dissolution curve of the preparation obtained in Example 10.
- FIG. 13 shows the elution curve of the preparation obtained in Example 11.
- 14 is a diagram showing an elution curve of the preparation obtained in Example 12.
- FIG. 15 is a view showing an elution curve of the preparation obtained in Example 13.
- FIG. 25 is a diagram showing elution curves of the preparations obtained in Examples 23 to 26.
- 26 is a diagram showing an elution curve of the preparation obtained in Example 27.
- FIG. FIG. 27 shows the dissolution curve of the preparation obtained in Example 28.
- 28 is a diagram showing an elution curve of the preparation obtained in Example 28.
- FIG. 29 shows the elution curve of the preparation obtained in Example 29.
- FIG. 30 is a view showing an elution curve of the preparation obtained in Example 29.
- FIG. 31 shows the dissolution curve of the preparation obtained in Example 30.
- 32 is a diagram showing an elution curve of the preparation obtained in Example 30.
- FIG. FIG. 33 shows the elution curve of the preparation obtained in Example 31.
- FIG. 34 is a view showing an elution curve of the preparation obtained in Example 32.
- FIG. FIG. 35 is a view showing an elution curve of the preparation obtained in Example 33.
- FIG. 36 is a diagram showing an elution curve of the preparation obtained in Example 34.
- FIG. FIG. 37 shows the dissolution curve of the preparation obtained in Example 35.
- FIG. 38 shows the elution curve of the preparation obtained in Example 35.
- FIG. 39 shows the dissolution curve of the preparation obtained in Example 35.
- 40 is a view showing an elution curve of the preparation obtained in Example 36.
- FIG. 52 is a view showing an elution curve of the preparation obtained in Example 48.
- FIG. 53 is a view showing an elution curve of the preparation obtained in Example 49.
- FIG. 54 is a view showing an elution curve of the preparation obtained in Example 50.
- FIG. 55 is a view showing an elution curve of the preparation obtained in Example 51.
- FIG. 56 is a view showing an elution curve of the preparation obtained in Example 52.
- FIG. FIG. 57 shows the elution curve of the preparation obtained in Example 53.
- 58 is a view showing an elution curve of the preparation obtained in Example 54.
- FIG. 59 is a view showing an elution curve of the preparation obtained in Example 55.
- FIG. 60 is a view showing an elution curve of the preparation obtained in Example 56.
- FIG. 61 is a view showing an elution curve of the preparation obtained in Example 57.
- FIG. 62 is a view showing an elution curve of the preparation obtained in Example 58.
- FIG. 63 is a view showing an elution curve of the preparation obtained in Example 59.
- FIG. 64 is a diagram showing an elution curve of the preparation obtained in Example 60.
- FIG. FIG. 65 shows the elution curve of the preparation obtained in Example 61.
- 66 is a view showing an elution curve of the preparation obtained in Example 62.
- FIG. 67 is a view showing an elution curve of the preparation obtained in Example 63.
- FIG. 68 is a view showing an elution curve of the preparation obtained in Example 64.
- FIG. FIG. 69 is a view showing an elution curve of the preparation obtained in Example 65.
- 70 is a view showing an elution curve of the preparation obtained in Reference Example 4.
- FIG. 71 is a view showing an elution curve of the preparation obtained in Example 66.
- FIG. 72 is a view showing an elution curve of the preparation obtained in Example 67.
- FIG. FIG. 73 shows the dissolution curve of the preparation obtained in Example 68.
- 74 is a diagram showing an elution curve of the preparation obtained in Example 69.
- FIG. 75 is a view showing an elution curve of the preparation obtained in Example 70.
- FIG. 84 is a view showing an elution curve of the preparation obtained in Example 79.
- FIG. 85 is a view showing an elution curve of the preparation obtained in Example 80.
- FIG. 86 is a view showing an elution curve of the preparation obtained in Example 81.
- FIG. 87 is a view showing an elution curve of the preparation obtained in Example 82.
- FIG. 88 is a view showing an elution curve of the preparation obtained in Example 83.
- FIG. 89 is a view showing an elution curve of the preparation obtained in Example 84.
- FIG. 90 is a view showing an elution curve of the preparation obtained in Example 85.
- FIG. FIG. 91 is a view showing an elution curve of the preparation obtained in Example 86.
- FIG. 92 is a view showing an elution curve of the preparation obtained in Example 87.
- FIG. 93 is a view showing an elution curve of the preparation obtained in Example 88.
- FIG. 94 is a view showing an elution curve of the preparation obtained in Example 89.
- FIG. 95 is a view showing an elution curve of the preparation obtained in Example 90.
- the time-release preparation of the present invention adopts a two-layer structure composed of a central core and a film covering the outer surface of the central core, the central core contains a drug and a water-swellable substance, and the film is highly water-insoluble. It contains molecules and water-insoluble excipients.
- the drug applied to the present invention is not particularly limited as long as it is a drug that can be administered orally.
- Such drugs include, for example, chemotherapeutic agents, respiratory accelerators, antineoplastic agents, autonomic nerve agents, psychiatric agents, local anesthetics, muscle relaxants, digestive organ agents, addiction treatments, hypnotic sedatives As vasodilators, antilipidemic agents, nourishing tonics, anticoagulants, liver agents, hypoglycemic agents, antihypertensive agents, anticolitis agents, peptides, proteins, as well as bitterness drugs, Antibiotics (eg, tarampicillin hydrochloride, bacampicillin hydrochloride, cefaclor, erythromycin), antitussives (eg, noscapine hydrochloride, carbetapentane citrate, dextromethorphan hydrobromide, isoaminyl citrate, dimemorphan phosphate), antihistamines (For example, chlorphenir
- the content of the drug can be appropriately determined according to the purpose. However, from the viewpoint of the release property of the drug after the lag time and the lag time, the content of the drug is 85% by mass or less, and further 70% by mass. % Or less, and particularly preferably 60% by mass or less.
- the lower limit of the drug content is preferably 3% by mass, particularly 5% by mass from the viewpoint of pharmacological effects.
- water-swellable substance constituting the central core examples include, for example, low-substituted hydroxypropylcellulose, carmellose or a salt thereof, croscarmellose sodium, sodium carboxymethyl starch, cros polyvinylpyrrolidone, crystalline cellulose, crystalline cellulose / carmellose sodium, etc. Is mentioned. Of these, low-substituted hydroxypropylcellulose is particularly preferable.
- the low-substituted hydroxypropyl cellulose has a hydroxypropoxyl group of about 7.0 to 16.0% by mass, preferably about 10 to 12.9% by mass, and has an average particle size of 30 ⁇ m or less, particularly 20 ⁇ m. The following are preferred.
- the water-swellable substance can be used alone or in combination of two or more, and the content thereof is preferably 30% by mass or more, more preferably 40% by mass or more, particularly 50% by mass or more in the central core.
- the upper limit of the content is preferably 97% by mass, particularly 95% by mass from the viewpoint of drug content.
- the central core may be blended with various additives usually used in this field, such as excipients, binders, lubricants, anti-aggregation agents, and solubilizing agents for pharmaceutical compounds.
- excipients include sugars such as sucrose, lactose, mannitol, glucose, starch, crystalline cellulose, calcium phosphate, calcium sulfate and the like.
- binder for example, polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, polyvinylpyrrolidone, glucose, sucrose, lactose, maltose, dextrin, sorbitol, mannitol, hydroxyethylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, macrogol,
- examples of the lubricant and the aggregation inhibitor include talc, magnesium stearate, calcium stearate, colloidal silica, stearic acid, waxes, hardened oil, polyethylene glycols, sodium benzoate and the like.
- solubilizing agent for the pharmaceutical compound include organic acids such as fumaric acid, succinic acid, malic acid, and adipic acid. The amount of these additives used can be appropriately determined according to the type of the drug.
- water-insoluble polymer constituting the film examples include ethyl acrylate / methyl methacrylate / methacrylic acid trimethylammonium ethyl terpolymer, ethyl cellulose, enteric polymer and low pH soluble polymer.
- enteric polymer refers to a polymer that does not dissolve in the stomach in an acidic environment but dissolves in the neutral to basic small intestine, such as a methacrylic acid / ethyl acrylate copolymer, methacrylic acid / methacrylic acid.
- (Meth) acrylic binary copolymers such as acid methyl copolymer, hydroxypropylmethylcellulose phthalate, hydroxypropylmethylcellulose acetate succinate, carboxymethylethylcellulose, and cellulose acetate phthalate.
- the low pH-soluble polymer is a polymer that dissolves in the acidic region of pH 1 to 5 but does not dissolve in the neutral to alkaline region having a higher pH.
- the material used include polyvinyl acetal diethylaminoacetate, methyl methacrylate / dimethylaminoethyl methacrylate copolymer, and the like.
- (meth) acrylic binary such as ethyl acrylate / methyl methacrylate / methacrylated trimethylammonium ethyl terpolymer, methacrylic acid / ethyl acrylate copolymer, methacrylic acid / methyl methacrylate copolymer, etc.
- a copolymer and ethyl cellulose are preferred.
- the mass ratio of ethyl acrylate, methyl methacrylate and ethyl trimethylammonium methacrylate constituting the terpolymer is preferably 1: 2: 0.1 to 1: 2: 0.2.
- Eudragit RS for example, RSPO, RS100, RS30D
- Eudragit RL for example, RLPO, RL100, RL30D
- the ratio of methacrylic acid and methallylic acid alkyl ester constituting the binary copolymer is preferably 1: 1 to 1: 2.
- Examples of commercially available products include Eudragit L (for example, L100, L100-55, L30D-55) or Eudragit S (for example, S100) (manufactured by Degussa Japan).
- the water-insoluble polymer can be used alone or in combination of two or more.
- the ratio of each compounding component (RS: RL) is 1: 0.10 to 3.0 by mass ratio, and further 1: 0.15 to 2. 5, especially 1: 0.25 to 2.3 is preferred.
- the ratio of each compounding component is 1: 0.05 to 0.2 by mass ratio, Further, 1: 0.08 to 0.2, particularly 1: 0.11 to 0.18 is preferable.
- the ratio of each compounding component is 1: It is preferably 0.12 to 0.24, more preferably 1: 0.12 to 0.2, and particularly preferably 1: 0.13 to 0.18.
- the lag time is within 5 minutes, 10 minutes or 15 minutes, and after the lag time It is possible to make a timed release preparation capable of releasing 80% by mass or more of the drug contained in the preparation within 12 minutes, 15 minutes or 20 minutes, respectively, or within 5 minutes, 10 minutes or 15 minutes after the lag time, respectively. is there.
- a pH-independent time-release preparation capable of releasing a drug quickly after a set lag time can be obtained regardless of the pH change in the digestive tract. .
- the ratio of each component of (C) is 1: 0.10 to 1.0 by mass ratio, and 1: 0.15 to 1.0, especially 1: 0.20 to 1.0, and the content of the water-insoluble excipient in the film is 5 to 40% by mass, further 10 to 35% by mass, particularly 15 to 30% by mass. % Is preferable.
- the content (solid content) of the water-insoluble polymer in the film is preferably 30% by mass or more, more preferably 40% by mass or more, and particularly preferably 50% by mass or more.
- the upper limit of the content is preferably 95% by mass, particularly 90% by mass from the viewpoint of coating operability.
- water-insoluble excipient examples include talc, magnesium stearate, calcium stearate, kaolin, titanium oxide, magnesium oxide, calcium carbonate, magnesium carbonate, calcium phosphate, calcium sulfate, and dry aluminum hydroxide gel.
- talc, kaolin and titanium oxide are preferable, talc (average particle size: 1 to 40 ⁇ m) is more preferable, and pulverized talc (average particle size: 1 to 10 ⁇ m) is particularly preferable.
- Such talc is, for example, Victorialite SK-C (average particle size: 3.45 ⁇ m, manufactured by Katsuyama Kogyo Co., Ltd.), Victorialite SK-BB (average particle size: 4.6 ⁇ m, Katsuyama Kogyo Co., Ltd.) )) and can be obtained commercially.
- the content of the water-insoluble excipient in the film is preferably 5% by mass or more, more preferably 10% by mass or more, further 15% by mass or more, particularly 25% by mass or more, and particularly preferably 30% by mass or more.
- the upper limit is preferably 80% by mass, more preferably 70% by mass, and particularly preferably 60% by mass.
- the drug is not released at all in the low pH region such as in the stomach, and after the lag time is generated in the relatively neutral region such as the small intestine and large intestine, the drug is released and released promptly.
- the content of the water-insoluble excipient in the film is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, and particularly preferably 15 to 30% by mass.
- the preparation of the present invention can be suitably produced, for example, as follows. First, additives are added to the drug and water-swellable substance as necessary, and after mixing with a mixer such as a stirring granulator (for example, a vertical granulator (manufactured by POWREC)), purified water or hydrous alcohol is added. Knead to obtain a swollen state.
- a mixer such as a stirring granulator (for example, a vertical granulator (manufactured by POWREC)
- purified water or hydrous alcohol is added. Knead to obtain a swollen state.
- the alcohol in the hydrous alcohol include pharmaceuticals such as ethyl alcohol, methyl alcohol, and isopropyl alcohol, or alcohols that can be used in the production thereof.
- the alcohol concentration is preferably 50% by mass or less, particularly preferably 30% by mass or less, and the lower limit thereof is preferably 5% by mass, particularly 10% by mass.
- the central core according to the present invention is preferably produced by wet granulation, but the method applied to wet granulation is not particularly limited as long as it is stirred granulation, fluidized bed granulation and extrusion granulation. .
- extrusion granulation is preferable, and it is particularly preferable to perform spheronization with a Malmerizer after extrusion granulation.
- a kneaded product in a swollen state is extruded and granulated by, for example, a twin dome gran (produced by Fuji Powder Co., Ltd.) equipped with a screen having a diameter of 0.3 to 1.0 mm.
- the preparation of the present invention can be produced by coating the obtained core and the water-swellable substance with a coating solution containing a water-insoluble polymer and a water-insoluble excipient. At this time, you may mix
- the solvent for dissolving and dispersing the coating base include water, alcohols such as methanol and ethanol, ketones such as acetone, halogenated hydrocarbons such as methylene chloride and chloroform, and mixtures thereof.
- the alcohol concentration of the aqueous alcohol solution can be appropriately determined according to the purpose, but by setting it to less than 80% by mass, particularly 20 to 60% by mass, the lag time is within 5 minutes, 10 minutes or 15 minutes, and A time-release preparation capable of releasing 80% by mass or more of the drug contained in the preparation within 12 minutes, 15 minutes or 20 minutes after the lag time (preferably within 5 minutes, 10 minutes or 15 minutes after the lag time, respectively) Is possible.
- it can be set as the masking type
- the concentration of the coating base in the coating solution is not particularly limited, but is preferably 5 to 30% by mass in consideration of the film forming ability and workability.
- the thus obtained preparation of the present invention may be administered as it is in the above-mentioned dosage form, filled in capsules or the like, and further may be a tablet. If necessary, a sugar coating layer or the like may be further coated.
- the coating amount of the film is 10% by mass, further 20% by mass, particularly 30% by mass or more, and especially 50% by mass or more with respect to the total mass of the central core from the viewpoint of lag time and drug release after lag time.
- the upper limit is 300% by mass, particularly 250% by mass.
- drying is preferably performed by extruding and granulating in a swollen state and using spherical methods with a malmerizer.
- the water swellable material shrinks to obtain spherical cores of smaller spherical particles than the extruded screen diameter.
- the core of non-parrel 103 average particle size: 840 to 350 ⁇ m, manufactured by Freund Sangyo Co., Ltd.
- a conventional centrifugal tumbling granulator such as a CF granulator (manufactured by Freund Sangyo Co., Ltd.).
- a spherical central core containing a drug and a swelling agent can be produced without requiring a high-level formulation technique as compared with a method of powder coating a drug and a water-swellable substance while spraying an aqueous solution of a binder. .
- the water-swellable substance is extruded in a swollen state.
- the main drug release mechanism of the preparation according to the present invention is as follows.
- the preparation of the present invention administered orally absorbs water in the digestive tract through the film, and the water-swellable substance in the central core gradually swells. Then, after a certain time, the film increases in volume due to the swelling of the water-swellable substance in the central core, and the film is destroyed by the swelling force. As a result, the entire amount of drug is instantaneously released. This time becomes the lag time.
- This lag time can be freely adjusted by changing the composition of the film containing the water-insoluble polymer and the water-insoluble excipient, the film thickness, the alcohol concentration in the aqueous alcohol solution when forming the central core, and the like. .
- a masking type timed release formulation that can mask unpleasant-tasting drugs
- a pH-independent type timed release formulation that can quickly release a drug after a set lag time, regardless of pH change in the digestive tract
- the film when the film is composed of an ethyl acrylate / methyl methacrylate / methacrylated trimethylammonium ethyl copolymer and ethyl cellulose or a methacrylic acid / ethyl acrylate copolymer, or from Eudragit RS and Eudragit RL
- Eudragit RS and Eudragit RL When configured, reducing the blending amount of Eudragit RL, ethyl cellulose, methacrylic acid / ethyl acrylate copolymer increases the lag time, while increasing the blending amount of the water-insoluble excipient increases the lag time. And release after lag time can be made faster.
- the lag time is within 5 minutes, 10 minutes and 15 minutes, and within 12 minutes, 15 minutes and 20 minutes after the lag time (preferably within 5 minutes, 10 minutes and 15 minutes after the lag time, respectively)
- a time-release preparation capable of releasing 80% or more of the drug in the preparation can be obtained. Further, it can be adjusted by changing the thickness of the film.
- Example 1 100 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2900 g of 10% ethanol aqueous solution was added and kneaded.
- L-HPC LH31 low-substituted hydroxypropylcellulose
- This kneaded product was extruded and granulated with Twin Dome Gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and spherical granules were formed with Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with 20 (840 ⁇ m) and 30 (500 ⁇ m) mesh sieves, and 20-30 mesh (840-500 ⁇ m) theophylline. Spherical granules containing 10% were produced.
- An elution curve as shown in FIG. 1 was prepared for each preparation, and each measured value when the elution amount was 20 to 80% was subjected to correlation analysis. That is, the correlation coefficient and the slope of the straight line are obtained, the point where the straight line is in contact with the horizontal axis (time axis) is defined as the lag time (the time during which the drug is not released), and the time until the elution amount reaches 80% is defined as T 80% . T 80% -Lag time was calculated as the release of the controlled release start time formulation, respectively. The analysis results are shown in Table 2.
- the lag time can be freely adjusted according to the coating amount, and it was confirmed that when the coating amount is 30% by mass or more, the release property of the drug after the lag time and the lag time is improved. .
- Example 2 To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 1, 3750 g of the coating liquids (1) to (3) shown in Table 3 were sprayed in the same manner as in Example 1 to form a coating liquid (solid A preparation with 75% coating was prepared.
- Test example 2 A dissolution test was performed on the preparations produced in Example 2 and Reference Example 1 in the same manner as in Test Example 1.
- FIG. 3 shows an elution curve.
- Table 4 shows the lag time and T 80% calculated from the elution curve.
- Example 3 Using theophylline and L-HPC (LH31) shown in Table 5, 20-30 mesh granules (formulations A to G) containing 10 to 70% theophylline were produced in the same manner as in Example 1. The granule (500 g) was sprayed with 4750 g of the coating liquid shown in Table 1 to produce a preparation in which the coating liquid (solid content) was coated at 95%.
- Reference example 2 Using theophylline and lactose (200 M) shown in Table 5, 20-30 mesh granules containing 10% of theophylline were produced in the same manner as in Example 1. The granule (500 g) was sprayed with 4750 g of the coating liquid shown in Table 1 to produce a preparation in which the coating liquid (solid content) was coated at 95%.
- Example 17 Spherical granules containing 30% of 20-30 mesh (840-500 ⁇ m) theophylline were produced in the same manner as in Example 16. Next, 500 g of this spherical granule is sprayed with 3500 g and 5000 g of the coating liquid shown in Table 27 using a fluidized bed coating apparatus MP-01 (manufactured by Pauleck Co., Ltd.), and the coating liquid (solid content) is sprayed on the granules. 70% and 100% coated formulations were produced.
- a fluidized bed coating apparatus MP-01 manufactured by Pauleck Co., Ltd.
- Example 23 100 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 900 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 2800 g of 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 10% of 20-30 mesh (840-500 ⁇ m) diphenhydramine hydrochloride were produced in the same manner as in Example 12.
- Example 25 500 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 500 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 1400 g of a 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 50% of 20-30 mesh (840-500 ⁇ m) diphenhydramine hydrochloride were produced in the same manner as in Example 12.
- Example 26 700 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 2000 g of a 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 70% 20-30 mesh (840-500 ⁇ m) diphenhydramine hydrochloride were produced in the same manner as in Example 12.
- L-HPC LH31 low-substituted hydroxypropyl cellulose
- FM-VG-25 manufactured by Shin-Etsu Chemical Co., Ltd.
- Test Example 10 The preparation manufactured in Example 27 was subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, UV wavelength: 267 nm) in the same manner as in Test Example 1.
- FIG. 26 shows an elution curve.
- Table 41 shows the lag time and T 80% calculated from the elution curve.
- the preparations of Examples 12 to 14 and 16 to 27 were prepared from an ethyl acrylate / methyl methacrylate / methacrylated trimethylammonium copolymer, ethyl cellulose and a water-insoluble excipient in a core containing a drug and a water-swellable substance. It was confirmed that by forming a coating layer with the coating base, a time-release preparation in which the drug elution is constant without depending on the pH of the eluate can be obtained. Therefore, the time-release preparations of Examples 12 to 14 and 16 to 27 have a feature of rapidly releasing the drug after a set lag time regardless of the pH change in the digestive tract.
- This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and spherical particles with Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-55 (Okawara Seisakusho Co., Ltd.), sized with a 20 and 30 mesh sieve, and spherical granules containing 10% of 20-30 mesh (840-500 ⁇ m) theophylline. Manufactured.
- Example 29 To 500 g of 10% theophylline-containing granules (20 to 30 mesh) prepared in Example 28, 3750 g and 5000 g of the coating liquid shown in Table 43 were sprayed in the same manner as in Example 28, and 75% of the coating liquid (solid content) was sprayed. A 100% coated formulation was produced.
- Example 30 To 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 28, 3750 g and 5000 g of the coating liquid shown in Table 44 were sprayed in the same manner as in Example 28, and 75% of the coating liquid (solid content) was sprayed. A 100% coated formulation was produced.
- Example 31 Formulation prepared by spraying 5000 g of the coating liquid shown in Table 45 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 28 in the same manner as in Example 28 and coating the coating liquid (solid content) with 100%. Manufactured.
- Example 32 To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 28, 3750 g and 5000 g of the coating liquid shown in Table 46 were sprayed in the same manner as in Example 28 to coat the coating liquid (solid content) with 100%. The prepared formulation was manufactured.
- Example 34 Formulation prepared by spraying 5000 g of the coating liquid shown in Table 48 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 28 in the same manner as in Example 28 and coating the coating liquid (solid content) with 100% Manufactured.
- Example 28 By adding 0.22 parts by mass (Example 28), 0.18 (Example 29) or 0.15 parts by mass (Example 30) of Eudragit L100-55 to 1 part by mass of Eudragit RSPO, a pH of 1. 2, water and pH 6.8 test solution showed the same lag time, and the release property after the lag time showed the same tendency.
- the lag time in the test solution of pH 6.8 was pH 1.2 and the test solution of water.
- Example 32 When 0.11 part by mass (Example 32) is added, the lag time in the pH 6.8 test solution is longer than the pH 1.2, water test solution, and is pH-dependent. showed that. Further, the addition of Eudragit L100-55 (Example 33) and the addition of Eudragit RLPO (Example 34) also showed pH dependence as in Examples 31 and 32. This indicates that the time-release preparations of Examples 28 to 30 release the pharmaceutical compound rapidly after a certain lag time regardless of the pH change of the digestive tract.
- Example 35 300 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 700 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Thereafter, 2100 g of 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 30% of 20-30 mesh (840-500 ⁇ m) theophylline were produced in the same manner as in Example 28.
- L-HPC LH31 low-substituted hydroxypropylcellulose
- FM-VG-25 manufactured by Shin-Etsu Chemical Co., Ltd.
- Test Example 12 The preparation prepared in Example 35 was subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, UV wavelength: 267 nm) in the same manner as in Test Example 1.
- Figures 37 to 39 show elution curves.
- Table 55 shows the lag time and T 80% calculated from the elution curve.
- Example 35 any coating amount of 15 to 55% showed the same lag time in the test solution of pH 1.2, water and pH 6.8, and the release property after the lag time showed the same tendency. That is, it shows that the lag time independent of pH can be freely adjusted by increasing the coating amount.
- Example 36 200 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 800 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2400 g of 10% ethanol aqueous solution was added and kneaded.
- L-HPC LH31 low-substituted hydroxypropyl cellulose
- FM-VG-25 manufactured by Shin-Etsu Chemical Co., Ltd.
- This kneaded product was extruded and granulated with Twin Dome Gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and adjusted with 20 mesh and 24 mesh sieves in the same manner as in Example 28.
- Spherical granules containing 20% of 20-24 mesh (840-710 ⁇ m) theophylline were produced.
- 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 4500 g of the coating liquid shown in Table 43, and the coating liquid (solid content) is sprayed on the granules.
- a 90% coated formulation was produced.
- This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.70 mm screen, and adjusted with a 24 mesh and 30 mesh sieve in the same manner as in Example 28.
- Spherical granules containing 20% of 24-30 mesh (710-500 ⁇ m) theophylline were produced.
- 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 5000 g of the coating liquid shown in Table 43, and the coating liquid (solid content) is sprayed on the granules.
- a 100% coated formulation was produced.
- This kneaded product was extruded and granulated with Twin Dome Gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.6 mm screen, and adjusted with 30 mesh and 42 mesh sieves in the same manner as in Example 28.
- Spherical granules containing 20% granulated 30-42 mesh (500-355 ⁇ m) theophylline were produced.
- 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 5000 g of the coating liquid shown in Table 43, and the coating liquid (solid content) is sprayed on the granules.
- a 100% coated formulation was produced.
- Example 39 200 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 800 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2400 g of 10% ethanol aqueous solution was added and kneaded.
- L-HPC LH31 low-substituted hydroxypropyl cellulose
- This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.50 mm screen, and sized with a 42 and 60 mesh sieve in the same manner as in Example 28.
- Spherical granules containing 20% of 42 to 60 mesh (355 to 250 ⁇ m) theophylline were produced.
- 500 g of this spherical granule is sprayed with 7500 g of the coating liquid shown in Table 43 using a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid (solid content) is sprayed on the granules.
- a 150% coated formulation was produced.
- any particle size in which the particle size of the granules to be coated was changed to 840 to 710 ⁇ m (Example 36), 710 to 500 ⁇ m (Example 37), 500 to 355 ⁇ m (Example 38), and 355 to 250 ⁇ m (Example 39).
- the preparation having the central core Even in the preparation having the central core, the same lag time was exhibited in the test solutions of pH 1.2, water and pH 6.8, and the release properties after the lag time showed the same tendency. That is, it was confirmed that the time-release preparation of the present invention can provide a preparation having a fine granule particle size, which was difficult by the conventional production method using nonparrel.
- Example 40 Vertical granulator FM-VG-25 (manufactured by POWREC) 100 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) After mixing, 2800 g of 10% aqueous ethanol solution was added and kneaded, and spherical granules containing 10% of 20-30 mesh (840-500 ⁇ m) diphenhydramine hydrochloride were produced in the same manner as in Example 28.
- L-HPC LH31 low-substituted hydroxypropylcellulose
- Example 42 500 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 500 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used as vertical granulator FM-VG-25 (manufactured by POWREC) After mixing, 1400 g of a 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 50% of 20-30 mesh (840-500 ⁇ m) of diphenhydramine hydrochloride were produced in the same manner as in Example 28.
- L-HPC LH31 low-substituted hydroxypropylcellulose
- Example 43 700 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used as vertical granulator FM-VG-25 (manufactured by POWREC) After mixing, 2000 g of a 10% aqueous ethanol solution was added and kneaded, and spherical granules containing 70% 20-30 mesh (840-500 ⁇ m) diphenhydramine hydrochloride were produced in the same manner as in Example 28.
- L-HPC LH31 low-substituted hydroxypropyl cellulose
- FM-VG-25 manufactured by Shin-Etsu Chemical Co., Ltd.
- Test Example 14 The preparations produced in Examples 40 to 43 were subjected to a dissolution test (test solution: purified water, UV wavelength: 210 nm) in the same manner as in Test Example 1.
- FIG. 44 shows an elution curve.
- Table 60 shows the lag time and T 80% calculated from the elution curve.
- Example 44 200 g of anhydrous caffeine (manufactured by Kongo Chemical Co., Ltd.) and 800 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.), vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.) 2400 g of 10% aqueous ethanol solution was added and kneaded. This kneaded product was extruded and granulated with Twin Dome Gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.6 mm screen, and adjusted with 30 mesh and 42 mesh sieves in the same manner as in Example 28.
- L-HPC LH31 low-substituted hydroxypropyl cellulose
- FM-VG-25 manufactured by Paulec Co., Ltd.
- Spherical granules containing 20% anhydrous caffeine of 30-42 mesh (500-355 ⁇ m) were produced.
- 500 g of this spherical granule was sprayed with 5000 g of the coating liquid shown in Table 43 using a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC), and the coating liquid (solid content) was 100% of the granules.
- a coated formulation was produced.
- Example 45 In the same manner as in Example 44, spherical granules containing 20% of anhydrous caffeine of 30 to 42 mesh (500 to 355 ⁇ m) were produced. Next, 500 g of this spherical granule was sprayed with 7500 g of the coating liquid shown in Table 43 using a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid (solid content) was 150% of the granules. A coated formulation was produced.
- Example 46 In the same manner as in Example 44, spherical granules containing 20% of anhydrous caffeine of 30 to 42 mesh (500 to 355 ⁇ m) were produced. Next, 500 g of this spherical granule was sprayed with 10,000 g of the coating liquid shown in Table 43 using a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and the coating liquid (solid content) was 200% of the granules. A coated formulation was produced.
- Test Example 15 The preparations produced in Examples 44 to 46 were subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, wavelength: 271 nm) in the same manner as in Test Example 1. 45 to 47 show elution curves. Table 61 shows the lag time and T 80% calculated from the elution curve.
- Example 47 500 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 500 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 1800 g of 10% ethanol aqueous solution was added and kneaded.
- L-HPC LH31 low-substituted hydroxypropyl cellulose
- This kneaded product was extruded and granulated with Twin Dome Gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and spherical granules were formed with Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 30 (500 ⁇ m) mesh and 40 (420 ⁇ m) mesh, and 30-40 mesh (500-420 ⁇ m) hydrochloric acid. Spherical granules containing 50% diphenhydramine were produced.
- Example 48 The coating liquid 2000 g, 2500 g, 3000 g, 3500 g, 4000 g, 4500 g, 5000 g shown in Table 64 was added to 500 g of 50% diphenhydramine-containing granules (30-40 mesh) produced in Example 47 in the same manner as in Example 1. The preparations were sprayed and coated with 40%, 50%, 60%, 70%, 80%, 90%, 100% coating liquid (solid content).
- Example 49 In the same manner as in Example 1, spray the coating liquid 2000 g, 3000 g, 3500 g, 4000 g, 4500 g, 5000 g, and 5500 g shown in Table 65 onto 500 g of the 50% diphenhydramine hydrochloride-containing granules (30 to 40 mesh) produced in Example 47. Then, the preparations coated with 40%, 60%, 70%, 80%, 90%, 100% and 110% of the coating liquid (solid content) were produced.
- Example 50 In the same manner as in Example 1, spraying 2500 g, 3000 g, 3500 g, 4000 g, 4500 g, 5000 g, and 5500 g of the coating liquid shown in Table 66 onto 500 g of 50% diphenhydramine-containing granules (30 to 40 mesh) produced in Example 47. Then, preparations coated with 50%, 60%, 70%, 80%, 90%, 100%, and 110% of the coating liquid (solid content) were produced.
- Example 51 To 500 g of 50% diphenhydramine-containing granules (30 to 40 mesh) prepared in Example 47, the coating liquids 2500 g, 3000 g, 4000 g, and 5000 g shown in Table 67 were sprayed in the same manner as in Example 1 to form a coating liquid (solid content) ) Were coated with 50%, 60%, 80% and 100%.
- Example 52 To 500 g of 50% diphenhydramine-containing granules (30 to 40 mesh) produced in Example 47, 3000 g, 4000 g and 5000 g of the coating liquid shown in Table 68 were sprayed in the same manner as in Example 1 to spray 60%, 80% of the coating agent. %, 100% coated formulations were produced.
- Example 51 in which Eudragit RLPO was not added, and in Example 52 in which 0.11 part by mass of Eudragit RLPO was added to Eudragit RSPO 1, a timed release formulation capable of releasing the drug after the lag time and lag time was obtained. However, the release after lag time tended to be delayed.
- Example 49 Preparation by adding 2.33 parts by weight (Example 50) within 5 minutes, 10 minutes and 15 minutes after lag time and within 5 minutes, 10 minutes and 15 minutes respectively after lag time It was confirmed that a preparation capable of releasing 80% or more of diphenhydramine hydrochloride contained therein was obtained.
- Example 53 300 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 700 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 2100 g of 10% ethanol aqueous solution was added and kneaded.
- L-HPC LH31 low-substituted hydroxypropyl cellulose
- Example 73 500 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 500 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 1500 g of a 10% ethanol aqueous solution was added and kneaded.
- L-HPC LH31 low-substituted hydroxypropyl cellulose
- This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and spherical particles with Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-55 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 20 mesh and 30 mesh, and a spherical shape containing 10% of 20-30 mesh (840-500 ⁇ m) theophylline. Granules were produced.
- Test Example 24 The preparations produced in Examples 74 to 77 were subjected to a dissolution test (test solution: purified water, UV wavelength: 267 nm) in the same manner as in Test Example 1. 79 to 82 show elution curves. Tables 112 to 115 show the lag time calculated from the elution curve and T 80% .
- Test Example 25 A dissolution test (test solution: pH 1.2, purified water, pH 6.8, UV wavelength: 267 nm) was carried out in the same manner as in Test Example 1 on the preparations produced in Examples 78-82. 83 to 87 show elution curves. Tables 121 to 126 show the lag time and T 80% calculated from the elution curve.
- Example 84 700 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Thereafter, 1500 g of a 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 70% of 20-30 mesh (840-500 ⁇ m) theophylline were produced in the same manner as in Example 1.
- Example 86 Vertical granulator FM-VG-25 (Paurec Co., Ltd.) 100 g of anhydrous caffeine (Ningbo Chemical Co., Ltd.) and low substituted hydroxypropylcellulose (L-HPC LH31, Shin-Etsu Chemical Co., Ltd.) 900 g 2800 g of 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 10% of 20-30 mesh (840-500 ⁇ m) anhydrous caffeine were produced in the same manner as in Example 1.
- Examples 83 to 85 are cases in which the drug content was changed to 85 to 30%, but at any drug content, the test solution was pH 1.2, water did not release the drug, and pH 6.8 had a constant lag. It was confirmed that a timed release formulation that released 80% of the drug in 1 to 1.5 hours after the time was obtained.
- Examples 86 to 87 are cases where anhydrous caffeine is used as a drug, and Example 87 is a case where the particle size of the central core is 30 to 42 mesh (500 to 355 ⁇ m), but also in the case of anhydrous caffeine, It was confirmed that a time-release preparation that releases 80% of the drug in 1 to 1.5 hours after a certain lag time was confirmed at pH 6.8, where the drug was not released with test solution pH 1.2 and water.
- Examples 88 to 89 are cases where Eudragit S100 and Eudragit L100 were used in place of the methacrylic acid / ethyl acrylate copolymer with respect to the ethyl acrylate / methyl methacrylate / trimethylammonium methacrylate copolymer.
- the test solutions pH 1.2, water and pH 6.8 release 80% of the drug in 1 to 1.5 hours after a certain lag time. It was confirmed that a timed release formulation was obtained.
- Example 90 The coating liquid shown in Table 136, 500 g, 1000 g, 1500 g, 2000 g, 2500, 3000, 3500 g is sprayed on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 74, and the coating liquid is applied to the granules. (Solid content) Preparations coated with 10%, 20%, 30%, 40%, 50%, 60% and 70% were produced.
- Example 90 From Example 90, it was confirmed that the lag time can be freely adjusted to 0.3 to 3.3 hours by changing the coating amount.
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Preparation (AREA)
Abstract
A timed-release pharmaceutical preparation characterized by having a structure wherein a core comprising a drug and a water-swellable substance is covered with a film comprising a water-insoluble polymer and a water-insoluble filler. The preparation makes it possible to control freely the time required until the initiation of drug release from the preparation and the drug release rate after the initiation of drug release.
Description
本発明は、製剤から薬物が放出を開始する時間、及び薬物放出開始後の薬物放出速度を自由に調節することのできる時限放出製剤に関する。
The present invention relates to a time-release preparation capable of freely adjusting the time at which a drug starts to be released from the preparation and the drug release rate after the start of drug release.
近年、薬物の体内動態や薬理効果に時間依存性があることが明らかとなり、薬理効果を最大限に引き出し、かつ副作用を最小限に抑えるには、徐放製剤のように放出速度を制御するのではなく、服用後の主薬放出開始時間を精密に制御できる時限放出制御技術が必要となる。時限放出制御技術は、これまでに(i)膜破壊型、(ii)膜離脱型、(iii)膜溶解型、(iv)膜透過型等の方法が提唱されているが、いまだ実用化には至っていない。
In recent years, it has become clear that the pharmacokinetics and pharmacological effects of drugs are time-dependent, and in order to maximize pharmacological effects and minimize side effects, the release rate must be controlled like sustained-release preparations. Instead, a timed release control technology that can precisely control the starting time of the main drug release after taking is required. As for timed release control technology, methods such as (i) membrane disruption type, (ii) membrane detachment type, (iii) membrane dissolution type, and (iv) membrane permeation type have been proposed, but are still in practical use. Has not reached.
例えば、喘息の発作は、呼吸機能が最も低下する深夜から早朝に集中すると言われている。通常の製剤や徐放製剤を就寝時に服用しても、発作の起きる深夜から早朝の時間帯には、有効血漿中濃度領域以下になるが、時限放出製剤にすることにより就寝時に服用して深夜から早朝に血漿中濃度を最大にすることが可能となる。このように時限放出製剤は、服用が困難な時間帯を避けて事前に投与することが可能になる。
また、気管支喘息以外に、心筋梗塞、うつ病、てんかんの発作にも時間依存性があることが知られている。更に、放出開始時間を5~6時間にすることにより小腸下部や大腸に薬物を投与したり、放出開始時間を数分にすることで不快な味を有する薬物のマスキングに利用することができる。また更に、同時に服用すると互いの薬効を阻害する薬物同志の薬物相互作用の回避等にも利用することができる。 For example, asthma attacks are said to concentrate from midnight to early morning, when respiratory function is most reduced. Even if regular preparations or sustained-release preparations are taken at bedtime, the effective plasma concentration range will be less than or equal to the effective plasma concentration range from midnight to early morning when seizures occur, but by taking a timed release preparation at midnight The plasma concentration can be maximized early in the morning. As described above, the time-release preparation can be administered in advance while avoiding a time zone in which it is difficult to take.
In addition to bronchial asthma, it is known that myocardial infarction, depression, and seizures are also time-dependent. Furthermore, by setting the release start time to 5 to 6 hours, the drug can be administered to the lower part of the small intestine or the large intestine, and by setting the release start time to several minutes, it can be used for masking drugs having an unpleasant taste. Furthermore, it can also be used to avoid drug interactions between drugs that interfere with each other's efficacy when taken simultaneously.
また、気管支喘息以外に、心筋梗塞、うつ病、てんかんの発作にも時間依存性があることが知られている。更に、放出開始時間を5~6時間にすることにより小腸下部や大腸に薬物を投与したり、放出開始時間を数分にすることで不快な味を有する薬物のマスキングに利用することができる。また更に、同時に服用すると互いの薬効を阻害する薬物同志の薬物相互作用の回避等にも利用することができる。 For example, asthma attacks are said to concentrate from midnight to early morning, when respiratory function is most reduced. Even if regular preparations or sustained-release preparations are taken at bedtime, the effective plasma concentration range will be less than or equal to the effective plasma concentration range from midnight to early morning when seizures occur, but by taking a timed release preparation at midnight The plasma concentration can be maximized early in the morning. As described above, the time-release preparation can be administered in advance while avoiding a time zone in which it is difficult to take.
In addition to bronchial asthma, it is known that myocardial infarction, depression, and seizures are also time-dependent. Furthermore, by setting the release start time to 5 to 6 hours, the drug can be administered to the lower part of the small intestine or the large intestine, and by setting the release start time to several minutes, it can be used for masking drugs having an unpleasant taste. Furthermore, it can also be used to avoid drug interactions between drugs that interfere with each other's efficacy when taken simultaneously.
このような時限放出製剤としては、例えば、核粒子の周囲に水膨潤性物質と薬物を付着させ、エチルセルロースとタルクの混合皮膜で被覆した製剤であって、水膨潤性物質が膨脹することで皮膜が破壊され薬物が放出されるもの(特許文献1及び2)等が挙げられる。また、放出開始までのラグタイムを得る製剤の皮膜に、ステアリン酸マグネシウム、ステアリン酸カルシウム等の脂肪酸の金属塩等の撥水性塩とアクリル酸系ポリマーを用いたもの(特許文献3)、又はオイドラギットRS(デグサジャパン社製)と有機酸の相互作用を利用したもの(特許文献4)等も提案されている。
An example of such a time-release preparation is a preparation in which a water-swellable substance and a drug are attached around the core particles and coated with a mixed film of ethyl cellulose and talc. In which the drug is destroyed and the drug is released (Patent Documents 1 and 2). In addition, a film of a preparation for obtaining a lag time until the start of release uses a water-repellent salt such as a metal salt of a fatty acid such as magnesium stearate and calcium stearate and an acrylic acid polymer (Patent Document 3), or Eudragit RS The thing (patent document 4) etc. which utilized the interaction of (made by Degussa Japan) and an organic acid are proposed.
しかし、これらの製剤は、乳糖等球形顆粒(例えば、ノンパレル101;フロイント産業(株)製)に薬物層、膨潤剤の層、放出制御層等を有する多層構造の顆粒を製造することにより達成されるため、これらの時限放出製剤を製造するには、高度な製剤技術が必要となる。そのため、ラグタイム(薬物を放出しない時間)及びラグタイム後の薬物の放出性を正確に制御することは、きわめて困難であった。そのため、高度な製剤技術を必要とせず、製造法が簡単な時限放出製剤が、強く望まれていた。
However, these preparations are achieved by producing a multi-layered granule having a drug layer, a swelling agent layer, a controlled release layer, etc. on a lactose isospherical granule (for example, Nonparel 101; manufactured by Freund Sangyo Co., Ltd.). Therefore, advanced formulation techniques are required to produce these timed release formulations. For this reason, it has been extremely difficult to accurately control the lag time (the time during which no drug is released) and the drug release after the lag time. Therefore, there has been a strong demand for a time-release preparation that does not require advanced preparation techniques and is easy to manufacture.
そこで、本発明は、製剤から薬物が放出を開始する時間、及び薬物放出開始後の薬物放出速度を自由に調節することのできる時限放出製剤を提供することを目的とする。
Therefore, an object of the present invention is to provide a time-release preparation capable of freely adjusting the time when the drug starts to be released from the preparation and the drug release rate after the start of the drug release.
本発明者らは、高度な製剤技術を必要とせず、製造法が簡単な時限放出製剤を開発することを目的として鋭意研究を重ねた結果、薬物及び水膨潤性物質を含む中心核に水不溶性高分子及び水不溶性賦形剤を含む皮膜を一層のみ被覆するだけで、上記目的が達成されることを見出した。
As a result of intensive research aimed at developing a time-release preparation that does not require advanced formulation technology and is easy to manufacture, the present inventors have found that water-insoluble in the central core containing a drug and a water-swellable substance. It has been found that the above object can be achieved only by coating one layer of a film containing a polymer and a water-insoluble excipient.
すなわち本発明は、薬物及び水膨潤性物質を含む中心核が、水不溶性高分子及び水不溶性賦形剤を含む皮膜で被覆されていることを特徴とする時限放出製剤を提供するものである。
That is, the present invention provides a timed release preparation characterized in that a central core containing a drug and a water-swellable substance is coated with a film containing a water-insoluble polymer and a water-insoluble excipient.
本発明によれば、薬物及び水膨潤性物質を含む中心核に、水不溶性高分子及び水不溶性賦形剤を含む皮膜を一層のみ被覆することで、製剤から薬物が放出を開始する時間及び薬物放出開始後の薬物放出速度を自由に調節し得る時限放出製剤を提供することができる。また、皮膜の組成、コーティング量及び中心核中の水膨潤性物質の配合割合を変えることにより、消化管内のpH変化に関係なく、設定したラグタイムの後に速やかに薬物を放出できるpH非依存型の時限放出製剤、またラグタイム5分、10分、15分以内で、かつラグタイム後それぞれ12分、15分、20分以内(好ましくはそれぞれ5分、10分、15分以内)に製剤中に含まれる薬物を80%以上放出し得るマスキング型時限放出製剤、更には酸性及び中性領域で薬物を放出せず、アルカリ領域でのみ一定のラグタイムの後に薬物を放出して放出部位を腸内に制御し得る放出部位制御型時限放出製剤等を提供することが可能になる。
According to the present invention, the central core containing a drug and a water-swellable substance is coated only with a film containing a water-insoluble polymer and a water-insoluble excipient, so that the time when the drug starts to be released from the preparation and the drug It is possible to provide a time-release preparation capable of freely adjusting the drug release rate after the start of release. In addition, by changing the composition of the film, the coating amount, and the mixing ratio of the water-swellable substance in the central core, regardless of the pH change in the gastrointestinal tract, it is a pH-independent type that can release the drug quickly after a set lag time Timed release formulation, and within lag time within 5 minutes, 10 minutes and 15 minutes, and within 12 minutes, 15 minutes and 20 minutes after lag time (preferably within 5 minutes, 10 minutes and 15 minutes, respectively) Masking-type timed release formulation capable of releasing more than 80% of the drug contained in the drug, and further, does not release the drug in the acidic and neutral regions, and releases the drug after a certain lag time only in the alkaline region to It is possible to provide a controlled release site-controlled timed release formulation and the like.
本発明の時限放出製剤は、中心核と、該中心核の外表面を覆う皮膜とから構成される2層構造を採用し、中心核が薬物及び水膨潤性物質を含み、皮膜が水不溶性高分子及び水不溶性賦形剤を含むことを特徴とするものである。
The time-release preparation of the present invention adopts a two-layer structure composed of a central core and a film covering the outer surface of the central core, the central core contains a drug and a water-swellable substance, and the film is highly water-insoluble. It contains molecules and water-insoluble excipients.
本発明に適用される薬物は、経口投与可能な薬物であれば特に限定されない。かかる薬物としては、例えば、化学療法剤、呼吸促進剤、抗悪性腫瘍剤、自律神経用薬剤、精神神経用薬剤、局所麻酔剤、筋弛緩剤、消化器官用薬剤、中毒治療剤、催眠鎮静剤、血管拡張剤、抗脂血剤、滋養強壮変質剤、抗凝血剤、肝臓用薬剤、血糖降下剤、血圧降下剤、大腸炎治療剤、ペプチド、タンパクの他、苦味等を有する薬物として、抗生物質(例えば、塩酸タランピシリン、塩酸バカンピシリン、セファクロル、エリスロマイシン)、鎮咳去たん剤(例えば、塩酸ノスカピン、クエン酸カルベタペンタン、臭化水素酸デキストロメトルファン、クエン酸イソアミニル、リン酸ジメモルファン)、抗ヒスタミン剤(例えば、マレイン酸クロルフェニラミン、塩酸ジフェンヒドラミン、塩酸プロメタジン)、解熱鎮痛消炎剤(例えば、イブプロフェン、ジクロフェナクナトリウム、フルフェナム酸、スルピリン、アスピリン、ケトプロフェン)、強心剤(例えば、塩酸エチレフリン、ジギトキシン)、不正脈治療剤(例えば、塩酸プロプラノロール、塩酸アルプレノロール)、利尿剤(例えば、カフェイン)、血管拡張剤、抗脂血剤、滋養強壮変質剤、抗凝血剤、肝臓用薬剤、血糖降下剤、血圧降下剤、大腸炎治療剤、気管支拡張剤(例えば、テオフィリン)、抗潰瘍剤(例えば、シメチジン、塩酸ピレンゼピン)、交感神経興奮剤(例えば、リン酸ジヒドロコデイン、dl-塩酸メチルエフェドリン)、循環器官用剤(例えば、塩酸デラプリル、塩酸メクロフェノキサート、塩酸ジルチアゼム)、脳循環改善剤(例えば、ビンポセチン)、抗不安剤(例えば、クロルジアゼポキシド、ジアゼパム)、ビタミン剤(例えば、フルスルチアミン、塩酸チアミン、パントテン酸カルシウム、アスコルビン酸、トラネキサム酸)、抗マラリア剤(例えば、塩酸キニーネ)、止潟剤(例えば、塩酸ロペラミド)、向精神剤(例えば、クロルプロマジン)等が挙げられる。
The drug applied to the present invention is not particularly limited as long as it is a drug that can be administered orally. Such drugs include, for example, chemotherapeutic agents, respiratory accelerators, antineoplastic agents, autonomic nerve agents, psychiatric agents, local anesthetics, muscle relaxants, digestive organ agents, addiction treatments, hypnotic sedatives As vasodilators, antilipidemic agents, nourishing tonics, anticoagulants, liver agents, hypoglycemic agents, antihypertensive agents, anticolitis agents, peptides, proteins, as well as bitterness drugs, Antibiotics (eg, tarampicillin hydrochloride, bacampicillin hydrochloride, cefaclor, erythromycin), antitussives (eg, noscapine hydrochloride, carbetapentane citrate, dextromethorphan hydrobromide, isoaminyl citrate, dimemorphan phosphate), antihistamines (For example, chlorpheniramine maleate, diphenhydramine hydrochloride, promethazine hydrochloride), antipyretic analgesic / anti-inflammatory agents (for example, Buprofen, diclofenac sodium, flufenamic acid, sulpyrine, aspirin, ketoprofen), cardiotonic agents (eg, ethylephrine hydrochloride, digitoxin), antiarrhythmic agents (eg, propranolol hydrochloride, alprenolol hydrochloride), diuretics (eg, caffeine), Vasodilator, antilipidemic agent, nourishing tonic, anticoagulant, liver drug, hypoglycemic agent, antihypertensive agent, anticolitis agent, bronchodilator (eg, theophylline), antiulcer agent (eg, , Cimetidine, pirenzepine hydrochloride), sympathomimetic agents (eg, dihydrocodeine phosphate, dl-methylephedrine hydrochloride), circulatory organ agents (eg, delapril hydrochloride, meclofenoxate hydrochloride, diltiazem hydrochloride), cerebral circulation improver ( For example, vinpocetine), anxiolytics (eg chlordiaze (Oxides, diazepam), vitamins (eg, fursultiamine, thiamine hydrochloride, calcium pantothenate, ascorbic acid, tranexamic acid), antimalarials (eg, quinine hydrochloride), diastatic agents (eg, loperamide hydrochloride), psychotropic Agents (for example, chlorpromazine) and the like.
薬物の含有量は目的に応じて適宣決定することができるが、ラグタイム及びラグタイム後の薬物の放出性の点から、中心核を構成する組成物中の85質量%以下、更に70質量%以下、特に60質量%以下とすることが好ましい。なお、薬物含有量の下限は、薬理効果の点から、3質量%、特に5質量%とすることが好ましい。
The content of the drug can be appropriately determined according to the purpose. However, from the viewpoint of the release property of the drug after the lag time and the lag time, the content of the drug is 85% by mass or less, and further 70% by mass. % Or less, and particularly preferably 60% by mass or less. The lower limit of the drug content is preferably 3% by mass, particularly 5% by mass from the viewpoint of pharmacological effects.
中心核を構成する水膨潤性物質としては、例えば、低置換度ヒドロキシプロピルセルロース、カルメロース又はその塩、クロスカルメロースナトリウム、カルボキシメチルスターチナトリウム、クロスポリビニルピロリドン、結晶セルロース及び結晶セルロース・カルメロースナトリウム等が挙げられる。中でも、低置換度ヒドロキシプロピルセルロースが特に好ましい。低置換度ヒドロキシプロピルセルロースとしては、ヒドロキシプロポキシル基を約7.0~16.0質量%、好ましくは約10~12.9質量%有するものであって、平均粒子径が30μm以下、特に20μm以下のものが好ましい。
Examples of the water-swellable substance constituting the central core include, for example, low-substituted hydroxypropylcellulose, carmellose or a salt thereof, croscarmellose sodium, sodium carboxymethyl starch, cros polyvinylpyrrolidone, crystalline cellulose, crystalline cellulose / carmellose sodium, etc. Is mentioned. Of these, low-substituted hydroxypropylcellulose is particularly preferable. The low-substituted hydroxypropyl cellulose has a hydroxypropoxyl group of about 7.0 to 16.0% by mass, preferably about 10 to 12.9% by mass, and has an average particle size of 30 μm or less, particularly 20 μm. The following are preferred.
水膨潤性物質は1種又は2種以上を混合して用いることができ、その含有量は中心核中の30質量%以上、更に40質量%以上、特に50質量%以上とすることが好ましい。なお、かかる含有量の上限は、薬物含量の観点から、97質量%、特に95質量%とすることが好ましい。
The water-swellable substance can be used alone or in combination of two or more, and the content thereof is preferably 30% by mass or more, more preferably 40% by mass or more, particularly 50% by mass or more in the central core. The upper limit of the content is preferably 97% by mass, particularly 95% by mass from the viewpoint of drug content.
中心核には、賦形剤、結合剤、滑択剤、凝集防止剤、医薬化合物の溶解補助剤等、通常この分野で常用され得る種々の添加剤を配合してもよい。賦形剤としては、例えば、白糖、乳糖、マンニトール、グルコース等の糖類、でんぷん、結晶セルロース、リン酸カルシウム、硫酸カルシウム等が挙げられる。結合剤としては、例えば、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸、ポリビニルピロリドン、グルコース、白糖、乳糖、麦芽糖、デキストリン、ソルビトール、マンニトール、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、マクロゴール類、アラビアゴム、ゼラチン、寒天、でんぷん等が挙げられる。また、滑択剤、凝集防止剤としては、例えば、タルク、ステアリン酸マグネシウム、ステアリン酸カルシウム、コロイダルシリカ、ステアリン酸、ワックス類、硬化油、ポリエチレングリコール類、安息香酸ナトリウム等が挙げられる。更に、医薬化合物の溶解補助剤としては、例えば、フマル酸、コハク酸、リンゴ酸、アジピン酸等の有機酸等が挙げられる。これら添加剤の使用量は、薬剤の種類等に応じて適宜決定することができる。
The central core may be blended with various additives usually used in this field, such as excipients, binders, lubricants, anti-aggregation agents, and solubilizing agents for pharmaceutical compounds. Examples of the excipient include sugars such as sucrose, lactose, mannitol, glucose, starch, crystalline cellulose, calcium phosphate, calcium sulfate and the like. As the binder, for example, polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, polyvinylpyrrolidone, glucose, sucrose, lactose, maltose, dextrin, sorbitol, mannitol, hydroxyethylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, macrogol, Examples include gum arabic, gelatin, agar, and starch. In addition, examples of the lubricant and the aggregation inhibitor include talc, magnesium stearate, calcium stearate, colloidal silica, stearic acid, waxes, hardened oil, polyethylene glycols, sodium benzoate and the like. Furthermore, examples of the solubilizing agent for the pharmaceutical compound include organic acids such as fumaric acid, succinic acid, malic acid, and adipic acid. The amount of these additives used can be appropriately determined according to the type of the drug.
皮膜を構成する水不溶性高分子としては、例えば、アクリル酸エチル・メタクリル酸メチル・メタクリル酸塩化トリメチルアンモニウムエチル三元共重合体、エチルセルロース、腸溶性高分子及び低pH溶解性高分子が挙げられる。腸溶性高分子とは、酸性環境下にある胃では溶解せず、中性~塩基性である小腸で溶解する高分子をいい、例えば、メタクリル酸・アクリル酸エチル共重合体、メタクリル酸・メタクリル酸メチル共重合体等の(メタ)アクリル系二元共重合体、ヒドロキシプロピルメチルセルロースフタレート、ヒドロキシプロピルメチルセルロースアセテートサクシネート、カルボキシメチルエチルセルロース、酢酸フタル酸セルロース等が挙げられる。また、低pH溶解性高分子とは、pH1~5の酸性領域において溶解するが、これよりpHの高い中性~アルカリ性域では溶解しない高分子いい、例えば、通常この分野で胃溶性高分子として用いられる物質が挙げられ、具体的には、ポリビニルアセタールジエチルアミノアセテート、メタクリル酸メチル・メタクリル酸ジメチルアミノエチル共重合体等が例示される。
Examples of the water-insoluble polymer constituting the film include ethyl acrylate / methyl methacrylate / methacrylic acid trimethylammonium ethyl terpolymer, ethyl cellulose, enteric polymer and low pH soluble polymer. The enteric polymer refers to a polymer that does not dissolve in the stomach in an acidic environment but dissolves in the neutral to basic small intestine, such as a methacrylic acid / ethyl acrylate copolymer, methacrylic acid / methacrylic acid. (Meth) acrylic binary copolymers such as acid methyl copolymer, hydroxypropylmethylcellulose phthalate, hydroxypropylmethylcellulose acetate succinate, carboxymethylethylcellulose, and cellulose acetate phthalate. The low pH-soluble polymer is a polymer that dissolves in the acidic region of pH 1 to 5 but does not dissolve in the neutral to alkaline region having a higher pH. For example, as a gastric soluble polymer in this field, Examples of the material used include polyvinyl acetal diethylaminoacetate, methyl methacrylate / dimethylaminoethyl methacrylate copolymer, and the like.
中でも、アクリル酸エチル・メタクリル酸メチル・メタクリル酸塩化トリメチルアンモニウムエチル三元共重合体、メタクリル酸・アクリル酸エチル共重合体、メタクリル酸・メタクリル酸メチル共重合体等の(メタ)アクリル系二元共重合体、エチルセルロースが好ましい。なお、上記三元共重合体を構成するアクリル酸エチル、メタクリル酸メチル及びメタクリル酸塩化トリメチルアンモニウムエチルの質量比は1:2:0.1~1:2:0.2が好ましい。市販品として、オイドラギットRS(例えば、RSPO、RS100、RS30D)及びオイドラギットRL(例えば、RLPO、RL100、RL30D)(以上、デグサジャパン社製)が例示される。オイドラギットRSは塩化トリメチルアンモニウム基の含有量が4.48~6.77質量%であり、オイドラギットRLは塩化トリメチルアンモニウム基の含有量が8.85~11.96質量%である。また、上記二元共重合体を構成するメタクリル酸とメタリル酸アルキルエステルとの割合は質量比で1:1~1:2が好ましい。市販品として、オイドラギットL(例えば、L100、L100-55、L30D-55)又はオイドラギットS(例えば、S100)(以上、デグサジャパン社製)が例示される。
Among them, (meth) acrylic binary such as ethyl acrylate / methyl methacrylate / methacrylated trimethylammonium ethyl terpolymer, methacrylic acid / ethyl acrylate copolymer, methacrylic acid / methyl methacrylate copolymer, etc. A copolymer and ethyl cellulose are preferred. The mass ratio of ethyl acrylate, methyl methacrylate and ethyl trimethylammonium methacrylate constituting the terpolymer is preferably 1: 2: 0.1 to 1: 2: 0.2. As a commercial item, Eudragit RS (for example, RSPO, RS100, RS30D) and Eudragit RL (for example, RLPO, RL100, RL30D) (above, Degussa Japan company make) are illustrated. Eudragit RS has a trimethylammonium chloride group content of 4.48 to 6.77% by mass, and Eudragit RL has a trimethylammonium chloride group content of 8.85 to 11.96% by mass. The ratio of methacrylic acid and methallylic acid alkyl ester constituting the binary copolymer is preferably 1: 1 to 1: 2. Examples of commercially available products include Eudragit L (for example, L100, L100-55, L30D-55) or Eudragit S (for example, S100) (manufactured by Degussa Japan).
水不溶性高分子は1種でも2種以上を混合して用いることもできる。例えば、2種以上を混合して使用する場合、(a)塩化トリメチルアンモニウム基の含有量が異なる2種の三元共重合体を組み合わせるか、(b)三元共重合体と、エチルセルロースを組み合わせるか、あるいは(C)三元共重合体と、二元共重合体を組み合わせることが好ましい。上記(a)において、オイドラギットRS及びオイドラギットRLを併用する場合、各配合成分の割合(RS:RL)は、質量比で1:0.10~3.0、更に1:0.15~2.5、特に1:0.25~2.3が好ましい。また、上記(b)において、三元共重合体と、エチルセルロースを併用する場合、各配合成分の割合(三元共重合体:エチルセルロース)は、質量比で1:0.05~0.2、更に1:0.08~0.2、特に1:0.11~0.18が好ましい。更に、上記(C)において、三元共重合体と、二元共重合体を併用する場合、各配合成分の割合(三元共重合体:二元共重合体)は、質量比で1:0.12~0.24、更に1:0.12~0.2、特に1:0.13~0.18が好ましい。
(a)の組み合わせの場合、例えば、不快な苦味等を呈する薬物に対して服用時の不快な味をマスキングするとともに、ラグタイムが5分、10分又は15分以内であり、かつラグタイム後それぞれ12分、15分又は20分以内、あるいはラグタイム後それぞれ5分、10分又は15分以内に製剤中に含まれる薬物の80質量%以上を放出し得る時限放出製剤とすることが可能である。また、(b)及び(C)の組み合わせの場合、例えば、消化管内のpH変化に関係なく、設定したラグタイムの後に速やかに薬物を放出できるpH非依存型の時限放出製剤とすることができる。特に胃内のようなpHの低い領域では全く薬物の放出をせず、小腸及び大腸のようなpHの比較的中性に近い領域においてラグタイムを生じたのち、薬物を速やかに放出放出し得るpH依存型時限放出製剤とするには、(C)の各配合成分の割合(三元共重合体:二元共重合体)を質量比で1:0.10~1.0、更に1:0.15~1.0、特に1:0.20~1.0とし、皮膜中の水不溶性賦形剤の含有量を5~40質量%、更に10~35質量%、特に15~30質量%とすることが好ましい。 The water-insoluble polymer can be used alone or in combination of two or more. For example, when two or more types are used in combination, (a) two ternary copolymers having different trimethylammonium chloride group contents are combined, or (b) a ternary copolymer and ethyl cellulose are combined. Or (C) It is preferable to combine a terpolymer and a binary copolymer. In the above (a), when Eudragit RS and Eudragit RL are used in combination, the ratio of each compounding component (RS: RL) is 1: 0.10 to 3.0 by mass ratio, and further 1: 0.15 to 2. 5, especially 1: 0.25 to 2.3 is preferred. Further, in the above (b), when the ternary copolymer and ethyl cellulose are used in combination, the ratio of each compounding component (ternary copolymer: ethyl cellulose) is 1: 0.05 to 0.2 by mass ratio, Further, 1: 0.08 to 0.2, particularly 1: 0.11 to 0.18 is preferable. Furthermore, in the above (C), when a ternary copolymer and a binary copolymer are used in combination, the ratio of each compounding component (ternary copolymer: binary copolymer) is 1: It is preferably 0.12 to 0.24, more preferably 1: 0.12 to 0.2, and particularly preferably 1: 0.13 to 0.18.
In the case of the combination of (a), for example, masking an unpleasant taste at the time of taking a drug exhibiting an unpleasant bitter taste, the lag time is within 5 minutes, 10 minutes or 15 minutes, and after the lag time It is possible to make a timed release preparation capable of releasing 80% by mass or more of the drug contained in the preparation within 12 minutes, 15 minutes or 20 minutes, respectively, or within 5 minutes, 10 minutes or 15 minutes after the lag time, respectively. is there. In the case of the combination of (b) and (C), for example, a pH-independent time-release preparation capable of releasing a drug quickly after a set lag time can be obtained regardless of the pH change in the digestive tract. . In particular, it does not release the drug at all in a low pH region such as the stomach, and can release and release the drug quickly after a lag time occurs in a region close to neutral pH such as the small intestine and large intestine. In order to obtain a pH-dependent time-release preparation, the ratio of each component of (C) (ternary copolymer: binary copolymer) is 1: 0.10 to 1.0 by mass ratio, and 1: 0.15 to 1.0, especially 1: 0.20 to 1.0, and the content of the water-insoluble excipient in the film is 5 to 40% by mass, further 10 to 35% by mass, particularly 15 to 30% by mass. % Is preferable.
(a)の組み合わせの場合、例えば、不快な苦味等を呈する薬物に対して服用時の不快な味をマスキングするとともに、ラグタイムが5分、10分又は15分以内であり、かつラグタイム後それぞれ12分、15分又は20分以内、あるいはラグタイム後それぞれ5分、10分又は15分以内に製剤中に含まれる薬物の80質量%以上を放出し得る時限放出製剤とすることが可能である。また、(b)及び(C)の組み合わせの場合、例えば、消化管内のpH変化に関係なく、設定したラグタイムの後に速やかに薬物を放出できるpH非依存型の時限放出製剤とすることができる。特に胃内のようなpHの低い領域では全く薬物の放出をせず、小腸及び大腸のようなpHの比較的中性に近い領域においてラグタイムを生じたのち、薬物を速やかに放出放出し得るpH依存型時限放出製剤とするには、(C)の各配合成分の割合(三元共重合体:二元共重合体)を質量比で1:0.10~1.0、更に1:0.15~1.0、特に1:0.20~1.0とし、皮膜中の水不溶性賦形剤の含有量を5~40質量%、更に10~35質量%、特に15~30質量%とすることが好ましい。 The water-insoluble polymer can be used alone or in combination of two or more. For example, when two or more types are used in combination, (a) two ternary copolymers having different trimethylammonium chloride group contents are combined, or (b) a ternary copolymer and ethyl cellulose are combined. Or (C) It is preferable to combine a terpolymer and a binary copolymer. In the above (a), when Eudragit RS and Eudragit RL are used in combination, the ratio of each compounding component (RS: RL) is 1: 0.10 to 3.0 by mass ratio, and further 1: 0.15 to 2. 5, especially 1: 0.25 to 2.3 is preferred. Further, in the above (b), when the ternary copolymer and ethyl cellulose are used in combination, the ratio of each compounding component (ternary copolymer: ethyl cellulose) is 1: 0.05 to 0.2 by mass ratio, Further, 1: 0.08 to 0.2, particularly 1: 0.11 to 0.18 is preferable. Furthermore, in the above (C), when a ternary copolymer and a binary copolymer are used in combination, the ratio of each compounding component (ternary copolymer: binary copolymer) is 1: It is preferably 0.12 to 0.24, more preferably 1: 0.12 to 0.2, and particularly preferably 1: 0.13 to 0.18.
In the case of the combination of (a), for example, masking an unpleasant taste at the time of taking a drug exhibiting an unpleasant bitter taste, the lag time is within 5 minutes, 10 minutes or 15 minutes, and after the lag time It is possible to make a timed release preparation capable of releasing 80% by mass or more of the drug contained in the preparation within 12 minutes, 15 minutes or 20 minutes, respectively, or within 5 minutes, 10 minutes or 15 minutes after the lag time, respectively. is there. In the case of the combination of (b) and (C), for example, a pH-independent time-release preparation capable of releasing a drug quickly after a set lag time can be obtained regardless of the pH change in the digestive tract. . In particular, it does not release the drug at all in a low pH region such as the stomach, and can release and release the drug quickly after a lag time occurs in a region close to neutral pH such as the small intestine and large intestine. In order to obtain a pH-dependent time-release preparation, the ratio of each component of (C) (ternary copolymer: binary copolymer) is 1: 0.10 to 1.0 by mass ratio, and 1: 0.15 to 1.0, especially 1: 0.20 to 1.0, and the content of the water-insoluble excipient in the film is 5 to 40% by mass, further 10 to 35% by mass, particularly 15 to 30% by mass. % Is preferable.
皮膜中の水不溶性高分子の含有量(固形分)は、30質量%以上、更に40質量%以上、特に50質量%以上が好ましい。なお、かかる含有量の上限は、コーティング操作性の観点から、95質量%、特に90質量%が好ましい。
The content (solid content) of the water-insoluble polymer in the film is preferably 30% by mass or more, more preferably 40% by mass or more, and particularly preferably 50% by mass or more. The upper limit of the content is preferably 95% by mass, particularly 90% by mass from the viewpoint of coating operability.
また、水不溶性賦形剤としては、例えば、タルク、ステアリン酸マグネシウム、ステアリン酸カルシウム、カオリン、酸化チタン、酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウム、硫酸カルシウム、乾燥水酸化アルミニウムゲル等が挙げられる。中でも、タルク、カオリン、酸化チタンが好ましく、タルク(平均粒子径:1~40μm)が更に好ましく、粉砕したタルク(平均粒子径:1~10μm)が特に好ましい。このようなタルクは、例えば、ビクトリアライトSK-C(平均粒子径:3.45μm、勝山工業所(株)製)、ビクトリアライトSK-BB(平均粒子径:4.6μm、勝山工業所(株)製)として商業的に入手することができる。
Examples of the water-insoluble excipient include talc, magnesium stearate, calcium stearate, kaolin, titanium oxide, magnesium oxide, calcium carbonate, magnesium carbonate, calcium phosphate, calcium sulfate, and dry aluminum hydroxide gel. Among them, talc, kaolin and titanium oxide are preferable, talc (average particle size: 1 to 40 μm) is more preferable, and pulverized talc (average particle size: 1 to 10 μm) is particularly preferable. Such talc is, for example, Victorialite SK-C (average particle size: 3.45 μm, manufactured by Katsuyama Kogyo Co., Ltd.), Victorialite SK-BB (average particle size: 4.6 μm, Katsuyama Kogyo Co., Ltd.) )) And can be obtained commercially.
皮膜中の水不溶性賦形剤の含有量は、5質量%以上が好ましく、更に10質量%以上、更に15質量%以上、特に25質量%以上、殊更30質量以上%が好ましい。なお、その上限は80質量%、更に70質量%、特に60質量%が好ましい。ただし、胃内のようなpHの低い領域では全く薬物の放出をせず、小腸及び大腸のようなpHの比較的中性に近い領域においてラグタイムを生じたのち、薬物を速やかに放出放出し得るpH依存型時限放出製剤とするには、皮膜中の水不溶性賦形剤の含有量は、5~40質量%、更に10~35質量%、特に15~30質量%が好ましい。
The content of the water-insoluble excipient in the film is preferably 5% by mass or more, more preferably 10% by mass or more, further 15% by mass or more, particularly 25% by mass or more, and particularly preferably 30% by mass or more. The upper limit is preferably 80% by mass, more preferably 70% by mass, and particularly preferably 60% by mass. However, the drug is not released at all in the low pH region such as in the stomach, and after the lag time is generated in the relatively neutral region such as the small intestine and large intestine, the drug is released and released promptly. In order to obtain a pH-dependent time-release preparation, the content of the water-insoluble excipient in the film is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, and particularly preferably 15 to 30% by mass.
皮膜には、例えば、ワックス、ステアリン酸、隠蔽剤、着色剤、香料、滑択剤、凝集防止剤等の添加剤を配合することができる。これら添加剤の使用量は、薬剤の種類等に応じて適宜決定することができる。
In the film, for example, additives such as wax, stearic acid, a hiding agent, a coloring agent, a fragrance, a lubricant, and an anti-aggregation agent can be blended. The amount of these additives used can be appropriately determined according to the type of the drug.
本発明の製剤は、例えば、次の如くして好適に製造することができる。
まず、薬物及び水膨潤性物質に、必要に応じて添加剤を加え、攪拌型混合機、例えばバーチカルグラニュレーター(パウレック(株)製)等の混合機で混合後、精製水又は含水アルコールを加えて練合し膨潤状態とする。
含水アルコール中のアルコールとしては、例えば、エチルアルコール、メチルアルコール、イソプロピルアルコール等の医薬品又はその製造に用いることができるアルコールが挙げられる。アルコール濃度は、50質量%以下、特に30質量%以下が好ましく、その下限は5質量%、特に10質量%が好ましい。水又は含水アルコールは、湿式造粒の練合溶媒として使用し、水膨潤性物質を膨潤状態にするためのものである。その使用量は、水膨潤性物質に対して2~5質量倍、特に2~3質量倍とすることが好ましい。水又は含水アルコールの練合溶媒には、目的により甘味料、精製白糖等の糖類、D-マンニトール等の糖アルコール、水に溶解又は分散した高分子等の医薬品で通常使用することができる添加物を加えてもよい。 The preparation of the present invention can be suitably produced, for example, as follows.
First, additives are added to the drug and water-swellable substance as necessary, and after mixing with a mixer such as a stirring granulator (for example, a vertical granulator (manufactured by POWREC)), purified water or hydrous alcohol is added. Knead to obtain a swollen state.
Examples of the alcohol in the hydrous alcohol include pharmaceuticals such as ethyl alcohol, methyl alcohol, and isopropyl alcohol, or alcohols that can be used in the production thereof. The alcohol concentration is preferably 50% by mass or less, particularly preferably 30% by mass or less, and the lower limit thereof is preferably 5% by mass, particularly 10% by mass. Water or hydrous alcohol is used as a kneading solvent for wet granulation to make the water-swellable substance swell. The amount used is preferably 2 to 5 times, more preferably 2 to 3 times the weight of the water-swellable substance. Additives that can be used normally in pharmaceuticals such as sweeteners, sugars such as purified sucrose, sugar alcohols such as D-mannitol, polymers dissolved or dispersed in water, etc., in the kneading solvent of water or hydrous alcohol May be added.
まず、薬物及び水膨潤性物質に、必要に応じて添加剤を加え、攪拌型混合機、例えばバーチカルグラニュレーター(パウレック(株)製)等の混合機で混合後、精製水又は含水アルコールを加えて練合し膨潤状態とする。
含水アルコール中のアルコールとしては、例えば、エチルアルコール、メチルアルコール、イソプロピルアルコール等の医薬品又はその製造に用いることができるアルコールが挙げられる。アルコール濃度は、50質量%以下、特に30質量%以下が好ましく、その下限は5質量%、特に10質量%が好ましい。水又は含水アルコールは、湿式造粒の練合溶媒として使用し、水膨潤性物質を膨潤状態にするためのものである。その使用量は、水膨潤性物質に対して2~5質量倍、特に2~3質量倍とすることが好ましい。水又は含水アルコールの練合溶媒には、目的により甘味料、精製白糖等の糖類、D-マンニトール等の糖アルコール、水に溶解又は分散した高分子等の医薬品で通常使用することができる添加物を加えてもよい。 The preparation of the present invention can be suitably produced, for example, as follows.
First, additives are added to the drug and water-swellable substance as necessary, and after mixing with a mixer such as a stirring granulator (for example, a vertical granulator (manufactured by POWREC)), purified water or hydrous alcohol is added. Knead to obtain a swollen state.
Examples of the alcohol in the hydrous alcohol include pharmaceuticals such as ethyl alcohol, methyl alcohol, and isopropyl alcohol, or alcohols that can be used in the production thereof. The alcohol concentration is preferably 50% by mass or less, particularly preferably 30% by mass or less, and the lower limit thereof is preferably 5% by mass, particularly 10% by mass. Water or hydrous alcohol is used as a kneading solvent for wet granulation to make the water-swellable substance swell. The amount used is preferably 2 to 5 times, more preferably 2 to 3 times the weight of the water-swellable substance. Additives that can be used normally in pharmaceuticals such as sweeteners, sugars such as purified sucrose, sugar alcohols such as D-mannitol, polymers dissolved or dispersed in water, etc., in the kneading solvent of water or hydrous alcohol May be added.
本発明に係る中心核は湿式造粒により好適に製造されるが、湿式造粒に適用される方法は、攪拌造粒や流動層造粒そして押出し造粒であれば特に限定されるものではない。中でも、押出し造粒が好ましく、特に好ましいのは、押出し造粒後、マルメライザーで球形化を施すことである。具体的には、膨潤状態にある練合物を押出し造粒機、例えば、0.3~1.0mm径のスクリーンを装着したツインドームグラン(不二パウダル(株)製)押出し造粒機で押出し造粒し、次にマルメライザー(不二パウダル(株)製)にて球形化を施したのち、箱型乾燥機又は流動層乾燥機にて乾燥する。次いで、得られた薬物及び水膨潤性物質を含む中心核に、水不溶性高分子及び水不溶性賦形剤を含有するコーティング液を被覆することにより、本発明の製剤を製造することができる。このとき必要に応じて、上記各種添加剤等を配合してもよい。コーティング基剤を溶解分散させる溶媒としては、例えば、水、メタノール、エタノール等のアルコール類、アセトン等のケトン類、塩化メチレン、クロロホルム等のハロゲン化炭化水素又はそれらの混合物が挙げられる。中でも、水、アルコール類又はこれらの混合物が好ましく、特にエタノール又はエタノールと水の混合物が好ましい。アルコール水溶液のアルコール濃度は目的に応じて適宜決定することができるが、80質量%未満、特に20~60質量%とすることで、ラグタイムが5分、10分又は15分以内であり、かつラグタイム後それぞれ12分、15分又は20分以内(好ましくはラグタイム後それぞれ5分、10分又は15分以内)に製剤中に含まれる薬物の80質量%以上を放出し得る時限放出製剤とすることが可能である。また、不快な苦味等を呈する薬物に対しては、服用時の不快な味をマスキングし得るマスキング型時限放出製剤とすることができる。
The central core according to the present invention is preferably produced by wet granulation, but the method applied to wet granulation is not particularly limited as long as it is stirred granulation, fluidized bed granulation and extrusion granulation. . Among them, extrusion granulation is preferable, and it is particularly preferable to perform spheronization with a Malmerizer after extrusion granulation. Specifically, a kneaded product in a swollen state is extruded and granulated by, for example, a twin dome gran (produced by Fuji Powder Co., Ltd.) equipped with a screen having a diameter of 0.3 to 1.0 mm. Extrusion granulation is performed, and then spheronization is performed with a Malmerizer (manufactured by Fuji Paudal Co., Ltd.), followed by drying with a box dryer or a fluidized bed dryer. Next, the preparation of the present invention can be produced by coating the obtained core and the water-swellable substance with a coating solution containing a water-insoluble polymer and a water-insoluble excipient. At this time, you may mix | blend the said various additives etc. as needed. Examples of the solvent for dissolving and dispersing the coating base include water, alcohols such as methanol and ethanol, ketones such as acetone, halogenated hydrocarbons such as methylene chloride and chloroform, and mixtures thereof. Among these, water, alcohols, or a mixture thereof is preferable, and ethanol or a mixture of ethanol and water is particularly preferable. The alcohol concentration of the aqueous alcohol solution can be appropriately determined according to the purpose, but by setting it to less than 80% by mass, particularly 20 to 60% by mass, the lag time is within 5 minutes, 10 minutes or 15 minutes, and A time-release preparation capable of releasing 80% by mass or more of the drug contained in the preparation within 12 minutes, 15 minutes or 20 minutes after the lag time (preferably within 5 minutes, 10 minutes or 15 minutes after the lag time, respectively) Is possible. Moreover, it can be set as the masking type | mold time-release preparation which can mask the unpleasant taste at the time of taking with respect to the medicine which exhibits unpleasant bitterness.
皮膜の被覆方法としては、流動層コーティング法、パンコーティング法、転動流動層コーティング法等の製剤技術で常用される方法を採用することができるが、例えば流動層コーティング法によるときは、芯物質を装置中で空気圧により流動させながらスプレーガンのノズルから前記のコーティング基剤の分散液を適当な速度で、芯物質に噴霧コーティングすることにより実施することができる。
As a coating method of the film, a method commonly used in pharmaceutical technology such as a fluidized bed coating method, a pan coating method, and a rolling fluidized bed coating method can be adopted. The coating base dispersion can be spray coated onto the core material at an appropriate speed from the nozzle of a spray gun while flowing in the apparatus by air pressure.
コーティング液中のコーティング基剤の濃度は、特に限定されるものではないが、皮膜形成能、作業性等を考慮すれば5~30質量%が好ましい。このようにして得られた本発明の製剤は、前述の剤形でそのまま投与してもよく、またカプセル等に充填して投与してもよく、更には錠剤としてもよい。必要であれば糖衣層等を更にコーティングしてもよい。
The concentration of the coating base in the coating solution is not particularly limited, but is preferably 5 to 30% by mass in consideration of the film forming ability and workability. The thus obtained preparation of the present invention may be administered as it is in the above-mentioned dosage form, filled in capsules or the like, and further may be a tablet. If necessary, a sugar coating layer or the like may be further coated.
皮膜のコーティング量は、ラグタイム及びラグタイム後の薬物の放出性の点から、中心核の全質量に対して10質量%、更に20質量%、特に30質量%以上、殊更50質量%以上が好ましく、その上限は、300質量%、特に250質量%が好ましい。
The coating amount of the film is 10% by mass, further 20% by mass, particularly 30% by mass or more, and especially 50% by mass or more with respect to the total mass of the central core from the viewpoint of lag time and drug release after lag time. Preferably, the upper limit is 300% by mass, particularly 250% by mass.
このように、本発明においては、薬物及び水膨潤性物質を含む中心核を製造する際に、膨潤状態で押出し造粒し、マルメライザーで球形顆粒とする方法を好適に採用することで、乾燥時に水膨潤性物質が収縮して押出しスクリーン径より小さな球形粒子の中心核を得ることができる。この方法によれば、従来の遠心転動造粒機、例えばCFグラニュレーター(フロイント産業(株)製)を用いてノンパレル103(平均粒子径:840~350μm,フロイント産業(株)製)の核に、結合剤の水溶液を噴霧しながら薬物及び水膨潤性物質をパウダーコーティングする方法に比較し、高度な製剤技術を必要とせず、薬物及び膨潤剤を含む球形の中心核を製造することができる。しかも、ノンパレルを用いる方法では、最小でも平均粒子径1020~500μm程度の顆粒剤を製造するのが限界であるが、本発明で好適に使用される方法では、水膨潤性物質を膨潤状態として押出し造粒するため、造粒時の押出し圧力が小さく、通常押出し造粒では使用が困難な0.3、0.4mm径スクリーンでの造粒が可能となる。その結果、粒度が散剤や細粒剤規格の球形の核、例えば500~355μm、355~250μm、250~180μmの微小球形粒子を製造することができる。このような核を使用することで、従来製造が困難であった散剤や細粒剤の時限放出製剤を簡単に製造することが可能となる。
As described above, in the present invention, when a central core containing a drug and a water-swellable substance is produced, drying is preferably performed by extruding and granulating in a swollen state and using spherical methods with a malmerizer. Sometimes the water swellable material shrinks to obtain spherical cores of smaller spherical particles than the extruded screen diameter. According to this method, the core of non-parrel 103 (average particle size: 840 to 350 μm, manufactured by Freund Sangyo Co., Ltd.) using a conventional centrifugal tumbling granulator such as a CF granulator (manufactured by Freund Sangyo Co., Ltd.). In addition, a spherical central core containing a drug and a swelling agent can be produced without requiring a high-level formulation technique as compared with a method of powder coating a drug and a water-swellable substance while spraying an aqueous solution of a binder. . Moreover, in the method using non-parrel, it is the limit to produce a granule having an average particle size of about 1020 to 500 μm at the minimum. However, in the method suitably used in the present invention, the water-swellable substance is extruded in a swollen state. Since granulation is performed, the extrusion pressure at the time of granulation is small, and granulation with 0.3 and 0.4 mm diameter screens, which is difficult to use with ordinary extrusion granulation, becomes possible. As a result, it is possible to produce spherical cores having a particle size of powders or fine granules, for example, microspherical particles having a particle size of 500 to 355 μm, 355 to 250 μm, or 250 to 180 μm. By using such a nucleus, it becomes possible to easily produce a time-release preparation of a powder or fine granule, which has been difficult to produce conventionally.
本発明に係る製剤の主薬放出機構は次のとおりである。経口投与された本発明の製剤は、皮膜を介して消化管内の水分を吸収し中心核中の水膨潤性物質が徐々に膨潤していく。そして、一定時間後、皮膜は、中心核中の水膨潤性物質の膨潤により体積増加し、その膨潤力によって皮膜の破壊が起きる。その結果、薬物が瞬時に全量放出される。この時間がラグタイムとなる。このラグタイムは、水不溶性高分子及び水不溶性賦形剤を含有する皮膜の組成、皮膜厚及び中心核を形成する際のアルコール水溶液中のアルコール濃度等を変えることによって自由に調節することができる。その結果、不快な味の薬物をマスキングし得るマスキング型時限放出製剤や、消化管内のpH変化に関係なく、設定したラグタイムの後に速やかに薬物を放出できるpH非依存型の時限放出製剤、更には薬物の胃排出から薬物作用部位又は吸収部位までの到達時間を調節(即ちラグタイムの調節)することで所定の下部消化管部位において瞬時に薬物を放出し得る放出部位制御型時限放出製剤を提供することが可能になる。例えば、皮膜がアクリル酸エチル・メタクリル酸メチル・メタクリル酸塩化トリメチルアンモニウムエチル共重合体と、エチルセルロース又はメタクリル酸・アクリル酸エチル共重合体とから構成される場合、あるいはオイドラギットRSと、オイドラギットRLとから構成される場合には、オイドラギットRL、エチルセルロース、メタクリル酸・アクリル酸エチル共重合体の配合量を減少させると、ラグタイムが長くなり、他方水不溶性賦形剤の配合量を増加すると、ラグタイムとラグタイム後の放出性を速くすることができる。これにより、ラグタイムが5分、10分、15分以内であり、かつラグタイム後それぞれ12分、15分、20分以内(好ましくはラグタイム後それぞれ5分、10分、15分以内)に製剤中の薬物の80%以上を放出し得る時限放出製剤とすることができる。更に、皮膜の厚さを変えることによっても調節することが可能である。
The main drug release mechanism of the preparation according to the present invention is as follows. The preparation of the present invention administered orally absorbs water in the digestive tract through the film, and the water-swellable substance in the central core gradually swells. Then, after a certain time, the film increases in volume due to the swelling of the water-swellable substance in the central core, and the film is destroyed by the swelling force. As a result, the entire amount of drug is instantaneously released. This time becomes the lag time. This lag time can be freely adjusted by changing the composition of the film containing the water-insoluble polymer and the water-insoluble excipient, the film thickness, the alcohol concentration in the aqueous alcohol solution when forming the central core, and the like. . As a result, a masking type timed release formulation that can mask unpleasant-tasting drugs, a pH-independent type timed release formulation that can quickly release a drug after a set lag time, regardless of pH change in the digestive tract, Is a controlled-release controlled-release formulation that can release the drug instantaneously at a predetermined lower gastrointestinal tract by adjusting the arrival time from the gastric emptying of the drug to the drug action site or absorption site (ie, adjusting the lag time). It becomes possible to provide. For example, when the film is composed of an ethyl acrylate / methyl methacrylate / methacrylated trimethylammonium ethyl copolymer and ethyl cellulose or a methacrylic acid / ethyl acrylate copolymer, or from Eudragit RS and Eudragit RL When configured, reducing the blending amount of Eudragit RL, ethyl cellulose, methacrylic acid / ethyl acrylate copolymer increases the lag time, while increasing the blending amount of the water-insoluble excipient increases the lag time. And release after lag time can be made faster. As a result, the lag time is within 5 minutes, 10 minutes and 15 minutes, and within 12 minutes, 15 minutes and 20 minutes after the lag time (preferably within 5 minutes, 10 minutes and 15 minutes after the lag time, respectively) A time-release preparation capable of releasing 80% or more of the drug in the preparation can be obtained. Further, it can be adjusted by changing the thickness of the film.
次に、実施例及び参考例を挙げて本発明を具体的に説明するが、本発明はこれらに何ら限定されるものではない。なお、以下「%」は「質量%」を示し、表中のラグタイム及びT80%の単位は、実施例1~7、12~30、35~46、74~90及び参考例1~3では「時(時間)」であり、実施例8~11、31~34、47~73及び参考例4では「分」である。
EXAMPLES Next, although an Example and a reference example are given and this invention is demonstrated concretely, this invention is not limited to these at all. In the following, “%” represents “% by mass”, and the units of lag time and T 80% in the tables are Examples 1 to 7, 12 to 30, 35 to 46, 74 to 90, and Reference Examples 1 to 3. Is “hour (hour)”, and in Examples 8 to 11, 31 to 34, 47 to 73 and Reference Example 4, it is “minute”.
実施例1
テオフィリン(白鳥製薬(株)製)100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2900gを加えて練合した。この練合物を、0.8mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、20(840μm)と30(500μm)メッシュの篩で整粒し20~30メッシュ(840~500μm)のテオフィリンを10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表1に示すコーティング液、1500g、3000g、4000g、4500gを噴霧し、顆粒に対してコーティング液(固形分)を30%、60%、80%、90%コーティングした製剤を製造した。 Example 1
100 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2900 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with Twin Dome Gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and spherical granules were formed with Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with 20 (840 μm) and 30 (500 μm) mesh sieves, and 20-30 mesh (840-500 μm) theophylline. Spherical granules containing 10% were produced.
Next, 500 g of this spherical granule is sprayed with a fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with the coating liquid shown in Table 1, 1500 g, 3000 g, 4000 g, and 4500 g. Preparations with 30%, 60%, 80%, and 90% coating were manufactured.
テオフィリン(白鳥製薬(株)製)100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2900gを加えて練合した。この練合物を、0.8mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、20(840μm)と30(500μm)メッシュの篩で整粒し20~30メッシュ(840~500μm)のテオフィリンを10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表1に示すコーティング液、1500g、3000g、4000g、4500gを噴霧し、顆粒に対してコーティング液(固形分)を30%、60%、80%、90%コーティングした製剤を製造した。 Example 1
100 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2900 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with Twin Dome Gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and spherical granules were formed with Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with 20 (840 μm) and 30 (500 μm) mesh sieves, and 20-30 mesh (840-500 μm) theophylline. Spherical granules containing 10% were produced.
Next, 500 g of this spherical granule is sprayed with a fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with the coating liquid shown in Table 1, 1500 g, 3000 g, 4000 g, and 4500 g. Preparations with 30%, 60%, 80%, and 90% coating were manufactured.
試験例1
実施例1で製造した製剤を次の試験法に従って溶出試験を実施した。
溶出試験法:日局15 溶出試験法(2)第2法(パドル法)
試験液:水900mLにテオフィリン含有量が60mgとなる量の製剤を入れ、100rpm/分の回転数で攪拌した。このときのテオフィリンの溶出量をUV法(波長:267nm)で測定した。そして、製剤に配合したテオフィリン量に対する溶出量を百分率で評価した。図2に溶出曲線を示した。 Test example 1
The preparation produced in Example 1 was subjected to a dissolution test according to the following test method.
Dissolution test method:JP 15 Dissolution test method (2) Second method (paddle method)
Test solution: A formulation having a theophylline content of 60 mg was placed in 900 mL of water and stirred at a rotational speed of 100 rpm / min. The elution amount of theophylline at this time was measured by the UV method (wavelength: 267 nm). And the elution amount with respect to the theophylline quantity mix | blended with the formulation was evaluated in percentage. The elution curve is shown in FIG.
実施例1で製造した製剤を次の試験法に従って溶出試験を実施した。
溶出試験法:日局15 溶出試験法(2)第2法(パドル法)
試験液:水900mLにテオフィリン含有量が60mgとなる量の製剤を入れ、100rpm/分の回転数で攪拌した。このときのテオフィリンの溶出量をUV法(波長:267nm)で測定した。そして、製剤に配合したテオフィリン量に対する溶出量を百分率で評価した。図2に溶出曲線を示した。 Test example 1
The preparation produced in Example 1 was subjected to a dissolution test according to the following test method.
Dissolution test method:
Test solution: A formulation having a theophylline content of 60 mg was placed in 900 mL of water and stirred at a rotational speed of 100 rpm / min. The elution amount of theophylline at this time was measured by the UV method (wavelength: 267 nm). And the elution amount with respect to the theophylline quantity mix | blended with the formulation was evaluated in percentage. The elution curve is shown in FIG.
各製剤について図1に示すような溶出曲線を作成し、溶出量が20~80%のときの各測定値を相関分析した。すなわち、相関係数、直線の傾きを求め、更に直線が横軸(時間軸)に接する点をラグタイム(薬物を放出しない時間)とし、溶出量が80%に達する時間をT80%とし、T80%-ラグタイムを放出開始時間制御製剤の放出性として、それぞれを計算した。分析結果を表2に示した。
An elution curve as shown in FIG. 1 was prepared for each preparation, and each measured value when the elution amount was 20 to 80% was subjected to correlation analysis. That is, the correlation coefficient and the slope of the straight line are obtained, the point where the straight line is in contact with the horizontal axis (time axis) is defined as the lag time (the time during which the drug is not released), and the time until the elution amount reaches 80% is defined as T 80% . T 80% -Lag time was calculated as the release of the controlled release start time formulation, respectively. The analysis results are shown in Table 2.
図2及び表2から、コーティング量を増加することによりラグタイムが長くなる傾向が見られるが、ラグタイム後の放出性(直線の傾き、放出性=T80%-ラグタイム)には大きな影響を与えないことが確認された。すなわち、ラグタイムは、コーティング量により自由に調整することが可能であり、コーティング量が30質量%以上であれば、ラグタイム及びラグタイム後の薬物の放出性が良好になることが確認された。
2 and Table 2, it can be seen that the lag time tends to be longer by increasing the coating amount, but it has a great effect on the release property after the lag time (straight line, release property = T 80% -lag time). Was confirmed not to give. That is, the lag time can be freely adjusted according to the coating amount, and it was confirmed that when the coating amount is 30% by mass or more, the release property of the drug after the lag time and the lag time is improved. .
実施例2
実施例1で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表3に示す(1)~(3)のコーティング液3750gを、実施例1と同様にして噴霧しコーティング液(固形分)を75%コーティングした製剤を製造した。 Example 2
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 1, 3750 g of the coating liquids (1) to (3) shown in Table 3 were sprayed in the same manner as in Example 1 to form a coating liquid (solid A preparation with 75% coating was prepared.
実施例1で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表3に示す(1)~(3)のコーティング液3750gを、実施例1と同様にして噴霧しコーティング液(固形分)を75%コーティングした製剤を製造した。 Example 2
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 1, 3750 g of the coating liquids (1) to (3) shown in Table 3 were sprayed in the same manner as in Example 1 to form a coating liquid (solid A preparation with 75% coating was prepared.
参考例1
実施例1で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表3に示す参考例1のコーティング液3750gを、実施例1と同様にして噴霧しコーティング液(固形分)を75%コーティングした製剤を製造した。 Reference example 1
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 1, 3750 g of the coating liquid of Reference Example 1 shown in Table 3 was sprayed in the same manner as in Example 1 to obtain 75 coating liquid (solid content). % Coated preparation was produced.
実施例1で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表3に示す参考例1のコーティング液3750gを、実施例1と同様にして噴霧しコーティング液(固形分)を75%コーティングした製剤を製造した。 Reference example 1
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 1, 3750 g of the coating liquid of Reference Example 1 shown in Table 3 was sprayed in the same manner as in Example 1 to obtain 75 coating liquid (solid content). % Coated preparation was produced.
試験例2
実施例2及び参考例1で製造した製剤を試験例1と同様にして溶出試験を実施した。図3に溶出曲線を示した。また、表4に溶出曲線から計算したラグタイム及びT80%を示した。 Test example 2
A dissolution test was performed on the preparations produced in Example 2 and Reference Example 1 in the same manner as in Test Example 1. FIG. 3 shows an elution curve. Table 4 shows the lag time and T 80% calculated from the elution curve.
実施例2及び参考例1で製造した製剤を試験例1と同様にして溶出試験を実施した。図3に溶出曲線を示した。また、表4に溶出曲線から計算したラグタイム及びT80%を示した。 Test example 2
A dissolution test was performed on the preparations produced in Example 2 and Reference Example 1 in the same manner as in Test Example 1. FIG. 3 shows an elution curve. Table 4 shows the lag time and T 80% calculated from the elution curve.
タルクを30%以上添加した場合、タルク無添加(参考例1)に比較して、ラグタイムが短くなりラグタイム後のテオフィリンの放出性(T80%)は、速くなることが確認された。これは、タルク無添加では、膜の水分透過性が減少することによるものと考えられる。一方、タルク30%以上の添加では、膜の強度が低下することにより膜の破壊が促進されることによるものと考えられる。
It was confirmed that when 30% or more of talc was added, the lag time was shortened and theophylline release (T 80% ) after the lag time was faster than when talc was not added (Reference Example 1). This is thought to be due to a decrease in the water permeability of the membrane without the addition of talc. On the other hand, when talc is added in an amount of 30% or more, it is considered that the strength of the film is lowered to promote the destruction of the film.
実施例3
表5に示すテオフィリン及びL-HPC(LH31)を用いて、実施例1と同様にして、テオフィリンを10~70%含有する20~30メッシュの顆粒(処方A~G)を製造した。
この顆粒500gに表1に示すコーティング液4750gを噴霧し、コーティング液(固形分)を95%コーティングした製剤を製造した。 Example 3
Using theophylline and L-HPC (LH31) shown in Table 5, 20-30 mesh granules (formulations A to G) containing 10 to 70% theophylline were produced in the same manner as in Example 1.
The granule (500 g) was sprayed with 4750 g of the coating liquid shown in Table 1 to produce a preparation in which the coating liquid (solid content) was coated at 95%.
表5に示すテオフィリン及びL-HPC(LH31)を用いて、実施例1と同様にして、テオフィリンを10~70%含有する20~30メッシュの顆粒(処方A~G)を製造した。
この顆粒500gに表1に示すコーティング液4750gを噴霧し、コーティング液(固形分)を95%コーティングした製剤を製造した。 Example 3
Using theophylline and L-HPC (LH31) shown in Table 5, 20-30 mesh granules (formulations A to G) containing 10 to 70% theophylline were produced in the same manner as in Example 1.
The granule (500 g) was sprayed with 4750 g of the coating liquid shown in Table 1 to produce a preparation in which the coating liquid (solid content) was coated at 95%.
参考例2
表5に示すテオフィリン及び乳糖(200M)を用いて、実施例1と同様にして、テオフィリンを10%含有する20~30メッシュの顆粒を製造した。
この顆粒500gに表1に示すコーティング液4750gを噴霧し、コーティング液(固形分)を95%コーティングした製剤を製造した。 Reference example 2
Using theophylline and lactose (200 M) shown in Table 5, 20-30 mesh granules containing 10% of theophylline were produced in the same manner as in Example 1.
The granule (500 g) was sprayed with 4750 g of the coating liquid shown in Table 1 to produce a preparation in which the coating liquid (solid content) was coated at 95%.
表5に示すテオフィリン及び乳糖(200M)を用いて、実施例1と同様にして、テオフィリンを10%含有する20~30メッシュの顆粒を製造した。
この顆粒500gに表1に示すコーティング液4750gを噴霧し、コーティング液(固形分)を95%コーティングした製剤を製造した。 Reference example 2
Using theophylline and lactose (200 M) shown in Table 5, 20-30 mesh granules containing 10% of theophylline were produced in the same manner as in Example 1.
The granule (500 g) was sprayed with 4750 g of the coating liquid shown in Table 1 to produce a preparation in which the coating liquid (solid content) was coated at 95%.
試験例3
実施例3及び参考例2で製造した製剤を試験例1と同様にして溶出試験を実施した。
図4に溶出曲線を示した。また、表6に溶出曲線から計算したラグタイム及びT80%を示した。 Test example 3
The preparations prepared in Example 3 and Reference Example 2 were subjected to a dissolution test in the same manner as in Test Example 1.
FIG. 4 shows an elution curve. Table 6 shows the lag time and T 80% calculated from the elution curve.
実施例3及び参考例2で製造した製剤を試験例1と同様にして溶出試験を実施した。
図4に溶出曲線を示した。また、表6に溶出曲線から計算したラグタイム及びT80%を示した。 Test example 3
The preparations prepared in Example 3 and Reference Example 2 were subjected to a dissolution test in the same manner as in Test Example 1.
FIG. 4 shows an elution curve. Table 6 shows the lag time and T 80% calculated from the elution curve.
薬物含有量が増加するにしたがってラグタイム及びラグタイム後の放出性は遅くなることが確認された。この結果から、ラグタイムを十分に発生させるには、薬物含有量は70%以下(水膨潤性物質が30%以上)が好ましいことが確認された。他方、参考例2(水膨潤性物質なし)では、ラグタイムは発生しないことが確認された。
It was confirmed that the release time after the lag time and the lag time became slower as the drug content increased. From these results, it was confirmed that the drug content is preferably 70% or less (water swellable substance is 30% or more) in order to sufficiently generate lag time. On the other hand, in Reference Example 2 (no water-swellable substance), it was confirmed that no lag time was generated.
実施例4
イブプロフェン100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gを用いて、実施例1と同様にして、30~42メッシュのイブプロフェン10%を含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表1に示すコーティング液を、3750g、4250g、4750gを噴霧し、顆粒に対してコーティング液(固形分)を75%、85%、95%コーティングした製剤を製造した。 Example 4
Using 100 g of ibuprofen and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.), spherical granules containing 10% of 30 to 42 mesh ibuprofen were obtained in the same manner as in Example 1. Manufactured.
Next, 500 g of this spherical granule was sprayed with 3750 g, 4250 g, and 4750 g of the coating liquid shown in Table 1 with a fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.). ) Were coated with 75%, 85%, and 95%.
イブプロフェン100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gを用いて、実施例1と同様にして、30~42メッシュのイブプロフェン10%を含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表1に示すコーティング液を、3750g、4250g、4750gを噴霧し、顆粒に対してコーティング液(固形分)を75%、85%、95%コーティングした製剤を製造した。 Example 4
Using 100 g of ibuprofen and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.), spherical granules containing 10% of 30 to 42 mesh ibuprofen were obtained in the same manner as in Example 1. Manufactured.
Next, 500 g of this spherical granule was sprayed with 3750 g, 4250 g, and 4750 g of the coating liquid shown in Table 1 with a fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.). ) Were coated with 75%, 85%, and 95%.
実施例5
アセトアミノフェン100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gを用いて、実施例1と同様にして、30~42メッシュのアセトアミノフェン10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表7に示すコーティング液を、3750g、4250g、4750gを噴霧し、顆粒に対してコーティング液(固形分)を75%、85%、95%コーティングした製剤を製造した。 Example 5
Using 100 g of acetaminophen and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.), containing 10% 30-42 mesh acetaminophen as in Example 1. Spherical granules were produced.
Next, 500 g of this spherical granule was sprayed with 3750 g, 4250 g, and 4750 g of the coating liquid shown in Table 7 using a fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.). ) Were coated with 75%, 85%, and 95%.
アセトアミノフェン100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gを用いて、実施例1と同様にして、30~42メッシュのアセトアミノフェン10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表7に示すコーティング液を、3750g、4250g、4750gを噴霧し、顆粒に対してコーティング液(固形分)を75%、85%、95%コーティングした製剤を製造した。 Example 5
Using 100 g of acetaminophen and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.), containing 10% 30-42 mesh acetaminophen as in Example 1. Spherical granules were produced.
Next, 500 g of this spherical granule was sprayed with 3750 g, 4250 g, and 4750 g of the coating liquid shown in Table 7 using a fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.). ) Were coated with 75%, 85%, and 95%.
実施例6
マレイン酸クロルフェニラミン100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gを用いて、実施例1と同様にして、30~42メッシュのマレイン酸クロルフェニラミン10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表8に示すコーティング液を、3750g、4250g、4750gを噴霧し、顆粒に対してコーティング液(固形分)を75%、85%、95%コーティングした製剤を製造した。 Example 6
30-42 mesh chlorpheniramine maleate using 100 g of chlorpheniramine maleate and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) in the same manner as in Example 1. Spherical granules containing 10% were produced.
Next, 500 g of this spherical granule was sprayed with 3750 g, 4250 g, and 4750 g of the coating liquid shown in Table 8 using a fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid (solid content) ) Were coated with 75%, 85%, and 95%.
マレイン酸クロルフェニラミン100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gを用いて、実施例1と同様にして、30~42メッシュのマレイン酸クロルフェニラミン10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表8に示すコーティング液を、3750g、4250g、4750gを噴霧し、顆粒に対してコーティング液(固形分)を75%、85%、95%コーティングした製剤を製造した。 Example 6
30-42 mesh chlorpheniramine maleate using 100 g of chlorpheniramine maleate and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) in the same manner as in Example 1. Spherical granules containing 10% were produced.
Next, 500 g of this spherical granule was sprayed with 3750 g, 4250 g, and 4750 g of the coating liquid shown in Table 8 using a fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid (solid content) ) Were coated with 75%, 85%, and 95%.
実施例7
無水カフェイン100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2900gを加えて練合した。この練合物を実施例1と同様にして、30~42メッシュの無水カフェイン10%を含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表8に示すコーティング液を、3750g、4250g、4750gを噴霧し、顆粒に対してコーティング液(固形分)を75%、85%、95%コーティングした製剤を製造した。 Example 7
100 g of anhydrous caffeine and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were mixed with a vertical granulator FM-VG-25 (manufactured by Pauleck Co., Ltd.) and then 10% aqueous ethanol solution 2900 g was added and kneaded. Spherical granules containing 30% to 42 meshanhydrous caffeine 10% were produced from this kneaded product in the same manner as in Example 1.
Next, 500 g of this spherical granule was sprayed with 3750 g, 4250 g, and 4750 g of the coating liquid shown in Table 8 using a fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid (solid content) ) Were coated with 75%, 85%, and 95%.
無水カフェイン100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2900gを加えて練合した。この練合物を実施例1と同様にして、30~42メッシュの無水カフェイン10%を含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表8に示すコーティング液を、3750g、4250g、4750gを噴霧し、顆粒に対してコーティング液(固形分)を75%、85%、95%コーティングした製剤を製造した。 Example 7
100 g of anhydrous caffeine and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were mixed with a vertical granulator FM-VG-25 (manufactured by Pauleck Co., Ltd.) and then 10% aqueous ethanol solution 2900 g was added and kneaded. Spherical granules containing 30% to 42 mesh
Next, 500 g of this spherical granule was sprayed with 3750 g, 4250 g, and 4750 g of the coating liquid shown in Table 8 using a fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid (solid content) ) Were coated with 75%, 85%, and 95%.
参考例3
ノンパレル103(42~60メッシュ)1000gを遠心流動造粒機(CF-360)に入れ転動させ、ヒドロキシプロピルセルロース(HPC-L 日本槽達(株)製)20gを水-エタノール(1:1)の混液500gに溶解した溶液を噴霧しながら無水カフェイン250g及び乳糖1230gの混合物を徐々に添加しノンパレルの周囲に被覆して、30~42メッシュの無水カフェイン10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表1に示すコーティング液を、3750g、4250g、4750gを噴霧し、顆粒に対してコーティング液(固形分)を75%、85%、95%コーティングした製剤を製造した。 Reference example 3
Nonpareil 103 (42 to 60 mesh) 1000 g was placed in a centrifugal fluid granulator (CF-360) and rolled, and 20 g of hydroxypropylcellulose (HPC-L made by Nippon Tanka Co., Ltd.) was added to water-ethanol (1: 1). ) A mixture of 250 g of anhydrous caffeine and 1230 g of lactose is gradually added while spraying a solution dissolved in 500 g of the mixed solution to coat the periphery of non-parrel to produce spherical granules containing 10% 30-42 mesh anhydrous caffeine. did.
Next, 500 g of this spherical granule was sprayed with 3750 g, 4250 g, and 4750 g of the coating liquid shown in Table 1 with a fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.). ) Were coated with 75%, 85%, and 95%.
ノンパレル103(42~60メッシュ)1000gを遠心流動造粒機(CF-360)に入れ転動させ、ヒドロキシプロピルセルロース(HPC-L 日本槽達(株)製)20gを水-エタノール(1:1)の混液500gに溶解した溶液を噴霧しながら無水カフェイン250g及び乳糖1230gの混合物を徐々に添加しノンパレルの周囲に被覆して、30~42メッシュの無水カフェイン10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表1に示すコーティング液を、3750g、4250g、4750gを噴霧し、顆粒に対してコーティング液(固形分)を75%、85%、95%コーティングした製剤を製造した。 Reference example 3
Nonpareil 103 (42 to 60 mesh) 1000 g was placed in a centrifugal fluid granulator (CF-360) and rolled, and 20 g of hydroxypropylcellulose (HPC-L made by Nippon Tanka Co., Ltd.) was added to water-ethanol (1: 1). ) A mixture of 250 g of anhydrous caffeine and 1230 g of lactose is gradually added while spraying a solution dissolved in 500 g of the mixed solution to coat the periphery of non-parrel to produce spherical granules containing 10% 30-42 mesh anhydrous caffeine. did.
Next, 500 g of this spherical granule was sprayed with 3750 g, 4250 g, and 4750 g of the coating liquid shown in Table 1 with a fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.). ) Were coated with 75%, 85%, and 95%.
試験例4
実施例4~7及び参考例3で製造した製剤を試験例1と同様にして溶出試験を実施した。試験液として、実施例4及び5ではpH1.2のものを、実施例6及び7ではpH6.8のものを、参考例3では精製水をそれぞれ使用した。
図5~9に溶出曲線を示した。また、表9~12に溶出曲線から計算したラグタイム及びT80%を示した。 Test example 4
The preparations prepared in Examples 4 to 7 and Reference Example 3 were subjected to a dissolution test in the same manner as in Test Example 1. As test solutions, those having a pH of 1.2 were used in Examples 4 and 5, pH 6.8 was used in Examples 6 and 7, and purified water was used in Reference Example 3.
The elution curves are shown in FIGS. Tables 9 to 12 show the lag time and T 80% calculated from the elution curve.
実施例4~7及び参考例3で製造した製剤を試験例1と同様にして溶出試験を実施した。試験液として、実施例4及び5ではpH1.2のものを、実施例6及び7ではpH6.8のものを、参考例3では精製水をそれぞれ使用した。
図5~9に溶出曲線を示した。また、表9~12に溶出曲線から計算したラグタイム及びT80%を示した。 Test example 4
The preparations prepared in Examples 4 to 7 and Reference Example 3 were subjected to a dissolution test in the same manner as in Test Example 1. As test solutions, those having a pH of 1.2 were used in Examples 4 and 5, pH 6.8 was used in Examples 6 and 7, and purified water was used in Reference Example 3.
The elution curves are shown in FIGS. Tables 9 to 12 show the lag time and T 80% calculated from the elution curve.
薬物が、イブプロフェン(実施例4)、アセトアミノフェン(実施例5)、 マレイン酸クロルフェニラミン(実施例6)、無水カフェイン(実施例7)の場合でも、放出開始時間制御型の製剤が得られることが確認された。また、遠心流動造粒機(CF-360)を用いて無水カフェインをパウダーコーティングした参考例3の顆粒(水膨潤性物質なし)では、放出開始時間制御型の製剤は得られなかった。
Even if the drug is ibuprofen (Example 4), acetaminophen (Example 5), chlorpheniramine maleate (Example 6), or anhydrous caffeine (Example 7), a controlled release start time type preparation is available. It was confirmed that it was obtained. In addition, in the granule of Reference Example 3 (no water-swellable substance) powder-coated with anhydrous caffeine using a centrifugal flow granulator (CF-360), a controlled release start time type preparation was not obtained.
実施例8
実施例1で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表13に示すコーティング液3500g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 8
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 1, 3500 g and 5000 g of the coating liquid shown in Table 13 were sprayed in the same manner as in Example 1, and the coating liquid (solid content) was 70%. A 100% coated formulation was produced.
実施例1で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表13に示すコーティング液3500g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 8
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 1, 3500 g and 5000 g of the coating liquid shown in Table 13 were sprayed in the same manner as in Example 1, and the coating liquid (solid content) was 70%. A 100% coated formulation was produced.
実施例9
実施例1で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表14に示すコーティング液3500g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 9
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 1, 3500 g and 5000 g of the coating liquid shown in Table 14 were sprayed in the same manner as in Example 1, and the coating liquid (solid content) was 70%. A 100% coated formulation was produced.
実施例1で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表14に示すコーティング液3500g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 9
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 1, 3500 g and 5000 g of the coating liquid shown in Table 14 were sprayed in the same manner as in Example 1, and the coating liquid (solid content) was 70%. A 100% coated formulation was produced.
実施例10
テオフィリン100g、低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)450g及びカルメロースカルシウム(五徳薬品工業(株)製)450gを用いて、実施例1と同様にして、20~30メッシュのテオフィリン10%含有する球形顆粒を製造した。
次に、10%テオフィリン含有顆粒(20~30メッシュ)500gに表1に示すコーティング液3500g、4000g、4500g、5000g、5500g、6000gを、実施例1と同様にして噴霧しコーティング液(固形分)を70%、80%、90%、100%、110%、120%コーティングした製剤を製造した。 Example 10
In the same manner as in Example 1, using 100 g of theophylline, 450 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) and 450 g of carmellose calcium (manufactured by Gotoku Pharmaceutical Co., Ltd.) Spherical granules containing 10% 20-30 mesh theophylline were produced.
Next, the coating liquid 3500g, 4000g, 4500g, 5000g, 5500g, and 6000g shown in Table 1 was sprayed on 500g of 10% theophylline-containing granules (20-30 mesh) in the same manner as in Example 1 to form a coating liquid (solid content). 70%, 80%, 90%, 100%, 110%, 120% coated formulations were prepared.
テオフィリン100g、低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)450g及びカルメロースカルシウム(五徳薬品工業(株)製)450gを用いて、実施例1と同様にして、20~30メッシュのテオフィリン10%含有する球形顆粒を製造した。
次に、10%テオフィリン含有顆粒(20~30メッシュ)500gに表1に示すコーティング液3500g、4000g、4500g、5000g、5500g、6000gを、実施例1と同様にして噴霧しコーティング液(固形分)を70%、80%、90%、100%、110%、120%コーティングした製剤を製造した。 Example 10
In the same manner as in Example 1, using 100 g of theophylline, 450 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) and 450 g of carmellose calcium (manufactured by Gotoku Pharmaceutical Co., Ltd.) Spherical granules containing 10% 20-30 mesh theophylline were produced.
Next, the coating liquid 3500g, 4000g, 4500g, 5000g, 5500g, and 6000g shown in Table 1 was sprayed on 500g of 10% theophylline-containing granules (20-30 mesh) in the same manner as in Example 1 to form a coating liquid (solid content). 70%, 80%, 90%, 100%, 110%, 120% coated formulations were prepared.
実施例11
テオフィリン100g、低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)450g及びクロスカルメロースナトリウム(旭化成工業(株)製)450gを用いて、実施例1と同様にして、20~30メッシュのテオフィリン10%含有する球形顆粒を製造した。
次に、10%テオフィリン含有顆粒(20~30メッシュ)500gに表1に示すコーティング液3500g、4000g、4500g、5000g、5500g、6000gを、実施例1と同様にして噴霧しコーティング剤を70%、80%、90%、100%、110%、120%コーティングした製剤を製造した。 Example 11
In the same manner as in Example 1, using 100 g of theophylline, 450 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) and 450 g of croscarmellose sodium (manufactured by Asahi Kasei Kogyo Co., Ltd.) Spherical granules containing 10% 20-30 mesh theophylline were produced.
Next, the coating liquids 3500 g, 4000 g, 4500 g, 5000 g, 5500 g, and 6000 g shown in Table 1 were sprayed on 500 g of 10% theophylline-containing granules (20 to 30 mesh) in the same manner as in Example 1, and the coating agent was 70%. 80%, 90%, 100%, 110%, 120% coated formulations were prepared.
テオフィリン100g、低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)450g及びクロスカルメロースナトリウム(旭化成工業(株)製)450gを用いて、実施例1と同様にして、20~30メッシュのテオフィリン10%含有する球形顆粒を製造した。
次に、10%テオフィリン含有顆粒(20~30メッシュ)500gに表1に示すコーティング液3500g、4000g、4500g、5000g、5500g、6000gを、実施例1と同様にして噴霧しコーティング剤を70%、80%、90%、100%、110%、120%コーティングした製剤を製造した。 Example 11
In the same manner as in Example 1, using 100 g of theophylline, 450 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) and 450 g of croscarmellose sodium (manufactured by Asahi Kasei Kogyo Co., Ltd.) Spherical granules containing 10% 20-30 mesh theophylline were produced.
Next, the coating liquids 3500 g, 4000 g, 4500 g, 5000 g, 5500 g, and 6000 g shown in Table 1 were sprayed on 500 g of 10% theophylline-containing granules (20 to 30 mesh) in the same manner as in Example 1, and the coating agent was 70%. 80%, 90%, 100%, 110%, 120% coated formulations were prepared.
試験例5
実施例8~11で製造した製剤を試験例1と同様にして溶出試験(試験液:精製水、UV波長:267nm)を実施した。図10~13に溶出曲線を示した。また、表15~18に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 5
The preparations produced in Examples 8 to 11 were subjected to a dissolution test (test solution: purified water, UV wavelength: 267 nm) in the same manner as in Test Example 1. 10 to 13 show elution curves. Tables 15 to 18 show the lag time and T 80% calculated from the elution curve.
実施例8~11で製造した製剤を試験例1と同様にして溶出試験(試験液:精製水、UV波長:267nm)を実施した。図10~13に溶出曲線を示した。また、表15~18に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 5
The preparations produced in Examples 8 to 11 were subjected to a dissolution test (test solution: purified water, UV wavelength: 267 nm) in the same manner as in Test Example 1. 10 to 13 show elution curves. Tables 15 to 18 show the lag time and T 80% calculated from the elution curve.
水不溶性賦形剤に、タルクの代わりに炭酸カルシウム(実施例8)又はステアリン酸マグネシウム(実施例9)を添加しても放出開始時間制御型の製剤が得られることが確認された(図10、11)。また、水膨潤性物質としてカルメロースカルシウム(実施例10)、クロスカルメロースナトリウム(実施例11)を使用した場合にも放出開始時間制御型の製剤が得られることが確認された(図12、13)。
It was confirmed that even when calcium carbonate (Example 8) or magnesium stearate (Example 9) was added to the water-insoluble excipient instead of talc, a controlled release start time-type preparation was obtained (FIG. 10). 11). Further, it was confirmed that a release-start-time controlled preparation can be obtained even when carmellose calcium (Example 10) and croscarmellose sodium (Example 11) are used as the water-swellable substances (FIG. 12, 13).
実施例12
テオフィリン(白鳥製薬(株)製)100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2900gを加えて練合した。この練合物を、0.8mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形粒子とした。その後、流動層乾燥機WSG-55型(大川原製作所(株)製)で乾燥し、20メッシュと30メッシュの篩で整粒し20~30メッシュ(840~500μm)のテオフィリンを10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表19に示すコーティング液5000gを噴霧し、顆粒に対してコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 12
100 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2900 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and spherical particles with Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-55 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 20 mesh and 30 mesh, and a spherical shape containing 10% of 20-30 mesh (840-500 μm) theophylline. Granules were produced.
Next, 500 g of this spherical granule was sprayed with a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 5000 g of the coating liquid shown in Table 19, and 100% of the coating liquid (solid content) was applied to the granules. A coated formulation was produced.
テオフィリン(白鳥製薬(株)製)100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2900gを加えて練合した。この練合物を、0.8mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形粒子とした。その後、流動層乾燥機WSG-55型(大川原製作所(株)製)で乾燥し、20メッシュと30メッシュの篩で整粒し20~30メッシュ(840~500μm)のテオフィリンを10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表19に示すコーティング液5000gを噴霧し、顆粒に対してコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 12
100 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2900 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and spherical particles with Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-55 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 20 mesh and 30 mesh, and a spherical shape containing 10% of 20-30 mesh (840-500 μm) theophylline. Granules were produced.
Next, 500 g of this spherical granule was sprayed with a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 5000 g of the coating liquid shown in Table 19, and 100% of the coating liquid (solid content) was applied to the granules. A coated formulation was produced.
実施例13
実施例12で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表20に示すコーティング液5000gを、実施例12と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 13
Formulation prepared by spraying 5000 g of the coating liquid shown in Table 20 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 12 in the same manner as in Example 12 and coating the coating liquid (solid content) with 100% Manufactured.
実施例12で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表20に示すコーティング液5000gを、実施例12と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 13
Formulation prepared by spraying 5000 g of the coating liquid shown in Table 20 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 12 in the same manner as in Example 12 and coating the coating liquid (solid content) with 100% Manufactured.
実施例14
実施例12で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表21に示すコーティング液5000gを、実施例12と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 14
Formulation prepared by spraying 5000 g of the coating liquid shown in Table 21 onto 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 12 in the same manner as in Example 12 and coating the coating liquid (solid content) with 100% Manufactured.
実施例12で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表21に示すコーティング液5000gを、実施例12と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 14
Formulation prepared by spraying 5000 g of the coating liquid shown in Table 21 onto 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 12 in the same manner as in Example 12 and coating the coating liquid (solid content) with 100% Manufactured.
実施例15
実施例12で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表22に示すコーティング液5000gを、実施例12と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 15
Formulation prepared by spraying 5000 g of the coating liquid shown in Table 22 onto 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 12 in the same manner as in Example 12 and coating the coating liquid (solid content) with 100% Manufactured.
実施例12で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表22に示すコーティング液5000gを、実施例12と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 15
Formulation prepared by spraying 5000 g of the coating liquid shown in Table 22 onto 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 12 in the same manner as in Example 12 and coating the coating liquid (solid content) with 100% Manufactured.
試験例6
実施例12~15で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、水、pH6.8、UV波長:267nm)を実施した。図14~17に溶出曲線を示した。また、表23~26に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 6
The preparations produced in Examples 12 to 15 were subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, UV wavelength: 267 nm) in the same manner as in Test Example 1. 14 to 17 show elution curves. Tables 23 to 26 show the lag time calculated from the elution curve and T 80% .
実施例12~15で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、水、pH6.8、UV波長:267nm)を実施した。図14~17に溶出曲線を示した。また、表23~26に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 6
The preparations produced in Examples 12 to 15 were subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, UV wavelength: 267 nm) in the same manner as in Test Example 1. 14 to 17 show elution curves. Tables 23 to 26 show the lag time calculated from the elution curve and T 80% .
オイドラギットRSPOが1に対してエチルセルロース0.05質量部(実施例15)を添加した場合、ラグタイム及びラムタイム後に薬物放出性を示すことが確認されたが、試験液pH1.2、水、pH6.8の順でラグタイムは長くなりpH非依存性を示さなかった。この結果に基づき、オイドラギットRSPOが1に対してエチルセルロースの添加量を0.11(実施例12)、0.14(実施例13)及び0.18質量部(実施例14)にそれぞれ増量したところ、pH1.2、水及びpH6.8の試験液で同様のラグタイム及びラグタイム後の放出性を示すことから、pH非依存性の製剤であることが確認された。このことは、実施例12~14の時限放出製剤は、消化管のpH変化に関係なく、一定のラグタイムの後に速やかに医薬化合物を放出することを示している。
When Eudragit RSPO added 0.05 parts by mass of ethyl cellulose (Example 15) to 1, it was confirmed that drug release was exhibited after lag time and ram time, but test solution pH 1.2, water, pH 6. In the order of 8, the lag time became longer and showed no pH independence. Based on this result, when Eudragit RSPO was added to 0.11 (Example 12), 0.14 (Example 13), and 0.18 parts by mass (Example 14), the amount of ethyl cellulose added to 1, respectively. , PH 1.2, water, and pH 6.8 test solutions showed similar release properties after lag time and after lag time, and thus were confirmed to be pH-independent preparations. This indicates that the timed release formulations of Examples 12-14 release the pharmaceutical compound rapidly after a certain lag time, regardless of pH changes in the gastrointestinal tract.
実施例16
テオフィリン(白鳥製薬(株)製)300gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)700gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2100gを加えて練合し、実施例12と同様にして20~30メッシュ(840~500μm)のテオフィリンを30%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表19に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 16
300 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 700 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Thereafter, 2100 g of 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 30% of 20-30 mesh (840-500 μm) theophylline were produced in the same manner as in Example 12.
Next, 500 g of this spherical granule is sprayed with 3500 g and 5000 g of the coating liquid shown in Table 19 using a fluidized bed coating apparatus MP-01 (manufactured by Pauleck Co., Ltd.), and the coating liquid (solid content) is sprayed on the granules. 70% and 100% coated formulations were produced.
テオフィリン(白鳥製薬(株)製)300gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)700gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2100gを加えて練合し、実施例12と同様にして20~30メッシュ(840~500μm)のテオフィリンを30%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表19に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 16
300 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 700 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Thereafter, 2100 g of 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 30% of 20-30 mesh (840-500 μm) theophylline were produced in the same manner as in Example 12.
Next, 500 g of this spherical granule is sprayed with 3500 g and 5000 g of the coating liquid shown in Table 19 using a fluidized bed coating apparatus MP-01 (manufactured by Pauleck Co., Ltd.), and the coating liquid (solid content) is sprayed on the granules. 70% and 100% coated formulations were produced.
実施例17
実施例16と同様にして20~30メッシュ(840~500μm)のテオフィリンを30%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表27に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 17
Spherical granules containing 30% of 20-30 mesh (840-500 μm) theophylline were produced in the same manner as in Example 16.
Next, 500 g of this spherical granule is sprayed with 3500 g and 5000 g of the coating liquid shown in Table 27 using a fluidized bed coating apparatus MP-01 (manufactured by Pauleck Co., Ltd.), and the coating liquid (solid content) is sprayed on the granules. 70% and 100% coated formulations were produced.
実施例16と同様にして20~30メッシュ(840~500μm)のテオフィリンを30%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表27に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 17
Spherical granules containing 30% of 20-30 mesh (840-500 μm) theophylline were produced in the same manner as in Example 16.
Next, 500 g of this spherical granule is sprayed with 3500 g and 5000 g of the coating liquid shown in Table 27 using a fluidized bed coating apparatus MP-01 (manufactured by Pauleck Co., Ltd.), and the coating liquid (solid content) is sprayed on the granules. 70% and 100% coated formulations were produced.
実施例18
実施例16と同様にして20~30メッシュ(840~500μm)のテオフィリンを30%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表28に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 18
Spherical granules containing 30% of 20-30 mesh (840-500 μm) theophylline were produced in the same manner as in Example 16.
Next, 500 g of this spherical granule is sprayed with 3500 g and 5000 g of the coating liquid shown in Table 28 using a fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and the coating liquid (solid content) is sprayed on the granules. 70% and 100% coated formulations were produced.
実施例16と同様にして20~30メッシュ(840~500μm)のテオフィリンを30%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表28に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 18
Spherical granules containing 30% of 20-30 mesh (840-500 μm) theophylline were produced in the same manner as in Example 16.
Next, 500 g of this spherical granule is sprayed with 3500 g and 5000 g of the coating liquid shown in Table 28 using a fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and the coating liquid (solid content) is sprayed on the granules. 70% and 100% coated formulations were produced.
試験例7
実施例16~18で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、水、pH6.8、UV波長:267nm)を実施した。図18~20に溶出曲線を示した。また、表29~31に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 7
The preparations produced in Examples 16 to 18 were subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, UV wavelength: 267 nm) in the same manner as in Test Example 1. 18 to 20 show elution curves. Tables 29 to 31 show the lag time and T 80% calculated from the elution curve.
実施例16~18で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、水、pH6.8、UV波長:267nm)を実施した。図18~20に溶出曲線を示した。また、表29~31に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 7
The preparations produced in Examples 16 to 18 were subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, UV wavelength: 267 nm) in the same manner as in Test Example 1. 18 to 20 show elution curves. Tables 29 to 31 show the lag time and T 80% calculated from the elution curve.
実施例16~18においては、テオフィリン30質量%の顆粒にタルクの種類を変えてコーティングを行ったが、タルクの種類に関係なく、ラグタイム後の放出性も同様な傾向を示すことが確認された。
In Examples 16 to 18, the theophylline 30% by mass granules were coated by changing the type of talc, and it was confirmed that the release properties after lag time showed the same tendency regardless of the type of talc. It was.
実施例19
無水カフェイン(寧薬化学工業(株)製)200gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)800gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2400gを加えて練合し、実施例12と同様にして20~30メッシュ(840~500μm)の無水カフェインを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表32に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 19
200 g of anhydrous caffeine (Ningbo Chemical Co., Ltd.) and 800 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, Shin-Etsu Chemical Co., Ltd.) vertical granulator FM-VG-25 (Paurec Co., Ltd.) 2400 g of 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 20% of 20-30 mesh (840-500 μm) anhydrous caffeine were produced in the same manner as in Example 12.
Next, 500 g of this spherical granule was sprayed with 3500 g and 5000 g of the coating liquid shown in Table 32 with a fluidized bed coating apparatus MP-01 (manufactured by Paulek Co., Ltd.), and the coating liquid (solid content) was applied to the granules. 70% and 100% coated formulations were produced.
無水カフェイン(寧薬化学工業(株)製)200gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)800gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2400gを加えて練合し、実施例12と同様にして20~30メッシュ(840~500μm)の無水カフェインを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表32に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 19
200 g of anhydrous caffeine (Ningbo Chemical Co., Ltd.) and 800 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, Shin-Etsu Chemical Co., Ltd.) vertical granulator FM-VG-25 (Paurec Co., Ltd.) 2400 g of 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 20% of 20-30 mesh (840-500 μm) anhydrous caffeine were produced in the same manner as in Example 12.
Next, 500 g of this spherical granule was sprayed with 3500 g and 5000 g of the coating liquid shown in Table 32 with a fluidized bed coating apparatus MP-01 (manufactured by Paulek Co., Ltd.), and the coating liquid (solid content) was applied to the granules. 70% and 100% coated formulations were produced.
実施例20
実施例19と同様にして20~30メッシュ(840~500μm)の無水カフェインを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表33に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 20
In the same manner as in Example 19, spherical granules containing 20 to 30 mesh (840 to 500 μm) of anhydrous caffeine were produced.
Next, 500 g of this spherical granule was sprayed with 3500 g and 5000 g of the coating liquid shown in Table 33 using a fluidized bed coating apparatus MP-01 (manufactured by Pauleck Co., Ltd.), and the coating liquid (solid content) was sprayed on the granules. 70% and 100% coated formulations were produced.
実施例19と同様にして20~30メッシュ(840~500μm)の無水カフェインを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表33に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 20
In the same manner as in Example 19, spherical granules containing 20 to 30 mesh (840 to 500 μm) of anhydrous caffeine were produced.
Next, 500 g of this spherical granule was sprayed with 3500 g and 5000 g of the coating liquid shown in Table 33 using a fluidized bed coating apparatus MP-01 (manufactured by Pauleck Co., Ltd.), and the coating liquid (solid content) was sprayed on the granules. 70% and 100% coated formulations were produced.
実施例21
実施例19と同様にして20~30メッシュ(840~500μm)の無水カフェインを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表34に示すコーティング液を、3500、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 21
In the same manner as in Example 19, spherical granules containing 20 to 30 mesh (840 to 500 μm) of anhydrous caffeine were produced.
Next, 500 g of this spherical granule is sprayed with 3500 and 5000 g of the coating liquid shown in Table 34 using a fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and the coating liquid (solid content) is sprayed on the granules. 70% and 100% coated formulations were produced.
実施例19と同様にして20~30メッシュ(840~500μm)の無水カフェインを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表34に示すコーティング液を、3500、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 21
In the same manner as in Example 19, spherical granules containing 20 to 30 mesh (840 to 500 μm) of anhydrous caffeine were produced.
Next, 500 g of this spherical granule is sprayed with 3500 and 5000 g of the coating liquid shown in Table 34 using a fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and the coating liquid (solid content) is sprayed on the granules. 70% and 100% coated formulations were produced.
実施例22
実施例19と同様にして20~30メッシュ(840~500μm)の無水カフェインを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表35に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 22
In the same manner as in Example 19, spherical granules containing 20 to 30 mesh (840 to 500 μm) of anhydrous caffeine were produced.
Next, 500 g of this spherical granule is sprayed with 3500 g and 5000 g of the coating liquid shown in Table 35 using a fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and the coating liquid (solid content) is sprayed on the granules. 70% and 100% coated formulations were produced.
実施例19と同様にして20~30メッシュ(840~500μm)の無水カフェインを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表35に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 22
In the same manner as in Example 19, spherical granules containing 20 to 30 mesh (840 to 500 μm) of anhydrous caffeine were produced.
Next, 500 g of this spherical granule is sprayed with 3500 g and 5000 g of the coating liquid shown in Table 35 using a fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and the coating liquid (solid content) is sprayed on the granules. 70% and 100% coated formulations were produced.
試験例8
実施例19~22で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、水、pH6.8、UV波長:267nm)を実施した。図21~24に溶出曲線を示した。また、表36~39に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 8
The preparations produced in Examples 19 to 22 were subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, UV wavelength: 267 nm) in the same manner as in Test Example 1. 21 to 24 show elution curves. Tables 36 to 39 show the lag time and T 80% calculated from the elution curve.
実施例19~22で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、水、pH6.8、UV波長:267nm)を実施した。図21~24に溶出曲線を示した。また、表36~39に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 8
The preparations produced in Examples 19 to 22 were subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, UV wavelength: 267 nm) in the same manner as in Test Example 1. 21 to 24 show elution curves. Tables 36 to 39 show the lag time and T 80% calculated from the elution curve.
実施例19~22においては、無水カフェイン20%の顆粒に、コーティング溶媒の局方エタノールの濃度を変えてコーティングを実施した。局方エタノールの濃度が、80%、85%、90%と高くなるとラグタイムとラグタイム後の放出性も長くなるが、95%では、短くなった。コーティング量が同じ場合、85~90%のエタノール濃度が、最も長いラグタイムが得られるものと推察された。
In Examples 19 to 22, coating was carried out on granules of 20% anhydrous caffeine while changing the concentration of pharmacopeia ethanol as a coating solvent. When the concentration of pharmacopeia increased to 80%, 85%, and 90%, the release time after lag time and lag time also increased, but at 95%, it decreased. When the coating amount was the same, it was speculated that an ethanol concentration of 85 to 90% would provide the longest lag time.
実施例23
塩酸ジフェンヒドラミン(金剛化学(株)製)100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2800gを加えて練合し、実施例12と同様にして20~30メッシュ(840~500μm)の塩酸ジフェンヒドラミンを10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表19に示すコーティング液を、3500gを噴霧し、顆粒に対してコーティング液(固形分)を70%コーティングした製剤を製造した。 Example 23
100 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 900 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 2800 g of 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 10% of 20-30 mesh (840-500 μm) diphenhydramine hydrochloride were produced in the same manner as in Example 12.
Next, 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 3500 g of the coating liquid shown in Table 19, and the coating liquid (solid content) is sprayed on the granules. A 70% coated formulation was produced.
塩酸ジフェンヒドラミン(金剛化学(株)製)100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2800gを加えて練合し、実施例12と同様にして20~30メッシュ(840~500μm)の塩酸ジフェンヒドラミンを10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表19に示すコーティング液を、3500gを噴霧し、顆粒に対してコーティング液(固形分)を70%コーティングした製剤を製造した。 Example 23
100 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 900 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 2800 g of 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 10% of 20-30 mesh (840-500 μm) diphenhydramine hydrochloride were produced in the same manner as in Example 12.
Next, 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 3500 g of the coating liquid shown in Table 19, and the coating liquid (solid content) is sprayed on the granules. A 70% coated formulation was produced.
実施例24
塩酸ジフェンヒドラミン(金剛化学(株)製)300gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)700gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2000gを加えて練合し、実施例12と同様にして20~30メッシュ(840~500μm)の塩酸ジフェンヒドラミンを30%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表19に示すコーティング液を、3500gを噴霧し、顆粒に対してコーティング液(固形分)を70%コーティングした製剤を製造した。 Example 24
300 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 700 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 2000 g of a 10% ethanol aqueous solution was added and kneaded to produce spherical granules containing 30% of 20-30 mesh (840-500 μm) diphenhydramine hydrochloride in the same manner as in Example 12.
Next, 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 3500 g of the coating liquid shown in Table 19, and the coating liquid (solid content) is sprayed on the granules. A 70% coated formulation was produced.
塩酸ジフェンヒドラミン(金剛化学(株)製)300gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)700gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2000gを加えて練合し、実施例12と同様にして20~30メッシュ(840~500μm)の塩酸ジフェンヒドラミンを30%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表19に示すコーティング液を、3500gを噴霧し、顆粒に対してコーティング液(固形分)を70%コーティングした製剤を製造した。 Example 24
300 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 700 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 2000 g of a 10% ethanol aqueous solution was added and kneaded to produce spherical granules containing 30% of 20-30 mesh (840-500 μm) diphenhydramine hydrochloride in the same manner as in Example 12.
Next, 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 3500 g of the coating liquid shown in Table 19, and the coating liquid (solid content) is sprayed on the granules. A 70% coated formulation was produced.
実施例25
塩酸ジフェンヒドラミン(金剛化学(株)製)500gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)500gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液1400gを加えて練合し、実施例12と同様にして20~30メッシュ(840~500μm)の塩酸ジフェンヒドラミンを50%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表19に示すコーティング液を、3500gを噴霧し、顆粒に対してコーティング液(固形分)を70%コーティングした製剤を製造した。 Example 25
500 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 500 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 1400 g of a 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 50% of 20-30 mesh (840-500 μm) diphenhydramine hydrochloride were produced in the same manner as in Example 12.
Next, 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 3500 g of the coating liquid shown in Table 19, and the coating liquid (solid content) is sprayed on the granules. A 70% coated formulation was produced.
塩酸ジフェンヒドラミン(金剛化学(株)製)500gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)500gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液1400gを加えて練合し、実施例12と同様にして20~30メッシュ(840~500μm)の塩酸ジフェンヒドラミンを50%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表19に示すコーティング液を、3500gを噴霧し、顆粒に対してコーティング液(固形分)を70%コーティングした製剤を製造した。 Example 25
500 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 500 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 1400 g of a 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 50% of 20-30 mesh (840-500 μm) diphenhydramine hydrochloride were produced in the same manner as in Example 12.
Next, 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 3500 g of the coating liquid shown in Table 19, and the coating liquid (solid content) is sprayed on the granules. A 70% coated formulation was produced.
実施例26
塩酸ジフェンヒドラミン(金剛化学(株)製)700gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)300gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2000gを加えて練合し、実施例12と同様にして20~30メッシュ(840~500μm)の塩酸ジフェンヒドラミンを70%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表19に示すコーティング液を、3500gを噴霧し、顆粒に対してコーティング液(固形分)を70%コーティングした製剤を製造した。 Example 26
700 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 2000 g of a 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 70% 20-30 mesh (840-500 μm) diphenhydramine hydrochloride were produced in the same manner as in Example 12.
Next, 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 3500 g of the coating liquid shown in Table 19, and the coating liquid (solid content) is sprayed on the granules. A 70% coated formulation was produced.
塩酸ジフェンヒドラミン(金剛化学(株)製)700gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)300gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2000gを加えて練合し、実施例12と同様にして20~30メッシュ(840~500μm)の塩酸ジフェンヒドラミンを70%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表19に示すコーティング液を、3500gを噴霧し、顆粒に対してコーティング液(固形分)を70%コーティングした製剤を製造した。 Example 26
700 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 2000 g of a 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 70% 20-30 mesh (840-500 μm) diphenhydramine hydrochloride were produced in the same manner as in Example 12.
Next, 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 3500 g of the coating liquid shown in Table 19, and the coating liquid (solid content) is sprayed on the granules. A 70% coated formulation was produced.
試験例9
実施例23~26で製造した製剤を試験例1と同様にして溶出試験(試験液:水、UV波長:267nm)を実施した。図25に溶出曲線を示した。また、表40に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 9
The preparations produced in Examples 23 to 26 were subjected to a dissolution test (test solution: water, UV wavelength: 267 nm) in the same manner as in Test Example 1. FIG. 25 shows an elution curve. Table 40 shows the lag time and T 80% calculated from the elution curve.
実施例23~26で製造した製剤を試験例1と同様にして溶出試験(試験液:水、UV波長:267nm)を実施した。図25に溶出曲線を示した。また、表40に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 9
The preparations produced in Examples 23 to 26 were subjected to a dissolution test (test solution: water, UV wavelength: 267 nm) in the same manner as in Test Example 1. FIG. 25 shows an elution curve. Table 40 shows the lag time and T 80% calculated from the elution curve.
実施例27
テオフィリン(白鳥製薬(株)製)300gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)700gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2100gを加えて練合し、実施例12と同様にして20~30メッシュ(840~500μm)のテオフィリンを30%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表19に示すコーティング液、750g、1750g、2750gを噴霧し、顆粒に対してコーティング液(固形分)を15%、35%、55%コーティングした製剤を製造した。 Example 27
300 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 700 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Thereafter, 2100 g of 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 30% of 20-30 mesh (840-500 μm) theophylline were produced in the same manner as in Example 12.
Next, 500 g of this spherical granule is sprayed with a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.) with coating liquids 750 g, 1750 g, and 2750 g shown in Table 19, and the coating liquid (solid) Preparations with 15%, 35% and 55% coating were prepared.
テオフィリン(白鳥製薬(株)製)300gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)700gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2100gを加えて練合し、実施例12と同様にして20~30メッシュ(840~500μm)のテオフィリンを30%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表19に示すコーティング液、750g、1750g、2750gを噴霧し、顆粒に対してコーティング液(固形分)を15%、35%、55%コーティングした製剤を製造した。 Example 27
300 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 700 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Thereafter, 2100 g of 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 30% of 20-30 mesh (840-500 μm) theophylline were produced in the same manner as in Example 12.
Next, 500 g of this spherical granule is sprayed with a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.) with coating liquids 750 g, 1750 g, and 2750 g shown in Table 19, and the coating liquid (solid) Preparations with 15%, 35% and 55% coating were prepared.
試験例10
実施例27で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、水、pH6.8、UV波長:267nm)を実施した。図26に溶出曲線を示した。また、表41に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 10
The preparation manufactured in Example 27 was subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, UV wavelength: 267 nm) in the same manner as in Test Example 1. FIG. 26 shows an elution curve. Table 41 shows the lag time and T 80% calculated from the elution curve.
実施例27で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、水、pH6.8、UV波長:267nm)を実施した。図26に溶出曲線を示した。また、表41に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 10
The preparation manufactured in Example 27 was subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, UV wavelength: 267 nm) in the same manner as in Test Example 1. FIG. 26 shows an elution curve. Table 41 shows the lag time and T 80% calculated from the elution curve.
実施例27より、15~55%のいずれのコーティング量でも、pH1.2、水及びpH6.8の試験液で同じラグタイムを示し、ラグタイム後の放出性も同様な傾向を示すことが確認された。即ち、被覆量を増加することによりpHに非依存のラグタイムを自由に調整することが可能であることを示す。
From Example 27, it was confirmed that any coating amount of 15 to 55% showed the same lag time in the test solution of pH 1.2, water and pH 6.8, and the release property after the lag time showed the same tendency. It was done. That is, it shows that the lag time independent of pH can be freely adjusted by increasing the coating amount.
実施例12~14、16~27の製剤は、薬物及び水膨潤性物質を含む核にアクリル酸エチル・メタアクリル酸メチル・メタアクリル酸塩化トリメチルアンモニウム共重合体、エチルセルロース及び水不溶性賦形剤からなるコーティング基剤で被覆層を形成することにより、薬物の溶出が溶出液のpHに依存することなく一定である時限放出製剤が得られることが確認された。従って、実施例12~14、16~27の時限放出製剤は、消化管内のpH変化に関係なく、設定したラグタイム後に速やかに薬物を放出する特徴を有している。
The preparations of Examples 12 to 14 and 16 to 27 were prepared from an ethyl acrylate / methyl methacrylate / methacrylated trimethylammonium copolymer, ethyl cellulose and a water-insoluble excipient in a core containing a drug and a water-swellable substance. It was confirmed that by forming a coating layer with the coating base, a time-release preparation in which the drug elution is constant without depending on the pH of the eluate can be obtained. Therefore, the time-release preparations of Examples 12 to 14 and 16 to 27 have a feature of rapidly releasing the drug after a set lag time regardless of the pH change in the digestive tract.
実施例28
テオフィリン(白鳥製薬(株)製)100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2900gを加えて練合した。この練合物を、0.8mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形粒子とした。その後、流動層乾燥機WSG-55型(大川原製作所(株)製)で乾燥し、20と30メッシュの篩で整粒し20~30メッシュ(840~500μm)のテオフィリンを10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表42に示すコーティング液、3750g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を75%、100%コーティングした製剤を製造した。 Example 28
100 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2900 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and spherical particles with Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-55 (Okawara Seisakusho Co., Ltd.), sized with a 20 and 30 mesh sieve, and spherical granules containing 10% of 20-30 mesh (840-500 μm) theophylline. Manufactured.
Next, 500 g of this spherical granule was sprayed with a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.) with 3750 g and 5000 g of the coating liquid shown in Table 42, and the coating liquid (solid content) was sprayed on the granules. A formulation with 75% and 100% coating was produced.
テオフィリン(白鳥製薬(株)製)100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2900gを加えて練合した。この練合物を、0.8mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形粒子とした。その後、流動層乾燥機WSG-55型(大川原製作所(株)製)で乾燥し、20と30メッシュの篩で整粒し20~30メッシュ(840~500μm)のテオフィリンを10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表42に示すコーティング液、3750g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を75%、100%コーティングした製剤を製造した。 Example 28
100 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2900 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and spherical particles with Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-55 (Okawara Seisakusho Co., Ltd.), sized with a 20 and 30 mesh sieve, and spherical granules containing 10% of 20-30 mesh (840-500 μm) theophylline. Manufactured.
Next, 500 g of this spherical granule was sprayed with a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.) with 3750 g and 5000 g of the coating liquid shown in Table 42, and the coating liquid (solid content) was sprayed on the granules. A formulation with 75% and 100% coating was produced.
実施例29
実施例28で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表43に示すコーティング液3750g、5000gを、実施例28と同様にして噴霧しコーティング液(固形分)を75%、100%コーティングした製剤を製造した。 Example 29
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) prepared in Example 28, 3750 g and 5000 g of the coating liquid shown in Table 43 were sprayed in the same manner as in Example 28, and 75% of the coating liquid (solid content) was sprayed. A 100% coated formulation was produced.
実施例28で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表43に示すコーティング液3750g、5000gを、実施例28と同様にして噴霧しコーティング液(固形分)を75%、100%コーティングした製剤を製造した。 Example 29
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) prepared in Example 28, 3750 g and 5000 g of the coating liquid shown in Table 43 were sprayed in the same manner as in Example 28, and 75% of the coating liquid (solid content) was sprayed. A 100% coated formulation was produced.
実施例30
実施例28で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表44に示すコーティング液3750g、5000gを、実施例28と同様にして噴霧しコーティング液(固形分)を75%、100%コーティングした製剤を製造した。 Example 30
To 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 28, 3750 g and 5000 g of the coating liquid shown in Table 44 were sprayed in the same manner as in Example 28, and 75% of the coating liquid (solid content) was sprayed. A 100% coated formulation was produced.
実施例28で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表44に示すコーティング液3750g、5000gを、実施例28と同様にして噴霧しコーティング液(固形分)を75%、100%コーティングした製剤を製造した。 Example 30
To 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 28, 3750 g and 5000 g of the coating liquid shown in Table 44 were sprayed in the same manner as in Example 28, and 75% of the coating liquid (solid content) was sprayed. A 100% coated formulation was produced.
実施例31
実施例28で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表45に示すコーティング液5000gを、実施例28と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 31
Formulation prepared by spraying 5000 g of the coating liquid shown in Table 45 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 28 in the same manner as in Example 28 and coating the coating liquid (solid content) with 100%. Manufactured.
実施例28で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表45に示すコーティング液5000gを、実施例28と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 31
Formulation prepared by spraying 5000 g of the coating liquid shown in Table 45 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 28 in the same manner as in Example 28 and coating the coating liquid (solid content) with 100%. Manufactured.
実施例32
実施例28で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表46に示すコーティング液3750g、5000gを、実施例28と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 32
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 28, 3750 g and 5000 g of the coating liquid shown in Table 46 were sprayed in the same manner as in Example 28 to coat the coating liquid (solid content) with 100%. The prepared formulation was manufactured.
実施例28で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表46に示すコーティング液3750g、5000gを、実施例28と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 32
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 28, 3750 g and 5000 g of the coating liquid shown in Table 46 were sprayed in the same manner as in Example 28 to coat the coating liquid (solid content) with 100%. The prepared formulation was manufactured.
実施例33
実施例28で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表47に示すコーティング液5000gを、実施例28と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 33
Formulation prepared by spraying 5000 g of the coating liquid shown in Table 47 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 28 in the same manner as in Example 28 and coating the coating liquid (solid content) with 100%. Manufactured.
実施例28で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表47に示すコーティング液5000gを、実施例28と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 33
Formulation prepared by spraying 5000 g of the coating liquid shown in Table 47 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 28 in the same manner as in Example 28 and coating the coating liquid (solid content) with 100%. Manufactured.
実施例34
実施例28で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表48に示すコーティング液5000gを、実施例28と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 34
Formulation prepared by spraying 5000 g of the coating liquid shown in Table 48 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 28 in the same manner as in Example 28 and coating the coating liquid (solid content) with 100% Manufactured.
実施例28で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表48に示すコーティング液5000gを、実施例28と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 34
Formulation prepared by spraying 5000 g of the coating liquid shown in Table 48 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 28 in the same manner as in Example 28 and coating the coating liquid (solid content) with 100% Manufactured.
試験例11
実施例28~34で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、水、pH6.8、UV波長:267nm)を実施した。図27~36に溶出曲線を示した。また、表49~54に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 11
The preparations produced in Examples 28 to 34 were subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, UV wavelength: 267 nm) in the same manner as in Test Example 1. 27 to 36 show elution curves. Tables 49 to 54 show the lag time and T 80% calculated from the elution curve.
実施例28~34で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、水、pH6.8、UV波長:267nm)を実施した。図27~36に溶出曲線を示した。また、表49~54に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 11
The preparations produced in Examples 28 to 34 were subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, UV wavelength: 267 nm) in the same manner as in Test Example 1. 27 to 36 show elution curves. Tables 49 to 54 show the lag time and T 80% calculated from the elution curve.
オイドラギットRSPO 1質量部に対してオイドラギットL100-55を0.22質量部(実施例28)、0.18(実施例29)又は0.15質量部(実施例30)添加することにより、pH1.2、水及びpH6.8の試験液で同じラグタイムを示すとともに、ラグタイム後の放出性も同様な傾向を示した。また、オイドラギットRSPO 1質量部に対してオイドラギットL100-55を0.25質量部(実施例31)添加した場合には、pH6.8の試験液でのラグタイムはpH1.2と水の試験液のラグタイムより短いのに対し、0.11質量部(実施例32)を添加した場合、pH6.8の試験液でのラグタイムはpH1.2、水の試験液よりも長く、pH依存性を示した。更に、オイドラギットL100-55を無添加(実施例33)及びオイドラギットRLPOを添加(実施例34)も、実施例31及び32と同様にpH依存性を示した。このことは、実施例28~30の時限放出製剤は、消化管のpH変化に関係なく、一定のラグタイム後に速やかに医薬化合物を放出することを示している。
By adding 0.22 parts by mass (Example 28), 0.18 (Example 29) or 0.15 parts by mass (Example 30) of Eudragit L100-55 to 1 part by mass of Eudragit RSPO, a pH of 1. 2, water and pH 6.8 test solution showed the same lag time, and the release property after the lag time showed the same tendency. In addition, when Eudragit L100-55 (0.25 part by mass) was added to 1 part by mass of Eudragit RSPO (Example 31), the lag time in the test solution of pH 6.8 was pH 1.2 and the test solution of water. When 0.11 part by mass (Example 32) is added, the lag time in the pH 6.8 test solution is longer than the pH 1.2, water test solution, and is pH-dependent. showed that. Further, the addition of Eudragit L100-55 (Example 33) and the addition of Eudragit RLPO (Example 34) also showed pH dependence as in Examples 31 and 32. This indicates that the time-release preparations of Examples 28 to 30 release the pharmaceutical compound rapidly after a certain lag time regardless of the pH change of the digestive tract.
実施例35
テオフィリン(白鳥製薬(株)製)300gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)700gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2100gを加えて練合し、実施例28と同様にして20~30メッシュ(840~500μm)のテオフィリンを30%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を、750g、1750g、2750gを噴霧し、顆粒に対してコーティング液(固形分)を15%、35%、55%コーティングした製剤を製造した。 Example 35
300 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 700 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Thereafter, 2100 g of 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 30% of 20-30 mesh (840-500 μm) theophylline were produced in the same manner as in Example 28.
Next, 750 g, 1750 g, and 2750 g of the coating liquid shown in Table 43 were sprayed on 500 g of this spherical granule with a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and the coating liquid ( Preparations with 15%, 35%, and 55% solid content) were produced.
テオフィリン(白鳥製薬(株)製)300gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)700gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2100gを加えて練合し、実施例28と同様にして20~30メッシュ(840~500μm)のテオフィリンを30%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を、750g、1750g、2750gを噴霧し、顆粒に対してコーティング液(固形分)を15%、35%、55%コーティングした製剤を製造した。 Example 35
300 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 700 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Thereafter, 2100 g of 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 30% of 20-30 mesh (840-500 μm) theophylline were produced in the same manner as in Example 28.
Next, 750 g, 1750 g, and 2750 g of the coating liquid shown in Table 43 were sprayed on 500 g of this spherical granule with a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and the coating liquid ( Preparations with 15%, 35%, and 55% solid content) were produced.
試験例12
実施例35で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、水、pH6.8、UV波長:267nm)を実施した。図37~39に溶出曲線を示した。また、表55に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 12
The preparation prepared in Example 35 was subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, UV wavelength: 267 nm) in the same manner as in Test Example 1. Figures 37 to 39 show elution curves. Table 55 shows the lag time and T 80% calculated from the elution curve.
実施例35で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、水、pH6.8、UV波長:267nm)を実施した。図37~39に溶出曲線を示した。また、表55に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 12
The preparation prepared in Example 35 was subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, UV wavelength: 267 nm) in the same manner as in Test Example 1. Figures 37 to 39 show elution curves. Table 55 shows the lag time and T 80% calculated from the elution curve.
実施例35においては、15~55%のいずれのコーティング量でも、pH1.2、水及びpH6.8の試験液で同じラグタイムを示し、ラグタイム後の放出性も同様な傾向を示した。即ち、被覆量を増加することによりpHに非依存のラグタイムを自由に調整することが可能であることを示す。
In Example 35, any coating amount of 15 to 55% showed the same lag time in the test solution of pH 1.2, water and pH 6.8, and the release property after the lag time showed the same tendency. That is, it shows that the lag time independent of pH can be freely adjusted by increasing the coating amount.
実施例36
テオフィリン(白鳥製薬(株)製)200gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)800gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2400gを加えて練合した。この練合物を、0.8mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、実施例28と同様にして20メッシュと24メッシュの篩で整粒し20~24メッシュ(840~710μm)のテオフィリンを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を、4500gを噴霧し、顆粒に対してコーティング液(固形分)を90%コーティングした製剤を製造した。 Example 36
200 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 800 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2400 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with Twin Dome Gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and adjusted with 20 mesh and 24 mesh sieves in the same manner as in Example 28. Spherical granules containing 20% of 20-24 mesh (840-710 μm) theophylline were produced.
Next, 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 4500 g of the coating liquid shown in Table 43, and the coating liquid (solid content) is sprayed on the granules. A 90% coated formulation was produced.
テオフィリン(白鳥製薬(株)製)200gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)800gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2400gを加えて練合した。この練合物を、0.8mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、実施例28と同様にして20メッシュと24メッシュの篩で整粒し20~24メッシュ(840~710μm)のテオフィリンを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を、4500gを噴霧し、顆粒に対してコーティング液(固形分)を90%コーティングした製剤を製造した。 Example 36
200 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 800 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2400 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with Twin Dome Gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and adjusted with 20 mesh and 24 mesh sieves in the same manner as in Example 28. Spherical granules containing 20% of 20-24 mesh (840-710 μm) theophylline were produced.
Next, 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 4500 g of the coating liquid shown in Table 43, and the coating liquid (solid content) is sprayed on the granules. A 90% coated formulation was produced.
実施例37
テオフィリン(白鳥製薬(株)製)200gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)800gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2400gを加えて練合した。この練合物を、0.70mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、実施例28と同様にして24メッシュと30メッシュの篩で整粒し24~30メッシュ(710~500μm)のテオフィリンを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を、5000gを噴霧し、顆粒に対してコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 37
200 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 800 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2400 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.70 mm screen, and adjusted with a 24 mesh and 30 mesh sieve in the same manner as in Example 28. Spherical granules containing 20% of 24-30 mesh (710-500 μm) theophylline were produced.
Next, 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 5000 g of the coating liquid shown in Table 43, and the coating liquid (solid content) is sprayed on the granules. A 100% coated formulation was produced.
テオフィリン(白鳥製薬(株)製)200gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)800gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2400gを加えて練合した。この練合物を、0.70mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、実施例28と同様にして24メッシュと30メッシュの篩で整粒し24~30メッシュ(710~500μm)のテオフィリンを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を、5000gを噴霧し、顆粒に対してコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 37
200 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 800 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2400 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.70 mm screen, and adjusted with a 24 mesh and 30 mesh sieve in the same manner as in Example 28. Spherical granules containing 20% of 24-30 mesh (710-500 μm) theophylline were produced.
Next, 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 5000 g of the coating liquid shown in Table 43, and the coating liquid (solid content) is sprayed on the granules. A 100% coated formulation was produced.
実施例38
テオフィリン(白鳥製薬(株)製)200gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)800gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2400gを加えて練合した。この練合物を、0.6mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、実施例28と同様にして30メッシュと42メッシュの篩で整粒し30~42メッシュ(500~355μm)のテオフィリンを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を、5000gを噴霧し、顆粒に対してコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 38
200 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 800 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2400 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with Twin Dome Gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.6 mm screen, and adjusted with 30 mesh and 42 mesh sieves in the same manner as in Example 28. Spherical granules containing 20% granulated 30-42 mesh (500-355 μm) theophylline were produced.
Next, 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 5000 g of the coating liquid shown in Table 43, and the coating liquid (solid content) is sprayed on the granules. A 100% coated formulation was produced.
テオフィリン(白鳥製薬(株)製)200gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)800gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2400gを加えて練合した。この練合物を、0.6mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、実施例28と同様にして30メッシュと42メッシュの篩で整粒し30~42メッシュ(500~355μm)のテオフィリンを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を、5000gを噴霧し、顆粒に対してコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 38
200 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 800 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2400 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with Twin Dome Gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.6 mm screen, and adjusted with 30 mesh and 42 mesh sieves in the same manner as in Example 28. Spherical granules containing 20% granulated 30-42 mesh (500-355 μm) theophylline were produced.
Next, 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 5000 g of the coating liquid shown in Table 43, and the coating liquid (solid content) is sprayed on the granules. A 100% coated formulation was produced.
実施例39
テオフィリン(白鳥製薬(株)製)200gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)800gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2400gを加えて練合した。この練合物を、0.50mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、実施例28と同様にして42と60メッシュの篩で整粒し42~60メッシュ(355~250μm)のテオフィリンを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を、7500gを噴霧し、顆粒に対してコーティング液(固形分)を150%コーティングした製剤を製造した。 Example 39
200 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 800 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2400 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.50 mm screen, and sized with a 42 and 60 mesh sieve in the same manner as in Example 28. Spherical granules containing 20% of 42 to 60 mesh (355 to 250 μm) theophylline were produced.
Next, 500 g of this spherical granule is sprayed with 7500 g of the coating liquid shown in Table 43 using a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid (solid content) is sprayed on the granules. A 150% coated formulation was produced.
テオフィリン(白鳥製薬(株)製)200gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)800gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2400gを加えて練合した。この練合物を、0.50mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、実施例28と同様にして42と60メッシュの篩で整粒し42~60メッシュ(355~250μm)のテオフィリンを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を、7500gを噴霧し、顆粒に対してコーティング液(固形分)を150%コーティングした製剤を製造した。 Example 39
200 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 800 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2400 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.50 mm screen, and sized with a 42 and 60 mesh sieve in the same manner as in Example 28. Spherical granules containing 20% of 42 to 60 mesh (355 to 250 μm) theophylline were produced.
Next, 500 g of this spherical granule is sprayed with 7500 g of the coating liquid shown in Table 43 using a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid (solid content) is sprayed on the granules. A 150% coated formulation was produced.
試験例13
実施例36~39で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、水、pH6.8、UV波長:267nm)を実施した。図40~43に溶出曲線を示した。また、表56~59に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 13
The preparations produced in Examples 36 to 39 were subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, UV wavelength: 267 nm) in the same manner as in Test Example 1. 40 to 43 show elution curves. Tables 56 to 59 show the lag time and T 80% calculated from the elution curve.
実施例36~39で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、水、pH6.8、UV波長:267nm)を実施した。図40~43に溶出曲線を示した。また、表56~59に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 13
The preparations produced in Examples 36 to 39 were subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, UV wavelength: 267 nm) in the same manner as in Test Example 1. 40 to 43 show elution curves. Tables 56 to 59 show the lag time and T 80% calculated from the elution curve.
コーティングする顆粒の粒度を、840~710μm(実施例36)、710~500μm(実施例37)、500~355μm(実施例38)、355~250μm(実施例39)に変化させた、いずれの粒度の中心核を有する製剤においても、pH1.2、水及びpH6.8の試験液で同じラグタイムを示し、ラグタイム後の放出性も同様な傾向を示した。即ち、本発明の時限放出製剤は、従来のノンパレルを用いる製造法では困難であった細粒剤粒度の製剤が得られることが確認された。
Any particle size in which the particle size of the granules to be coated was changed to 840 to 710 μm (Example 36), 710 to 500 μm (Example 37), 500 to 355 μm (Example 38), and 355 to 250 μm (Example 39). Even in the preparation having the central core, the same lag time was exhibited in the test solutions of pH 1.2, water and pH 6.8, and the release properties after the lag time showed the same tendency. That is, it was confirmed that the time-release preparation of the present invention can provide a preparation having a fine granule particle size, which was difficult by the conventional production method using nonparrel.
実施例40
塩酸ジフェンヒドラミン(金剛化学(株)製))100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2800gを加えて練合し、実施例28と同様にして20~30メッシュ(840~500μm)の塩酸ジフェンヒドラミンを10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を、3500gを噴霧し、顆粒に対してコーティング液(固形分)を70%コーティングした製剤を製造した。 Example 40
Vertical granulator FM-VG-25 (manufactured by POWREC) 100 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) After mixing, 2800 g of 10% aqueous ethanol solution was added and kneaded, and spherical granules containing 10% of 20-30 mesh (840-500 μm) diphenhydramine hydrochloride were produced in the same manner as in Example 28.
Next, 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 3500 g of the coating liquid shown in Table 43, and the coating liquid (solid content) is sprayed on the granules. A 70% coated formulation was produced.
塩酸ジフェンヒドラミン(金剛化学(株)製))100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2800gを加えて練合し、実施例28と同様にして20~30メッシュ(840~500μm)の塩酸ジフェンヒドラミンを10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を、3500gを噴霧し、顆粒に対してコーティング液(固形分)を70%コーティングした製剤を製造した。 Example 40
Vertical granulator FM-VG-25 (manufactured by POWREC) 100 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) After mixing, 2800 g of 10% aqueous ethanol solution was added and kneaded, and spherical granules containing 10% of 20-30 mesh (840-500 μm) diphenhydramine hydrochloride were produced in the same manner as in Example 28.
Next, 500 g of this spherical granule is sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 3500 g of the coating liquid shown in Table 43, and the coating liquid (solid content) is sprayed on the granules. A 70% coated formulation was produced.
実施例41
塩酸ジフェンヒドラミン(金剛化学(株)製))300gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)700gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2000gを加えて練合し、実施例28と同様にして20~30メッシュ(840~500μm)の塩酸ジフェンヒドラミンを30%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を3500g噴霧し、顆粒に対してコーティング液(固形分)を70%コーティングした製剤を製造した。 Example 41
300 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 700 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used as vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.) After mixing, 2000 g of a 10% aqueous ethanol solution was added and kneaded, and spherical granules containing 30% of 20-30 mesh (840-500 μm) of diphenhydramine hydrochloride were produced in the same manner as in Example 28.
Next, 500 g of this spherical granule was sprayed with 3500 g of the coating liquid shown in Table 43 using a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid (solid content) was 70% of the granules. A coated formulation was produced.
塩酸ジフェンヒドラミン(金剛化学(株)製))300gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)700gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2000gを加えて練合し、実施例28と同様にして20~30メッシュ(840~500μm)の塩酸ジフェンヒドラミンを30%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を3500g噴霧し、顆粒に対してコーティング液(固形分)を70%コーティングした製剤を製造した。 Example 41
300 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 700 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used as vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.) After mixing, 2000 g of a 10% aqueous ethanol solution was added and kneaded, and spherical granules containing 30% of 20-30 mesh (840-500 μm) of diphenhydramine hydrochloride were produced in the same manner as in Example 28.
Next, 500 g of this spherical granule was sprayed with 3500 g of the coating liquid shown in Table 43 using a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid (solid content) was 70% of the granules. A coated formulation was produced.
実施例42
塩酸ジフェンヒドラミン(金剛化学(株)製))500gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)500gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液1400gを加えて練合し、実施例28と同様にして20~30メッシュ(840~500μm)の塩酸ジフェンヒドラミンを50%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を3500g噴霧し、顆粒に対してコーティング液(固形分)を70%コーティングした製剤を製造した。 Example 42
500 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 500 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used as vertical granulator FM-VG-25 (manufactured by POWREC) After mixing, 1400 g of a 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 50% of 20-30 mesh (840-500 μm) of diphenhydramine hydrochloride were produced in the same manner as in Example 28.
Next, 500 g of this spherical granule was sprayed with 3500 g of the coating liquid shown in Table 43 using a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid (solid content) was 70% of the granules. A coated formulation was produced.
塩酸ジフェンヒドラミン(金剛化学(株)製))500gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)500gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液1400gを加えて練合し、実施例28と同様にして20~30メッシュ(840~500μm)の塩酸ジフェンヒドラミンを50%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を3500g噴霧し、顆粒に対してコーティング液(固形分)を70%コーティングした製剤を製造した。 Example 42
500 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 500 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used as vertical granulator FM-VG-25 (manufactured by POWREC) After mixing, 1400 g of a 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 50% of 20-30 mesh (840-500 μm) of diphenhydramine hydrochloride were produced in the same manner as in Example 28.
Next, 500 g of this spherical granule was sprayed with 3500 g of the coating liquid shown in Table 43 using a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid (solid content) was 70% of the granules. A coated formulation was produced.
実施例43
塩酸ジフェンヒドラミン(金剛化学(株)製))700gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)300gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2000gを加えて練合し、実施例28と同様にして20~30メッシュ(840~500μm)の塩酸ジフェンヒドラミンを70%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を3500g噴霧し、顆粒に対してコーティング液(固形分)を70%コーティングした製剤を製造した。 Example 43
700 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used as vertical granulator FM-VG-25 (manufactured by POWREC) After mixing, 2000 g of a 10% aqueous ethanol solution was added and kneaded, and spherical granules containing 70% 20-30 mesh (840-500 μm) diphenhydramine hydrochloride were produced in the same manner as in Example 28.
Next, 500 g of this spherical granule was sprayed with 3500 g of the coating liquid shown in Table 43 using a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid (solid content) was 70% of the granules. A coated formulation was produced.
塩酸ジフェンヒドラミン(金剛化学(株)製))700gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)300gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2000gを加えて練合し、実施例28と同様にして20~30メッシュ(840~500μm)の塩酸ジフェンヒドラミンを70%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を3500g噴霧し、顆粒に対してコーティング液(固形分)を70%コーティングした製剤を製造した。 Example 43
700 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used as vertical granulator FM-VG-25 (manufactured by POWREC) After mixing, 2000 g of a 10% aqueous ethanol solution was added and kneaded, and spherical granules containing 70% 20-30 mesh (840-500 μm) diphenhydramine hydrochloride were produced in the same manner as in Example 28.
Next, 500 g of this spherical granule was sprayed with 3500 g of the coating liquid shown in Table 43 using a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid (solid content) was 70% of the granules. A coated formulation was produced.
試験例14
実施例40~43で製造した製剤を試験例1と同様にして溶出試験(試験液:精製水、UV波長:210nm)を実施した。図44に溶出曲線を示した。また、表60に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 14
The preparations produced in Examples 40 to 43 were subjected to a dissolution test (test solution: purified water, UV wavelength: 210 nm) in the same manner as in Test Example 1. FIG. 44 shows an elution curve. Table 60 shows the lag time and T 80% calculated from the elution curve.
実施例40~43で製造した製剤を試験例1と同様にして溶出試験(試験液:精製水、UV波長:210nm)を実施した。図44に溶出曲線を示した。また、表60に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 14
The preparations produced in Examples 40 to 43 were subjected to a dissolution test (test solution: purified water, UV wavelength: 210 nm) in the same manner as in Test Example 1. FIG. 44 shows an elution curve. Table 60 shows the lag time and T 80% calculated from the elution curve.
中心核中の水膨潤性物質の含有量が、90%(実施例40)、70%(実施例41)、50%(実施例42)、30%(実施例43)と減少することにより、ラグタイム後の放出速度は遅くなるがいずれの水膨潤性物質の含有量でもpH非依存型の時限放出製剤が得られることが確認された。
By reducing the content of the water-swellable substance in the central core to 90% (Example 40), 70% (Example 41), 50% (Example 42), and 30% (Example 43), Although the release rate after the lag time was slow, it was confirmed that a pH-independent time-release formulation could be obtained with any water-swellable substance content.
実施例44
無水カフェイン(金剛化学(株)製))200gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)800gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2400gを加えて練合した。この練合物を、0.6mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、実施例28と同様にして30メッシュと42メッシュの篩で整粒し30~42メッシュ(500~355μm)の無水カフェインを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を5000g噴霧し、顆粒に対してコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 44
200 g of anhydrous caffeine (manufactured by Kongo Chemical Co., Ltd.) and 800 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.), vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.) 2400 g of 10% aqueous ethanol solution was added and kneaded. This kneaded product was extruded and granulated with Twin Dome Gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.6 mm screen, and adjusted with 30 mesh and 42 mesh sieves in the same manner as in Example 28. Spherical granules containing 20% anhydrous caffeine of 30-42 mesh (500-355 μm) were produced.
Next, 500 g of this spherical granule was sprayed with 5000 g of the coating liquid shown in Table 43 using a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC), and the coating liquid (solid content) was 100% of the granules. A coated formulation was produced.
無水カフェイン(金剛化学(株)製))200gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)800gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2400gを加えて練合した。この練合物を、0.6mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、実施例28と同様にして30メッシュと42メッシュの篩で整粒し30~42メッシュ(500~355μm)の無水カフェインを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を5000g噴霧し、顆粒に対してコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 44
200 g of anhydrous caffeine (manufactured by Kongo Chemical Co., Ltd.) and 800 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.), vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.) 2400 g of 10% aqueous ethanol solution was added and kneaded. This kneaded product was extruded and granulated with Twin Dome Gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.6 mm screen, and adjusted with 30 mesh and 42 mesh sieves in the same manner as in Example 28. Spherical granules containing 20% anhydrous caffeine of 30-42 mesh (500-355 μm) were produced.
Next, 500 g of this spherical granule was sprayed with 5000 g of the coating liquid shown in Table 43 using a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC), and the coating liquid (solid content) was 100% of the granules. A coated formulation was produced.
実施例45
実施例44と同様にして30~42メッシュ(500~355μm)の無水カフェインを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を7500g噴霧し、顆粒に対してコーティング液(固形分)を150%コーティングした製剤を製造した。 Example 45
In the same manner as in Example 44, spherical granules containing 20% of anhydrous caffeine of 30 to 42 mesh (500 to 355 μm) were produced.
Next, 500 g of this spherical granule was sprayed with 7500 g of the coating liquid shown in Table 43 using a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid (solid content) was 150% of the granules. A coated formulation was produced.
実施例44と同様にして30~42メッシュ(500~355μm)の無水カフェインを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を7500g噴霧し、顆粒に対してコーティング液(固形分)を150%コーティングした製剤を製造した。 Example 45
In the same manner as in Example 44, spherical granules containing 20% of anhydrous caffeine of 30 to 42 mesh (500 to 355 μm) were produced.
Next, 500 g of this spherical granule was sprayed with 7500 g of the coating liquid shown in Table 43 using a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid (solid content) was 150% of the granules. A coated formulation was produced.
実施例46
実施例44と同様にして30~42メッシュ(500~355μm)の無水カフェインを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を10000g噴霧し、顆粒に対してコーティング液(固形分)を200%コーティングした製剤を製造した。 Example 46
In the same manner as in Example 44, spherical granules containing 20% of anhydrous caffeine of 30 to 42 mesh (500 to 355 μm) were produced.
Next, 500 g of this spherical granule was sprayed with 10,000 g of the coating liquid shown in Table 43 using a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and the coating liquid (solid content) was 200% of the granules. A coated formulation was produced.
実施例44と同様にして30~42メッシュ(500~355μm)の無水カフェインを20%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表43に示すコーティング液を10000g噴霧し、顆粒に対してコーティング液(固形分)を200%コーティングした製剤を製造した。 Example 46
In the same manner as in Example 44, spherical granules containing 20% of anhydrous caffeine of 30 to 42 mesh (500 to 355 μm) were produced.
Next, 500 g of this spherical granule was sprayed with 10,000 g of the coating liquid shown in Table 43 using a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and the coating liquid (solid content) was 200% of the granules. A coated formulation was produced.
試験例15
実施例44~46で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、水、pH6.8、波長:271nm)を実施した。図45~47に溶出曲線を示した。また、表61に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 15
The preparations produced in Examples 44 to 46 were subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, wavelength: 271 nm) in the same manner as in Test Example 1. 45 to 47 show elution curves. Table 61 shows the lag time and T 80% calculated from the elution curve.
実施例44~46で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、水、pH6.8、波長:271nm)を実施した。図45~47に溶出曲線を示した。また、表61に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 15
The preparations produced in Examples 44 to 46 were subjected to a dissolution test (test solution: pH 1.2, water, pH 6.8, wavelength: 271 nm) in the same manner as in Test Example 1. 45 to 47 show elution curves. Table 61 shows the lag time and T 80% calculated from the elution curve.
一夜絶食させたビーグル犬(雄)9頭を3群に分けて、実施例44~46で製造した製剤を無水カフェイン50mgになる量をそれぞれ投与した。投与後、1、2、3、4、6、8、10及び24時間経過時に血液を採取した。また、一夜絶食させたビーグル犬(雄)3頭に無水カフェイン原薬50mgを投与し、0.25、0.5、1、1.5、2、4、8及び12時間経過時に血液を採取した。無水カフェインの血漿中濃度を高速液体クロマトグラフィーにより測定した。表62には、薬物速度論的パラメーターを示した。図48~50には、血漿中薬物濃度推移を示した。なお、図49中、実施例45の製剤を投与したビーグル犬3頭のうち1頭は、薬剤投与後、薬剤を吐き出したためデータが得られず2頭のデータとなっている。
Nine beagle dogs (male) fasted overnight were divided into 3 groups, and the preparations produced in Examples 44 to 46 were each administered in an amount of 50 mg anhydrous caffeine. After administration, blood was collected at 1, 2, 3, 4, 6, 8, 10, and 24 hours. In addition, 50 mg of anhydrous caffeine drug substance was administered to 3 beagle dogs (male) fasted overnight, and blood was collected after 0.25, 0.5, 1, 1.5, 2, 4, 8 and 12 hours. Collected. The plasma concentration of anhydrous caffeine was measured by high performance liquid chromatography. Table 62 shows the pharmacokinetic parameters. 48 to 50 show changes in drug concentration in plasma. In FIG. 49, one of the three beagle dogs to which the preparation of Example 45 was administered had data obtained because the drug was discharged after the drug administration, and data was not obtained.
溶出試験からのin vitroのラグタイムと血漿中濃度のin vivoのラグタイムとの間に良い相関が認められ、時限放出製剤が得られることが確認された。
A good correlation was observed between the in vitro lag time from the dissolution test and the in vivo lag time of the plasma concentration, and it was confirmed that a time-release preparation was obtained.
実施例47
塩酸ジフェンヒドラミン(金剛化学(株)製)500gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)500gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液1800gを加えて練合した。この練合物を、0.8mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、30(500μm)メッシュと40(420μm)メッシュの篩で整粒し30~40メッシュ(500~420μm)の塩酸ジフェンヒドラミンを50%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表63に示すコーティング液、2500g、3000g、3500g、4000g、4500g、5000g、5500gを、実施例1と同様にして噴霧しコーティング液(固形分)を50%、60%、70%、80%、90%、100%、110%コーティングした製剤を製造した。 Example 47
500 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 500 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 1800 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with Twin Dome Gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and spherical granules were formed with Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 30 (500 μm) mesh and 40 (420 μm) mesh, and 30-40 mesh (500-420 μm) hydrochloric acid. Spherical granules containing 50% diphenhydramine were produced.
Next, 500 g of this spherical granule was subjected to a fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and the coating liquid shown in Table 63, 2500 g, 3000 g, 3500 g, 4000 g, 4500 g, 5000 g, 5500 g, In the same manner, preparations were prepared by spraying and coating the coating liquid (solid content) by 50%, 60%, 70%, 80%, 90%, 100%, 110%.
塩酸ジフェンヒドラミン(金剛化学(株)製)500gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)500gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液1800gを加えて練合した。この練合物を、0.8mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、30(500μm)メッシュと40(420μm)メッシュの篩で整粒し30~40メッシュ(500~420μm)の塩酸ジフェンヒドラミンを50%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表63に示すコーティング液、2500g、3000g、3500g、4000g、4500g、5000g、5500gを、実施例1と同様にして噴霧しコーティング液(固形分)を50%、60%、70%、80%、90%、100%、110%コーティングした製剤を製造した。 Example 47
500 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 500 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 1800 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with Twin Dome Gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and spherical granules were formed with Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 30 (500 μm) mesh and 40 (420 μm) mesh, and 30-40 mesh (500-420 μm) hydrochloric acid. Spherical granules containing 50% diphenhydramine were produced.
Next, 500 g of this spherical granule was subjected to a fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and the coating liquid shown in Table 63, 2500 g, 3000 g, 3500 g, 4000 g, 4500 g, 5000 g, 5500 g, In the same manner, preparations were prepared by spraying and coating the coating liquid (solid content) by 50%, 60%, 70%, 80%, 90%, 100%, 110%.
実施例48
実施例47で製造した、50%塩酸ジフェンヒドラミン含有顆粒(30~40メッシュ)500gに、表64に示すコーティング液2000g、2500g、3000g、3500g、4000g、4500g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を40%、50%、60%、70%、80%、90%、100%コーティングした製剤を製造した。 Example 48
The coating liquid 2000 g, 2500 g, 3000 g, 3500 g, 4000 g, 4500 g, 5000 g shown in Table 64 was added to 500 g of 50% diphenhydramine-containing granules (30-40 mesh) produced in Example 47 in the same manner as in Example 1. The preparations were sprayed and coated with 40%, 50%, 60%, 70%, 80%, 90%, 100% coating liquid (solid content).
実施例47で製造した、50%塩酸ジフェンヒドラミン含有顆粒(30~40メッシュ)500gに、表64に示すコーティング液2000g、2500g、3000g、3500g、4000g、4500g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を40%、50%、60%、70%、80%、90%、100%コーティングした製剤を製造した。 Example 48
The coating liquid 2000 g, 2500 g, 3000 g, 3500 g, 4000 g, 4500 g, 5000 g shown in Table 64 was added to 500 g of 50% diphenhydramine-containing granules (30-40 mesh) produced in Example 47 in the same manner as in Example 1. The preparations were sprayed and coated with 40%, 50%, 60%, 70%, 80%, 90%, 100% coating liquid (solid content).
実施例49
実施例47で製造した50%塩酸ジフェンヒドラミン含有顆粒(30~40メッシュ)500gに、表65に示すコーティング液2000g、3000g、3500g、4000g、4500g、5000g、5500gを、実施例1と同様にして噴霧しコーティング液(固形分)を40%、60%、70%、80%、90%、100%、110%コーティングした製剤を製造した。 Example 49
In the same manner as in Example 1, spray the coating liquid 2000 g, 3000 g, 3500 g, 4000 g, 4500 g, 5000 g, and 5500 g shown in Table 65 onto 500 g of the 50% diphenhydramine hydrochloride-containing granules (30 to 40 mesh) produced in Example 47. Then, the preparations coated with 40%, 60%, 70%, 80%, 90%, 100% and 110% of the coating liquid (solid content) were produced.
実施例47で製造した50%塩酸ジフェンヒドラミン含有顆粒(30~40メッシュ)500gに、表65に示すコーティング液2000g、3000g、3500g、4000g、4500g、5000g、5500gを、実施例1と同様にして噴霧しコーティング液(固形分)を40%、60%、70%、80%、90%、100%、110%コーティングした製剤を製造した。 Example 49
In the same manner as in Example 1, spray the coating liquid 2000 g, 3000 g, 3500 g, 4000 g, 4500 g, 5000 g, and 5500 g shown in Table 65 onto 500 g of the 50% diphenhydramine hydrochloride-containing granules (30 to 40 mesh) produced in Example 47. Then, the preparations coated with 40%, 60%, 70%, 80%, 90%, 100% and 110% of the coating liquid (solid content) were produced.
実施例50
実施例47で製造した50%塩酸ジフェンヒドラミン含有顆粒(30~40メッシュ)500gに、表66に示すコーティング液2500g、3000g、3500g、4000g、4500g、5000g、5500gを、実施例1と同様にして噴霧しコーティング液(固形分)を50%、60%、70%、80%、90%、100%、110%コーティングした製剤を製造した。 Example 50
In the same manner as in Example 1, spraying 2500 g, 3000 g, 3500 g, 4000 g, 4500 g, 5000 g, and 5500 g of the coating liquid shown in Table 66 onto 500 g of 50% diphenhydramine-containing granules (30 to 40 mesh) produced in Example 47. Then, preparations coated with 50%, 60%, 70%, 80%, 90%, 100%, and 110% of the coating liquid (solid content) were produced.
実施例47で製造した50%塩酸ジフェンヒドラミン含有顆粒(30~40メッシュ)500gに、表66に示すコーティング液2500g、3000g、3500g、4000g、4500g、5000g、5500gを、実施例1と同様にして噴霧しコーティング液(固形分)を50%、60%、70%、80%、90%、100%、110%コーティングした製剤を製造した。 Example 50
In the same manner as in Example 1, spraying 2500 g, 3000 g, 3500 g, 4000 g, 4500 g, 5000 g, and 5500 g of the coating liquid shown in Table 66 onto 500 g of 50% diphenhydramine-containing granules (30 to 40 mesh) produced in Example 47. Then, preparations coated with 50%, 60%, 70%, 80%, 90%, 100%, and 110% of the coating liquid (solid content) were produced.
実施例51
実施例47で製造した50%塩酸ジフェンヒドラミン含有顆粒(30~40メッシュ)500gに、表67に示すコーティング液2500g、3000g、4000g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を50%、60%、80%、100%コーティングした製剤を製造した。 Example 51
To 500 g of 50% diphenhydramine-containing granules (30 to 40 mesh) prepared in Example 47, the coating liquids 2500 g, 3000 g, 4000 g, and 5000 g shown in Table 67 were sprayed in the same manner as in Example 1 to form a coating liquid (solid content) ) Were coated with 50%, 60%, 80% and 100%.
実施例47で製造した50%塩酸ジフェンヒドラミン含有顆粒(30~40メッシュ)500gに、表67に示すコーティング液2500g、3000g、4000g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を50%、60%、80%、100%コーティングした製剤を製造した。 Example 51
To 500 g of 50% diphenhydramine-containing granules (30 to 40 mesh) prepared in Example 47, the coating liquids 2500 g, 3000 g, 4000 g, and 5000 g shown in Table 67 were sprayed in the same manner as in Example 1 to form a coating liquid (solid content) ) Were coated with 50%, 60%, 80% and 100%.
実施例52
実施例47で製造した50%塩酸ジフェンヒドラミン含有顆粒(30~40メッシュ)500gに、表68に示すコーティング液3000g、4000g、5000gを、実施例1と同様にして噴霧しコーティング剤を60%、80%、100%コーティングした製剤を製造した。 Example 52
To 500 g of 50% diphenhydramine-containing granules (30 to 40 mesh) produced in Example 47, 3000 g, 4000 g and 5000 g of the coating liquid shown in Table 68 were sprayed in the same manner as in Example 1 to spray 60%, 80% of the coating agent. %, 100% coated formulations were produced.
実施例47で製造した50%塩酸ジフェンヒドラミン含有顆粒(30~40メッシュ)500gに、表68に示すコーティング液3000g、4000g、5000gを、実施例1と同様にして噴霧しコーティング剤を60%、80%、100%コーティングした製剤を製造した。 Example 52
To 500 g of 50% diphenhydramine-containing granules (30 to 40 mesh) produced in Example 47, 3000 g, 4000 g and 5000 g of the coating liquid shown in Table 68 were sprayed in the same manner as in Example 1 to spray 60%, 80% of the coating agent. %, 100% coated formulations were produced.
試験例16
実施例47~52で製造した製剤を試験例1と同様にして溶出試験(試験液:精製水、UV波長:220nm)を実施した。図51~56に溶出曲線を示した。また、表69~74に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 16
The preparations produced in Examples 47 to 52 were subjected to a dissolution test (test solution: purified water, UV wavelength: 220 nm) in the same manner as in Test Example 1. 51 to 56 show elution curves. Tables 69 to 74 show the lag time and T 80% calculated from the elution curve.
実施例47~52で製造した製剤を試験例1と同様にして溶出試験(試験液:精製水、UV波長:220nm)を実施した。図51~56に溶出曲線を示した。また、表69~74に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 16
The preparations produced in Examples 47 to 52 were subjected to a dissolution test (test solution: purified water, UV wavelength: 220 nm) in the same manner as in Test Example 1. 51 to 56 show elution curves. Tables 69 to 74 show the lag time and T 80% calculated from the elution curve.
オイドラギットRLPOが無添加の実施例51、及びオイドラギットRLPOをオイドラギットRSPO 1に対して0.11質量部添加した実施例52においては、ラグタイム及びラグタイム後に薬物を放出し得る時限放出製剤が得られたが、ラグタイム後の放出性が遅延する傾向にあった。これに対し、水透過性が低いオイドラギットRSPOに、水透過性の高いオイドラギットRLPOを0.66質量部(実施例47)、1.0質量部(実施例48)、1.5質量部(実施例49)、2.33質量部(実施例50)を添加することにより、ラグタイムが5分、10分、15分以内で、かつラグタイム後それぞれ5分、10分、15分以内に製剤中に含まれる塩酸ジフェンヒドラミンの80%以上が放出する製剤が得られることが確認された。
In Example 51 in which Eudragit RLPO was not added, and in Example 52 in which 0.11 part by mass of Eudragit RLPO was added to Eudragit RSPO 1, a timed release formulation capable of releasing the drug after the lag time and lag time was obtained. However, the release after lag time tended to be delayed. In contrast, Eudragit RSPO with low water permeability, Eudragit RLPO with high water permeability 0.66 parts by mass (Example 47), 1.0 part by mass (Example 48), 1.5 parts by mass (implementation) Example 49) Preparation by adding 2.33 parts by weight (Example 50) within 5 minutes, 10 minutes and 15 minutes after lag time and within 5 minutes, 10 minutes and 15 minutes respectively after lag time It was confirmed that a preparation capable of releasing 80% or more of diphenhydramine hydrochloride contained therein was obtained.
実施例53
塩酸ジフェンヒドラミン(金剛化学(株)製)300gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)700gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2100gを加えて練合した。この練合物を、0.5mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、30(500μm)メッシュと40(420μm)メッシュの篩で整粒し30~40メッシュ(500~420μm)の塩酸ジフェンヒドラミンを30%含有する球形顆粒を製造した。
次に、この球形顆粒(30~40メッシュ)500gに、表75に示すコーティング液2500g、3000g、3500g、4000g、4500g、5000g、5500g、6000gを、実施例1と同様にして噴霧しコーティング液(固形分)を、50%、60%、70%、80%、90%、100%、110%、120%コーティングした製剤を製造した。 Example 53
300 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 700 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 2100 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.5 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 30 (500 μm) mesh and 40 (420 μm) mesh, and 30-40 mesh (500-420 μm) hydrochloric acid. Spherical granules containing 30% diphenhydramine were produced.
Next, 2500 g, 3000 g, 3500 g, 4000 g, 4500 g, 5000 g, 5500 g, and 6000 g of the coating liquid shown in Table 75 were sprayed on 500 g of this spherical granule (30 to 40 mesh) in the same manner as in Example 1, and the coating liquid ( The solid content was coated with 50%, 60%, 70%, 80%, 90%, 100%, 110%, 120%.
塩酸ジフェンヒドラミン(金剛化学(株)製)300gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)700gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2100gを加えて練合した。この練合物を、0.5mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、30(500μm)メッシュと40(420μm)メッシュの篩で整粒し30~40メッシュ(500~420μm)の塩酸ジフェンヒドラミンを30%含有する球形顆粒を製造した。
次に、この球形顆粒(30~40メッシュ)500gに、表75に示すコーティング液2500g、3000g、3500g、4000g、4500g、5000g、5500g、6000gを、実施例1と同様にして噴霧しコーティング液(固形分)を、50%、60%、70%、80%、90%、100%、110%、120%コーティングした製剤を製造した。 Example 53
300 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 700 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 2100 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.5 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 30 (500 μm) mesh and 40 (420 μm) mesh, and 30-40 mesh (500-420 μm) hydrochloric acid. Spherical granules containing 30% diphenhydramine were produced.
Next, 2500 g, 3000 g, 3500 g, 4000 g, 4500 g, 5000 g, 5500 g, and 6000 g of the coating liquid shown in Table 75 were sprayed on 500 g of this spherical granule (30 to 40 mesh) in the same manner as in Example 1, and the coating liquid ( The solid content was coated with 50%, 60%, 70%, 80%, 90%, 100%, 110%, 120%.
実施例54
実施例53で製造した30%塩酸ジフェンヒドラミン含有顆粒(30~40メッシュ)500gに、表76に示すコーティング液2500g、3000g、3500g、4000g、4500g、5000g、5500g、6000gを、実施例1と同様にして噴霧し、コーティング液(固形分)を、50%、60%、70%、80%、90%、100%、110%、120%コーティングした製剤を製造した。 Example 54
In the same manner as in Example 1, the coating solutions 2500 g, 3000 g, 3500 g, 4000 g, 4500 g, 5000 g, 5500 g, and 6000 g shown in Table 76 were added to 500 g of 30% diphenhydramine-containing granules (30 to 40 mesh) produced in Example 53. Sprayed to produce a preparation coated with 50%, 60%, 70%, 80%, 90%, 100%, 110%, 120% coating liquid (solid content).
実施例53で製造した30%塩酸ジフェンヒドラミン含有顆粒(30~40メッシュ)500gに、表76に示すコーティング液2500g、3000g、3500g、4000g、4500g、5000g、5500g、6000gを、実施例1と同様にして噴霧し、コーティング液(固形分)を、50%、60%、70%、80%、90%、100%、110%、120%コーティングした製剤を製造した。 Example 54
In the same manner as in Example 1, the coating solutions 2500 g, 3000 g, 3500 g, 4000 g, 4500 g, 5000 g, 5500 g, and 6000 g shown in Table 76 were added to 500 g of 30% diphenhydramine-containing granules (30 to 40 mesh) produced in Example 53. Sprayed to produce a preparation coated with 50%, 60%, 70%, 80%, 90%, 100%, 110%, 120% coating liquid (solid content).
実施例55
実施例53で製造した30%塩酸ジフェンヒドラミン含有顆粒(30~40メッシュ)500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表64に示すコーティング液1000g、1500g、1750g、2000g、2250g、2750gを、実施例1と同様にして噴霧しコーティング液(固形分)を20%、30%、35%、40%、45%、55%コーティングした製剤を製造した。 Example 55
500 g of 30% diphenhydramine-containing granules (30 to 40 mesh) produced in Example 53 were mixed with a tumbling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquids 1000 g, 1500 g and 1750 g shown in Table 64 were used. 2000 g, 2250 g, and 2750 g were sprayed in the same manner as in Example 1 to prepare preparations in which the coating liquid (solid content) was coated by 20%, 30%, 35%, 40%, 45%, and 55%.
実施例53で製造した30%塩酸ジフェンヒドラミン含有顆粒(30~40メッシュ)500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表64に示すコーティング液1000g、1500g、1750g、2000g、2250g、2750gを、実施例1と同様にして噴霧しコーティング液(固形分)を20%、30%、35%、40%、45%、55%コーティングした製剤を製造した。 Example 55
500 g of 30% diphenhydramine-containing granules (30 to 40 mesh) produced in Example 53 were mixed with a tumbling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquids 1000 g, 1500 g and 1750 g shown in Table 64 were used. 2000 g, 2250 g, and 2750 g were sprayed in the same manner as in Example 1 to prepare preparations in which the coating liquid (solid content) was coated by 20%, 30%, 35%, 40%, 45%, and 55%.
試験例17
実施例53~55で製造した製剤を試験例1と同様にして溶出試験(試験液:精製水、UV波長:220nm)を実施した。図57~59に溶出曲線を示した。また、表77~79に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 17
The preparations produced in Examples 53 to 55 were subjected to a dissolution test (test solution: purified water, UV wavelength: 220 nm) in the same manner as in Test Example 1. Figures 57 to 59 show elution curves. Tables 77 to 79 show the lag time and T 80% calculated from the elution curve.
実施例53~55で製造した製剤を試験例1と同様にして溶出試験(試験液:精製水、UV波長:220nm)を実施した。図57~59に溶出曲線を示した。また、表77~79に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 17
The preparations produced in Examples 53 to 55 were subjected to a dissolution test (test solution: purified water, UV wavelength: 220 nm) in the same manner as in Test Example 1. Figures 57 to 59 show elution curves. Tables 77 to 79 show the lag time and T 80% calculated from the elution curve.
実施例53(タルク、平均粒子径:30~40μm、キハラ化成(株)製)、実施例54(タルクSK-BB、平均粒子径:4.6μm、(株)勝山工業所製)、及び実施例55(タルクSK-C、平均粒子径:3.45μm、(株)勝山工業所製)においても時限放出製剤が得られ、タルクの粒子径が大きいほどラグタイムが長くなる傾向があることが確認された。
Example 53 (talc, average particle size: 30 to 40 μm, manufactured by Kihara Kasei Co., Ltd.), Example 54 (talc SK-BB, average particle size: 4.6 μm, manufactured by Katsuyama Kogyo Co., Ltd.), and implementation In Example 55 (talc SK-C, average particle size: 3.45 μm, manufactured by Katsuyama Kogyo Co., Ltd.), a time-release preparation is obtained, and the lag time tends to increase as the particle size of talc increases. confirmed.
実施例56
塩酸ジフェンヒドラミン(金剛化学(株)製)700gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)300gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液900gを加えて練合した。この練合物を、0.3mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、60(250μm)メッシュと80(180μm)メッシュの篩で整粒し60~80メッシュ(250~180μm)の塩酸ジフェンヒドラミンを70%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表80に示すコーティング液を、3250g、4250gを、実施例1と同様にして噴霧しコーティング液(固形分)を65%、85%コーティングした製剤を製造した。 Example 56
700 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 900 g of a 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) fitted with a 0.3 mm screen, and spherical granules were formed with a Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 60 (250 μm) mesh and 80 (180 μm) mesh, and 60-80 mesh (250-180 μm) hydrochloric acid. Spherical granules containing 70% diphenhydramine were produced.
Next, 500 g of this spherical granule was sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 3250 g and 4250 g of the coating liquid shown in Table 80 in the same manner as in Example 1. A preparation coated with 65% and 85% (solid content) was produced.
塩酸ジフェンヒドラミン(金剛化学(株)製)700gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)300gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液900gを加えて練合した。この練合物を、0.3mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、60(250μm)メッシュと80(180μm)メッシュの篩で整粒し60~80メッシュ(250~180μm)の塩酸ジフェンヒドラミンを70%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表80に示すコーティング液を、3250g、4250gを、実施例1と同様にして噴霧しコーティング液(固形分)を65%、85%コーティングした製剤を製造した。 Example 56
700 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 900 g of a 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) fitted with a 0.3 mm screen, and spherical granules were formed with a Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 60 (250 μm) mesh and 80 (180 μm) mesh, and 60-80 mesh (250-180 μm) hydrochloric acid. Spherical granules containing 70% diphenhydramine were produced.
Next, 500 g of this spherical granule was sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 3250 g and 4250 g of the coating liquid shown in Table 80 in the same manner as in Example 1. A preparation coated with 65% and 85% (solid content) was produced.
実施例57
塩酸ジフェンヒドラミン(金剛化学(株)製)700gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)300gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液900gを加えて練合した。
この練合物を、0.4mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、42(355μm)と60(250μm)メッシュの篩で整粒し42~60メッシュ(355~250μm)の塩酸ジフェンヒドラミンを70%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表80に示すコーティング液を、2500g、3250gを、実施例1と同様にして噴霧しコーティング液(固形分)を50%、65%コーティングした製剤を製造した。 Example 57
700 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 900 g of a 10% ethanol aqueous solution was added and kneaded.
This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.4 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 42 (355 μm) and 60 (250 μm) mesh, and 42-60 mesh (355-250 μm) of diphenhydramine hydrochloride. A spherical granule containing 70% was produced.
Next, 500 g of this spherical granule was sprayed in a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 2500 g and 3250 g of the coating liquid shown in Table 80 in the same manner as in Example 1. A preparation coated with 50% and 65% (solid content) was produced.
塩酸ジフェンヒドラミン(金剛化学(株)製)700gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)300gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液900gを加えて練合した。
この練合物を、0.4mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、42(355μm)と60(250μm)メッシュの篩で整粒し42~60メッシュ(355~250μm)の塩酸ジフェンヒドラミンを70%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表80に示すコーティング液を、2500g、3250gを、実施例1と同様にして噴霧しコーティング液(固形分)を50%、65%コーティングした製剤を製造した。 Example 57
700 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 900 g of a 10% ethanol aqueous solution was added and kneaded.
This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.4 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 42 (355 μm) and 60 (250 μm) mesh, and 42-60 mesh (355-250 μm) of diphenhydramine hydrochloride. A spherical granule containing 70% was produced.
Next, 500 g of this spherical granule was sprayed in a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 2500 g and 3250 g of the coating liquid shown in Table 80 in the same manner as in Example 1. A preparation coated with 50% and 65% (solid content) was produced.
実施例58
塩酸ジフェンヒドラミン(金剛化学(株)製)700gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)300gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液900gを加えて練合した。この練合物を、0.5mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、30(500μm)メッシュと42(355μm)メッシュの篩で整粒し30~42メッシュ(500~355μm)の塩酸ジフェンヒドラミンを70%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表80に示すコーティング液を、1750g、2250g、2750gを、実施例1と同様にして噴霧しコーティング液(固形分)を35%、45%、55%コーティングした製剤を製造した。 Example 58
700 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 900 g of a 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.5 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 type (Okawara Seisakusho Co., Ltd.), sized with a sieve of 30 (500 μm) mesh and 42 (355 μm) mesh, and 30 to 42 mesh (500 to 355 μm) hydrochloric acid. Spherical granules containing 70% diphenhydramine were produced.
Next, 500 g of this spherical granule was sprayed in the same manner as in Example 1 using the rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) in the same manner as in Example 1 with 1750 g, 2250 g, and 2750 g of the coating solution shown in Table 80. Preparations with 35%, 45% and 55% coating solution (solid content) were produced.
塩酸ジフェンヒドラミン(金剛化学(株)製)700gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)300gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液900gを加えて練合した。この練合物を、0.5mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、30(500μm)メッシュと42(355μm)メッシュの篩で整粒し30~42メッシュ(500~355μm)の塩酸ジフェンヒドラミンを70%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表80に示すコーティング液を、1750g、2250g、2750gを、実施例1と同様にして噴霧しコーティング液(固形分)を35%、45%、55%コーティングした製剤を製造した。 Example 58
700 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 900 g of a 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.5 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 type (Okawara Seisakusho Co., Ltd.), sized with a sieve of 30 (500 μm) mesh and 42 (355 μm) mesh, and 30 to 42 mesh (500 to 355 μm) hydrochloric acid. Spherical granules containing 70% diphenhydramine were produced.
Next, 500 g of this spherical granule was sprayed in the same manner as in Example 1 using the rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) in the same manner as in Example 1 with 1750 g, 2250 g, and 2750 g of the coating solution shown in Table 80. Preparations with 35%, 45% and 55% coating solution (solid content) were produced.
実施例59
塩酸ジフェンヒドラミン(金剛化学(株)製)850gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)150gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液900gを加えて練合した。この練合物を、0.7mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、24(710μm)メッシュと30(500μm)メッシュの篩で整粒し24~30メッシュ(710~500μm)の塩酸ジフェンヒドラミンを85%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表80に示すコーティング液を、1000g、1250g、1500gを、実施例1と同様にして噴霧しコーティング液(固形分)を20%、25%、30%コーティングした製剤を製造した。 Example 59
850 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 150 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 900 g of a 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.7 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (manufactured by Okawara Seisakusho Co., Ltd.), sized with a sieve of 24 (710 μm) mesh and 30 (500 μm) mesh, and 24-30 mesh (710-500 μm) hydrochloric acid. Spherical granules containing 85% diphenhydramine were produced.
Next, 500 g of this spherical granule was sprayed with the rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) in the same manner as in Example 1 with 1000 g, 1250 g and 1500 g of the coating solution shown in Table 80. Preparations with coating solutions (solid content) of 20%, 25% and 30% were produced.
塩酸ジフェンヒドラミン(金剛化学(株)製)850gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)150gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液900gを加えて練合した。この練合物を、0.7mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、24(710μm)メッシュと30(500μm)メッシュの篩で整粒し24~30メッシュ(710~500μm)の塩酸ジフェンヒドラミンを85%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表80に示すコーティング液を、1000g、1250g、1500gを、実施例1と同様にして噴霧しコーティング液(固形分)を20%、25%、30%コーティングした製剤を製造した。 Example 59
850 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 150 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 900 g of a 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.7 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (manufactured by Okawara Seisakusho Co., Ltd.), sized with a sieve of 24 (710 μm) mesh and 30 (500 μm) mesh, and 24-30 mesh (710-500 μm) hydrochloric acid. Spherical granules containing 85% diphenhydramine were produced.
Next, 500 g of this spherical granule was sprayed with the rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) in the same manner as in Example 1 with 1000 g, 1250 g and 1500 g of the coating solution shown in Table 80. Preparations with coating solutions (solid content) of 20%, 25% and 30% were produced.
実施例60
塩酸ジフェンヒドラミン(金剛化学(株)製)850gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)150gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液4500gを加えて練合した。この練合物を、0.8mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、20(840μm)メッシュと24(710μm)メッシュの篩で整粒し20~24メッシュ(840~710μm)の塩酸ジフェンヒドラミンを85%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表80に示すコーティング液を、500g、750g、1000g、1250gを、実施例1と同様にして噴霧しコーティング液(固形分)を10%、15%、20%、25%コーティングした製剤を製造した。 Example 60
850 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 150 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 4500 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with Twin Dome Gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and spherical granules were formed with Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 20 (840 μm) mesh and 24 (710 μm) mesh, and 20-24 mesh (840-710 μm) hydrochloric acid. Spherical granules containing 85% diphenhydramine were produced.
Next, 500 g, 750 g, 1000 g, and 1250 g of the coating liquid shown in Table 80 were used in the same manner as in Example 1 by using 500 g of the spherical granules with a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.). The preparations which were sprayed and coated with 10%, 15%, 20% and 25% coating solution (solid content) were produced.
塩酸ジフェンヒドラミン(金剛化学(株)製)850gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)150gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液4500gを加えて練合した。この練合物を、0.8mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、20(840μm)メッシュと24(710μm)メッシュの篩で整粒し20~24メッシュ(840~710μm)の塩酸ジフェンヒドラミンを85%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表80に示すコーティング液を、500g、750g、1000g、1250gを、実施例1と同様にして噴霧しコーティング液(固形分)を10%、15%、20%、25%コーティングした製剤を製造した。 Example 60
850 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 150 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 4500 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with Twin Dome Gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and spherical granules were formed with Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 20 (840 μm) mesh and 24 (710 μm) mesh, and 20-24 mesh (840-710 μm) hydrochloric acid. Spherical granules containing 85% diphenhydramine were produced.
Next, 500 g, 750 g, 1000 g, and 1250 g of the coating liquid shown in Table 80 were used in the same manner as in Example 1 by using 500 g of the spherical granules with a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.). The preparations which were sprayed and coated with 10%, 15%, 20% and 25% coating solution (solid content) were produced.
試験例18
実施例56~60で製造した製剤を試験例1と同様にして溶出試験(試験液:精製水、UV波長:220nm)を実施した。図60~64に溶出曲線を示した。また、表81~85に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 18
The preparations produced in Examples 56 to 60 were subjected to a dissolution test (test solution: purified water, UV wavelength: 220 nm) in the same manner as in Test Example 1. 60 to 64 show elution curves. Tables 81 to 85 show the lag time and T 80% calculated from the elution curve.
実施例56~60で製造した製剤を試験例1と同様にして溶出試験(試験液:精製水、UV波長:220nm)を実施した。図60~64に溶出曲線を示した。また、表81~85に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 18
The preparations produced in Examples 56 to 60 were subjected to a dissolution test (test solution: purified water, UV wavelength: 220 nm) in the same manner as in Test Example 1. 60 to 64 show elution curves. Tables 81 to 85 show the lag time and T 80% calculated from the elution curve.
図60~64に示すように、塩酸ジフェンヒドラミンを70%含有する粒子径が、60~80メッシュ(250~180μm)の中心核(実施例56)、42~60メッシュ(355~250μm)の中心核(実施例57)、30~40メッシュ(500~355μm)の中心核(実施例58)を有する製剤、塩酸ジフェンヒドラミンを85%含有する粒子径が、24~30メッシュ(710~500μm)の中心核(実施例59)、20~24メッシュ(840~710μm)の中心核(実施例60)を有する製剤のいずれもが、ラグタイムが5分、10分、15分以内で、ラグタイム後それぞれ5分、10分、15分以内に製剤中に含まれる塩酸ジフェンヒドラミンの80%以上を放出することが確認された。
As shown in FIGS. 60 to 64, the particle diameter containing 70% diphenhydramine hydrochloride is 60 to 80 mesh (250 to 180 μm) central core (Example 56), 42 to 60 mesh (355 to 250 μm) central core. (Example 57), a preparation having a central core (Example 58) of 30 to 40 mesh (500 to 355 μm), a central core having a particle size containing 85% diphenhydramine hydrochloride and having a particle size of 24 to 30 mesh (710 to 500 μm) (Example 59), all of the preparations having a central core (Example 60) of 20 to 24 mesh (840 to 710 μm) had a lag time of 5 minutes, 10 minutes or less, 15 minutes, and 5 lag time after each. It was confirmed that 80% or more of diphenhydramine hydrochloride contained in the preparation was released within minutes, 10 minutes, and 15 minutes.
実施例61
実施例47で製造した50%塩酸ジフェンヒドラミン含有顆粒(30~40メッシュ)500gに、表86に示すコーティング液1500g、2000g、2750gを、実施例1と同様にして噴霧しコーティング液(固形分)を30%、40%、55%コーティングした製剤を製造した。 Example 61
To 500 g of 50% diphenhydramine-containing granules (30-40 mesh) produced in Example 47, 1500 g, 2000 g, and 2750 g of the coating liquid shown in Table 86 were sprayed in the same manner as in Example 1 to spray the coating liquid (solid content). 30%, 40% and 55% coated formulations were prepared.
実施例47で製造した50%塩酸ジフェンヒドラミン含有顆粒(30~40メッシュ)500gに、表86に示すコーティング液1500g、2000g、2750gを、実施例1と同様にして噴霧しコーティング液(固形分)を30%、40%、55%コーティングした製剤を製造した。 Example 61
To 500 g of 50% diphenhydramine-containing granules (30-40 mesh) produced in Example 47, 1500 g, 2000 g, and 2750 g of the coating liquid shown in Table 86 were sprayed in the same manner as in Example 1 to spray the coating liquid (solid content). 30%, 40% and 55% coated formulations were prepared.
実施例62
実施例47で製造した50%塩酸ジフェンヒドラミン含有顆粒(30~40メッシュ)500gに、表87に示すコーティング液1750g、2500g、3500gを、実施例1と同様にして噴霧しコーティング液(固形分)を35%、50%、70%コーティングした製剤を製造した。 Example 62
A coating liquid (solid content) was sprayed in the same manner as in Example 1 by spraying 1750 g, 2500 g, and 3500 g of the coating liquid shown in Table 87 onto 500 g of 50% diphenhydramine-containing granules (30 to 40 mesh) prepared in Example 47. 35%, 50% and 70% coated formulations were prepared.
実施例47で製造した50%塩酸ジフェンヒドラミン含有顆粒(30~40メッシュ)500gに、表87に示すコーティング液1750g、2500g、3500gを、実施例1と同様にして噴霧しコーティング液(固形分)を35%、50%、70%コーティングした製剤を製造した。 Example 62
A coating liquid (solid content) was sprayed in the same manner as in Example 1 by spraying 1750 g, 2500 g, and 3500 g of the coating liquid shown in Table 87 onto 500 g of 50% diphenhydramine-containing granules (30 to 40 mesh) prepared in Example 47. 35%, 50% and 70% coated formulations were prepared.
試験例19
実施例61~62で製造した製剤を試験例1と同様にして溶出試験(試験液:精製水、UV波長:220nm)を実施した。図65~66に溶出曲線を示した。また、表88~89に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 19
The preparations produced in Examples 61 to 62 were subjected to a dissolution test (test solution: purified water, UV wavelength: 220 nm) in the same manner as in Test Example 1. 65 to 66 show elution curves. Tables 88 to 89 show the lag time calculated from the elution curve and T 80% .
実施例61~62で製造した製剤を試験例1と同様にして溶出試験(試験液:精製水、UV波長:220nm)を実施した。図65~66に溶出曲線を示した。また、表88~89に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 19
The preparations produced in Examples 61 to 62 were subjected to a dissolution test (test solution: purified water, UV wavelength: 220 nm) in the same manner as in Test Example 1. 65 to 66 show elution curves. Tables 88 to 89 show the lag time calculated from the elution curve and T 80% .
図65~66に示すように、塩酸ジフェンヒドラミンを50%含有する場合(粒子径:840~500μm)、いずれもラグタイムが5分、10分、15分以内で、ラグタイム後それぞれ5分、10分、15分以内に製剤中に含まれる塩酸ジフェンヒドラミンの80%以上を放出する製剤が得られることが確認された。
As shown in FIGS. 65 to 66, when 50% of diphenhydramine hydrochloride is contained (particle size: 840 to 500 μm), the lag times are 5 minutes, 10 minutes, and 15 minutes or less, and 5 minutes after the lag time, It was confirmed that a preparation releasing 80% or more of diphenhydramine hydrochloride contained in the preparation was obtained within 15 minutes.
実施例63
イブプロフェン(BASF社製)100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2800gを加えて練合した。この練合物を、0.6mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、30(500μm)と40(420μm)メッシュの篩で整粒し30~40メッシュ(500~420μm)のイブプロフェンを10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表90に示すコーティング液1000g、1500g、2000g、2500g、3000g、3500g、4000g、4500g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を20%、30%、40%、50%、60%、70%、80%、90%、100%コーティングした製剤を製造した。 Example 63
After mixing 100 g of ibuprofen (manufactured by BASF) and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) with a vertical granulator FM-VG-25 (manufactured by Paulec), 10 A 2% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.6 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with 30 (500 μm) and 40 (420 μm) mesh sieves, and 30-40 mesh (500-420 μm) ibuprofen. Spherical granules containing 10% were produced.
Next, 500 g of this spherical granule was subjected to the coating solutions 1000 g, 1500 g, 2000 g, 2500 g, 3000 g, 3500 g, 4000 g, 4500 g, and 5000 g shown in Table 90 using a fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.). In the same manner as in Example 1, sprayed coating solutions (solid content) were coated with 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%.
イブプロフェン(BASF社製)100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2800gを加えて練合した。この練合物を、0.6mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、30(500μm)と40(420μm)メッシュの篩で整粒し30~40メッシュ(500~420μm)のイブプロフェンを10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを流動層コーティング装置MP-01(パウレック(株)製)で、表90に示すコーティング液1000g、1500g、2000g、2500g、3000g、3500g、4000g、4500g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を20%、30%、40%、50%、60%、70%、80%、90%、100%コーティングした製剤を製造した。 Example 63
After mixing 100 g of ibuprofen (manufactured by BASF) and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) with a vertical granulator FM-VG-25 (manufactured by Paulec), 10 A 2% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.6 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with 30 (500 μm) and 40 (420 μm) mesh sieves, and 30-40 mesh (500-420 μm) ibuprofen. Spherical granules containing 10% were produced.
Next, 500 g of this spherical granule was subjected to the coating solutions 1000 g, 1500 g, 2000 g, 2500 g, 3000 g, 3500 g, 4000 g, 4500 g, and 5000 g shown in Table 90 using a fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.). In the same manner as in Example 1, sprayed coating solutions (solid content) were coated with 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%.
実施例64
実施例63で製造した10%イブプロフェン含有顆粒(30~40メッシュ)500gに、表91に示すコーティング液750g、1000g、1250g、1500g、1750g、2000gを、実施例1と同様にして噴霧しコーティング液(固形分)を15%、20%、25%、30%、35%、40%コーティングした製剤を製造した。 Example 64
The coating liquid of 750 g, 1000 g, 1250 g, 1500 g, 1750 g, and 2000 g shown in Table 91 was sprayed on 500 g of the 10% ibuprofen-containing granules (30 to 40 mesh) produced in Example 63 in the same manner as in Example 1. Preparations with 15%, 20%, 25%, 30%, 35%, 40% coating (solid content) were produced.
実施例63で製造した10%イブプロフェン含有顆粒(30~40メッシュ)500gに、表91に示すコーティング液750g、1000g、1250g、1500g、1750g、2000gを、実施例1と同様にして噴霧しコーティング液(固形分)を15%、20%、25%、30%、35%、40%コーティングした製剤を製造した。 Example 64
The coating liquid of 750 g, 1000 g, 1250 g, 1500 g, 1750 g, and 2000 g shown in Table 91 was sprayed on 500 g of the 10% ibuprofen-containing granules (30 to 40 mesh) produced in Example 63 in the same manner as in Example 1. Preparations with 15%, 20%, 25%, 30%, 35%, 40% coating (solid content) were produced.
実施例65
実施例63で製造した10%イブプロフェン含有顆粒(30~40メッシュ)500gに、表92に示すコーティング液1000g、1250g、1750g、2000g、2250gを、実施例1と同様にして噴霧しコーティング液(固形分)を20%、25%、35%、40%、45%コーティングした製剤を製造した。 Example 65
To 500 g of 10% ibuprofen-containing granules (30 to 40 mesh) produced in Example 63, 1000 g, 1250 g, 1750 g, 2000 g and 2250 g of the coating liquid shown in Table 92 were sprayed in the same manner as in Example 1 to form a coating liquid (solid Min) were coated with 20%, 25%, 35%, 40%, 45%.
実施例63で製造した10%イブプロフェン含有顆粒(30~40メッシュ)500gに、表92に示すコーティング液1000g、1250g、1750g、2000g、2250gを、実施例1と同様にして噴霧しコーティング液(固形分)を20%、25%、35%、40%、45%コーティングした製剤を製造した。 Example 65
To 500 g of 10% ibuprofen-containing granules (30 to 40 mesh) produced in Example 63, 1000 g, 1250 g, 1750 g, 2000 g and 2250 g of the coating liquid shown in Table 92 were sprayed in the same manner as in Example 1 to form a coating liquid (solid Min) were coated with 20%, 25%, 35%, 40%, 45%.
参考例4
実施例63で製造した10%イブプロフェン含有顆粒(30~40メッシュ)500gに、表93に示すコーティング液1750g、2000g、2250gを、実施例1と同様にして噴霧しコーティング液(固形分)を35%、40%、45%コーティングした製剤を製造した。 Reference example 4
To 500 g of 10% ibuprofen-containing granules (30 to 40 mesh) produced in Example 63, 1750 g, 2000 g and 2250 g of the coating liquid shown in Table 93 were sprayed in the same manner as in Example 1 to obtain 35 coating liquid (solid content). %, 40%, 45% coated formulations were produced.
実施例63で製造した10%イブプロフェン含有顆粒(30~40メッシュ)500gに、表93に示すコーティング液1750g、2000g、2250gを、実施例1と同様にして噴霧しコーティング液(固形分)を35%、40%、45%コーティングした製剤を製造した。 Reference example 4
To 500 g of 10% ibuprofen-containing granules (30 to 40 mesh) produced in Example 63, 1750 g, 2000 g and 2250 g of the coating liquid shown in Table 93 were sprayed in the same manner as in Example 1 to obtain 35 coating liquid (solid content). %, 40%, 45% coated formulations were produced.
試験例20
実施例63~65、参考例4で製造した製剤を試験例1と同様にして溶出試験(試験液:pH6.8、UV波長:220nm)を実施した。図67~70に溶出曲線を示した。また、表94~97に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 20
The preparations produced in Examples 63 to 65 and Reference Example 4 were subjected to a dissolution test (test solution: pH 6.8, UV wavelength: 220 nm) in the same manner as in Test Example 1. 67 to 70 show elution curves. Tables 94 to 97 show the lag time and T 80% calculated from the elution curve.
実施例63~65、参考例4で製造した製剤を試験例1と同様にして溶出試験(試験液:pH6.8、UV波長:220nm)を実施した。図67~70に溶出曲線を示した。また、表94~97に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 20
The preparations produced in Examples 63 to 65 and Reference Example 4 were subjected to a dissolution test (test solution: pH 6.8, UV wavelength: 220 nm) in the same manner as in Test Example 1. 67 to 70 show elution curves. Tables 94 to 97 show the lag time and T 80% calculated from the elution curve.
オイドラギットRSPO及びタルクの等量被覆組成物を80%エタノール水溶液に分散させた実施例65では、ラグタイム及びラグタイム後に薬物を放出し得る時限放出製剤が得られるが、製剤中のイブプロフェンの放出が遅延する傾向にあった。これに対し、オイドラギットRSPO及びタルクの等量被覆組成物を30%又は50%エタノール水溶液に分散させた実施例63及び64では、ラグタイムが5分、10分、15分以内で、ラグタイム後それぞれ12分、15分、20分以内に製剤中のイブプロフェンの80%以上を放出し、薬物のマスキングに適した時限放出製剤が得られることが確認された。これは、エタノール濃度が減少すると水の浸透性の高い被覆層が形成されたことによるものと考えられる。なお、皮膜形成にタルクを使用しなかった参考例4ではラグタイムが測定不能であった。
Example 65, in which an equivalent coating composition of Eudragit RSPO and talc was dispersed in an 80% aqueous ethanol solution, provides a timed release formulation that can release the drug after lag time and lag time, but release of ibuprofen in the formulation Tended to be delayed. On the other hand, in Examples 63 and 64 in which an equivalent coating composition of Eudragit RSPO and talc was dispersed in a 30% or 50% aqueous ethanol solution, the lag time was within 5 minutes, 10 minutes, 15 minutes, and after the lag time. It was confirmed that a timed release preparation suitable for drug masking was obtained by releasing 80% or more of ibuprofen in the preparation within 12 minutes, 15 minutes and 20 minutes, respectively. This is considered to be due to the formation of a coating layer with high water permeability when the ethanol concentration decreases. In Reference Example 4 where talc was not used for film formation, the lag time was not measurable.
実施例66
塩酸ジフェンヒドラミン(金剛化学(株)製)700gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)300gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液900gを加えて練合した。この練合物を、0.3mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、60(250μm)メッシュと80(180μm)メッシュの篩で整粒し60~80メッシュ(250~180μm)の塩酸ジフェンヒドラミンを70%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表98に示すコーティング液を、3000g、3500g、4000g、4500g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を60%、70%、80%、90%、100%コーティングした製剤を製造した。 Example 66
700 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 900 g of a 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) fitted with a 0.3 mm screen, and spherical granules were formed with a Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 60 (250 μm) mesh and 80 (180 μm) mesh, and 60-80 mesh (250-180 μm) hydrochloric acid. Spherical granules containing 70% diphenhydramine were produced.
Next, 500 g of this spherical granule was mixed with a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and the coating solutions shown in Table 98 were applied in the same manner as in Example 1, 3000 g, 3500 g, 4000 g, 4500 g, and 5000 g. In this way, preparations were prepared by spraying and coating the coating liquid (solid content) 60%, 70%, 80%, 90%, 100%.
塩酸ジフェンヒドラミン(金剛化学(株)製)700gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)300gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液900gを加えて練合した。この練合物を、0.3mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、60(250μm)メッシュと80(180μm)メッシュの篩で整粒し60~80メッシュ(250~180μm)の塩酸ジフェンヒドラミンを70%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表98に示すコーティング液を、3000g、3500g、4000g、4500g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を60%、70%、80%、90%、100%コーティングした製剤を製造した。 Example 66
700 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 900 g of a 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) fitted with a 0.3 mm screen, and spherical granules were formed with a Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 60 (250 μm) mesh and 80 (180 μm) mesh, and 60-80 mesh (250-180 μm) hydrochloric acid. Spherical granules containing 70% diphenhydramine were produced.
Next, 500 g of this spherical granule was mixed with a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and the coating solutions shown in Table 98 were applied in the same manner as in Example 1, 3000 g, 3500 g, 4000 g, 4500 g, and 5000 g. In this way, preparations were prepared by spraying and coating the coating liquid (solid content) 60%, 70%, 80%, 90%, 100%.
実施例67
塩酸ジフェンヒドラミン(金剛化学(株)製)700gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)300gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液900gを加えて練合した。この練合物を、0.4mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、42(355μm)メッシュと60(250μm)メッシュの篩で整粒し42~60メッシュ(355~250μm)の塩酸ジフェンヒドラミンを70%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表98に示すコーティング液を、2500g、2750g、3000g、3750g、4000g、4250g、4500gを、実施例1と同様にして噴霧しコーティング液(固形分)を50%、55%、60%、75%、80%、85%、90%コーティングした製剤を製造した。 Example 67
700 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 900 g of a 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.4 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 42 (355 μm) mesh and 60 (250 μm) mesh, and 42-60 mesh (355-250 μm) hydrochloric acid. Spherical granules containing 70% diphenhydramine were produced.
Next, 500 g of this spherical granule was subjected to 2500 g, 2750 g, 3000 g, 3750 g, 4000 g, 4250 g, and 4500 g of the coating liquid shown in Table 98 using a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.). In the same manner as in Example 1, preparations were prepared by spraying and coating the coating liquid (solid content) by 50%, 55%, 60%, 75%, 80%, 85%, 90%.
塩酸ジフェンヒドラミン(金剛化学(株)製)700gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)300gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液900gを加えて練合した。この練合物を、0.4mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、42(355μm)メッシュと60(250μm)メッシュの篩で整粒し42~60メッシュ(355~250μm)の塩酸ジフェンヒドラミンを70%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表98に示すコーティング液を、2500g、2750g、3000g、3750g、4000g、4250g、4500gを、実施例1と同様にして噴霧しコーティング液(固形分)を50%、55%、60%、75%、80%、85%、90%コーティングした製剤を製造した。 Example 67
700 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 900 g of a 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.4 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 42 (355 μm) mesh and 60 (250 μm) mesh, and 42-60 mesh (355-250 μm) hydrochloric acid. Spherical granules containing 70% diphenhydramine were produced.
Next, 500 g of this spherical granule was subjected to 2500 g, 2750 g, 3000 g, 3750 g, 4000 g, 4250 g, and 4500 g of the coating liquid shown in Table 98 using a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.). In the same manner as in Example 1, preparations were prepared by spraying and coating the coating liquid (solid content) by 50%, 55%, 60%, 75%, 80%, 85%, 90%.
実施例68
塩酸ジフェンヒドラミン(金剛化学(株)製)700gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)300gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液900gを加えて練合した。この練合物を、0.5mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、30(500μm)メッシュと42(355μm)メッシュの篩で整粒し30~42メッシュ(500~355μm)の塩酸ジフェンヒドラミンを70%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表98に示すコーティング液を、1500g、1750g、2000g、2250g、2500g、2750gを、実施例1と同様にして噴霧しコーティング液(固形分)を30%、35%、40%、45%、50%、55%コーティングした製剤を製造した。 Example 68
700 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 900 g of a 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.5 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 type (Okawara Seisakusho Co., Ltd.), sized with a sieve of 30 (500 μm) mesh and 42 (355 μm) mesh, and 30 to 42 mesh (500 to 355 μm) hydrochloric acid. Spherical granules containing 70% diphenhydramine were produced.
Next, 500 g of this spherical granule was mixed with a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and 1500 g, 1750 g, 2000 g, 2250 g, 2500 g, and 2750 g of the coating liquid shown in Table 98 were used in Example 1. In the same manner as above, preparations were prepared by spraying and coating the coating liquid (solid content) 30%, 35%, 40%, 45%, 50%, 55%.
塩酸ジフェンヒドラミン(金剛化学(株)製)700gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)300gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液900gを加えて練合した。この練合物を、0.5mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、30(500μm)メッシュと42(355μm)メッシュの篩で整粒し30~42メッシュ(500~355μm)の塩酸ジフェンヒドラミンを70%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表98に示すコーティング液を、1500g、1750g、2000g、2250g、2500g、2750gを、実施例1と同様にして噴霧しコーティング液(固形分)を30%、35%、40%、45%、50%、55%コーティングした製剤を製造した。 Example 68
700 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) were used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 900 g of a 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.5 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 type (Okawara Seisakusho Co., Ltd.), sized with a sieve of 30 (500 μm) mesh and 42 (355 μm) mesh, and 30 to 42 mesh (500 to 355 μm) hydrochloric acid. Spherical granules containing 70% diphenhydramine were produced.
Next, 500 g of this spherical granule was mixed with a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and 1500 g, 1750 g, 2000 g, 2250 g, 2500 g, and 2750 g of the coating liquid shown in Table 98 were used in Example 1. In the same manner as above, preparations were prepared by spraying and coating the coating liquid (solid content) 30%, 35%, 40%, 45%, 50%, 55%.
実施例69
塩酸ジフェンヒドラミン(金剛化学(株)製)850gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)150gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液900gを加えて練合した。この練合物を、0.7mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、24(710μm)メッシュと30(500μm)メッシュの篩で整粒し24~30メッシュ(710~500μm)の塩酸ジフェンヒドラミンを85%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表98に示すコーティング液を、1000g、1250g、1500gを、実施例1と同様にして噴霧しコーティング液(固形分)を20%、25%、30%コーティングした製剤を製造した。 Example 69
850 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 150 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 900 g of a 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.7 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (manufactured by Okawara Seisakusho Co., Ltd.), sized with a sieve of 24 (710 μm) mesh and 30 (500 μm) mesh, and 24-30 mesh (710-500 μm) hydrochloric acid. Spherical granules containing 85% diphenhydramine were produced.
Next, 500 g of this spherical granule was sprayed in a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 1000 g, 1250 g, and 1500 g of the coating solution shown in Table 98 in the same manner as in Example 1. Preparations with coating solutions (solid content) of 20%, 25% and 30% were produced.
塩酸ジフェンヒドラミン(金剛化学(株)製)850gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)150gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液900gを加えて練合した。この練合物を、0.7mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、24(710μm)メッシュと30(500μm)メッシュの篩で整粒し24~30メッシュ(710~500μm)の塩酸ジフェンヒドラミンを85%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表98に示すコーティング液を、1000g、1250g、1500gを、実施例1と同様にして噴霧しコーティング液(固形分)を20%、25%、30%コーティングした製剤を製造した。 Example 69
850 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 150 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 900 g of a 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.7 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (manufactured by Okawara Seisakusho Co., Ltd.), sized with a sieve of 24 (710 μm) mesh and 30 (500 μm) mesh, and 24-30 mesh (710-500 μm) hydrochloric acid. Spherical granules containing 85% diphenhydramine were produced.
Next, 500 g of this spherical granule was sprayed in a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 1000 g, 1250 g, and 1500 g of the coating solution shown in Table 98 in the same manner as in Example 1. Preparations with coating solutions (solid content) of 20%, 25% and 30% were produced.
試験例21
実施例66~69で製造した製剤を試験例1と同様にして溶出試験(試験液:pH6.8、UV波長:210nm)を実施した。図71~74に溶出曲線を示した。また、表99~102に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 21
The preparations produced in Examples 66 to 69 were subjected to a dissolution test (test solution: pH 6.8, UV wavelength: 210 nm) in the same manner as in Test Example 1. 71 to 74 show elution curves. Tables 99 to 102 show the lag time and T 80% calculated from the elution curve.
実施例66~69で製造した製剤を試験例1と同様にして溶出試験(試験液:pH6.8、UV波長:210nm)を実施した。図71~74に溶出曲線を示した。また、表99~102に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 21
The preparations produced in Examples 66 to 69 were subjected to a dissolution test (test solution: pH 6.8, UV wavelength: 210 nm) in the same manner as in Test Example 1. 71 to 74 show elution curves. Tables 99 to 102 show the lag time and T 80% calculated from the elution curve.
塩酸ジフェンヒドラミンを70%含有し粒子径が、250~180μm(実施例66)、355~250μm(実施例67)又は500~350μm(実施例68)の微粒子、及び塩酸ジフェンヒドラミンを85%含有し粒子径が710~500μm(実施例69)の核粒子に、オイドラギットRSPOとタルクSK-BB(1:1)混合物の30%エタノール水溶液(表98)を使用して核に被覆した場合、いずれの粒度でもラグタイムが5分、10分、15分以内で、ラグタイム後それぞれ12分、15分、20分以内に製剤中の塩酸ジフェンヒドラミンの80%以上を放出する時限放出製剤が得られることが確認された。したがって、500μm以下の細粒剤や散剤のマスキングに適した時限放出製剤として好適である。
Contains 70% diphenhydramine hydrochloride and has a particle size of 250 to 180 μm (Example 66), 355 to 250 μm (Example 67) or 500 to 350 μm (Example 68), and 85% diphenhydramine hydrochloride. When nuclei having a particle size of 710 to 500 μm (Example 69) were coated on the nuclei using a 30% aqueous ethanol solution (Table 98) of a mixture of Eudragit RSPO and talc SK-BB (1: 1), any particle size It has been confirmed that a timed release formulation can be obtained that releases 80% or more of diphenhydramine hydrochloride in the formulation within 5 minutes, 10 minutes, and 15 minutes, and within 12 minutes, 15 minutes, and 20 minutes after the lag time, respectively. It was. Therefore, it is suitable as a time-release preparation suitable for masking fine granules or powders of 500 μm or less.
実施例70
テオフィリン(白鳥製薬(株)製)100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2700gを加えて練合した。この練合物を、0.6mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、30(500μm)メッシュと42(355μm)メッシュの篩で整粒し30~42メッシュ(500~355μm)のテオフィリンを10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表98に示すコーティング液を、2250g、2500g、2750g、3000g、3250gを、実施例1と同様にして噴霧しコーティング液(固形分)を45%、50%、55%、60%、65%コーティングした製剤を製造した。 Example 70
100 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Thereafter, 2700 g of a 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.6 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 30 (500 μm) mesh and 42 (355 μm) mesh, and 30 to 42 mesh (500 to 355 μm) theophylline. Spherical granules containing 10% were produced.
Next, 500 g of this spherical granule was tumbled using a fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid shown in Table 98 was applied in the same manner as in Example 1 to 2250 g, 2500 g, 2750 g, 3000 g, 3250 g. In this way, preparations were prepared by spraying and coating the coating liquid (solid content) by 45%, 50%, 55%, 60%, 65%.
テオフィリン(白鳥製薬(株)製)100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2700gを加えて練合した。この練合物を、0.6mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、30(500μm)メッシュと42(355μm)メッシュの篩で整粒し30~42メッシュ(500~355μm)のテオフィリンを10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表98に示すコーティング液を、2250g、2500g、2750g、3000g、3250gを、実施例1と同様にして噴霧しコーティング液(固形分)を45%、50%、55%、60%、65%コーティングした製剤を製造した。 Example 70
100 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Thereafter, 2700 g of a 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.6 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 30 (500 μm) mesh and 42 (355 μm) mesh, and 30 to 42 mesh (500 to 355 μm) theophylline. Spherical granules containing 10% were produced.
Next, 500 g of this spherical granule was tumbled using a fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid shown in Table 98 was applied in the same manner as in Example 1 to 2250 g, 2500 g, 2750 g, 3000 g, 3250 g. In this way, preparations were prepared by spraying and coating the coating liquid (solid content) by 45%, 50%, 55%, 60%, 65%.
実施例71
テオフィリン(白鳥製薬(株)製)300gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)700gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2100gを加えて練合した。この練合物を、0.6mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、30(500μm)メッシュと42(355μm)メッシュの篩で整粒し30~42メッシュ(500~355μm)のテオフィリンを30%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表98に示すコーティング液を、1000、1250、1500、1750gを、実施例1と同様にして噴霧しコーティング剤を20、25、30、35%コーティングした製剤を製造した。 Example 71
300 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 700 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2100 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.6 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 30 (500 μm) mesh and 42 (355 μm) mesh, and 30 to 42 mesh (500 to 355 μm) theophylline. To produce spherical granules containing 30%.
Next, 500 g of this spherical granule was mixed with a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and the coating solutions shown in Table 98 were 1000, 1250, 1500, and 1750 g as in Example 1. Formulations sprayed and coated with 20, 25, 30, 35% coating agent were prepared.
テオフィリン(白鳥製薬(株)製)300gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)700gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2100gを加えて練合した。この練合物を、0.6mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、30(500μm)メッシュと42(355μm)メッシュの篩で整粒し30~42メッシュ(500~355μm)のテオフィリンを30%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表98に示すコーティング液を、1000、1250、1500、1750gを、実施例1と同様にして噴霧しコーティング剤を20、25、30、35%コーティングした製剤を製造した。 Example 71
300 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 700 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2100 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.6 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 30 (500 μm) mesh and 42 (355 μm) mesh, and 30 to 42 mesh (500 to 355 μm) theophylline. To produce spherical granules containing 30%.
Next, 500 g of this spherical granule was mixed with a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and the coating solutions shown in Table 98 were 1000, 1250, 1500, and 1750 g as in Example 1. Formulations sprayed and coated with 20, 25, 30, 35% coating agent were prepared.
実施例72
テオフィリン(白鳥製薬(株)製)500gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)500gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液1500gを加えて練合した。この練合物を、0.6mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、30(500μm)メッシュと42(355μm)メッシュの篩で整粒し30~42メッシュ(500~355μm)のテオフィリンを50%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表98に示すコーティング液を、750g、1000g、1250g、1500gを、実施例1と同様にして噴霧しコーティング液(固形分)を15%、20%、25%、30%コーティングした製剤を製造した。 Example 72
500 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 500 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Thereafter, 1500 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.6 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 30 (500 μm) mesh and 42 (355 μm) mesh, and 30 to 42 mesh (500 to 355 μm) theophylline. A spherical granule containing 50% was produced.
Next, 500 g of this spherical granule was tumbled using a fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and 750 g, 1000 g, 1250 g and 1500 g of the coating solution shown in Table 98 were used in the same manner as in Example 1. Preparations were prepared by spraying and coating with 15%, 20%, 25%, 30% coating solution (solid content).
テオフィリン(白鳥製薬(株)製)500gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)500gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液1500gを加えて練合した。この練合物を、0.6mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、30(500μm)メッシュと42(355μm)メッシュの篩で整粒し30~42メッシュ(500~355μm)のテオフィリンを50%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表98に示すコーティング液を、750g、1000g、1250g、1500gを、実施例1と同様にして噴霧しコーティング液(固形分)を15%、20%、25%、30%コーティングした製剤を製造した。 Example 72
500 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 500 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Thereafter, 1500 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.6 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 30 (500 μm) mesh and 42 (355 μm) mesh, and 30 to 42 mesh (500 to 355 μm) theophylline. A spherical granule containing 50% was produced.
Next, 500 g of this spherical granule was tumbled using a fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.), and 750 g, 1000 g, 1250 g and 1500 g of the coating solution shown in Table 98 were used in the same manner as in Example 1. Preparations were prepared by spraying and coating with 15%, 20%, 25%, 30% coating solution (solid content).
試験例22
実施例70~72で製造した製剤を試験例1と同様にして溶出試験(試験液:精製水、UV波長:267nm)を実施した。図75~77に溶出曲線を示した。また、表103~105に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 22
The preparations produced in Examples 70 to 72 were subjected to a dissolution test (test solution: purified water, UV wavelength: 267 nm) in the same manner as in Test Example 1. 75 to 77 show elution curves. Tables 103 to 105 show the lag time and T 80% calculated from the elution curve.
実施例70~72で製造した製剤を試験例1と同様にして溶出試験(試験液:精製水、UV波長:267nm)を実施した。図75~77に溶出曲線を示した。また、表103~105に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 22
The preparations produced in Examples 70 to 72 were subjected to a dissolution test (test solution: purified water, UV wavelength: 267 nm) in the same manner as in Test Example 1. 75 to 77 show elution curves. Tables 103 to 105 show the lag time and T 80% calculated from the elution curve.
図75~77に示すように、テオフィリンを10、30、50%含有する粒子径が500~350μmの中心核に、オイドラギットRSPOとタルクSK-BB等量混合物の30%エタノール水溶液(表98)を使用したコーティング液で被覆した場合、ラグタイムが5分、10分、15分以内で、かつラグタイム後それぞれ12分、15分、20分以内に製剤中のテオフィリンの80%以上を放出する時限放出製剤が得られることが確認された。
As shown in FIGS. 75 to 77, a 30% aqueous ethanol solution (Table 98) of Eudragit RSPO and an equivalent mixture of talc SK-BB is added to the central core containing 10, 30, and 50% theophylline and having a particle size of 500 to 350 μm. When coated with the used coating solution, the lag time is within 5 minutes, 10 minutes, and 15 minutes, and within 12 minutes, 15 minutes, and 20 minutes after the lag time, respectively, a time limit that releases 80% or more of theophylline in the preparation It was confirmed that a release formulation was obtained.
実施例73
塩酸ジフェンヒドラミン(金剛化学(株)製)500gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)500gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液1500gを加えて練合した。
この練合物を、0.5mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、30(500μm)メッシュと42(355μm)メッシュの篩で整粒し30~42メッシュ(500~355μm)の塩酸ジフェンヒドラミンを50%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表106に示すコーティング液を、1000g、1250g、1500g、1750gを、実施例1と同様にして噴霧しコーティング液(固形分)を20%、25%、30%、35%コーティングした製剤を製造した。 Example 73
500 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 500 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 1500 g of a 10% ethanol aqueous solution was added and kneaded.
This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.5 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 type (Okawara Seisakusho Co., Ltd.), sized with a sieve of 30 (500 μm) mesh and 42 (355 μm) mesh, and 30 to 42 mesh (500 to 355 μm) hydrochloric acid. Spherical granules containing 50% diphenhydramine were produced.
Next, 500 g of this spherical granule was tumbled using a fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid shown in Table 106 was applied in the same manner as in Example 1 to 1000 g, 1250 g, 1500 g, and 1750 g. Preparations were prepared by spraying and coating with 20%, 25%, 30%, 35% coating liquid (solid content).
塩酸ジフェンヒドラミン(金剛化学(株)製)500gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)500gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液1500gを加えて練合した。
この練合物を、0.5mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形顆粒とした。その後、流動層乾燥機WSG-5型(大川原製作所(株)製)で乾燥し、30(500μm)メッシュと42(355μm)メッシュの篩で整粒し30~42メッシュ(500~355μm)の塩酸ジフェンヒドラミンを50%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表106に示すコーティング液を、1000g、1250g、1500g、1750gを、実施例1と同様にして噴霧しコーティング液(固形分)を20%、25%、30%、35%コーティングした製剤を製造した。 Example 73
500 g of diphenhydramine hydrochloride (manufactured by Kongo Chemical Co., Ltd.) and 500 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are used with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). After mixing, 1500 g of a 10% ethanol aqueous solution was added and kneaded.
This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.5 mm screen, and with a melmerizer Q400 (Fuji Paudal Co., Ltd.) did. Thereafter, it is dried with a fluidized bed dryer WSG-5 type (Okawara Seisakusho Co., Ltd.), sized with a sieve of 30 (500 μm) mesh and 42 (355 μm) mesh, and 30 to 42 mesh (500 to 355 μm) hydrochloric acid. Spherical granules containing 50% diphenhydramine were produced.
Next, 500 g of this spherical granule was tumbled using a fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.), and the coating liquid shown in Table 106 was applied in the same manner as in Example 1 to 1000 g, 1250 g, 1500 g, and 1750 g. Preparations were prepared by spraying and coating with 20%, 25%, 30%, 35% coating liquid (solid content).
試験例23
実施例73で製造した製剤を試験例1と同様にして溶出試験(試験液:精製水、UV波長:210nm)を実施した。図78に溶出曲線を示した。また、表107に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 23
The preparation prepared in Example 73 was subjected to a dissolution test (test solution: purified water, UV wavelength: 210 nm) in the same manner as in Test Example 1. FIG. 78 shows an elution curve. Table 107 shows the lag time and T 80% calculated from the elution curve.
実施例73で製造した製剤を試験例1と同様にして溶出試験(試験液:精製水、UV波長:210nm)を実施した。図78に溶出曲線を示した。また、表107に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 23
The preparation prepared in Example 73 was subjected to a dissolution test (test solution: purified water, UV wavelength: 210 nm) in the same manner as in Test Example 1. FIG. 78 shows an elution curve. Table 107 shows the lag time and T 80% calculated from the elution curve.
図78に示すように、塩酸ジフェンヒドラミンを50%含有する粒子径が500~355μmの中心核に、タルクを30%添加したコーティング液で被覆した場合においてもラグタイムが5分、10分、15分以内で、ラグタイム後それぞれ12分、15分、20分以内に製剤中の塩酸ジフェンヒドラミンの80%以上を放出する時限放出製剤が得られることが確認された。
As shown in FIG. 78, even when the central core containing 50% diphenhydramine hydrochloride and having a particle diameter of 500 to 355 μm is coated with a coating solution containing 30% talc, the lag time is 5 minutes, 10 minutes, 15 minutes. Within 12 minutes, 15 minutes and 20 minutes after the lag time, it was confirmed that a time-release preparation that releases 80% or more of diphenhydramine hydrochloride in the preparation was obtained.
実施例74
テオフィリン(白鳥製薬(株)製)100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2900gを加えて練合した。この練合物を、0.8mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形粒子とした。その後、流動層乾燥機WSG-55型(大川原製作所(株)製)で乾燥し、20メッシュと30メッシュの篩で整粒し20~30メッシュ(840~500μm)のテオフィリンを10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表108に示すコーティング液、5000gを噴霧し、顆粒に対してコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 74
100 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2900 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and spherical particles with Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-55 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 20 mesh and 30 mesh, and a spherical shape containing 10% of 20-30 mesh (840-500 μm) theophylline. Granules were produced.
Next, 500 g of this spherical granule is sprayed with a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 5000 g of the coating liquid shown in Table 108, and 100 g of the coating liquid (solid content) is applied to the granules. % Coated preparation was produced.
テオフィリン(白鳥製薬(株)製)100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2900gを加えて練合した。この練合物を、0.8mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形粒子とした。その後、流動層乾燥機WSG-55型(大川原製作所(株)製)で乾燥し、20メッシュと30メッシュの篩で整粒し20~30メッシュ(840~500μm)のテオフィリンを10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表108に示すコーティング液、5000gを噴霧し、顆粒に対してコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 74
100 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 900 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Then, 2900 g of 10% ethanol aqueous solution was added and kneaded. This kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.8 mm screen, and spherical particles with Malmerizer Q400 (Fuji Paudal Co., Ltd.). did. Thereafter, it is dried with a fluidized bed dryer WSG-55 (Okawara Seisakusho Co., Ltd.), sized with a sieve of 20 mesh and 30 mesh, and a spherical shape containing 10% of 20-30 mesh (840-500 μm) theophylline. Granules were produced.
Next, 500 g of this spherical granule is sprayed with a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 5000 g of the coating liquid shown in Table 108, and 100 g of the coating liquid (solid content) is applied to the granules. % Coated preparation was produced.
実施例75
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表109に示すコーティング液5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 75
Formulation prepared by spraying 5000 g of the coating liquid shown in Table 109 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 74 in the same manner as in Example 1 and coating the coating liquid (solid content) with 100% Manufactured.
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表109に示すコーティング液5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 75
Formulation prepared by spraying 5000 g of the coating liquid shown in Table 109 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 74 in the same manner as in Example 1 and coating the coating liquid (solid content) with 100% Manufactured.
実施例76
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表110に示すコーティング液5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 76
Formulation prepared by spraying 5000 g of the coating liquid shown in Table 110 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 74 in the same manner as in Example 1 and coating the coating liquid (solid content) with 100% Manufactured.
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表110に示すコーティング液5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 76
Formulation prepared by spraying 5000 g of the coating liquid shown in Table 110 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 74 in the same manner as in Example 1 and coating the coating liquid (solid content) with 100% Manufactured.
実施例77
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表111に示すコーティング液5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 77
Formulation prepared by spraying 5000 g of the coating liquid shown in Table 111 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 74 in the same manner as in Example 1 and coating the coating liquid (solid content) with 100% Manufactured.
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表111に示すコーティング液5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 77
Formulation prepared by spraying 5000 g of the coating liquid shown in Table 111 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 74 in the same manner as in Example 1 and coating the coating liquid (solid content) with 100% Manufactured.
試験例24
実施例74~77で製造した製剤を試験例1と同様にして溶出試験(試験液:精製水、UV波長:267nm)を実施した。図79~82に溶出曲線を示した。また、表112~115に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 24
The preparations produced in Examples 74 to 77 were subjected to a dissolution test (test solution: purified water, UV wavelength: 267 nm) in the same manner as in Test Example 1. 79 to 82 show elution curves. Tables 112 to 115 show the lag time calculated from the elution curve and T 80% .
実施例74~77で製造した製剤を試験例1と同様にして溶出試験(試験液:精製水、UV波長:267nm)を実施した。図79~82に溶出曲線を示した。また、表112~115に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 24
The preparations produced in Examples 74 to 77 were subjected to a dissolution test (test solution: purified water, UV wavelength: 267 nm) in the same manner as in Test Example 1. 79 to 82 show elution curves. Tables 112 to 115 show the lag time calculated from the elution curve and T 80% .
オイドラギットRSPOとオイドラギットL100-5との配合比率を8対2にし、水不溶性賦形剤であるタルクを50%添加した実施例77においてはラグタイム及びラグタイム後に薬物を放出し得る時限放出製剤が得られた。更に、タルクの添加量が40%(実施例74)、30%(実施例75)、10%(実施例76)においては、試験液pH1.2、水では薬物を放出せず、pH6.8では4~6時間のラグタイムの後、1~1.5時間で薬物を80%以上放出する時限放出製剤が得られることが確認された。
In Example 77, in which the blending ratio of Eudragit RSPO and Eudragit L100-5 was 8: 2, and 50% of talc, which is a water-insoluble excipient, was added, there was a lag time and a timed release formulation capable of releasing the drug after the lag time. Obtained. Furthermore, when the amount of talc added is 40% (Example 74), 30% (Example 75), and 10% (Example 76), the test solution has a pH of 1.2 and water does not release the drug, and the pH is 6.8. Thus, it was confirmed that a time-release preparation that releases 80% or more of the drug in 1 to 1.5 hours after a lag time of 4 to 6 hours can be obtained.
実施例78
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表116に示すコーティング液3750g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を75%、100%コーティングした製剤を製造した。 Example 78
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 74, 3750 g and 5000 g of the coating liquid shown in Table 116 were sprayed in the same manner as in Example 1, and the coating liquid (solid content) was 75%. A 100% coated formulation was produced.
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表116に示すコーティング液3750g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を75%、100%コーティングした製剤を製造した。 Example 78
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 74, 3750 g and 5000 g of the coating liquid shown in Table 116 were sprayed in the same manner as in Example 1, and the coating liquid (solid content) was 75%. A 100% coated formulation was produced.
実施例79
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表117に示すコーティング液5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 79
Formulation obtained by spraying 5000 g of the coating liquid shown in Table 117 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 74 in the same manner as in Example 1 and coating the coating liquid (solid content) with 100% Manufactured.
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表117に示すコーティング液5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 79
Formulation obtained by spraying 5000 g of the coating liquid shown in Table 117 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 74 in the same manner as in Example 1 and coating the coating liquid (solid content) with 100% Manufactured.
実施例80
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表118に示すコーティング液5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 80
Formulation obtained by spraying 5000 g of the coating liquid shown in Table 118 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 74 in the same manner as in Example 1 and coating the coating liquid (solid content) with 100% Manufactured.
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表118に示すコーティング液5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を100%コーティングした製剤を製造した。 Example 80
Formulation obtained by spraying 5000 g of the coating liquid shown in Table 118 on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 74 in the same manner as in Example 1 and coating the coating liquid (solid content) with 100% Manufactured.
実施例81
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表119に示すコーティング液3750g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を75%、100%コーティングした製剤を製造した。 Example 81
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 74, 3750 g and 5000 g of the coating liquid shown in Table 119 were sprayed in the same manner as in Example 1, and 75% of the coating liquid (solid content) was sprayed. A 100% coated formulation was produced.
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表119に示すコーティング液3750g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を75%、100%コーティングした製剤を製造した。 Example 81
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 74, 3750 g and 5000 g of the coating liquid shown in Table 119 were sprayed in the same manner as in Example 1, and 75% of the coating liquid (solid content) was sprayed. A 100% coated formulation was produced.
実施例82
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表120に示すコーティング液3750g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を75%、100%コーティングした製剤を製造した。 Example 82
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 74, 3750 g and 5000 g of the coating liquid shown in Table 120 were sprayed in the same manner as in Example 1, and 75% of the coating liquid (solid content) was sprayed. A 100% coated formulation was produced.
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表120に示すコーティング液3750g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を75%、100%コーティングした製剤を製造した。 Example 82
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 74, 3750 g and 5000 g of the coating liquid shown in Table 120 were sprayed in the same manner as in Example 1, and 75% of the coating liquid (solid content) was sprayed. A 100% coated formulation was produced.
試験例25
実施例78~82で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、精製水、pH6.8、UV波長:267nm)を実施した。図83~87に溶出曲線を示した。また、表121~126に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 25
A dissolution test (test solution: pH 1.2, purified water, pH 6.8, UV wavelength: 267 nm) was carried out in the same manner as in Test Example 1 on the preparations produced in Examples 78-82. 83 to 87 show elution curves. Tables 121 to 126 show the lag time and T 80% calculated from the elution curve.
実施例78~82で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、精製水、pH6.8、UV波長:267nm)を実施した。図83~87に溶出曲線を示した。また、表121~126に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 25
A dissolution test (test solution: pH 1.2, purified water, pH 6.8, UV wavelength: 267 nm) was carried out in the same manner as in Test Example 1 on the preparations produced in Examples 78-82. 83 to 87 show elution curves. Tables 121 to 126 show the lag time and T 80% calculated from the elution curve.
実施例78~82より、オイドラギットRSPOに対するオイドラギットL100-55の配合比率を変えることで、試験液pH6.8でのラグタイムを0.3~6.6時間に自由に調整することが可能であることが確認された。
From Examples 78 to 82, by changing the mixing ratio of Eudragit L100-55 to Eudragit RSPO, it is possible to freely adjust the lag time at test solution pH 6.8 to 0.3 to 6.6 hours. It was confirmed.
実施例83
テオフィリン(白鳥製薬(株)製)850gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)150gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液450gを加えて練合し、実施例1と同様にして20~30メッシュ(840~500μm)のテオフィリンを85%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表109に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 83
850 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 150 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Thereafter, 450 g of a 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 85% of 20-30 mesh (840-500 μm) theophylline were produced in the same manner as in Example 1.
Next, 500 g of this spherical granule was sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.) with 3500 g and 5000 g of the coating liquid shown in Table 109, and the coating liquid (solid content) was sprayed on the granules. ) Was coated at 70% and 100%.
テオフィリン(白鳥製薬(株)製)850gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)150gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液450gを加えて練合し、実施例1と同様にして20~30メッシュ(840~500μm)のテオフィリンを85%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表109に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 83
850 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 150 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Thereafter, 450 g of a 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 85% of 20-30 mesh (840-500 μm) theophylline were produced in the same manner as in Example 1.
Next, 500 g of this spherical granule was sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.) with 3500 g and 5000 g of the coating liquid shown in Table 109, and the coating liquid (solid content) was sprayed on the granules. ) Was coated at 70% and 100%.
実施例84
テオフィリン(白鳥製薬(株)製)700gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)300gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液1500gを加えて練合し、実施例1と同様にして20~30メッシュ(840~500μm)のテオフィリンを70%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表109に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 84
700 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Thereafter, 1500 g of a 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 70% of 20-30 mesh (840-500 μm) theophylline were produced in the same manner as in Example 1.
Next, 500 g of this spherical granule was sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.) with 3500 g and 5000 g of the coating liquid shown in Table 109, and the coating liquid (solid content) was sprayed on the granules. ) Was coated at 70% and 100%.
テオフィリン(白鳥製薬(株)製)700gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)300gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液1500gを加えて練合し、実施例1と同様にして20~30メッシュ(840~500μm)のテオフィリンを70%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表109に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 84
700 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 300 g of low-substituted hydroxypropyl cellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Thereafter, 1500 g of a 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 70% of 20-30 mesh (840-500 μm) theophylline were produced in the same manner as in Example 1.
Next, 500 g of this spherical granule was sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.) with 3500 g and 5000 g of the coating liquid shown in Table 109, and the coating liquid (solid content) was sprayed on the granules. ) Was coated at 70% and 100%.
実施例85
テオフィリン(白鳥製薬(株) 製)300gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)700gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2100gを加えて練合し、実施例1と同様にして20~30メッシュ(840~500μm)のテオフィリンを30%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表109に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 85
300 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 700 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Thereafter, 2100 g of a 10% aqueous ethanol solution was added and kneaded to produce spherical granules containing 30% of 20-30 mesh (840-500 μm) theophylline in the same manner as in Example 1.
Next, 500 g of this spherical granule was sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.) with 3500 g and 5000 g of the coating liquid shown in Table 109, and the coating liquid (solid content) was sprayed on the granules. ) Was coated at 70% and 100%.
テオフィリン(白鳥製薬(株) 製)300gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)700gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2100gを加えて練合し、実施例1と同様にして20~30メッシュ(840~500μm)のテオフィリンを30%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表109に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70%、100%コーティングした製剤を製造した。 Example 85
300 g of theophylline (manufactured by Shiratori Pharmaceutical Co., Ltd.) and 700 g of low-substituted hydroxypropylcellulose (L-HPC LH31, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with a vertical granulator FM-VG-25 (manufactured by Paulec Co., Ltd.). Thereafter, 2100 g of a 10% aqueous ethanol solution was added and kneaded to produce spherical granules containing 30% of 20-30 mesh (840-500 μm) theophylline in the same manner as in Example 1.
Next, 500 g of this spherical granule was sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.) with 3500 g and 5000 g of the coating liquid shown in Table 109, and the coating liquid (solid content) was sprayed on the granules. ) Was coated at 70% and 100%.
実施例86
無水カフェイン(寧薬化学工業(株)製)100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2800gを加えて練合し、実施例1と同様にして20~30メッシュ(840~500μm)の無水カフェインを10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表109に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70、100%コーティングした製剤を製造した。 Example 86
Vertical granulator FM-VG-25 (Paurec Co., Ltd.) 100 g of anhydrous caffeine (Ningbo Chemical Co., Ltd.) and low substituted hydroxypropylcellulose (L-HPC LH31, Shin-Etsu Chemical Co., Ltd.) 900 g 2800 g of 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 10% of 20-30 mesh (840-500 μm) anhydrous caffeine were produced in the same manner as in Example 1.
Next, 500 g of this spherical granule was sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.) with 3500 g and 5000 g of the coating liquid shown in Table 109, and the coating liquid (solid content) was sprayed on the granules. ) Was coated at 70, 100%.
無水カフェイン(寧薬化学工業(株)製)100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2800gを加えて練合し、実施例1と同様にして20~30メッシュ(840~500μm)の無水カフェインを10%含有する球形顆粒を製造した。
次に、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表109に示すコーティング液を、3500g、5000gを噴霧し、顆粒に対してコーティング液(固形分)を70、100%コーティングした製剤を製造した。 Example 86
Vertical granulator FM-VG-25 (Paurec Co., Ltd.) 100 g of anhydrous caffeine (Ningbo Chemical Co., Ltd.) and low substituted hydroxypropylcellulose (L-HPC LH31, Shin-Etsu Chemical Co., Ltd.) 900 g 2800 g of 10% ethanol aqueous solution was added and kneaded, and spherical granules containing 10% of 20-30 mesh (840-500 μm) anhydrous caffeine were produced in the same manner as in Example 1.
Next, 500 g of this spherical granule was sprayed on a rolling fluidized bed coating apparatus MP-01 (manufactured by Paulec Co., Ltd.) with 3500 g and 5000 g of the coating liquid shown in Table 109, and the coating liquid (solid content) was sprayed on the granules. ) Was coated at 70, 100%.
実施例87
無水カフェイン(寧薬化学工業(株)製)100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2800gを加えて練合した。
次に、この練合物を、0.6mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形粒子とした。その後、流動層乾燥機WSG-55型(大川原製作所(株)製)で乾燥し、30メッシュと42メッシュの篩で整粒し30~42メッシュ(500~355μm)の無水カフェインを10%含有する球形顆粒を製造した。
次に、実施例1と同様にして30~42メッシュ(500~355μm)の無水カフェインを10%含有する球形顆粒を製造した。
そして、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表109に示すコーティング液、3500gを噴霧し、顆粒に対してコーティング液(固形分)を70%コーティングした製剤を製造した。 Example 87
Vertical granulator FM-VG-25 (Paurec Co., Ltd.) 100 g of anhydrous caffeine (Ningbo Chemical Co., Ltd.) and low substituted hydroxypropylcellulose (L-HPC LH31, Shin-Etsu Chemical Co., Ltd.) 900 g 2800 g of a 10% ethanol aqueous solution was added and kneaded.
Next, this kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.6 mm screen, and with a Malmerizer Q400 (Fuji Paudal Co., Ltd.). Spherical particles were used. Thereafter, it is dried with a fluidized bed dryer WSG-55 (Okawara Seisakusho Co., Ltd.), sized with a 30-mesh and 42-mesh sieve, and containing 10% of 30-42 mesh (500-355 μm) anhydrous caffeine. Spherical granules were produced.
Next, spherical granules containing 10% of 30-42 mesh (500-355 μm) anhydrous caffeine were produced in the same manner as in Example 1.
Then, 500 g of this spherical granule is sprayed with a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 3500 g of the coating liquid shown in Table 109, and the coating liquid (solid content) is 70% of the granules. A coated formulation was produced.
無水カフェイン(寧薬化学工業(株)製)100gと低置換度ヒドロキシプロピルセルロース(L-HPC LH31、信越化学工業(株)製)900gをバーチカルグラニュレーターFM-VG-25(パウレック(株)製)で混合後、10%エタノール水溶液2800gを加えて練合した。
次に、この練合物を、0.6mmスクリーンを装着したツインドームグランTDG-80(不二パウダル(株)製)で押出し造粒し、マルメライザーQ400(不二パウダル(株)製)で球形粒子とした。その後、流動層乾燥機WSG-55型(大川原製作所(株)製)で乾燥し、30メッシュと42メッシュの篩で整粒し30~42メッシュ(500~355μm)の無水カフェインを10%含有する球形顆粒を製造した。
次に、実施例1と同様にして30~42メッシュ(500~355μm)の無水カフェインを10%含有する球形顆粒を製造した。
そして、この球形顆粒500gを転動流動層コーティング装置MP-01(パウレック(株)製)で、表109に示すコーティング液、3500gを噴霧し、顆粒に対してコーティング液(固形分)を70%コーティングした製剤を製造した。 Example 87
Vertical granulator FM-VG-25 (Paurec Co., Ltd.) 100 g of anhydrous caffeine (Ningbo Chemical Co., Ltd.) and low substituted hydroxypropylcellulose (L-HPC LH31, Shin-Etsu Chemical Co., Ltd.) 900 g 2800 g of a 10% ethanol aqueous solution was added and kneaded.
Next, this kneaded product was extruded and granulated with a twin dome gran TDG-80 (Fuji Paudal Co., Ltd.) equipped with a 0.6 mm screen, and with a Malmerizer Q400 (Fuji Paudal Co., Ltd.). Spherical particles were used. Thereafter, it is dried with a fluidized bed dryer WSG-55 (Okawara Seisakusho Co., Ltd.), sized with a 30-mesh and 42-mesh sieve, and containing 10% of 30-42 mesh (500-355 μm) anhydrous caffeine. Spherical granules were produced.
Next, spherical granules containing 10% of 30-42 mesh (500-355 μm) anhydrous caffeine were produced in the same manner as in Example 1.
Then, 500 g of this spherical granule is sprayed with a rolling fluidized bed coating apparatus MP-01 (manufactured by POWREC Co., Ltd.) with 3500 g of the coating liquid shown in Table 109, and the coating liquid (solid content) is 70% of the granules. A coated formulation was produced.
実施例88
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表127に示すコーティング液3750g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を75%、100%コーティングした製剤を製造した。 Example 88
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 74, 3750 g and 5000 g of the coating liquid shown in Table 127 were sprayed in the same manner as in Example 1, and the coating liquid (solid content) was 75%. A 100% coated formulation was produced.
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表127に示すコーティング液3750g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を75%、100%コーティングした製剤を製造した。 Example 88
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 74, 3750 g and 5000 g of the coating liquid shown in Table 127 were sprayed in the same manner as in Example 1, and the coating liquid (solid content) was 75%. A 100% coated formulation was produced.
実施例89
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表128に示すコーティング液3750g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を75%、100%コーティングした製剤を製造した。 Example 89
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 74, 3750 g and 5000 g of the coating liquid shown in Table 128 were sprayed in the same manner as in Example 1, and 75% of the coating liquid (solid content) was sprayed. A 100% coated formulation was produced.
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表128に示すコーティング液3750g、5000gを、実施例1と同様にして噴霧しコーティング液(固形分)を75%、100%コーティングした製剤を製造した。 Example 89
To 500 g of 10% theophylline-containing granules (20 to 30 mesh) produced in Example 74, 3750 g and 5000 g of the coating liquid shown in Table 128 were sprayed in the same manner as in Example 1, and 75% of the coating liquid (solid content) was sprayed. A 100% coated formulation was produced.
試験例26
実施例83~89で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、精製水、pH6.8、UV波長:波長 テオフィリン:267nm、無水カフェイン:271nm)を実施した。図88~94に溶出曲線を示した。また、表129~135に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 26
The preparations produced in Examples 83 to 89 were subjected to a dissolution test (test solution: pH 1.2, purified water, pH 6.8, UV wavelength: wavelength theophylline: 267 nm, anhydrous caffeine: 271 nm) in the same manner as in Test Example 1. did. 88 to 94 show elution curves. Tables 129 to 135 show the lag time and T 80% calculated from the elution curve.
実施例83~89で製造した製剤を試験例1と同様にして溶出試験(試験液:pH1.2、精製水、pH6.8、UV波長:波長 テオフィリン:267nm、無水カフェイン:271nm)を実施した。図88~94に溶出曲線を示した。また、表129~135に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 26
The preparations produced in Examples 83 to 89 were subjected to a dissolution test (test solution: pH 1.2, purified water, pH 6.8, UV wavelength: wavelength theophylline: 267 nm, anhydrous caffeine: 271 nm) in the same manner as in Test Example 1. did. 88 to 94 show elution curves. Tables 129 to 135 show the lag time and T 80% calculated from the elution curve.
実施例83~85は薬物含有量を85~30%に変えた場合であるが、いずれの薬物含有量でも、試験液pH1.2、水では薬物を放出せず、pH6.8では一定のラグタイムの後、1~1.5時間で薬物を80%放出する時限放出製剤が得られることが確認された。
実施例86~87は薬物として無水カフェインを用いた場合であり、実施例87は中心核の粒度が30~42メッシュ(500~355μm)の場合であるが、無水カフェインの場合にも、試験液pH1.2、水では薬物を放出せず、pH6.8では一定のラグタイムの後、1~1.5時間で薬物を80%放出する時限放出製剤が得られることが確認された。
実施例88~89は、アクリル酸エチル・メタアクリル酸メチル・メタクリル酸塩化トリメチルアンモニウム共重合体に対して、メタクリル酸・アクリル酸エチル共重合体の代わりにオイドラギットS100及びオイドラギットL100を使用した場合であるが、オイドラギットL100-55の場合と異なり、試験液pH1.2、水及びpH6.8のいずれの試験液でも、一定のラグタイムの後、1~1.5時間で薬物を80%放出する時限放出製剤が得られることが確認された。 Examples 83 to 85 are cases in which the drug content was changed to 85 to 30%, but at any drug content, the test solution was pH 1.2, water did not release the drug, and pH 6.8 had a constant lag. It was confirmed that a timed release formulation that released 80% of the drug in 1 to 1.5 hours after the time was obtained.
Examples 86 to 87 are cases where anhydrous caffeine is used as a drug, and Example 87 is a case where the particle size of the central core is 30 to 42 mesh (500 to 355 μm), but also in the case of anhydrous caffeine, It was confirmed that a time-release preparation that releases 80% of the drug in 1 to 1.5 hours after a certain lag time was confirmed at pH 6.8, where the drug was not released with test solution pH 1.2 and water.
Examples 88 to 89 are cases where Eudragit S100 and Eudragit L100 were used in place of the methacrylic acid / ethyl acrylate copolymer with respect to the ethyl acrylate / methyl methacrylate / trimethylammonium methacrylate copolymer. However, unlike Eudragit L100-55, the test solutions pH 1.2, water and pH 6.8release 80% of the drug in 1 to 1.5 hours after a certain lag time. It was confirmed that a timed release formulation was obtained.
実施例86~87は薬物として無水カフェインを用いた場合であり、実施例87は中心核の粒度が30~42メッシュ(500~355μm)の場合であるが、無水カフェインの場合にも、試験液pH1.2、水では薬物を放出せず、pH6.8では一定のラグタイムの後、1~1.5時間で薬物を80%放出する時限放出製剤が得られることが確認された。
実施例88~89は、アクリル酸エチル・メタアクリル酸メチル・メタクリル酸塩化トリメチルアンモニウム共重合体に対して、メタクリル酸・アクリル酸エチル共重合体の代わりにオイドラギットS100及びオイドラギットL100を使用した場合であるが、オイドラギットL100-55の場合と異なり、試験液pH1.2、水及びpH6.8のいずれの試験液でも、一定のラグタイムの後、1~1.5時間で薬物を80%放出する時限放出製剤が得られることが確認された。 Examples 83 to 85 are cases in which the drug content was changed to 85 to 30%, but at any drug content, the test solution was pH 1.2, water did not release the drug, and pH 6.8 had a constant lag. It was confirmed that a timed release formulation that released 80% of the drug in 1 to 1.5 hours after the time was obtained.
Examples 86 to 87 are cases where anhydrous caffeine is used as a drug, and Example 87 is a case where the particle size of the central core is 30 to 42 mesh (500 to 355 μm), but also in the case of anhydrous caffeine, It was confirmed that a time-release preparation that releases 80% of the drug in 1 to 1.5 hours after a certain lag time was confirmed at pH 6.8, where the drug was not released with test solution pH 1.2 and water.
Examples 88 to 89 are cases where Eudragit S100 and Eudragit L100 were used in place of the methacrylic acid / ethyl acrylate copolymer with respect to the ethyl acrylate / methyl methacrylate / trimethylammonium methacrylate copolymer. However, unlike Eudragit L100-55, the test solutions pH 1.2, water and pH 6.8
実施例90
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表136に示すコーティング液、500g、1000g、1500g、2000g、2500、3000、3500gを噴霧し、顆粒に対してコーティング液(固形分)10%、20%、30%、40%、50%、60%、70%をコーティングした製剤を製造した。 Example 90
The coating liquid shown in Table 136, 500 g, 1000 g, 1500 g, 2000 g, 2500, 3000, 3500 g is sprayed on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 74, and the coating liquid is applied to the granules. (Solid content) Preparations coated with 10%, 20%, 30%, 40%, 50%, 60% and 70% were produced.
実施例74で製造した10%テオフィリン含有顆粒(20~30メッシュ)500gに、表136に示すコーティング液、500g、1000g、1500g、2000g、2500、3000、3500gを噴霧し、顆粒に対してコーティング液(固形分)10%、20%、30%、40%、50%、60%、70%をコーティングした製剤を製造した。 Example 90
The coating liquid shown in Table 136, 500 g, 1000 g, 1500 g, 2000 g, 2500, 3000, 3500 g is sprayed on 500 g of 10% theophylline-containing granules (20-30 mesh) produced in Example 74, and the coating liquid is applied to the granules. (Solid content) Preparations coated with 10%, 20%, 30%, 40%, 50%, 60% and 70% were produced.
試験例27
実施例90で製造した製剤を試験例1と同様にして溶出試験(試験液:pH6.8、UV波長:267nm)を実施した。図95に溶出曲線を示した。また、表137に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 27
The preparation produced in Example 90 was subjected to a dissolution test (test solution: pH 6.8, UV wavelength: 267 nm) in the same manner as in Test Example 1. FIG. 95 shows an elution curve. Table 137 shows the lag time and T 80% calculated from the elution curve.
実施例90で製造した製剤を試験例1と同様にして溶出試験(試験液:pH6.8、UV波長:267nm)を実施した。図95に溶出曲線を示した。また、表137に溶出曲線から計算したラグタイム及びT80%を示した。 Test Example 27
The preparation produced in Example 90 was subjected to a dissolution test (test solution: pH 6.8, UV wavelength: 267 nm) in the same manner as in Test Example 1. FIG. 95 shows an elution curve. Table 137 shows the lag time and T 80% calculated from the elution curve.
実施例90より、コーティング量を変えることでラグタイムを0.3~3.3時間に自由に調整することが可能であることが確認された。
From Example 90, it was confirmed that the lag time can be freely adjusted to 0.3 to 3.3 hours by changing the coating amount.
Claims (11)
- 薬物及び水膨潤性物質を含む中心核が、水不溶性高分子及び水不溶性賦形剤を含む皮膜で被覆されていることを特徴とする時限放出製剤。 A time-release preparation characterized in that a central core containing a drug and a water-swellable substance is coated with a film containing a water-insoluble polymer and a water-insoluble excipient.
- 水膨潤性物質が低置換度ヒドロキシプロピルセルロース、カルメロース又はその塩、クロスカルメロースナトリウム、カルボキシメチルスターチナトリウム、クロスポリビニルピロリドン、結晶セルロース及び結晶セルロース・カルメロースナトリウムから選ばれる1種又は2種以上である請求項1記載の時限放出製剤。 The water-swellable substance is one or more selected from low-substituted hydroxypropylcellulose, carmellose or a salt thereof, croscarmellose sodium, sodium carboxymethyl starch, cros polyvinylpyrrolidone, crystalline cellulose, and crystalline cellulose / carmellose sodium The time-release preparation according to claim 1.
- 水不溶性高分子がアクリル酸エチル・メタクリル酸メチル・メタクリル酸塩化トリメチルアンモニウムエチル三元共重合体、エチルセルロース、腸溶性高分子及び低pH溶解性高分子から選ばれる1種又は2種以上である請求項1又は2記載の時限放出製剤。 The water-insoluble polymer is one or more selected from ethyl acrylate / methyl methacrylate / methacrylated trimethylammonium ethyl terpolymer, ethyl cellulose, enteric polymer and low pH soluble polymer. Item 3. A time-release preparation according to item 1 or 2.
- 水不溶性高分子として塩化トリメチルアンモニウム基の含有量が異なる2種のアクリル酸エチル・メタクリル酸メチル・メタクリル酸塩化トリメチルアンモニウムエチル三元共重合体を含み、
2種の三元共重合体のうち塩化トリメチルアンモニウム基の含有量が相対的に低い三元共重合体と、その含有量が相対的に高い三元共重合体との含有質量比が1:0.10~3.0である請求項3記載の時限放出製剤。 2 types of ethyl acrylate / methyl methacrylate / methacrylated trimethylammonium ethyl terpolymers having different contents of trimethylammonium chloride groups as water-insoluble polymers,
The mass ratio of the ternary copolymer having a relatively low trimethylammonium chloride content to the ternary copolymer having a relatively high content of the two terpolymers is 1: The time-release preparation according to claim 3, which is 0.10 to 3.0. - 水不溶性高分子としてアクリル酸エチル・メタクリル酸メチル・メタクリル酸塩化トリメチルアンモニウムエチル三元共重合体と、エチルセルロースとを含み、
三元共重合体と、エチルセルロースとの含有質量比が1:0.05~0.2である請求項3記載の時限放出製剤。 As a water-insoluble polymer, ethyl acrylate, methyl methacrylate, methacrylate trimethyl ammonium ethyl terpolymer, and ethyl cellulose,
The time-release preparation according to claim 3, wherein the mass ratio of the terpolymer and ethylcellulose is 1: 0.05 to 0.2. - 水不溶性高分子としてアクリル酸エチル・メタクリル酸メチル・メタクリル酸塩化トリメチルアンモニウムエチル三元共重合体と、腸溶性高分子とを含み、
三元共重合体と、腸溶性高分子との含有質量比が1:0.12~0.24である請求項3記載の時限放出製剤。 As a water-insoluble polymer, ethyl acrylate, methyl methacrylate, methacrylate trimethylammonium ethyl terpolymer, and enteric polymer,
The time-release preparation according to claim 3, wherein the mass ratio of the terpolymer to the enteric polymer is 1: 0.12 to 0.24. - 水不溶性賦形剤がタルク、ステアリン酸マグネシウム、ステアリン酸カルシウム、カオリン、酸化チタン、酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウム、硫酸カルシウム、乾燥水酸化アルミニウムゲルから選ばれる1種又は2種以上である請求項1~6のいずれか一項に記載の時限放出製剤。 The water-insoluble excipient is one or more selected from talc, magnesium stearate, calcium stearate, kaolin, titanium oxide, magnesium oxide, calcium carbonate, magnesium carbonate, calcium phosphate, calcium sulfate, and dry aluminum hydroxide gel. The time-release preparation according to any one of claims 1 to 6.
- 中心核中の水膨潤性物質の含有量が30質量%以上である請求項1~7のいずれか一項に記載の時限放出製剤。 The time-release preparation according to any one of claims 1 to 7, wherein the content of the water-swellable substance in the central core is 30% by mass or more.
- 皮膜中の水不溶性高分子の含有量が30質量%以上である請求項1~8のいずれか一項に記載の時限放出製剤。 The time-release preparation according to any one of claims 1 to 8, wherein the content of the water-insoluble polymer in the film is 30% by mass or more.
- 中心核が水又は含水アルコールで湿式造粒することにより製造されたものである請求項1~9のいずれか一項に記載の時限放出製剤。 The time-release preparation according to any one of claims 1 to 9, wherein the central core is produced by wet granulation with water or hydrous alcohol.
- 皮膜の被覆量が中心核の全質量に対して10質量%以上である請求項1~10のいずれか一項に記載の時限放出製剤。 The time-release preparation according to any one of claims 1 to 10, wherein the coating amount of the film is 10% by mass or more based on the total mass of the central core.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008-035057 | 2008-02-15 | ||
| JP2008035057A JP2009191036A (en) | 2008-02-15 | 2008-02-15 | Timed release formulation |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2009101658A1 true WO2009101658A1 (en) | 2009-08-20 |
Family
ID=40956704
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2008/001707 WO2009101658A1 (en) | 2008-02-15 | 2008-06-30 | Timed-release pharmaceutical preparation |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP2009191036A (en) |
| WO (1) | WO2009101658A1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103006569A (en) * | 2011-09-23 | 2013-04-03 | 北京天衡药物研究院 | Method for improving aging resistance of film-controlled sustained-release pellet coated with aqueous dispersion |
| CN103211794A (en) * | 2012-01-18 | 2013-07-24 | 北京天衡药物研究院 | Quetiapine fumarate film-controlled slow-release pellet capsule |
| CN103211798A (en) * | 2012-01-18 | 2013-07-24 | 北京天衡药物研究院 | Losartan potassium membrane controlled-release pellet capsule |
| CN103211791A (en) * | 2012-01-18 | 2013-07-24 | 北京天衡药物研究院 | Venlafaxine hydrochloride film-controlled slow-release pellet capsule |
| JP2020506918A (en) * | 2017-01-26 | 2020-03-05 | トリアステック インコーポレイテッド | Controlled release dosage forms at specific gastrointestinal sites |
| US12042562B2 (en) | 2015-06-03 | 2024-07-23 | Triastek, Inc. | 3D printing methods for compartmented pharmaceutical dosage forms |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0761922A (en) * | 1993-08-25 | 1995-03-07 | Ss Pharmaceut Co Ltd | Controlled-release formulation |
| JPH07188057A (en) * | 1993-12-27 | 1995-07-25 | Ss Pharmaceut Co Ltd | Granular formulation manufacturing method |
| JPH08143476A (en) * | 1994-11-18 | 1996-06-04 | Japan Tobacco Inc | Medicinal agent release-controlling membrane and solid preparation |
| JPH09208458A (en) * | 1996-02-02 | 1997-08-12 | Ss Pharmaceut Co Ltd | Formulation with unpleasant taste masked |
| JP2000128779A (en) * | 1998-10-20 | 2000-05-09 | Mitsui Chemicals Inc | Controlled release medicine type preparation |
| WO2001010467A1 (en) * | 1999-08-09 | 2001-02-15 | Dainippon Pharmaceutical Co., Ltd. | Solid preparations containing chitosan powder and process for producing the same |
| WO2002066004A1 (en) * | 2001-02-23 | 2002-08-29 | Mitsubishi Pharma Corporation | Compositions with controlled drug release |
| WO2005092336A1 (en) * | 2004-03-26 | 2005-10-06 | Eisai R&D Management Co., Ltd. | Controlled-leaching preparation and process for producing the same |
-
2008
- 2008-02-15 JP JP2008035057A patent/JP2009191036A/en active Pending
- 2008-06-30 WO PCT/JP2008/001707 patent/WO2009101658A1/en active Application Filing
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0761922A (en) * | 1993-08-25 | 1995-03-07 | Ss Pharmaceut Co Ltd | Controlled-release formulation |
| JPH07188057A (en) * | 1993-12-27 | 1995-07-25 | Ss Pharmaceut Co Ltd | Granular formulation manufacturing method |
| JPH08143476A (en) * | 1994-11-18 | 1996-06-04 | Japan Tobacco Inc | Medicinal agent release-controlling membrane and solid preparation |
| JPH09208458A (en) * | 1996-02-02 | 1997-08-12 | Ss Pharmaceut Co Ltd | Formulation with unpleasant taste masked |
| JP2000128779A (en) * | 1998-10-20 | 2000-05-09 | Mitsui Chemicals Inc | Controlled release medicine type preparation |
| WO2001010467A1 (en) * | 1999-08-09 | 2001-02-15 | Dainippon Pharmaceutical Co., Ltd. | Solid preparations containing chitosan powder and process for producing the same |
| WO2002066004A1 (en) * | 2001-02-23 | 2002-08-29 | Mitsubishi Pharma Corporation | Compositions with controlled drug release |
| WO2005092336A1 (en) * | 2004-03-26 | 2005-10-06 | Eisai R&D Management Co., Ltd. | Controlled-leaching preparation and process for producing the same |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103006569A (en) * | 2011-09-23 | 2013-04-03 | 北京天衡药物研究院 | Method for improving aging resistance of film-controlled sustained-release pellet coated with aqueous dispersion |
| CN103211794A (en) * | 2012-01-18 | 2013-07-24 | 北京天衡药物研究院 | Quetiapine fumarate film-controlled slow-release pellet capsule |
| CN103211798A (en) * | 2012-01-18 | 2013-07-24 | 北京天衡药物研究院 | Losartan potassium membrane controlled-release pellet capsule |
| CN103211791A (en) * | 2012-01-18 | 2013-07-24 | 北京天衡药物研究院 | Venlafaxine hydrochloride film-controlled slow-release pellet capsule |
| US12042562B2 (en) | 2015-06-03 | 2024-07-23 | Triastek, Inc. | 3D printing methods for compartmented pharmaceutical dosage forms |
| US12324856B2 (en) | 2015-06-03 | 2025-06-10 | Triastek, Inc. | Oral drug dosage form comprising drug in the form of nanoparticles |
| JP2020506918A (en) * | 2017-01-26 | 2020-03-05 | トリアステック インコーポレイテッド | Controlled release dosage forms at specific gastrointestinal sites |
| JP7191385B2 (en) | 2017-01-26 | 2022-12-19 | トリアステック インコーポレイテッド | Controlled release dosage form for specific gastrointestinal sites |
| US12102721B2 (en) | 2017-01-26 | 2024-10-01 | Triastek, Inc. | Dosage forms of controlled release at specific gastrointestinal sites |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2009191036A (en) | 2009-08-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3611456B2 (en) | Theophylline sustained release tablets | |
| US4713248A (en) | Diffusion coated multiple-units dosage form | |
| JP3015105B2 (en) | Powder coated oral dosage form | |
| CN102805733B (en) | Granular preparation and manufacture method thereof | |
| JP2007070363A (en) | Immediate release tablet core of insoluble medicine having sustained-release coating | |
| JPH07252140A (en) | Immediate release tablet core of insoluble pharmaceutical with persistent release coating | |
| US20050013862A1 (en) | Functional powders for oral delivery | |
| KR102391496B1 (en) | A pharmaceutical formulation for oral administration with controlled dissolution rate comprising sustained-release pellets containing tamsulosin hydrochloride | |
| CN1244119A (en) | Rapidly releasing and taste-masking pharmaceutical dosage form | |
| KR20080059409A (en) | Pharmaceutical formulations with immediate release and / or controlled release properties | |
| JP5667113B2 (en) | Composition for coating for time-release preparation, time-release solid preparation coated thereby, and method for producing time-release solid preparation | |
| CN107213128A (en) | Controlled release hydrocodone formulations | |
| IE59287B1 (en) | Diffusion coated multiple-units dosage form | |
| JP2003508422A (en) | Controlled release pellet formulation | |
| JPH10203983A (en) | Bisacodyl dosage form with multilayer enteric polymer coating for colon delivery | |
| KR20040029373A (en) | Zero order controlled drug delivery system | |
| JP2002526437A (en) | AGITATION-INDEPENDENT PHARMACEUTICAL MULTI-UNIT RELEASE FORMULATION AND PROCESS FOR PRODUCING THE SAME | |
| WO2009101658A1 (en) | Timed-release pharmaceutical preparation | |
| WO2009101656A1 (en) | Delayed release preparation | |
| WO2013144176A1 (en) | Controlled release formulatin comprising mesalamine | |
| JP5013871B2 (en) | Oral sustained release pharmaceutical composition | |
| JP6905972B2 (en) | Pharmaceutical composition particles, orally disintegrating preparation containing them, method for producing pharmaceutical composition particles | |
| JP6924177B2 (en) | Pharmaceutical composition particles and orally disintegrating preparation containing them | |
| JP4864024B2 (en) | Timed release formulation | |
| ES2883352T3 (en) | Oral dosage form |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08790106 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 08790106 Country of ref document: EP Kind code of ref document: A1 |