[go: up one dir, main page]

WO2009104376A1 - スラスト力発生装置及び該スラスト力発生装置を適用した電磁機械 - Google Patents

スラスト力発生装置及び該スラスト力発生装置を適用した電磁機械 Download PDF

Info

Publication number
WO2009104376A1
WO2009104376A1 PCT/JP2009/000615 JP2009000615W WO2009104376A1 WO 2009104376 A1 WO2009104376 A1 WO 2009104376A1 JP 2009000615 W JP2009000615 W JP 2009000615W WO 2009104376 A1 WO2009104376 A1 WO 2009104376A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
coil
thrust
force
thrust force
Prior art date
Application number
PCT/JP2009/000615
Other languages
English (en)
French (fr)
Inventor
朝間淳一
千葉明
仁藤淳
Original Assignee
モーターソリューション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by モーターソリューション株式会社 filed Critical モーターソリューション株式会社
Publication of WO2009104376A1 publication Critical patent/WO2009104376A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings

Definitions

  • the present invention relates to a thrust force generating device and an electromagnetic machine to which the thrust force generating device is applied. Particularly, the assembling operation is simple, and the thrust force generating device and the thrust force are designed to reduce the number of parts and the spindle length.
  • the present invention relates to an electromagnetic machine to which a generator is applied.
  • the bearingless motor is a motor that can rotate without contact while the main shaft is magnetically levitated (see, for example, Non-Patent Document 1).
  • the stator is provided with rotating windings (motor windings).
  • magnetic levitation windings shaft supporting windings
  • a magnetic force acts in the radial direction of the main shaft.
  • the bearingless rotating machine 100 includes a bearingless motor unit 40 including a mover 4 and a stator 5, and a bearingless motor unit including a mover 6 and a stator 7. 50 and a three-unit structure of a thrust magnetic bearing 60.
  • FIG. 19 is a perspective configuration diagram around the bearingless motor unit 40 and the bearingless motor unit 50.
  • the radial displacement sensor 3 is provided for each of the x-axis and the y-axis, and is fixed to a housing (not shown), and measures the distance between the cylindrical sensor target 2 fixed to the main shaft 1. It is supposed to be.
  • the radial displacement sensor 14 is provided for each of the x-axis and the y-axis, and measures the distance between the columnar sensor target 8 fixed to the rotary shaft 1.
  • the thrust magnetic bearing 60 is composed of a disk-shaped magnetic disk 10 and two stator electromagnets 9 and 11 sandwiching the disk-shaped magnetic disk 10.
  • the axial movement (z) of the main shaft is controlled by the thrust magnetic bearing 60.
  • the axial displacement sensor 18 measures the displacement in the thrust direction using the magnetic disk 10 as a sensor target.
  • the mover 4 and the mover 6 of the bearingless motors 40 and 50, the sensor target 2 and sensor target 8, and the magnetic disk 10 are fixed through by the main shaft 1. Since the magnetic disk 10 having a large diameter is fixed to the lower end portion of the main shaft 1, the main shaft 1 has a convex shape as a whole rotating body. Further, at least one displacement sensor is required to control one degree of freedom.
  • a control device (not shown) measures the displacement / angle in the radial direction (x, y) and the conical direction ( ⁇ x, ⁇ y) by the radial displacement sensor 3 and the radial displacement sensor 14 and is suitable for the electromagnets 41 and 51.
  • a 4 degree of freedom movement of the main shaft 1 is actively controlled by flowing a large current.
  • the control device controls the main shaft 1 not to move by causing a current to flow through the electromagnet 11 and attracting the magnetic disk 10.
  • the control device when an external force is applied to the main shaft 1 in the downward direction in the drawing, the control device causes a current to flow through the electromagnet 9.
  • the relationship between current and thrust force at this time is non-linear.
  • FIG. 20 shows an overall structural diagram of a conventional 5-axis active control type bearingless rotating machine for this pump application. Note that the same components as those in FIG. 18 are denoted by the same reference numerals and description thereof is omitted.
  • an impeller 21 is disposed at the left end of the main shaft 1, and a predetermined fluid is sucked from a pump suction port 22 and discharged from a pump discharge port 25.
  • the above-described bearingless motors 40 and 50 are applied to a pump, the five-degree-of-freedom movement of the main shaft 1 is actively controlled. It is possible to operate.
  • the impeller 21 integrated with the main shaft 1 can be floated and rotated completely without contact, seals (shaft seals), bearings, lubricating oil, etc. are not required, and maintenance-free and clean with no dust generation.
  • a pump capable of liquid feeding can be realized.
  • the liquid flows between the stator and the mover, it is necessary to cover the surface of the stator / mover with a partition wall 23 such as a resin cover.
  • a bearingless motor is characterized by being able to be operated at a higher speed than a normal motor.
  • the distance between the radial displacement sensor 14 and the electromagnet 9 having the magnetic core is short. If the distance between the displacement sensor and the electromagnet 9 is short, there is a problem that the measurement sensitivity is lowered when the radial displacement sensor 14 such as an eddy current type or an inductance type is used.
  • the present invention solves the problems such as the limitation on the rotational speed as described above and cavitation when applied to a fluid machine, and has a high productivity and excellent reliability, and a thrust force generator and the thrust force.
  • An object is to provide an electromagnetic machine to which a generator is applied.
  • the electromagnetic machine provided with the thrust force generator of the present invention (1) includes the first permanent magnet attached to the main shaft, the periphery of the first permanent magnet, and the center of the first permanent magnet.
  • the thrust direction motion of the main shaft can be actively controlled by supplying an appropriate current to the air-core coil. Since the air-core coil does not have an iron core, the measurement sensitivity of the sensor does not decrease due to a change in the eddy current or inductance value as in the prior art even if the distance from the radial displacement sensor is close.
  • the air-core coil is located at a position shifted in the main shaft negative direction from the first coil disposed at a position shifted in the main shaft positive direction.
  • An electromagnetic machine comprising: a second coil disposed symmetrically with respect to the first coil, wherein the second coil and the first coil are each subjected to current control. .
  • the electromagnetic machine provided with the thrust force generator of the present invention (3) is configured to include a support plate at the end of the first permanent magnet in the main axis direction.
  • the support plate When the support plate is made of a magnetic material, the support plate can concentrate the magnetic flux on the first coil and the second coil. For this reason, the generated force in the axial direction can be increased. Moreover, this support plate has the effect of suppressing rattling when the first permanent magnet is attached to the main shaft.
  • the support plate can be made of non-metal. Even in this case, the effect of suppressing rattling when the first permanent magnet is attached to the main shaft can be similarly obtained.
  • the support plate may be a nonmagnetic material. *
  • the electromagnetic machine of the present invention (4) includes a radial force generator that generates a radial electromagnetic force on the main shaft, and the diameter of the first permanent magnet is fixed to the radial force generator. It is characterized by being formed below the inner diameter of the child.
  • the electromagnetic machine includes, for example, a bearingless motor and a magnetic bearing device.
  • the radial force generation device may perform only radial control on the main shaft, or may involve rotation driving.
  • the diameter of the first permanent magnet By forming the diameter of the first permanent magnet to be equal to or smaller than the diameter inside the stator of the radial force generator, the entire rotating body is cylindrical, and the rotating body can be easily inserted into the housing. For this reason, the assembly work of the pump which applied the electromagnetic machine can be performed easily. Since the diameter of the first permanent magnet is smaller than the size of the conventional magnetic disk, cavitation hardly occurs.
  • the radial direction between the outer peripheral surface of the first permanent magnet, the plating formed on the outer peripheral surface, or the ring covering the outer peripheral surface was provided.
  • the electromagnetic machine of the present invention (6) is characterized in that the radial force generator is a bearingless motor that rotates the main shaft in a non-contact manner while magnetically levitating.
  • a second permanent magnet is separately provided on the stator side so as to face the end in the main axis direction of the first permanent magnet, and the second permanent magnet is A repulsive force or an attractive force is generated in the thrust direction with respect to the first permanent magnet.
  • the second permanent magnet generates a repulsive force or attractive force in the thrust direction with respect to the first permanent magnet, so that, for example, the thrust force acting on the impeller during pump driving is balanced or canceled out in part,
  • the current of the air core coil can be saved.
  • the first permanent magnet attached to the main shaft and the air-core coil having no iron core are provided, so that by supplying a current to the air-core coil, the axial direction The electromagnetic force can be generated.
  • the air-core coil By causing an appropriate current to flow through the air-core coil, it is possible to actively control the movement of the main shaft in the thrust direction.
  • the diameter of the first permanent magnet is formed to be equal to or smaller than the diameter inside the stator of the radial force generator, the entire rotating body has a cylindrical shape and can be easily inserted into the housing. For this reason, it is excellent in the assembly workability
  • FIG. 1 is a cross-sectional configuration diagram of a five-degree-of-freedom control type bearingless rotating machine according to a first embodiment of the present invention. It is a figure explaining the thrust direction generated force of this invention and a prior art example. It is a figure explaining the principle of the thrust force generator of this invention. It is an analysis model figure in the case of one air-core coil. It is an analysis result at the time of changing the magnet thickness in the case of one air-core coil. It is an analysis model figure in the case of two air-core coils. It is an analysis result at the time of changing a magnet thickness in the case of two air-core coils. It is the analysis result of the surrounding magnetic flux by the presence or absence of a magnetic disk of a cylindrical permanent magnet.
  • FIG. 3 is a perspective configuration diagram around a bearingless motor unit. This is a structural example in which a conventional bearingless rotating machine is applied to a pump.
  • FIG. 1 is a cross-sectional configuration diagram of a five-degree-of-freedom control type bearingless rotating machine 200 according to a first embodiment of the present invention. Note that the same components as those in FIG. 16 described in the background art are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 1 differs from the configuration of the conventional bearingless rotating machine 100 shown in FIG. 16 in that the conventional thrust magnetic bearing 60 portion uses the magnetic disk 10 having a large diameter, so that the rotating body has a convex shape as a whole. In contrast to the above, the rotating body portion of the thrust force generator 160 is formed in a cylindrical shape as a whole.
  • a cylindrical permanent magnet 13 serving as a mover sandwiched from above and below by magnetic disks 16 and 17 is attached to the lower end portion of the main shaft 1.
  • the permanent magnet 13 is magnetized with an N pole on the upper surface and an S pole on the lower surface.
  • the radial dimension of the permanent magnet 13 is the same as that of the movers 4 and 6 and the sensor targets 2 and 8 of the bearingless motors 40 and 50.
  • An air-core coil 12 serving as a stator is disposed on the outer periphery of the permanent magnet 13 and the magnetic disks 16 and 17 and at a position higher than the center of gravity of the permanent magnet by a predetermined distance.
  • the air core coil 12 is wound around the main shaft 1, the air core coil 12 is not provided with an iron core as in the prior art.
  • the air core coil 12 is fixed by a resin forming the housing 26.
  • an air core coil 15 is similarly arranged at a symmetrical position lower than the center of gravity of the air core coil 12 and the center of gravity of the permanent magnet. A magnetic flux generated by the permanent magnet 13 passes through the air core coils 12 and 15.
  • the configuration of the bearingless rotating machine 200 according to the first embodiment of the present invention will be described.
  • the entire rotating body becomes cylindrical and the rotating body is inserted into the housing 26. It can be done easily. For this reason, the assembly work of a pump can be performed easily. Since the partition wall 23 as a resin cover can also be formed in a cylindrical shape, the mechanical strength is increased. Since the radial dimension of the permanent magnet 13 is smaller than that of the conventional magnetic disk 10, cavitation is less likely to occur. However, the radial dimension of the permanent magnet 13 may be smaller than the radial dimension of the movers 4 and 6 and the sensor targets 2 and 8.
  • the operation principle of the thrust force generator 160 of FIG. 1 will be described.
  • the magnetic flux generated from the N pole on the upper surface of the permanent magnet 13 crosses the air core coil 12 and then passes outside the air core coil 12 and the air core coil 15. And after crossing the air-core coil 15, it returns to the south pole of the lower surface. Accordingly, the air core coil 12 passes a magnetic flux that goes out of the N pole of the permanent magnet 13 and goes outward in the radial direction, and the air core coil 15 passes a magnetic flux that flows inward to the S pole.
  • the air-core coil 12 does not have an iron core, the measurement sensitivity of the sensor does not decrease due to a change in eddy current or inductance value as in the conventional case even if the air-displacement coil 14 is disposed close to the radial displacement sensor 14.
  • This thrust force generator 160 uses the permanent magnet 13 for the mover and does not use a magnetic material for the surrounding stator. For this reason, even if the main shaft 1 is displaced in the radial direction, the magnetic attractive force by the thrust force generator 160 is not generated. Therefore, the influence of the thrust force generator 160 on the bearingless motors 40 and 50 can be minimized.
  • FIG. 2 is a diagram for explaining the thrust generating force of the conventional bearingless rotating machine and the thrust force generating device of the present invention.
  • the horizontal axis is the current flowing through the coil, and the vertical axis is the generated force in the thrust direction.
  • the relationship between current and thrust force is non-linear.
  • a push-pull method is required in which a bias current is passed and the currents of the electromagnets 9 and 11 are increased on the one hand and decreased on the other hand.
  • Thrust force generator 160 of the present embodiment using the air-core coils 12 and 15 as shown as “thrust force of the present embodiment” in FIG. It has the characteristic of being linear. Thrust force can be obtained as much as the conventional force.
  • the magnetic flux from the permanent magnet 13 acts as a fixed bias magnetic flux on the air core coils 12 and 15, the current flowing through the air core coils 12 and 15 required to obtain the thrust force can be small. Note that it is not always necessary to dispose both of the air-core coils 12 and 15, and it is possible to control the axial direction of the rotating body with only one of them.
  • the magnetic disks 16 and 17 are described as being disposed. However, the magnetic disks 16 and 17 can be operated even if they are omitted. By adding the magnetic discs 16 and 17, the generated force in the axial direction can be increased.
  • the magnetic disks 16 and 17 are structurally reliable when the permanent magnet 13 is attached through the main shaft 1.
  • the permanent magnet 13 is fragile, it is difficult to press fit, and the inner diameter of the permanent magnet 13 is designed to be larger than the outer diameter of the main shaft 1 and needs to be an intermediate fit or a clearance fit. Since the magnetic discs 16 and 17 are press-fitted with the permanent magnet 13 interposed therebetween, the permanent magnet 13 can attract and fix the magnetic discs 16 and 17, so that there is structural reliability.
  • the disk may be a nonmagnetic material. In this case, the permanent magnet 13 is fixed by a compressive force from above and below.
  • the thrust force generation device of the present invention was subjected to magnetic field analysis by the finite element method, prototyped, and incorporated into a 5-degree-of-freedom control type bearingless rotating machine, and the details will be described (Morning, Chiba, Fukao “Cylinder Magnet Movable Coreless Thrust Actuator” (see IEEJ August 2008 Rotating Machine Study Group RM-08-41).
  • FIG. 3 shows the principle of thrust force generation by the thrust force generator of the present invention.
  • a cylindrical permanent magnet magnetized in the thrust direction is used for the mover, and a coreless coil (air core coil) wound in the rotational direction is used for the stator.
  • a Lorentz force acts on the coil by the radial component of the magnetic flux generated from the permanent magnet and the current of the coreless coil (air core coil). Since the coil is fixed, the reaction generates a force in the thrust direction of the permanent magnet.
  • the entire rotation spindle can be designed in a cylindrical shape. Thereby, simplification of processing and assembly and reduction in peripheral speed can be expected.
  • a coreless coil air-core coil
  • Control and driving of the thrust magnetic bearing 60 shown in FIG. 18 generally requires an electromagnet bias current and a three-phase inverter.
  • the thrust force generator of the present invention does not require a bias current and can be driven only by a single-phase inverter.
  • the thrust force generator of the present invention is designed by magnetic field analysis software using 3D-FEM (JMAG-Studio, Japan Research Institute Solutions). In this study, the target value of rated thrust force is 100N.
  • FIG. 4 shows an analysis model (single coil model).
  • the magnetic gap was designed to be 5 mm so that a stator / rotor partition wall with a thickness of several mm could be attached. Due to the limitation of installation space, the length of the proposed actuator portion was set to 45 mm or less.
  • tp, tc, and wc are the magnet thickness, the coil thickness, and the coil width, respectively.
  • FIG. 5 shows the analysis results when the magnet thickness is changed.
  • the current of the coreless coil air core coil
  • the permanent magnet was set to a neodymium permanent magnet.
  • the magnetic flux density decreases to about 10% of the maximum value. For this reason, it is thought that the magnetic flux after 30 mm has little influence on generated force. Therefore, the coil width was determined to be 30 mm.
  • FIG. 5 shows an analysis result of the thrust force with respect to the coil thickness when the magnet thickness is changed with a coil width of 30 mm.
  • the analysis was performed with a space factor of 50% and a current density of 8 A / mm 2 .
  • the generated thrust force is about 55 N at the maximum, and it has been clarified that only one coreless coil (air core coil) cannot obtain a sufficient thrust force that satisfies the target in the magnetic field analysis.
  • FIG. 6 shows the analysis result of the thrust force with respect to the magnet thickness in the double coil model.
  • the coil thickness was 18 mm, and the current conditions were the same as above. It can be confirmed that the thrust force increases as the magnet thickness increases. In addition, the thrust force increased approximately twice as compared with the single coil model.
  • the thrust force has been achieved to the target value of 100N in the analysis, but some margin is required in consideration of the error between the measured value and the analyzed value. is there. Therefore, by attaching an electromagnetic steel plate having the same diameter as the magnet to the top and bottom surfaces of the permanent magnet, the radial component of the magnetic flux in the coil portion is increased, and the thrust force is increased.
  • the magnetic field around the cylindrical magnet mover with and without the steel sheet was analyzed by 3D-FEM.
  • FIG. 8 shows the magnetic flux
  • ts is the steel plate thickness. Since the magnetic flux density when the electromagnetic steel plate is attached is increased by about 30% at the maximum, an increase in Lorentz force can be expected.
  • FIG. 10 the analysis result of the thrust force with respect to steel plate thickness is shown. The coil thickness and magnet thickness were 18 mm and 25 mm, respectively. Thrust force increased by about 25% by using electrical steel sheets. From the above analysis results, it was revealed that the electrical steel sheet is effective.
  • FIG. 11 shows a cylindrical magnet mover and a coreless coil (air core coil) attached to the outside of the motor frame. Since neodymium permanent magnets are fragile, they are difficult to fix by press-fitting into the shaft, and rattling occurs. On the other hand, the electromagnetic steel sheet can be press-fitted into the shaft and fixed. Therefore, the structure in which the permanent magnet is sandwiched between the two electromagnetic steel sheets can suppress the rattling of the permanent magnet. A 2 mm thick polycarbonate partition was attached to the rotor / stator, and the movable range of the rotor was limited to ⁇ 1 mm.
  • an eddy current displacement sensor (PU-14, Electronic Application Company) was used.
  • PU-14 eddy current displacement sensor
  • the inductance and resistance were 225 mH and 10.5 ohms, respectively.
  • the rotor can be magnetically levitated only by the four-degree-of-freedom control of translation / tilt by a bearingless rotating machine.
  • the movement in the thrust direction is passively supported by the magnetic coupling of the bearingless rotating machine.
  • the thrust direction spring constant at this time was calculated from the natural frequency of the rotor at the time of impact excitation of 8.5 Hz and the mass of 3.6 kg, and was 1.0 ⁇ 104 N / m.
  • FIG. 12 shows the thrust direction displacement z of the rotor at the time of impact excitation and the current iz of the coreless coil (air core coil) depending on the presence / absence of positioning control of the thrust thrust force generator.
  • Positioning control was started at the time of free vibration due to impact excitation, and further impact excitation was applied. At the start of control and at the time of re-vibration, no significant vibration or the like was observed, and thus it became clear that the positioning control system in the thrust direction is stable.
  • the generated force of the prototype thrust force generator of the present invention is measured.
  • a force gauge (DS2-200N, IMADA)
  • the current of the coreless coil air core coil
  • FIG. 13 shows the measurement results in comparison with the analysis results.
  • the force coefficient of the thrust force generator of the present invention obtained by approximating the measurement result by least squares was 23.0 N / A. Therefore, it was clarified that the thrust force generator of the present invention that was prototyped can generate a thrust force with a rated value of 4.5 A and a target value of 100 N.
  • a current flows through the coreless coil (air core coil) and magnetic flux is generated.
  • no touchdown or significant vibration of the bearingless rotating machine was observed. Therefore, it is considered that the steady current of the thrust force generator of the present invention has no influence on the bearingless rotating machine.
  • the error from the analysis value of the force coefficient was about 10%. This is thought to be due to differences in the residual magnetic flux density of the cylindrical magnet, the saturation magnetic flux density of the magnetic steel sheet, and the like. Therefore, as shown in FIG. 8, the radial magnetic flux density at a position z 2 mm away from the side surface of the mover was measured along the thrust direction using a teslameter (GV-300, Nippon Electromagnetic Instrument Co., Ltd.).
  • FIG. 16 shows the measured values in comparison with the analyzed values. The magnetic flux density was the largest in the vicinity of the side surface of the electrical steel sheet, and the difference between the measured value and the analyzed value was about 10%. This difference is considered to be the cause of the difference between the measured value of the force coefficient and the analysis value.
  • FIG. 15 shows the thrust displacement and radial displacement sensor output of the rotor and the shaft support winding U-phase current of the bearingless rotating machine at a rotation speed of 510 r / min.
  • FIG. 16 shows a cross-sectional configuration diagram of a five-degree-of-freedom control type bearingless rotating machine 300 according to the second embodiment of the present invention.
  • the radial displacement sensor 14 is inserted between the air core coils 12 and 15 that are arranged two above and below.
  • the periphery of the permanent magnet 13 is plated with metal, and the permanent magnet 13 is a target for the radial displacement sensor 14.
  • the plating is preferably made of nickel, which is a magnetic material.
  • a thin ring may be provided on the outer periphery of the permanent magnet 13 instead of plating.
  • the roundness of the outer periphery of the permanent magnet 13 is low. By providing the ring, the roundness can be improved.
  • the ring material is metal
  • the ring is the target for the radial displacement sensor.
  • the material of the ring is non-metallic, the plated surface of the permanent magnet 13 is the target.
  • FIG. 17 shows a sectional configuration diagram of a five-degree-of-freedom control type bearingless rotating machine 400 according to the third embodiment of the present invention. Note that the same elements as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
  • a hollow ring-shaped permanent magnet 19 is fixed to the housing 26 so as to face the permanent magnet 13 below the permanent magnet 13.
  • a magnetic attractive force is constantly generated between the permanent magnet 19 and the permanent magnet 13.
  • the permanent magnet 19 is movable in the thrust direction and the distance from the permanent magnet 13 is adjusted, the generated thrust force can be adjusted.
  • the permanent magnet 13 and the permanent magnet 19 are described as generating a magnetic attractive force.
  • the permanent magnet 19 is not necessarily provided, and instead of the permanent magnet 19, an iron plate, an iron ring, or the like is used. A ferromagnetic material may be provided. In this case, there is an advantage that the cost can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

【課題】回転数の制限、流体機械に応用した場合にキャビテーション等の問題点を解決して、生産性が高く、信頼性に勝れた、スラスト力発生装置及び該スラスト力発生装置を適用した電磁機械を提供する。 【解決手段】主軸1に取り付けられて軸方向に励磁された第1の永久磁石13と、該第1の永久磁石13の周囲でかつ該第1の永久磁石13の重心より軸方向に所定距離ずれた位置に捲回された鉄心を有さない一つ以上の空心コイル15と、を有し、 該空心コイル15に電流を供給することにより、軸方向の電磁力を発生するスラスト力発生装置160を備えた電磁機械。  

Description

スラスト力発生装置及び該スラスト力発生装置を適用した電磁機械
本発明はスラスト力発生装置及び該スラスト力発生装置を適用した電磁機械に係わり、特に組み立て作業が簡単であり、部品点数の低減及び主軸長の短縮化を図ったスラスト力発生装置及び該スラスト力発生装置を適用した電磁機械に関する。
ベアリングレスモータは、主軸が磁気浮上しながら、非接触で回転が可能なモータである(例えば、非特許文献1参照)。一般的なモータでは、固定子に回転用の巻線(電動機巻線)が施されているが、ベアリングレスモータでは、更に、磁気浮上用の巻線(軸支持巻線)が追加で施されている。この軸支持巻線に電流を流すと、主軸の半径方向には磁気力が作用する。主軸の半径方向の変位を計測し、この磁気力を調整することで、非接触磁気浮上支持が可能になる。
 従来、このベアリングレスモータ2機と、スラスト磁気軸受を用いて、主軸の回転方向(θz)以外の5自由度運動(x、y、z、θx、θy)を磁気浮上制御するベアリングレス回転機が報告されている(例えば、非特許文献2参照)。このベアリングレス回転機100は、図18の断面図に示すように、可動子4と固定子5から構成されるベアリングレスモータユニット40、可動子6と固定子7から構成されるベアリングレスモータユニット50、及びスラスト磁気軸受60の3ユニット構造である。
 図19には、またベアリングレスモータユニット40及びベアリングレスモータユニット50回りの斜視構成図を示す。図18において、径方向変位センサ3はx軸とy軸用にそれぞれ配設され、図示しないハウジングに固定されており、主軸1に固定された円柱状のセンサターゲット2との間の距離を測定するようになっている。また、径方向変位センサ14も同様に、x軸とy軸用にそれぞれ配設され、回転軸1に固定された円柱状のセンサターゲット8との間の距離を測定するようになっている。
 一方、スラスト磁気軸受60は、円板状の磁性ディスク10と、それを挟む2個の固定子電磁石9及び11から構成される。主軸の軸方向運動(z)は、このスラスト磁気軸受60により制御されるようになっている。また、軸方向変位センサ18は、磁性ディスク10をセンサターゲットとして、スラスト方向の変位を測定するようになっている。
ベアリングレスモータ40、50の可動子4及び可動子6、センサターゲット2及びセンサターゲット8、磁性ディスク10は主軸1により貫通固定されている。この主軸1は、径の大きな磁性ディスク10が主軸1の下端部に固定されているため、回転体全体として凸型の形状を有する。また、変位センサは、1自由度を制御するために、少なくとも1個必要である。
 次に、図18に基づき従来技術の磁気軸受の動作原理を説明する。図示しない制御装置は、径方向変位センサ3及び径方向変位センサ14により、半径方向(x、y)、及び、コニカル方向(θx、θy)の変位・角度を計測し、電磁石41、51に適切な電流を流すことで、主軸1の4自由度運動を能動的に制御する。
 一方、軸方向については、主軸1に対し紙面上方向に外力が加わった場合、制御装置が電磁石11に電流を流し、磁性ディスク10を吸引することで、主軸1が移動しないように制御する。一方、主軸1に対し紙面下方向に外力が加わったら、制御装置が電磁石9に電流を流す。このときの電流とスラスト力の関係は非線形である。線形化するには、バイアス電流を流し、電磁石9と11の電流を、一方では増やし、他方で減らすプシュプル方式とする必要がある。
現在、この5自由度制御型ベアリングレス回転機の図20に示すような産業用遠心ポンプへの応用が検討されている。図20にこのポンプ用途向けの従来の5軸能動制御型ベアリングレス回転機の全体構造図を示す。なお、図18と同一要素のものについては同一符号を付して説明は省略する。
 図20において、主軸1の左端には羽根車21が配設されており、ポンプ吸入口22より所定の流体が吸引され、ポンプ吐出口25よりこの流体が吐出されるようになっている。
 前述したベアリングレスモータ40、50をポンプに適用した場合、主軸1の5自由度運動を能動的に制御しているため、ポンプ駆動中、主軸1に流体力が作用しても、安定して動作可能である。
そして、また、主軸1と一体化した羽根車21を完全非接触で浮上回転させることができるため、シール(軸封)・軸受・潤滑油などが不要となり、メンテナンスフリーで発塵のないクリーンな液送が可能なポンプを実現できる。
 しかし、この様な用途では、液体が固定子と可動子の間に流れ込むため、固定子・可動子表面を樹脂カバー等の隔壁23で覆う必要がある。
なお、半径方向2自由度制御のベアリングレス回転機のみでポンプを構成した場合(例えば特許文献1や非特許文献3参照)、ポンプ駆動中のスラスト方向推進力により、羽根車21に力が作用し、羽根車21とハウジング26が衝突する恐れがあった。
A. Chibaら著、「Magnetic Bearings and Bearingless Drives」、Elsevier Newnes Press出版、2005年、p.12-34 朝間ら著、「ワイドギャップベアリングレスモータの磁気支持特性」、平成19年電気学会産業応用部門大会、III-157-162 M. Neffら著、「Bearingless centrifugal pump for highly pure chemicals」、ISMB-8、pp.283-287、2002 特開2001-016887「電気式回転駆動装置」
 ところで、上記した従来のポンプでは、回転体が全体として凸型の形状を有することから、隔壁23の加工が複雑となり、回転体をハウジング内部に挿入するのに、ハウジングを分離する等の必要があり、部品件数が増加する。また、ポンプなどに使用した場合は液体が漏れないようにするために分離した部分をシールする必要があり、組み立て作業が煩雑である。このため、生産性が悪く、コスト高であった。また、この様な可動子や固定子を覆う隔壁23には角部が多く形成されているため、クラックが入りやすく、信頼性に不安があるいう問題があった。
 更に、磁性ディスク10の外周を大きくしなければスラスト力が得られない。ベアリングレスモータは通常のモータより高速で運転できることに特徴があるが、高速に運転すると周速の増大により機械的な強度の問題と、流体機械に応用した場合にキャビテーションが発生する等の問題があった。更に、図18の断面図に示すように、径方向変位センサ14と、磁性体コアを有する電磁石9との距離が近い。この様な変位センサと電磁石9の距離が近いと、渦電流型やインダクタンス型等の径方向変位センサ14を用いた場合、測定感度が低下するという問題があった。
本発明は、以上のような回転数の制限、流体機械に応用した場合にキャビテーション等の問題点を解決して、生産性が高く、信頼性に勝れた、スラスト力発生装置及び該スラスト力発生装置を適用した電磁機械を提供することを目的とする。
このため本発明(1)のスラスト力発生装置を備えた電磁機械は、主軸に取り付けられた第1の永久磁石と、該第1の永久磁石の周囲でかつ該第1の永久磁石の中心より軸方向に所定距離ずれた位置に捲回された鉄心を有さない空心コイルとを備え、該空心コイルに電流を供給することにより、軸方向の電磁力を発生することを特徴とする電磁機械である。 
空心コイルに対し電流を流すと、ローレンツ力が空心コイルに作用する。空心コイルは固定されているため、その反作用を受け、第1の永久磁石にはローレンツ力とは逆方向に力が作用する。このことにより、空心コイルに適切な電流を流すことで、主軸のスラスト方向運動を能動的に制御することができる。空心コイルには鉄心が無いため、径方向変位センサ等と距離を近く配設されても従来のように渦電流やインダクタンスの値が変化する等によりセンサの測定感度が低下することはなくなる。
 また、本発明(2)のスラスト力発生装置を備えた電磁機械は、前記空心コイルが、主軸正方向にずれた位置に配設された第1のコイルと、主軸負方向にずれた位置に該第1のコイルに対して対称的に配設された第2のコイルとを備え、該第2のコイル及び前記第1のコイルとがそれぞれ電流制御されることを特徴とする電磁機械である。
第1のコイルと第2のコイルに対しそれぞれローレンツ力が発生するので、スラスト力を増大させることができる。
 更に、本発明(3)のスラスト力発生装置を備えた電磁機械は、前記第1の永久磁石の主軸方向端には支持板を備えて構成した。
 この支持板を磁性体で構成した場合、この支持板により、第1のコイル及び第2のコイルに対し磁束を集中させることができるようになる。このため、軸方向への発生力が増大可能となる。また、この支持板は、第1の永久磁石を主軸に対し取り付ける場合の、がたつきを抑える効果がある。なお、支持板は非金属で構成することも可能である。この場合であっても第1の永久磁石を主軸に対し取り付ける場合の、がたつきを抑える効果は同様に得ることができる。なお、支持板は、非磁性体であってもよい。 
更に、本発明(4)の電磁機械は、前記主軸に径方向の電磁力を発生する径方向力発生装置とを備え、前記第1の永久磁石の直径が、前記径方向力発生装置の固定子内側の直径以下に形成されたことを特徴とする。 
 電磁機械は例えばベアリングレスモータや磁気軸受装置を備えたものである。径方向力発生装置は、主軸に対し径方向制御のみを行うものであってもよいし、回転駆動を伴うものであってもよい。
 第1の永久磁石の直径が、径方向力発生装置の固定子内側の直径以下に形成されたことで、回転体全体として円筒形状になりハウジング内に回転体を挿入しやすくできる。このため、電磁機械を適用したポンプの組み立て作業が楽に行える。第1の永久磁石の直径は従来の磁性ディスクの寸法より小さいため、キャビテーションも生じ難い。
 更に、本発明(5)の電磁機械は、前記第1の永久磁石の外周面、もしくは該外周面の表面に形成されたメッキ、もしくは該外周面を被覆するリングのいずれかとの間の径方向位置を検出する径方向変位センサを備えて構成した。
第1の永久磁石の外周をセンサターゲットとすることで、余分なセンサターゲットを排除し、軸長の短縮化が実現可能となる。
更に、本発明(6)の電磁機械は、前記径方向力発生装置は、前記主軸を磁気浮上させつつ非接触で回転させるベアリングレスモータであることを特徴とする。
更に、本発明(7)の電磁機械は、前記第1の永久磁石の主軸方向端に対峙するように固定子側に別途第2の永久磁石が配設され、該第2の永久磁石が前記第1の永久磁石に対しスラスト方向に反発力、もしくは吸引力を発生することを特徴とする。 
 第2の永久磁石が第1の永久磁石に対しスラスト方向に反発力、もしくは吸引力を発生することで例えばポンプ駆動中に羽根車に作用するスラスト力と平衡、もしくは一部をキャンセルして、空心コイルの電流を節約することができる。
 以上説明したように本発明によれば、主軸に取り付けられた第1の永久磁石と、鉄心を有さない空心コイルとを備えて構成したので、空心コイルに電流を供給することにより、軸方向の電磁力を発生することができる。空心コイルに適切な電流を流すことで、主軸のスラスト方向運動を能動的に制御することができる。
 また、第1の永久磁石の直径を径方向力発生装置の固定子内側の直径以下に形成したので、回転体全体として円筒形状になりハウジング内に回転体を挿入しやすくできる。このため、電磁機械を適用したポンプの組み立て作業性に優れ生産性が高い。第1の永久磁石の直径は従来の磁性ディスクの寸法の半分程度であるので、同一回転で運転した場合のキャビテーションの発生確率が大幅に減ずる。よって、生産性にすぐれ、信頼性の高い電磁機械が実現できる。
本発明の第1実施形態である5自由度制御型のベアリングレス回転機の断面構成図である。 本発明と従来例のスラスト方向発生力を説明する図である。 本発明のスラスト力発生装置の原理を説明する図である。 一つの空心コイルの場合の解析モデル図である。 一つの空心コイルの場合で磁石厚を変更した場合の解析結果である。 二つの空心コイルの場合の解析モデル図である。 二つの空心コイルの場合で磁石厚を変更した場合の解析結果である。 円筒状の永久磁石の磁気円板の有無による周辺磁束の解析結果である。 円筒状の永久磁石の磁気円板の有無による周辺磁場の解析結果である。 磁気円板の厚さに対するスラスト力の解析結果である。 本発明のスラスト力発生装置の試作品の主要部品を示す図である。 本発明のスラスト力発生装置の制御の有無による過渡応答の差を示すデータである。 スラスト力の解析値と実測の差異を示す図である。 半径方向の磁束の解析値と実測の差異を示す図である。 回転数510r/minにおける、回転子のスラスト変位と径方向変位センサの出力とベアリング回転機の軸支持巻線U相電流を示す図である。 本発明の第2実施形態である5自由度制御型のベアリングレス回転機の断面構成図である。 本発明の第3実施形態である5自由度制御型のベアリングレス回転機の断面構成図である。 従来のベアリングレス回転機の断面図である。 ベアリングレスモータユニット回りの斜視構成図である。 従来のベアリングレス回転機をポンプに適用した構造例である。
符号の説明
1         主軸
  2、8       センサターゲット
  3         径方向変位センサ
  4、6       可動子
  5、7       固定子
 12、15      空心コイル
 13、19      永久磁石
 14         径方向変位センサ
 16、17      磁性体円板
 18         軸方向変位センサ
 40、50      ベアリングレスモータユニット
 60、160     スラスト力発生装置
200、300、400 ベアリングレス回転機
 以下、本発明を実施するための最良の形態について、図を参照しながら説明する。なお、これはあくまでも一例であって、本発明の技術的範囲はこれに限られるものではない。
 図1は、本発明の第1実施例である5自由度制御型のベアリングレス回転機200の断面構成図である。なお、背景技術で説明した図16と同一要素のものについては同一符号を付して説明は省略する。図1が従来の図16に示すベアリングレス回転機100の構成と異なるのは、従来のスラスト磁気軸受60部分が径の大きな磁性ディスク10を適用していたため回転体が全体として凸型の形状を有していたのに対し、スラスト力発生装置160の回転体部分が全体として円筒状に形成された点である。
 図1において、主軸1の下端部分には磁性体円板16、17により上下から挟まれた可動子となる円柱状の永久磁石13が取り付けられている。永久磁石13は、上面がN極、下面がS極に着磁されている。この永久磁石13の径方向寸法は、ベアリングレスモータ40、50の可動子4、6、及びセンサターゲット2、8と同じである。
そして、この永久磁石13、磁性体円板16、17の外周であって、かつこの永久磁石の重心より所定距離高い位置には固定子となる空心コイル12が配設されている。空心コイル12は主軸1回りに捲回されているが、この空心コイル12には従来のように鉄心は配設されていない。そして、この空心コイル12はハウジング26を形成する樹脂により固定されている。
 一方、この空心コイル12と永久磁石の重心を隔てた重心より所定距離低い対称となる位置に空心コイル15が同様に配設されている。空心コイル12、15には、永久磁石13で発生した磁束が通過するようになっている。
次に、本発明の第1の実施例であるベアリングレス回転機200の構成を説明する。永久磁石13の径方向寸法をベアリングレスモータ40、50の可動子4、6、及びセンサターゲット2、8と同じにしたことで、回転体全体として円筒形状になりハウジング26内に回転体を挿入しやすくできる。このため、ポンプの組み立て作業が楽に行える。樹脂カバーとしての隔壁23も円筒状に形成できるため機械強度が増す。永久磁石13の径方向寸法は従来の磁性ディスク10の寸法より小さいため、キャビテーションも生じ難い。但し、この永久磁石13の径方向寸法は可動子4、6、及びセンサターゲット2、8の径方向寸法より小さくてもよい。
図1のスラスト力発生装置160の動作原理を説明する。永久磁石13の上面のN極から発した磁束は空心コイル12に交差した後、空心コイル12及び空心コイル15の外側を通る。そして、空心コイル15を交差した後下面のS極に戻る。従って、空心コイル12には、永久磁石13のN極から出て半径方向外側に向かう磁束が通り、空心コイル15では、内側に向かってS極に流れ込む磁束が通る。
空心コイル12に対し図中紙面手前側から奥方向に向けた電流を流し、一方、空心コイル15に対し図中紙面奥方向から手前側に向けた電流を流すと、ローレンツ力が空心コイル12、15の下方向に作用する。空心コイル12、15は固定されているため、その反作用を受け、永久磁石13には上方向の力が作用する。
また、空心コイル12、15に対し上記とは逆方向に電流を流せば永久磁石13には下方向の力を作用することができる。従って、主軸1の軸方向変位を軸方向変位センサ18で計測し、空心コイル12、15に適切な電流を流すことで、主軸1のスラスト方向運動を能動的に制御することができる。空心コイル12には鉄心が無いため、径方向変位センサ14と距離を近く配設されても従来のように渦電流やインダクタンスの値が変化する等によりセンサの測定感度が低下することはなくなる。
このスラスト力発生装置160は、可動子に永久磁石13を使用し、周辺の固定子に磁性体を使用しない。このため、主軸1が半径方向に変位しても、スラスト力発生装置160による磁気吸引力が発生しない。従って、スラスト力発生装置160がベアリングレスモータ40、50へ及ぼす影響を極小にできる。
 図2は、従来のベアリングレス回転機と本発明のスラスト力発生装置のスラスト発生力を説明する図である。横軸はコイルを流れる電流、縦軸はスラスト方向の発生力である。図2に示すように、図18の構成による従来のスラスト磁気軸受60では、電流とスラスト力の関係は非線形である。線形化するためには、バイアス電流を流し、電磁石9と11の電流を、一方では増やし、他方で減らすプシュプル方式としなければならない。
 このため、制御システムの複雑化、定常電流による消費電力の増加が問題となる。空心コイル12、15を使用した本実施形態のスラスト力発生装置160の場合、図2中、「本実施形態のスラスト力」として示したように、バイアス電流を流さなくても電流とスラスト力が線形であるという特徴を有する。スラスト力も従来と同程度の力を得ることができる。
 更に、永久磁石13からの磁束は空心コイル12、15に対し固定バイアス磁束として作用することになるため、スラスト力を得るのに必要な空心コイル12、15に流す電流は小さくてすむ。なお、空心コイル12、15は必ずしも両方を配設する必要はなく、いずれか一方のみでも回転体の軸方向制御をすることは可能である。
 また、本実施例では磁性体円板16、17を配設するとして説明したが、磁性体円板16、17は省略しても動作可能である。磁性体円板16、17を付加することにより、軸方向への発生力が増大可能となる。また、この磁性体円板16、17は、永久磁石13を主軸1に通して取り付ける場合に構造的に確実性がある。
 通常、永久磁石13はもろいため、圧入が困難であり、永久磁石13の内径は、主軸1の外径よりも大きく設計し、中間ばめ、もしくはすきまばめにする必要がある。磁性体円板16、17を、永久磁石13を間に挟んで圧入することで、永久磁石13が磁性体円板16、17を吸引し、固定できるため、構造的に確実性がある。なお、円板は、非磁性体であってもよい。この場合、永久磁石13は上下からの圧縮力で固定される。
 更に、回転中、可動子が発熱した場合の、永久磁石13と主軸1の熱膨張係数の違いから生じる問題も回避できる。主軸1の熱膨張係数が、永久磁石13よりも大きい場合、主軸1に中間ばめで永久磁石13を取り付けると、破壊する恐れがある。また、主軸1の熱膨張係数が低い場合、永久磁石13の内径が、主軸1の外径よりも大きくなり、がたつきの問題が生じる。いずれの問題も、永久磁石13の上下から磁性体円板16、17を挿入することで解決可能である。また、磁性体円板17をセンサターゲットとすることで、スラスト方向の変位も計測である。
 以下、本発明のスラスト力発生装置について有限要素法による磁場解析を行い、試作して、5自由度制御型のベアリングレス回転機に組み込み試験を行ったので、その詳細について説明をする(朝間、千葉、深尾「円筒磁石可動形コアレススラストアクチュエータ」電気学会2008年8月回転機研究会RM-08-41参照)。
 図3に、本発明のスラスト力発生装置のスラスト力の発生原理を示す。可動子にはスラスト方向に着磁された円筒形永久磁石、固定子には回転方向に巻回したコアレスコイル(空心コイル)を用いる。永久磁石から発生する磁束の径方向成分と、コアレスコイル(空心コイル)の電流により、コイルにはローレンツ力が作用する。コイルは固定されているため、その反作用により、永久磁石のスラスト方向に力が発生する。
可動子が円筒形のため、回転主軸全体が円筒形状に設計可能である。これにより、加工・組立の簡略化、周速の低下が期待できる。コアレスコイル(空心コイル)を採用することで、可動子である永久磁石が径方向に変位しても、可動子には不平衡吸引力が発生せず、ベアリングレス回転機への外乱を小さくできる。図18に示すスラスト磁気軸受60の制御と駆動には、一般的に電磁石のバイアス電流と3相インバータを必要とする。一方、本発明のスラスト力発生装置は、バイアス電流を必要とせず、さらに単相インバータのみで駆動可能である。
<シングルコイルモデル>  
3D-FEMを用いた磁場解析ソフトウェア(JMAG-Studio、日本総研ソリューションズ社)により、本発明のスラスト力発生装置の設計を行う。本研究では、定格スラスト力の目標値は100Nとする。図4に、解析モデル(シングルコイルモデル)を示す。厚さ数mmの固定子・回転子隔壁が取り付け可能なように磁気的なギャップを5mmに設計した。設置スペースの制限から、提案するアクチュエータ部の長さは45mm以内とした。tp、tc、wcは、それぞれ磁石厚、コイル厚、およびコイル幅である。
コイル幅を検討するため、図4の永久磁石の底面端部から径方向に5mm離れた位置をX=0とした時の、コイル上部の磁束密度の径方向成分を解析した。図5に、磁石厚を変更した場合の解析結果を示す。コアレスコイル(空心コイル)の電流は0A、永久磁石はネオジム永久磁石に設定した。いずれの場合も、X=0mmにて磁束密度は最大であり、永久磁石から遠ざかる程減少し、x=30mmにおいて、磁束密度は最大値の10%程度に減少している。このため、30mm以降の磁束は発生力への影響が少ないと考えられる。したがって、コイル幅は30mmに決定した。
図5に、コイル幅30mmで磁石厚を変更した場合の、コイル厚に対するスラスト力の解析結果を示す。占積率50%、電流密度8A/mmとして解析を行った。コイル厚の増加に伴い、発生するスラスト力の増加が確認できる。しかしながら、発生力は最大でも55N程度であり、コアレスコイル(空心コイル)1個のみでは、磁場解析上、目標を満足する十分なスラスト力が得られないことが明らかとなった。
〈ダブルコイル・電磁鋼板モデル〉  
発生力を増大させるため、図6に示すように、コアレスコイル(空心コイル)を追加し、2個のコイルで永久磁石を挟み込む構造を新たに検討した(ダブルコイルモデル)。永久磁石の磁束を有効に利用し、追加したコアレスコイル(空心コイル)においてもローレンツ力が発生するため、スラスト力の増大が期待できる。また、コアレスコイル(空心コイル)を追加しても、両コイルを直列に接続してスラスト力が発生可能なため、単相インバータによる駆動も可能である。図7に、ダブルコイルモデルでの、磁石厚に対するスラスト力の解析結果を示す。コイル厚は18mm、電流条件は上記の条件と同様とした。磁石厚の増加と共に、スラスト力が増加することが確認できる。また、シングルコイルモデルと比較して、スラスト力は約2倍に増加した。
コアレスコイル(空心コイル)を2個用いることで、解析上、スラスト力は目標値である100Nには達成しているが、実測値と解析値の誤差を考慮して、ある程度の余裕が必要である。そこで、永久磁石の上面と底面に、磁石と同径の電磁鋼板を取り付けることで、コイル部における磁束の半径方向成分を増加させ、スラスト力の増大を図る。電磁鋼板の効果を確認するため、鋼板の有無による円筒磁石可動子の周辺磁場を3D-FEMにより解析した。図8に磁束を、図9に磁石底面の端部から径方向に5mm離れた位置をx=0とした時の磁束密度の径方向成分を示す。tsは鋼板厚である。電磁鋼板を取り付けた場合の磁束密度が最大で約30%増加していることから、ローレンツ力の増大が期待できる。図10に、鋼板厚に対するスラスト力の解析結果を示す。コイル厚、磁石厚はそれぞれ18mm、25mmとした。電磁鋼板を使用することにより、スラスト力は25%程度増加した。上記解析結果より、電磁鋼板が有効であることが明らかとなった。
本発明のスラスト力発生装置を試作し、既存のベアリングレドライブシステムに組み込む。図11に、円筒磁石可動子と、モータフレームの外側に取り付けたコアレスコイル(空心コイル)を示す。ネオジム永久磁石はもろいため、シャフトへの圧入による固定は困難であり、がたつきが生じる。一方、電磁鋼板はシャフトに圧入して固定できる。したがって、2枚の電磁鋼板で永久磁石を挟み込む構造は、永久磁石のがたつきを抑えることができる。回転子・固定子には厚さ2mmのポリカーボネート隔壁を取り付け、回転子の可動範囲を±1mmに制限した。変位センサには、渦電流式変位センサ(PU-14、電子応用社)を使用した。2個のコアレスコイル(空心コイル)を直列に接続した時のインダクタンスと抵抗は、それぞれ225mH、10.5オームであった。
本発明のスラスト力発生装置を用いることなく、ベアリングレス回転機による並進・傾きの4自由度制御のみで、回転子は磁気浮上可能である。この場合、スラスト方向の運動は、ベアリングレス回転機の磁気カップリングにより受動的に支持される。この時のスラスト方向ばね定数は、衝撃加振時の回転子の固有振動数8.5Hz、および質量3.6kgより求められ、1.0×104N/mであった。
スラスト方向の位置決め制御は、マイクロプロセッサ(SH7047、ルネサステクノロジ社)によるディジタルPID制御を適用した。また、コアレスコイル(空心コイル)の電流制御系にも同様にPI制御を適用し、周波数帯域は、位置決め制御より十分広く設計した。図12に、スラストスラスト力発生装置の位置決め制御の有無による、衝撃加振時の回転子のスラスト方向変位z、およびコアレスコイル(空心コイル)の電流izを示す。衝撃加振による自由振動時に位置決め制御を開始し、さらに衝撃加振を与えた。制御開始時、および再加振時において、顕著な振動等は観察されなかったことから、スラスト方向の位置決め制御系は安定であることが明らかとなった。
次いで、試作した本発明のスラスト力発生装置の発生力を測定する。フォースゲージ(DS2-200N、IMADA社)を用いて、回転子のスラスト方向に静的荷重を印加した時の、コアレスコイル(空心コイル)の電流を測定した。図13に、測定結果を解析結果と比較して示す。測定結果を最小自乗近似して求めた本発明のスラスト力発生装置の力係数は23.0N/Aであった。したがって、試作した本発明のスラスト力発生装置は、定格4.5Aで目標値100Nのスラスト力が発生可能であることが明らかとなった。荷重印加時、コアレスコイル(空心コイル)には電流が流れ磁束が発生するが、ベアリングレス回転機のタッチダウンや顕著な振動等は観察されなかった。したがって、本発明のスラスト力発生装置の定常的な電流に対しては、ベアリングレス回転機には影響が無いと考えられる。
図13より、力係数の解析値との誤差は約10%であった。この原因は、円筒磁石の残留磁束密度、電磁鋼板の飽和磁束密度の差異等だと考えられる。そこで、図8に示すように、可動子側面から2mm離れた位置zでの半径方向磁束密度を、テスラメータ(GV-300、日本電磁測器社)を用いてスラスト方向に沿って測定した。図16に、測定値を解析値と比較して示す。磁束密度は電磁鋼板側面近傍において最も大きく、測定値と解析値の差は約10%であった。この差が、力係数の測定値と解析値との差異の原因だと考えられる。
〈ベアリングレス回転機への影響〉
試作した本発明のスラスト力発生装置のベアリングレス回転機への影響を検証する。スラスト方向の固有振動数8.5Hzであるため、ベアリングレス回転機が510r/minで回転した場合に、大きな加振力がスラスト方向に作用し、コアレスコイル(空心コイル)の制御電流が増加する。この制御電流がベアリングレス回転機の変位センサや電流信号に影響を及ぼす恐れがある。そこで、汎用インバータ(V1000、安川電機社)によりベアリングレス回転機を駆動し、本発明のスラスト力発生装置の位置決め制御の有無による、磁気浮上制御の変位センサ出力信号、および電流波形の比較を行う。センサ出力と電流は、本発明のスラスト力発生装置に近い側のベアリングレス回転機ユニットから測定する。
図15に、回転数510r/minにおける、回転子のスラスト変位と径方向変位センサ出力、およびベアリングレス回転機の軸支持巻線U相電流を示す。本発明のスラスト力発生装置の位置決め制御をしない場合、回転子はスラスト方向に大きく振動している。一方、位置決め制御を行った場合、振動が抑制されている。本発明のスラスト力発生装置の位置決め制御の有無により、ベアリングレス回転機の変位・電流波形に顕著な差異は観察されなかった。
したがって、試作した本発明のスラスト力発生装置がベアリングレス回転機に及ぼす影響は小さいということが明らかとなった。以上のようにして本発明のスラスト力発生装置を備えた電磁機械が実用に供し得ることが判明した。
 第2実施例は、主軸長を短縮化する方法についてである。本発明の第2実施例である5自由度制御型のベアリングレス回転機300の断面構成図を図16に示す。なお、図1と同一要素のものについては同一符号を付してあるので説明は省略する。ベアリングレス回転機300において、上下に2個配置された空心コイル12、15の間に径方向変位センサ14が挿入されている。そして、永久磁石13の周囲には金属メッキが施されており、この永久磁石13が径方向変位センサ14のターゲットとなっている。
 かかる構成において、永久磁石13の外周をセンサターゲットとすることで、余分なセンサターゲットを排除し、軸長の短縮化が実現可能となる。センサ感度向上のため、めっきは磁性体であるニッケル等が望ましい。一方、めっきではなく、永久磁石13の外周に薄いリングを設けてもよい。一般的に、永久磁石13の外周は真円度が低い。リングを設けることで、真円度を向上させることができる。
 リングの材質が金属の場合、リングが半径方向の変位センサのターゲットとなる。一方、リングの材質が、非金属の場合、永久磁石13のメッキ表面がターゲットとなる。
 第3実施例は、第1の永久磁石の主軸方向端に対峙するように固定子側に別途第2の永久磁石が配設され、該第2の永久磁石が前記第1の永久磁石に対しスラスト方向に反発力、もしくは吸引力を発生するスラスト力発生装置を備えた電磁機械に関するものである。本発明の第3実施形態である5自由度制御型のベアリングレス回転機400の断面構成図を図17に示す。なお、図1と同一要素のものについては同一符号を付して説明は省略する。
 図17において、永久磁石13下方には永久磁石13と対峙するように中空リング形状の永久磁石19がハウジング26に固定されている。
 かかる構成において、永久磁石19を図3中上側がN極、下側がS極とすると、永久磁石13との間に定常的に磁気吸引力が発生する。この磁気吸引力を加えることにより、ポンプ動作時には羽根車21に作用するスラスト力と平衡、もしくは一部をキャンセルして、空心コイル12、15の電流を節約する効果がある。
 一方、永久磁石19の磁極を上記と反対にすれば、主軸1に対し反対方向のスラスト力、すなわち、反発力を発生することができる。反発力が必要なときに有効である。更に、永久磁石19をスラスト方向に可動とし、永久磁石13との距離を調整すれば、発生スラスト力が調整できる。また、本実施形態では、永久磁石13と永久磁石19に磁気吸引力を発生させるとして説明したが、永久磁石19を必ずしも配設する必要はなく、永久磁石19に代えて鉄板、鉄リングなどの強磁性体を配設するようにしてもよい。この場合、コストを削減できるメリットがある。 
 以上、本発明について具体的な実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。例えば、ベアリングレス回転機を代表して説明したが、他の電磁機械に同様に適用しうる。上記実施形態は、多様な変更又は改良を加えることができる。そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
 

Claims (7)

  1.  主軸に取り付けられて軸方向に励磁された第1の永久磁石と、
    該第1の永久磁石の周囲でかつ該第1の永久磁石の中心より軸方向に所定距離ずれた位置に捲回された鉄心を有さない一つ以上の空心コイルと、を有し、
    該空心コイルに電流を供給することにより、軸方向の電磁力を発生するスラスト力発生装置を備えた電磁機械。
  2.  前記空心コイルが、主軸正方向にずれた位置に配設された第1のコイルと、
    主軸負方向にずれた位置に該第1のコイルに対して前記第1の永久磁石と対称的に配設された第2のコイルと、を有し、
    該第2のコイル及び前記第1のコイルとがそれぞれ電流制御されるスラスト力発生装置を備えた請求項1に記載の電磁機械。
  3. 前記第1の永久磁石の主軸方向端には支持板を備えた請求項1又は請求項2のいずれかに記載の電磁機械。
  4. 前記主軸に径方向の電磁力を発生する径方向力発生装置とを備え、
    前記第1の永久磁石の直径が、前記径方向力発生装置の固定子内側の直径以下に形成されたことを特徴とする請求項1から3のいずれかに記載の電磁機械。
  5. 前記第1の永久磁石の外周面、もしくは該外周面の表面に形成されたメッキ、もしくは該外周面を被覆するリングのいずれかとの間の径方向位置を検出する径方向変位センサを備えたことを特徴とする請求項4記載の電磁機械。
  6. 前記径方向力発生装置は、前記主軸を磁気浮上させつつ非接触で回転させるベアリングレスモータであることを特徴とする請求項4又は5に記載の電磁機械。
  7.  主軸に取り付けられて軸方向に励磁された第1の永久磁石と、
    該第1の永久磁石の周囲でかつ該第1の永久磁石の中心より軸方向に所定距離ずれた位置に捲回された鉄心を有さない一つ以上の空心コイルと、を有し、
    該空心コイルに電流を供給することにより、軸方向の電磁力を発生するスラスト力発生装置を備え
    前記第1の永久磁石の主軸方向端に対峙するように固定子側に別途第2の永久磁石が配設され、該第2の永久磁石が前記第1の永久磁石に対しスラスト方向に反発力、もしくは吸引力を発生することを特徴とする電磁機械。
     
PCT/JP2009/000615 2008-02-18 2009-02-17 スラスト力発生装置及び該スラスト力発生装置を適用した電磁機械 WO2009104376A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008035813A JP2009192041A (ja) 2008-02-18 2008-02-18 スラスト力発生装置及び該スラスト力発生装置を適用した電磁機械
JP2008-035813 2008-02-18

Publications (1)

Publication Number Publication Date
WO2009104376A1 true WO2009104376A1 (ja) 2009-08-27

Family

ID=40985265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000615 WO2009104376A1 (ja) 2008-02-18 2009-02-17 スラスト力発生装置及び該スラスト力発生装置を適用した電磁機械

Country Status (2)

Country Link
JP (1) JP2009192041A (ja)
WO (1) WO2009104376A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016130093A1 (en) 2015-02-09 2016-08-18 Silvano Bizjak Pusher of hydraulic lever or rectilinear/straight-lined motion generator using buoyancy force and vacuum- supported fluid (re-)pumping
CN110242670A (zh) * 2019-07-16 2019-09-17 珠海格力电器股份有限公司 磁悬浮轴承系统及具有其的工装

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5545053B2 (ja) * 2010-06-10 2014-07-09 国立大学法人静岡大学 ベアリングレスモータ
JP6893116B2 (ja) 2017-04-28 2021-06-23 日本電産コパル電子株式会社 磁気軸受
CN108087425A (zh) * 2018-01-20 2018-05-29 营口万意达智能装备科技有限公司 一种伺服电机磁悬浮推力轴承
CN112735806A (zh) * 2021-01-11 2021-04-30 王小英 一种变压器铁芯绕线装置
WO2025134505A1 (ja) * 2023-12-20 2025-06-26 パナソニックIpマネジメント株式会社 磁気軸受及びベアリングレスモータ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024024U (ja) * 1988-06-20 1990-01-11
JPH0642531A (ja) * 1992-07-23 1994-02-15 Ebara Corp 磁気軸受装置及びその制御方法
JPH06241229A (ja) * 1993-02-15 1994-08-30 Tdk Corp 磁気軸受
JP2004316756A (ja) * 2003-04-15 2004-11-11 Canon Inc 5軸制御磁気軸受
JP2006521779A (ja) * 2003-03-24 2006-09-21 テヒニッシェ ウニヴェルズィテート ベルリン 移動磁界式リニアモータ
JP2007162729A (ja) * 2005-12-09 2007-06-28 Ntn Corp モータ一体型磁気軸受装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024024U (ja) * 1988-06-20 1990-01-11
JPH0642531A (ja) * 1992-07-23 1994-02-15 Ebara Corp 磁気軸受装置及びその制御方法
JPH06241229A (ja) * 1993-02-15 1994-08-30 Tdk Corp 磁気軸受
JP2006521779A (ja) * 2003-03-24 2006-09-21 テヒニッシェ ウニヴェルズィテート ベルリン 移動磁界式リニアモータ
JP2004316756A (ja) * 2003-04-15 2004-11-11 Canon Inc 5軸制御磁気軸受
JP2007162729A (ja) * 2005-12-09 2007-06-28 Ntn Corp モータ一体型磁気軸受装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016130093A1 (en) 2015-02-09 2016-08-18 Silvano Bizjak Pusher of hydraulic lever or rectilinear/straight-lined motion generator using buoyancy force and vacuum- supported fluid (re-)pumping
CN110242670A (zh) * 2019-07-16 2019-09-17 珠海格力电器股份有限公司 磁悬浮轴承系统及具有其的工装

Also Published As

Publication number Publication date
JP2009192041A (ja) 2009-08-27

Similar Documents

Publication Publication Date Title
JP3121819B2 (ja) シャフトに加わる半径方向の力を受け止める永久磁石を備えた磁気軸受装置
JP4767488B2 (ja) 磁気浮上型ポンプ
WO2009104376A1 (ja) スラスト力発生装置及び該スラスト力発生装置を適用した電磁機械
US7732956B2 (en) Motor
EP2239831B1 (en) Magnetic levitaion motor and pump
US7786638B2 (en) Electric machine having a hybrid bearing
JP2003102145A (ja) 磁気浮上モータ、及び磁気軸受装置
US20070164627A1 (en) Device for magnetically suspending a rotor
JP2004513277A (ja) 真空ポンプ
CN110435931B (zh) 一种磁悬浮控制力矩陀螺高速转子装置
JP2012062790A (ja) 遠心式ポンプ装置
JP2008289283A (ja) 磁気軸受部を有する電動機
CN112983988B (zh) 一种复合磁悬浮轴承及磁悬浮轴承系统
CN102792039A (zh) 磁性轴承和涡轮机
JP2002122137A (ja) 軸受装置
Asama et al. Suspension performance of a two-axis actively regulated consequent-pole bearingless motor
JP2018179262A (ja) 真空ポンプ、磁気軸受装置及びロータ
JP2003079095A (ja) 軸方向振動防止機構と同機構を備えたブラシレスモータ
JP5192271B2 (ja) 磁気軸受装置
US6914361B2 (en) Magnetic bearing
JP2010041742A (ja) アキシャル磁気浮上回転モータ及びアキシャル磁気浮上回転モータを用いたターボ形ポンプ
JP4124977B2 (ja) 回転装置
CN102075048A (zh) 用于分段式电动机的轴承方案
JPH0674234A (ja) 反発磁気浮上型回転装置
JP2004286175A (ja) 磁気軸受装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09713578

Country of ref document: EP

Kind code of ref document: A1