[go: up one dir, main page]

WO2009110075A1 - Organic semiconductor element - Google Patents

Organic semiconductor element Download PDF

Info

Publication number
WO2009110075A1
WO2009110075A1 PCT/JP2008/053978 JP2008053978W WO2009110075A1 WO 2009110075 A1 WO2009110075 A1 WO 2009110075A1 JP 2008053978 W JP2008053978 W JP 2008053978W WO 2009110075 A1 WO2009110075 A1 WO 2009110075A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
organic
layer
electron
semiconductor layer
Prior art date
Application number
PCT/JP2008/053978
Other languages
French (fr)
Japanese (ja)
Inventor
崇人 小山田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2008/053978 priority Critical patent/WO2009110075A1/en
Priority to TW098105975A priority patent/TW200950172A/en
Publication of WO2009110075A1 publication Critical patent/WO2009110075A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO

Definitions

  • the present invention relates to an organic semiconductor element, and more particularly to an organic semiconductor element using an organic compound having a charge transporting property (hole or electron mobility) and having an organic semiconductor layer made of such a compound.
  • organic solar cell using an organic material as one of the organic semiconductor elements.
  • Inorganic solar cells using p-type and n-type semiconductors made of inorganic materials such as silicon for the photoelectric conversion layer are mainly used because of high energy conversion efficiency, but p-type organic semiconductors and n-type organic semiconductors are used instead of inorganic semiconductors.
  • Research and development of lightweight, inexpensive, and flexible organic solar cells continues.
  • organic solar cells dye-sensitized solar cells (Gretzel cells), organic thin-film solar cells, and the like are known. Dye-sensitized solar cells are wet, and organic thin-film solar cells are all solid.
  • Solar cells whether organic or inorganic, first absorb solar energy (light collection) and are excited to a high energy state to generate electrons and holes, which are then transferred to the negative electrode (electron transport). Electrical energy is generated by transporting the holes to the positive electrode (hole transport).
  • Organic thin-film solar cells differ greatly from inorganic solar cells in the generation mechanism of electrons and holes.
  • inorganic solar cells represented by silicon electrons and holes are generated at the p-type and n-type semiconductor interfaces simultaneously with light absorption and move to the respective electrodes.
  • Excitons whose holes are strongly bound are generated in the light collection layer and move to the interface with the electron transport layer or the hole transport layer, so that electrons and holes are generated.
  • the organic solar cell uses an organic compound having a charge transporting property. It has a multilayer structure (see Patent Document 1).
  • organic thin film transistor is one of organic semiconductor elements.
  • research and development has been actively conducted, and among these, researches on organic active light emitting devices in which organic electroluminescence devices and organic electroluminescence (EL) devices are driven in an active matrix by organic thin film transistors are being conducted.
  • organic active light emitting devices in which organic electroluminescence devices and organic electroluminescence (EL) devices are driven in an active matrix by organic thin film transistors are being conducted.
  • EL organic electroluminescence
  • a transparent gate electrode is provided on a substrate, a transparent gate insulating film is formed thereon so as to cover the gate electrode, and a source electrode (charge injection) having an opening on the gate insulating film And an organic semiconductor film, an organic EL film is laminated on the organic semiconductor film, and a drain electrode (charge injection) is laminated thereon (see Patent Document 2).
  • the organic EL film has a structure in which a plurality of organic material layers including an organic light emitting layer are stacked.
  • the organic material layer has a layer made of a material having a hole transport ability such as a hole injection layer and a hole transport layer, and an electron transport ability such as an electron transport layer and an electron injection layer. Layers made of materials are included.
  • the electron injection layer includes an inorganic compound.
  • the organic active light emitting device When an electric field is applied to the organic light-emitting layer and the organic EL film of the electron or hole transport layer stack, holes are injected from the source electrode and electrons are injected from the drain electrode. When combined, excitons are formed and emit light when returning to the ground state. In order to improve the light emission efficiency, it is important to efficiently transport carriers such as electrons to the interface, and the organic active light emitting device has a multilayer structure using an organic compound having a charge transporting property.
  • organic EL elements for example, organic EL elements, alkali metals and alkaline earth metals having low work functions, compounds thereof (CsF, Cs 2 CO 3 , Li 2 O, LiF), etc.
  • CsF, Cs 2 CO 3 , Li 2 O, LiF compounds thereof
  • these materials are difficult to handle because they are easily oxidized, decomposed (Cs 2 CO 3 ) depending on the material, and have deliquescence.
  • Cs 2 CO 3 since these have high reactivity, there also exists a problem which reacts with a vapor deposition boat and corrodes.
  • Cs simple substance is a conductive metal, but because of its high reactivity, it becomes Cs 2 O cesium oxide during film formation by vacuum deposition. ing.
  • the problem to be solved by the invention is, for example, to provide an organic semiconductor element such as an organic EL element capable of extending the life.
  • An organic semiconductor device is an organic semiconductor device including a plurality of organic semiconductor layers stacked between a pair of opposed first and second electrodes, wherein the second electrode is a negative electrode,
  • An electron transporting organic semiconductor layer made of an organic semiconductor that is in contact with the interface of the organic semiconductor layer and doped with a metal acid salt compound having an electron donating metal as a counter cation between the second electrode and the organic semiconductor layer. It is characterized by having. Since the electron-transporting organic semiconductor layer is provided, the device life can be improved.
  • the electron-transporting organic semiconductor layer can efficiently inject electrons even in a cathode having a high work function of 4.5 eV or more. Since the electron transporting organic semiconductor layer is used, there is an effect that the electron injection layer is unnecessary. That is, since the electron transporting organic semiconductor layer is in contact with the cathode, electrons can be injected.
  • the electron transporting organic semiconductor layer has an effect that the metal salt compound does not diffuse under high temperature storage.
  • the electron donating metal is one or more metals selected from metals having a work function of 3.5 eV or less among transition metals including alkali metals, alkaline earth metals, and rare earth metals.
  • the concentration of the metal salt compound in the electron transporting organic semiconductor layer can be 0.1 to 40% by weight.
  • the electron transporting organic semiconductor layer has a specific concentration or a certain concentration or more, it has an effect of reducing the driving voltage of the element.
  • the electron transporting organic semiconductor layer may have a thickness of 1 nm to 300 nm.
  • the electron transporting organic semiconductor layer can be formed by single vapor deposition or multiple vapor deposition. Since the metal salt compound only needs to be vapor-deposited, the process is simplified.
  • the electron transporting organic semiconductor layer film may have a transmittance of 50% or more.
  • the metal acid salt compound may include a conductive oxide semiconductor.
  • the conductive oxide semiconductor has a carrier mobility of 1 ⁇ 10 ⁇ 10 to 1 ⁇ 10 10 cm 2 / Vs or a conductivity of 10 10 to 10 ⁇ 10 ⁇ ⁇ cm. Can have.
  • the organic semiconductor may have a carrier mobility of 1 ⁇ 10 ⁇ 10 to 1 ⁇ 10 10 cm 2 / Vs.
  • the plurality of organic semiconductor layers include a light emitting layer, and one of the first and second electrodes is translucent or transparent, or the first and second electrodes are It can be an organic electroluminescent device that is transparent.
  • the driving voltage of the organic electroluminescent element is lowered, and the consumption voltage of the organic electroluminescent element panel is reduced.
  • the calorific value of a panel can be suppressed by reducing the power consumption of a panel.
  • the plurality of organic semiconductor layers may be organic solar cells including a light collection layer and at least one of an electron transport layer and a hole transport layer.
  • an example of the organic EL element of the present embodiment includes, in order, a transparent first electrode (anode) 2, a hole transport layer 4 made of an organic compound, on a transparent substrate 1 such as glass, An organic light emitting layer 5 made of an organic compound, an electron transporting organic semiconductor layer 7 made of an organic compound, and a second electrode (cathode that is a negative electrode) 8 made of a metal are laminated. That is, in the organic EL element, a pair of first and second electrodes facing each other correspond to an anode and a cathode, and a plurality of organic semiconductor layers stacked between them are a hole injection layer, a hole transport layer, Includes a light emitting layer.
  • An electron-transporting organic semiconductor layer is disposed between the cathode of the second electrode and the organic semiconductor layer (light-emitting layer) in contact with the interface of the light-emitting layer, which is doped with a metal salt compound having an electron-donating metal as a counter cation.
  • a metal salt compound having an electron-donating metal as a counter cation Made of organic semiconductor.
  • anode 2 / hole injection layer 3 / hole transport layer 4 / light emitting layer 5 / electron transporting organic semiconductor layer 7 / cathode 8 / in addition to the structure of anode 2 / hole injection layer 3 / hole transport layer 4 / light emitting layer 5 / electron transporting organic semiconductor layer 7 / cathode 8 /, as shown in FIG.
  • the structure of anode 2 / hole injection layer 3 / light emitting layer 5 / electron transporting organic semiconductor layer 7 / cathode 8 / as shown in FIG. 3, anode 2 / hole transport layer 4 / light emitting layer 5 / electron transport The structure of the conductive organic semiconductor layer 7 / cathode 8 / and the structure of the anode 2 / light emitting layer 5 / electron transporting organic semiconductor layer 7 / cathode 8 / as shown in FIG.
  • the organic EL element by this invention should just have the electron transport organic-semiconductor layer 7 in the interface with the cathode 8.
  • the electron transporting organic semiconductor layer 7 adjacent layer is not limited to the light emitting layer, and a block layer and / or a buffer layer between the light emitting layer and the electron transporting organic semiconductor layer, for example, as shown in FIG.
  • the electron transporting organic semiconductor layer 7 adjacent layer is not limited to the light emitting layer, and a block layer and / or a buffer layer between the light emitting layer and the electron transporting organic semiconductor layer, for example, as shown in FIG.
  • FIG. 1 In addition to the structure of anode 2 / hole injection layer 3 / hole transport layer 4 / light emitting layer 5 / hole blocking layer 6 / electron transporting organic semiconductor layer 7 / cathode 8 /, as shown in FIG.
  • anode 2 / hole injection layer 3 / light emitting layer 5 / hole blocking layer 6 / electron transporting organic semiconductor layer 7 / cathode 8 / as shown in FIG. 7, anode 2 / hole transport layer 4 /
  • the configuration of layer 7 / cathode 8 / is also included in the present invention.
  • first and second electrodes-- In addition to the glass transparent material of the substrate 1, in addition to a translucent material such as a plastic material such as polystyrene, an opaque material such as silicon or Al, a thermosetting resin such as a phenol resin, a thermoplastic resin such as a polycarbonate, etc. Can be used.
  • a translucent material such as a plastic material such as polystyrene
  • an opaque material such as silicon or Al
  • a thermosetting resin such as a phenol resin
  • thermoplastic resin such as a polycarbonate
  • Electrode materials of the first electrode (anode) 2 and the second electrode (cathode) 8 Ti, Al, Al, Cu, Ni, Ag, Mg: Ag, Au, Pt, Pd, Ir, Cr, Mo, W And metals such as Ta and alloys thereof.
  • a conductive polymer such as polyaniline or PEDT: PSS can be used.
  • an oxide transparent conductive thin film for example, one containing indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide, tin oxide or the like as a main composition can be used.
  • the thickness of each electrode is preferably about 10 to 500 nm.
  • These electrode materials are preferably produced by vacuum deposition or sputtering.
  • a conductive material having a work function larger than that of the second electrode (cathode) 8 is selected for the first electrode (anode) 2 as the positive electrode. Further, the materials of the first and second electrodes are selected so that the light emission side is transparent or translucent. In particular, it is preferable to select a material in which one or both of the first and second electrodes have a transmittance of at least 10% at the emission wavelength obtained from the organic light emitting material.
  • Organic semiconductor layer-- The organic semiconductor layer constituting the main components of the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, and the electron transport organic semiconductor layer 7 has a charge transport property (hole and / or electron mobility). Utilizes organic compounds.
  • Examples of the organic compound having an electron transporting property as a main component of the light emitting layer and the electron transporting organic semiconductor layer include polycyclic compounds such as p-terphenyl and quaterphenyl and derivatives thereof, naphthalene, tetracene, pyrene, coronene, chrysene Condensed polycyclic hydrocarbon compounds such as anthracene, diphenylanthracene, naphthacene, phenanthrene and their derivatives, condensed heterocyclic compounds such as phenanthroline, bathophenanthroline, phenanthridine, acridine, quinoline, quinoxaline, phenazine and their derivatives, Fluorescein, perylene, phthaloperylene, naphthaloperylene, perinone, phthaloperinone, naphthaloperinone, diphenylbutadiene, tetraphenylbutadiene, oxadiazol
  • a metal chelate complex compound particularly a metal chelated oxanoid compound, tris (8-quinolinolato) aluminum, bis (8-quinolinolato) magnesium, bis [benzo (f) -8-quinolinolato Zinc, bis (2-methyl-8-quinolinolato) aluminum, tris (8-quinolinolato) indium, tris (5-methyl-8-quinolinolato) aluminum, 8-quinolinolatolithium, tris (5-chloro-8- There may also be mentioned metal complexes having at least one 8-quinolinolato or a derivative thereof such as quinolinolato) gallium and bis (5-chloro-8-quinolinolato) calcium as a ligand.
  • organic compounds having electron transport properties oxadiazoles, triazines, stilbene derivatives, distyrylarylene derivatives, styryl derivatives, and diolefin derivatives can be suitably used.
  • organic compound that can be used as an organic compound having an electron transporting property 2,5-bis (5,7-di-t-benzyl-2-benzoxazolyl) -1,3,4-thiazole, 4, 4'-bis (5,7-t-pentyl-2-benzoxazolyl) stilbene, 4,4'-bis [5,7-di- (2-methyl-2-butyl) -2-benzoxazoly Ru] stilbene, 2,5-bis (5.7-di-t-pentyl-2-benzoxazolyl) thiophene, 2,5-bis [5- ( ⁇ , ⁇ -dimethylbenzyl) -2-benzoxa Zolyl] thiophene, 2,5-bis [5,7-di- (2-methyl-2-butyl) -2-benzoxazolyl] -3,4-diphenylthiophene, 2,5-bis (5- Methyl-2-benzoxazolyl) thiophene, 4,
  • 1,4-bis (2-methylstyryl) benzene 1,4-bis (3-methylstyryl) benzene, 1,4-bis (4-methylstyryl) benzene, Distyrylbenzene, 1,4-bis (2-ethylstyryl) benzene, 1,4-bis (3-ethylstyryl) benzene, 1,4-bis (2-methylstyryl) -2-methylbenzene, 1,4 Examples thereof include -bis (2-methylstyryl) -2-ethylbenzene.
  • organic compound having an electron transporting property 2,5-bis (4-methylstyryl) pyrazine, 2,5-bis (4-ethylstyryl) pyrazine, 2,5-bis [2- (1- Naphthyl) vinyl] pyrazine, 2,5-bis (4-methoxystyryl) pyrazine, 2,5-bis [2- (4-biphenyl) vinyl] pyrazine, 2,5-bis [2- (1-pyrenyl) vinyl ] Pyrazine etc. are mentioned.
  • organic compounds having electron transport properties include 1,4-phenylene dimethylidin, 4,4'-phenylene dimethylidin, 2,5-xylylene dimethylidin, and 2,6-naphthylene dimethylidene. Din, 1,4-biphenylenedimethylidin, 1,4-p-terephenylenedimethylidin, 9,10-anthracenediyldimethylidin, 4,4 '-(2,2-di-t-butylphenylvinyl
  • Known materials conventionally used for the production of organic EL devices such as biphenyl and 4,4 ′-(2,2-diphenylvinyl) biphenyl can be appropriately used.
  • organic compounds having hole transporting properties include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′-di (3-methyl Phenyl) -4,4′-diaminobiphenyl, 2,2-bis (4-di-p-tolylaminophenyl) propane, N, N, N ′, N′-tetra-p-tolyl-4,4′- Diaminobiphenyl, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N′-diphenyl-N, N′-di (4-methoxyphenyl) -4,4′-diaminobiphenyl, N, N, N ′, N′-tetraphenyl-4,4′-diaminodiphenyl ether, 4,4′-bis (diphenylamino) quadriphenyl
  • the hole injection layer, the hole transport layer, and the hole transporting light emitting layer those obtained by dispersing the above organic compound in a polymer or those polymerized can be used.
  • So-called ⁇ -conjugated polymers such as polyparaphenylene vinylene and derivatives thereof, hole-transporting non-conjugated polymers typified by poly (N-vinylcarbazole), and sigma-conjugated polymers of polysilanes can also be used.
  • the hole injection layer is not particularly limited, but conductive polymers such as metal phthalocyanines such as copper phthalocyanine and metal-free phthalocyanines, carbon films, and polyaniline can be preferably used.
  • the compound is disposed, while the organic compound layer (electron injection layer) on the cathode side is doped with an electron-donating metal having a reducing action, but the doping form is fixed in the stoichiometric form of the metal salt compound.
  • the electron-donating metal is not particularly limited as long as it is an alkali metal such as Li, an alkaline earth metal such as Mg, or a transition metal containing a rare earth metal.
  • a metal having a work function of 4.0 eV or less can be suitably used. Specific examples include Cs, Li, Na, K, Be, Mg, Ca, Sr, Ba, Y, La, Mg, Sm, Gd, Yb, Etc.
  • the concentration of the metal salt compound in the electron transporting organic semiconductor layer is preferably 0.1 to 40% by weight. If it is less than 0.1% by weight, the concentration of the molecule reduced by the electron donating metal of the metal salt compound is too low, and the effect of doping is small. If it exceeds 40% by weight, the metal salt compound concentration in the film is organic. The concentration of semiconductor molecules is exceeded and the effect of doping is also reduced.
  • the thickness of the electron transporting organic semiconductor layer is not particularly limited, but is preferably 1 nm to 300 nm. If the thickness is less than 1 nm, the amount of reducing molecules present in the vicinity of the electrode interface is small, so that the effect of doping is small. If the thickness exceeds 300 nm, the entire organic layer is too thick, leading to an increase in driving voltage.
  • At least the film of the electron transporting organic semiconductor layer is set to have a transmittance of 50% or more at the emission wavelength obtained from the organic light emitting material.
  • the film forming method of the electron transporting organic semiconductor layer 7 may be any thin film forming method.
  • a vapor deposition method or a sputtering method can be used.
  • the electron transporting organic semiconductor layer is preferably formed by single vapor deposition or multiple vapor deposition.
  • a coating method from a solution such as a spin coating method or a dip coating method can be used.
  • the organic compound to be doped and the dopant may be dispersed in an inert polymer.
  • the metal salt compound (Cs 2 MoO 4 etc.) in the present invention is a transition metal containing alkali metal, alkaline earth metal and rare earth metal having a work function of 4.0 eV or less (particularly preferably 3.5 eV or less) as the first component. And the like, and using a conductive metal oxide (MoOx, WOx, TiOx, SnOx, VxOy, ZnOx, ZrOx (x represents an atomic ratio), etc.) as the second component, the thermal stability is increased, and Since it is an oxide, its adhesion to the cathode (for example, Al, etc.) is increased and it becomes difficult to peel off.
  • a conductive metal oxide MoOx, WOx, TiOx, SnOx, VxOy, ZnOx, ZrOx (x represents an atomic ratio), etc.
  • the main component of such an organic semiconductor layer has a mobility (10 ⁇ 8 to 10 1 cm 2 / Vs) or conductivity (10 8 to 10 ⁇ 1 ⁇ ⁇ cm) lower than that of an inorganic compound. Since the conductivity of the conductive metal oxide corresponding to the second component supplements the conductivity of the organic semiconductor layer, both the electron injection property and the electron transport property can be improved. Further, as mentioned above, since an electron injection layer of an inorganic compound is not required, the thickness can be reduced.
  • the conductive metal oxide as the second component preferably has a specific resistance of 10 8 ⁇ ⁇ cm or less (MoO 3 : 2.5 ⁇ ⁇ cm).
  • the second component The conductive metal oxide is supplemented by carrier concentration or mobility.
  • the organic semiconductor material has a very low or no carrier concentration (10 5 to 10 10 cm ⁇ 3 ), the presence of the carrier concentration inside the thin film is very effective for improving electron transport properties. is there.
  • An electron transporting organic semiconductor layer (for example, Alq3) of a conventional element has an increased driving voltage as the film thickness increases.
  • An electron transporting organic semiconductor layer doped with this metal salt compound in an electron transporting organic semiconductor layer By using (a metal-inorganic-organic composite (composite) layer), an increase in driving voltage with respect to an increase in film thickness can be suppressed.
  • a plurality of organic EL devices each including a metal-inorganic-organic composite electron-transporting organic semiconductor layer comprising a metal acid salt compound having an electron-donating metal as a counter cation and an electron-transporting organic semiconductor were produced.
  • the driving voltage and luminance with respect to the salt compound concentration, lifetime characteristics, and film thickness dependence characteristics of the electron transporting organic semiconductor layer were measured and evaluated.
  • cesium molybdate Cs 2 MoO 4 and cesium tungstate Cs 2 WO 4 were used.
  • the electron transporting organic semiconductor EIL shown in Table 1 below was used as the electron transporting organic semiconductor.
  • Example 1 On the glass substrate on which the transparent electrode ITO was formed as an anode, copper phthalocyanine CuPc was formed in a thickness of 25 nm as a hole injection layer in order by vacuum deposition, and NPB: N, N ′ as a hole transport layer was formed thereon. -Bis (naphthalene-2-yl) -N, N'-diphenyl-benzidine was formed to a thickness of 45 nm.
  • Alq3 is formed as an organic light emitting layer on the hole transport layer with a thickness of 30 nm, and further, Cs 2 MoO 4
  • An electron transporting organic semiconductor layer made of Alq3 doped with a concentration of 0.85 wt%, 1.7 wt%, 3.3 wt%, 3.3 wt%, 5 wt%, 10 wt%, 20 wt%, and 40 wt% at a thickness of 30 nm by co-evaporation.
  • Al having a predetermined film thickness was formed thereon as a cathode by vacuum deposition.
  • the organic EL element of Example 1 was produced.
  • Alq3 is formed as an organic light emitting layer with a thickness of 60 nm by vapor deposition
  • Cs 2 MoO 4 is formed as an inorganic electron injection layer with a thickness of 1 nm thereon
  • Al having a predetermined thickness was formed as a cathode by vacuum deposition.
  • the organic EL element of the comparative example was produced.
  • a comparative organic EL device using Li 2 O instead of the inorganic electron injection layer Cs 2 MoO 4 was also produced.
  • Example and the comparative example each was driven on the conditions of current density 7.5mA / cm ⁇ 2 >, and the drive voltage V and the brightness
  • the electron transporting organic semiconductor layer film of Cs 2 MoO 4 : Alq3 has a driving voltage lower than that of the comparative element at 10% concentration or more. If the light-emitting layer and the electron-transporting organic semiconductor layer are considered to be electron-transporting light-emitting layers, if the metal salt compound of the electron-donating metal counter cation is doped at a predetermined concentration from the contacting cathode side to the predetermined film thickness, It can be understood that the drive voltage can be reduced.
  • Example 2 In the same manner as in Example 1, a plurality of precursors formed up to the hole transport layer were prepared, and Alq3 was formed as an organic light emitting layer with a thickness of 30 nm on the hole transport layer. 2 An electron transporting organic semiconductor layer made of TPBI doped with MoO 4 at a concentration of 5 wt%, 10 wt%, and 20 wt% is formed by co-evaporation to a thickness of 30 nm. It was formed by vapor deposition. Thus, the organic EL element of Example 2 was produced.
  • Alq3 is formed as an organic light emitting layer by vapor deposition by a thickness of 30 nm
  • TPBI is formed as an electron transport layer by a thickness of 30 nm
  • Li 2 O was formed by vapor deposition as an inorganic electron injection layer with a thickness of 1 nm
  • Al having a predetermined thickness was formed thereon as a cathode by vacuum vapor deposition.
  • Example and the comparative example each was driven on the conditions of current density 7.5mA / cm ⁇ 2 >, and the drive voltage V and the brightness
  • the electron transporting organic semiconductor layer film of Cs 2 MoO 4 : TPBI has a driving voltage lower than that of the comparative element at 5% concentration or more. If the light-emitting layer and the electron-transporting organic semiconductor layer are considered to be electron-transporting light-emitting layers, if the metal salt compound of the electron-donating metal counter cation is doped at a predetermined concentration from the contacting cathode side to the predetermined film thickness, It can be understood that the drive voltage can be reduced.
  • Example 3 In the same manner as in Example 1, a plurality of precursors formed up to the hole transport layer were prepared, and Alq3 was formed as an organic light emitting layer with a thickness of 30 nm on the hole transport layer. 2 An electron transporting organic semiconductor layer composed of NBphen doped with MoO 4 at a concentration of 1.7 wt%, 3.3 wt%, 5 wt%, 10 wt%, and 20 wt% is formed by co-evaporation to a thickness of 30 nm. As a cathode, Al having a predetermined thickness was formed by vacuum deposition. Thus, the organic EL element of Example 3 was produced.
  • the driving voltage V and the luminance L were measured by driving each of the examples under the condition of a current density of 7.5 mA / cm 2 .
  • the electron transporting organic semiconductor layer film of Cs 2 MoO 4 : NBphen has a concentration of 1.7% or more and a driving voltage lower than that of the comparative element. If the light-emitting layer and the electron-transporting organic semiconductor layer are considered to be electron-transporting light-emitting layers, if the metal salt compound of the electron-donating metal counter cation is doped at a predetermined concentration from the contacting cathode side to the predetermined film thickness, It can be understood that the drive voltage can be reduced.
  • Example 4 In the same manner as in Example 1, a plurality of precursors formed up to the hole transport layer were prepared, and Alq3 was formed as an organic light emitting layer with a thickness of 30 nm on the hole transport layer. 2 An electron transporting organic semiconductor layer made of DBzA doped with MoO 4 at a concentration of 0.85 wt%, 1.7 wt%, 3.3 wt%, 5 wt%, 10 wt%, and 20 wt% is formed by co-evaporation to a thickness of 30 nm. On top of that, Al having a predetermined film thickness was formed as a cathode by vacuum deposition. Thus, the organic EL element of Example 4 was produced.
  • the driving voltage V and the luminance L were measured by driving each of the examples under the condition of a current density of 7.5 mA / cm 2 .
  • the electron transporting organic semiconductor layer film of Cs 2 MoO 4 : DBzA has a concentration of 3.3% or more and a driving voltage lower than that of the comparative element.
  • the comparative element driving voltage is equivalent and effective even at a low concentration of 1.7%. If the light-emitting layer and the electron-transporting organic semiconductor layer are considered to be electron-transporting light-emitting layers, if the metal salt compound of the electron-donating metal counter cation is doped at a predetermined concentration from the contacting cathode side to the predetermined film thickness, It can be understood that the drive voltage can be reduced.
  • Example 5 For the electron transport materials Alq3, TPBI, NBphen, and DBzA devices of Examples 1 to 4, changes in driving voltage against the metal salt compound Cs 2 MoO 4 doping concentration were plotted. All the luminances were about 300 cd / m 2 .
  • FIG. 9 a comparative example at the time of Example 1 is also shown.
  • the energy gap becomes narrower.
  • MoO 2 is less permeable than MoO 3 .
  • optical transmission loss is low because it exists as a single compound with the same number of oxygen atoms to exist in the state of a metal salt compound composed of this electron-donating metal pair cation. I can expect that.
  • the effect of doping the metal semiconductor compound into the organic semiconductor layer is also selective in the doped organic semiconductor layer.
  • An impurity level is formed locally or mostly in the thin film, and the level is filled with the charge (carrier) of the metal salt, so that it can be expected that the electron transport property is improved.
  • it can be expected to improve conductivity by forming and synthesizing a new compound by co-evaporation in a vacuum with a material having an unpaired electron such as a bathophenanthroline derivative such as NBphen.
  • Example 6 In the same manner as in Example 1, a plurality of precursors formed up to the hole transport layer were prepared, and Alq3 was formed as an organic light-emitting layer with a thickness of 30 nm on each of the hole transport layers.
  • a predetermined thickness of Al was formed by vacuum deposition. Thus, the organic EL element of Example 6 was produced.
  • Alq3 is formed as an organic light emitting layer with a thickness of 60 nm by vapor deposition on the hole transport layer of the precursor, and CsF is formed with a thickness of 1 nm as an inorganic electron injection layer thereon, and As a cathode, Al having a predetermined thickness was formed by vacuum deposition.
  • an organic EL element of ITO / CuPc (25 nm) / NPB (45 nm) / Alq3 (60 nm) / CsF (1 nm) / Al as a comparative example was produced.
  • Example 6 and Comparative Example CsF were each driven at a current density of 7.5 mA / cm 2 to measure drive voltage V and luminance L.
  • metal salt compounds Cs 2 WO 4 and Cs 2 MoO The drive voltage change versus 4 doping concentration was plotted. The results are shown in FIG. 10 (the plot of Example 3 is also shown).
  • the concentration is lower than that of the conventional electron injection material (CsF). It can be seen that the doping has the effect of suppressing the luminance deterioration and greatly suppressing the increase of the driving voltage.
  • Example 7 The element of Example 3 (Cs 2 MoO 4 concentration 1.7 wt%) was driven for 100 hours or more under the condition of a current density of 21 mA / cm 2 . The changes over time in the light emission intensity and the driving voltage in this case were plotted. The results are shown in FIGS. 11 and 12 (also driven in the same manner as using the electron injection layer Li 2 O in the comparative example when the example 1, the results also are shown together).
  • Example 8 In the same manner as in Example 1, a plurality of precursors formed up to the hole transport layer were prepared, and Alq3 was formed as an organic light emitting layer with a thickness of 30 nm on the hole transport layer. 2 An electron transporting organic semiconductor layer made of NBphen doped with MoO 4 at a concentration of 1.7 wt% is formed by co-evaporation to a thickness of 30 nm and 90 nm, and a predetermined thickness of Al is formed thereon as a cathode by vacuum evaporation. Formed. Thus, the organic EL element of Example 8 was produced.
  • the driving voltage V and the luminance L were measured by driving each of the examples under the condition of a current density of 7.5 mA / cm 2 .
  • Example 7 The device of Example 3 (Cs 2 MoO 4 concentration 1.7 wt%) and the device using the electron injection layer Li 2 O of the comparative example in Example 1 were exposed to the atmosphere without using a desiccant. For more than 655 hours. Each result is shown in FIG.
  • metal salt compounds include potassium molybdate K 2 MoO 4 , calcium molybdate CaMoO 4 , and molybdic acid.
  • Strontium SrMoO 4 sodium molybdate (anhydrous) Na 2 MoO 4 , barium molybdate BaMoO 4 , lithium molybdate Li 2 MoO 4 , rubidium molybdate Rb 2 MoO 4 , calcium metastannate CaSnO 3 , strontium metastannate SrO ⁇ SnO 2, meta tin barium BaSnO 3, metatitanic acid magnesium MgTiO 3, metatitanic acid lithium Li 2 TiO 3, dichromate potassium K 2 Cr 2 O 7, calcium chromate (n-hydrate) CaCrO 4 ⁇ nH 2 O, The Strontium romate SrCrO 4 , cesium dichromate Cs 2 Cr 2 O 7
  • the organic EL element has been described as the organic semiconductor element in the above embodiment, in the organic solar cell in which the plurality of organic semiconductor layers include a light collection layer, and at least one of an electron transport layer and a hole transport layer, An electron composed of an organic semiconductor that is in contact with the interface of the organic semiconductor layer between the second electrode of the negative electrode and the adjacent organic semiconductor layer and is doped with the above metal salt compound having an electron donating metal as a counter cation.
  • the electron-donating metal is in contact with the interface of the organic semiconductor layer between the second electrode of the negative electrode and the adjacent organic semiconductor layer in the organic active light-emitting device or the organic thin film transistor.
  • the structure having an electron-transporting organic semiconductor layer made of an organic semiconductor doped with a metal acid salt compound as described above having a counter cation as well as prolonging the life similar to the above examples Achieve the results and moisture effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This invention provides an organic semiconductor element comprising a pair of opposed first and second electrodes and a plurality of organic semiconductor layers disposed in a stacked state between the first and second electrodes. The second electrode is a negative electrode. An electron transport organic semiconductor layer, which is in contact with the interface of the organic semiconductor layer and is formed of an organic semiconductor doped with a metal acid salt compound in which an electron donating metal is a counter cation, is provided between the second electrode and the organic semiconductor layer.

Description

有機半導体素子Organic semiconductor device
 本発明は、有機半導体素子に関し、特に電荷輸送性(正孔又は電子の移動性)を有する有機化合物を利用し、かかる化合物からなる有機半導体層を備えた有機半導体素子に関する。 The present invention relates to an organic semiconductor element, and more particularly to an organic semiconductor element using an organic compound having a charge transporting property (hole or electron mobility) and having an organic semiconductor layer made of such a compound.
 有機半導体素子の一つに、有機材料を用いる有機太陽電池がある。エネルギー変換効率が高いので、光電変換層にシリコン等の無機材料のp型及びn型半導体を用いる無機太陽電池が主流となっているが、無機半導体の代わりにp型有機半導体及びn型有機半導体を用い、軽量、安価、フレキシブルな有機太陽電池の研究開発が続いている。有機太陽電池には、色素増感型太陽電池(グレッツェルセル)や、有機薄膜太陽電池等が知られている。色素増感型太陽電池は湿式であり、有機薄膜太陽電池は全固体型である。 There is an organic solar cell using an organic material as one of the organic semiconductor elements. Inorganic solar cells using p-type and n-type semiconductors made of inorganic materials such as silicon for the photoelectric conversion layer are mainly used because of high energy conversion efficiency, but p-type organic semiconductors and n-type organic semiconductors are used instead of inorganic semiconductors. Research and development of lightweight, inexpensive, and flexible organic solar cells continues. As organic solar cells, dye-sensitized solar cells (Gretzel cells), organic thin-film solar cells, and the like are known. Dye-sensitized solar cells are wet, and organic thin-film solar cells are all solid.
 有機、無機にかかわらず太陽電池では、まず太陽光エネルギーを吸収し(光捕集)、高エネルギー状態に励起されることにより電子と正孔が発生し、電子を負極に(電子輸送)、正孔を正極へ(正孔輸送)と運ぶことにより、電気エネルギーを発生している。有機薄膜太陽電池は電子と正孔の発生機構において無機太陽電池と大きく異なる。シリコンに代表される無機太陽電池では光吸収と同時にp型及びn型半導体界面で電子及び正孔が発生しそれぞれの電極へ移動するのに対して、有機太陽電池では光吸収により、電子と正孔が強く束縛された励起子が光捕集層で発生し、電子輸送層或いは正孔輸送層との界面まで移動して初めて電子と正孔が発生する。よって、有機太陽電池の素子性能を向上させるためには、光捕集層に発生した励起子を効率よく界面に輸送することが重要で、有機太陽電池は電荷輸送性を有する有機化合物を利用した多層構造を有している(特許文献1参照)。 Solar cells, whether organic or inorganic, first absorb solar energy (light collection) and are excited to a high energy state to generate electrons and holes, which are then transferred to the negative electrode (electron transport). Electrical energy is generated by transporting the holes to the positive electrode (hole transport). Organic thin-film solar cells differ greatly from inorganic solar cells in the generation mechanism of electrons and holes. In inorganic solar cells represented by silicon, electrons and holes are generated at the p-type and n-type semiconductor interfaces simultaneously with light absorption and move to the respective electrodes. Excitons whose holes are strongly bound are generated in the light collection layer and move to the interface with the electron transport layer or the hole transport layer, so that electrons and holes are generated. Therefore, in order to improve the device performance of the organic solar cell, it is important to efficiently transport excitons generated in the light collection layer to the interface, and the organic solar cell uses an organic compound having a charge transporting property. It has a multilayer structure (see Patent Document 1).
 一方、有機半導体素子の一つに、有機薄膜トランジスタがある。近年、その研究開発が盛んに行われており、その中で有機電界発光素子、有機エレクトロルミネッセンス(EL)素子を有機薄膜トランジスタでアクティブマトリクス駆動させる有機アクティブ発光素子の研究が行われている。 Meanwhile, an organic thin film transistor is one of organic semiconductor elements. In recent years, research and development has been actively conducted, and among these, researches on organic active light emitting devices in which organic electroluminescence devices and organic electroluminescence (EL) devices are driven in an active matrix by organic thin film transistors are being conducted.
 有機アクティブ発光素子には、例えば、基板上に透明ゲート電極を設け、ゲート電極を覆うようにその上に透明ゲート絶縁膜を形成し、ゲート絶縁膜の上に開口を有するソース電極(電荷注入)と有機半導体膜を設け、有機半導体膜上に有機EL膜を積層して、その上にドレイン電極(電荷注入)を積層したものが知られている(特許文献2参照)。 In an organic active light-emitting device, for example, a transparent gate electrode is provided on a substrate, a transparent gate insulating film is formed thereon so as to cover the gate electrode, and a source electrode (charge injection) having an opening on the gate insulating film And an organic semiconductor film, an organic EL film is laminated on the organic semiconductor film, and a drain electrode (charge injection) is laminated thereon (see Patent Document 2).
 一般に、有機EL膜は、有機発光層を含む複数の有機材料層を積層した構造を有している。有機材料層には、有機発光層の他に、正孔注入層、正孔輸送層等の正孔輸送能を持つ材料からなる層や、電子輸送層、電子注入層等の電子輸送能を持つ材料からなる層等が含まれる。電子注入層には無機化合物も含まれる。 Generally, the organic EL film has a structure in which a plurality of organic material layers including an organic light emitting layer are stacked. In addition to the organic light emitting layer, the organic material layer has a layer made of a material having a hole transport ability such as a hole injection layer and a hole transport layer, and an electron transport ability such as an electron transport layer and an electron injection layer. Layers made of materials are included. The electron injection layer includes an inorganic compound.
 有機発光層並びに電子或いは正孔の輸送層の積層体の有機EL膜に電界が印加されると、ソース電極からは正孔が、ドレイン電極からは電子が注入され、これらが有機発光層において再結合し励起子が形成され、基底状態に戻るとき発光する。発光効率を向上させるためには、電子等キャリアを効率よく界面に輸送することが重要で、有機アクティブ発光素子でも電荷輸送性を有する有機化合物を利用した多層構造を有している。 When an electric field is applied to the organic light-emitting layer and the organic EL film of the electron or hole transport layer stack, holes are injected from the source electrode and electrons are injected from the drain electrode. When combined, excitons are formed and emit light when returning to the ground state. In order to improve the light emission efficiency, it is important to efficiently transport carriers such as electrons to the interface, and the organic active light emitting device has a multilayer structure using an organic compound having a charge transporting property.
 このように、電荷輸送性有機化合物からなる有機半導体層を備えた有機半導体素子の発電や発光の効率を増大させるには電荷注入層を設けることが有効であるが、さらに、素子の延命化が必要がある。連続駆動でき高効率の有機半導体素子が望まれている。
特開2006-156956 特開2007-200788 特開2002-367784 特開2006-148134
As described above, it is effective to provide a charge injection layer in order to increase the efficiency of power generation and light emission of an organic semiconductor device having an organic semiconductor layer made of a charge transporting organic compound. There is a need. A highly efficient organic semiconductor element that can be continuously driven is desired.
JP 2006-156956 A JP2007-200788 JP 2002-367784 A JP 2006-148134 A
 従来の有機半導体素子、たとえば、有機EL素子の電子注入効率を向上させるため、仕事関数が低いアルカリ金属やアルカリ土類金属、それらの化合物(CsF、CsCO、LiO、LiF)等が無機電子注入層に用いられてきた。しかしながら、これらの材料は酸化、材料によっては分解(CsCO)し易く、また潮解性を有しているため取り扱いが難しい。また、これらは反応性が高いため、蒸着ボートと反応し腐食してしまう問題もある。(特許文献3参照)
 これまでの電子注入材料でCs単体を成膜した場合、Cs単体は導電性のある金属であるが反応性が高いために真空蒸着にて成膜する最中にCsOの酸化セシウムになっている。
In order to improve the electron injection efficiency of conventional organic semiconductor elements, for example, organic EL elements, alkali metals and alkaline earth metals having low work functions, compounds thereof (CsF, Cs 2 CO 3 , Li 2 O, LiF), etc. Have been used for inorganic electron injection layers. However, these materials are difficult to handle because they are easily oxidized, decomposed (Cs 2 CO 3 ) depending on the material, and have deliquescence. Moreover, since these have high reactivity, there also exists a problem which reacts with a vapor deposition boat and corrodes. (See Patent Document 3)
In the case where Cs simple substance is formed with conventional electron injection materials, Cs simple substance is a conductive metal, but because of its high reactivity, it becomes Cs 2 O cesium oxide during film formation by vacuum deposition. ing.
 また、有機EL素子の無機電子注入層に金属酸塩化合物を無機層として用いた例(特許文献4参照)があり、これは金属酸塩化合物による電子注入効果が期待できるが、CsMoOの実施例から特定の金属酸塩化合物の膜厚で駆動電圧が低下するが、一定の膜厚以上だと素子の駆動電圧が上昇する。 In addition, there is an example in which a metal acid salt compound is used as an inorganic layer in the inorganic electron injection layer of the organic EL element (see Patent Document 4). This can be expected to have an electron injection effect by the metal acid salt compound, but Cs 2 MoO 4 From this example, the driving voltage decreases with the film thickness of a specific metalate compound, but when the film thickness exceeds a certain film thickness, the driving voltage of the element increases.
 特許文献3開示の有機EL素子ではアルカリ金属と導電性金属酸化物を共蒸着しているが、同じ様に一定の膜厚以上だと素子の駆動電圧は上昇する。 In the organic EL element disclosed in Patent Document 3, alkali metal and conductive metal oxide are co-evaporated. Similarly, when the film thickness exceeds a certain value, the driving voltage of the element increases.
 従来では、仕事関数が低いアルカリ金属やアルカリ土類金属やそれらの化合物をドーピングする際は、上記で挙げた問題があり、特にCs単体ではその融点が23度、その分子量が軽いため、有機EL素子を高温下で保存保管した場合、Csが拡散し素子劣化に繋がる恐れがあると考えられる。このような状態になると、結果的に有機半導体素子の駆動寿命が短くなる。 Conventionally, when doping an alkali metal, alkaline earth metal or a compound thereof having a low work function, there are the problems mentioned above. In particular, Cs alone has a melting point of 23 degrees and its molecular weight is low. When the element is stored and stored at high temperature, it is considered that Cs may diffuse and lead to element deterioration. If it will be in such a state, the drive life of an organic-semiconductor element will become short as a result.
 そこで、発明が解決しようとする課題は、延命化が図れる有機EL素子等の有機半導体素子を提供することが一例として挙げられる。 Therefore, the problem to be solved by the invention is, for example, to provide an organic semiconductor element such as an organic EL element capable of extending the life.
 本発明による有機半導体素子は、対向する1対の第1及び第2電極の間に積層配置された複数の有機半導体層を含む有機半導体素子であって、前記第2電極が負極であり、前記第2電極と前記有機半導体層の間に、前記有機半導体層の界面に接しかつ、電子供与性金属を対カチオンとする金属酸塩化合物がドープされた有機半導体からなる電子輸送性有機半導体層を有することを特徴とする。電子輸送性有機半導体層を有するので、素子寿命を向上させることができる。電子輸送性有機半導体層は4.5eV以上の仕事関数が高い陰極においても効率的に電子注入が可能である。電子輸送性有機半導体層を用いるので、電子注入層は不要である効果がある。すなわち、電子輸送性有機半導体層は陰極に接しているので、電子注入可能である。電子輸送性有機半導体層は高温保存下で金属酸塩化合物が拡散しない効果がある。 An organic semiconductor device according to the present invention is an organic semiconductor device including a plurality of organic semiconductor layers stacked between a pair of opposed first and second electrodes, wherein the second electrode is a negative electrode, An electron transporting organic semiconductor layer made of an organic semiconductor that is in contact with the interface of the organic semiconductor layer and doped with a metal acid salt compound having an electron donating metal as a counter cation between the second electrode and the organic semiconductor layer. It is characterized by having. Since the electron-transporting organic semiconductor layer is provided, the device life can be improved. The electron-transporting organic semiconductor layer can efficiently inject electrons even in a cathode having a high work function of 4.5 eV or more. Since the electron transporting organic semiconductor layer is used, there is an effect that the electron injection layer is unnecessary. That is, since the electron transporting organic semiconductor layer is in contact with the cathode, electrons can be injected. The electron transporting organic semiconductor layer has an effect that the metal salt compound does not diffuse under high temperature storage.
 本発明の有機半導体素子においては、前記電子供与性金属が、アルカリ金属、アルカリ土類金属及び希土類金属を含む遷移金属のうち仕事関数が3.5eV以下の金属から選択された1種以上の金属からなることとすることができる。 In the organic semiconductor device of the present invention, the electron donating metal is one or more metals selected from metals having a work function of 3.5 eV or less among transition metals including alkali metals, alkaline earth metals, and rare earth metals. Can consist of:
 本発明の有機半導体素子においては、前記電子輸送性有機半導体層中の金属酸塩化合物の濃度が、0.1~40重量%であることとすることができる。電子輸送性有機半導体層は特定の濃度又は一定の濃度以上の場合、素子の駆動電圧を低減させる効果がある。 In the organic semiconductor element of the present invention, the concentration of the metal salt compound in the electron transporting organic semiconductor layer can be 0.1 to 40% by weight. When the electron transporting organic semiconductor layer has a specific concentration or a certain concentration or more, it has an effect of reducing the driving voltage of the element.
 本発明の有機半導体素子においては、前記電子輸送性有機半導体層の厚さが、1nm~300nmであることとすることができる。 In the organic semiconductor element of the present invention, the electron transporting organic semiconductor layer may have a thickness of 1 nm to 300 nm.
 本発明の有機半導体素子においては、前記電子輸送性有機半導体層は、1元蒸着、又は多元蒸着により成膜されたこととすることができる。金属酸塩化合物は単体を蒸着すれば済むのでプロセスが簡略化される。 In the organic semiconductor element of the present invention, the electron transporting organic semiconductor layer can be formed by single vapor deposition or multiple vapor deposition. Since the metal salt compound only needs to be vapor-deposited, the process is simplified.
 本発明の有機半導体素子においては、前記電子輸送性有機半導体層の膜は50%以上の透過率を有することとすることができる。 In the organic semiconductor element of the present invention, the electron transporting organic semiconductor layer film may have a transmittance of 50% or more.
 本発明の有機半導体素子においては、前記金属酸塩化合物は、導電性を有する酸化物半導体を含むこととすることができる。 In the organic semiconductor element of the present invention, the metal acid salt compound may include a conductive oxide semiconductor.
 本発明の有機半導体素子においては、前記導電性を有する酸化物半導体は1×10-10~1×1010cm/Vsのキャリア移動度、又は1010~10-10Ω・cmの導電性を持つこととすることができる。 In the organic semiconductor element of the present invention, the conductive oxide semiconductor has a carrier mobility of 1 × 10 −10 to 1 × 10 10 cm 2 / Vs or a conductivity of 10 10 to 10 −10 Ω · cm. Can have.
 本発明の有機半導体素子においては、前記有機半導体は1×10-10から1×1010cm/Vsのキャリア移動度を持つこととすることができる。 In the organic semiconductor device of the present invention, the organic semiconductor may have a carrier mobility of 1 × 10 −10 to 1 × 10 10 cm 2 / Vs.
 本発明の有機半導体素子においては、前記複数の有機半導体層が発光層を含み、前記第1及び第2電極のどちらか片方の電極が半透明、又は透明、又は前記第1及び第2電極が透明である有機電界発光素子であることとすることができる。有機電界発光素子の駆動電圧を低下させ、有機電界発光素子パネルの消費電圧を低減させる。また、パネルの消費電力を低減させることでパネルの発熱量を抑制できる。仕事関数が低いアルカリ金属やアルカリ土類金属、それらの化合物(CsF、CsCO、LiO、LiF)等を有機半導体層とドーピングすることで、無機電子注入層を挿入せずに電子輸送性有機半導体層と陰極(Al等)で構成することができかつ駆動電圧が低下し、無機電子注入層を挿入する必要が無いので当該電子注入層の膜厚分、薄膜化でき、成膜プロセスを簡略化、素子の消費電力の低減ができる。 In the organic semiconductor element of the present invention, the plurality of organic semiconductor layers include a light emitting layer, and one of the first and second electrodes is translucent or transparent, or the first and second electrodes are It can be an organic electroluminescent device that is transparent. The driving voltage of the organic electroluminescent element is lowered, and the consumption voltage of the organic electroluminescent element panel is reduced. Moreover, the calorific value of a panel can be suppressed by reducing the power consumption of a panel. By doping an organic semiconductor layer with an alkali metal or alkaline earth metal having a low work function or a compound thereof (CsF, Cs 2 CO 3 , Li 2 O, LiF) or the like, an electron can be obtained without inserting an inorganic electron injection layer. Since it can be composed of a transportable organic semiconductor layer and a cathode (Al, etc.) and the driving voltage is reduced and there is no need to insert an inorganic electron injection layer, it can be made thinner by the thickness of the electron injection layer. The process can be simplified and the power consumption of the element can be reduced.
 本発明の有機半導体素子においては、前記複数の有機半導体層が、光捕集層と、電子輸送層及び正孔輸送層の少なくとも1つとを含む有機太陽電池であることとすることができる。 In the organic semiconductor element of the present invention, the plurality of organic semiconductor layers may be organic solar cells including a light collection layer and at least one of an electron transport layer and a hole transport layer.
本発明による実施形態の有機半導体素子の有機EL素子を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the organic EL element of the organic-semiconductor element of embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the organic EL element of the organic-semiconductor element of other embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the organic EL element of the organic-semiconductor element of other embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the organic EL element of the organic-semiconductor element of other embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the organic EL element of the organic-semiconductor element of other embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the organic EL element of the organic-semiconductor element of other embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the organic EL element of the organic-semiconductor element of other embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the organic EL element of the organic-semiconductor element of other embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子における金属酸塩化合物の有機半導体層へのドーピング濃度に対する駆動電圧変化を示すグラフである。It is a graph which shows the drive voltage change with respect to the doping density | concentration to the organic-semiconductor layer of the metal salt compound in the organic electroluminescent element of the organic-semiconductor element of other embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子における金属酸塩化合物の有機半導体層へのドーピング濃度に対する駆動電圧変化を示すグラフである。It is a graph which shows the drive voltage change with respect to the doping density | concentration to the organic-semiconductor layer of the metal salt compound in the organic electroluminescent element of the organic-semiconductor element of other embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子における駆動経過時間に対する発光強度変化を示すグラフである。It is a graph which shows the emitted light intensity change with respect to the drive elapsed time in the organic EL element of the organic-semiconductor element of other embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子における駆動経過時間に対する駆動電圧変化を示すグラフである。It is a graph which shows the drive voltage change with respect to the drive elapsed time in the organic EL element of the organic-semiconductor element of other embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子における電流密度-駆動電圧特性を示すグラフである。It is a graph which shows the current density-driving voltage characteristic in the organic EL element of the organic-semiconductor element of other embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子における電流密度-駆動電圧特性を示すグラフである。It is a graph which shows the current density-driving voltage characteristic in the organic EL element of the organic-semiconductor element of other embodiment by this invention. 本発明による実施形態の有機半導体素子の有機EL素子を大気暴露実験の開始前後の素子の正面を示す線図である。It is a diagram which shows the front of the element before and after the start of an atmospheric exposure experiment of the organic EL element of the organic semiconductor element of embodiment by this invention.
符号の説明Explanation of symbols
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 正孔ブロック層
 7 電子輸送性有機半導体層
 8 陰極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Hole block layer 7 Electron transporting organic semiconductor layer 8 Cathode
発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
 以下に本発明の有機半導体素子による実施の形態を図面を参照しつつ説明する。 Embodiments of the organic semiconductor element of the present invention will be described below with reference to the drawings.
 本実施形態の有機EL素子の一例は、図1に示すように、ガラス等の透明基板1上にて、順に、透明な第1電極(陽極)2、有機化合物からなる正孔輸送層4、有機化合物からなる有機発光層5、有機化合物からなる電子輸送性有機半導体層7及び金属からなる第2電極(負極である陰極)8が積層されて得られるものである。すなわち、有機EL素子において、対向する1対の第1及び第2電極が陽極及び陰極に対応し、それらの間に積層配置された複数の有機半導体層が正孔注入層、正孔輸送層、発光層を包含する。第2電極の陰極と有機半導体層(発光層)の間に電子輸送性有機半導体層が発光層の界面に接して配置され、これは電子供与性金属を対カチオンとする金属酸塩化合物がドープされた有機半導体からなる。 As shown in FIG. 1, an example of the organic EL element of the present embodiment includes, in order, a transparent first electrode (anode) 2, a hole transport layer 4 made of an organic compound, on a transparent substrate 1 such as glass, An organic light emitting layer 5 made of an organic compound, an electron transporting organic semiconductor layer 7 made of an organic compound, and a second electrode (cathode that is a negative electrode) 8 made of a metal are laminated. That is, in the organic EL element, a pair of first and second electrodes facing each other correspond to an anode and a cathode, and a plurality of organic semiconductor layers stacked between them are a hole injection layer, a hole transport layer, Includes a light emitting layer. An electron-transporting organic semiconductor layer is disposed between the cathode of the second electrode and the organic semiconductor layer (light-emitting layer) in contact with the interface of the light-emitting layer, which is doped with a metal salt compound having an electron-donating metal as a counter cation. Made of organic semiconductor.
 図1に示すように、陽極2/正孔注入層3/正孔輸送層4/発光層5/電子輸送性有機半導体層7/陰極8/の構成の他に、図2に示すように、陽極2/正孔注入層3/発光層5/電子輸送性有機半導体層7/陰極8/の構成や、図3に示すように、陽極2/正孔輸送層4/発光層5/電子輸送性有機半導体層7/陰極8/の構成や、図4に示すように、陽極2/発光層5/電子輸送性有機半導体層7/陰極8/の構成が挙げられる。本発明による有機EL素子は、電子輸送性有機半導体層7を陰極8との界面に有するものであればよい。よって、電子輸送性有機半導体層7隣接層は発光層に限定されることなく、発光層及び電子輸送性有機半導体層の間にブロック層及び/又はバファ層など、例えば、図5に示すように、陽極2/正孔注入層3/正孔輸送層4/発光層5/正孔ブロック層6/電子輸送性有機半導体層7/陰極8/の構成の他に、図6に示すように、陽極2/正孔注入層3/発光層5/正孔ブロック層6/電子輸送性有機半導体層7/陰極8/の構成や、図7に示すように、陽極2/正孔輸送層4/発光層5/正孔ブロック層6/電子輸送性有機半導体層7/陰極8/の構成や、図8に示すように、陽極2/発光層5/正孔ブロック層6/電子輸送性有機半導体層7/陰極8/の構成も本発明に含まれる。 As shown in FIG. 1, in addition to the structure of anode 2 / hole injection layer 3 / hole transport layer 4 / light emitting layer 5 / electron transporting organic semiconductor layer 7 / cathode 8 /, as shown in FIG. The structure of anode 2 / hole injection layer 3 / light emitting layer 5 / electron transporting organic semiconductor layer 7 / cathode 8 /, as shown in FIG. 3, anode 2 / hole transport layer 4 / light emitting layer 5 / electron transport The structure of the conductive organic semiconductor layer 7 / cathode 8 / and the structure of the anode 2 / light emitting layer 5 / electron transporting organic semiconductor layer 7 / cathode 8 / as shown in FIG. The organic EL element by this invention should just have the electron transport organic-semiconductor layer 7 in the interface with the cathode 8. FIG. Therefore, the electron transporting organic semiconductor layer 7 adjacent layer is not limited to the light emitting layer, and a block layer and / or a buffer layer between the light emitting layer and the electron transporting organic semiconductor layer, for example, as shown in FIG. In addition to the structure of anode 2 / hole injection layer 3 / hole transport layer 4 / light emitting layer 5 / hole blocking layer 6 / electron transporting organic semiconductor layer 7 / cathode 8 /, as shown in FIG. The structure of anode 2 / hole injection layer 3 / light emitting layer 5 / hole blocking layer 6 / electron transporting organic semiconductor layer 7 / cathode 8 /, as shown in FIG. 7, anode 2 / hole transport layer 4 / The structure of the light emitting layer 5 / hole blocking layer 6 / electron transporting organic semiconductor layer 7 / cathode 8 /, and as shown in FIG. 8, the anode 2 / light emitting layer 5 / hole blocking layer 6 / electron transporting organic semiconductor The configuration of layer 7 / cathode 8 / is also included in the present invention.
 --基板並びに第1及び第2電極--
 基板1のガラスの透明材料の他としては、ポリスチレンなどのプラスチック材料といった半透明材料の他に、シリコンやAlなどの不透明な材料、フェノール樹脂などの熱硬化性樹脂、ポリカーボネートなどの熱可塑性樹脂などを用いることができる。
--Substrate and first and second electrodes--
In addition to the glass transparent material of the substrate 1, in addition to a translucent material such as a plastic material such as polystyrene, an opaque material such as silicon or Al, a thermosetting resin such as a phenol resin, a thermoplastic resin such as a polycarbonate, etc. Can be used.
 第1電極(陽極)2及び第2電極(陰極)8の電極材料としては、Ti、Al、Al、Cu、Ni、Ag、Mg:Ag、Au、Pt、Pd、Ir、Cr、Mo、W、Taなどの金属あるいはこれらの合金が挙げられる。あるいは、ポリアニリンやPEDT:PSSなどの導電性高分子を用いることができる。あるいは、酸化物透明導電薄膜、例えばインジウムすず酸化物(ITO)、インジウム亜鉛酸化物(IZO)、酸化亜鉛、酸化錫などのいずれかを主組成としたものを用いることができる。また、各電極の厚さは10~500nm程度が好ましい。これらの電極材料は真空蒸着法、スパッタ法で作製されたものが好ましい。 As electrode materials of the first electrode (anode) 2 and the second electrode (cathode) 8, Ti, Al, Al, Cu, Ni, Ag, Mg: Ag, Au, Pt, Pd, Ir, Cr, Mo, W And metals such as Ta and alloys thereof. Alternatively, a conductive polymer such as polyaniline or PEDT: PSS can be used. Alternatively, an oxide transparent conductive thin film, for example, one containing indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide, tin oxide or the like as a main composition can be used. The thickness of each electrode is preferably about 10 to 500 nm. These electrode materials are preferably produced by vacuum deposition or sputtering.
 正極である第1電極(陽極)2には第2電極(陰極)8より仕事関数の大きな導電性材料が選択される。さらに、第1及び第2電極は、発光の取り出し側を透明又は半透明となるように材料、膜厚を選択する。特に第1及び第2電極のうちどちらか、もしくはその両方が、有機発光材料から得られる発光波長において少なくとも10%以上の透過率を持つ材料を選択することが好ましい。 A conductive material having a work function larger than that of the second electrode (cathode) 8 is selected for the first electrode (anode) 2 as the positive electrode. Further, the materials of the first and second electrodes are selected so that the light emission side is transparent or translucent. In particular, it is preferable to select a material in which one or both of the first and second electrodes have a transmittance of at least 10% at the emission wavelength obtained from the organic light emitting material.
 --有機半導体層--
 正孔注入層3、正孔輸送層4及び発光層5並びに電子輸送性有機半導体層7の主成分を構成する有機半導体層は、電荷輸送性(正孔及び/又は電子の移動性)を有する有機化合物を利用する。
--- Organic semiconductor layer--
The organic semiconductor layer constituting the main components of the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, and the electron transport organic semiconductor layer 7 has a charge transport property (hole and / or electron mobility). Utilizes organic compounds.
 発光層や電子輸送性有機半導体層の主成分の電子輸送性を有する有機化合物としては、p-テルフェニルやクアテルフェニル等の多環化合物およびそれらの誘導体、ナフタレン、テトラセン、ピレン、コロネン、クリセン、アントラセン、ジフェニルアントラセン、ナフタセン、フェナントレン等の縮合多環炭化水素化合物及びそれらの誘導体、フェナントロリン、バソフェナントロリン、フェナントリジン、アクリジン、キノリン、キノキサリン、フェナジン等の縮合複素環化合物およびそれらの誘導体や、フルオロセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、オキシン、アミノキノリン、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、ピラン、チオピラン、ポリメチン、メロシアニン、キナクリドン、ルブレン等およびそれらの誘導体等を挙げることができる。 Examples of the organic compound having an electron transporting property as a main component of the light emitting layer and the electron transporting organic semiconductor layer include polycyclic compounds such as p-terphenyl and quaterphenyl and derivatives thereof, naphthalene, tetracene, pyrene, coronene, chrysene Condensed polycyclic hydrocarbon compounds such as anthracene, diphenylanthracene, naphthacene, phenanthrene and their derivatives, condensed heterocyclic compounds such as phenanthroline, bathophenanthroline, phenanthridine, acridine, quinoline, quinoxaline, phenazine and their derivatives, Fluorescein, perylene, phthaloperylene, naphthaloperylene, perinone, phthaloperinone, naphthaloperinone, diphenylbutadiene, tetraphenylbutadiene, oxadiazole, aldazine, bisbenzoxazoline, biphenyl Styryl, pyrazine, cyclopentadiene, oxine, aminoquinoline, imine, diphenylethylene, vinyl anthracene, diaminocarbazole, pyran, may be mentioned thiopyran, polymethine, merocyanine, quinacridone, rubrene, and the like, and their derivatives etc..
 また、電子輸送性を有する有機化合物として、金属キレート錯体化合物、特に金属キレート化オキサノイド化合物では、トリス(8-キノリノラト)アルミニウム、ビス(8-キノリノラト)マグネシウム、ビス[ベンゾ(f)-8-キノリノラト]亜鉛、ビス(2-メチル-8-キノリノラト)アルミニウム、トリス(8-キノリノラト)インジウム、トリス(5-メチル-8-キノリノラト)アルミニウム、8-キノリノラトリチウム、トリス(5-クロロ-8-キノリノラト)ガリウム、ビス(5-クロロ-8-キノリノラト)カルシウム等の8-キノリノラト或いはその誘導体を配位子として少なくとも一つ有する金属錯体も挙げることができる。 Further, as an organic compound having an electron transporting property, a metal chelate complex compound, particularly a metal chelated oxanoid compound, tris (8-quinolinolato) aluminum, bis (8-quinolinolato) magnesium, bis [benzo (f) -8-quinolinolato Zinc, bis (2-methyl-8-quinolinolato) aluminum, tris (8-quinolinolato) indium, tris (5-methyl-8-quinolinolato) aluminum, 8-quinolinolatolithium, tris (5-chloro-8- There may also be mentioned metal complexes having at least one 8-quinolinolato or a derivative thereof such as quinolinolato) gallium and bis (5-chloro-8-quinolinolato) calcium as a ligand.
 また、電子輸送性を有する有機化合物として、オキサジアゾール類、トリアジン類、スチルベン誘導体およびジスチリルアリーレン誘導体、スチリル誘導体、ジオレフィン誘導体も好適に使用され得る。 Also, as organic compounds having electron transport properties, oxadiazoles, triazines, stilbene derivatives, distyrylarylene derivatives, styryl derivatives, and diolefin derivatives can be suitably used.
 さらに、電子輸送性を有する有機化合物として使用できる有機化合物として、2,5-ビス(5,7-ジ-t-ベンチル-2-ベンゾオキサゾリル)-1,3,4-チアゾール、4,4’-ビス(5,7-t-ペンチル-2-ベンゾオキサゾリル)スチルベン、4,4’-ビス[5,7-ジ-(2-メチル-2-ブチル)-2-ベンゾオキサゾリル]スチルベン、2,5-ビス(5.7-ジ-t-ペンチル-2-ベンゾオキサゾリル)チオフェン、2,5-ビス[5-(α,α-ジメチルベンジル)-2-ベンゾオキサゾリル]チオフェン、2,5-ビス[5,7-ジ-(2-メチル-2-ブチル)-2-ベンゾオキサゾリル]-3,4-ジフェニルチオフェン、2,5-ビス(5-メチル-2-ベンゾオキサゾリル)チオフェン、4,4’-ビス(2-ベンゾオキサゾリル)ビフェニル、5-メチル-2-{2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル]ビニル}ベンゾオキサゾール、2-[2-(4-クロロフェニル)ビニル]ナフト(1,2-d)オキサゾール等のベンゾオキサゾール系、2,2’-(p-フェニレンジピニレン)-ビスベンゾチアゾール等のベンゾチアゾール系、2-{2-[4-(2-ベンゾイミダゾリル)フェニル〕ビニル}ベンゾイミダゾール、2-[2-(4-カルボキシフェニル)ビニル]ベンゾイミダゾール等も挙げられる。 Further, as an organic compound that can be used as an organic compound having an electron transporting property, 2,5-bis (5,7-di-t-benzyl-2-benzoxazolyl) -1,3,4-thiazole, 4, 4'-bis (5,7-t-pentyl-2-benzoxazolyl) stilbene, 4,4'-bis [5,7-di- (2-methyl-2-butyl) -2-benzoxazoly Ru] stilbene, 2,5-bis (5.7-di-t-pentyl-2-benzoxazolyl) thiophene, 2,5-bis [5- (α, α-dimethylbenzyl) -2-benzoxa Zolyl] thiophene, 2,5-bis [5,7-di- (2-methyl-2-butyl) -2-benzoxazolyl] -3,4-diphenylthiophene, 2,5-bis (5- Methyl-2-benzoxazolyl) thiophene, 4,4 ′ -Bis (2-benzoxazolyl) biphenyl, 5-methyl-2- {2- [4- (5-methyl-2-benzoxazolyl) phenyl] vinyl} benzoxazole, 2- [2- (4 Benzoxazoles such as -chlorophenyl) vinyl] naphtho (1,2-d) oxazole, benzothiazoles such as 2,2 '-(p-phenylenedipinylene) -bisbenzothiazole, 2- {2- [4 -(2-Benzimidazolyl) phenyl] vinyl} benzimidazole, 2- [2- (4-carboxyphenyl) vinyl] benzimidazole and the like can also be mentioned.
 さらに、電子輸送性を有する有機化合物として、1,4-ビス(2-メチルスチリル)ベンゼン、1,4-ビス(3-メチルスチリル)ベンゼン、1,4-ビス(4-メチルスチリル)ベンゼン、ジスチリルベンゼン、1,4-ビス(2-エチルスチリル)ベンゼン、1,4-ビス(3-エチルスチリル)ベンゼン、1,4-ビス(2-メチルスチリル)-2-メチルベンゼン、1,4-ビス(2-メチルスチリル)-2-エチルベンゼン等も挙げられる。 Further, as an organic compound having an electron transporting property, 1,4-bis (2-methylstyryl) benzene, 1,4-bis (3-methylstyryl) benzene, 1,4-bis (4-methylstyryl) benzene, Distyrylbenzene, 1,4-bis (2-ethylstyryl) benzene, 1,4-bis (3-ethylstyryl) benzene, 1,4-bis (2-methylstyryl) -2-methylbenzene, 1,4 Examples thereof include -bis (2-methylstyryl) -2-ethylbenzene.
 また、さらに、電子輸送性を有する有機化合物として、2,5-ビス(4-メチルスチリル)ピラジン、2,5-ビス(4-エチルスチリル)ピラジン、2,5-ビス[2-(1-ナフチル)ビニル]ピラジン、2,5-ビス(4-メトキシスチリル)ピラジン、2,5-ビス[2-(4-ビフェニル)ビニル]ピラジン、2,5-ビス[2-(1-ピレニル)ビニル]ピラジン等が挙げられる。 Further, as an organic compound having an electron transporting property, 2,5-bis (4-methylstyryl) pyrazine, 2,5-bis (4-ethylstyryl) pyrazine, 2,5-bis [2- (1- Naphthyl) vinyl] pyrazine, 2,5-bis (4-methoxystyryl) pyrazine, 2,5-bis [2- (4-biphenyl) vinyl] pyrazine, 2,5-bis [2- (1-pyrenyl) vinyl ] Pyrazine etc. are mentioned.
 その他、さらに、電子輸送性を有する有機化合物として、1,4-フェニレンジメチリディン、4,4’-フェニレンジメチリディン、2,5-キシリレンジメチリディン、2,6-ナフチレンジメチリディン、1,4-ビフェニレンジメチリディン、1,4-p-テレフェニレンジメチリディン、9,10-アントラセンジイルジメチリディン、4,4’-(2,2-ジ-t-ブチルフェニルビニル)ビフェニル、4,4’-(2,2-ジフェニルビニル)ビフェニル等、従来有機EL素子の作製に使用されている公知のものを適宜用いることができる。 Other organic compounds having electron transport properties include 1,4-phenylene dimethylidin, 4,4'-phenylene dimethylidin, 2,5-xylylene dimethylidin, and 2,6-naphthylene dimethylidene. Din, 1,4-biphenylenedimethylidin, 1,4-p-terephenylenedimethylidin, 9,10-anthracenediyldimethylidin, 4,4 '-(2,2-di-t-butylphenylvinyl Known materials conventionally used for the production of organic EL devices such as biphenyl and 4,4 ′-(2,2-diphenylvinyl) biphenyl can be appropriately used.
 一方、正孔輸送性を有する有機化合物として、N,N,N’,N’-テトラフェニル-4,4’-ジアミノフェニル、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジアミノビフェニル、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、N,N,N’,N’-テトラ-p-トリル-4,4’-ジアミノビフェニル、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N’-ジフェニル-N,N’-ジ(4-メトキシフェニル)-4,4’-ジアミノビフェニル、N,N,N’,N’-テトラフェニル-4,4’-ジアミノジフェニルエーテル、4,4’-ビス(ジフェニルアミノ)クオードリフェニル、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4’-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、1,1-ビス(4-ジ-p-トリアミノフェニル)-シクロヘキサン、1,1-ビス(4-ジ-p-トリアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)-フェニルメタン、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4’-[4(ジ-p-トリルアミノ)スチリル]スチルベン、N,N,N’,N’-テトラ-p-トリル-4,4’-ジアミノ-ビフェニル、N,N,N’,N’-テトラフェニル-4,4’-ジアミノ-ビフェニルN-フェニルカルバゾール、4,4’-ビス[N-(1-ナフチル)-N-フェニル-アミノ]ビフェニル、4,4’’-ビス[N-(1-ナフチル)-N-フェニル-アミノ]p-ターフェニル、4,4’-ビス[N-(2-ナフチル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(3-アセナフテニル)-N-フェニル-アミノ]ビフェニル、1,5-ビス[N-(1-ナフチル)-N-フェニル-アミノ]ナフタレン、4,4’-ビス[N-(9-アントリル)-N-フェニル-アミノ]ビフェニル、4,4’’-ビス[N-(1-アントリル)-N-フェニル-アミノ]p-ターフェニル、4,4’-ビス[N-(2-フェナントリル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(8-フルオランテニル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(2-ピレニル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(2-ペリレニル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(1-コロネニル)-N-フェニル-アミノ]ビフェニル、2,6-ビス(ジ-p-トリルアミノ)ナフタレン、2,6-ビス[ジ-(1-ナフチル)アミノ]ナフタレン、2,6-ビス[N-(1-ナフチル)-N-(2-ナフチル)アミノ]ナフタレン、4.4’’-ビス[N,N-ジ(2-ナフチル)アミノ]ターフェニル、4.4’-ビス{N-フェニル-N-[4-(1-ナフチル)フェニル]アミノ}ビフェニル、4,4’-ビス[N-フェニル-N-(2-ピレニル)-アミノ]ビフェニル、2,6-ビス[N,N-ジ(2-ナフチル)アミノ]フルオレン、4,4’’-ビス(N,N-ジ-p-トリルアミノ)ターフェニル、ビス(N-1-ナフチル)(N-2-ナフチル)アミン等が挙げられる。 On the other hand, organic compounds having hole transporting properties include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′-di (3-methyl Phenyl) -4,4′-diaminobiphenyl, 2,2-bis (4-di-p-tolylaminophenyl) propane, N, N, N ′, N′-tetra-p-tolyl-4,4′- Diaminobiphenyl, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N′-diphenyl-N, N′-di (4-methoxyphenyl) -4,4′-diaminobiphenyl, N, N, N ′, N′-tetraphenyl-4,4′-diaminodiphenyl ether, 4,4′-bis (diphenylamino) quadriphenyl, 4-N, N-diphenylamino- (2-diphenylvinyl) benzene, 3- Toxi-4′-N, N-diphenylaminostilbenzene, N-phenylcarbazole, 1,1-bis (4-di-p-triaminophenyl) -cyclohexane, 1,1-bis (4-di-p- Triaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) -phenylmethane, N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino)- 4 ′-[4 (di-p-tolylamino) styryl] stilbene, N, N, N ′, N′-tetra-p-tolyl-4,4′-diamino-biphenyl, N, N, N ′, N ′ -Tetraphenyl-4,4'-diamino-biphenyl N-phenylcarbazole, 4,4'-bis [N- (1-naphthyl) -N-phenyl-amino] biphenyl, 4,4 ''-bis [N (1-naphthyl) -N-phenyl-amino] p-terphenyl, 4,4'-bis [N- (2-naphthyl) -N-phenyl-amino] biphenyl, 4,4'-bis [N- ( 3-Acenaphthenyl) -N-phenyl-amino] biphenyl, 1,5-bis [N- (1-naphthyl) -N-phenyl-amino] naphthalene, 4,4′-bis [N- (9-anthryl)- N-phenyl-amino] biphenyl, 4,4 ″ -bis [N- (1-anthryl) -N-phenyl-amino] p-terphenyl, 4,4′-bis [N- (2-phenanthryl)- N-phenyl-amino] biphenyl, 4,4′-bis [N- (8-fluoranthenyl) -N-phenyl-amino] biphenyl, 4,4′-bis [N- (2-pyrenyl) -N— Phenyl-amino] biphenyl, 4 , 4′-bis [N- (2-perylenyl) -N-phenyl-amino] biphenyl, 4,4′-bis [N- (1-coronenyl) -N-phenyl-amino] biphenyl, 2,6-bis (Di-p-tolylamino) naphthalene, 2,6-bis [di- (1-naphthyl) amino] naphthalene, 2,6-bis [N- (1-naphthyl) -N- (2-naphthyl) amino] naphthalene 4.4 ″ -bis [N, N-di (2-naphthyl) amino] terphenyl, 4.4′-bis {N-phenyl-N- [4- (1-naphthyl) phenyl] amino} biphenyl 4,4′-bis [N-phenyl-N- (2-pyrenyl) -amino] biphenyl, 2,6-bis [N, N-di (2-naphthyl) amino] fluorene, 4,4 ″- Bis (N, N-di-p-tolylamino) terfeny , Bis (N-1-naphthyl) (N-2-naphthyl) amine.
 さらに、正孔注入層、正孔輸送層、正孔輸送性発光層として、上述の有機化合物をポリマー中に分散したものや、ポリマー化したものも使用できる。ポリパラフェニレンビニレンやその誘導体等のいわゆるπ共役ポリマー、ポリ(N-ビニルカルバゾール)に代表される正孔輸送性非共役ポリマー、ポリシラン類のシグマ共役ポリマーも用いることができる。 Further, as the hole injection layer, the hole transport layer, and the hole transporting light emitting layer, those obtained by dispersing the above organic compound in a polymer or those polymerized can be used. So-called π-conjugated polymers such as polyparaphenylene vinylene and derivatives thereof, hole-transporting non-conjugated polymers typified by poly (N-vinylcarbazole), and sigma-conjugated polymers of polysilanes can also be used.
 正孔注入層としては、特に限定はないが、銅フタロシアニン等の金属フタロシアニン類および無金属フタロシアニン類、カーボン膜、ポリアニリン等の導電性ポリマーが好適に使用できる。 The hole injection layer is not particularly limited, but conductive polymers such as metal phthalocyanines such as copper phthalocyanine and metal-free phthalocyanines, carbon films, and polyaniline can be preferably used.
 --電子輸送性有機半導体層にドープされた電子供与性金属を対カチオンとする金属酸塩化合物--
 有機EL素子の両電極からの電子正孔の注入が有機有機半導体層との界面で起こる酸化還元反応であることに着目し、陽極側の有機化合物層の中に酸化作用を持つ電子受容性の化合物を配置し、一方、陰極側の有機化合物層(電子注入層)中に還元作用を持つ電子供与性金属をドーピングするが、ドーピング形態を、金属酸塩化合物のストイキオメトリ形態で固定することにより、陰極から有機化合物層への電子注入に際するエネルギー障壁を低下させるとともに、高温保存下における電子供与性金属の有機化合物層への拡散を抑制することができる。
--- Metallate compounds having an electron-donating metal doped in the electron-transporting organic semiconductor layer as a counter cation--
Paying attention to the fact that the injection of electron holes from both electrodes of the organic EL element is an oxidation-reduction reaction that occurs at the interface with the organic organic semiconductor layer, an electron accepting property having an oxidizing action in the organic compound layer on the anode side. The compound is disposed, while the organic compound layer (electron injection layer) on the cathode side is doped with an electron-donating metal having a reducing action, but the doping form is fixed in the stoichiometric form of the metal salt compound. Thus, it is possible to reduce the energy barrier when electrons are injected from the cathode into the organic compound layer, and to suppress the diffusion of the electron donating metal into the organic compound layer under high temperature storage.
 このように固定された電子供与性金属を対カチオンとする金属酸塩化合物により、電子輸送性有機半導体は、すでに電子供与性金属により還元された状態なので、電子注入エネルギー障壁が小さく、従来の有機EL素子と比べて駆動電圧を低下できる。この場合、電子供与性金属は、Li等のアルカリ金属、Mg等のアルカリ土類金属、希土類金属を含む遷移金属であれば特に限定はない。特に、仕事関数が4.0eV以下の金属が好適に使用でき、具体例としてCs、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、La、Mg、Sm、Gd、Yb、等が挙げられる。 Since the electron-transporting organic semiconductor is already reduced by the electron-donating metal due to the metal salt compound having the electron-donating metal thus fixed as a counter cation, the electron injection energy barrier is small and the conventional organic semiconductor is reduced. The driving voltage can be reduced as compared with the EL element. In this case, the electron-donating metal is not particularly limited as long as it is an alkali metal such as Li, an alkaline earth metal such as Mg, or a transition metal containing a rare earth metal. In particular, a metal having a work function of 4.0 eV or less can be suitably used. Specific examples include Cs, Li, Na, K, Be, Mg, Ca, Sr, Ba, Y, La, Mg, Sm, Gd, Yb, Etc.
 電子輸送性有機半導体層中の金属酸塩化合物の濃度は、0.1~40重量%であることが好ましい。0.1重量%未満では、金属酸塩化合物の電子供与性金属により還元された分子の濃度が低すぎドーピングの効果が小さく、40重量%を超えると、膜中の金属酸塩化合物濃度が有機半導体分子濃度を超え、ドーピングの効果も下がる。また、この電子輸送性有機半導体層の厚みは、特に限定されないが1nm~300nmが好ましい。1nm未満では、電極界面近傍に存在する還元分子の量が少ないのでドーピングの効果が小さく、300nmを超えると有機層全体の膜厚が厚すぎ、駆動電圧の上昇を招くので好ましくない。 The concentration of the metal salt compound in the electron transporting organic semiconductor layer is preferably 0.1 to 40% by weight. If it is less than 0.1% by weight, the concentration of the molecule reduced by the electron donating metal of the metal salt compound is too low, and the effect of doping is small. If it exceeds 40% by weight, the metal salt compound concentration in the film is organic. The concentration of semiconductor molecules is exceeded and the effect of doping is also reduced. The thickness of the electron transporting organic semiconductor layer is not particularly limited, but is preferably 1 nm to 300 nm. If the thickness is less than 1 nm, the amount of reducing molecules present in the vicinity of the electrode interface is small, so that the effect of doping is small. If the thickness exceeds 300 nm, the entire organic layer is too thick, leading to an increase in driving voltage.
 有機発光材料から得られる発光波長において少なくとも電子輸送性有機半導体層の膜は50%以上の透過率を有するように設定することが好ましい。 It is preferable that at least the film of the electron transporting organic semiconductor layer is set to have a transmittance of 50% or more at the emission wavelength obtained from the organic light emitting material.
 上記電子輸送性有機半導体層7の成膜法は、いかなる薄膜形成法であってもよく、たとえば蒸着法やスパッタ法が使用できる。電子輸送性有機半導体層は、1元蒸着、又は多元蒸着により成膜することが好ましい。また、溶液からの塗布で薄膜形成が可能な場合には、スピンコーティング法やディップコーティング法等の溶液からの塗布法が使用できる。この場合、ドーピングされる有機化合物とドーパントを不活性なポリマー中に分散して用いてもよい。 The film forming method of the electron transporting organic semiconductor layer 7 may be any thin film forming method. For example, a vapor deposition method or a sputtering method can be used. The electron transporting organic semiconductor layer is preferably formed by single vapor deposition or multiple vapor deposition. When a thin film can be formed by coating from a solution, a coating method from a solution such as a spin coating method or a dip coating method can be used. In this case, the organic compound to be doped and the dopant may be dispersed in an inert polymer.
 本発明における金属酸塩化合物(CsMoO等)は、第1成分に仕事関数4.0eV以下(特に3.5eV以下が好ましい)のアルカリ金属、アルカリ土類金属及び希土類金属を含む遷移金属等の金属と、第2成分に導電性金属酸化物(MoOx、WOx、TiOx、SnOx、VxOy、ZnOx、ZrOx(xは原子比を示す)等)とを用いることにより熱安定性が増し、かつ酸化物であるので陰極(たとえば、Al等)との密着性が上がり剥離しにくくなる。 The metal salt compound (Cs 2 MoO 4 etc.) in the present invention is a transition metal containing alkali metal, alkaline earth metal and rare earth metal having a work function of 4.0 eV or less (particularly preferably 3.5 eV or less) as the first component. And the like, and using a conductive metal oxide (MoOx, WOx, TiOx, SnOx, VxOy, ZnOx, ZrOx (x represents an atomic ratio), etc.) as the second component, the thermal stability is increased, and Since it is an oxide, its adhesion to the cathode (for example, Al, etc.) is increased and it becomes difficult to peel off.
 金属酸塩化合物を有機半導体層にドーピングすることで、上記課題を解決しかつ素子寿命を改善できる。更に、かかる有機半導体層の主成分は移動度(10-8~10cm/Vs)或いは導電性(10~10-1Ω・cm)が無機化合物に比べて低いので、金属酸塩の第2成分にあたる導電性金属酸化物の導電性が有機半導体層の導電性を補うことで電子注入特性と電子輸送性の両方を改善できる。また、上記でも挙げたように無機化合物の電子注入層を必要としないので薄膜化できる。 By doping a metal acid salt compound into the organic semiconductor layer, the above problems can be solved and the device lifetime can be improved. Furthermore, the main component of such an organic semiconductor layer has a mobility (10 −8 to 10 1 cm 2 / Vs) or conductivity (10 8 to 10 −1 Ω · cm) lower than that of an inorganic compound. Since the conductivity of the conductive metal oxide corresponding to the second component supplements the conductivity of the organic semiconductor layer, both the electron injection property and the electron transport property can be improved. Further, as mentioned above, since an electron injection layer of an inorganic compound is not required, the thickness can be reduced.
 第2成分である導電性金属酸化物は比抵抗が10Ω・cm以下(MoO:2.5Ω・cm)であることが望ましい。また、導電性は電荷、キャリア濃度及び移動度で表すことができるため((σ=neμ)導電率はσ、eは電気素量、nはキャリア濃度、μはキャリア移動度)、第2成分である導電性金属酸化物はキャリア濃度或いは移動度で補う。特に、有機半導体材料はキャリア濃度(10~1010cm-3)が非常に低い或いは無いに等しいので薄膜内部にキャリア濃度が存在することは電子輸送特性を向上させることに非常に効果的である。 The conductive metal oxide as the second component preferably has a specific resistance of 10 8 Ω · cm or less (MoO 3 : 2.5 Ω · cm). In addition, since conductivity can be expressed by charge, carrier concentration, and mobility ((σ = neμ) conductivity is σ, e is an elementary charge, n is carrier concentration, μ is carrier mobility), the second component The conductive metal oxide is supplemented by carrier concentration or mobility. In particular, since the organic semiconductor material has a very low or no carrier concentration (10 5 to 10 10 cm −3 ), the presence of the carrier concentration inside the thin film is very effective for improving electron transport properties. is there.
 従来素子の電子輸送性の有機半導体層(例えば、Alq3)は膜厚増加に伴い駆動電圧が上昇するが、この金属酸塩化合物を電子輸送性の有機半導体層にドーピングした電子輸送性有機半導体層(金属-無機-有機複合(コンポジット)層とも言える)を用いることで膜厚増加に対する駆動電圧の上昇を抑制できる。 An electron transporting organic semiconductor layer (for example, Alq3) of a conventional element has an increased driving voltage as the film thickness increases. An electron transporting organic semiconductor layer doped with this metal salt compound in an electron transporting organic semiconductor layer. By using (a metal-inorganic-organic composite (composite) layer), an increase in driving voltage with respect to an increase in film thickness can be suppressed.
 電子供与性金属を対カチオンとする金属酸塩化合物と、電子輸送性有機半導体と、からなる金属-無機-有機複合電子輸送性有機半導体層を備えた複数の有機EL素子を作製し、金属酸塩化合物濃度に対する駆動電圧及び輝度、寿命特性並びに電子輸送性有機半導体層の膜厚依存特性を測定し、評価した。 A plurality of organic EL devices each including a metal-inorganic-organic composite electron-transporting organic semiconductor layer comprising a metal acid salt compound having an electron-donating metal as a counter cation and an electron-transporting organic semiconductor were produced. The driving voltage and luminance with respect to the salt compound concentration, lifetime characteristics, and film thickness dependence characteristics of the electron transporting organic semiconductor layer were measured and evaluated.
 金属酸塩化合物にはモリブデン酸セシウムCsMoO、及びタングステン酸セシウムCsWOを用いた。 As the metal salt compound, cesium molybdate Cs 2 MoO 4 and cesium tungstate Cs 2 WO 4 were used.
 電子輸送性有機半導体には下記表1の電子輸送性有機化合物EILを用いた。 The electron transporting organic semiconductor EIL shown in Table 1 below was used as the electron transporting organic semiconductor.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 Alq3:tris(8-hydroxy-quinolinato)aluminum Alq3: tris (8-hydroxy-quinolinato) aluminum
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 TPBI:2,2’,2’’-(1,3,5-benzenetriyl)tris(1-phenyl)-1H-benzimidazole TPBI: 2,2 ', 2 "-(1,3,5-benzotritril) tris (1-phenyl) -1H-benzimidazole
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 NBphen:2,9-bis(2-naphthyl)-4,7-diphenyl-1,10-phenanthroline NBphen: 2,9-bis (2-naphthyl) -4,7-diphenyl-1,10-phenanthroline
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 DBzA:9,10-bis[4-(6-methylbenzothiazol-2-yl)phenyl]anthracene DBzA: 9,10-bis [4- (6-methylbenzothiazol-2-yl) phenyl] anthracene
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 (実施例1)
 陽極として透明電極ITOを形成したガラス基板上に、真空蒸着により順に、正孔注入層として銅フタロシアニンCuPcを25nmの厚さで形成し、その上に、正孔輸送層としてNPB:N,N’-bis(naphthalene-2-yl)-N,N’-diphenyl-benzideneを45nmの厚さで形成した。さらに、正孔輸送層まで同様に形成した前駆体を複数作成し、それそれの正孔輸送層上に、有機発光層としてAlq3を30nmの厚さで形成し、その上に、CsMoOを濃度0.85wt%、1.7wt%、3.3wt%、5wt%、10wt%、20wt%、40wt%、でドープしたAlq3からなる電子輸送性有機半導体層を共蒸着により30nmの厚さで形成し、その上に、陰極として所定膜厚のAlを真空蒸着により形成した。このようにして、実施例1の有機EL素子を作製した。
Example 1
On the glass substrate on which the transparent electrode ITO was formed as an anode, copper phthalocyanine CuPc was formed in a thickness of 25 nm as a hole injection layer in order by vacuum deposition, and NPB: N, N ′ as a hole transport layer was formed thereon. -Bis (naphthalene-2-yl) -N, N'-diphenyl-benzidine was formed to a thickness of 45 nm. Further, a plurality of precursors formed in the same manner up to the hole transport layer are prepared, and Alq3 is formed as an organic light emitting layer on the hole transport layer with a thickness of 30 nm, and further, Cs 2 MoO 4 An electron transporting organic semiconductor layer made of Alq3 doped with a concentration of 0.85 wt%, 1.7 wt%, 3.3 wt%, 3.3 wt%, 5 wt%, 10 wt%, 20 wt%, and 40 wt% at a thickness of 30 nm by co-evaporation. Then, Al having a predetermined film thickness was formed thereon as a cathode by vacuum deposition. Thus, the organic EL element of Example 1 was produced.
 さらに、上記前駆体の正孔輸送層上に蒸着により有機発光層としてAlq3を60nmの厚さで形成し、その上に、無機電子注入層としてCsMoOを1nmの厚さで形成し、その上に、陰極として所定膜厚のAlを真空蒸着により形成した。このように比較例の有機EL素子を作製した。同様に無機電子注入層CsMoOに代えてLiOを用いた比較例の有機EL素子も作製した。 Furthermore, on the hole transport layer of the precursor, Alq3 is formed as an organic light emitting layer with a thickness of 60 nm by vapor deposition, and Cs 2 MoO 4 is formed as an inorganic electron injection layer with a thickness of 1 nm thereon, On top of that, Al having a predetermined thickness was formed as a cathode by vacuum deposition. Thus, the organic EL element of the comparative example was produced. Similarly, a comparative organic EL device using Li 2 O instead of the inorganic electron injection layer Cs 2 MoO 4 was also produced.
 実施例及び比較例について、電流密度7.5mA/cmの条件でそれぞれ駆動し、駆動電圧V及び輝度Lを測定した。 About the Example and the comparative example, each was driven on the conditions of current density 7.5mA / cm < 2 >, and the drive voltage V and the brightness | luminance L were measured.
 実験結果を下記表2に示す。 The experimental results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 結果から明らかなように、CsMoO:Alq3の電子輸送性有機半導体層膜は10%濃度以上で比較素子より駆動電圧が低いことが分かる。発光層及び電子輸送性有機半導体層を電子輸送性発光層と考えれば、接触している陰極側から所定膜厚まで、所定濃度で電子供与性金属対カチオンの金属酸塩化合物がドープされれば、駆動電圧が低減できると理解できる。 As is clear from the results, it can be seen that the electron transporting organic semiconductor layer film of Cs 2 MoO 4 : Alq3 has a driving voltage lower than that of the comparative element at 10% concentration or more. If the light-emitting layer and the electron-transporting organic semiconductor layer are considered to be electron-transporting light-emitting layers, if the metal salt compound of the electron-donating metal counter cation is doped at a predetermined concentration from the contacting cathode side to the predetermined film thickness, It can be understood that the drive voltage can be reduced.
 駆動電圧低減により、素子の延命化が期待できる。 低 減 Expected to extend the life of the device by reducing the drive voltage.
 (実施例2)
 実施例1と同様に、正孔輸送層まで形成した前駆体を複数作成し、それそれの正孔輸送層上に、有機発光層としてAlq3を30nmの厚さで形成し、その上に、CsMoOを濃度5wt%、10wt%、20wt%でドープしたTPBIからなる電子輸送性有機半導体層を共蒸着により30nmの厚さで形成し、その上に、陰極として所定膜厚のAlを真空蒸着により形成した。このようにして、実施例2の有機EL素子を作製した。
(Example 2)
In the same manner as in Example 1, a plurality of precursors formed up to the hole transport layer were prepared, and Alq3 was formed as an organic light emitting layer with a thickness of 30 nm on the hole transport layer. 2 An electron transporting organic semiconductor layer made of TPBI doped with MoO 4 at a concentration of 5 wt%, 10 wt%, and 20 wt% is formed by co-evaporation to a thickness of 30 nm. It was formed by vapor deposition. Thus, the organic EL element of Example 2 was produced.
 さらに、上記前駆体の正孔輸送層上に蒸着により有機発光層としてAlq3を30nmの厚さで形成し、その上に、電子輸送層としてTPBIを30nmの厚さで形成し、その上に、無機電子注入層としてLiOを蒸着により1nmの厚さで形成し、その上に、陰極として所定膜厚のAlを真空蒸着により形成した。このように比較例の有機EL素子を作製した。 Furthermore, on the hole transport layer of the precursor, Alq3 is formed as an organic light emitting layer by vapor deposition by a thickness of 30 nm, and further, TPBI is formed as an electron transport layer by a thickness of 30 nm, and further, Li 2 O was formed by vapor deposition as an inorganic electron injection layer with a thickness of 1 nm, and Al having a predetermined thickness was formed thereon as a cathode by vacuum vapor deposition. Thus, the organic EL element of the comparative example was produced.
 実施例及び比較例について、電流密度7.5mA/cmの条件でそれぞれ駆動し、駆動電圧V及び輝度Lを測定した。 About the Example and the comparative example, each was driven on the conditions of current density 7.5mA / cm < 2 >, and the drive voltage V and the brightness | luminance L were measured.
 実験結果を下記表3に示す(実施例1の時の比較例も併記してある)。 The experimental results are shown in Table 3 below (a comparative example at the time of Example 1 is also shown).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 結果から明らかなように、CsMoO:TPBIの電子輸送性有機半導体層膜は5%濃度以上で比較素子より駆動電圧が低いことが分かる。発光層及び電子輸送性有機半導体層を電子輸送性発光層と考えれば、接触している陰極側から所定膜厚まで、所定濃度で電子供与性金属対カチオンの金属酸塩化合物がドープされれば、駆動電圧が低減できると理解できる。 As is clear from the results, it can be seen that the electron transporting organic semiconductor layer film of Cs 2 MoO 4 : TPBI has a driving voltage lower than that of the comparative element at 5% concentration or more. If the light-emitting layer and the electron-transporting organic semiconductor layer are considered to be electron-transporting light-emitting layers, if the metal salt compound of the electron-donating metal counter cation is doped at a predetermined concentration from the contacting cathode side to the predetermined film thickness, It can be understood that the drive voltage can be reduced.
 駆動電圧低減により、素子の延命化が期待できる。 低 減 Expected to extend the life of the device by reducing the drive voltage.
 (実施例3)
 実施例1と同様に、正孔輸送層まで形成した前駆体を複数作成し、それそれの正孔輸送層上に、有機発光層としてAlq3を30nmの厚さで形成し、その上に、CsMoOを濃度1.7wt%、3.3wt%、5wt%、10wt%、20wt%でドープしたNBphenからなる電子輸送性有機半導体層を共蒸着により30nmの厚さで形成し、その上に、陰極として所定膜厚のAlを真空蒸着により形成した。このようにして、実施例3の有機EL素子を作製した。
(Example 3)
In the same manner as in Example 1, a plurality of precursors formed up to the hole transport layer were prepared, and Alq3 was formed as an organic light emitting layer with a thickness of 30 nm on the hole transport layer. 2 An electron transporting organic semiconductor layer composed of NBphen doped with MoO 4 at a concentration of 1.7 wt%, 3.3 wt%, 5 wt%, 10 wt%, and 20 wt% is formed by co-evaporation to a thickness of 30 nm. As a cathode, Al having a predetermined thickness was formed by vacuum deposition. Thus, the organic EL element of Example 3 was produced.
 実施例について、電流密度7.5mA/cmの条件でそれぞれ駆動し、駆動電圧V及び輝度Lを測定した。 The driving voltage V and the luminance L were measured by driving each of the examples under the condition of a current density of 7.5 mA / cm 2 .
 実験結果を下記表4に示す(実施例1の時の比較例も併記してある)。 The experimental results are shown in the following Table 4 (a comparative example at the time of Example 1 is also shown).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 結果から明らかなように、CsMoO:NBphenの電子輸送性有機半導体層膜は1.7%濃度以上で比較素子より駆動電圧が低いことが分かる。発光層及び電子輸送性有機半導体層を電子輸送性発光層と考えれば、接触している陰極側から所定膜厚まで、所定濃度で電子供与性金属対カチオンの金属酸塩化合物がドープされれば、駆動電圧が低減できると理解できる。 As is clear from the results, it can be seen that the electron transporting organic semiconductor layer film of Cs 2 MoO 4 : NBphen has a concentration of 1.7% or more and a driving voltage lower than that of the comparative element. If the light-emitting layer and the electron-transporting organic semiconductor layer are considered to be electron-transporting light-emitting layers, if the metal salt compound of the electron-donating metal counter cation is doped at a predetermined concentration from the contacting cathode side to the predetermined film thickness, It can be understood that the drive voltage can be reduced.
 駆動電圧低減により、素子の延命化が期待できる。 低 減 Expected to extend the life of the device by reducing the drive voltage.
 (実施例4)
 実施例1と同様に、正孔輸送層まで形成した前駆体を複数作成し、それそれの正孔輸送層上に、有機発光層としてAlq3を30nmの厚さで形成し、その上に、CsMoOを濃度0.85wt%、1.7wt%、3.3wt%、5wt%、10wt%、20wt%でドープしたDBzAからなる電子輸送性有機半導体層を共蒸着により30nmの厚さで形成し、その上に、陰極として所定膜厚のAlを真空蒸着により形成した。このようにして、実施例4の有機EL素子を作製した。
Example 4
In the same manner as in Example 1, a plurality of precursors formed up to the hole transport layer were prepared, and Alq3 was formed as an organic light emitting layer with a thickness of 30 nm on the hole transport layer. 2 An electron transporting organic semiconductor layer made of DBzA doped with MoO 4 at a concentration of 0.85 wt%, 1.7 wt%, 3.3 wt%, 5 wt%, 10 wt%, and 20 wt% is formed by co-evaporation to a thickness of 30 nm. On top of that, Al having a predetermined film thickness was formed as a cathode by vacuum deposition. Thus, the organic EL element of Example 4 was produced.
 実施例について、電流密度7.5mA/cmの条件でそれぞれ駆動し、駆動電圧V及び輝度Lを測定した。 The driving voltage V and the luminance L were measured by driving each of the examples under the condition of a current density of 7.5 mA / cm 2 .
 実験結果を下記表5に示す(実施例1の時の比較例も併記してある)。 The experimental results are shown in Table 5 below (a comparative example at the time of Example 1 is also shown).
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 結果から明らかなように、CsMoO:DBzAの電子輸送性有機半導体層膜は3.3%濃度以上で比較素子より駆動電圧が低いことが分かる。1.7%の低濃度でも比較素子駆動電圧は同等で有効である。発光層及び電子輸送性有機半導体層を電子輸送性発光層と考えれば、接触している陰極側から所定膜厚まで、所定濃度で電子供与性金属対カチオンの金属酸塩化合物がドープされれば、駆動電圧が低減できると理解できる。 As is clear from the results, it can be seen that the electron transporting organic semiconductor layer film of Cs 2 MoO 4 : DBzA has a concentration of 3.3% or more and a driving voltage lower than that of the comparative element. The comparative element driving voltage is equivalent and effective even at a low concentration of 1.7%. If the light-emitting layer and the electron-transporting organic semiconductor layer are considered to be electron-transporting light-emitting layers, if the metal salt compound of the electron-donating metal counter cation is doped at a predetermined concentration from the contacting cathode side to the predetermined film thickness, It can be understood that the drive voltage can be reduced.
 駆動電圧低減により、素子の延命化が期待できる。 低 減 Expected to extend the life of the device by reducing the drive voltage.
 (実施例5)
 実施例1~4の電子輸送性材Alq3、TPBI、NBphen及びDBzA素子について、金属酸塩化合物CsMoOドープ濃度に対する駆動電圧変化をプロットした。輝度はいずれも300cd/m程度であった。
(Example 5)
For the electron transport materials Alq3, TPBI, NBphen, and DBzA devices of Examples 1 to 4, changes in driving voltage against the metal salt compound Cs 2 MoO 4 doping concentration were plotted. All the luminances were about 300 cd / m 2 .
 結果を図9に示す(実施例1の時の比較例も併記してある)。 The result is shown in FIG. 9 (a comparative example at the time of Example 1 is also shown).
 図9から明らかなように、金属酸塩化合物を有機半導体層にドーピングした場合、約1%の低濃度においてもて駆動電圧の低下が観測され、低濃度においても効果があることが分かる。 As is clear from FIG. 9, when the metal salt compound is doped in the organic semiconductor layer, a decrease in driving voltage is observed at a low concentration of about 1%, and it can be seen that the effect is obtained even at a low concentration.
 一方、従来の電子注入材(CsF等)を有機半導体層にドーピングした場合でも駆動電圧の低下が観測されているが、従来の電子注入材が絶縁性であるため濃度が20%以上のドープ濃度が必要になる場合が多く、特に、Cs単体においても30%以上のドープ濃度が必要であることがわかっている。導電性があるCs単体においても高いドープ濃度が必要な理由として、アルカリ金属の反応性が高いため真空蒸着にて成膜する最中にCsOの酸化セシウムになっていることが原因であると考えられる。 On the other hand, even when a conventional electron injection material (such as CsF) is doped in the organic semiconductor layer, a decrease in driving voltage is observed. However, since the conventional electron injection material is insulative, the doping concentration is 20% or more. In particular, it has been found that a doping concentration of 30% or more is necessary even for Cs alone. The reason why a high doping concentration is necessary even for conductive Cs alone is that Cs 2 O becomes cesium oxide during film formation by vacuum deposition because of the high alkali metal reactivity. it is conceivable that.
 通常、金属酸化物の酸素原子数が減少するにつれてエネルギーギャップが狭くなるため、たとえば、MoOよりMoOは透過性が低い等、透過性を損なう。しかし、この電子供与性金属対カチオンからなる金属酸塩化合物の状態で存在しようと酸素の原子数を揃えて一つの化合物として存在するため有機半導体層にドーピングしても光学的な透過損失は低いことが期待できる。 Usually, as the number of oxygen atoms in the metal oxide decreases, the energy gap becomes narrower. For example, MoO 2 is less permeable than MoO 3 . However, even if the organic semiconductor layer is doped, optical transmission loss is low because it exists as a single compound with the same number of oxygen atoms to exist in the state of a metal salt compound composed of this electron-donating metal pair cation. I can expect that.
 この金属酸塩化合物を有機半導体層にドーピングした際の効果はドーピングされる有機半導体層にも選択性があり、有機半導体層のHOMOレベルが深い場合やHOMOレベルが深い結合ユニット(リン酸(P=O)、カルボニル(C=O),ホウ素等)、特にユニットの電気陰性度が高い元素が組み込まれている場合、金属酸塩化合物と有機半導体材料に電荷の偏り(電荷移動錯体)により新たな不純物準位を薄膜内部で局所的、或いは大部分で形成し、その準位が金属酸塩の電荷(キャリア)で埋められるため、電子輸送特性が向上することが期待できる。この他に、NBphenなどのバソフェナントロリン誘導体のように不対電子を有する材料によって真空中の共蒸着にて錯化し新たな化合物を形成・合成し導電性を向上させることも期待できる。 The effect of doping the metal semiconductor compound into the organic semiconductor layer is also selective in the doped organic semiconductor layer. When the organic semiconductor layer has a deep HOMO level or a bond unit (phosphoric acid (P = O), carbonyl (C = O), boron, etc.), especially when an element with a high electronegativity of the unit is incorporated, the metal salt compound and the organic semiconductor material are newly added due to the charge bias (charge transfer complex). An impurity level is formed locally or mostly in the thin film, and the level is filled with the charge (carrier) of the metal salt, so that it can be expected that the electron transport property is improved. In addition, it can be expected to improve conductivity by forming and synthesizing a new compound by co-evaporation in a vacuum with a material having an unpaired electron such as a bathophenanthroline derivative such as NBphen.
 また、有機半導体層の移動度が高いほど、ドーピング層の電子輸送特性が向上する効果がある。 Also, the higher the mobility of the organic semiconductor layer, the more effective the electron transport properties of the doping layer are.
 (実施例6)
 実施例1と同様に、正孔輸送層まで形成した前駆体を複数作成し、それそれの正孔輸送層上に、有機発光層としてAlq3を30nmの厚さで形成し、その上に、タングステン酸セシウムCsWOを濃度1.7wt%、3.3wt%、5wt%でドープしたNBphenからなる電子輸送性有機半導体層を共蒸着により30nmの厚さで形成し、その上に、陰極として所定膜厚のAlを真空蒸着により形成した。このようにして、実施例6の有機EL素子を作製した。
(Example 6)
In the same manner as in Example 1, a plurality of precursors formed up to the hole transport layer were prepared, and Alq3 was formed as an organic light-emitting layer with a thickness of 30 nm on each of the hole transport layers. An electron transporting organic semiconductor layer made of NBphen doped with cesium acid Cs 2 WO 4 at a concentration of 1.7 wt%, 3.3 wt%, 5 wt% is formed by co-evaporation to a thickness of 30 nm, and a cathode is formed thereon. A predetermined thickness of Al was formed by vacuum deposition. Thus, the organic EL element of Example 6 was produced.
 さらに、上記前駆体の正孔輸送層上に蒸着により有機発光層としてAlq3を60nmの厚さで形成し、その上に、無機電子注入層としてCsFを1nmの厚さで形成し、その上に、陰極として所定膜厚のAlを真空蒸着により形成した。このように比較例のITO/CuPc(25nm)/NPB(45nm)/Alq3(60nm)/CsF(1nm)/Alの有機EL素子を作製した。 Further, Alq3 is formed as an organic light emitting layer with a thickness of 60 nm by vapor deposition on the hole transport layer of the precursor, and CsF is formed with a thickness of 1 nm as an inorganic electron injection layer thereon, and As a cathode, Al having a predetermined thickness was formed by vacuum deposition. Thus, an organic EL element of ITO / CuPc (25 nm) / NPB (45 nm) / Alq3 (60 nm) / CsF (1 nm) / Al as a comparative example was produced.
 実施例6及び比較例CsFについて、電流密度7.5mA/cmの条件でそれぞれ駆動し、駆動電圧V及び輝度Lを測定し、各素子について、金属酸塩化合物CsWO及びCsMoOドープ濃度に対する駆動電圧変化をプロットした。結果を図10に示す(実施例3のプロットも併記してある)。 Example 6 and Comparative Example CsF were each driven at a current density of 7.5 mA / cm 2 to measure drive voltage V and luminance L. For each element, metal salt compounds Cs 2 WO 4 and Cs 2 MoO The drive voltage change versus 4 doping concentration was plotted. The results are shown in FIG. 10 (the plot of Example 3 is also shown).
 以上の結果から、金属酸塩化合物CsWO及びCsMoOを有機半導体層にドーピングした層を素子に用いた場合、これまでの電子注入材(CsF)の場合と比較すると、低濃度ドープで輝度劣化を抑制し、駆動電圧の上昇を大幅に抑える効果があることが分かる。 From the above results, when a layer obtained by doping the metal salt compound Cs 2 WO 4 and Cs 2 MoO 4 in the organic semiconductor layer is used in the device, the concentration is lower than that of the conventional electron injection material (CsF). It can be seen that the doping has the effect of suppressing the luminance deterioration and greatly suppressing the increase of the driving voltage.
 (実施例7)
 実施例3の素子(CsMoO濃度1.7wt%)について、電流密度21mA/cmの条件で100時間以上駆動した。この場合の発光強度及び駆動電圧の経時変化をプロットした。それぞれの結果を図11及び図12に示す(実施例1の時の比較例の電子注入層LiOを使用したものも同様に駆動し、その結果も併記してある)。
(Example 7)
The element of Example 3 (Cs 2 MoO 4 concentration 1.7 wt%) was driven for 100 hours or more under the condition of a current density of 21 mA / cm 2 . The changes over time in the light emission intensity and the driving voltage in this case were plotted. The results are shown in FIGS. 11 and 12 (also driven in the same manner as using the electron injection layer Li 2 O in the comparative example when the example 1, the results also are shown together).
 図11及び図12から明らかなように、実施例3の素子すなわち、金属酸塩化合物を有機半導体層にドーピングした場合、約1%の低濃度においてもて輝度劣化(低下)が小さく駆動電圧の劣化(上昇)少ないことが分かる。駆動電圧の低減は消費電力低減と同じことであり、消費電力はW(ワット)で表せるように有機半導体層の熱発生量に比例する。ことのことから、低電圧化させた素子は熱発生を抑制できるため有機半導体層に負荷を掛けずに済む効果がある。 As is apparent from FIGS. 11 and 12, when the element of Example 3, ie, the metal salt compound is doped in the organic semiconductor layer, the luminance deterioration (reduction) is small even at a low concentration of about 1%, and the driving voltage is reduced. It can be seen that there is little deterioration (rise). The reduction of the driving voltage is the same as the reduction of the power consumption, and the power consumption is proportional to the heat generation amount of the organic semiconductor layer as expressed in W (Watt). For this reason, the element whose voltage is lowered can suppress the generation of heat, and thus has an effect of not applying a load to the organic semiconductor layer.
 (実施例8)
 実施例1と同様に、正孔輸送層まで形成した前駆体を複数作成し、それそれの正孔輸送層上に、有機発光層としてAlq3を30nmの厚さで形成し、その上に、CsMoOを濃度1.7wt%でドープしたNBphenからなる電子輸送性有機半導体層を共蒸着により30nm及び90nmの厚さで形成し、その上に、陰極として所定膜厚のAlを真空蒸着により形成した。このようにして、実施例8の有機EL素子を作製した。
(Example 8)
In the same manner as in Example 1, a plurality of precursors formed up to the hole transport layer were prepared, and Alq3 was formed as an organic light emitting layer with a thickness of 30 nm on the hole transport layer. 2 An electron transporting organic semiconductor layer made of NBphen doped with MoO 4 at a concentration of 1.7 wt% is formed by co-evaporation to a thickness of 30 nm and 90 nm, and a predetermined thickness of Al is formed thereon as a cathode by vacuum evaporation. Formed. Thus, the organic EL element of Example 8 was produced.
 実施例について、電流密度7.5mA/cmの条件でそれぞれ駆動し、駆動電圧V及び輝度Lを測定した。 The driving voltage V and the luminance L were measured by driving each of the examples under the condition of a current density of 7.5 mA / cm 2 .
 実験結果を下記表6に示す。さらに、電流密度-電圧特性を測定してその変化をプロットした。その結果の対数グラフ及び線形グラフを図13及び図14に示す。 The experimental results are shown in Table 6 below. Furthermore, the current density-voltage characteristic was measured and the change was plotted. The logarithmic graph and linear graph of the result are shown in FIGS.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 以上の結果から明らかなように、実施例において電流密度-電圧特性のグラフにおいても膜厚に伴う駆動電圧の差がほぼない、金属酸塩化合物ドープ有機半導体層の膜厚依存性がないことが分かる。 As is clear from the above results, there is almost no difference in driving voltage with the film thickness even in the graph of current density-voltage characteristics in the examples, and there is no dependency on the film thickness of the metal salt compound-doped organic semiconductor layer. I understand.
 (実施例7)
 実施例3の素子(CsMoO濃度1.7wt%)及び実施例1の時の比較例の電子注入層LiOを使用した素子について、乾燥剤を使用しない状態で大気暴露の耐湿実験を655時間以上実施した。それぞれの結果を図15に示す。
(Example 7)
The device of Example 3 (Cs 2 MoO 4 concentration 1.7 wt%) and the device using the electron injection layer Li 2 O of the comparative example in Example 1 were exposed to the atmosphere without using a desiccant. For more than 655 hours. Each result is shown in FIG.
 図15から明らかなように、実施例3の素子すなわち、金属酸塩化合物を有機半導体層にドーピングした場合、比較例素子と比較し、エッジからの非発光部及びダークスポットの進行を低減させる効果があることが分かる。 As is apparent from FIG. 15, when the element of Example 3, ie, the metal salt compound is doped in the organic semiconductor layer, the effect of reducing the progress of the non-light emitting portion and the dark spot from the edge as compared with the comparative example element. I understand that there is.
 なお、上記実施例に加えて、実施例に用いたCsMoO及びCsWOの他に、金属酸塩化合物には、モリブデン酸カリウムKMoO、モリブデン酸カルシウムCaMoO、モリブデン酸ストロンチウムSrMoO、モリブデン酸ナトリウム(無水)NaMoO、モリブデン酸バリウムBaMoO、モリブデン酸リチウムLiMoO、モリブデン酸ルビジウムRbMoO、メタすず酸カルシウムCaSnO、メタすず酸ストロンチウムSrO・SnO、メタすず酸バリウムBaSnO、メタチタン酸マグネシウムMgTiO、メタチタン酸リチウムLiTiO、ニクロム酸カリウムKCr、クロム酸カルシウム(n水和物)CaCrO・nHO、クロム酸ストロンチウムSrCrO、二クロム酸セシウムCsCr、クロム酸セシウムCsCrO、タングステン酸カリウムKWO、タングステン酸カルシウムCaWO、タングステン酸ストロンチウムSrWO、タングステン酸バリウムBaWO、タングステン酸リチウムLiWO、タングステン酸ルビジウムRbWO、タングステン酸ナトリウムNaWO、二バナジン酸カリウムK、二バナジン酸ナトリウムNa、メタバナジン酸カリウムKVO、バナジン酸カリウムKVO、メタバナジン酸ナトリウムNaVO、メタバナジン酸ナトリウムNaVO、バナジン酸ナトリウムNaVO、メタバナジン酸リチウムLi、メタバナジン酸ルビジウムRbVO、メタバナジウム酸セシウムCsVO、メタチタン酸カリウムKTiO、メタチタン酸カルシウムCaTiO、メタチタン酸カルシウムCaTiO、メタチタン酸ストロンチウムSrTiO、チタン酸ナトリウムNaTi、メタチタン酸バリウムBaTiO、及びメタチタン酸バリウムBaTiOを有機半導体層へのドープに用いることができ、上記実施例同様の効果を奏する。 In addition to the above examples, in addition to Cs 2 MoO 4 and Cs 2 WO 4 used in the examples, metal salt compounds include potassium molybdate K 2 MoO 4 , calcium molybdate CaMoO 4 , and molybdic acid. Strontium SrMoO 4 , sodium molybdate (anhydrous) Na 2 MoO 4 , barium molybdate BaMoO 4 , lithium molybdate Li 2 MoO 4 , rubidium molybdate Rb 2 MoO 4 , calcium metastannate CaSnO 3 , strontium metastannate SrO · SnO 2, meta tin barium BaSnO 3, metatitanic acid magnesium MgTiO 3, metatitanic acid lithium Li 2 TiO 3, dichromate potassium K 2 Cr 2 O 7, calcium chromate (n-hydrate) CaCrO 4 · nH 2 O, The Strontium romate SrCrO 4 , cesium dichromate Cs 2 Cr 2 O 7 , cesium chromate Cs 2 CrO 4 , potassium tungstate K 2 WO 4 , calcium tungstate CaWO 4 , strontium tungstate SrWO 4 , barium tungstate BaWO 4 , Lithium tungstate Li 2 WO 4 , rubidium tungstate Rb 2 WO 4 , sodium tungstate Na 2 WO 4 , potassium divanadate K 4 V 2 O 7 , sodium divanadate Na 4 V 2 O 7 , potassium metavanadate KVO 3 , potassium vanadate K 3 VO 4 , sodium metavanadate NaVO 3 , sodium metavanadate NaVO 3 , sodium vanadate Na 3 VO 4 , lithium metavanadate Li 2 V 2 O 6 , rubidium metavanadate RbVO 3 , cesium metavanadate Cs 2 VO 3 , potassium metatitanate K 2 TiO 3 , calcium metatitanate CaTiO 3 , calcium metatitanate CaTiO 3 , strontium metatitanate SrTiO 3 sodium titanate 2 Ti 3 O 7 , barium metatitanate BaTiO 3 , and barium metatitanate BaTiO 3 can be used to dope the organic semiconductor layer, and the same effects as in the above-described embodiment can be obtained.
 さらに、上記実施例で有機半導体素子として有機EL素子を説明したが、複数の有機半導体層が、光捕集層と、電子輸送層及び正孔輸送層の少なくとも1つとを含む有機太陽電池において、負極の第2電極と近接の有機半導体層の間に、有機半導体層の界面に接しかつ、電子供与性金属を対カチオンとする上記のような金属酸塩化合物がドープされた有機半導体からなる電子輸送性有機半導体層を有する構成としても、さらに、有機アクティブ発光素子や有機薄膜トランジスタにおいて、負極の第2電極と近接の有機半導体層の間に、有機半導体層の界面に接しかつ、電子供与性金属を対カチオンとする上記のような金属酸塩化合物がドープされた有機半導体からなる電子輸送性有機半導体層を有する構成としても、上記実施例同様の延命効果や耐湿効果を奏する。 Furthermore, although the organic EL element has been described as the organic semiconductor element in the above embodiment, in the organic solar cell in which the plurality of organic semiconductor layers include a light collection layer, and at least one of an electron transport layer and a hole transport layer, An electron composed of an organic semiconductor that is in contact with the interface of the organic semiconductor layer between the second electrode of the negative electrode and the adjacent organic semiconductor layer and is doped with the above metal salt compound having an electron donating metal as a counter cation. In the organic active light emitting device and the organic thin film transistor, the electron-donating metal is in contact with the interface of the organic semiconductor layer between the second electrode of the negative electrode and the adjacent organic semiconductor layer in the organic active light-emitting device or the organic thin film transistor. The structure having an electron-transporting organic semiconductor layer made of an organic semiconductor doped with a metal acid salt compound as described above having a counter cation as well as prolonging the life similar to the above examples Achieve the results and moisture effect.

Claims (11)

  1.  対向する1対の第1及び第2電極の間に積層配置された複数の有機半導体層を含む有機半導体素子であって、前記第2電極が負極であり、前記第2電極と前記有機半導体層の間に、前記有機半導体層の界面に接しかつ、電子供与性金属を対カチオンとする金属酸塩化合物がドープされた有機半導体からなる電子輸送性有機半導体層を有することを特徴とする有機半導体素子。 An organic semiconductor element including a plurality of organic semiconductor layers stacked between a pair of opposing first and second electrodes, wherein the second electrode is a negative electrode, and the second electrode and the organic semiconductor layer An organic semiconductor comprising an electron-transporting organic semiconductor layer made of an organic semiconductor in contact with the interface of the organic semiconductor layer and doped with a metal salt compound having an electron-donating metal as a counter cation element.
  2.  前記電子供与性金属が、アルカリ金属、アルカリ土類金属及び希土類金属を含む遷移金属のうち仕事関数が3.5eV以下の金属から選択された1種以上の金属からなることを特徴とする請求項1に記載の有機半導体素子。 The electron-donating metal is made of at least one metal selected from metals having a work function of 3.5 eV or less among transition metals including alkali metals, alkaline earth metals, and rare earth metals. 2. The organic semiconductor element according to 1.
  3.  前記電子輸送性有機半導体層中の金属酸塩化合物の濃度が、0.1~40重量%であることを特徴とする請求項1または2に記載の有機半導体素子。 3. The organic semiconductor element according to claim 1, wherein the concentration of the metal salt compound in the electron transporting organic semiconductor layer is 0.1 to 40% by weight.
  4.  前記電子輸送性有機半導体層の厚さが、1nm~300nmであることを特徴とする請求項1~3のいずれか1に記載の有機半導体素子。 The organic semiconductor element according to any one of claims 1 to 3, wherein a thickness of the electron transporting organic semiconductor layer is 1 nm to 300 nm.
  5.  前記電子輸送性有機半導体層は、1元蒸着、又は多元蒸着により成膜されたこと請求項1~4のいずれか1に記載の有機半導体素子。 The organic semiconductor element according to any one of claims 1 to 4, wherein the electron transporting organic semiconductor layer is formed by single vapor deposition or multiple vapor deposition.
  6.  前記電子輸送性有機半導体層の膜は50%以上の透過率を有すること特徴とする請求項1~5のいずれか1に記載の有機半導体素子。 6. The organic semiconductor element according to claim 1, wherein the film of the electron transporting organic semiconductor layer has a transmittance of 50% or more.
  7.  前記金属酸塩化合物は、導電性を有する酸化物半導体を含むことを特徴とする請求項1~6のいずれか1に記載の有機半導体素子。 7. The organic semiconductor element according to claim 1, wherein the metal acid salt compound includes an oxide semiconductor having conductivity.
  8.  前記導電性を有する酸化物半導体は1×10-10~1×1010cm/Vsのキャリア移動度、又は1010~10-10Ω・cmの導電性を持つことを特徴とする請求項7に記載の有機半導体素子。 The oxide semiconductor having conductivity has carrier mobility of 1 × 10 −10 to 1 × 10 10 cm 2 / Vs, or conductivity of 10 10 to 10 −10 Ω · cm. 8. The organic semiconductor element according to 7.
  9.  前記有機半導体は1×10-10~1×1010cm/Vsのキャリア移動度を持つことを特徴とする請求項1~8のいずれか1に記載の有機半導体素子。 9. The organic semiconductor element according to claim 1, wherein the organic semiconductor has a carrier mobility of 1 × 10 −10 to 1 × 10 10 cm 2 / Vs.
  10.  前記複数の有機半導体層が発光層を含み、前記第1及び第2電極のどちらか片方の電極が半透明、又は透明、又は前記第1及び第2電極が透明である有機電界発光素子であることを特徴とする請求項1~9のいずれか1に記載の有機半導体素子。 The organic electroluminescent element in which the plurality of organic semiconductor layers includes a light emitting layer, and one of the first and second electrodes is translucent or transparent, or the first and second electrodes are transparent. 10. The organic semiconductor element according to claim 1, wherein
  11.  前記複数の有機半導体層が、光捕集層と、電子輸送層及び正孔輸送層の少なくとも1つとを含む有機太陽電池であることを特徴とする請求項1~9のいずれか1に記載の有機半導体素子。 The organic solar cell according to any one of claims 1 to 9, wherein the plurality of organic semiconductor layers are organic solar cells including a light collection layer and at least one of an electron transport layer and a hole transport layer. Organic semiconductor element.
PCT/JP2008/053978 2008-03-05 2008-03-05 Organic semiconductor element WO2009110075A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/053978 WO2009110075A1 (en) 2008-03-05 2008-03-05 Organic semiconductor element
TW098105975A TW200950172A (en) 2008-03-05 2009-02-25 Organic semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/053978 WO2009110075A1 (en) 2008-03-05 2008-03-05 Organic semiconductor element

Publications (1)

Publication Number Publication Date
WO2009110075A1 true WO2009110075A1 (en) 2009-09-11

Family

ID=41055654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053978 WO2009110075A1 (en) 2008-03-05 2008-03-05 Organic semiconductor element

Country Status (2)

Country Link
TW (1) TW200950172A (en)
WO (1) WO2009110075A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246126A (en) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd Organic electroluminescent element and method for production thereof
JP2009246124A (en) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd Coating solution for formation of intermediate layer, method for production of organic electroluminescence element, and the organic electroluminescence element
JP2009246127A (en) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd Organic electroluminescence device and method for manufacturing the same
WO2012169069A1 (en) * 2011-06-10 2012-12-13 パイオニア株式会社 Organic electroluminescence panel
WO2013171872A1 (en) * 2012-05-17 2013-11-21 パイオニア株式会社 Organic el light-emitting panel and light-emitting device
JP2015144233A (en) * 2013-08-09 2015-08-06 株式会社半導体エネルギー研究所 Light-emitting element, display module, lighting module, light-emitting device, display device, electronic apparatus and lighting system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041157A1 (en) * 2013-09-17 2015-03-26 国立大学法人九州大学 Organic electroluminescence element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006148134A (en) * 2004-11-23 2006-06-08 Au Optronics Corp Organic photoelectric conversion element, electrode structure used for organic photoelectric conversion element, and method for improving operation efficiency of organic photoelectric conversion element
JP2006157022A (en) * 2004-12-01 2006-06-15 Au Optronics Corp Organic EL diode and method for improving efficiency of organic EL diode
WO2006104118A1 (en) * 2005-03-29 2006-10-05 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
JP2007049134A (en) * 2005-08-10 2007-02-22 Au Optronics Corp Organic light emitting device and method for improving the efficiency
JP2007116008A (en) * 2005-10-21 2007-05-10 Seiko Epson Corp Organic light emitting device, organic light emitting device manufacturing method, light emitting device, and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006148134A (en) * 2004-11-23 2006-06-08 Au Optronics Corp Organic photoelectric conversion element, electrode structure used for organic photoelectric conversion element, and method for improving operation efficiency of organic photoelectric conversion element
JP2006157022A (en) * 2004-12-01 2006-06-15 Au Optronics Corp Organic EL diode and method for improving efficiency of organic EL diode
WO2006104118A1 (en) * 2005-03-29 2006-10-05 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
JP2007049134A (en) * 2005-08-10 2007-02-22 Au Optronics Corp Organic light emitting device and method for improving the efficiency
JP2007116008A (en) * 2005-10-21 2007-05-10 Seiko Epson Corp Organic light emitting device, organic light emitting device manufacturing method, light emitting device, and electronic apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246126A (en) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd Organic electroluminescent element and method for production thereof
JP2009246124A (en) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd Coating solution for formation of intermediate layer, method for production of organic electroluminescence element, and the organic electroluminescence element
JP2009246127A (en) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd Organic electroluminescence device and method for manufacturing the same
US8358061B2 (en) 2008-03-31 2013-01-22 Sumitomo Chemical Company, Limited Coating solution for formation of intermediate layer, method for production of organic electroluminescence element, and organic electroluminescence element
WO2012169069A1 (en) * 2011-06-10 2012-12-13 パイオニア株式会社 Organic electroluminescence panel
WO2013171872A1 (en) * 2012-05-17 2013-11-21 パイオニア株式会社 Organic el light-emitting panel and light-emitting device
JP2015144233A (en) * 2013-08-09 2015-08-06 株式会社半導体エネルギー研究所 Light-emitting element, display module, lighting module, light-emitting device, display device, electronic apparatus and lighting system

Also Published As

Publication number Publication date
TW200950172A (en) 2009-12-01

Similar Documents

Publication Publication Date Title
KR101254167B1 (en) Organic electroluminescent element
JP4486713B2 (en) Organic electroluminescent device
JP4505067B2 (en) Organic electroluminescent device
JP4514841B2 (en) Organic electroluminescent device
JP4729154B2 (en) Organic electroluminescent device, organic electroluminescent device group, and method for controlling emission spectrum thereof
US6013384A (en) Organic electroluminescent devices
JP4939284B2 (en) Organic electroluminescent device
WO2009110075A1 (en) Organic semiconductor element
WO2010073864A1 (en) Organic electroluminescent element
WO2012023177A1 (en) Organic light emitting element
JP5456120B2 (en) Organic electroluminescence device
WO2009107541A1 (en) Organic electroluminescent element
US8491820B2 (en) Process for growing an electron injection layer to improve the efficiency of organic light emitting diodes
JPH06212151A (en) Organic electroluminescent device
JP4825296B2 (en) Organic electroluminescent device
JPH06228546A (en) Organic electroluminescent element
Su et al. Enhancement of efficiency of white organic light-emitting diodes with p-type hole injection layer
JP3151987B2 (en) Organic electroluminescence device
JP3170925B2 (en) Organic electroluminescence device
JP3235244B2 (en) Organic electroluminescence device
Chang et al. 17.4: Highly Power Efficient Organic Light‐Emitting Diodes with a Novel P‐Doping Layer
JPH06220439A (en) Organic electroluminescent device
JP2004079414A (en) Organic electroluminescent element
JPH07133481A (en) Organic electroluminescent device
JP2005339893A (en) Organic EL device

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08721398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08721398

Country of ref document: EP

Kind code of ref document: A1