[go: up one dir, main page]

WO2009116365A1 - 原点位置信号検出器 - Google Patents

原点位置信号検出器 Download PDF

Info

Publication number
WO2009116365A1
WO2009116365A1 PCT/JP2009/053362 JP2009053362W WO2009116365A1 WO 2009116365 A1 WO2009116365 A1 WO 2009116365A1 JP 2009053362 W JP2009053362 W JP 2009053362W WO 2009116365 A1 WO2009116365 A1 WO 2009116365A1
Authority
WO
WIPO (PCT)
Prior art keywords
origin position
magnetized
magnetized portion
signal detector
magnetization
Prior art date
Application number
PCT/JP2009/053362
Other languages
English (en)
French (fr)
Inventor
武史 武舎
博志 西沢
一 仲嶋
陽一 大村
浩一 高宗
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112009000497T priority Critical patent/DE112009000497B4/de
Priority to CN2009801096155A priority patent/CN101978242B/zh
Priority to KR1020107019099A priority patent/KR101163908B1/ko
Priority to US12/933,319 priority patent/US20110291646A1/en
Priority to JP2010503813A priority patent/JP4880066B2/ja
Priority to TW098107820A priority patent/TWI392856B/zh
Publication of WO2009116365A1 publication Critical patent/WO2009116365A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2454Encoders incorporating incremental and absolute signals
    • G01D5/2455Encoders incorporating incremental and absolute signals with incremental and absolute tracks on the same encoder
    • G01D5/2457Incremental encoders having reference marks

Definitions

  • the present invention relates to an origin position signal detector for detecting an origin position in a magnetic rotation angle sensor such as a magnetic rotary encoder and a magnetic position detector such as a magnetic linear encoder.
  • An example of using a general origin position signal detector is a magnetic rotation angle sensor.
  • the magnetic rotation angle sensor is roughly divided into, for example, a rotating drum that is assembled to a rotating shaft of a motor or the like and changes a magnetic field generated according to the rotation, and a magnetic detection sensor that detects the changing magnetic field (for example, Patent Document 1).
  • a magnet is provided on the outer peripheral surface of the rotating drum by a method such as coating, fitting, and bonding.
  • the detection track includes an incremental track for detecting the rotation angle of the rotary drum and an origin position detection track for detecting the origin position for detecting the rotation angle.
  • the origin position detection track is magnetized only at one location in the circumference so that one pulse waveform is generated for one rotation of the rotating drum, and the magnetization width depends on the signal processing method. Are set appropriately.
  • the magnetic detection sensor is composed of a plurality of magnetoresistive elements or magnetoresistive element arrays such as AMR and GMR according to the respective magnetizations in the incremental track and the origin position detection track of the rotating drum, and is constant with respect to the rotating drum. Are arranged at intervals of
  • the general origin position detection signal processing method in the conventional magnetic rotation angle sensor configured as described above uses an analog signal output from the magnetoresistive element as a threshold voltage. To convert it into a pulse waveform and use it as an origin position detection signal.
  • Japanese Patent Laid-Open No. 5-223592 Patent No. 3195019
  • a magnetoresistive element such as an AMR or GMR element generally used as a magnetic detection sensor has a physical characteristic that its output decreases as the temperature rises. For example, since the output of the AMR element decreases at a rate of approximately 0.3 to 0.5% / ° C., for example, when the ambient temperature increases from 20 ° C. to 80 ° C., the output of the origin position detection signal is 15 to It will decrease by 25%. Therefore, it is necessary to set the threshold voltage for generating the origin position detection signal as low as possible in consideration of the high temperature. In addition, since the origin position detection signal increases or decreases due to factors such as an assembly error of the magnetic detection sensor with respect to the rotating drum, it is necessary to set the threshold voltage to a low level with a margin.
  • the side peak output value also increases. Therefore, when the side peak output exceeds the set threshold voltage, the origin position signal detector detects the side peak, and the origin position may be erroneously detected. From the above, it is important for stable origin position signal detection to keep the side peak output as low as possible.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to provide an origin position signal detector that can detect an origin position detection signal in a magnetic encoder more stably than in the past. To do.
  • the present invention is configured as follows. That is, the origin position signal detector according to one aspect of the present invention detects an incremental track having a displacement detection magnetized portion magnetized at equal intervals in the displacement direction for detecting the displacement amount, and the origin position of the displacement amount detection.
  • An origin position signal detector comprising: a detected member having an origin position detection track having an origin position magnetized portion; and a magnetic sensor for detecting a magnetic field in the incremental track and the origin position detection track.
  • the track further includes side magnetized portions magnetized with magnetization in the same direction as the origin position magnetized portion on both sides of the origin position magnetized portion in the displacement direction.
  • the same number of the side magnetized portions may be provided on both sides of the origin position magnetized portion, or may be provided with a certain gap with respect to the origin position magnetized portion.
  • origin position magnetized portion and the side magnetized portion may be magnetized with the same magnetizing current strength or may be magnetized with different magnetizing current strengths.
  • the side magnetized portion may be configured such that the magnetized width becomes narrower as the distance from the origin position magnetized portion increases.
  • the origin position magnetized portion and the side magnetized portion may be magnetized at relative positions that do not affect the magnetization of the incremental track.
  • the origin position detection track is provided with side magnetized portions on both sides of the origin position magnetized portion, so that it accompanies an analog signal output from the magnetic sensor.
  • the output value of the appearing side peak can be reduced. Therefore, the threshold voltage for generating the origin position detection signal can be set low.
  • the detection stability of the origin position detection signal at a high temperature can be improved, and erroneous detection of the origin position detection signal due to the side peak exceeding the set threshold voltage at a low temperature can be reduced. Therefore, according to the origin position signal detector according to one aspect of the present invention, the origin position detection signal in the magnetic encoder can be detected more stably than in the prior art.
  • FIG. 1 shows schematic structure of the magnetic type rotation angle sensor by Embodiment 1 of this invention.
  • the magnetic rotation angle sensor shown in FIG. 1 with the rotation of the rotating drum, the time variation of the magnetic flux density distribution applied to the surface of the magnetoresistive element only by the origin position magnetized portion and the side of the magnetoresistive element only by the side magnetized portion.
  • the graph which each simulated the time change of the magnetic flux density distribution concerning the surface.
  • FIG. 5 is a graph showing a change in resistance change rate of an AMR element accompanying rotation of a rotating drum by applying the change in magnetic flux density distribution shown in FIG. 3 to the sensitivity curve of the AMR element shown in FIG. 4.
  • FIG. 4 is a perspective view which shows schematic structure of the magnetic rotation angle sensor by Embodiment 2 of this invention. The time variation of the magnetic flux density distribution applied to the surface of the magnetoresistive element by both the origin position magnetized portion and the side magnetized portion shown in FIG. 3, and the origin position magnetized portion and 3 in the magnetic rotation angle sensor shown in FIG.
  • FIG. 8 is a graph showing a change in resistance change rate of the AMR element accompanying rotation of the rotating drum by applying the change in magnetic flux density distribution shown in FIG. 7 to the sensitivity curve of the AMR element shown in FIG. 4.
  • FIG. 4 shows schematic structure of the magnetic position detection sensor by Embodiment 3 of this invention.
  • Embodiment 4 shows schematic structure of the magnetic position detection sensor by Embodiment 4 of this invention.
  • Embodiment 5 of this invention the graph which simulated the time change of the magnetic flux density distribution applied to the surface of a magnetoresistive element from each magnetized part at the time of magnetizing an origin position magnetized part and a side magnetized part separately It is.
  • the origin position magnetized portion and the side magnetized portion are individually magnetized, the magnetic flux density applied to the surface of the magnetoresistive element from both the origin position magnetized portion and the side magnetized portion It is the graph which simulated the time change of distribution.
  • the change in the magnetic flux density distribution in FIG. 12 is applied to the sensitivity curve of the AMR element in FIG.
  • Embodiment 1 An origin position signal detector according to the first embodiment of the present invention will be described below with reference to FIGS.
  • FIG. 1 shows a schematic configuration of the origin position signal detector 101 of the above embodiment that functions as a magnetic rotation angle sensor among magnetic rotary encoders.
  • the origin position signal detector 101 is roughly provided with a member to be detected 1 and a magnetoresistive element 5 which is an example that performs the function of a magnetic sensor.
  • the member 1 to be detected is a magnet that is attached to the outer peripheral surface of the rotating drum 20 corresponding to a rotating shaft of a motor or the like by a method such as coating, fitting, or bonding.
  • an incremental track 3 and an origin position detection track 4 are arranged in two upper and lower stages in the axial direction of the rotary drum 20.
  • Incremental track 3 is a displacement detection magnetized portion that is magnetized alternately at equal intervals so as to be the magnetization direction of S ⁇ N pole and N ⁇ S pole from the left to the right in the figure in order to detect the displacement amount. 3a.
  • the displacement amount corresponds to a rotation angle
  • the displacement direction corresponds to the rotation direction 15 of the detected member 1. Therefore, the displacement detection magnetized portion 3 a is magnetized at equal pitches P in the rotation direction 15 over the entire circumference of the incremental track 3.
  • the origin position detection track 4 includes an origin position magnetized portion 11 and a side magnetized portion 12.
  • the origin position magnetized portion 11 is a magnetized portion that detects the origin position of the displacement amount detection, that is, the rotation angle detection of the detected member 1 in this embodiment.
  • the origin position magnetized portion 11 is formed at one location of the origin position detection track 4 so that one pulse waveform is generated for one rotation of the detected member 1 and is magnetized in the rotation direction 15. It is formed with a width ⁇ .
  • the side magnetized portions 12 are arranged on both sides of the origin position magnetized portion 11 in the rotation direction 15, and each side magnetized portion 12 is magnetized in the same direction as the origin position magnetized portion 11 in the rotation direction 15. It is magnetized.
  • each side magnetized portion 12 on both sides is 0.325 ⁇ with respect to the origin position magnetized portion 11 in the rotation direction 15 ( ⁇ is the above-described magnetization width of the origin position magnetized portion 11). And a width “a” of 0.1 ⁇ .
  • the magnetoresistive element 5 is an element for detecting a magnetic field in the incremental track 3 and the origin position detection track 4, and a plurality of AMR elements (anisotropic magnetoresistive elements) according to the magnetization of the incremental track 3 and the origin position detection track 4. ) And a GMR element (giant magnetoresistive element) or a magnetoresistive element array, and is arranged with a predetermined gap G with respect to the detected member 1 in the diameter direction of the detected member 1.
  • the magnetoresistive element 5 is connected to a signal processing circuit 25 that processes an analog signal output from the magnetoresistive element 5 and sends a signal corresponding to the rotation angle of the member 1 to be detected.
  • the magnetoresistive element 5 causes the displacement detection magnetized portion 3 a in the incremental track 3 and the origin position magnetized portion 11 in the origin position detection track 4. And the change of each magnetic field of the side magnetized part 12 is detected.
  • FIG. 2 is a diagram simulating the time change of the magnetic flux density distribution in the magnetoresistive element 5 when the magnetic fields of the origin position magnetized portion 11 and the side magnetized portion 12 act on the surface of the magnetoresistive element 5 separately.
  • a solid line portion 31 shown in FIG. 2 represents the magnetic flux density distribution (vertical axis) in only the origin position magnetized portion 11 in relation to the rotation angle (horizontal axis) of the rotary drum 20.
  • a dotted line portion 32 shown in FIG. 2 represents the magnetic flux density distribution (vertical axis) in only the side magnetized portion 12 in relation to the rotation angle (horizontal axis) of the rotating drum 20.
  • FIG. 1 A solid line portion 31 shown in FIG. 2 represents the magnetic flux density distribution (vertical axis) in only the origin position magnetized portion 11 in relation to the rotation angle (horizontal axis) of the rotary drum 20.
  • a dotted line portion 32 shown in FIG. 2 represents the magnetic flux density distribution (vertical axis) in only the side
  • FIG. 3 is a diagram simulating time change of the magnetic flux density distribution in the magnetoresistive element 5 when the magnetic fields of both the origin position magnetized portion 11 and the side magnetized portion 12 act on the surface of the magnetoresistive element 5. It is.
  • a solid line portion 33 shown in FIG. 3 represents the magnetic flux density distribution (vertical axis) in only the origin position magnetized portion 11 in relation to the rotation angle (horizontal axis) of the rotary drum 20.
  • the dotted line portion shown in FIG. 3 shows the magnetic flux density distribution (vertical axis) when both the origin position magnetized portion 11 and the side magnetized portion 12 act on the relationship with the rotation angle (horizontal axis) of the rotary drum 20. It is expressed.
  • FIG. 4 shows a typical example of a sensitivity curve of an AMR element which is a general magnetoresistive element.
  • FIG. 5 shows the result of converting the change in the magnetic flux density distribution shown in FIG. 3 to the change in the resistance change rate of the AMR element accompanying the rotation of the rotary drum by applying the sensitivity curve of the AMR element shown in FIG. .
  • the solid line portion indicates the change in the resistance change rate due to both the origin position magnetized portion 11 and the side magnetized portion 12, and the dotted line portion indicates the change in the resistance change rate due only to the origin position magnetized portion 11. Indicates.
  • a solid line portion 31 showing a change in magnetic flux density due only to the origin position magnetized portion 11 is a sub-pulse waveform protruding in the minus direction on both the left and right sides of the main pulse waveform 31a extending in the plus direction on the vertical axis.
  • the waveform 31b exists.
  • Such waveform formation is a phenomenon that can physically occur due to the concentration of magnetic flux generated around the magnetized portion in a configuration in which only one pole is magnetized within one rotation of the rotating drum.
  • the magnetoresistive element 5 exhibits an even function output characteristic with respect to the positive and negative of the magnetic flux density. Therefore, the portion 33b protruding in the minus direction shown in FIG. 3 has a waveform having a large peak on the positive side, that is, a side peak 34, as shown by the dotted line portion in FIG. Form.
  • the magnetic flux density distribution created on the surface of the magnetoresistive element 5 by the side magnetized portion 12 is the sub-pulse waveform 31 b protruding just to the minus side of the solid line portion 31.
  • the magnetic flux density distribution cancels. Therefore, the magnetic flux density distribution produced on the surface of the magnetoresistive element 5 by the origin position detection track 4 having both the origin position magnetized portion 11 and the side magnetized portion 12 is negative, as shown by the solid line portion 33 in FIG.
  • the protruding portion 33b has a partially canceled magnetic flux density distribution.
  • the output of the magnetoresistive element 5 has a waveform in which the side peak 34 is reduced as shown by a solid line portion 35 in FIG.
  • the threshold voltage for generating the origin position detection signal can be set low.
  • the detection stability of the origin position detection signal at a high temperature can be improved, and erroneous detection of the origin position detection signal due to the side peak exceeding the set threshold voltage at a low temperature can be reduced. Therefore, the origin position detection signal in the magnetic encoder can be detected more stably than in the prior art.
  • the gap N is 0.325 ⁇ and the width a is 0.1 ⁇ .
  • the present invention is not limited to this. That is, the arrangement of the side magnetized portions 12 can be appropriately designed according to the magnetic characteristics of the member 1 to be detected and the value of the magnetization width ⁇ of the origin position magnetized portion 11.
  • magnetization is performed so that the magnetization of the origin position magnetized portion 11 and the side magnetized portion 12 is magnetized to the saturation magnetic flux density of the magnet with the same magnetization current intensity. Simulate the case.
  • the method of magnetizing the magnetization of the origin position magnetized portion 11 and the side magnetized portion 12 to the saturation magnetic flux density of the magnet with the same magnetization current intensity has a constant saturation magnetization value. Variations in magnetization intensity can be reduced, and an origin position signal detector with stable quality can be provided.
  • the present embodiment is not limited to the method of magnetizing the origin position magnetized portion 11 and the side magnetized portion 12 to the saturation magnetic flux density of the magnet with the same magnetization current intensity. That is, the magnetization after magnetization can be set arbitrarily according to the magnetic characteristics of the member 1 to be detected. It is possible to completely eliminate the side peak 34 from the output waveform of the magnetoresistive element 5 by magnetizing the origin position magnetized portion 11 and the side magnetized portion 12 with different magnetization current strengths. This point is described in detail in the fifth embodiment described later.
  • the form in which the origin position magnetized portion 11 and the side magnetized portion 12 are magnetized with respect to the detected member 1 is shown, but the present invention is not limited to this.
  • the side magnetized portion 12 may be configured such that a magnet already magnetized is attached to the origin position magnetized portion 11 by means such as adhesion later.
  • FIG. 6 shows a schematic configuration of the origin position signal detector 102 according to the second embodiment of the present invention.
  • FIG. 7 shows a simulation result of the temporal change of the magnetic flux density distribution in the magnetoresistive element in the origin position signal detector 101 of the first embodiment and the magnetic flux density distribution in the magnetoresistive element in the origin position signal detector 102 of the second embodiment. It is the figure displayed by comparing with the simulation result of the time change of.
  • the solid line portion indicates the origin position signal detector 101
  • the dotted line portion indicates the origin position signal detector 102.
  • FIG. 8 shows a result obtained by applying the change in the magnetic flux density distribution in FIG.
  • the solid line portion shows the case of the origin position signal detector 102
  • the dotted line portion shows the case of the origin position signal detector 101.
  • the side magnetized portion 12 is arranged at only one location on one side of the origin position magnetized portion 11.
  • the origin position signal detector 102 according to the second embodiment, side magnetized portions are arranged at a plurality of locations on one side of the origin position magnetized portion 11.
  • the origin position signal detector 101 and the origin position signal detector 102 are different.
  • the other configuration of the origin position signal detector 102 is the same as that of the origin position signal detector 101. Therefore, only different components will be described below.
  • the origin position detection track 4 has the origin position magnetized portion 11 at a magnetization width ⁇ in one place so that one pulse waveform is generated for one rotation of the rotary drum 20.
  • three side magnetized portions 12, 13, and 14 each having magnetization in the same direction as the origin position magnetized portion 11 are provided on both sides of the origin position magnetized portion 11.
  • the side magnetized portion 12 has a gap K of 0.34 ⁇ ( ⁇ is the above-described magnetization width of the origin position magnetized portion 11) with respect to the origin position magnetized portion 11 in the rotation direction 15. And has a width a of 0.1 ⁇ .
  • the side magnetized portion 13 is positioned through the gap L having a size of 0.325 ⁇ with respect to the side magnetized portion 12 in the rotational direction 15 and has a width b of 0.05 ⁇ .
  • the side magnetized portion 14 is located in the rotational direction 15 with a gap M having a size of 0.3 ⁇ with respect to the side magnetized portion 13 and has a width c of 0.025 ⁇ .
  • the gaps K, L, M between the magnetized portions gradually decrease as the distance from the origin position magnetized portion 11 increases, and the widths a, b, c also decreases.
  • the relationship between the distance from the origin position magnetized portion 11 and the magnetized width of the side magnetized portion is not limited to the case where a plurality of side magnetized portions 12 to 14 are provided as in the present embodiment. Even when one side magnetized portion is provided on one side of the position magnetized portion 11, the magnetization width of the side magnetized portion decreases as the distance from the origin position magnetized portion 11 increases.
  • an output waveform in which the side peak 34 is reduced is obtained from the magnetoresistive element 5 as in the case of the origin position signal detector 101 described above. It becomes possible. Furthermore, by arranging a plurality of side magnetized portions 12, 13, and 14 on each side of the origin position magnetized portion 11, the following effects can be obtained as compared with the first embodiment.
  • the solid line portion in FIG. 7 shows the magnetic flux density distribution in the magnetoresistive element 5 in the first embodiment, and has a waveform in which one portion protruding in the minus direction is canceled. However, there are still peaks 36 slightly protruding in the negative direction on the left and right sides of the waveform. In the second embodiment, side magnetized portions 13 and 14 are provided so that such a peak 36 can be further canceled.
  • the magnetic flux density distribution output corresponding to the peak 36 is reduced as compared with the first embodiment. ing. This can also be read from FIG. 8, and the side peak is slightly suppressed in the output in the present embodiment indicated by the solid line portion, compared to the AMR output in the configuration of the first embodiment indicated by the dotted line. I got the waveform.
  • the second embodiment it is possible to detect the origin position detection signal in the magnetic encoder more stably than in the first embodiment.
  • the values of the gaps K, L, and M and the widths a, b, and c relating to the side magnetized portions 12, 13, and 14 are not limited to the above-described values.
  • K, L, and M are set to a certain width.
  • a, b, and c may be set to constant widths, and can be arbitrarily designed according to the magnetic characteristics of the member 1 to be detected and the value of the magnetization width ⁇ of the origin position magnetized portion 11. it can.
  • magnetization is performed so that the origin position magnetized portion 11 and the side magnetized portions 12, 13, and 14 are magnetized to the saturation magnetic flux density of the magnet with the same magnetization current intensity.
  • the present embodiment is not limited to this, and the magnetization after magnetization can be arbitrarily set according to the magnetic characteristics of the member 1 to be detected.
  • the origin position magnetized portion 11 and the side magnetized portions 12, 13, 14 are magnetized on the detected member 1.
  • the side magnetized portions 12, 13 are used.
  • 14 can be configured such that a magnet already magnetized is attached to the origin position magnetized portion 11 by means such as adhesion later.
  • FIG. 3 A third embodiment of the present invention will be described below with reference to FIG.
  • the origin position signal detector 103 according to the third embodiment is obtained by applying the origin position track configuration according to the first embodiment to a magnetic position detection sensor.
  • FIG. 9 shows a schematic configuration of the origin position signal detector 103 of the present embodiment that functions as a magnetic position sensor in the magnetic linear encoder.
  • the origin position signal detector 103 is roughly provided with a member to be detected 52 and a magnetoresistive element 55.
  • the detected member 52 is a plate-like magnet attached on the linear scale plate 51 by a method such as coating or adhesion.
  • An incremental track 53 and an origin position detection track 54 are arranged in two stages on the detected member 52, and each track 53, 54 extends along the longitudinal direction of the detected member 52.
  • the incremental track 53 detects the amount of displacement in the relative linear motion direction between the detected member 52 and the magnetoresistive element 55, so that the magnetization direction of the S ⁇ N pole and the N ⁇ S pole from the left to the right in the figure in the displacement direction.
  • Displacement detection magnetizing portions 53a that are alternately magnetized at equal intervals are included.
  • the displacement amount corresponds to a linear stroke amount
  • the displacement direction corresponds to the linear motion direction 65 of the detected member 52.
  • the displacement detection magnetized portion 53 a is magnetized on the incremental track 3 at equal pitches P in the linear motion direction 65 over the entire length of the incremental track 3.
  • the origin position detection track 54 includes an origin position magnetized portion 61 and a side magnetized portion 62.
  • the origin position magnetized part 61 is a magnetized part that detects the origin position of the displacement amount detection, that is, the stroke amount detection of the detected member 52 in this embodiment. Further, the origin position magnetized portion 61 is formed at one position of the origin position detection track 54 so as to generate one pulse waveform for one stroke in one direction of the detected member 52 and linearly moves. It is formed with a magnetization width ⁇ in the direction 65. Further, as shown in FIG. 9, the origin position magnetized portion 61 has magnetization in the same direction as the displacement detection magnetized portion 53a in the linear motion direction 65. Further, in the present embodiment, the two adjacent displacements It arrange
  • the side magnetized portions 62 are arranged on both sides of the origin position magnetized portion 61 in the linear motion direction 65, and each side magnetized portion 62 is magnetized in the same direction as the origin position magnetized portion 61 in the linear motion direction 65. Magnetized.
  • each side magnetized portion 62 on both sides is 0.325 ⁇ ( ⁇ is the above-mentioned magnetization width of the origin position magnetized portion 61 in the linear motion direction 65 with respect to the origin position magnetized portion 61. ) And a width a of 0.1 ⁇ .
  • the magnetoresistive element 55 is an element that detects a magnetic field in the incremental track 53 and the origin position detection track 54, and a plurality of AMR elements (anisotropic magnetoresistive elements) according to the magnetization of the incremental track 53 and the origin position detection track 54. ) Or a GMR element (giant magnetoresistive element), or a magnetoresistive element array, and is arranged at a specified interval G in a direction perpendicular to the linear motion direction 65 with respect to the detected member 52. Is done.
  • the magnetoresistive element 55 is connected to a signal processing circuit 25 that processes an analog signal output from the magnetoresistive element 55 and sends a signal corresponding to the stroke amount of the detected member 52.
  • the detected member 52 moves linearly in the linear motion direction 65.
  • the magnetoresistive element 55 detects changes in the magnetic fields of the displacement detection magnetized portion 53 a in the incremental track 53 and the origin position magnetized portion 61 and the side magnetized portion 62 in the origin position detection track 54.
  • the origin position detection track 54 includes side magnetized portions 62 on both sides in addition to the origin position magnetized portion 61. Therefore, from the magnetoresistive element 55, it is possible to obtain an origin position signal in which the side peak 34 is reduced as in the case of the simulation described in the first embodiment with reference to FIGS.
  • the threshold voltage for generating the origin position detection signal can be set low.
  • the detection stability of the origin position detection signal at a high temperature can be improved, and erroneous detection of the origin position detection signal due to the side peak exceeding the set threshold voltage at a low temperature can be reduced. Therefore, the origin position detection signal in the magnetic encoder can be detected more stably than in the prior art.
  • the values of the clearance N and the width a relating to the arrangement of the side magnetized portions 62 are not limited to the above-described values, but the magnetic characteristics and the origin position attachment of the detected member 52. It can be arbitrarily designed depending on the value of the magnetization width ⁇ of the magnetic part 61. Further, the magnetization after magnetization of the origin position magnetized portion 61 and the side magnetized portion 62 can be arbitrarily set according to the magnetic characteristics of the member 52 to be detected. Further, for example, the side magnetized portion 62 may be configured such that a magnet already magnetized is attached to the origin position magnetized portion 61 by means such as adhesion later.
  • Embodiment 4 the origin position track configuration similar to that described in the second embodiment is applied to a magnetic position detection sensor.
  • the origin position signal detector 104 according to the fourth embodiment will be described below with reference to FIG.
  • the origin position signal detector 104 in the fourth embodiment is the same as the origin position signal detector 103 in the third embodiment described above.
  • the side magnetized portion 62 arranged at only one place on one side of 61 has a configuration arranged at a plurality of places. Other configurations are the same as those in the origin position signal detector 103 described above.
  • the origin position detection track 54 is provided at one location so as to generate one pulse waveform for one stroke in one direction of the detected member 52.
  • the origin position magnetized portion 61 has a magnetization width ⁇ , and three side magnetized portions 62, 63, 64 having magnetization in the same direction as the origin position magnetized portion 61 are provided on both sides thereof.
  • the side magnetized portion 62 is positioned in the linear motion direction 65 with a gap K of 0.34 ⁇ ( ⁇ is the magnetization width of the origin position magnetized portion 61) with respect to the origin position magnetized portion 61. And a width a of 0.1 ⁇ .
  • the side magnetized portion 63 is positioned through the gap L of 0.325 ⁇ with respect to the side magnetized portion 62 in the linear motion direction 65 and has a width b of 0.05 ⁇ .
  • the side magnetized portion 64 is located through the gap M of 0.3 ⁇ with respect to the side magnetized portion 63 in the linear motion direction 65 and has a width c of 0.025 ⁇ .
  • the gaps K, L, M between the magnetized portions gradually decrease as the distance from the origin position magnetized portion 61 increases, and the widths a, b of the side magnetized portions 62, 63, 64 in the linear motion direction 65 are as follows. , C also becomes smaller.
  • the relationship between the distance from the origin position magnetized portion 61 and the magnetized width of the side magnetized portion is not limited to the case where a plurality of side magnetized portions 62 to 64 are provided as in the present embodiment. Even when one side magnetized portion is provided on one side of the position magnetized portion 61, the magnetized width of the side magnetized portion becomes smaller as the distance from the origin position magnetized portion 61 increases.
  • the side peak 34 is reduced from the magnetoresistive element 55 as in the case of the origin position signal detectors 101, 102, and 103 described above.
  • An output waveform can be obtained.
  • the magnetism is larger than that in the third embodiment. The origin position detection signal in the encoder can be detected more stably.
  • the description related to the modification to the origin position signal detector 102 described in the second embodiment that is, the number of side magnetized portions, the dimensions related to the side magnetized portions, the matters related to the magnetization of the side magnetized portions, etc.
  • the present invention is also applicable to the origin position signal detector 104 of the present embodiment.
  • FIG. A fifth embodiment of the present invention will be described below with reference to FIGS.
  • the fifth embodiment can be applied to each of the origin position signal detectors 101 to 104 in the first to fourth embodiments described above.
  • the origin position signal detector 101 in the first embodiment will be described as an example.
  • the magnetization of the origin position magnetized portion 11 and the magnetization of the side magnetized portion 12 are magnetized so as to be magnetized to the saturation magnetic flux density of the magnet with the same magnetization current intensity.
  • the case where magnetism is performed is assumed. Based on this assumption, the arrangement and width of the side magnetized portions 12 are set.
  • the side magnetized portion 12 can have magnetization having a magnetic flux density distribution as shown by a dotted line portion in FIG. 11. It is.
  • the magnetic flux density distribution obtained by combining the origin position magnetized portion 11 and the side magnetized portion 12 can completely eliminate the portion protruding to the minus side as shown by the dotted line in FIG.
  • the side peak at the output of the AMR element shown in FIG. 13 can be completely zero.
  • FIG. 6 An origin position signal detector according to Embodiment 6 of the present invention will be described below with reference to FIG.
  • the basic configuration of the origin position signal detector 106 in the sixth embodiment is the same as that of the origin position signal detector 101 in the first embodiment described above, but differs in the following points. That is, in the origin position signal detector 101 of the first embodiment, as shown in FIG. 1, the magnetization direction of the displacement detection magnetized portion 3a in the incremental track 3 and the magnetization direction of the origin position magnetized portion 11 rotate.
  • the drum 20 is disposed so as to deviate from the mechanical angle position.
  • the magnetization direction of the displacement detection magnetized portion 3a and the magnetization direction of the origin position magnetized portion 11 are relative to the mechanical angle position in the rotary drum 20. They are arranged to match. Further, the side magnetized portions 12 arranged on both sides of the origin position magnetized portion 11 are spaced apart from each other in the rotation direction 15 by the magnetization pitch P, that is, the size of ⁇ . Located through Q and has a width d of 0.2P or 0.2 ⁇ . The other configuration of the origin position signal detector 106 is the same as that of the origin position signal detector 101.
  • the origin position signal detector 106 is inferior to the origin position signal detector 101 of the first embodiment in reducing the side peak, but the displacement detection magnetizing section in the incremental track 3 is inferior.
  • the angle detection error of the incremental track 3 due to the leakage magnetic flux from the origin position detection track 4 is reduced. Can be reduced.
  • the arrangement is such that the magnetization direction of the displacement detection magnetized portion 3a in the incremental track 3 and the magnetization direction of the origin position magnetized portion 11 are matched.
  • the present embodiment is not limited to this. That is, relative to the incremental track 3 at an arbitrary magnetization width and position where the influence of the leakage magnetic flux from the origin position detection track 4 to the incremental track 3 is reduced or eliminated.
  • the origin position magnetized portion 11 and the side magnetized portion 12 can be arranged on the front.
  • FIG. 15 shows origin position signal detectors 107 in which the side magnetized portions 12 and 13 are provided at two positions on both sides of the origin position magnetized section 11, that is, at a plurality of positions.
  • the side magnetized portion 12 is positioned with respect to the origin position magnetized portion 11 in the rotational direction 15 through a gap Q having a size of P, that is, ⁇ , and 0.2 P, that is, 0. It has a width d of 2 ⁇ .
  • the side magnetized portion 13 is positioned through a gap R having a size of 0.4 ⁇ with respect to the side magnetized portion 12 in the rotation direction 15 and has a width e of 0.1 ⁇ .
  • the configuration in the second and fourth embodiments described above is applied in combination with the configuration in the sixth embodiment.
  • the present invention can be used for an origin position signal detector that detects an origin position in a magnetic rotation angle sensor such as a magnetic rotary encoder and a magnetic position detector such as a magnetic linear encoder.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

 等間隔で着磁されたインクリメンタルトラック(3)と、原点位置を検出するための原点位置検出トラック(4)とを有する回転もしくはリニアスケール(1)と、上記スケールからの磁場を検出するための磁気センサ(5)とを備えた原点位置信号検出器において、原点位置検出トラックは、原点位置着磁部(11)と、その両側に、同じ方向の磁化でそれぞれ1箇所以上に着磁されたサイド着磁部(12)を有する。

Description

原点位置信号検出器
 本発明は、磁気式ロータリーエンコーダ等の磁気式回転角センサ、及び磁気式リニアエンコーダ等の磁気式位置検出器において原点位置を検出する原点位置信号検出器に関する。
 一般的な原点位置信号検出器を使用した例として、磁気式回転角センサがある。該磁気式回転角センサは、大きく分けて、例えばモータ等の回転軸に組みつけられその回転に応じて発生する磁界を変化させる回転ドラムと、変化する磁界を検出する磁気検出センサとを備える(例えば特許文献1)。
 回転ドラムの外周面には、塗布、嵌め合い、接着等の方法により、磁石が設けられている。その検出トラックは、回転ドラムの回転角を検出するためのインクリメンタルトラックと、回転角検出用の原点位置を検出するための原点位置検出トラックとにより構成されている。
 インクリメンタルトラックは、回転ドラムの一周を等間隔のピッチPにて着磁されており、ピッチPは、インクリメンタル信号検出に必要な一回転内の波数Wにより、P=360°/Wの関係にて規定される。又、原点位置検出トラックは、回転ドラムの一回転に対して一つのパルス波形が生成されるように、一周内の一箇所だけが着磁されており、その着磁幅は信号処理方法に応じて適切に設定されている。
 磁気検出センサは、回転ドラムのインクリメンタルトラック及び原点位置検出トラックにおけるそれぞれの着磁に応じて、複数のAMRやGMR等の、磁気抵抗素子もしくは磁気抵抗素子アレイにより構成され、回転ドラムに対して一定の間隔で配置される。
 このように構成される従来の磁気式回転角センサにおける一般的な原点位置検出信号の処理方法は、特許文献1の図3に示されるように、磁気抵抗素子が出力するアナログ信号を閾値電圧にてパルス波形に変換して、原点位置検出信号とする。
特開平5-223592号公報(特許第3195019号)
 磁気検出センサとして一般に使用されるAMRやGMR素子等の磁気抵抗素子は、温度上昇に伴い、その出力が減少するという物理的特性を持つ。例えばAMR素子は、概ね0.3~0.5%/℃の割合で出力が低下することから、例えば20℃から80℃に周囲温度が上昇した場合、原点位置検出信号の出力は、15~25%低下することになる。よって、原点位置検出信号を生成するための閾値電圧は、高温時のことを考慮して、極力低く設定する必要がある。又、回転ドラムに対する磁気検出センサの組付け誤差等の要因により、原点位置検出信号は増減するため、その分の余裕を持って上記閾値電圧を低めに設定する必要もある。
 一方、磁気抵抗素子が出力するアナログ信号には、特許文献1の図3や図4に示すように、大きなピークの両側には、一つずつ小さいピークが存在する(以後、この両側の小ピークを「サイドピーク」と呼ぶ。)。よって、このサイドピークを原点位置検出信号として誤認させないため、閾値電圧は、サイドピークの高さよりも低く設定することはできない。さらに、閾値電圧の設定誤差や、上述した磁気検出センサの組付け誤差によるサイドピークの高さ変動も存在する。よって、サイドピークを考慮すると、閾値電圧は、サイドピークの高さに余裕分を加えて高めに設定する必要がある。したがって、現実的には、設計閾値電圧を極力低く設定することはできない。
 又、低温時には、AMRやGMR素子の出力は逆に増大するため、サイドピークの出力値も高くなる。よってサイドピーク出力が、設定した閾値電圧を超えたときには、原点位置信号検出器は、サイドピークを検出し、原点位置の誤検出が発生する可能性がある。
 以上のことから、サイドピークの出力を極力低く抑えることが、安定した原点位置信号検出にとって重要となる。
 本発明は、上述したような課題を解決するためになされたもので、磁気式エンコーダにおける原点位置検出信号を従来に比べて安定して検出可能な原点位置信号検出器を提供することを目的とする。
 上記目的を達成するため、本発明は以下のように構成する。
 即ち、本発明の一態様における原点位置信号検出器は、変位量検出のため変位方向において等間隔で着磁された変位検出着磁部を有するインクリメンタルトラック、及び上記変位量検出の原点位置を検出させる原点位置着磁部を有する原点位置検出トラックを有する被検出部材と、上記インクリメンタルトラック及び上記原点位置検出トラックにおける磁場を検出する磁気センサとを備えた原点位置信号検出器において、上記原点位置検出トラックは、上記変位方向において上記原点位置着磁部の両側に、上記原点位置着磁部と同じ方向の磁化にて着磁されたサイド着磁部をさらに備えたことを特徴とする。
 上記サイド着磁部は、上記原点位置着磁部の両側に同数で設けられてもよいし、上記原点位置着磁部に対して一定の隙間を介して設けられてもよい。
 また、上記原点位置着磁部と、上記サイド着磁部とは、同じ着磁電流強度で着磁されてもよいし、異なる着磁電流強度で着磁されてもよい。
 上記サイド着磁部は、上記原点位置着磁部から遠ざかるに従ってその着磁幅が狭くなるように構成してもよい。
 上記原点位置着磁部と、上記サイド着磁部とは、インクリメンタルトラックの着磁に対して影響を及ぼさない相対位置に着磁されてもよい。
 本発明の一態様における原点位置信号検出器によれば、原点位置検出トラックは、原点位置着磁部の両側にサイド着磁部を備えたことにより、磁気センサが出力するアナログ信号に付随して出現するサイドピークの出力値を低減させることができる。よって、原点位置検出信号を生成するための閾値電圧を低く設定できる。その結果、高温時における原点位置検出信号の検出安定性を向上することができるとともに、低温時におけるサイドピークが設定閾値電圧を超えることによる原点位置検出信号の誤検出を低減することができる。したがって、本発明の一態様における原点位置信号検出器によれば、磁気式エンコーダにおける原点位置検出信号を従来に比べて安定して検出可能である。
本発明の実施の形態1による磁気式回転角センサの概略構成を示す斜視図である。 図1に示す磁気式回転角センサにおいて、回転ドラムの回転に伴い、原点位置着磁部のみにより磁気抵抗素子の表面に掛かる磁束密度分布の時間変化、及びサイド着磁部のみにより磁気抵抗素子の表面に掛かる磁束密度分布の時間変化をそれぞれシミュレーションしたグラフである。 図1に示す磁気式回転角センサにおいて、原点位置着磁部のみにより磁気抵抗素子の表面に掛かる磁束密度分布の時間変化、並びに、原点位置着磁部及びサイド着磁部の両方により磁気抵抗素子の表面に掛かる磁束密度分布の時間変化をシミュレーションしたグラフである。 一般的な磁気抵抗素子であるAMR素子の一般的な感度曲線を示すグラフである。 図3に示す磁束密度分布の変化を図4に示すAMR素子の感度曲線に当てはめて、回転ドラムの回転に伴うAMR素子の抵抗変化率の変化に換算したものを示すグラフである。 本発明の実施の形態2による磁気式回転角センサの概略構成を示す斜視図である。 図3に示す原点位置着磁部及びサイド着磁部の両方により磁気抵抗素子の表面に掛かる磁束密度分布の時間変化、並びに、図6に示す磁気式回転角センサにおいて原点位置着磁部及び3つのサイド着磁部の両方により磁気抵抗素子の表面に掛かる磁束密度分布の時間変化をシミュレーションしたグラフである。 図7に示す磁束密度分布の変化を図4に示すAMR素子の感度曲線に当てはめて、回転ドラムの回転に伴うAMR素子の抵抗変化率の変化に換算したものを示すグラフである。 本発明の実施の形態3による磁気式位置検出センサの概略構成を示す斜視図である。 本発明の実施の形態4による磁気式位置検出センサの概略構成を示す斜視図である。 本発明の実施の形態5において、原点位置着磁部及びサイド着磁部を個々に磁化した場合の、それぞれの着磁部から磁気抵抗素子の表面に掛かる磁束密度分布の時間変化をシミュレーションしたグラフである。 本発明の実施の形態5において、原点位置着磁部及びサイド着磁部を個々に磁化した場合にて、原点位置着磁部及びサイド着磁部の両方から磁気抵抗素子の表面に掛かる磁束密度分布の時間変化をシミュレーションしたグラフである。 本発明の実施の形態5において、図12の磁束密度分布の変化を図4のAMR素子の感度曲線に当てはめて、回転ドラムの回転に伴うAMR素子の抵抗変化率の変化に換算したものを示すグラフである。 本発明の実施の形態6による磁気式位置検出センサの概略構成を示す斜視図である。 図14に示す磁気式位置検出センサの変形例における概略構成を示す斜視図である。
符号の説明
 1 被検出部材、3 インクリメンタルトラック、3a 変位検出着磁部、
 4 原点位置検出トラック、5 磁気抵抗素子、11 原点位置着磁部、
 12、13,14 サイド着磁部、15 回転方向、20 回転ドラム、
 34 サイドピーク、
 52 被検出部材、53 インクリメンタルトラック、53a 変位検出着磁部、
 54 原点位置検出トラック、55 磁気抵抗素子、61 原点位置着磁部、
 62、63,64 サイド着磁部、65 直動方向、
 101~104、106,107 原点位置信号検出器。
 本発明の実施形態である原点位置信号検出器について、図を参照しながら以下に説明する。尚、各図において、同一又は同様の構成部分については同じ符号を付している。
 実施の形態1.
 本発明の実施の形態1における原点位置信号検出器について、図1~図5を用いて以下に説明する。
 図1は、磁気式ロータリーエンコーダの内、磁気式回転角センサとして機能する、上記実施形態の原点位置信号検出器101の概略構成を示している。原点位置信号検出器101は、大きく分けて、被検出部材1と、磁気センサの機能を果たす一例である磁気抵抗素子5とを備える。
 被検出部材1は、例えばモータ等の回転軸に相当する回転ドラム20の外周面に、塗布、嵌め合い、接着等の方法にて取り付けられる磁石である。被検出部材1には、インクリメンタルトラック3と、原点位置検出トラック4とが回転ドラム20の軸方向において上下2段に配置されている。
 インクリメンタルトラック3は、変位量検出のため、変位方向において図の左から右へS→N極、N→S極の磁化方向となるように交互に等間隔で着磁された変位検出着磁部3aを有する。尚、本実施形態では、上記変位量は回転角に相当し、上記変位方向は被検出部材1の回転方向15に相当する。よって、変位検出着磁部3aは、インクリメンタルトラック3の全周にわたり、回転方向15において等間隔のピッチPにて着磁されている。ピッチPは、インクリメンタル信号検出に必要な一回転内の波数Wによって、P=360°/W の関係にて規定される。
 原点位置検出トラック4は、原点位置着磁部11と、サイド着磁部12とを備える。
 原点位置着磁部11は、上記変位量検出、つまり本実施形態では被検出部材1の回転角検出、の原点位置を検出させる着磁部である。又、原点位置着磁部11は、被検出部材1の一回転に対して一つのパルス波形が生成されるように、原点位置検出トラック4の一箇所に形成され、かつ回転方向15において着磁幅λにて形成される。原点位置着磁部11の着磁幅λは、インクリメンタルトラック3の着磁ピッチPに対して、例えばλ=Pや2Pなどの任意の着磁幅にて設けられる。
 サイド着磁部12は、回転方向15において原点位置着磁部11の両側に配置され、それぞれのサイド着磁部12は、回転方向15において原点位置着磁部11と同じ方向の磁化にて着磁されている。又、本実施形態では、両側の各サイド着磁部12は、回転方向15において、原点位置着磁部11に対して0.325λ(λは、原点位置着磁部11の上記着磁幅)のサイズにてなる隙間Nを介して位置して、かつ0.1λの幅aを有する。
 磁気抵抗素子5は、インクリメンタルトラック3及び原点位置検出トラック4における磁場を検出する素子であり、インクリメンタルトラック3及び原点位置検出トラック4の着磁に応じて複数のAMR素子(異方性磁気抵抗素子)やGMR素子(巨大磁気抵抗素子)などの磁気抵抗素子もしくは磁気抵抗素子アレイにより構成され、被検出部材1の直径方向において、被検出部材1に対して、規定の間隔Gをあけて配置される。
 以上のように構成される原点位置信号検出器101の動作について以下に説明する。尚、磁気抵抗素子5には、磁気抵抗素子5が出力するアナログ信号を処理し被検出部材1の回転角に対応した信号を送出する信号処理回路25が接続される。
 例えばモータの出力軸に取り付けられた被検出部材1が回転することで、磁気抵抗素子5は、インクリメンタルトラック3における変位検出着磁部3a、並びに、原点位置検出トラック4における原点位置着磁部11及びサイド着磁部12のそれぞれの磁界の変化を検出する。
 図2は、原点位置着磁部11及びサイド着磁部12の磁界が磁気抵抗素子5の表面に別々に作用したときの、磁気抵抗素子5における磁束密度分布の時間変化をシミュレーションした図である。図2に示す実線部31は、原点位置着磁部11のみにおける磁束密度分布(縦軸)を、回転ドラム20の回転角(横軸)との関係にて表したものである。図2に示す点線部32は、サイド着磁部12のみにおける磁束密度分布(縦軸)を、回転ドラム20の回転角(横軸)との関係にて表したものである。又、図3は、原点位置着磁部11及びサイド着磁部12の両方の磁界が磁気抵抗素子5の表面に作用したときの、磁気抵抗素子5における磁束密度分布の時間変化をシミュレーションした図である。図3に示す実線部33は、原点位置着磁部11のみにおける磁束密度分布(縦軸)を、回転ドラム20の回転角(横軸)との関係にて表したものである。図3に示す点線部は、原点位置着磁部11及びサイド着磁部12の両方が作用したときの磁束密度分布(縦軸)を、回転ドラム20の回転角(横軸)との関係にて表したものである。又、図4は、一般的な磁気抵抗素子であるAMR素子の感度曲線の典型例を示している。又、図5は、図3に示す磁束密度分布の変化を、図4に示すAMR素子の感度曲線に当てはめて、回転ドラムの回転に伴うAMR素子の抵抗変化率の変化に換算したものを示す。図5において、実線部は、原点位置着磁部11及びサイド着磁部12の両方による上記抵抗変化率の変化を示し、点線部は、原点位置着磁部11のみによる上記抵抗変化率の変化を示す。
 図2に示すように、原点位置着磁部11のみによる磁束密度変化を示す実線部31は、縦軸のプラス方向に延びた主たるパルス波形31aの左右両側に、マイナス方向に突出した副パルス波形31bが存在する波形となっている。このような波形形成は、回転ドラムの一回転内に一極だけ着磁された構成において、その着磁部の周囲に発生する磁束の集中によって物理的に発生しうる現象である。一方、磁気抵抗素子5は、図4に示すように、磁束密度の正負に対して偶関数的な出力特性を示す。よって、図3に示す、マイナス方向に突出した部分33bは、磁気抵抗素子5の出力では、図5の点線部にて示すように、大きくプラス側にピークを持った波形、すなわちサイドピーク34を形成する。
 これに対し、図2の点線部32にて示すように、サイド着磁部12が磁気抵抗素子5の表面に作り出す磁束密度分布は、ちょうど実線部31のマイナス側に突出した副パルス波形31bをキャンセルするような磁束密度分布となる。よって、原点位置着磁部11及びサイド着磁部12を共に有する原点位置検出トラック4が磁気抵抗素子5の表面に作り出す磁束密度分布は、図3の実線部33に示すように、マイナス方向に突出した部分33bが一部キャンセルされた磁束密度分布となる。その結果、磁気抵抗素子5の出力は、図5実線部35に示すように、サイドピーク34が低減された波形となる。
 このように、原点位置着磁部11の両側にサイド着磁部12を設けることで、磁気抵抗素子5からサイドピーク34が低減された出力波形を得ることが可能となる。よって、原点位置検出信号を生成するための閾値電圧を低く設定できる。その結果、高温時における原点位置検出信号の検出安定性を向上することができるとともに、低温時におけるサイドピークが設定閾値電圧を超えることによる原点位置検出信号の誤検出を低減することができる。したがって、磁気式エンコーダにおける原点位置検出信号を従来に比べて安定して検出することが可能となる。
 本実施の形態では、サイド着磁部12の配置例として、隙間Nを0.325λ、幅aを0.1λのサイズとしているが、これに限定するものではない。即ち、サイド着磁部12の配置は、被検出部材1の磁気特性及び原点位置着磁部11の着磁幅λの値、等により、適宜に設計することができる。
 又、図2、図3、及び図5では、原点位置着磁部11及びサイド着磁部12の着磁を同じ着磁電流強度で磁石の飽和磁束密度まで磁化するように着磁を行った場合を模擬している。このように、原点位置着磁部11及びサイド着磁部12の着磁を同じ着磁電流強度で磁石の飽和磁束密度まで磁化する方法は、飽和磁化値が一定となることから、量産時における着磁強度のバラツキを小さくすることができ、品質の安定した原点位置信号検出器を提供可能であるという効果を奏する。
 一方、本実施の形態は、原点位置着磁部11及びサイド着磁部12の着磁を同じ着磁電流強度で磁石の飽和磁束密度まで磁化する方法に限定するものではない。つまり、被検出部材1の磁気特性等により任意に着磁後の磁化を設定することができる。原点位置着磁部11とサイド着磁部12とをそれぞれ異なる着磁電流強度で着磁することで、磁気抵抗素子5の出力波形からサイドピーク34を完全に無くすことも可能である。この点については、後述の実施形態5において詳しく説明している。
 又、本実施の形態では、被検出部材1に対して原点位置着磁部11及びサイド着磁部12の着磁を行った形態を示しているが、これに限定されるものではなく、例えばサイド着磁部12は、原点位置着磁部11に対して後から接着等の手段により、既に着磁された磁石を貼り付けた構成とすることも可能である。
 実施の形態2.
 本発明の実施の形態2について、図6~図8を用いて以下に説明する。
 ここで、図6は、本発明の実施の形態2による原点位置信号検出器102の概略構成を示す。図7は、実施の形態1の原点位置信号検出器101における磁気抵抗素子における磁束密度分布の時間変化のシミュレーション結果と、実施の形態2の原点位置信号検出器102における磁気抵抗素子における磁束密度分布の時間変化のシミュレーション結果とを比較して表示した図である。尚、図7において、実線部が原点位置信号検出器101の場合を示し、点線部が原点位置信号検出器102の場合を示している。図8は、図7の磁束密度分布の変化を、図4のAMR素子の感度曲線に当てはめて、回転ドラムの回転に伴うAMR素子の抵抗変化率の変化に換算したものを示す。尚、実線部が原点位置信号検出器102の場合を示し、点線部が原点位置信号検出器101の場合を示している。
 上述した実施の形態1の原点位置信号検出器101では、サイド着磁部12は、原点位置着磁部11の片側には、一箇所のみに配置されている。一方、本実施の形態2における原点位置信号検出器102では、原点位置着磁部11の片側には、複数の箇所にサイド着磁部を配置している。この点で、原点位置信号検出器101と原点位置信号検出器102とは相違する。尚、原点位置信号検出器102におけるその他の構成は、原点位置信号検出器101における構成に同じである。したがって、以下には、相違する構成部分についてのみ説明を行う。
 原点位置信号検出器102では、回転ドラム20の一回転に対して一つのパルス波形を生成するように、原点位置検出トラック4は、一箇所に原点位置着磁部11を着磁幅λで有し、原点位置着磁部11の両側のそれぞれに、原点位置着磁部11と同じ方向の磁化を持ったサイド着磁部12、13、14を3箇所ずつ備えている。
 サイド着磁部12は、回転方向15において、原点位置着磁部11に対して0.34λ(λは、原点位置着磁部11の上記着磁幅)のサイズにてなる隙間Kを介して位置して、かつ0.1λの幅aを有する。
 サイド着磁部13は、回転方向15において、サイド着磁部12に対して0.325λのサイズにてなる隙間Lを介して位置して、かつ0.05λの幅bを有する。
 サイド着磁部14は、回転方向15において、サイド着磁部13に対して0.3λのサイズにてなる隙間Mを介して位置して、かつ0.025λの幅cを有する。
 このように、原点位置着磁部11から離れるに従い、着磁部間の隙間K,L,Mは徐々に小さくなり、回転方向15におけるサイド着磁部12,13,14の幅a,b,cも小さくなる。尚、原点位置着磁部11からの距離とサイド着磁部の着磁幅との関係は、本実施形態のような複数のサイド着磁部12~14を設けた場合に限定されず、原点位置着磁部11の片側に一つのサイド着磁部を設ける場合でも原点位置着磁部11から離れるに従いサイド着磁部の着磁幅は小さくなる。
 以上説明した構成を有する本実施形態における原点位置信号検出器102によれば、上述した原点位置信号検出器101の場合と同様に、磁気抵抗素子5からサイドピーク34が低減された出力波形を得ることが可能となる。
 さらに、原点位置着磁部11の各片側に、それぞれ複数のサイド着磁部12,13,14を配置することで、第1の実施形態に比べてさらに以下の効果を得ることができる。
 即ち、図7の実線部は、実施の形態1での磁気抵抗素子5における磁束密度分布を示しており、マイナス方向に突出した部分を一箇所キャンセルしたような波形となっている。しかしながら、その波形の左右に、まだマイナス方向に若干突出したピーク36が存在している。このようなピーク36をさらにキャンセル可能なように、本実施の形態2では、サイド着磁部13,14を設けている。
 したがって、図7の点線部37に示す、本実施の形態2での磁気抵抗素子5における磁束密度分布では、実施の形態1に比べてピーク36に相当する磁束密度分布出力を低減した形態となっている。このことは、図8からも読み取ることができ、点線で示された実施の形態1の構成でのAMR出力に対して、実線部で示す本実施の形態における出力は、若干サイドピークが抑えられた波形を得ている。
 よって、本実施の形態2では、実施の形態1に比べて、磁気式エンコーダにおける原点位置検出信号をより安定して検出することが可能となる。
 尚、本実施の形態では、原点位置着磁部11の両側にて、それぞれ3箇所にサイド着磁部12,13,14を配置した構成を採るが、サイド着磁部の数は、3個に限らず、複数の任意個数ずつ配置することができる。
 又、サイド着磁部12、13、14に関する隙間K,L,M、及び幅a,b,cの値は、上述した値に限定するものではなく、例えばK、L、Mを一定の幅にしてもよく、またa、b、cを一定の幅にしてもよく、被検出部材1の磁気特性及び原点位置着磁部11の着磁幅λの値、等により任意に設計することができる。
 又、図7、図8では、原点位置着磁部11とサイド着磁部12、13、14との着磁を同じ着磁電流強度で磁石の飽和磁束密度まで磁化するように着磁を行った場合を模擬しているが、本実施の形態は、これに限るものではなく、被検出部材1の磁気特性等により任意に着磁後の磁化を設定することができる。
 又、本実施の形態では、被検出部材1に対して原点位置着磁部11及びサイド着磁部12、13、14の着磁を行った形態としているが、例えばサイド着磁部12、13、14は、原点位置着磁部11に対して後から接着等の手段により、既に着磁された磁石を貼り付けた構成とすることも可能である。
 実施の形態3.
 本発明の実施の形態3について、図9を用いて以下に説明する。
 本実施の形態3における原点位置信号検出器103は、実施形態1における原点位置トラック構成を磁気式位置検出センサに適用したものである。
 図9は、磁気式リニアエンコーダの内、磁気式位置センサとして機能する、本実施形態の原点位置信号検出器103の概略構成を示している。原点位置信号検出器103は、大きく分けて、被検出部材52と、磁気抵抗素子55とを備える。
 被検出部材52は、リニアスケール板51上に、塗布もしくは接着等の方法により取り付けられた板状の磁石である。被検出部材52には、インクリメンタルトラック53と、原点位置検出トラック54とが上下2段に配置され、各トラック53,54は、被検出部材52の長手方向に沿って延在する。
 インクリメンタルトラック53は、被検出部材52と磁気抵抗素子55との相対直動方向の変位量を検出するため、変位方向において図の左から右へS→N極、N→S極の磁化方向となるように交互に等間隔で着磁された変位検出着磁部53aを有する。尚、本実施形態では、上記変位量は、直線的なストローク量に相当し、上記変位方向は被検出部材52の直動方向65に相当する。よって、変位検出着磁部53aは、インクリメンタルトラック3の全長にわたり、直動方向65において等間隔のピッチPにてインクリメンタルトラック3に着磁されている。ピッチPは、直動方向65のストロークSに対してインクリメンタル信号検出に必要な波数Wによって、P=S/W の関係にて規定される。
 原点位置検出トラック54は、原点位置着磁部61と、サイド着磁部62とを備える。
 原点位置着磁部61は、上記変位量検出、つまり本実施形態では被検出部材52のストローク量検出、の原点位置を検出させる着磁部である。又、原点位置着磁部61は、被検出部材52の一方向への1ストロークに対して一つのパルス波形が生成されるように、原点位置検出トラック54の一箇所に形成され、かつ直動方向65において着磁幅λにて形成される。又、原点位置着磁部61は、図9に示すように、直動方向65において、変位検出着磁部53aと同じ方向の磁化を有し、さらに、本実施形態では、隣接する2つの変位検出着磁部53aに対して、直動方向65において均等又はほぼ均等に跨るように、配置される。
 サイド着磁部62は、直動方向65において原点位置着磁部61の両側に配置され、それぞれのサイド着磁部62は、直動方向65において原点位置着磁部61と同じ方向の磁化にて着磁されている。又、本実施形態では、両側の各サイド着磁部62は、直動方向65において、原点位置着磁部61に対して0.325λ(λは、原点位置着磁部61の上記着磁幅)の隙間Nを介して位置して、かつ0.1λの幅aを有する。
 磁気抵抗素子55は、インクリメンタルトラック53及び原点位置検出トラック54における磁場を検出する素子であり、インクリメンタルトラック53及び原点位置検出トラック54の着磁に応じて複数のAMR素子(異方性磁気抵抗素子)やGMR素子(巨大磁気抵抗素子)などの磁気抵抗素子もしくは磁気抵抗素子アレイにより構成され、被検出部材52に対して、直動方向65に対して直角方向において規定の間隔Gをあけて配置される。
 以上のように構成される原点位置信号検出器103の動作について以下に説明する。尚、磁気抵抗素子55には、磁気抵抗素子55が出力するアナログ信号を処理し被検出部材52のストローク量に対応した信号を送出する信号処理回路25が接続される。
 実施の形態1における原点位置信号検出器101の動作説明で述べた内容と同様に、本実施形態の原点位置信号検出器103においても、被検出部材52が直動方向65に直線移動することで、磁気抵抗素子55は、インクリメンタルトラック53における変位検出着磁部53a、並びに、原点位置検出トラック54における原点位置着磁部61及びサイド着磁部62のそれぞれの磁界の変化を検出する。
 本実施形態の原点位置信号検出器103においても、原点位置検出トラック54は、原点位置着磁部61に加えて、その両側にサイド着磁部62を配置している。よって、磁気抵抗素子55からは、実施の形態1にて説明した、図2から図5で模擬したものと同様に、サイドピーク34を低減した原点位置信号を得ることができる。
 したがって、本実施形態の原点位置信号検出器103においても、原点位置検出信号を生成するための閾値電圧を低く設定できる。その結果、高温時における原点位置検出信号の検出安定性を向上することができるとともに、低温時におけるサイドピークが設定閾値電圧を超えることによる原点位置検出信号の誤検出を低減することができる。したがって、磁気式エンコーダにおける原点位置検出信号を従来に比べて安定して検出することが可能となる。
 尚、実施の形態1でも説明したが、サイド着磁部62の配置に関する隙間N、及び幅aの値は、上述した値に限定するものではなく、被検出部材52の磁気特性及び原点位置着磁部61の着磁幅λの値、等により任意に設計することができる。
 又、原点位置着磁部61及びサイド着磁部62の着磁後の磁化は、被検出部材52の磁気特性等により任意に設定することができる。
 又、例えばサイド着磁部62は、原点位置着磁部61に対して後から接着等の手段により、既に着磁された磁石を貼り付けた構成とすることも可能である。
 実施の形態4.
 本実施の形態は、実施の形態2にて説明したのと同様の原点位置トラック構成を、磁気式位置検出センサに適用したものである。図10を用いて、本実施の形態4における原点位置信号検出器104について、以下に説明する。
 既に説明した実施形態1と実施形態2との関係と同様に、本実施の形態4における原点位置信号検出器104は、上述の実施形態3の原点位置信号検出器103において、原点位置着磁部61の片側に一箇所のみに配置しているサイド着磁部62を、複数箇所に配置した構成を有する。その他の構成は、上述の原点位置信号検出器103における構成に同じである。
 即ち、本実施の形態4における原点位置信号検出器104では、原点位置検出トラック54は、被検出部材52の一方向への1ストロークに対して一つのパルス波形を生成するように、一箇所に原点位置着磁部61を着磁幅λで有すると共に、その両側のそれぞれに、原点位置着磁部61と同じ方向の磁化を持ったサイド着磁部62、63、64を3箇所ずつ備える。
 サイド着磁部62は、直動方向65において、原点位置着磁部61に対して0.34λ(λは、原点位置着磁部61の上記着磁幅)の隙間Kを介して位置して、かつ0.1λの幅aを有する。
 サイド着磁部63は、直動方向65において、サイド着磁部62に対して0.325λの隙間Lを介して位置して、かつ0.05λの幅bを有する。
 サイド着磁部64は、直動方向65において、サイド着磁部63に対して0.3λの隙間Mを介して位置して、かつ0.025λの幅cを有する。
 このように、原点位置着磁部61から離れるに従い、着磁部間の隙間K,L,Mは徐々に小さくなり、直動方向65におけるサイド着磁部62,63,64の幅a,b,cも小さくなる。尚、原点位置着磁部61からの距離とサイド着磁部の着磁幅との関係は、本実施形態のような複数のサイド着磁部62~64を設けた場合に限定されず、原点位置着磁部61の片側に一つのサイド着磁部を設ける場合でも原点位置着磁部61から離れるに従いサイド着磁部の着磁幅は小さくなる。
 以上説明した構成を有する本実施形態における原点位置信号検出器104によれば、上述した原点位置信号検出器101、102、103の場合と同様に、磁気抵抗素子55からサイドピーク34が低減された出力波形を得ることが可能となる。
 さらに、原点位置着磁部61の各片側に、それぞれ複数のサイド着磁部62,63,64を配置することで、第2実施形態でも説明したように、第3の実施形態に比べて磁気式エンコーダにおける原点位置検出信号をより安定して検出することが可能となる。
 又、第2実施形態において説明した、原点位置信号検出器102に対する変形例に関する記述、即ち、サイド着磁部の個数、及びサイド着磁部に関する寸法、サイド着磁部の磁化に関する事項、等は、本実施形態の原点位置信号検出器104に対しても適用可能である。
 実施の形態5.
 本発明の実施の形態5について、図11から図13を用いて以下に説明する。
 本実施形態5は、上述した、実施形態1~4における原点位置信号検出器101~104のそれぞれに適用可能である。ここでは、実施の形態1における原点位置信号検出器101を例に採り、説明を行う。
 即ち、実施の形態1では、基本的に、原点位置着磁部11の着磁とサイド着磁部12の着磁とは、同じ着磁電流強度で磁石の飽和磁束密度まで磁化するように着磁を行った場合を想定している。そして該想定に基づいて、サイド着磁部12の配置及び幅を設定している。これについて、サイド着磁部12の着磁電流を自由に制御することで、例えば図11の点線部に示すような磁束密度分布を持った磁化を、サイド着磁部12に持たせることも可能である。
 このように構成することで、原点位置着磁部11とサイド着磁部12とを合わせた磁束密度分布は、図12に点線で示すように、マイナス側に突出した部分を完全に無くすことができ、図13に示すAMR素子の出力におけるサイドピークを完全に0にすることができる。
 実施の形態6.
 本発明の実施の形態6における原点位置信号検出器について、図14を用いて以下に説明する。
 本実施の形態6における原点位置信号検出器106の基本的構成は、上述した実施の形態1における原点位置信号検出器101に同じであるが、以下の点で相異する。即ち、実施の形態1の原点位置信号検出器101では、図1に示すように、インクリメンタルトラック3における変位検出着磁部3aの着磁方向と原点位置着磁部11の着磁方向とが回転ドラム20の機械角位置に対してずれて配置されている。これに対し本実施の形態6の原点位置信号検出器106では、変位検出着磁部3aの着磁方向と原点位置着磁部11の着磁方向とが回転ドラム20における機械角位置に対して一致するように配置している。さらに、原点位置着磁部11の両側に配置される各サイド着磁部12は、回転方向15において、原点位置着磁部11に対して着磁ピッチP、すなわちλの大きさにてなる隙間Qを介して位置して、かつ0.2Pすなわち0.2λの幅dを有する。原点位置信号検出器106におけるその他の構成は、原点位置信号検出器101の構成に同じである。
 このように構成することで原点位置信号検出器106では、サイドピークの低減能力は、実施の形態1の原点位置信号検出器101の場合に比べて劣るが、インクリメンタルトラック3における変位検出着磁部3aの着磁方向と原点位置着磁部11の着磁方向とを回転ドラム20における機械角位置にて一致させることで、原点位置検出トラック4からの漏れ磁束によるインクリメンタルトラック3の角度検出誤差を低減することができる。
 尚、本実施の形態6では、上述のように、インクリメンタルトラック3における変位検出着磁部3aの着磁方向と原点位置着磁部11の着磁方向とを一致させた配置形態としているが、本実施の形態はこれに限るものではない。即ち、原点位置検出トラック4からインクリメンタルトラック3への漏れ磁束の影響が小さくなるような、あるいは影響が無くなるような、任意の着磁幅、着磁位置にて、インクリメンタルトラック3に対して相対的に原点位置着磁部11及びサイド着磁部12を配置することができる。
 さらにまた、本実施の形態6の構成は、上述した実施の形態2~5に対しても同様に適用可能であり、そのような各構成では、実施の形態2~5にてそれぞれ説明した効果を奏することができる。その一例として、図15には、サイド着磁部12,13を原点位置着磁部11の両側2箇所に、つまり複数箇所に、それぞれ設けた原点位置信号検出器107を示す。ここで、サイド着磁部12は、回転方向15において、原点位置着磁部11に対してP、すなわちλの大きさにてなる隙間Qを介して位置して、かつ0.2P、すなわち0.2λの幅dを有する。また、サイド着磁部13は、回転方向15において、サイド着磁部12に対して0.4λの大きさにてなる隙間Rを介して位置して、かつ0.1λの幅eを有する。その他、上述した実施の形態2、4における構成が本実施の形態6の構成と組み合わせて適用される。
 なお、上述の様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 又、2008年3月17日に出願された、日本国特許出願No.特願2008-67536号の明細書、図面、特許請求の範囲、及び要約書の開示内容の全ては、参考として本明細書中に編入されるものである。
 本発明は、磁気式ロータリーエンコーダ等の磁気式回転角センサ、及び磁気式リニアエンコーダ等の磁気式位置検出器において原点位置を検出する原点位置信号検出器に利用可能である。

Claims (7)

  1.  変位量検出のため変位方向において等間隔で着磁された変位検出着磁部を有するインクリメンタルトラック、及び上記変位量検出の原点位置を検出させる原点位置着磁部を有する原点位置検出トラックを有する被検出部材と、上記インクリメンタルトラック及び上記原点位置検出トラックにおける磁場を検出する磁気センサとを備えた原点位置信号検出器において、
     上記原点位置検出トラックは、上記変位方向において上記原点位置着磁部の両側に、上記原点位置着磁部と同じ方向の磁化にて着磁されたサイド着磁部をさらに備えたことを特徴とする原点位置信号検出器。
  2.  上記サイド着磁部は、上記原点位置着磁部の両側に同数で設けられる、請求項1記載の原点位置信号検出器。
  3.  上記サイド着磁部は、上記原点位置着磁部に対して一定の隙間を介して設けられる、請求項1記載の原点位置信号検出器。
  4.  上記原点位置着磁部と、上記サイド着磁部とは、同じ着磁電流強度で着磁されている、請求項1記載の原点位置信号検出器。
  5.  上記原点位置着磁部と、上記サイド着磁部とは、異なる着磁電流強度で着磁されている、請求項1記載の原点位置信号検出器。
  6.  上記サイド着磁部は、上記原点位置着磁部から遠ざかるに従ってその着磁幅が狭くなる、請求項1記載の原点位置信号検出器。
  7.  上記原点位置着磁部と、上記サイド着磁部とは、インクリメンタルトラックの着磁に対して影響を及ぼさない相対位置に着磁されている、請求項1記載の原点位置信号検出器。
PCT/JP2009/053362 2008-03-17 2009-02-25 原点位置信号検出器 WO2009116365A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112009000497T DE112009000497B4 (de) 2008-03-17 2009-02-25 Ursprungspositions-Signaldetektor
CN2009801096155A CN101978242B (zh) 2008-03-17 2009-02-25 原点位置信号检测器
KR1020107019099A KR101163908B1 (ko) 2008-03-17 2009-02-25 원점 위치 신호 검출기
US12/933,319 US20110291646A1 (en) 2008-03-17 2009-02-25 Origin position signal detector
JP2010503813A JP4880066B2 (ja) 2008-03-17 2009-02-25 原点位置信号検出器
TW098107820A TWI392856B (zh) 2008-03-17 2009-03-11 原點位置信號檢測器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008067536 2008-03-17
JP2008-067536 2008-03-17

Publications (1)

Publication Number Publication Date
WO2009116365A1 true WO2009116365A1 (ja) 2009-09-24

Family

ID=41090773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053362 WO2009116365A1 (ja) 2008-03-17 2009-02-25 原点位置信号検出器

Country Status (7)

Country Link
US (1) US20110291646A1 (ja)
JP (1) JP4880066B2 (ja)
KR (1) KR101163908B1 (ja)
CN (1) CN101978242B (ja)
DE (1) DE112009000497B4 (ja)
TW (1) TWI392856B (ja)
WO (1) WO2009116365A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018151181A (ja) * 2017-03-10 2018-09-27 パナソニックIpマネジメント株式会社 磁気式位置検出装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5379748B2 (ja) * 2010-06-03 2013-12-25 Ntn株式会社 磁気エンコーダ
JP2012189376A (ja) * 2011-03-09 2012-10-04 Jtekt Corp 回転角検出装置およびトルク検出装置
CN104246446B (zh) * 2012-04-20 2017-05-31 迪姆肯公司 用于产生指示信号的磁性编码器
DE102012214916A1 (de) * 2012-08-22 2014-03-20 Robert Bosch Gmbh Sensoranordnung zur Erfassung von Drehwinkeln an einem drehbewegten Bauteil
JP2014199184A (ja) * 2013-03-29 2014-10-23 Tdk株式会社 磁気センサシステム
US9733317B2 (en) * 2014-03-10 2017-08-15 Dmg Mori Seiki Co., Ltd. Position detecting device
CN106461740B (zh) * 2014-05-13 2019-03-29 三菱电机株式会社 磁性传感器装置
DE102014220783A1 (de) 2014-10-14 2016-04-14 Robert Bosch Gmbh Sensor zur Bestimmung mindestens einer Rotationseigenschaft eines rotierenden Elements
JP6197839B2 (ja) * 2015-08-11 2017-09-20 Tdk株式会社 回転検出装置
CN107925407B (zh) * 2015-08-13 2022-04-05 Iee国际电子工程股份公司 用于车辆后备箱开启器的电容性传感器系统的操作方法和鲁棒的电容性传感器系统
DE202015008430U1 (de) * 2015-12-09 2015-12-21 Rheintacho Messtechnik Gmbh Winkelmesseinrichtung und Elektromotor
DE102015226666A1 (de) * 2015-12-23 2017-06-29 Frankl & Kirchner GmbH & Co KG Fabrik für Elektromotoren u. elektrische Apparate Magnetisches Encodersystem für einen Servomotor einer Nähmaschine
JP6546565B2 (ja) * 2016-06-02 2019-07-17 日本電産サンキョー株式会社 直動回転検出器、直動回転検出器ユニットおよび直動回転駆動装置
CN108186017B (zh) * 2017-11-30 2020-10-02 北京理工大学 一种用于确定内窥镜胶囊体内位姿的检测系统和方法
US10802074B2 (en) 2018-01-02 2020-10-13 Jitterlabs Llc Method and apparatus for analyzing phase noise in a signal from an electronic device
US11016150B2 (en) * 2019-06-03 2021-05-25 Honeywell International Inc. Method, apparatus and system for detecting stray magnetic field
DE102019135494B4 (de) 2019-12-20 2023-11-02 Baumer Germany Gmbh & Co. Kg Vorrichtung und Verfahren zur Bewegungs- und/oder Positionserfassung eines Objekts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132902A (ja) * 1990-09-25 1992-05-07 Taiyo Ltd 位置検出装置の感度調整装置の製造方法
JPH05223592A (ja) * 1992-02-18 1993-08-31 Alps Electric Co Ltd 原点信号検出装置
EP1074815A1 (en) * 1999-08-04 2001-02-07 FESTO AG & Co Biaxial Magnetic Position Sensor
JP2001165700A (ja) * 1999-09-30 2001-06-22 Sankyo Seiki Mfg Co Ltd 磁気式位置又は移動速度検出装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086412A (ja) * 1983-10-19 1985-05-16 Hitachi Ltd 磁気検出装置
GB2188430B (en) * 1986-03-19 1990-01-17 Honda Motor Co Ltd Angle-of-rotation sensor
US4851771A (en) * 1987-02-24 1989-07-25 Kabushiki Kaisha Yaskawa Denki Seisakusho Magnetic encoder for detection of incremental and absolute value displacement
US4853631A (en) * 1987-11-04 1989-08-01 The Superior Electric Company Magnetoresistive sensor having inter-leaved magnetoresistive elements for detecting encoded magnetic information
EP0372136B1 (en) * 1988-12-07 1992-09-16 Dana Corporation Magnetic rotary encoder system
JPH03195019A (ja) 1989-12-25 1991-08-26 Toshiba Ceramics Co Ltd 半導体拡散炉用ガス供給装置
DE69312109T2 (de) * 1992-02-13 1998-01-08 Japan Servo Absolutkodierer
JP4374513B2 (ja) * 2000-03-14 2009-12-02 日立金属株式会社 エンコーダー、mrセンサーおよびパワーステアリング装置
FR2861459B1 (fr) * 2003-10-22 2006-02-24 Skf Ab Systeme de mesure de rotation haute resolution absolu multitour et roulement equipe d'un tel systeme.
CN100491922C (zh) * 2004-07-12 2009-05-27 Nok株式会社 磁编码器
JP2008067536A (ja) 2006-09-08 2008-03-21 Central Res Inst Of Electric Power Ind ガス絶縁電力機器及びその異常検出方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132902A (ja) * 1990-09-25 1992-05-07 Taiyo Ltd 位置検出装置の感度調整装置の製造方法
JPH05223592A (ja) * 1992-02-18 1993-08-31 Alps Electric Co Ltd 原点信号検出装置
EP1074815A1 (en) * 1999-08-04 2001-02-07 FESTO AG & Co Biaxial Magnetic Position Sensor
JP2001165700A (ja) * 1999-09-30 2001-06-22 Sankyo Seiki Mfg Co Ltd 磁気式位置又は移動速度検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018151181A (ja) * 2017-03-10 2018-09-27 パナソニックIpマネジメント株式会社 磁気式位置検出装置

Also Published As

Publication number Publication date
CN101978242A (zh) 2011-02-16
JP4880066B2 (ja) 2012-02-22
DE112009000497T5 (de) 2011-04-21
US20110291646A1 (en) 2011-12-01
JPWO2009116365A1 (ja) 2011-07-21
KR20100117090A (ko) 2010-11-02
DE112009000497B4 (de) 2012-12-13
TWI392856B (zh) 2013-04-11
TW200944761A (en) 2009-11-01
KR101163908B1 (ko) 2012-07-09
CN101978242B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4880066B2 (ja) 原点位置信号検出器
JP5840374B2 (ja) アブソリュートエンコーダ装置及びモータ
US8072209B2 (en) Position sensor with variable direction of magnetization and method of production
JP5480967B2 (ja) 多周期的絶対位置検出器
WO2011152266A1 (ja) 磁気エンコーダ
JPH08304432A (ja) 非接触型回転センサ
JP7056503B2 (ja) 回転検出装置
JP5206962B2 (ja) 回転角度センサ
JP2002228733A (ja) 磁気検出装置
US20080218159A1 (en) Sensor System For Determining a Position or a Rotational Speed of an Object
JP4973869B2 (ja) 移動体検出装置
JP4229877B2 (ja) 磁気検出装置
WO2009154157A1 (ja) 磁気センサ及び磁気エンコーダ
JP6387788B2 (ja) 磁気エンコーダ用磁気媒体、磁気エンコーダ、並びに磁気媒体の製造方法
JP4506960B2 (ja) 移動体位置検出装置
CN111693910B (zh) 用于确定旋转构件的至少一个旋转参数的系统
JP4577263B2 (ja) 磁気センサ
JP2005300246A (ja) 移動体検出装置
JP4775705B2 (ja) 磁気式アブソリュートエンコーダー
JP2810695B2 (ja) インクリメンタル方式の磁気エンコーダの零点検出方式
CN111693909B (zh) 用于确定旋转构件的至少一个旋转参数的系统
JP2009281938A (ja) 磁気センサ及び磁気エンコーダ
JP5012654B2 (ja) 磁気回転センサ
JP2017075827A (ja) 磁気検出装置
JP2007256085A (ja) 磁気式アブソリュートエンコーダー

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109615.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010503813

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107019099

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120090004970

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 12933319

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09721235

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112009000497

Country of ref document: DE

Date of ref document: 20110421

Kind code of ref document: P