WO2010102908A1 - Filter for a computer tomograph - Google Patents
Filter for a computer tomograph Download PDFInfo
- Publication number
- WO2010102908A1 WO2010102908A1 PCT/EP2010/052449 EP2010052449W WO2010102908A1 WO 2010102908 A1 WO2010102908 A1 WO 2010102908A1 EP 2010052449 W EP2010052449 W EP 2010052449W WO 2010102908 A1 WO2010102908 A1 WO 2010102908A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filter
- radiation
- ray
- computer tomograph
- irradiation
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/40—Arrangements for generating radiation specially adapted for radiation diagnosis
- A61B6/4035—Arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/02—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
- G21K1/04—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/02—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
- G21K1/04—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
- G21K1/046—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers varying the contour of the field, e.g. multileaf collimators
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/10—Scattering devices; Absorbing devices; Ionising radiation filters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1085—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
- A61N2005/1091—Kilovoltage or orthovoltage range photons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1092—Details
- A61N2005/1095—Elements inserted into the radiation path within the system, e.g. filters or wedges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1092—Details
- A61N2005/1098—Enhancing the effect of the particle by an injected agent or implanted device
Definitions
- the invention relates to a filter for a computer tomograph to be used in a radiotherapy.
- Radiotherapy therapy for the treatment of cancer patients today usually uses high-energy electromagnetic radiation with photon energies in the MeV range.
- An advantage of the high-energy radiation lies above all in a homogeneous energy absorption in the body and a favorable depth dose course, which is accompanied by a small proportion of scattered radiation.
- contrast-enhanced radiotherapy lies in the fact that it has to be carried out conventional computed tomographs can be used, which are available in large numbers and at comparatively low acquisition and operating costs.
- the use of a conventional computed tomography scanner for irradiation therapy has the additional advantage that the computed tomography scanner can be used simultaneously with the irradiation for imaging and thus for monitoring the irradiation procedure.
- the invention has for its object to improve the applicability of a computed tomography for radiotherapy.
- a filter designed in a special way, which can be inserted into the radiation field between a radiation source and an isocentric axis of a computer tomograph.
- the filter is dimensioned or dimensioned in terms of its within the filter surface location-dependent radiation transmission coefficient for the X-ray of the computed tomography such that over the cross section of a standard object of predetermined geometry and predetermined, in particular homogeneous X-ray absorption, a substantially constant deposited X-ray dose is achieved when the standard object through the filter circumferentially, in particular rotationally symmetrically irradiated.
- a computer tomograph comprising this filter.
- Computed tomography is here and below generally used as a synonym for an otherwise arbitrary irradiation device in which a radiation source for X-radiation is rotatable on a circular path about an isocentric axis, to which the beam path of the X-ray radiation, ie the central beam of the emitted radiation
- a conventional computed tomography scanner commonly used to acquire X-ray images, in particular the X-ray detector present in a conventional computer tomograph for the present invention
- electromagnetic brake radiation in an energy range of about 20 keV to 200 keV is referred to.
- Irradiation refers to an irradiation form in which an irradiation object, in particular the standard object, is irradiated from a multiplicity of rotational positions distributed around the full circle, so that X-radiation irradiates the irradiation object at least substantially from all directions transversely to the isocentric axis
- a circulating irradiation is achieved, in particular, by rotating the X-ray tube of the computed tomography apparatus around the irradiation object under continuous irradiation
- a circulating irradiation can be realized by discontinuous irradiation of the irradiation object from a plurality of discrete rotational positions circulating irradiation is then designated when the energy radiated onto the irradiation object is substantially independent of the rotational position.
- the standard object serves in particular as a basis for the construction of the filter, as well as for the objective and repeatable evaluation of the respective filter properties.
- the standard object is preferably designed in each case with respect to its shape, extent and X-ray absorption properties such that it approximately represents a body part of a patient to be treated by means of radiation therapy.
- the properties of the standard object used thus vary depending on the particular application.
- a substantially cylindrical standard object is used to construct a filter for irradiating a patient's head.
- a standard elliptical shaped cross-sectional standard object serves as the basis for constructing a filter for radiotherapy of a thorax.
- the filter is preferably constructed using a computer simulation, in particular a computer-aided optimization method, in which predetermined filter properties are varied in order to achieve the most homogeneous possible dose deposition in the standard object.
- the standard object is represented here by a virtual model with numerically specified physical properties.
- the filter constructed using the appropriate standard object, in the case of use, also produces a uniform dose distribution in the corresponding body part of a patient.
- the filter is intentionally introduced into the beam path in such a way that its filter surface is always oriented substantially at right angles to the beam path or tangentially to the circular path circumscribed by the radiation source.
- the location-dependent radiation transmission coefficient defines the proportion of the x-ray radiation incident on the filter, which transmits the filter at a specific location of its filter surface. Indirectly, the radiation permittivity thus how much the x-ray radiation is weakened by the filter at a certain location of its filter surface.
- the invention is based on the consideration that, when the standard object is irradiated with X-ray radiation, the distribution of the dose deposited over the object cross-section on the one hand depends on the attenuation curve of the X-radiation in the irradiation object, i. depends on the penetration depth of the X-ray radiation, and on the other hand on the width of the radiation field in relation to the width of the object.
- the object's own X-ray attenuation regularly predominates.
- the filter according to the invention is now selectively dimensioned with respect to the X-ray radiation of a given computer tomograph, in particular a radiation field of predetermined spectral distribution and geometry, and with respect to the object properties predetermined by the standard object, such that the two effects described above compensate one another, whereby the substantially constant dose distribution is achieved in the object.
- the specific course of the location-dependent radiation transmission coefficient is therefore always different in detail for different standard objects and different radiation fields.
- a "constant" X-ray dose in the sense of the invention, or a “homogeneous” dose distribution, is preferably assumed when the locally deposited X-ray dose deviates from the dose average over the irradiated area of the object by a maximum of 5%.
- the filter according to the invention By using the filter according to the invention, a particularly effective implementation of a contrast-enhanced radiotherapy using a - in particular conventional - computed tomography is made possible in a comparatively simple manner.
- a strong dose increase in the tumor to be treated is achieved with comparatively low radiation exposure of the remaining tissue.
- the tumor tissue can be treated specifically.
- the filter In principle, it is conceivable to change the radiation transmission coefficient by using different filter materials with different (volume) X-ray absorption coefficients depending on location.
- the positional dependence of the radiation transmission coefficient is deviated exclusively from this by a material thickness of the filter that varies as a function of the location on the filter surface (filter thickness).
- the filter is at least substantially made of a homogeneous X-ray absorbing material, in particular of Teflon or aluminum.
- the radiation transmission coefficient varies mirror-symmetrically with respect to a center plane oriented transversely to the filter surface, wherein it is maximum in the region of the center plane.
- a Filter is constructed of homogeneous filter material, also follows the filter thickness with respect to the center plane mirror-symmetric course, wherein in the region of the median plane, the filter thickness is minimal.
- the course of the filter thickness as a function of the distance from the median plane has approximately the shape of an inverse, ie "upside down” bell curve. "In other words, the minimum of the filter strength is flanked on both sides with increasing distance from the median plane by two approximately S-shaped curved Flank.
- a numerical optimization of the filter shape for a given standard object and a given radiation field is simplified in an expedient embodiment of the invention in that the profile of the filter strength s (x) follows a - in the mathematically analytical sense - defined functional dependence, for example a function of the shape
- Sm a x is a measure of the maximum filter strength at the edge of the filter
- s min is a measure of the minimum filter thickness in the area of the midplane
- x inside the filter area is the distance of a location from the midplane
- Xo is a normalization size over which the width of the bell shape is adjustable
- n is a natural number chosen, in particular, from an interval from 1 to about 10, via which the edge slope of the bell shape can be adjusted.
- the profile of the filter thickness is selected such that the surface of the filter can be made in a continuous or continuously differentiable manner in cross section. nederJen arc and straight sections is formed.
- the two design variants of the filter described above are expediently combined in such a way that, when planning the filter design, the filter strength is first defined as function S (x) of the distance x to the center plane, and the parameters of this function in a computer simulation. with comparatively little numerical effort - be optimized for the given properties of the standard object and the radiation field, and that for - comparatively simple - production of the actual filter on the basis of the previously constructed
- the filter for X-radiation is dimensioned, which is generated by means of an applied tube voltage from an interval of about 80 kV to 140 kV, in particular about 120 kV.
- the filter is made in one piece from the X-ray absorbing material.
- Such a one-piece and therefore rigid mold filter is particularly useful in the irradiation of approximately rotationally symmetrical radiation objects, e.g. a head, arm or leg, suitable for use.
- the filter is made in several pieces.
- the filter is expediently formed from two stacks of lamellae which in each case consist at least in an inner subsection of the X-ray-absorbing material.
- the individual lamellae of each stack end at different distances to the center plane, so that the sum of the lamellae of each stack formed filter strength in turn varies location dependent on the filter surface.
- the described lamellar construction has the particular advantage that it can be used very flexibly.
- such lamellar filters can be produced quickly and with the simplest means.
- the filter can be adapted to different applications and different underlying standard objects by moving the lamellae towards one another.
- At least one blade of each stack is motor-displaced. This makes it possible to adapt the filter geometry automatically - without manual conversion effort, and thus saving time - to different applications.
- the geometry of the filter can also be changed during circulation of the radiation source around the standard object. As a result, this filter is also particularly suitable for achieving a substantially homogeneous dose distribution in the case of a non-rotationally symmetrical standard or treatment object.
- the associated computer tomograph expediently comprises drive means for the motorized displacement of the corresponding slats.
- the drive means which are formed for example by piezo actuators, can also be integrated in the filter.
- the computer tomograph further comprises a control unit for controlling the drive means in accordance with a stored profile, which specifies the positioning of the slats with respect to the median plane.
- the profile specifies the positioning of the slats for a specific application either constant or varying depending on the rotation angle of the computer tomograph.
- the latter profile variant thus realizes a method for controlling the slats, in which the shape of the Filters, in particular the width and / or edge slope of the bell-shaped curve of the filter thickness, is continuously changed depending on the rotation angle of the radiation source.
- FIG. 1 shows a schematic representation of a computer tomograph that can be used for radiation therapy with a filter optimized for uniform dose deposition in a standard object
- FIG. 2 shows a first view in a three-dimensional representation
- FIG. 3 shows a cross section through the filter according to FIG. 2, FIG.
- FIG. 4 shows a simulated dose distribution in a cylindrical standard object with rotationally symmetrical irradiation of this object using the filter according to FIG. 2, and
- FIG. 5 shows a second embodiment of the filter according to FIG.
- FIG. 1 shows, roughly schematically, a computer tomograph 1 which can be used for carrying out a contrast agent-enhanced radiation therapy.
- the computer tomograph 1 comprises a carrier 2, on which an annular gantry 3 is rotatably mounted. At the gantry 3 in comparison to each other serving as a radiation source X-ray tube 4 and an (X-ray) detector 5 are mounted.
- the detector 5 is used in imaging use of the computed tomography scanner 1 for recording x-ray images. picture pictures.
- the computed tomograph 1 which is in the foreground here, it is of no significance and is therefore only indicated by dots in FIG.
- the x-ray tube 4 is rotatable together with the gantry 3 about an isocentric axis I.
- the x-ray tube 4 is oriented such that a central ray 6 of a fan-shaped (x-ray) radiation field 7 generated by it always falls on the opposite detector 5 through the isocentric axis I, independently of the rotational position of the x-ray tube 4.
- the direction of the central beam 6 is referred to below as the radiation direction 8.
- the isocentric axis I is aligned along a horizontal longitudinal direction 9.
- the rotational position of the X-ray tube 5 is defined below by specifying a rotation angle ⁇ , which is formed between the radiation direction 8 and the vertical direction 10.
- the direction tangential to the pivoting circle K of the x-ray tube 4 is referred to below as the transverse direction 11.
- the computer tomograph 1 is assigned a patient couch 12.
- an irradiation object 13 mounted on the patient couch 12 is positioned approximately centered with the isocentric axis I in the interior of the gantry 3.
- the irradiation object 13 is a body part of a patient.
- the irradiation object 13 is irradiated in this case usually rotationally symmetrical.
- the X-ray tube 4 is connected substantially immediately adjacent to a filter 14 made of an X-ray absorbing material.
- the filter 14 is embodied such that in a standard object 13 ⁇ positioned on the patient couch 12 instead of the irradiation object 13, an X-ray dose D which is uniformly distributed substantially over its cross-sectional area is deposited, if this Standard object 13 ⁇ is irradiated rotationally symmetrically through the filter 14 therethrough.
- the standard object 13 ⁇ is selected for each application in terms of its geometry and X-ray absorption such that it approximately corresponds to the average geometry and X-ray absorption of the irradiation object 13 to be irradiated in this application. Accordingly, the properties of the filter 14 also vary from application to application.
- FIG 2 and FIG 3 show an embodiment of the filter 14, which is designed for irradiation in the head area.
- This filter 14 was based on a circular cylindrical standard object 13 ⁇ made of Teflon or aluminum with a
- Diameter of d 20 cm and a homogeneous (volume) X-ray absorption coefficient of about 0.3 cm “1 or 0.5 cm “ 1 (designed for 120 kV tube voltage).
- the filter 14 shown in FIG. 2 is formed in one piece from polytetrafluoroethylene (PTFE) and has a flat, cuboid-shaped outer contour.
- PTFE polytetrafluoroethylene
- the filter 14 is aligned transversely to the radiation direction 8 with a filter surface A spanned by the longitudinal direction 9 and the transverse direction 11.
- a in the installation situation of the X-ray tube 4 facing front 20 of the filter 14 is flat.
- a central indentation 22 is introduced into a reverse side 21 of the filter 14 opposite thereto.
- the indentation 22 has a constant profile in the longitudinal direction 9 and is mirror-symmetrical with respect to a center plane 23 spanned between the radiation direction 8 and the longitudinal direction 9.
- the filter 14 thus has a hereinafter referred to as filter thickness s expansion in
- Radiation direction 8 which is minimal in the region of the center plane 23 and increases continuously with increasing distance x to the center plane 23.
- the shape of a bell curve is approx.
- the rear side 21 of the filter 14 has in the region of the in-book 22 in cross section according to FIG 3 a continuous composed of circular arc sections (radii) and straight sections course.
- the resulting dependence of the filter strength s on the distance x follows this approximately a function
- the filter 14 is designed for X-radiation which is generated by applying a tube voltage of about 120 kV.
- the filter 14 In proper positioning of the filter 14 is centered with respect to the radiation field 7 aligned.
- the central ray 6 of the X-ray radiation thus passes through the filter 14 approximately in the center plane 23.
- the proportion of X-ray radiation transmitting the filter 14 at a certain distance x decreases exponentially.
- a radiation transmission coefficient ⁇ (x) which likewise varies as a function of the distance x is thus determined.
- the radiation transmission coefficient ⁇ (x) generally designates that portion of the x-radiation incident on the filter 14 at a given distance x, which transmits the filter, ie which is not absorbed in the filter 14.
- the construction of the filter 14, in particular the determination of the shape of the indentation 22, takes place using a computer simulation.
- the standard object 13 ⁇ , the radiation field 7 and the filter 14 arranged therein are modeled as virtual (ie numerical) models. These models include information on the geometry of the standard object 13 ⁇ , the radiation field 7 and the filter 14 and information on their relative position to each other.
- the models representing the standard object 13 ⁇ and the filter 14 additionally include an indication of the respective (volume) X-ray absorption coefficient. In the context of the model representing the radiation field 7, the X-ray spectrum is additionally specified.
- a rotationally symmetrical irradiation path of the computer tomograph 1 is simulated.
- the X-ray dose D deposited in total in the standard object 13 ⁇ is spatially resolved over the cross-sectional area of the standard object 13 ⁇ .
- the profile of the X-ray dose deposited in the standard object 13 ⁇ is always rotationally symmetrical.
- the deposited X-ray dose D is calculated as a function of the distance r from the (cross-sectional area) center 24 of the standard object 13 ⁇ .
- the rear side 21 of the filter 14 is described by GLG 1.
- the parameters of this function are varied as part of the computer simulation until a predetermined optimization criterion is met.
- it is specified as an optimization criterion that for an optimized parameter set of GLG 1, the standard deviation of the dose distribution D (r) calculated for this purpose must be less than 5% of the dose mean value D ave .
- Filters of the type shown with reference to FIGS. 2 and 3 are basically also suitable for the irradiation of non-rotationally symmetric, e.g. elliptical irradiation objects 13 suitable.
- the radiation intensity and / or the radiation spectrum are expediently changed in this case by varying the tube current and / or the tube voltage during the circulation of the x-ray tube.
- the filter is designed based on the corresponding tube current or tube voltage curve.
- the filter 14 which is embodied here in several parts, comprises a frame 30 in which a plurality of lamellae 31 made of the X-ray-absorbing material, here again PTFE, are held.
- the fins 31 are arranged in two stacks 32 and 33, which face each other on different sides of the median plane 23.
- the blades 31 of the same pels 32 and 33 are arranged in each case in the radiation direction 8 behind one another and at least partially overlapping.
- the X-radiation propagating in the radiation direction 8 must therefore penetrate all or at least a majority of the fins 31 of a stack 32 or 33 at least in a partial area of the filter surface A.
- the filter thickness s is thus determined by the number of lamellae 31, which must penetrate the x-ray radiation at a specific location of the filter surface A.
- each lamella 31 of each stack 32 and 33 are each slidably guided in associated receptacles 34 and 35 of the frame 30.
- Each lamella 31 is here coupled separately with an associated drive 36 in the form of a piezoceramic actuator, so that the lamella 31 can be displaced transversely to the center plane 23 by actuation of the drive 36.
- the filter 14 is further associated with a control unit 37, by means of which the actuators 36 are controlled programmatically to move the slats 31.
- the control unit 37 is embodied in particular as a software module and integrated, for example, in the control software of the computed tomography system 1.
- the drives 36 are preferably integrated with the remaining components of the filter 14 to form a coherent assembly. Alternatively, however, it may also be provided that the drives 36 are present separately from the actual filter 14, for example as integral components of a filter holder of the computer tomograph 1.
- the individual lamellae 31 are displaced according to a profile stored in the control unit 37 in such a way that the lamellae of the same stack 32 or 33 have a varying distance from the center plane 23 and thus a course according to the invention the filter strength s as a function of the distance x from the center plane.
- the filter 14 again has the pronounced indentation 22 in the area of the center plane 23.
- the fins 31 are adjusted such that the profile of the filter 14 shown in FIG. 3 is approximately simulated.
- the embodiment according to FIG. 5 can be used for different applications, in particular for the irradiation of different body parts.
- several profiles for setting the slats 31 are stored in the control unit 37, which are provided for one purpose, and were created on the basis of different standard objects 13 ⁇ . From these profiles can be selected by a user of the computed tomography 1 software depending on the desired application, the appropriate profile. Due to this selection, the control unit 37 then adjusts the filter 14 accordingly.
- the control unit 37 is moreover configured to adjust the position of the lamellae 31 during the rotation of the x-ray tube 4.
- the control unit 37 is supplied for this purpose the rotation angle ⁇ as an input variable.
- at least one profile stored in the control unit 37 contains sets of settings for the slats 31 as a function of the angle of rotation ⁇ .
- the rotation angle-dependent variation of the slat position is particularly advantageous for the irradiation of distinctly non-rotationally symmetrical irradiation objects 13, for example the thorax of a patient.
- a corresponding non-rotationally symmetrical standard object 13 ⁇ is used.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Optics & Photonics (AREA)
- Biophysics (AREA)
- Theoretical Computer Science (AREA)
- Pulmonology (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
The invention relates to a filter (14) by means of which an improved applicability of a computer tomography (1) for the executing of contrasting agent reinforced radiation therapy is attained. The filter (14), insertable in the emission path between an emission source (4) and an isocentric axis (I) of the computer tomograph (1), is sized or can be sized in regards to a varying radiation throughput coefficient (ß) that is location dependent within the filter surface (A) thereof for the x-ray radiation of the computer tomograph (1) such that the x-ray dose (D) deposited over the cross-section of a standard object (13') is substantially constant in the case of circulating irradiation through the filter (14) of said standard object (13') of specified geometry and x-ray absorption.
Description
Beschreibungdescription
Filter für einen ComputertomographenFilter for a computer tomograph
Die Erfindung bezieht sich auf einen Filter für einen in einer Strahlentherapie einzusetzenden Computertomographen.The invention relates to a filter for a computer tomograph to be used in a radiotherapy.
Bei der Strahlentherapie zur Behandlung von Tumorpatienten wird heutzutage meist hochenergetische elektro-magnetische Strahlung mit Photonenenergien im MeV-Bereich eingesetzt. Ein Vorteil der hochenergetischen Strahlung liegt vor allem in einer homogenen Energieabsorption im Körper und einem günstigen Tiefendosisverlauf, der durch einen geringen Anteil an Streustrahlung begleitet ist.Radiation therapy for the treatment of cancer patients today usually uses high-energy electromagnetic radiation with photon energies in the MeV range. An advantage of the high-energy radiation lies above all in a homogeneous energy absorption in the body and a favorable depth dose course, which is accompanied by a small proportion of scattered radiation.
Durch den geringen Unterschied der Schwächungskoeffizienten von körperüblichen Materialien (Organische Verbindungen, Knochen, Jod) in diesem Energiebereich gelingt jedoch eine lokal variierende Dosisdeposition nur durch aufwändige Methoden, z.B. durch Mehrfeldbestrahlung.Due to the small difference between the attenuation coefficients of customary materials (organic compounds, bone, iodine) in this energy range, however, a locally varying dose deposition can only be achieved by expensive methods, e.g. by multi-field irradiation.
Eine organ- oder materialspezifische, und somit lokal variierende Dosisdeposition kann andererseits vergleichsweise einfach bei Verwendung von (im Vergleich zu MeV-Strahlung) nie- derenergetischer Röntgenstrahlung erreicht werden. So zeigen z.B. bei Bestrahlung mit Röntgenstrahlung, die mit Röhrenspannungen im Bereich von 80-140 kV erzeugt wurden, Jod und Weichteilgewebe eine signifikant unterschiedliche Energieabsorption. Dieser Effekt wird bei der sogenannten Kontrastmit- tel-verstärkten Strahlentherapie mit Röntgenstrahlung (CERT: contrast enhanced radiation therapy) ausgenutzt. Bei dieser Bestrahlungsmethode wird dem Patienten vor der Bestrahlung ein Kontrastmittel verabreicht, das sich in dem stark durchbluteten Tumorgewebe anreichert, und hierdurch bei der Be- Strahlung zu einer lokalen Dosiserhöhung im Tumor führt.On the other hand, organ or material-specific, and thus locally varying, dose deposition can be achieved comparatively easily by using low-energy X-ray radiation (in comparison to MeV radiation). Thus, e.g. When irradiated with X-rays generated with tube voltages in the range of 80-140 kV, iodine and soft tissue have significantly different energy absorption. This effect is exploited in so-called contrast enhanced radiation therapy with X-rays (CERT: contrast enhanced radiation therapy). In this method of irradiation, a contrast agent is administered to the patient before irradiation, which accumulates in the heavily perfused tumor tissue, and as a result leads to a local dose increase in the tumor during irradiation.
Ein Vorteil der Kontrastmittel-verstärkten Strahlentherapie liegt insbesondere auch darin, dass zu ihrer Durchführung
herkömmliche Computertomographen verwendet werden können, die in großer Stückzahl und zu vergleichsweise geringen Anschaf- fungs- und Betriebskosten verfügbar sind. Mit der Verwendung eines herkömmlichen Computertomographen zur Bestrahlungsthe- rapie ist der weitere Vorteil verknüpft, dass der Computertomograph gleichzeitig mit der Bestrahlung auch zur Bildgebung, und damit zur Überwachung des Bestrahlungsvorgangs heranziehbar ist.One of the advantages of contrast-enhanced radiotherapy lies in the fact that it has to be carried out conventional computed tomographs can be used, which are available in large numbers and at comparatively low acquisition and operating costs. The use of a conventional computed tomography scanner for irradiation therapy has the additional advantage that the computed tomography scanner can be used simultaneously with the irradiation for imaging and thus for monitoring the irradiation procedure.
Auch bei Bestrahlung mit einem Röntgen-Strahlungsfeld homogener Intensität kommt es aufgrund der starken Abschwächung der Strahlung durch das Körpergewebe oft zu einer inhomogenen Dosisverteilung, selbst dann, wenn ein annähernd rotationssymmetrisches und stofflich homogenes Behandlungsobjekt in einem Computertomographen rotationsymmetrisch bestrahlt wird. Dieser Effekt läuft der lokalen Dosiserhöhung durch Kontrastmittel entgegen und kann die Nutzbarkeit der Kontrastmittel-Verstärkung ganz oder teilweise aufheben.Even when irradiated with an X-ray radiation field of homogeneous intensity, an inhomogeneous dose distribution often occurs due to the strong attenuation of the radiation by the body tissue, even if an approximately rotationally symmetric and materially homogeneous treatment object is irradiated rotationally symmetrically in a computer tomograph. This effect counteracts local dose enhancement by contrast agents and can completely or partially abolish the usefulness of contrast enhancement.
Der Erfindung liegt die Aufgabe zugrunde, die Anwendbarkeit eines Computertomographen für eine Strahlentherapie zu verbessern .The invention has for its object to improve the applicability of a computed tomography for radiotherapy.
Diese Aufgabe wird erfindungsgemäß gelöst durch einen spezi- eil konstruierten Filter, der in das Strahlenfeld zwischen einer Strahlenquelle und einer isozentrischen Achse eines Computertomographen einsetzbar ist. Dabei ist der Filter bezüglich seines innerhalb der Filterfläche ortsabhängigen Strahlungsdurchlasskoeffizienten für die Röntgenstrahlung des Computertomographen derart dimensioniert oder dimensionierbar, dass über den Querschnitt eines Standardobjekts vorgegebener Geometrie und vorgegebener, insbesondere homogener Röntgenabsorption eine im Wesentlichen konstante deponierte Röntgendosis erreicht wird, wenn das Standardobjekt durch den Filter hindurch umlaufend, insbesondere rotationssymmetrisch bestrahlt wird.
Die obige Aufgabe wird weiterhin erfindungsgemäß gelöst durch einen Computertomographen, der diesen Filter umfasst.This object is achieved in accordance with the invention by a filter designed in a special way, which can be inserted into the radiation field between a radiation source and an isocentric axis of a computer tomograph. In this case, the filter is dimensioned or dimensioned in terms of its within the filter surface location-dependent radiation transmission coefficient for the X-ray of the computed tomography such that over the cross section of a standard object of predetermined geometry and predetermined, in particular homogeneous X-ray absorption, a substantially constant deposited X-ray dose is achieved when the standard object through the filter circumferentially, in particular rotationally symmetrically irradiated. The above object is further achieved according to the invention by a computer tomograph comprising this filter.
Der Begriff „Computertomograph" ist hier und im Folgenden allgemein als Synonym für eine ansonsten beliebige Bestrahlungseinrichtung verwendet, bei der eine Strahlenquelle für Röntgenstrahlung auf einer Kreisbahn um eine isozentrische Achse rotierbar ist, auf die der Strahlengang der Röntgenstrahlung, d.h. der Zentralstrahl des emittierten Strahlungs- feldes in jeder Rotationsstellung der Strahlenquelle gerichtet ist. Hierbei handelt es sich bevorzugt, aber nicht zwangsweise um einen herkömmlichen Computertomographen, wie er üblicherweise zur Aufnahme von Röntgenschichtbildern verwendet wird. Insbesondere ist der bei einem herkömmlichen Compu- tertomographen vorhandene Röntgendetektor für die hier imThe term "computed tomography" is here and below generally used as a synonym for an otherwise arbitrary irradiation device in which a radiation source for X-radiation is rotatable on a circular path about an isocentric axis, to which the beam path of the X-ray radiation, ie the central beam of the emitted radiation This is preferably, but not necessarily, a conventional computed tomography scanner commonly used to acquire X-ray images, in particular the X-ray detector present in a conventional computer tomograph for the present invention
Vordergrund stehende Anwendung in einer Bestrahlungstherapie allenfalls von untergeordneter Bedeutung und kann deshalb auch entfallen. Als Röntgenstrahlung wird hier und im Folgenden elektromagnetische Bremsstrahlung in einem Energiebereich von etwa 20 keV bis 200 keV bezeichnet.Foremost application in an irradiation therapy at most of secondary importance and can therefore be omitted. As the X-ray radiation here and hereinafter electromagnetic brake radiation in an energy range of about 20 keV to 200 keV is referred to.
Als „umlaufende" Bestrahlung wird eine Bestrahlungsform bezeichnet, bei der ein Bestrahlungsobjekt, insbesondere das Standardobjekt, aus einer Vielzahl von um den Vollkreis ver- teilten Rotationsstellungen bestrahlt wird, so dass Röntgenstrahlung zumindest im Wesentlichen aus allen Richtungen quer zur isozentrischen Achse auf das Bestrahlungsobjekt eingestrahlt wird. Eine umlaufende Bestrahlung wird insbesondere erzielt, indem die Röntgenröhre des Computertomographen unter kontinuierlicher Strahlung um das Bestrahlungsobjekt rotiert wird. Eine umlaufende Bestrahlung kann alternativ aber auch durch diskontinuierliche Bestrahlung des Bestrahlungsobjekts aus einer Vielzahl von diskreten Rotationsstellungen realisiert sein. Als „rotationssymmetrisch" wird eine umlaufende Bestrahlung dann bezeichnet, wenn die auf das Bestrahlungsobjekt eingestrahlte Energie im Wesentlichen unabhängig von der Rotationsstellung ist.
Das Standardobjekt dient insbesondere als Grundlage zur Konstruktion des Filters, sowie zur objektiven und wiederholbaren Beurteilung der jeweiligen Filtereigenschaften. Dabei ist das Standardobjekt bezüglich seiner Form, Ausdehnung und Röntgen- absorptionseigenschaften vorzugsweise jeweils derart ausgebildet, dass es ein mittels der Strahlentherapie zu behandelndes Körperteil eines Patienten annähernd repräsentiert. Die Eigenschaften des eingesetzten Standardobjekts variieren somit in Abhängigkeit des jeweiligen Anwendungsfalls. Bei- spielsweise wird ein im Wesentlichen zylinderförmiges Standardobjekt eingesetzt, um einen Filter zur Bestrahlung eines Kopfes eines Patienten zu konstruieren. Ein im Querschnitt im Wesentlichen elliptisch geformtes Standardobjekt dient beispielsweise als Grundlage zur Konstruktion eines Filters zur Strahlenbehandlung eines Brustkorbs."Irradiation" refers to an irradiation form in which an irradiation object, in particular the standard object, is irradiated from a multiplicity of rotational positions distributed around the full circle, so that X-radiation irradiates the irradiation object at least substantially from all directions transversely to the isocentric axis A circulating irradiation is achieved, in particular, by rotating the X-ray tube of the computed tomography apparatus around the irradiation object under continuous irradiation Alternatively, a circulating irradiation can be realized by discontinuous irradiation of the irradiation object from a plurality of discrete rotational positions circulating irradiation is then designated when the energy radiated onto the irradiation object is substantially independent of the rotational position. The standard object serves in particular as a basis for the construction of the filter, as well as for the objective and repeatable evaluation of the respective filter properties. In this case, the standard object is preferably designed in each case with respect to its shape, extent and X-ray absorption properties such that it approximately represents a body part of a patient to be treated by means of radiation therapy. The properties of the standard object used thus vary depending on the particular application. For example, a substantially cylindrical standard object is used to construct a filter for irradiating a patient's head. For example, a standard elliptical shaped cross-sectional standard object serves as the basis for constructing a filter for radiotherapy of a thorax.
Die Konstruktion des Filters erfolgt bevorzugt unter Heranziehung einer Computersimulation, insbesondere eines computergestützten Optimierungsverfahrens, in dem vorgegebene FiI- tereigenschaften zur Erzielung einer möglichst homogenen Dosisdeposition im Standardobjekt variiert werden. Das Standardobjekt wird hierbei durch ein virtuelles Modell mit numerisch vorgegebenen physikalischen Eigenschaften repräsentiert. Der unter Heranziehung des geeigneten Standard-Objekts konstruierte Filter bewirkt im Anwendungsfall auch in dem entsprechenden Körperteil eines Patienten eine gleichmäßige DosisVerteilung.The filter is preferably constructed using a computer simulation, in particular a computer-aided optimization method, in which predetermined filter properties are varied in order to achieve the most homogeneous possible dose deposition in the standard object. The standard object is represented here by a virtual model with numerically specified physical properties. The filter constructed using the appropriate standard object, in the case of use, also produces a uniform dose distribution in the corresponding body part of a patient.
Der Filter ist bestimmungsgemäß derart in den Strahlengang eingebracht, dass seine Filterfläche stets im Wesentlichen rechtwinklig zu dem Strahlengang bzw. tangential zu der von der Strahlungsquelle umschriebenen Kreisbahn ausgerichtet ist .The filter is intentionally introduced into the beam path in such a way that its filter surface is always oriented substantially at right angles to the beam path or tangentially to the circular path circumscribed by the radiation source.
Der ortsabhängige Strahlungsdurchlasskoeffizient definiert den Anteil der auf den Filter eingestrahlten Röntgenstrahlung, der den Filter an einem bestimmten Ort seiner Filterfläche transmittiert . Indirekt beschreibt der Strahlungs-
durchlasskoeffizient somit, wie stark die Röntgenstrahlung durch den Filter an einem bestimmten Ort seiner Filterfläche geschwächt wird.The location-dependent radiation transmission coefficient defines the proportion of the x-ray radiation incident on the filter, which transmits the filter at a specific location of its filter surface. Indirectly, the radiation permittivity thus how much the x-ray radiation is weakened by the filter at a certain location of its filter surface.
Bezüglich der Dimensionierung des Filters geht die Erfindung von der Überlegung aus, dass bei umlaufender Bestrahlung des Standardobjekts mit Röntgenstrahlung die Verteilung der über den Objektquerschnitt deponierten Dosis einerseits von dem Schwächungsverlauf der Röntgenstrahlung im Bestrahlungs-Ob- jekt, d.h. von der Eindringtiefe der Röntgenstrahlung, und andererseits von der Breite des Strahlungsfelds im Verhältnis zur Breite des Objekts abhängt. Bei Bestrahlung des Objekts mit einem breiten Strahlungsfeld überwiegt erkanntermaßen regelmäßig die objekteigene Röntgenabschwächung. Infolgedes- sen wird bei rotationssymmetrischer Bestrahlung des Objekts in dessen randnahen Schichten eine erhöhte Dosis deponiert, wohingegen der Dosiswert zum Zentrum des Objekts hin abnimmt. Bei umlaufender Bestrahlung des Objekts mit einem eng fokus- sierten Strahlungsfeld (Punktstrahl) wird dagegen erkannter- maßen eine erhöhte Dosis in der Objektmitte deponiert, zumal diese bei der Drehung des Strahlenfeldes um das Objekt der Röntgenstrahlung länger ausgesetzt ist als die randnahen Schichten .With regard to the dimensioning of the filter, the invention is based on the consideration that, when the standard object is irradiated with X-ray radiation, the distribution of the dose deposited over the object cross-section on the one hand depends on the attenuation curve of the X-radiation in the irradiation object, i. depends on the penetration depth of the X-ray radiation, and on the other hand on the width of the radiation field in relation to the width of the object. Upon irradiation of the object with a broad radiation field, it is recognized that the object's own X-ray attenuation regularly predominates. As a result, in the case of rotationally symmetrical irradiation of the object in its near-edge layers an increased dose is deposited, whereas the dose value decreases towards the center of the object. By contrast, in the case of circulating irradiation of the object with a narrowly focused radiation field (spot beam), it is recognized that an increased dose is deposited in the center of the object, especially since, during the rotation of the radiation field around the object, it is exposed to the x-ray radiation for longer than the layers close to the edge.
Der erfindungsgemäße Filter wird nun bezüglich der Röntgenstrahlung eines gegebenen Computertomographen, insbesondere also eines Strahlungsfelds vorgegebener Spektralverteilung und Geometrie, und bezüglich der durch das Standardobjekt vorgegebenen Objekteigenschaften gezielt derart dimensio- niert, dass sich die beiden oben beschriebenen Effekte etwa gegenseitig kompensieren, wodurch die im Wesentlichen konstante Dosisverteilung im Objekt erzielt wird. Der konkrete Verlauf des ortsabhängigen Strahlungsdurchlasskoeffizienten ist somit für unterschiedliche Standardobjekte und unter- schiedliche Strahlungsfelder stets im Detail verschieden. Anhand der obigen Angaben kann aber der für den jeweiligen Anwendungsfall erfindungsgemäß gestaltete Filter von dem
Fachmann leicht durch Berechnung, Simulation und/oder durch empirische Versuche gefunden werden.The filter according to the invention is now selectively dimensioned with respect to the X-ray radiation of a given computer tomograph, in particular a radiation field of predetermined spectral distribution and geometry, and with respect to the object properties predetermined by the standard object, such that the two effects described above compensate one another, whereby the substantially constant dose distribution is achieved in the object. The specific course of the location-dependent radiation transmission coefficient is therefore always different in detail for different standard objects and different radiation fields. Based on the above, but the invention for the particular application designed filter of the Be easily found by calculation, simulation and / or by empirical experiments.
Von einer im erfindungsgemäßen Sinne „konstanten" Röntgen- dosis, bzw. von einer „homogenen" Dosisverteilung, wird bevorzugt dann ausgegangen, wenn die lokal deponierte Röntgen- dosis von dem Dosis-Mittelwert über den bestrahlten Bereich des Objektes maximal um 5% abweicht.A "constant" X-ray dose in the sense of the invention, or a "homogeneous" dose distribution, is preferably assumed when the locally deposited X-ray dose deviates from the dose average over the irradiated area of the object by a maximum of 5%.
Durch den Einsatz des erfindungsgemäßen Filters wird auf vergleichsweise einfache Weise eine besonders effektive Durchführung einer Kontrastmittel-verstärkten Strahlentherapie unter Nutzung eines - insbesondere herkömmlichen - Computertomographen ermöglicht. Insbesondere wird infolge des Filters und der durch diesen bewirkten gleichmäßigen Dosisverteilung im gesunden Gewebe eines Patienten durch Einsatz eines Kontrastmittels eine starke Dosisüberhöhung in dem zu behandelnden Tumor bei vergleichsweise geringer Strahlenbelastung des übrigen Gewebes erzielt. Somit kann das Tumorgewebe gezielt behandelt werden.By using the filter according to the invention, a particularly effective implementation of a contrast-enhanced radiotherapy using a - in particular conventional - computed tomography is made possible in a comparatively simple manner. In particular, as a result of the filter and the uniform dose distribution effected thereby in the healthy tissue of a patient by using a contrast agent, a strong dose increase in the tumor to be treated is achieved with comparatively low radiation exposure of the remaining tissue. Thus, the tumor tissue can be treated specifically.
Grundsätzlich ist denkbar, den Strahlungsdurchlasskoeffizient durch Einsatz verschiedener Filtermaterialien mit unterschiedlichem (Volumen-) Röntgenabsorptionskoeffizienten orts- abhängig zu verändern. In einer besonders einfach herstellbaren Ausführungsform des Filters wird die Ortsabhängigkeit des Strahlungsdurchlasskoeffizienten abweichend hiervon ausschließlich durch eine in Abhängigkeit des Ortes auf der Filterfläche variierende Materialdicke des Filters (Filter- stärke) bestimmt. In dieser Ausführungsform ist der Filter zumindest im Wesentlichen aus einem homogen röntgenabsorbierenden Material, insbesondere aus Teflon oder Aluminium, gefertigt .In principle, it is conceivable to change the radiation transmission coefficient by using different filter materials with different (volume) X-ray absorption coefficients depending on location. In an embodiment of the filter that is particularly easy to produce, the positional dependence of the radiation transmission coefficient is deviated exclusively from this by a material thickness of the filter that varies as a function of the location on the filter surface (filter thickness). In this embodiment, the filter is at least substantially made of a homogeneous X-ray absorbing material, in particular of Teflon or aluminum.
In einer vorteilhaften Ausführungsform variiert der Strahlungsdurchlasskoeffizient bezüglich einer quer zur Filterfläche orientierten Mittelebene spiegelsymmetrisch, wobei er im Bereich der Mittelebene maximal ist. Sofern ein derartiger
Filter aus homogenem Filtermaterial aufgebaut ist, folgt entsprechend auch die Filterstärke einem bezüglich der Mittelebene spiegelsymmetrischen Verlauf, wobei im Bereich der Mittelebene die Filterstärke minimal ist. Der Verlauf der Filterstärke in Abhängigkeit des Abstands von der Mittelebene hat hierbei etwa die Form einer inversen, also „auf den Kopf gestellten" Glockenkurve. Mit anderen Worten wird das Minimum der Filterstärke mit wachsendem Abstand zur Mittelebene beidseitig flankiert von zwei etwa S-förmig geschwungenen Flan- ken.In an advantageous embodiment, the radiation transmission coefficient varies mirror-symmetrically with respect to a center plane oriented transversely to the filter surface, wherein it is maximum in the region of the center plane. If such a Filter is constructed of homogeneous filter material, also follows the filter thickness with respect to the center plane mirror-symmetric course, wherein in the region of the median plane, the filter thickness is minimal. The course of the filter thickness as a function of the distance from the median plane has approximately the shape of an inverse, ie "upside down" bell curve. "In other words, the minimum of the filter strength is flanked on both sides with increasing distance from the median plane by two approximately S-shaped curved Flank.
Eine numerische Optimierung der Filterform auf ein gegebenes Standardobjekt und ein gegebenes Strahlungsfeld wird in zweckmäßiger Ausführung der Erfindung dadurch vereinfacht, dass der Verlauf der Filterstärke s (x) einer - im mathematisch analytischen Sinne - definierten funktionalen Abhängigkeit folgt, beispielsweise einer Funktion der FormA numerical optimization of the filter shape for a given standard object and a given radiation field is simplified in an expedient embodiment of the invention in that the profile of the filter strength s (x) follows a - in the mathematically analytical sense - defined functional dependence, for example a function of the shape
- s ( x ) = smax - ( smaχ - smin ) / ( co sh ( x / X0 ) ) " ode r - S ( X ) = Smax " ( Smax " Smin ) * ΘXp ( " ( x / X0 ) 2" ) ,- s (x) = s m ax - (s ma χ - s min ) / (co sh (x / X 0 )) "ode r - S (X) = Smax " (S ma x "S min ) * Θ Xp ("(x / X 0 ) 2 "),
wobeiin which
Smax ein Maß für die maximale Filterstärke am Rand des Filters ist, - smin ein Maß für die minimale Filterstärke im Bereich der Mittelebene ist, x innerhalb der Filterfläche den Abstand eines Ortes von der Mittelebene bezeichnet, Xo eine Normierungsgröße ist, über die die Breite der Glockenform einstellbar ist, und n eine insbesondere aus einem Intervall von 1 bis etwa 10 gewählte natürliche Zahl ist, über die die Flankensteigung der Glockenform einstellbar ist.Sm a x is a measure of the maximum filter strength at the edge of the filter, s min is a measure of the minimum filter thickness in the area of the midplane, x inside the filter area is the distance of a location from the midplane, Xo is a normalization size over which the width of the bell shape is adjustable, and n is a natural number chosen, in particular, from an interval from 1 to about 10, via which the edge slope of the bell shape can be adjusted.
In einer - z.B. durch eine CNC-Fräsmaschine - besonders einfach herstellbaren Variante des Filters ist der Verlauf der Filterstärke derart gewählt, dass die Oberfläche des Filters im Querschnitt aus stetig oder stetig differenzierbar anei-
nandergesetzten Kreisbogen- und Geradenabschnitten gebildet ist .In a variant of the filter which is particularly easy to produce, for example by a CNC milling machine, the profile of the filter thickness is selected such that the surface of the filter can be made in a continuous or continuously differentiable manner in cross section. nedergesetzten arc and straight sections is formed.
Zur synergetischen Nutzung der jeweiligen Vorteile werden die beiden vorstehend beschriebenen Konstruktionsvarianten des Filters zweckmäßigerweise dahingehend kombiniert, dass bei der Planung des Filterdesigns die Filterstärke zunächst als Funktion S (x) des Abstands x zur Mittelebene definiert wird, und die Parameter dieser Funktion in einer Computersimulation - unter vergleichsweise geringem numerischen Aufwand - auf die vorgegebenen Eigenschaften des Standardobjekts und des Strahlungsfeldes optimiert werden, und dass zur - vergleichsweise einfachen - Herstellung des tatsächlichen Filters anhand des vorher konstruiertenFor the synergetic use of the respective advantages, the two design variants of the filter described above are expediently combined in such a way that, when planning the filter design, the filter strength is first defined as function S (x) of the distance x to the center plane, and the parameters of this function in a computer simulation. with comparatively little numerical effort - be optimized for the given properties of the standard object and the radiation field, and that for - comparatively simple - production of the actual filter on the basis of the previously constructed
Filterdesigns diese Funktion S (x) abschnittsweise durch stetig oder stetig differzierbare Aneinanderreihung von Kreisbogen- und Geradenabschnitten angenähert wird.Filter designs this function S (x) is approximated in sections by continuously or continuously differentiable stringing together of circular arc and straight line sections.
In bevorzugter Auslegung ist der Filter für Röntgenstrahlung dimensioniert, die mittels einer angelegten Röhrenspannung aus einem Intervall von etwa 80 kV bis 140 kV, insbesondere etwa 120 kV erzeugt ist.In a preferred embodiment, the filter for X-radiation is dimensioned, which is generated by means of an applied tube voltage from an interval of about 80 kV to 140 kV, in particular about 120 kV.
In einfacher Ausführung ist der Filter einstückig aus dem röntgenabsorbierenden Material gefertigt. Ein solcher einstückiger und somit starrer Formfilter ist insbesondere bei der Bestrahlung von annähernd rotationssymmetrischen Bestrahlungsobjekten, z.B. einem Kopf, Arm oder Bein, zweckmäßig einsetzbar.In a simple embodiment, the filter is made in one piece from the X-ray absorbing material. Such a one-piece and therefore rigid mold filter is particularly useful in the irradiation of approximately rotationally symmetrical radiation objects, e.g. a head, arm or leg, suitable for use.
In einer alternativen Ausführungsform ist der Filter mehrstückig ausgeführt. Dabei ist der Filter zweckmäßigerweise aus zwei Stapeln von Lamellen gebildet, die jeweils zumindest in einem inneren Teilabschnitt aus dem röntgenabsorbierenden Material bestehen. Dabei enden die einzelnen Lamellen eines jeden Stapels in unterschiedlichem Abstand zur Mittelebene, so dass die in Summe über die Lamellen eines jeden Stapels
gebildete Filterstärke wiederum ortsabhängig über die Filterfläche variiert.In an alternative embodiment, the filter is made in several pieces. In this case, the filter is expediently formed from two stacks of lamellae which in each case consist at least in an inner subsection of the X-ray-absorbing material. In this case, the individual lamellae of each stack end at different distances to the center plane, so that the sum of the lamellae of each stack formed filter strength in turn varies location dependent on the filter surface.
Die beschriebene Lamellenkonstruktion hat insbesondere den Vorteil, dass sie sehr flexibel einsetzbar ist. Insbesondere können solche Lamellenfilter schnell und mit einfachsten Mitteln hergestellt werden. Zudem kann - sofern die Lamellen eines Stapels nicht permanent miteinander verbunden werden - der Filter durch Verschiebung der Lamellen zueinander an un- terschiedliche Anwendungszwecke und unterschiedliche zugrundeliegende Standardobjekte angepasst werden.The described lamellar construction has the particular advantage that it can be used very flexibly. In particular, such lamellar filters can be produced quickly and with the simplest means. In addition, if the lamellae of a stack are not permanently connected to one another, the filter can be adapted to different applications and different underlying standard objects by moving the lamellae towards one another.
In besonders vorteilhafter Ausführung ist mindestens eine Lamelle eines jeden Stapels motorisch verschiebbar. Dies ermög- licht es, die Filtergeometrie automatisch - ohne händischen Umbauaufwand, und somit zeitsparend - an unterschiedliche Anwendungsfälle anzupassen. Zudem kann die Geometrie des Filters auch während eines Umlaufs der Strahlungsquelle um das Standardobjekt verändert werden. Hierdurch ist dieser Filter insbesondere auch geeignet, bei einem nicht rotationssymmetrischen Standard- oder Behandlungsobjekt eine im Wesentlichen homogene Dosisverteilung zu erzielen.In a particularly advantageous embodiment, at least one blade of each stack is motor-displaced. This makes it possible to adapt the filter geometry automatically - without manual conversion effort, and thus saving time - to different applications. In addition, the geometry of the filter can also be changed during circulation of the radiation source around the standard object. As a result, this filter is also particularly suitable for achieving a substantially homogeneous dose distribution in the case of a non-rotationally symmetrical standard or treatment object.
Im Zusammenhang mit der vorstehend beschriebenen Filterva- riante umfasst der zugehörige Computertomograph zweckmäßigerweise Antriebsmittel zur motorischen Verschiebung der entsprechenden Lamellen. Die Antriebsmittel, die beispielsweise durch Piezo-Aktoren gebildet sind, können auch in den Filter integriert sein. Der Computertomograph umfasst weiterhin eine Steuereinheit zur Ansteuerung der Antriebs-mittel nach Maßgabe eines hinterlegten Profils, welches die Positionierung der Lamellen bezüglich der Mittelebene vorgibt.In connection with the filter variant described above, the associated computer tomograph expediently comprises drive means for the motorized displacement of the corresponding slats. The drive means, which are formed for example by piezo actuators, can also be integrated in the filter. The computer tomograph further comprises a control unit for controlling the drive means in accordance with a stored profile, which specifies the positioning of the slats with respect to the median plane.
Das Profil gibt die Positionierung der Lamellen für einen konkreten Anwendungsfall wahlweise konstant oder variierend in Abhängigkeit des Rotationswinkels des Computertomographen vor. Die letztere Profilvariante verwirklicht somit ein Verfahren zur Ansteuerung der Lamellen, bei dem die Form des
Filters, insbesondere die Breite und/oder Flankensteigung des glockenförmigen Verlaufs der Filterstärke, in Abhängigkeit des Rotationswinkels der Strahlungsquelle kontinuierlich verändert wird.The profile specifies the positioning of the slats for a specific application either constant or varying depending on the rotation angle of the computer tomograph. The latter profile variant thus realizes a method for controlling the slats, in which the shape of the Filters, in particular the width and / or edge slope of the bell-shaped curve of the filter thickness, is continuously changed depending on the rotation angle of the radiation source.
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen:Embodiments of the invention will be explained in more detail with reference to a drawing. Show:
FIG 1 in einer schematischen Darstellung einen für eine Bestrahlungstherapie verwendbaren Computertomographen mit einem auf gleichmäßige Dosisdeposition in einem Standardobjekt hin optimierten Filter, FIG 2 in einer dreidimensionalen Darstellung eine erste1 shows a schematic representation of a computer tomograph that can be used for radiation therapy with a filter optimized for uniform dose deposition in a standard object, FIG. 2 shows a first view in a three-dimensional representation
Ausführungsform des Filters, FIG 3 einen Querschnitt durch den Filter gemäß FIG 2,3 shows a cross section through the filter according to FIG. 2, FIG.
FIG 4 eine simulierte Dosisverteilung in einem zylindrischen Standardobjekt bei rotationssymmetrischer Bestrahlung dieses Objekts unter Verwendung des Filters gemäß FIG 2, und FIG 5 in Darstellung gemäß FIG 3 eine zweite Ausführungsform des Filters.4 shows a simulated dose distribution in a cylindrical standard object with rotationally symmetrical irradiation of this object using the filter according to FIG. 2, and FIG. 5 shows a second embodiment of the filter according to FIG.
Einander entsprechende Teile und Größen sind in allen Figuren stets mit den gleichen Bezugszeichen versehen.Corresponding parts and sizes are always provided with the same reference numerals in all figures.
FIG 1 zeigt grob schematisch einen Computertomographen 1, der zur Durchführung einer Kontrastmittel-verstärkten Strahlentherapie verwendbar ist.FIG. 1 shows, roughly schematically, a computer tomograph 1 which can be used for carrying out a contrast agent-enhanced radiation therapy.
Der Computertomograph 1 umfasst einen Träger 2, an dem eine ringförmige Gantry 3 drehbar gelagert ist. An der Gantry 3 sind in Gegenüberstellung zueinander eine als Strahlungsquelle dienende Röntgenröhre 4 sowie ein (Röntgen-) Detektor 5 angebracht. Der Detektor 5 dient bei bildgebender Verwen- düng des Computertomographen 1 zur Aufnahme von Röntgenpro-
jektionsbildern . Im Zusammenhang mit der hier im Vordergrund stehenden therapeutischen Verwendung des Computertomographen 1 ist er dagegen ohne Bedeutung und deshalb in FIG 1 nur gepunktet angedeutet.The computer tomograph 1 comprises a carrier 2, on which an annular gantry 3 is rotatably mounted. At the gantry 3 in comparison to each other serving as a radiation source X-ray tube 4 and an (X-ray) detector 5 are mounted. The detector 5 is used in imaging use of the computed tomography scanner 1 for recording x-ray images. picture pictures. In contrast, in connection with the therapeutic use of the computed tomograph 1, which is in the foreground here, it is of no significance and is therefore only indicated by dots in FIG.
Die Röntgenröhre 4 ist zusammen mit der Gantry 3 um eine iso- zentrische Achse I drehbar. Die Röntgenröhre 4 ist hierbei derart ausgerichtet, dass ein Zentralstrahl 6 eines von ihr erzeugten fächerförmigen (Röntgen-) Strahlungsfelds 7 unabhän- gig von der Rotationsstellung der Röntgenröhre 4 stets durch die isozentrische Achse I auf den gegenüberliegenden Detektor 5 fällt.The x-ray tube 4 is rotatable together with the gantry 3 about an isocentric axis I. In this case, the x-ray tube 4 is oriented such that a central ray 6 of a fan-shaped (x-ray) radiation field 7 generated by it always falls on the opposite detector 5 through the isocentric axis I, independently of the rotational position of the x-ray tube 4.
Die Richtung des Zentralstrahls 6 ist nachfolgend als Strah- lungsrichtung 8 bezeichnet. Die isozentrische Achse I ist entlang einer horizontalen Längsrichtung 9 ausgerichtet. Die Rotationsstellung der Röntgenröhre 5 wird im Folgenden durch Angabe eines Rotationswinkels α definiert, der zwischen der Strahlungsrichtung 8 und der Vertikalrichtung 10 gebildet ist. Die zum Schwenkkreis K der Röntgenröhre 4 tangentiale Richtung ist im Folgenden als Querrichtung 11 bezeichnet.The direction of the central beam 6 is referred to below as the radiation direction 8. The isocentric axis I is aligned along a horizontal longitudinal direction 9. The rotational position of the X-ray tube 5 is defined below by specifying a rotation angle α, which is formed between the radiation direction 8 and the vertical direction 10. The direction tangential to the pivoting circle K of the x-ray tube 4 is referred to below as the transverse direction 11.
Dem Computertomographen 1 ist eine Patientenliege 12 zugeordnet. Zur Durchführung einer Bestrahlung wird ein auf der Pa- tientenliege 12 gelagertes Bestrahlungsobjekt 13 etwa zentriert mit der isozentrischen Achse I im Inneren der Gantry 3 positioniert. Bei dem Bestrahlungsobjekt 13 handelt es sich im medizinischen Anwendungsfall um ein Körperteil eines Patienten. Das Bestrahlungsobjekt 13 wird hierbei in der Regel rotationssymmetrisch bestrahlt.The computer tomograph 1 is assigned a patient couch 12. In order to carry out an irradiation, an irradiation object 13 mounted on the patient couch 12 is positioned approximately centered with the isocentric axis I in the interior of the gantry 3. In the case of medical application, the irradiation object 13 is a body part of a patient. The irradiation object 13 is irradiated in this case usually rotationally symmetrical.
In Strahlungsrichtung 8 ist der Röntgenröhre 4 im Wesentlichen unmittelbar angrenzend ein Filter 14 aus einem röntgenabsorbierenden Material nachgeschaltet. Der Filter 14 ist de- rart ausgebildet, dass in einem anstelle des Bestrahlungsobjekts 13 auf der Patientenliege 12 positionierten Standardobjekt 13 λ eine im Wesentlichen über dessen Querschnittsfläche gleichmäßig verteilte Röntgendosis D deponiert wird, wenn das
Standardobjekt 13 λ durch den Filter 14 hindurch rotationssymmetrisch bestrahlt wird.In the direction of radiation 8, the X-ray tube 4 is connected substantially immediately adjacent to a filter 14 made of an X-ray absorbing material. The filter 14 is embodied such that in a standard object 13 λ positioned on the patient couch 12 instead of the irradiation object 13, an X-ray dose D which is uniformly distributed substantially over its cross-sectional area is deposited, if this Standard object 13 λ is irradiated rotationally symmetrically through the filter 14 therethrough.
Das Standardobjekt 13 λ ist für jeden Anwendungsfall hinsich- tlich seiner Geometrie und Röntgenabsorption derart gewählt, dass es der durchschnittlichen Geometrie und Röntgenabsorption des in diesem Anwendungsfall zu bestrahlenden Bestrahlungsobjekts 13 annähernd entspricht. Entsprechend variieren auch die Eigenschaften des Filters 14 von Anwendungsfall zu Anwendungsfall.The standard object 13 λ is selected for each application in terms of its geometry and X-ray absorption such that it approximately corresponds to the average geometry and X-ray absorption of the irradiation object 13 to be irradiated in this application. Accordingly, the properties of the filter 14 also vary from application to application.
FIG 2 und FIG 3 zeigen eine Ausführungsform des Filters 14, der für eine Bestrahlung im Kopfbereich ausgelegt ist. Dieser Filter 14 wurde unter Zugrundelegung eines kreiszylindrischen Standardobjekts 13 λ aus Teflon oder Aluminium mit einemFIG 2 and FIG 3 show an embodiment of the filter 14, which is designed for irradiation in the head area. This filter 14 was based on a circular cylindrical standard object 13 λ made of Teflon or aluminum with a
Durchmesser von d = 20cm und einem homogenen (Volumen-) Rönt- genabsorptionskoeffizienten von etwa 0,3 cm"1 bzw. 0,5 cm"1 (für 120 kV Röhrenspannung) konstruiert.Diameter of d = 20 cm and a homogeneous (volume) X-ray absorption coefficient of about 0.3 cm "1 or 0.5 cm " 1 (designed for 120 kV tube voltage).
Der in FIG 2 dargestellte Filter 14 ist einstückig aus Po- lyetrafluorethylen (PTFE) gebildet und hat eine flachquader- förmige Außenkontur. In bestimmungsgemäßer Einbausituation ist der Filter 14 mit einer - durch die Längsrichtung 9 und die Querrichtung 11 aufgespannten - Filterfläche A quer zur Strahlungsrichtung 8 ausgerichtet. Eine in der Einbausituation der Röntgenröhre 4 zugewandte Vorderseite 20 des Filters 14 ist eben. In eine hierzu entgegengesetzte Rückseite 21 des Filters 14 ist dagegen eine zentrale Einbuchtung 22 eingebracht .The filter 14 shown in FIG. 2 is formed in one piece from polytetrafluoroethylene (PTFE) and has a flat, cuboid-shaped outer contour. In the intended installation situation, the filter 14 is aligned transversely to the radiation direction 8 with a filter surface A spanned by the longitudinal direction 9 and the transverse direction 11. A in the installation situation of the X-ray tube 4 facing front 20 of the filter 14 is flat. In contrast, a central indentation 22 is introduced into a reverse side 21 of the filter 14 opposite thereto.
Die Einbuchtung 22 hat in Längsrichtung 9 ein konstantes Profil und ist spiegelsymmetrisch bezüglich einer zwischen der Strahlungsrichtung 8 und der Längsrichtung 9 aufgespannten Mittelebene 23 ausgebildet. Der Filter 14 hat somit eine nachfolgend als Filterstärke s bezeichnete Ausdehnung inThe indentation 22 has a constant profile in the longitudinal direction 9 and is mirror-symmetrical with respect to a center plane 23 spanned between the radiation direction 8 and the longitudinal direction 9. The filter 14 thus has a hereinafter referred to as filter thickness s expansion in
Strahlungsrichtung 8, die im Bereich der Mittelebene 23 minimal ist und mit wachsendem Abstand x zur Mittelebene 23 kontinuierlich zunimmt. Im Querschnitt gemäß FIG 3 hat die Ein-
buchtung 22 etwa die Form einer Glockenkurve. Im Minimum, d.h. im Bereich der Mittelebene 23, hat die Filterstärke s etwa einen Minimalwert von smin = 3 mm. Für große Abstände x von der Mittelebene 23, konkret für x > 25 mm, erreicht die Filterstärke s einen Maximalwert von smaχ = 49 mm. Eine Halbwertsstärke von Si/2 = 26 mm erreicht die Filterstärke s jeweils in einem Abstand Xy2 ~ 12 mm.Radiation direction 8, which is minimal in the region of the center plane 23 and increases continuously with increasing distance x to the center plane 23. In the cross section according to FIG. For example, the shape of a bell curve is approx. In the minimum, ie in the region of the center plane 23, the filter strength s has approximately a minimum value of s min = 3 mm. For large distances x from the center plane 23, specifically for x> 25 mm, the filter strength s reaches a maximum value of s ma χ = 49 mm. A half-value strength of Si / 2 = 26 mm reaches the filter thickness s in each case at a distance Xy 2 ~ 12 mm.
Die Rückseite 21 des Filters 14 hat im Bereich der Einbuch- tung 22 im Querschnitt gemäß FIG 3 einen stetig aus Kreisbogenabschnitten (Radien) und Geradenabschnitten zusammengesetzten Verlauf. Die hieraus resultierende Abhängigkeit der Filterstärke s von dem Abstand x folgt hierbei näherungsweise einer FunktionThe rear side 21 of the filter 14 has in the region of the in-book 22 in cross section according to FIG 3 a continuous composed of circular arc sections (radii) and straight sections course. The resulting dependence of the filter strength s on the distance x follows this approximately a function
s ( x ) = Smax - ( smaχ - smin ) - exp ( - ( x / X0 ) 2" ) GLG 1s (x) = Smax - (s ma χ - s min ) - exp (- (x / X 0 ) 2 ") GLG 1
mit Smax = 49 mm, smin = 3 mm, x0 = 13 und n = 2.with Smax = 49 mm, s min = 3 mm, x 0 = 13 and n = 2.
Der Filter 14 ist für Röntgenstrahlung ausgelegt die unter Anlegung einer Röhrenspannung von etwa 120 kV erzeugt wird.The filter 14 is designed for X-radiation which is generated by applying a tube voltage of about 120 kV.
In bestimmungsgemäßer Positionierung ist der Filter 14 zentriert bezüglich des Strahlungsfeldes 7 ausgerichtet. Der Zentralstrahl 6 der Röntgenstrahlung durchläuft den Filter 14 also etwa in der Mittelebene 23. Mit zunehmender Filterstärke s nimmt der Anteil der den Filter 14 in einem bestimmten Abstand x transmittierenden Röntgenstrahlung exponentiell ab. Durch die variierende Filterstärke s (x) ist somit ein eben- falls in Abhängigkeit des Abstands x variierender Strahlungsdurchlasskoeffizient ß(x) bestimmt. Der Strahlungsdurchlasskoeffizient ß(x) bezeichnet allgemein denjenigen Anteil der auf den Filter 14 in gegebenem Abstand x auftreffenden Röntgenstrahlung, der den Filter transmittiert, der also nicht im Filter 14 absorbiert wird.
Die Konstruktion des Filters 14, insbesondere die Bestimmung der Form der Einbuchtung 22, erfolgt unter Heranziehung einer Computersimulation .In proper positioning of the filter 14 is centered with respect to the radiation field 7 aligned. The central ray 6 of the X-ray radiation thus passes through the filter 14 approximately in the center plane 23. As the filter strength s increases, the proportion of X-ray radiation transmitting the filter 14 at a certain distance x decreases exponentially. As a result of the varying filter strength s (x), a radiation transmission coefficient β (x) which likewise varies as a function of the distance x is thus determined. The radiation transmission coefficient β (x) generally designates that portion of the x-radiation incident on the filter 14 at a given distance x, which transmits the filter, ie which is not absorbed in the filter 14. The construction of the filter 14, in particular the determination of the shape of the indentation 22, takes place using a computer simulation.
Hierzu werden das Standardobjekt 13 λ, das Strahlungsfeld 7 und der hierin angeordnete Filter 14 als virtuelle (d.h. numerische) Modelle nachgebildet. Diese Modelle umfassen Angaben zu der Geometrie des Standardobjekts 13 λ, des Strahlungsfeldes 7 und des Filters 14 sowie Angaben zu deren relativen Position zueinander. Die das Standardobjekt 13 λ und den Filter 14 repräsentierenden Modelle umfassen zusätzlich eine Angabe zu dem jeweiligen (Volumen-) Röntgenabsorptionskoeffi- zienten. Im Rahmen des das Strahlungsfeld 7 repräsentierenden Modells ist zusätzlich das Röntgenspektrum spezifiziert.For this purpose, the standard object 13 λ , the radiation field 7 and the filter 14 arranged therein are modeled as virtual (ie numerical) models. These models include information on the geometry of the standard object 13 λ , the radiation field 7 and the filter 14 and information on their relative position to each other. The models representing the standard object 13 λ and the filter 14 additionally include an indication of the respective (volume) X-ray absorption coefficient. In the context of the model representing the radiation field 7, the X-ray spectrum is additionally specified.
Anhand der solchermaßen vorgegebenen Modelle wird ein rotationssymmetrischer Bestrahlungsgang des Computertomographen 1 simuliert. Hierbei wird die in Summe im Standardobjekt 13 λ deponierte Röntgendosis D ortsaufgelöst über die Quer- schnittsfläche des Standardobjekts 13 λ berechnet.Based on the thus predetermined models, a rotationally symmetrical irradiation path of the computer tomograph 1 is simulated. In this case, the X-ray dose D deposited in total in the standard object 13 λ is spatially resolved over the cross-sectional area of the standard object 13 λ .
Bei rotationssymmetrischer Bestrahlung und einem rotationssymmetrischen Standardobjekt 13 λ ist auch das Profil der im Standardobjekt 13 λ deponierten Röntgendosis stets rotations- symmetrisch. In diesem Fall wird durch die Computersimulation vereinfacht die deponierte Röntgendosis D in Abhängigkeit des Abstands r vom (Querschnittsflächen-) Zentrum 24 des Standardobjekts 13 λ berechnet.With rotationally symmetrical irradiation and a rotationally symmetrical standard object 13 λ , the profile of the X-ray dose deposited in the standard object 13 λ is always rotationally symmetrical. In this case, by the computer simulation, the deposited X-ray dose D is calculated as a function of the distance r from the (cross-sectional area) center 24 of the standard object 13 λ .
Im Rahmen des den Filter 14 repräsentierenden Modells ist die Rückseite 21 des Filters 14 durch GLG 1 beschrieben. Die Parameter dieser Funktion werden dabei im Rahmen der Computersimulation solange variiert, bis ein vorgegebenes Optimierungskriterium erfüllt ist. Als Optimierungskriterium ist in- sbesondere hinterlegt, dass für ein optimiertes Parameterset der GLG 1 die Standardabweichung der hierzu berechneten Dosisverteilung D(r) kleiner als 5% des Dosismittelwerts Dave sein muss.
Eine nach dem vorstehend beschriebenen Verfahren für den Filter 14 gemäß FIG 2 und 3 berechnete Dosisverteilung D(r), die das oben genannte Optimierungskriterium erfüllt, ist in FIG 4 abgebildet.In the context of the model representing the filter 14, the rear side 21 of the filter 14 is described by GLG 1. The parameters of this function are varied as part of the computer simulation until a predetermined optimization criterion is met. In particular, it is specified as an optimization criterion that for an optimized parameter set of GLG 1, the standard deviation of the dose distribution D (r) calculated for this purpose must be less than 5% of the dose mean value D ave . A dose distribution D (r) calculated according to the method described above for the filter 14 according to FIGS. 2 and 3, which fulfills the above-mentioned optimization criterion, is shown in FIG.
Nachdem optimierte Parameter für GLG 1, und somit ein optimierter Verlauf der Filterstärke s in Abhängigkeit des Abstands x von der Mittelebene 23 gefunden sind, wird die ent- sprechend parametrierte GLG 1 stückweise stetig durch Kreisbogenabschnitte mit jeweils konstantem Radius angenähert, und somit ein optimierter Krümmungsverlauf für die Rückseite 21 des Filters 14 bestimmt.After optimized parameters for GLG 1, and thus an optimized curve of the filter strength s as a function of the distance x from the center plane 23 are found, the correspondingly parameterized GLG 1 is piecewise steadily approximated by arc sections each having a constant radius, and thus an optimized curvature course determined for the back 21 of the filter 14.
Anhand dieses Krümmungsverlaufs wird der Filter 14 anschließend mittels einer CNC-Fräsmaschine aus einem massiven PTFE- Block gefräst.Based on this curvature of the filter 14 is then milled by means of a CNC milling machine from a solid PTFE block.
Filter der anhand von FIG 2 und 3 gezeigten Bauart sind grundsätzlich auch zur Bestrahlung von nicht-rotationssymmetrischen, z.B. elliptischen Bestrahlungsobjekten 13 geeignet. Um trotz starrem Filter eine gleichmäßige Dosisdeposition bei umlaufender Bestrahlung zu erzielen, werden in diesem Fall zweckmäßigerweise die Strahlungsintensität und/oder das Strahlungsspektrum durch Variation des Röhrenstroms und/oder der Röhrenspannung während des Umlaufs der Röntgenröhre verändert. Der Filter wird unter Zugrundelegung des entsprechenden Röhrenstrom- bzw. Röhrenspannungsverlaufs konstruiert .Filters of the type shown with reference to FIGS. 2 and 3 are basically also suitable for the irradiation of non-rotationally symmetric, e.g. elliptical irradiation objects 13 suitable. In order to achieve a uniform dose deposition in the case of circulating irradiation despite a rigid filter, the radiation intensity and / or the radiation spectrum are expediently changed in this case by varying the tube current and / or the tube voltage during the circulation of the x-ray tube. The filter is designed based on the corresponding tube current or tube voltage curve.
In FIG 5 ist eine zweite Ausführungsform des Filters 14 dargestellt. Der im Unterschied zu der vorstehend beschriebenen Ausführungsform hier mehrstückig ausgeführte Filter 14 um- fasst einen Rahmen 30, in dem eine Vielzahl von Lamellen 31 aus dem röntgenabsorbierenden Material, hier wiederum PTFE, gehalten sind. Die Lamellen 31 sind in zwei Stapeln 32 und 33 angeordnet, die sich auf verschiedenen Seiten der Mittelebene 23 einander gegenüberstehen. Die Lamellen 31 desselben Sta-
pels 32 bzw. 33 sind hierbei jeweils in Strahlungsrichtung 8 hintereinander und zumindest teilweise überlappend angeordnet. Die in Strahlungsrichtung 8 propagierende Röntgenstrahlung muss somit zumindest in einem Teilbereich der Filterflä- che A alle, oder zumindest eine Mehrzahl der Lamellen 31 eines Stapels 32 oder 33 durchdringen. Die Filterstärke s wird somit durch die Anzahl der Lamellen 31 bestimmt, die die Röntgenstrahlung an einem bestimmten Ort der Filterfläche A durchdringen muss.5 shows a second embodiment of the filter 14 is shown. In contrast to the embodiment described above, the filter 14, which is embodied here in several parts, comprises a frame 30 in which a plurality of lamellae 31 made of the X-ray-absorbing material, here again PTFE, are held. The fins 31 are arranged in two stacks 32 and 33, which face each other on different sides of the median plane 23. The blades 31 of the same pels 32 and 33 are arranged in each case in the radiation direction 8 behind one another and at least partially overlapping. The X-radiation propagating in the radiation direction 8 must therefore penetrate all or at least a majority of the fins 31 of a stack 32 or 33 at least in a partial area of the filter surface A. The filter thickness s is thus determined by the number of lamellae 31, which must penetrate the x-ray radiation at a specific location of the filter surface A.
Die Lamellen 31 jedes Stapels 32 bzw. 33 sind jeweils verschiebbar in zugehörigen Aufnahmen 34 bzw. 35 des Rahmens 30 geführt. Jede Lamelle 31 ist hierbei separat mit einem zugehörigen Antrieb 36 in Form eines piezokeramischen Aktors ge- koppelt, so dass die Lamelle 31 durch Betätigung des Antriebs 36 quer zur Mittelebene 23 verschoben werden kann. Dem Filter 14 ist weiterhin eine Steuereinheit 37 zugeordnet, mittels der die Antriebe 36 programmgesteuert zur Verschiebung der Lamellen 31 angesteuert werden. Die Steuereinheit 37 ist in- sbesondere als Softwaremodul ausgeführt und beispielsweise in die Steuersoftware des Computertomographen 1 integriert. Die Antriebe 36 sind bevorzugt mit den restlichen Bestandteilen des Filters 14 zu einer zusammenhängenden Baugruppe integriert. Alternativ hierzu kann aber auch vorgesehen sein, dass die Antriebe 36 separat von dem eigentlichen Filter 14, beispielsweise als integrale Bestandteile einer Filterhalterung des Computertomographen 1, vorliegen.The lamellae 31 of each stack 32 and 33 are each slidably guided in associated receptacles 34 and 35 of the frame 30. Each lamella 31 is here coupled separately with an associated drive 36 in the form of a piezoceramic actuator, so that the lamella 31 can be displaced transversely to the center plane 23 by actuation of the drive 36. The filter 14 is further associated with a control unit 37, by means of which the actuators 36 are controlled programmatically to move the slats 31. The control unit 37 is embodied in particular as a software module and integrated, for example, in the control software of the computed tomography system 1. The drives 36 are preferably integrated with the remaining components of the filter 14 to form a coherent assembly. Alternatively, however, it may also be provided that the drives 36 are present separately from the actual filter 14, for example as integral components of a filter holder of the computer tomograph 1.
Für die Anwendung des Computertomographen 1 für eine Bestrah- lungstherapie werden die einzelnen Lamellen 31 nach einem in der Steuereinheit 37 hinterlegten Profil derart verschoben, dass die Lamellen desselben Stapels 32 bzw. 33 einen variierenden Abstand zur Mittelebene 23 haben, und sich hierdurch ein erfindungsgemäßer Verlauf der Filterstärke s in Abhängig- keit des Abstands x zur Mittelebene ergibt. In der erfindungsgemäßen Einstellung seiner Lamellen 31 weist der Filter 14 im Bereich der Mittelebene 23 wiederum die ausgeprägte Einbuchtung 22 auf.
Für Bestrahlungen im Kopfbereich eines Patienten werden die Lamellen 31 derart eingestellt, dass das Profil des in FIG 3 abgebildeten Filters 14 näherungsweise nachgebildet wird.For the application of the computed tomography system 1 for irradiation therapy, the individual lamellae 31 are displaced according to a profile stored in the control unit 37 in such a way that the lamellae of the same stack 32 or 33 have a varying distance from the center plane 23 and thus a course according to the invention the filter strength s as a function of the distance x from the center plane. In the setting according to the invention of its fins 31, the filter 14 again has the pronounced indentation 22 in the area of the center plane 23. For irradiations in the head region of a patient, the fins 31 are adjusted such that the profile of the filter 14 shown in FIG. 3 is approximately simulated.
Im Gegensatz zu der starren Ausführungsform des Filters 14 gemäß FIG 2 und 3 kann die Ausführungsform gemäß FIG 5 für verschiedene Anwendungszwecke, insbesondere also für die Bestrahlung unterschiedlicher Körperteile eingesetzt werden. Hierzu sind in der Steuereinheit 37 mehrere Profile zur Einstellung der Lamellen 31 hinterlegt, die für jeweils einen Anwendungszweck vorgesehen sind, und unter Zugrundelegung unterschiedlicher Standardobjekte 13 λ erstellt wurden. Aus diesen Profilen kann von einem Benutzer des Computertomographen 1 softwaretechnisch je nach dem gewünschten Anwendungszweck das jeweils geeignete Profil ausgewählt werden. Aufgrund dieser Auswahl stellt die Steuereinheit 37 dann den Filter 14 entsprechend ein.In contrast to the rigid embodiment of the filter 14 according to FIGS. 2 and 3, the embodiment according to FIG. 5 can be used for different applications, in particular for the irradiation of different body parts. For this purpose, several profiles for setting the slats 31 are stored in the control unit 37, which are provided for one purpose, and were created on the basis of different standard objects 13 λ . From these profiles can be selected by a user of the computed tomography 1 software depending on the desired application, the appropriate profile. Due to this selection, the control unit 37 then adjusts the filter 14 accordingly.
Die Steuereinheit 37 ist darüberhinaus dazu eingerichtet, die Stellung der Lamellen 31 während der Rotation der Röntgenröhre 4 zu verstellen. Der Steuereinheit 37 ist hierzu der Rotationswinkel α als Eingangsgröße zugeführt. Zudem enthält hierbei mindestens ein in der Steuereinheit 37 hinterlegtes Profil Sets von Einstellung für die Lamellen 31 in Abhängigkeit des Rotationswinkels α. Die rotationswinkelabhängige Variation der Lamellenstellung ist insbesondere vorteilhaft zur Bestrahlung von ausgeprägt nicht-rotationssymmetrischen Bestrahlungsobjekten 13, beispielsweise dem Brustkorb eines Patienten. Bei der Erzeugung eines zugehörigen rotationswin- kelabhängigen Profils wird ein entsprechend nicht-rotationssymmetrisches Standardobjekt 13 λ zugrundegelegt.
The control unit 37 is moreover configured to adjust the position of the lamellae 31 during the rotation of the x-ray tube 4. The control unit 37 is supplied for this purpose the rotation angle α as an input variable. In addition, at least one profile stored in the control unit 37 contains sets of settings for the slats 31 as a function of the angle of rotation α. The rotation angle-dependent variation of the slat position is particularly advantageous for the irradiation of distinctly non-rotationally symmetrical irradiation objects 13, for example the thorax of a patient. When generating an associated rotation angle-dependent profile, a corresponding non-rotationally symmetrical standard object 13 λ is used.
Claims
1. Filter (14) zur Positionierung zwischen einer Strahlenquelle (4) und einer isozentrischen Achse (I) eines Com- putertomographen (1), der bezüglich seines innerhalb der Filterfläche (A) ortsabhängigen Strahlungsdurchlasskoeffizienten (ß) für die Röntgenstrahlung des Computertomographen (1) derart dimensioniert oder dimensionierbar ist, dass bei umlaufender Bestrahlung eines Standardobjekts (13 λ) vorgegebener Geometrie und Röntgenabsorption durch den Filter (14) die über den Querschnitt des Standardobjekts (13 λ) deponierte Röntgendosis (D) im Wesentlichen konstant ist.1. Filter (14) for positioning between a radiation source (4) and an isocentric axis (I) of a computer tomograph (1) with respect to its within the filter surface (A) location-dependent radiation transmission coefficient (ß) for the X-ray radiation of the computer tomograph (1 ) is dimensioned or dimensioned in such a way that the X-ray dose (D) deposited over the cross section of the standard object (13 λ ) is substantially constant when the standard object (13 λ ) of predetermined geometry and X-ray absorption through the filter (14) is irradiated.
2. Filter (14) nach Anspruch 1, der im Wesentlichen aus einem homogen röntgenabsorbierenden Material besteht, wobei die Ortsabhängigkeit des Strahlungsdurchlasskoeffizienten (ß) durch eine in Abhängigkeit des Ortes (x) auf der Filterfläche (A) variierende Filterstärke (s) bestimmt ist.2. Filter (14) according to claim 1, which consists essentially of a homogeneous X-ray absorbing material, wherein the location dependence of the radiation transmission coefficient (ß) by a depending on the location (x) on the filter surface (A) varying filter strength (s) is determined ,
3. Filter (14) nach Anspruch 1 oder 2, wobei die Ortsabhängigkeit des Strahlungsdurchlasskoeffizienten (ß) für eine mittels einer Röhrenspannung aus einem Intervall von etwa 80 bis 140 kV, insbesondere etwa 120 kV, erzeugte Rönt- genstrahlung berechnet ist.3. Filter (14) according to claim 1 or 2, wherein the location dependence of the radiation transmission coefficient (ß) for a means of a tube voltage from an interval of about 80 to 140 kV, in particular about 120 kV, generated Röntgen radiation is calculated.
4. Filter (14) nach einem der Ansprüche 1 bis 3, wobei der Strahlungsdurchlasskoeffizient (ß) bezüglich einer quer zur Filterfläche (A) orientierten Mittelebene (23) spie- gelsymmetrisch variiert und im Bereich der Mittelebene (23) maximal ist.4. Filter (14) according to one of claims 1 to 3, wherein the radiation transmission coefficient (ß) with respect to a transversely to the filter surface (A) oriented center plane (23) mirror symmetrically varies and in the region of the median plane (23) is maximum.
5. Filter (14) nach den Ansprüchen 2 und 4, wobei die Filterstärke (s) bezüglich der Mittelebene (23) spiegel- symmetrisch variiert und im Bereich der Mittelebene (23) minimal ist. 5. Filter (14) according to claims 2 and 4, wherein the filter thickness (s) with respect to the central plane (23) varies mirror-symmetrically and in the region of the median plane (23) is minimal.
6. Filter (14) nach Anspruch 5, wobei die Filterstärke (s) im Schnitt quer zur Mittelebene (23) einen kontinuierlichen Verlauf nach Art einer inversen Glockenkurve aufweist .6. Filter (14) according to claim 5, wherein the filter thickness (s) in cross-section transverse to the median plane (23) has a continuous course in the manner of an inverse bell curve.
7. Filter (14) einem der Ansprüche 1 bis 6, wobei die in dem Standardobjekt (13 λ) deponierte Röntgendosis (D) von ihrem Mittelwert (Dave) um maximal 5% abweicht.7. Filter (14) one of claims 1 to 6, wherein in the standard object (13 λ ) deposited X-ray dose (D) deviates from its average value (D ave ) by a maximum of 5%.
8. Filter (14) nach einem der Ansprüche 1 bis 7, der einstückig aus einem röntgenabsorbierenden Material gebildet ist.8. Filter (14) according to any one of claims 1 to 7, which is integrally formed from a X-ray absorbing material.
9. Filter (14) nach einem der Ansprüche 1 bis 8, der aus zwei Stapeln (32,33) von Lamellen (31) aus röntgenabsorbierenden Material gebildet ist, wobei die Lamellen (31) innerhalb desselben Stapels (32,33) einen variierenden Abstand zur Mittelebene (23) haben.9. Filter (14) according to one of claims 1 to 8, which is formed of two stacks (32,33) of lamellae (31) of X-ray absorbing material, wherein the lamellae (31) within the same stack (32,33) has a varying Distance to the median plane (23) have.
10. Filter (14) nach Anspruch 9, wobei zumindest ein Teil der Lamellen (31) jedes Stapels (32,33) zur Änderung des Abstandes dieser Lamellen (31) zur Mittelebene (23) verschiebbar ist.10. Filter (14) according to claim 9, wherein at least a part of the slats (31) of each stack (32,33) for changing the distance of these slats (31) to the center plane (23) is displaceable.
11. Computertomograph (1) mit einer um eine isozentrische11. Computer tomograph (1) with one around an isocentric
Achse (I) rotierbaren Strahlenquelle (4) zur Emission von Röntgenstrahlung, sowie mit einem zwischen der Strahlenquelle (4) und der isozentrischen Achse (I) angeordneten Filter (14) nach einem der Ansprüche 1 bis 10.Axis (I) rotatable radiation source (4) for emission of X-radiation, and with a between the radiation source (4) and the isocentric axis (I) arranged filter (14) according to one of claims 1 to 10.
12. Computertomograph (1) nach Anspruch 11, mit einem Filter (14) nach Anspruch 10, mit Antriebsmitteln (36) zur Verschiebung der verschiebbaren Lamellen (31) sowie mit einer Steuereinheit (37) zur Ansteuerung der Antriebsmittel (36) nach Maßgabe eines hinterlegten Profils, welches die Positionierung der verschiebbaren Lamellen (31) bezüglich der Mittelebene (23) vorgibt. 12. Computer tomograph (1) according to claim 11, with a filter (14) according to claim 10, with drive means (36) for displacing the slats (31) and with a control unit (37) for controlling the drive means (36) in accordance with a deposited profile, which dictates the positioning of the slats (31) with respect to the median plane (23).
3. Computertomograph (1) nach Anspruch 12, wobei das Profil die Positionierung der verschiebbaren Lamellen (31) variierend in Abhängigkeit eines Rotationswinkels (α) der Strahlungsquelle (4) vorgibt. 3. computed tomography (1) according to claim 12, wherein the profile, the positioning of the slats (31) varies depending on a rotation angle (α) of the radiation source (4).
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE200910012631 DE102009012631B4 (en) | 2009-03-11 | 2009-03-11 | Filter for a computer tomograph and computer tomograph |
| DE102009012631.7 | 2009-03-11 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2010102908A1 true WO2010102908A1 (en) | 2010-09-16 |
Family
ID=42167754
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2010/052449 WO2010102908A1 (en) | 2009-03-11 | 2010-02-26 | Filter for a computer tomograph |
Country Status (2)
| Country | Link |
|---|---|
| DE (1) | DE102009012631B4 (en) |
| WO (1) | WO2010102908A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013053833A1 (en) | 2011-10-14 | 2013-04-18 | Novartis Ag | 2 - carboxamide cycloamino urea derivatives in combination with hsp90 inhibitors for the treatment of proliferative diseases |
| WO2015022599A1 (en) * | 2013-08-13 | 2015-02-19 | Koninklijke Philips N.V. | Adjustable bow-tie filter for achieving optimal snr in helical computed tomography |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9775572B2 (en) * | 2012-12-05 | 2017-10-03 | Koninklijke Philips N.V. | Radiation beam intensity profile shaper |
| DE102012024961A1 (en) | 2012-12-20 | 2014-06-26 | Mir Medical Imaging Research Holding Gmbh | Shaping filter for dose optimization of x-ray device for generation of sectional images of object for computer tomography, has single solid unit comprising two materials, and angle-dependent filters realizing beam parameter correction |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3748487A (en) * | 1970-02-09 | 1973-07-24 | Medinova Ab | Radiation absorbing device for radiographic apparatuses |
| US3755672A (en) * | 1970-11-30 | 1973-08-28 | Medinova Ab So | Exposure compensating device for radiographic apparatus |
| EP0018181A1 (en) * | 1979-04-13 | 1980-10-29 | Technicare Corporation | Computerized tomographic scanner with shaped radiation filter |
| EP1374776A1 (en) * | 2002-06-20 | 2004-01-02 | GE Medical Systems Global Technology Company LLC | Methods and apparatus for operating a radiation source |
| US20050089146A1 (en) * | 2003-10-27 | 2005-04-28 | Toth Thomas L. | Method and apparatus of radiographic imaging with an energy beam tailored for a subject to be scanned |
| US20060072705A1 (en) * | 2004-10-01 | 2006-04-06 | Varian Medical Systems Technologies, Inc. | Devices and methods for providing spatially variable x-ray beam intensity |
| US20080043900A1 (en) * | 2005-01-27 | 2008-02-21 | Rika Baba | X-Ray Measuring Instrument |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5596619A (en) * | 1992-08-21 | 1997-01-21 | Nomos Corporation | Method and apparatus for conformal radiation therapy |
| DE102005018330B4 (en) * | 2005-04-20 | 2007-04-19 | Siemens Ag | System for generating CT image data records and for irradiating a tumor patient |
-
2009
- 2009-03-11 DE DE200910012631 patent/DE102009012631B4/en not_active Expired - Fee Related
-
2010
- 2010-02-26 WO PCT/EP2010/052449 patent/WO2010102908A1/en active Application Filing
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3748487A (en) * | 1970-02-09 | 1973-07-24 | Medinova Ab | Radiation absorbing device for radiographic apparatuses |
| US3755672A (en) * | 1970-11-30 | 1973-08-28 | Medinova Ab So | Exposure compensating device for radiographic apparatus |
| EP0018181A1 (en) * | 1979-04-13 | 1980-10-29 | Technicare Corporation | Computerized tomographic scanner with shaped radiation filter |
| EP1374776A1 (en) * | 2002-06-20 | 2004-01-02 | GE Medical Systems Global Technology Company LLC | Methods and apparatus for operating a radiation source |
| US20050089146A1 (en) * | 2003-10-27 | 2005-04-28 | Toth Thomas L. | Method and apparatus of radiographic imaging with an energy beam tailored for a subject to be scanned |
| US20060072705A1 (en) * | 2004-10-01 | 2006-04-06 | Varian Medical Systems Technologies, Inc. | Devices and methods for providing spatially variable x-ray beam intensity |
| US20080043900A1 (en) * | 2005-01-27 | 2008-02-21 | Rika Baba | X-Ray Measuring Instrument |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013053833A1 (en) | 2011-10-14 | 2013-04-18 | Novartis Ag | 2 - carboxamide cycloamino urea derivatives in combination with hsp90 inhibitors for the treatment of proliferative diseases |
| WO2015022599A1 (en) * | 2013-08-13 | 2015-02-19 | Koninklijke Philips N.V. | Adjustable bow-tie filter for achieving optimal snr in helical computed tomography |
| US9901314B2 (en) | 2013-08-13 | 2018-02-27 | Koninklijke Philips N.V. | Adjustable bow-tie filter for achieving optimal SNR in helical computed tomography |
Also Published As
| Publication number | Publication date |
|---|---|
| DE102009012631B4 (en) | 2011-07-28 |
| DE102009012631A1 (en) | 2010-09-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE69426036T2 (en) | Radiation therapy system | |
| DE69026406T2 (en) | Device for therapeutic irradiation of a preselected area using a diagnostic computer-assisted tomography scanner | |
| DE69416587T2 (en) | RADIATION THERAPY MACHINE FOR GENERATING A DESIRED INTENSITY PROFILE | |
| DE102009006097B4 (en) | A collimator device for radiotherapy purposes and a radiotherapy device using the device | |
| EP1900392B1 (en) | Radiotherapy facility, method for adapting the radiation field for radiation treatment of the exposed body surface of the patient | |
| DE102004057726B4 (en) | Medical examination and treatment facility | |
| EP1448267B1 (en) | Collimator for high-energy radiation and program for controlling said collimator | |
| WO2008011900A1 (en) | Irradiation device and collimator | |
| WO2007054511A1 (en) | Particle therapy installation, therapy plan, and irradiation method for such a particle therapy installation | |
| EP2506929B1 (en) | Irradiation device | |
| DE102009032275A1 (en) | Accelerator system and method for adjusting a particle energy | |
| EP2596835B1 (en) | Method for operating a radiotherapy facility and radiotherapy facility | |
| DE102005018330B4 (en) | System for generating CT image data records and for irradiating a tumor patient | |
| EP2110161A1 (en) | Device for carrying out irradiation and method for monitoring same | |
| DE102006003829A1 (en) | X-ray computed tomography and method of operating an X-ray CT scanner | |
| DE102009010284A1 (en) | Optimization of control parameters for a particle irradiation system taking into account the particle number dynamics | |
| DE10141346A1 (en) | Procedure for the acquisition of measurement data with a computer tomograph | |
| DE102009012631B4 (en) | Filter for a computer tomograph and computer tomograph | |
| EP2790784B1 (en) | Method and apparatus for preparing an irradiation plan for a moving target volume without a movement compensation | |
| EP2247339B1 (en) | Proton beam treatment system | |
| WO2007042440A1 (en) | Stand for holding a radiation detector for a radiation therapy device | |
| DE19931243B4 (en) | Method and system for reducing dose errors with optimized static intensity modulation | |
| EP2292298A1 (en) | Method for determining an irradiation plan, irradiation planning device and irradiation assembly | |
| DE102005048391B3 (en) | Stand for an irradiation therapy device as well as an irradiation device having this stand | |
| DE112005002108B4 (en) | Patient table for a radiotherapy or radiation diagnostic system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10711028 Country of ref document: EP Kind code of ref document: A1 |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 10711028 Country of ref document: EP Kind code of ref document: A1 |