WO2011066730A1 - Transistor à effet de champ à grille isolante cmos en mode inversion à orientation cristallographique hybride - Google Patents
Transistor à effet de champ à grille isolante cmos en mode inversion à orientation cristallographique hybride Download PDFInfo
- Publication number
- WO2011066730A1 WO2011066730A1 PCT/CN2010/070653 CN2010070653W WO2011066730A1 WO 2011066730 A1 WO2011066730 A1 WO 2011066730A1 CN 2010070653 W CN2010070653 W CN 2010070653W WO 2011066730 A1 WO2011066730 A1 WO 2011066730A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel
- region
- gate
- field effect
- effect transistor
- Prior art date
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 37
- 230000005669 field effect Effects 0.000 title claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 56
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 239000004065 semiconductor Substances 0.000 claims description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- 235000012239 silicon dioxide Nutrition 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 239000010937 tungsten Substances 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 238000005538 encapsulation Methods 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910021334 nickel silicide Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 3
- 229910021341 titanium silicide Inorganic materials 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 claims description 3
- -1 tungsten nitride Chemical class 0.000 claims description 3
- 229910021342 tungsten silicide Inorganic materials 0.000 claims description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 3
- 229920005591 polysilicon Polymers 0.000 abstract description 3
- 238000002955 isolation Methods 0.000 abstract description 2
- 239000000969 carrier Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000012212 insulator Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 208000032750 Device leakage Diseases 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/201—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates the substrates comprising an insulating layer on a semiconductor body, e.g. SOI
- H10D86/215—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates the substrates comprising an insulating layer on a semiconductor body, e.g. SOI comprising FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/673—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
- H10D30/6735—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes having gates fully surrounding the channels, e.g. gate-all-around
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6757—Thin-film transistors [TFT] characterised by the structure of the channel, e.g. transverse or longitudinal shape or doping profile
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
- H10D86/011—Manufacture or treatment comprising FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/201—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates the substrates comprising an insulating layer on a semiconductor body, e.g. SOI
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0167—Manufacturing their channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0193—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices the components including FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
Definitions
- the present invention relates to the field of semiconductor manufacturing technologies, and in particular, to an inversion mode full-enclosed gate CMOS field effect transistor in which a mixed crystal orientation is used.
- CMOS Complementary Meta l Oxide Semiconductor
- I. ff device leakage current
- I.J device leakage current
- I.J threshold voltage
- Silicon-on-insulator refers to a substrate technology that replaces traditional bulk silicon with an "engineered" substrate.
- the substrate is usually composed of the following three layers: a thin monocrystalline silicon top layer, An etched circuit is formed thereon; a relatively thin buried oxide layer (BOX, bur ied oxide), that is, an insulating silicon dioxide intermediate layer; a very thick body type bottom silicon village bottom layer, whose main function is to provide mechanical equipment for the upper two layers support. Since the oxide layer in the SOI structure separates the silicon film layer from the bottom layer of the bulk silicon substrate, the large-area ⁇ - ⁇ junction will be replaced by a dielectric lectr ici solat ion.
- BOX bur ied oxide
- the source region and the drain region extend down to the buried oxide layer, effectively reducing leakage current and junction capacitance.
- this can be improved by reducing the thickness of the silicon, whether it is a partially depleted or fully depleted design.
- Channel-based inversion mode compared to conventional planar CMOS devices Double-gate or triple-gate fin FETs with good gate control and scaling down capability
- the inversion mode field effect transistor has different impurity doping types of the source region and the drain region than the channel impurity doping type, the conductive carriers are minority carriers (small children), and the source region and the drain region are respectively in the trench. There is a PN junction between the tracks. This structural device is currently the most widely used.
- the hole mobility at the (110) Si village current is more than doubled in the ⁇ 110> crystal orientation compared with the conventional (100) Si substrate.
- the electron mobility is the highest at the (100) Si village.
- IBM et al. developed a new technology for manufacturing CMOS circuits using mixed crystal orientation Si. Yang M, leong M, Shi L et al. introduced their technology in the article "High performance CMOS fabricated on hybrid substrate with different crystal orientations" published in the Digest of Technical Paper of International Electron Devices Meeting, 2003.
- the CMOS device is fabricated on the (100) crystal Si surface with buried oxide layer, while the PMOS device is fabricated on the (110) crystal plane Si, and the performance of the PM0S device is greatly improved.
- I. Ff 100 ⁇ / ⁇ m
- (110) PMOS device drive current on the bottom of the village increased by 45%.
- the disadvantage is that the PMOS device fabricated on the epitaxial layer does not have a buried oxide layer to isolate it from the substrate, so device performance is still affected.
- the technical problem to be solved by the present invention is to provide a hybrid crystal inversion mode full-enclosed gate CMOS field effect transistor.
- a mixed crystal inversion mode full-enclosed gate CMOS field effect transistor comprising: a semiconductor substrate, a MN region having a second channel above the semiconductor substrate, and a first channel above the MN region PMOS region and a gate region, the PMOS region and the MN region further include The source region and the drain region at both ends of the channel are characterized in that: the first channel and the second channel have a waist-shaped cross section, a semicircle from the left and right ends, and a semicircle at the center and the left and right ends.
- the transition-connected rectangles are formed together, and the first channel is made of an n-type (110) S i material, the second channel is made of a p-type (100) S i material; the gate region is the first trench a surface of the channel and the second channel is completely surrounded; a first buried oxide layer is disposed between the PMOS region and the MOS region; and between the MN region and the semiconductor substrate Two buried oxide layers.
- the present invention also provides a mixed crystal inversion mode full-enclosed gate CMOS field effect transistor, comprising: a semiconductor substrate, a PMOS region having a first channel above a semiconductor substrate, and a second region above the PMOS region a NMOS region and a gate region of the channel, the PMOS region and the NMOS region further comprising source and drain regions respectively located at opposite ends of the channel, wherein: the first channel and the second channel
- the cross section is a waist shape, and is composed of a semicircle at the left and right ends, and a rectangle which is connected with the semicircle at the left and right ends in the middle, and the first channel adopts an n-type (110) S i material, and the second groove a p-type (100) S i material is used; the gate region completely surrounds the surfaces of the first channel and the second channel; and a first buried layer is disposed between the PMOS region and the NMOS region An oxide layer; a second buried oxide layer is disposed between the PMOS region
- the device structure of the invention has the advantages of single, compact and high integration.
- different crystal orientation channels, racetrack-shaped full-enclosed gate structures, high dielectric constant gate dielectrics and metal gates have high current carrying current.
- Sub-mobility can avoid polysilicon gate depletion and short channel effects.
- FIG. la-lc is a schematic structural diagram of a device according to Embodiment 1 of the present invention:
- Figure la is a top view
- Figure lb is a cross-sectional view of Figure la along XX ';
- Figure lc is a cross-sectional view of the figure la along the ZZ ' direction.
- FIG. 2 is a perspective view showing a channel portion of a device structure according to Embodiment 1 of the present invention.
- 3 is a schematic cross-sectional view of a channel structure of the present invention.
- 4a is a top plan view of a transistor in the first embodiment of the present invention.
- Figure 4b is a cross-sectional view along line XX' of Figure 4a.
- 5a-5c are schematic diagrams showing the structure of a device according to a second embodiment of the present invention:
- Figure 5a is a plan view
- Figure 5b is a cross-sectional view along line XX' of Figure 5a;
- Figure 5c is a cross-sectional view of Figure 5a taken along the line ZZ'.
- 6a is a top plan view of a transistor in a second embodiment of the present invention.
- Figure 6b is a cross-sectional view of Figure 6a taken along XX '.
- the mixed crystal inversion mode full-enclosed gate CMOS field effect transistor of this embodiment includes: a semiconductor substrate 100, a PMOS region 400 having a first channel 401, and a second channel 301.
- the cross sections of the first channel 401 and the second channel 301 are both waist-shaped (racetrack shape), and the first channel 401 is preferably an n-type (110) S i material, the second channel 301 is preferably a p-type (100) S i material.
- the gate region 500 completely surrounds the surfaces of the first channel 401 and the second channel 301.
- the shape of the cross section of the first channel 401 and the second channel 301 is formed by a semicircle at the left and right ends and a rectangle that is connected to the semicircle at the left and right ends in the middle. As shown in Figure 3, it can be decomposed into a dual gate channel structure and a cylindrical full-enclosed gate channel structure that operate independently in parallel.
- d is the diameter of the semicircle at the left and right ends of the cross section
- w is the width of the middle rectangle
- the total width of the raceway cross section is d+w
- x is the thickness of the gate dielectric layer.
- a first buried oxide layer 201 (BOX) is provided to isolate them to avoid between the regions. Interfere with each other.
- a second buried oxide layer 202 is provided in addition to the portion covered by the gate region 500. The second buried oxide layer 202 can isolate the NMOS region 300 or the PMOS region 400 from the semiconductor substrate 100, effectively reducing leakage current, thereby improving device performance.
- the PM0S region 400 and the MN region 300 further include source and drain regions respectively located at opposite ends of the channel.
- the source region 403 of the PM0S region and the drain region 402 of the PMOS region are heavily doped p-type (110) S i materials or GeS i materials; the source region 303 of the ⁇ OS region and the drain region 302 of the MN region are heavily doped An n-type (100) S i material or a S iC material.
- the length of the source/drain region located in the lower layer parallel to the channel direction is greater than the length of the source and drain regions located in the upper layer, so that the source and drain regions of the lower layer are exposed, thereby facilitating the extraction of the electrodes. Referring to Fig. la, the width of both ends of the source/drain region perpendicular to the channel direction is larger than the diameter of the channel, that is, the PM0S region 400 and the ⁇ OS region 300 have a fin shape with a narrow central end.
- the gate region 500 includes: a gate dielectric layer 501 completely surrounding the surfaces of the first trench 401 and the second trench 301, and a gate completely surrounding the gate dielectric layer 501 Material layer 502.
- the gate material layer 502 is a metal or an all-metal silicide; the metal or all-metal silicide is selected from the group consisting of titanium, nickel, tantalum, tungsten, tantalum nitride, tungsten nitride, titanium nitride, titanium silicide And one or a combination of tungsten silicide and nickel silicide; the material of the gate dielectric layer 502 may be one of a silicon dioxide, a silicon oxynitride compound, a silicon oxycarbide compound or a germanium-based high dielectric constant material.
- the semiconductor substrate 100 is a S i village bottom, and may be other semiconductor materials such as Ge, Ga, and In.
- the length L of the first channel 401 and the second channel 402 is 10-50 nm, and the diameter d of the semicircle at the left and right ends of the cross section is 10 -80 nm, the width of the middle rectangle is 10 - 200 nm.
- the first buried oxide layer 201 and the second buried oxide layer 202 each have a thickness of 10 to 200 nm, and the materials thereof are all silicon dioxide.
- a complete transistor can be obtained through a subsequent semiconductor fabrication process.
- Fig. 4a is a plan view of the transistor of the embodiment, and Fig. 4b is a cross-sectional view thereof.
- the subsequent semiconductor manufacturing process includes: forming a gate on the gate material layer 502, a source region 403 in the PMOS region, a source region 303 in the MN region, a drain region 402 in the PMOS region, and a MN Area A source and a drain are formed on the drain region 302 of the domain, respectively.
- an insulator dielectric spacer structure 503 is further disposed on both sides of the gate, and the material thereof may be silicon dioxide, silicon nitride or the like.
- the device structure of the hybrid crystal inversion mode full-enclosed gate CMOS field effect transistor of the present embodiment includes: a semiconductor substrate 100' having a first channel 401 'PM0S region 400', NM0S region 300' having a second channel 301' and a gate region 500'.
- the cross section of the first channel 401' and the second channel 301' are both waist-shaped, and are formed by a semicircle at the left and right ends, and a rectangle which is connected with the semicircle at the left and right ends in the middle, and the first groove
- the track 401' is preferably an n-type (110) S i material
- the second channel 301 ' is preferably a p-type (100) S i material.
- the gate region 500' completely surrounds the surfaces of the first channel 401' and the second channel 301'.
- a first buried oxide layer 201' (BOX) is also provided to isolate them to avoid between the regions.
- a second buried oxide layer 202' is provided in addition to the portion covered by the gate region 500'.
- the PM0S region 400' and the MN region 300' further include source regions 403', 303' and drain regions 402', 302' located at opposite ends of the channel.
- the gate region 500' includes: a gate dielectric layer 50 that completely surrounds the surfaces of the first trench 401' and the second trench 301', and a gate material layer 502' that completely surrounds the gate dielectric layer 50.
- the MN OS area 300' of the second embodiment is above the PMOS area 400', and the PM0S area 400' is above the semiconductor ridge 100', except for the second embodiment and the implementation.
- the other technical solutions of the first example are the same.
- a complete transistor can be obtained through subsequent semiconductor fabrication processes.
- Fig. 6a is a plan view of the transistor of the embodiment, and Fig. 6b is a cross-sectional view thereof.
- the subsequent semiconductor manufacturing process includes: forming a gate on the gate material layer 502', a source region 403' in the PMOS region, a source region 303' in the NMOS region, and a drain region 402' in the PM0S region.
- the source and drain electrodes are respectively formed on the drain region 302' of the NM0S region.
- An insulator dielectric spacer structure 503' is also formed on both sides of the gate, and the material thereof may be silicon dioxide, silicon nitride or the like.
- the PM0S region and the ⁇ OS region use different SiS materials, especially the first channel uses n-type (110) S i material, and the second channel uses p-type (100)
- the conductive carriers are minority carriers (small sub-), that is, the conductive carriers of the first channel are holes in the n-type (110) S i material
- the two-channel conductive carriers are electrons in the p-type (100) S i material.
- the invention adopts two different SiS materials with different crystal orientations, which is beneficial to further increase the carrier migration rate; on the other hand, the PM0S region and the Li OS region simultaneously have a buried oxide layer and the bottom of the village. Isolation can effectively reduce leakage current, enabling the device to have better performance and further scaling down.
- the present invention also employs a full-enclosed gate channel structure having a cross-sectional waist (racetrack shape) which can be decomposed into a double gate channel structure and a cylindrical full-enclosed gate channel structure which operate independently in parallel.
- the advantages of this configuration are: cum increases the channel cross-sectional area (increased rectangular portion), increasing the drive current of the device while maintaining the electrical integrity of the device (circular channel).
- the present invention adopts a relatively accurate fluid dynamics model and a quantum mechanical density grading model, and considers and applies a mobility degradation model related to doping and surface roughness for three-dimensional.
- Technical simulation. The simulation results show that the CMOS transistor of the present invention has high carrier mobility, low-low frequency device noise, and avoids polysilicon gate depletion and short channel effect, and increases the threshold voltage of the device in the inversion mode.
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
L'invention concerne un transistor à effet de champ à grille isolante CMOS en mode inversion à orientation cristallographique hybride. Le CMOS FET comprend une région PMOS avec un premier canal (401), une région NMOS avec un second canal (301) et une région grille (500), le premier canal et le second canal présentant une coupe transversale en forme d'anneau allongé. Le premier canal (401) utilise un matériau en Si de type n (110) et le second canal (301) utilise un matériau Si de type p (100). La région grille (500) entoure complètement la surface des premier (401) et second (301) canaux. Des oxydes enfouis (202) viennent entre les régions PMOS et NMOS, et entre la région PMOS ou la région NMOS et le substrat Si de manière à les isoler. Cette structure en cristal hybride présente une configuration simple, un bon niveau d'intégration et est compact. En mode opérationnel d'inversion, les canaux en matériau à orientation cristallographique, la structure à grille isolante en forme d'anneau allongé, le diélectrique à forte permittivité et la grille métallique présentent une circulation élevée de courant de manière à éviter la déplétion de la grille en polysilicium et l'effet canal court.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/810,740 US8330229B2 (en) | 2009-12-01 | 2010-02-11 | Hybrid orientation inversion mode GAA CMOSFET |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910199724.2 | 2009-12-01 | ||
CN2009101997242A CN101719501B (zh) | 2009-12-01 | 2009-12-01 | 混合晶向反型模式全包围栅cmos场效应晶体管 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011066730A1 true WO2011066730A1 (fr) | 2011-06-09 |
Family
ID=42434046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/070653 WO2011066730A1 (fr) | 2009-12-01 | 2010-02-11 | Transistor à effet de champ à grille isolante cmos en mode inversion à orientation cristallographique hybride |
Country Status (3)
Country | Link |
---|---|
US (1) | US8330229B2 (fr) |
CN (1) | CN101719501B (fr) |
WO (1) | WO2011066730A1 (fr) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101719500B (zh) * | 2009-12-01 | 2011-09-21 | 中国科学院上海微系统与信息技术研究所 | 混合材料反型模式全包围栅cmos场效应晶体管 |
CN102098028A (zh) * | 2010-10-14 | 2011-06-15 | 中国科学院上海微系统与信息技术研究所 | 基于混合晶向soi工艺的cmos环形振荡器及制备方法 |
KR101851567B1 (ko) * | 2011-07-04 | 2018-04-25 | 삼성전자주식회사 | 트랜지스터, 트랜지스터를 포함하는 전자소자 및 이들의 제조방법 |
CN102683293B (zh) * | 2012-05-03 | 2014-07-16 | 上海华力微电子有限公司 | 双层SOI混合晶向后栅型反型模式SiNWFET的制备方法 |
CN102683294B (zh) * | 2012-05-03 | 2014-06-04 | 上海华力微电子有限公司 | 制备SOI上双层隔离混合晶向后栅型反型模式SiNWFET的方法 |
CN102683333B (zh) * | 2012-05-04 | 2016-04-27 | 上海华力微电子有限公司 | 双层隔离混合晶向积累型纳米线mosfet |
CN102683413B (zh) * | 2012-05-04 | 2015-07-29 | 上海华力微电子有限公司 | 混合晶向反型模式半导体纳米线mosfet |
CN102683356B (zh) * | 2012-05-04 | 2014-12-10 | 上海华力微电子有限公司 | 双层隔离混合晶向应变纳米线mosfet |
CN102683412B (zh) * | 2012-05-04 | 2015-03-18 | 上海华力微电子有限公司 | 双层隔离混合晶向应变纳米线mosfet的制备方法 |
CN102683414B (zh) * | 2012-05-04 | 2014-11-19 | 上海华力微电子有限公司 | 混合晶向反型模式半导体纳米线mosfet |
KR102002380B1 (ko) | 2012-10-10 | 2019-07-23 | 삼성전자 주식회사 | 반도체 장치 및 그 제조 방법 |
JP5956310B2 (ja) * | 2012-11-08 | 2016-07-27 | 猛英 白土 | 半導体装置及びその製造方法 |
KR102069609B1 (ko) * | 2013-08-12 | 2020-01-23 | 삼성전자주식회사 | 반도체 소자 및 그 제조 방법 |
US9543419B1 (en) * | 2015-09-18 | 2017-01-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET structures and methods of forming the same |
US10290549B2 (en) * | 2017-09-05 | 2019-05-14 | Globalfoundries Inc. | Integrated circuit structure, gate all-around integrated circuit structure and methods of forming same |
US10164041B1 (en) | 2017-10-23 | 2018-12-25 | Globalfoundries Inc. | Method of forming gate-all-around (GAA) FinFET and GAA FinFET formed thereby |
US10734525B2 (en) | 2018-03-14 | 2020-08-04 | Globalfoundries Inc. | Gate-all-around transistor with spacer support and methods of forming same |
CN109244073B (zh) * | 2018-09-03 | 2020-09-29 | 芯恩(青岛)集成电路有限公司 | 半导体器件结构及其制作方法 |
CN110970432A (zh) * | 2018-09-28 | 2020-04-07 | 芯恩(青岛)集成电路有限公司 | 全包围栅纳米片互补反相器结构及其制造方法 |
CN110970431A (zh) * | 2018-09-28 | 2020-04-07 | 芯恩(青岛)集成电路有限公司 | 反型模式全包围栅纳米片互补反相器结构及其制造方法 |
CN111613581B (zh) * | 2019-02-22 | 2024-03-01 | 中芯国际集成电路制造(上海)有限公司 | 半导体结构及其形成方法 |
US11088255B2 (en) | 2019-05-17 | 2021-08-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor devices |
CN111463287B (zh) * | 2020-04-10 | 2024-02-27 | 中国科学院微电子研究所 | 半导体器件及其制造方法及包括其的电子设备 |
CN111446292B (zh) * | 2020-04-10 | 2024-04-26 | 中国科学院微电子研究所 | 半导体器件及其制造方法及包括其的电子设备 |
CN113539966A (zh) * | 2020-04-14 | 2021-10-22 | 中芯国际集成电路制造(上海)有限公司 | 半导体结构的形成方法 |
CN113823691B (zh) * | 2020-06-19 | 2024-03-26 | 中芯国际集成电路制造(上海)有限公司 | 半导体器件及其形成方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1893079A (zh) * | 2005-06-28 | 2007-01-10 | 三星电子株式会社 | 互补金属氧化物半导体器件及其制法,及存储器 |
US20070075372A1 (en) * | 2003-10-20 | 2007-04-05 | Nec Corporation | Semiconductor device and manufacturing process therefor |
CN101427374A (zh) * | 2006-04-28 | 2009-05-06 | 国际商业机器公司 | 高性能3d fet结构及其使用择优晶体蚀刻的形成方法 |
CN101432852A (zh) * | 2006-04-26 | 2009-05-13 | Nxp股份有限公司 | 非易失性存储器件 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100402381B1 (ko) * | 2001-02-09 | 2003-10-17 | 삼성전자주식회사 | 게르마늄 함유 폴리실리콘 게이트를 가지는 씨모스형반도체 장치 및 그 형성방법 |
FR2881877B1 (fr) * | 2005-02-04 | 2007-08-31 | Soitec Silicon On Insulator | Transistor a effet de champ multi-grille a canal multi-couche |
FR2911721B1 (fr) * | 2007-01-19 | 2009-05-01 | St Microelectronics Crolles 2 | Dispositif a mosfet sur soi |
US8183628B2 (en) * | 2007-10-29 | 2012-05-22 | Unisantis Electronics Singapore Pte Ltd. | Semiconductor structure and method of fabricating the semiconductor structure |
CN101710585B (zh) * | 2009-12-01 | 2011-04-27 | 中国科学院上海微系统与信息技术研究所 | 混合晶向积累型全包围栅cmos场效应晶体管 |
CN101719500B (zh) * | 2009-12-01 | 2011-09-21 | 中国科学院上海微系统与信息技术研究所 | 混合材料反型模式全包围栅cmos场效应晶体管 |
-
2009
- 2009-12-01 CN CN2009101997242A patent/CN101719501B/zh not_active Expired - Fee Related
-
2010
- 2010-02-11 WO PCT/CN2010/070653 patent/WO2011066730A1/fr active Application Filing
- 2010-02-11 US US12/810,740 patent/US8330229B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070075372A1 (en) * | 2003-10-20 | 2007-04-05 | Nec Corporation | Semiconductor device and manufacturing process therefor |
CN1893079A (zh) * | 2005-06-28 | 2007-01-10 | 三星电子株式会社 | 互补金属氧化物半导体器件及其制法,及存储器 |
CN101432852A (zh) * | 2006-04-26 | 2009-05-13 | Nxp股份有限公司 | 非易失性存储器件 |
CN101427374A (zh) * | 2006-04-28 | 2009-05-06 | 国际商业机器公司 | 高性能3d fet结构及其使用择优晶体蚀刻的形成方法 |
Non-Patent Citations (1)
Title |
---|
XIAO, DEYUAN ET AL.: "A novel accumulation mode complementary Gate-All-Around Cylindrical CMOSFET", CHINESE SCI BULL, vol. 54, no. 14, July 2009 (2009-07-01), pages 2051 - 2059 * |
Also Published As
Publication number | Publication date |
---|---|
US20110254102A1 (en) | 2011-10-20 |
CN101719501A (zh) | 2010-06-02 |
CN101719501B (zh) | 2011-07-20 |
US8330229B2 (en) | 2012-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011066730A1 (fr) | Transistor à effet de champ à grille isolante cmos en mode inversion à orientation cristallographique hybride | |
WO2011066727A1 (fr) | Transistor à effet de champ à grille isolante cmos de type inversion en matériau hybride | |
WO2011066725A1 (fr) | Transistor à effet de champ à grille isolante cmos de type accumulation à orientation cristallographique hybride | |
CN101719499B (zh) | 混合材料积累型圆柱体全包围栅cmos场效应晶体管 | |
CN106449755B (zh) | 全门n纳米丝器件以及该器件的制造方法 | |
WO2011066728A1 (fr) | Transistor à effet de champ à grille isolante de type accumulation en matériau hybride | |
CN101719498B (zh) | 混合材料反型模式圆柱体全包围栅cmos场效应晶体管 | |
JP4493343B2 (ja) | 歪みフィンfet構造および方法 | |
CN1577889B (zh) | 具有应力施加层的非平面器件及制造方法 | |
US8354721B2 (en) | Gate-all-around CMOSFET devices | |
CN101023530A (zh) | 高迁移率块体硅p沟道场效应晶体管 | |
US20250254925A1 (en) | Integrated circuit devices including stacked transistors and methods of forming the same | |
CN109326650B (zh) | 半导体器件及其制造方法及包括该器件的电子设备 | |
WO2022017110A1 (fr) | Procédé de fabrication d'un dispositif à semi-conducteurs et dispositif à semi-conducteurs | |
TWI628703B (zh) | 環閘極iii-v族量子井電晶體及鍺無接面電晶體及其製造方法 | |
CN102044433A (zh) | 一种混合源漏场效应晶体管及其制备方法 | |
CN101471247A (zh) | 半导体装置的制造方法及半导体装置 | |
CN114823861B (zh) | 一种漏区自对准垂直沟道mos集成电路单元结构及其实现方法 | |
CN101814503A (zh) | 一种互补栅控pnpn场效应晶体管及其制造方法 | |
JPH02201965A (ja) | 半導体装置およびその製造方法 | |
CN116705796A (zh) | 一种纵向堆叠的栅极自对准hvtfet集成电路结构 | |
WO2024169417A1 (fr) | Dispositif à semi-conducteurs et son procédé de fabrication | |
CN120376505A (zh) | 全耗尽绝缘体上硅fdsoi晶圆及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 12810740 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10834163 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10834163 Country of ref document: EP Kind code of ref document: A1 |