WO2011089912A1 - 質量分析装置 - Google Patents
質量分析装置 Download PDFInfo
- Publication number
- WO2011089912A1 WO2011089912A1 PCT/JP2011/000300 JP2011000300W WO2011089912A1 WO 2011089912 A1 WO2011089912 A1 WO 2011089912A1 JP 2011000300 W JP2011000300 W JP 2011000300W WO 2011089912 A1 WO2011089912 A1 WO 2011089912A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- discharge
- mass spectrometer
- sample
- dielectric
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/105—Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation, Inductively Coupled Plasma [ICP]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J27/00—Ion beam tubes
- H01J27/02—Ion sources; Ion guns
- H01J27/16—Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32348—Dielectric barrier discharge
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/2406—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
- H05H1/2443—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
Definitions
- the present invention relates to a mass spectrometer and an operation method thereof.
- Ionization using plasma such as corona discharge and glow discharge is widely used for mass spectrometry in various fields. The following describes how ionization by plasma has been performed so far.
- Patent Document 1 describes a method of ionizing by an atmospheric pressure chemical ionization method.
- ionization is performed by corona discharge under atmospheric pressure.
- the sample molecules are ionized by an ion molecule reaction with seed ions generated by corona discharge.
- Patent Document 2 describes a method in which a sample is introduced into a vacuum chamber and ionized by glow discharge.
- the pressure in the vacuum chamber for performing ionization is about 0.1 to 1 Torr (1 ⁇ 10 to 1 ⁇ 10 2 Pa).
- Patent Document 3 describes a method of performing ionization by dielectric barrier discharge at atmospheric pressure.
- dielectric barrier discharge a dielectric is sandwiched between electrodes to prevent the temperature of neutral gas and ions in the plasma from rising and generate low-temperature plasma.
- plasma ejected from a probe at atmospheric pressure is directly applied to a sample to be ionized, and the generated ions are introduced into a mass spectrometer.
- Non-Patent Document 1 describes a method of performing ionization by dielectric barrier discharge using helium as a discharge gas in a vacuum.
- a sample and helium are introduced into a vacuum chamber of a mass spectrometer through a dielectric capillary, and the sample is ionized by dielectric barrier discharge in the vicinity of the outlet on the vacuum chamber side of the capillary. Since the flow rate of the gas introduced into the vacuum chamber is 25 / ml / min and the pumping speed of the pump that exhausts the vacuum chamber is 300 L / s, the vacuum chamber and the vicinity of the vacuum chamber outlet near the capillary where ionization occurs have a high degree of vacuum. It is kept in. Under the conditions of Non-Patent Document 1, atomic ions generated by dissociation of molecular ions are strongly observed.
- Patent Document 2 and Non-Patent Document 1 The ionization by glow discharge under low pressure described in Patent Document 2 and Non-Patent Document 1 has a problem that fragmentation of molecular ions occurs. When fragmentation occurs, the mass spectrum becomes complicated, making it difficult to analyze the spectrum.
- Non-Patent Document 1 In the method described in Non-Patent Document 1, ion fragmentation proceeds violently. However, Non-Patent Document 1 does not describe a method for suppressing fragmentation.
- the first electrode, the second electrode, the sample introduction part and the discharge provided between the first electrode and the second electrode A sample is ionized by applying an AC voltage to the dielectric part having the electrode part and either the first electrode or the second electrode, and generating a discharge between the first electrode and the second electrode.
- a mass analyzer for analyzing ions discharged from the discharge unit, and the discharge is performed at 2 Torr or more and 300 Torr or less.
- a dielectric that is provided between the first electrode, the second electrode, and the first electrode and the second electrode, and has a sample introduction part and a discharge part
- the sample is generated by applying an AC voltage having a frequency of 1 to 300 kHz to one of the first electrode and the second electrode, and generating a discharge between the first electrode and the second electrode.
- a mass analyzing unit for analyzing ions discharged from the discharging unit.
- the first electrode, the second electrode, the dielectric part provided between the first electrode and the second electrode, the introduction part and the discharge part of the sample An AC voltage is applied to one of the first chamber and the first electrode and the second electrode, and a discharge is generated between the first electrode and the second electrode.
- Example 1 Ion source of Example 1 Ion source of Example 1 Ion source of Example 1 Ion source of Example 1 Illustration of effect Illustration of effect Ion source of Example 2 Ion source of Example 1 Ion source of Example 3 Ion source of Example 3 Device configuration diagram of Example 4 The decompression chamber of Example 4 The decompression chamber of Example 4 Ion source of Example 5
- FIG. 1 is a configuration diagram showing an embodiment of a mass spectrometer of the present invention.
- the sample is introduced from the inlet of the capillary of the ion source 1 together with air at atmospheric pressure.
- a sample can be mixed with a gas such as nitrogen, helium, or argon and introduced into the capillary.
- Ions generated by the ion source 1 are introduced into the first differential exhaust chamber 2 of the vacuum chamber.
- the first differential evacuation chamber 2 is evacuated by a vacuum pump 51 such as a rotary pump or a diamond flag pump, and is maintained at about 1 to 1.0 ⁇ 10 4 Pa.
- the ions introduced into the first differential exhaust chamber 2 are converged by the multipole ion guide 4 and introduced into the second differential exhaust chamber 3.
- the second differential evacuation chamber 3 is evacuated by the vacuum pump 52 and maintained at about 10 ⁇ 4 Torr to 10 ⁇ 2 Torr (1 ⁇ 10 ⁇ 2 Pa to 1 Pa).
- a mass analyzing unit 5 and a detector 6 are installed in the second differential exhaust chamber 3.
- the ions introduced into the second differential exhaust chamber 3 are separated for each m / z by the mass analyzer 5 such as a quadrupole mass filter, an ion trap, a time-of-flight mass spectrometer, etc. It is detected by the detector 6.
- FT-ICR or the like may be used.
- Fig. 2 shows the configuration of the ion source 1.
- (B) is the figure seen from the direction b of (A).
- the ion source 1 is provided outside a dielectric capillary 10 made of a dielectric material such as glass, plastic, ceramic, or resin, a first discharge electrode 11 inserted inside the dielectric capillary, and the dielectric capillary. It consists of a second discharge electrode 12.
- a dielectric barrier discharge occurs between the second discharge electrode 12 and the first discharge electrode 11 via the dielectric capillary 10, and a plasma 100 is generated in a region sandwiched between the second discharge electrode 12 and the first discharge electrode 11. The When a large discharge current flows almost continuously during discharge, the plasma temperature rises and fragmentation easily occurs.
- the dielectric between the discharge electrodes operates as a capacitor, so the discharge current is continuous. It is possible to prevent the plasma temperature from rising due to flow.
- the second discharge electrode 12 is arranged offset from the central axis of the dielectric capillary 10. If it does in this way, since the 1st and 2nd discharge electrodes will approach more, there exists an effect that it becomes easy to start discharge.
- the first discharge electrode 11 may be a wire electrode as shown in FIG. 1 or a cylindrical electrode as shown in FIG. Alternatively, as shown in FIG. 8, the dielectric capillary 10 and the conductive capillary 13 may be connected, and the conductive capillary 13 may be used as the first discharge electrode.
- the conductor capillary 13 it is possible to prevent the capillary from being charged by ions generated from the ion source.
- the structure is complicated because capillaries of different materials are connected in the middle.
- the material of the first and second discharge electrodes 11 and 12 and the conductor capillary 13 may be a conductor, but the use of a metal resistant to corrosion such as gold prolongs the life of the electrode.
- the second discharge electrode 12 only needs to be in contact with a part of the outer side of the dielectric capillary 10. However, if the second discharge electrode 12 is in contact with the entire dielectric capillary 10 as shown in FIG. Since it occurs uniformly in the radial direction of the body capillary 10, the sample can be ionized efficiently.
- a typical dielectric capillary has an inner diameter of about 10 to 1 cm and a length of about 0.1 to 1 mm. As the length of the dielectric capillary 10 is shorter and the inner diameter is larger, the conductance of the dielectric capillary 10 increases, and the amount of gas introduced into the mass spectrometer per certain time increases. The greater the conductance, the higher the sensitivity of the mass spectrometer. On the other hand, the smaller the conductance, the lower the pumping speed required to keep the pressure of the second differential pumping unit 3 below the pressure at which the mass analyzer 5 and detector 6 can operate. Can be used.
- a capillary in which the inner diameter of the capillary changes midway may be used.
- the inner diameter of the capillary is increased in a region where plasma is formed, the time during which ions stay in the plasma becomes longer, and ion molecule reaction is likely to occur.
- Closest place between the typical first discharge electrode 11 and the second discharge electrode 12 is 1 ⁇ 10 - is about 1 m - 4 ⁇ 1 ⁇ 10 .
- FIG. 5 shows the relationship between the discharge voltage for air and the product of the pressure and the distance between the discharge electrodes (pd product).
- the discharge voltage is minimum at around 0.5 cmTorr, and thereafter increases as the pd product increases.
- the discharge voltage is about 1 kV when the distance between the electrodes is 1 cm, and about 4 kV when the distance is 5 cm.
- An AC voltage is supplied from the power source 50 to one of the first discharge electrode 11 and the second discharge electrode 12, and a DC voltage is applied to the other. Instead of applying a DC voltage, it may be grounded. In the following embodiments, the case where an AC voltage is applied to the first discharge electrode 11 is described. However, the same applies to the case where a DC voltage (or ground) is applied to the first discharge electrode 11 and an AC voltage is applied to the second discharge electrode 11. The effect of can be obtained.
- the AC voltage generated by the power supply 50 may be a rectangular wave or a sine wave.
- a typical applied voltage is 0.5 to 10 kHz, and a frequency is 1 to 300 kHz.
- ionization efficiency is high due to high plasma density, but fragmentation is likely to occur.
- low-frequency conditions (1-20 kHz)
- molecular ions that are less susceptible to fragmentation can be detected, but the ionization efficiency is lower than when the frequency is high.
- the frequency is 20 to 100 kHz, it becomes an intermediate property.
- the sinusoidal wave has an advantage that the voltage can be boosted by the coil when the frequency is high, so that the power supply is inexpensive. You may change the frequency and voltage of an alternating voltage for every sample and ion to be measured. For example, when measuring molecules that are unlikely to cause fragmentation, such as inorganic ions, or when measuring fragment ions, increase the input power, and when measuring molecular ions that are prone to fragmentation, decrease the input power. It is.
- high-sensitivity ionization can be performed while suppressing fragmentation by generating plasma under a reduced pressure of 2 Torr or more and 300 Torr or less. If the pressure in the region where plasma is generated is higher than 300 Torr, the voltage required to start the discharge may increase, which may affect the plasma formation. can do.
- FIG. 6 shows a graph in which methyl salicylate is ionized in the configuration of this example and the pressure dependence of the signal intensity of the observed ions is plotted.
- the discharge gas is air, and the rectangular wave voltage applied to the first discharge electrode 11 is 15 kHz, 2 kV 0-peak .
- the signal intensity of proton-added ions ([M + H] +, m / z 153) of methyl salicylate increased from 4 Torr or higher and eventually became saturated. This is considered to be because the ion molecule reaction is more likely to occur as the discharge gas pressure increases.
- the sensitivity of the molecular ions in the sample is low, but since the amount of seed ions is larger than that of the sample molecules, there is an advantage that it is not easily affected by ion suppression.
- the molecular ion of the sample can be detected with high sensitivity. At 4-7 Torr, it is an intermediate property.
- molecular ions derived from methyl salicylate such as protonated ions were hardly observed at 2 Torr or less. This is because when the pressure of the discharge gas is low, the probability that high-energy electrons directly collide with sample molecules increases, and fragmentation is likely to occur.
- the pressure at the inlet of the dielectric capillary 10 is atmospheric pressure and the pressure at the outlet is the pressure in the first differential exhaust chamber 2, a pressure gradient exists in the axial direction of the capillary. For this reason, the pressure of the region where the plasma is generated can be adjusted by selecting the position of the region where the plasma 100 is generated in the axial direction of the capillary. At this time, the smaller the pressure difference between the region where the plasma is generated and the first differential exhaust chamber 2, the greater the conductance between the region where the plasma is generated and the first differential exhaust chamber 2. As the conductance is larger, the effect of space charge and the loss of ions due to collision with the inner wall of the tube can be suppressed, and the efficiency of introducing ions into the first differential exhaust chamber 2 becomes higher.
- the sample gas passes in a neutral gas state from the capillary inlet to the region where the plasma 100 is generated. For this reason, it is possible to suppress the loss of ions due to the influence of space charge and collision with the inner wall of the tube, and the sample can be introduced into the vacuum with high efficiency. In addition, since plasma is generated in a minute region, high-density plasma can be formed with low power consumption. According to the present invention, fragmentation can be suppressed while maintaining stable discharge.
- FIG. 7 is a block diagram showing an embodiment of the mass spectrometer of the present invention. Since the configuration other than the ion source 1 is the same as that of the first embodiment, a description thereof will be omitted. The effect of the pressure in the region where the plasma 100 is generated and the output voltage of the power supply 50 are the same as in the first embodiment.
- the ion source 1 includes a dielectric capillary 10 and two or more discharge electrodes 14 and 15.
- the discharge electrodes 14 and 15 are disposed so as to surround the outside of the dielectric capillary 10.
- the first discharge electrodes 14 to which an AC voltage is applied from the power source 50 and the second discharge electrodes 15 to which a DC negative voltage is applied are alternately arranged.
- a DC voltage may be applied to the first discharge electrode 14 and an AC voltage may be applied to the second discharge electrode 15. Moreover, you may make it earth
- a dielectric barrier discharge occurs between the first discharge electrode 14 and the second discharge electrode 15 via the dielectric capillary 10, and a plasma 100 is generated in a region between the first discharge electrode 14 and the second discharge electrode 15. .
- an insulator 42 may be inserted between the first discharge electrode 14 and the second discharge electrode 15. When the first discharge electrode 14 and the second discharge electrode 15 are installed in the atmosphere, the discharge between the discharge electrodes 14 and 15 outside the capillary is less likely to occur. This is because the discharge voltage of air is higher at atmospheric pressure due to the relationship shown in FIG.
- Example 1 Unlike the configuration of Example 1, since it is not necessary to put an electrode inside the capillary through which the sample passes, contamination such as adhesion of the sample to the electrode can be avoided. Further, by changing the number of discharge electrodes, it is possible to adjust the length of the region where plasma is generated while maintaining the distance between the electrodes.
- FIG. 9 is a block diagram showing an embodiment of the mass spectrometer of the present invention.
- (B) of the figure is a view seen from the b direction of (A). Since the configuration other than the ion source 1 is the same as that of the first embodiment, a description thereof will be omitted. The effect of the pressure in the region where the plasma 100 is generated and the output voltage of the power supply 50 are the same as in the first embodiment.
- the ion source 1 includes a dielectric capillary 10, a first discharge electrode 40, and a second discharge electrode 41. An AC voltage is supplied from the power supply 50 to either the first discharge electrode 40 or the second discharge electrode 41, and a DC voltage is applied to the other or grounded.
- a dielectric barrier discharge occurs between the first discharge electrode 40 and the second discharge electrode 41 via the dielectric capillary 10, and plasma is generated in the region 100.
- the first discharge electrode 40 and the second discharge electrode 41 may be arranged inside and outside the dielectric capillary as shown in FIG. 9, or may be arranged outside the capillary as shown in FIG. An insulator for preventing discharge may be inserted between the electrodes.
- the distance between the discharging electrodes is arranged so as to be constant regardless of the position of the capillary in the axial direction, so that uniform plasma can be formed in the axial direction. Is possible. Further, when the lengths of the first discharge electrode 40 and the second discharge electrode 41 in the axial direction of the dielectric capillary are changed, the length of the region where the plasma is generated can be changed.
- FIG. 11 is a block diagram showing an embodiment of the mass spectrometer of the present invention.
- the neutral sample gas is introduced into the decompression chamber 7 through the pores 20.
- the decompression chamber 7 is maintained under a decompression condition of 5 Torr or more, and plasma is generated using dielectric barrier discharge in the decompression chamber.
- the decompression chamber 7 may be evacuated by a vacuum pump 53.
- the sample ions ionized in the decompression chamber are introduced into the first differential exhaust chamber 2 through the pores 21.
- the conductance of the pores 21 can be increased.
- the greater the conductance the higher the efficiency of introducing ions into the first differential exhaust chamber 2.
- the effect of the pressure in the region where the plasma 100 is generated and the output voltage of the power source 50 are the same as in the first embodiment.
- Fig. 12, 13 and 14 show the configuration of the decompression chamber 7.
- the decompression chamber 7 is composed of a flat first discharge electrode 11, second discharge electrode 12, and dielectric 22.
- An AC voltage is supplied from the power supply 50 to either the first discharge electrode 11 or the second discharge electrode 12, and a DC voltage is applied to the other or grounded.
- the plasma 100 is generated in a region between the dielectric 22 and the second discharge electrode 12. If the dielectric 22 is made sufficiently larger than the first discharge electrode 11, it is possible to prevent discharge between the first discharge electrode 11 and the second discharge electrode 12 without passing through the dielectric 22.
- the decompression chamber 7 is composed of a flat plate-like first discharge electrode 11 and dielectric 22, and a rod-like or net-like electrode 24 as a second discharge electrode.
- FIG. 13B is a view as seen from the direction b in FIG.
- the first discharge electrode 11 is supplied with an AC voltage from a power supply 50, and the electrode 24 is supplied with a DC voltage.
- an AC voltage is supplied from the power source 50 to the second discharge electrode 24, and a DC voltage is supplied to the first discharge electrode 11. Instead of supplying DC voltage, it may be grounded. Plasma is generated in the region 100 between the dielectric 22 and the electrode 24.
- the decompression chamber 7 includes a columnar dielectric 22, a first discharge electrode 11 in contact therewith, and a rod-shaped second discharge electrode 12. Plasma is generated between the second discharge electrode 12 and the dielectric 22. If the central axes of the second discharge electrode 12 and the dielectric 22 are misaligned, the discharge starts at a point where the distance between the first discharge electrode 1 and the second discharge electrode is short, and the charged particles generated there cause another region to Since discharge also starts, the voltage at which discharge starts can be lowered.
- FIG. 15 is a block diagram showing an embodiment of the mass spectrometer of the present invention. Since the configuration other than the ion source is the same as that of the first embodiment, a description thereof will be omitted. The effect of the pressure in the region where the plasma 100 is generated and the output voltage of the power source 50 are the same as in the first embodiment.
- the sample solution supplied to the ESI probe 30 is ionized by electrospray ionization (ESI).
- Ions and charged droplets generated by electrospray ionization are introduced into the dielectric capillary 10 through the inlet end electrode 31.
- the dielectric capillary 10 is heated and promotes the desorption of solvent molecules from the charged droplets.
- the neutral vapor introduced into the dielectric capillary 10 and some of the neutral molecules desorbed from the charged droplets are ionized by the plasma ion source unit 33.
- the ions generated by the ESI and the ions generated by the plasma ion source unit 33 are discharged through the outlet end electrode and introduced into the subsequent ion optical system.
- the ESI probe is applied with a voltage of about 1-10 kV for positive ion measurement and about -1-10 kV for negative ion measurement. If a voltage having a polarity opposite to that of ions is applied to the inlet end electrode 31, ions generated by ESI can be more efficiently introduced into the capillary. If a DC voltage is applied to the outlet end electrode 32, it can be easily introduced into the subsequent ion optical system.
- a sample that has not been ionized by electrospray ionization can be ionized by the plasma ion source 33, so that more sensitivity can be obtained.
- low-polarity and medium-polarity molecules that are difficult to ionize by ESI can be directly ionized in plasma.
- the inside of the dielectric capillary 10 is heated to remove impurities adhering to the inner wall. Can do.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Fluid Mechanics (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Abstract
Description
Claims (22)
- 第1の電極と、
第2の電極と、
前記第1の電極と前記第2の電極との間に設けられ、試料の導入部及び排出部を有する誘電体部と、
前記第1の電極と前記第2の電極のいずれか一方に対して交流電圧を印加し、前記第1の電極と前記第2の電極との間で発生する放電により前記試料をイオン化する電源と、
前記排出部から排出されたイオンを分析する質量分析部とを有し、
前記放電は2Torr以上300Torr以下で行われることを特徴とする質量分析装置。 - 前記放電は、4Torr以上で行われることを特徴とする請求項1記載の質量分析装置。
- 前記放電は、7Torr以上で行われることを特徴とする請求項1記載の質量分析装置。
- 前記電源は、前記第1の電極と前記第2の電極のうち交流電圧を印加しない電極に対し、直流電圧を印加することを特徴とする請求項1記載の質量分析装置。
- 前記誘電体部は筒状であって、前記第1の電極は、前記筒内に設けられ、前記第2の電極は、前記筒外に設けられていることを特徴とする請求項1記載の質量分析装置。
- 前記第1の電極は、ワイヤ状の電極であって、前記ワイヤ状の試料排出部側に前記第2の電極が設けられていることを特徴とする請求項5記載の質量分析装置。
- 前記放電が行われる部位の前記筒内の内径が、他の箇所よりも大きいことを特徴とする請求項5記載の質量分析装置。
- 前記第1の電極は、前記筒内を覆うように設けられていることを特徴とする請求項5記載の質量分析装置。
- 前記誘電体部は筒状であって、前記筒の一部の領域において、前記第1の電極と前記第2の電極が、前記誘電体を挟んで対向して設けられていることを特徴とする請求項1記載の質量分析装置。
- 前記誘電体部は筒状であって、前記第1の電極と前記第2の電極は、前記筒外に設けられていることを特徴とする請求項1記載の質量分析装置。
- 前記筒の周囲を前記第1の電極と前記第2の電極とが交互に複数囲んでいることを特徴とする請求項10記載の質量分析装置。
- 前記第1の電極と前記第2の電極との間に絶縁物が設置されていることを特徴とする請求項11記載の質量分析装置。
- 前記誘電体部の前記試料の導入部は大気圧下であり、前記試料の排出部は差動排気された室におかれていることを特徴とする請求項1記載の質量分析装置。
- 前記誘電体部に存在する気体は空気であることを特徴とする請求項1記載の質量分析装置。
- 第1の電極と、
第2の電極と、
前記第1の電極と前記第2の電極との間に設けられ、試料の導入部及び排出部を有する誘電体部と、
前記第1の電極と前記第2の電極のいずれか一方に対して1以上300kHz以下の周波数の交流電圧を印加し、前記第1の電極と前記第2の電極との間で発生する放電により前記試料をイオン化する電源と、
前記排出部から排出されたイオンを分析する質量分析部とを有する質量分析装置。 - 前記周波数は、1以上20kHz以下であることを特徴とする請求項15記載の質量分析装置。
- 前記交流電圧は、矩形波であることを特徴とする請求項15記載の質量分析装置。
- 前記交流電圧は、正弦波であることを特徴とする請求項15記載の質量分析装置。
- 第1の電極と、第2の電極と、前記第1の電極と前記第2の電極との間に設けられた誘電体部と、試料の導入部、排出部とを備えた第1の室と、
前記第1の電極と前記第2の電極のいずれか一方に対して交流電圧を印加し、前記第1の電極と前記第2の電極との間で発生する放電により前記試料をイオン化する電源と、
前記排出部から排出された試料のイオンを分析する質量分析計を備えた第2の室とを備え、
前記第1の室は前記第2の室よりも圧力が高いことを特徴とする質量分析装置。 - 前記第1の電極と前記第2の電極のいずれか一方は板状であり、もう一方は前記第1の室内に設けられた複数の柱状の電極であることを特徴とする請求項19に記載の質量分析装置。
- 前記第1の電極と前記第2の電極のいずれか一方は前記第1の室を囲むように設けられ、もう一方は前記第1の室内に設けられていることを特徴とする請求項19記載の質量分析装置。
- 前記試料の導入部側に試料溶液の帯電液滴とイオンを排出するイオン化部をさらに有し、前記誘電体部は加熱されていることを特徴とする請求項1に記載の質量分析装置。
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/574,788 US9390900B2 (en) | 2010-01-25 | 2011-01-21 | Mass spectrometer |
| CN201180006963.7A CN102725818B (zh) | 2010-01-25 | 2011-01-21 | 质量分析装置 |
| EP11734519.9A EP2530702B1 (en) | 2010-01-25 | 2011-01-21 | Mass spectrometry device |
| JP2011550863A JP5622751B2 (ja) | 2010-01-25 | 2011-01-21 | 質量分析装置 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010012755 | 2010-01-25 | ||
| JP2010-012755 | 2010-01-25 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2011089912A1 true WO2011089912A1 (ja) | 2011-07-28 |
Family
ID=44306715
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2011/000300 WO2011089912A1 (ja) | 2010-01-25 | 2011-01-21 | 質量分析装置 |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US9390900B2 (ja) |
| EP (1) | EP2530702B1 (ja) |
| JP (1) | JP5622751B2 (ja) |
| CN (1) | CN102725818B (ja) |
| WO (1) | WO2011089912A1 (ja) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103177928A (zh) * | 2011-12-26 | 2013-06-26 | 株式会社日立高新技术 | 质量分析装置及质量分析方法 |
| WO2015001881A1 (ja) * | 2013-07-05 | 2015-01-08 | 株式会社日立ハイテクノロジーズ | 質量分析装置及び質量分析装置の制御方法 |
| CN104391235A (zh) * | 2014-12-10 | 2015-03-04 | 广东电网有限责任公司电力科学研究院 | 电力系统中利用毛细管测量高压电沿面放电介质温度的装置和方法 |
| WO2016002502A1 (ja) * | 2014-07-04 | 2016-01-07 | 株式会社日立ハイテクノロジーズ | 質量分析装置および質量分析方法 |
| JP2018206759A (ja) * | 2017-06-07 | 2018-12-27 | 国立大学法人広島大学 | イオン化方法、イオン化装置、及び質量分析装置 |
| JP2019500728A (ja) * | 2015-12-17 | 2019-01-10 | プラスミオン ゲーエムベーハーPlasmion Gmbh | ガス状物質のイオン化のためのイオン化装置の使用、装置及び方法、並びにガス状イオン化物質を分析するための装置及び方法 |
| JP2023535167A (ja) * | 2020-07-15 | 2023-08-16 | マーポス | バッテリーセルのリークテストのためのシステム及び方法 |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8853626B2 (en) * | 2010-02-12 | 2014-10-07 | University Of Yamanashi | Ionization apparatus and ionization analysis apparatus |
| TWI488216B (zh) * | 2013-04-18 | 2015-06-11 | Univ Nat Sun Yat Sen | 多游離源的質譜游離裝置及質譜分析系統 |
| WO2015019157A1 (en) * | 2013-08-07 | 2015-02-12 | Dh Technologies Development Pte. Ltd. | Enhanced spray formation for liquid samples |
| DE112015006840B4 (de) * | 2015-10-09 | 2024-06-27 | Hitachi High-Tech Corporation | Ionenanalysevorrichtung |
| DE102016104852B4 (de) * | 2016-03-16 | 2017-11-09 | Leibniz - Institut Für Analytische Wissenschaften - Isas - E.V. | Verfahren zur Ionisierung von gasförmigen Proben mittels dielektrisch behinderter Entladung und zur nachfolgenden Analyse der erzeugten Probenionen in einem Analysegerät |
| DE102017112726A1 (de) * | 2017-06-09 | 2018-12-13 | Leibniz - Institut Für Analytische Wissenschaften - Isas - E.V. | Verfahren zur Ionisierung von gasförmigen Proben mittels dielektrisch behinderter Entladung und zur nachfolgenden Analyse der erzeugten Probenionen in einem Analysegerät |
| US11201045B2 (en) | 2017-06-16 | 2021-12-14 | Plasmion Gmbh | Apparatus and method for ionizing an analyte, and apparatus and method for analysing an ionized analyte |
| KR101931324B1 (ko) * | 2017-09-14 | 2018-12-20 | (주)나노텍 | 셀프 플라즈마 챔버의 오염 억제 장치 |
| CN108550517A (zh) * | 2018-03-29 | 2018-09-18 | 中国地质科学院水文地质环境地质研究所 | 一种基于常压等离子体电离的新型氯/溴同位素质谱仪及其分析方法 |
| CN109243964B (zh) * | 2018-10-18 | 2021-02-09 | 株式会社岛津制作所 | 介质阻挡放电离子源、分析仪器及电离方法 |
| CN111077212B (zh) * | 2019-12-17 | 2025-02-25 | 北京声迅电子股份有限公司 | 一种基于faims原理的离子传感器 |
| CN114286486A (zh) * | 2021-12-31 | 2022-04-05 | 中国人民解放军战略支援部队航天工程大学 | 大气压介质阻挡放电等离子体活性产物测量装置和方法 |
| KR102802523B1 (ko) * | 2022-08-31 | 2025-05-07 | (주)센서테크 | 유전체 장벽 방전 이온화원을 사용하는 이온 이동도 분석장치 |
| KR102758045B1 (ko) * | 2022-08-31 | 2025-01-22 | (주)센서테크 | 이중 평판이 설치된 차동 이온 이동도 분석 장치 |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4849628A (en) | 1987-05-29 | 1989-07-18 | Martin Marietta Energy Systems, Inc. | Atmospheric sampling glow discharge ionization source |
| JP2005512274A (ja) * | 2001-08-08 | 2005-04-28 | シオネックス・コーポレーション | 容量放電プラズマ・イオン源 |
| US7064320B2 (en) | 2004-09-16 | 2006-06-20 | Hitachi, Ltd. | Mass chromatograph |
| JP2008537282A (ja) * | 2005-03-11 | 2008-09-11 | パーキンエルマー・インコーポレイテッド | プラズマとその使用方法 |
| WO2008153199A1 (ja) * | 2007-06-15 | 2008-12-18 | University Of Yamanashi | イオン化分析方法および装置 |
| WO2009102766A1 (en) | 2008-02-12 | 2009-08-20 | Purdue Research Foundation | Low temperature plasma probe and methods of use thereof |
| WO2009119050A1 (ja) * | 2008-03-25 | 2009-10-01 | 国立大学法人大阪大学 | 放電イオン化電流検出器 |
| US20090278038A1 (en) * | 2006-10-25 | 2009-11-12 | Gesellschaft Zur Foerderung Der Analytischen Wissenschaften E.V. | Method and device for generating positively and/or negatively ionized gas analytes for gas analysis |
| WO2009157312A1 (ja) * | 2008-06-27 | 2009-12-30 | 国立大学法人山梨大学 | イオン化分析方法および装置 |
Family Cites Families (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6753523B1 (en) * | 1998-01-23 | 2004-06-22 | Analytica Of Branford, Inc. | Mass spectrometry with multipole ion guides |
| US6359275B1 (en) * | 1999-07-14 | 2002-03-19 | Agilent Technologies, Inc. | Dielectric conduit with end electrodes |
| KR100566851B1 (ko) * | 2000-08-28 | 2006-04-03 | 샤프 가부시키가이샤 | 공기 개질 기기 및 이것에 사용되는 이온 발생 장치 |
| US7091481B2 (en) * | 2001-08-08 | 2006-08-15 | Sionex Corporation | Method and apparatus for plasma generation |
| US7460225B2 (en) * | 2004-03-05 | 2008-12-02 | Vassili Karanassios | Miniaturized source devices for optical and mass spectrometry |
| US7173252B2 (en) * | 2004-10-25 | 2007-02-06 | Epion Corporation | Ionizer and method for gas-cluster ion-beam formation |
| US20060119278A1 (en) * | 2004-12-07 | 2006-06-08 | Canon Kabushiki Kaisha | Gas decomposition apparatus and gas treatment cartridge |
| CN100358198C (zh) * | 2005-03-02 | 2007-12-26 | 华北电力大学(北京) | 一种用于实现大气压下空气中均匀辉光放电的方法 |
| CN100522320C (zh) * | 2007-05-25 | 2009-08-05 | 北京工业大学 | 一种处理挥发性有机物的低温等离子体装置 |
| CN101067616B (zh) * | 2007-06-06 | 2011-07-20 | 中国科学院合肥物质科学研究院 | 纵向高场不对称波形离子迁移谱装置 |
| US20090031785A1 (en) * | 2007-07-31 | 2009-02-05 | Caviton, Inc. | Capacitively coupled dielectric barrier discharge detector |
| JP4977557B2 (ja) * | 2007-08-31 | 2012-07-18 | 株式会社神戸製鋼所 | イオン源 |
| CA2726521A1 (en) * | 2008-05-30 | 2009-12-23 | Thermo Finnigan Llc | Method and apparatus for generation of reagent ions in a mass spectrometer |
| WO2010045049A1 (en) * | 2008-10-13 | 2010-04-22 | Purdue Research Foundation | Systems and methods for transfer of ions for analysis |
| US7888653B2 (en) * | 2009-01-02 | 2011-02-15 | Varian Semiconductor Equipment Associates, Inc. | Techniques for independently controlling deflection, deceleration and focus of an ion beam |
| JP2010205446A (ja) * | 2009-02-27 | 2010-09-16 | Kobe Steel Ltd | イオン源 |
| US8330119B2 (en) * | 2009-04-10 | 2012-12-11 | Ohio University | On-line and off-line coupling of EC with DESI-MS |
| JP5604165B2 (ja) * | 2010-04-19 | 2014-10-08 | 株式会社日立ハイテクノロジーズ | 質量分析装置 |
| JP5497615B2 (ja) * | 2010-11-08 | 2014-05-21 | 株式会社日立ハイテクノロジーズ | 質量分析装置 |
-
2011
- 2011-01-21 CN CN201180006963.7A patent/CN102725818B/zh not_active Expired - Fee Related
- 2011-01-21 JP JP2011550863A patent/JP5622751B2/ja active Active
- 2011-01-21 EP EP11734519.9A patent/EP2530702B1/en active Active
- 2011-01-21 US US13/574,788 patent/US9390900B2/en not_active Expired - Fee Related
- 2011-01-21 WO PCT/JP2011/000300 patent/WO2011089912A1/ja active Application Filing
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4849628A (en) | 1987-05-29 | 1989-07-18 | Martin Marietta Energy Systems, Inc. | Atmospheric sampling glow discharge ionization source |
| JP2005512274A (ja) * | 2001-08-08 | 2005-04-28 | シオネックス・コーポレーション | 容量放電プラズマ・イオン源 |
| US7064320B2 (en) | 2004-09-16 | 2006-06-20 | Hitachi, Ltd. | Mass chromatograph |
| JP2008537282A (ja) * | 2005-03-11 | 2008-09-11 | パーキンエルマー・インコーポレイテッド | プラズマとその使用方法 |
| US20090278038A1 (en) * | 2006-10-25 | 2009-11-12 | Gesellschaft Zur Foerderung Der Analytischen Wissenschaften E.V. | Method and device for generating positively and/or negatively ionized gas analytes for gas analysis |
| WO2008153199A1 (ja) * | 2007-06-15 | 2008-12-18 | University Of Yamanashi | イオン化分析方法および装置 |
| WO2009102766A1 (en) | 2008-02-12 | 2009-08-20 | Purdue Research Foundation | Low temperature plasma probe and methods of use thereof |
| WO2009119050A1 (ja) * | 2008-03-25 | 2009-10-01 | 国立大学法人大阪大学 | 放電イオン化電流検出器 |
| WO2009157312A1 (ja) * | 2008-06-27 | 2009-12-30 | 国立大学法人山梨大学 | イオン化分析方法および装置 |
Non-Patent Citations (2)
| Title |
|---|
| ANALYTICAL CHEMISTRY, vol. 70, 1998, pages 513 - 518 |
| See also references of EP2530702A4 |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2610892A2 (en) | 2011-12-26 | 2013-07-03 | Hitachi High-Technologies Corporation | Mass spectrometer and mass spectrometry |
| JP2013134817A (ja) * | 2011-12-26 | 2013-07-08 | Hitachi High-Technologies Corp | 質量分析装置及び質量分析方法 |
| US8803084B2 (en) | 2011-12-26 | 2014-08-12 | Hitachi High-Technologies Corporation | Mass spectrometer and mass spectrometry |
| CN103177928A (zh) * | 2011-12-26 | 2013-06-26 | 株式会社日立高新技术 | 质量分析装置及质量分析方法 |
| EP2610892A3 (en) * | 2011-12-26 | 2015-09-30 | Hitachi High-Technologies Corporation | Mass spectrometer and mass spectrometry |
| WO2015001881A1 (ja) * | 2013-07-05 | 2015-01-08 | 株式会社日立ハイテクノロジーズ | 質量分析装置及び質量分析装置の制御方法 |
| JP2015015160A (ja) * | 2013-07-05 | 2015-01-22 | 株式会社日立ハイテクノロジーズ | 質量分析装置及び質量分析装置の制御方法 |
| WO2016002502A1 (ja) * | 2014-07-04 | 2016-01-07 | 株式会社日立ハイテクノロジーズ | 質量分析装置および質量分析方法 |
| CN104391235A (zh) * | 2014-12-10 | 2015-03-04 | 广东电网有限责任公司电力科学研究院 | 电力系统中利用毛细管测量高压电沿面放电介质温度的装置和方法 |
| JP2019500728A (ja) * | 2015-12-17 | 2019-01-10 | プラスミオン ゲーエムベーハーPlasmion Gmbh | ガス状物質のイオン化のためのイオン化装置の使用、装置及び方法、並びにガス状イオン化物質を分析するための装置及び方法 |
| JP7014436B2 (ja) | 2015-12-17 | 2022-02-01 | プラスミオン ゲーエムベーハー | ガス状物質のイオン化のためのイオン化装置の使用、装置及び方法、並びにガス状イオン化物質を分析するための装置及び方法 |
| JP2018206759A (ja) * | 2017-06-07 | 2018-12-27 | 国立大学法人広島大学 | イオン化方法、イオン化装置、及び質量分析装置 |
| JP7171016B2 (ja) | 2017-06-07 | 2022-11-15 | 国立大学法人広島大学 | イオン化方法、イオン化装置、及び質量分析装置 |
| JP2023535167A (ja) * | 2020-07-15 | 2023-08-16 | マーポス | バッテリーセルのリークテストのためのシステム及び方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102725818B (zh) | 2015-08-12 |
| EP2530702A4 (en) | 2017-02-01 |
| US9390900B2 (en) | 2016-07-12 |
| EP2530702B1 (en) | 2020-03-11 |
| JPWO2011089912A1 (ja) | 2013-05-23 |
| EP2530702A1 (en) | 2012-12-05 |
| CN102725818A (zh) | 2012-10-10 |
| US20120292501A1 (en) | 2012-11-22 |
| JP5622751B2 (ja) | 2014-11-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5622751B2 (ja) | 質量分析装置 | |
| JP5771458B2 (ja) | 質量分析装置及び質量分析方法 | |
| JP5497615B2 (ja) | 質量分析装置 | |
| US7326926B2 (en) | Corona discharge ionization sources for mass spectrometric and ion mobility spectrometric analysis of gas-phase chemical species | |
| JP4511039B2 (ja) | 準安定原子衝撃源 | |
| US8003935B2 (en) | Chemical ionization reaction or proton transfer reaction mass spectrometry with a quadrupole mass spectrometer | |
| CN102956433B (zh) | 质量分析装置及质量分析方法 | |
| US8003936B2 (en) | Chemical ionization reaction or proton transfer reaction mass spectrometry with a time-of-flight mass spectrometer | |
| JP5315248B2 (ja) | ガス分析用に正および/または負にイオン化したガス検体を生成するための方法及び装置 | |
| CN103972018B (zh) | 一种射频电场增强的单光子‑化学电离源 | |
| US9153427B2 (en) | Vacuum ultraviolet photon source, ionization apparatus, and related methods | |
| WO2012100120A2 (en) | Synchronization of ion generation with cycling of a discontinuous atmospheric interface | |
| CN106030299A (zh) | 气体分析装置和用于进行气体分析的方法 | |
| WO2012162036A1 (en) | Systems and methods for analyzing a sample | |
| JP4185163B2 (ja) | 高周波イオン源 | |
| JP2004257873A (ja) | 試料ガスのイオン化方法およびイオン化装置 | |
| CN113169028A (zh) | 质谱仪和通过质谱分析气体的方法 | |
| CN104716009A (zh) | 一种基于真空紫外光电离和大气压电离的复合电离源 | |
| CN102103039A (zh) | 一种表面解吸附采样的方法和装置 | |
| US7365315B2 (en) | Method and apparatus for ionization via interaction with metastable species | |
| CN112438075A (zh) | 放电室以及使用放电室的电离装置、方法和系统 | |
| JP2012028157A (ja) | イオン源および質量分析装置 | |
| JP5759036B2 (ja) | 質量分析装置 | |
| RU2487434C1 (ru) | Масс-спектральное устройство для быстрого и прямого анализа проб | |
| JP2025029786A (ja) | イオン分析装置 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201180006963.7 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11734519 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2011734519 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2011550863 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 13574788 Country of ref document: US |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |