WO2011093039A1 - 生乳検査方法及び生乳検査装置 - Google Patents
生乳検査方法及び生乳検査装置 Download PDFInfo
- Publication number
- WO2011093039A1 WO2011093039A1 PCT/JP2011/000292 JP2011000292W WO2011093039A1 WO 2011093039 A1 WO2011093039 A1 WO 2011093039A1 JP 2011000292 W JP2011000292 W JP 2011000292W WO 2011093039 A1 WO2011093039 A1 WO 2011093039A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- raw milk
- current value
- somatic cells
- electrodes
- electrode
- Prior art date
Links
- 235000020185 raw untreated milk Nutrition 0.000 title claims abstract description 181
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000007689 inspection Methods 0.000 title claims abstract description 43
- 239000012476 oxidizable substance Substances 0.000 claims abstract description 39
- 241000124008 Mammalia Species 0.000 claims abstract description 25
- 150000002433 hydrophilic molecules Chemical class 0.000 claims abstract description 17
- 210000001082 somatic cell Anatomy 0.000 claims description 99
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 54
- 210000000481 breast Anatomy 0.000 claims description 39
- 238000005259 measurement Methods 0.000 claims description 29
- 238000003860 storage Methods 0.000 claims description 27
- 238000012360 testing method Methods 0.000 claims description 26
- 235000010323 ascorbic acid Nutrition 0.000 claims description 25
- 239000011668 ascorbic acid Substances 0.000 claims description 25
- 229960005070 ascorbic acid Drugs 0.000 claims description 25
- 238000012545 processing Methods 0.000 claims description 14
- 125000002091 cationic group Chemical group 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 208000004396 mastitis Diseases 0.000 abstract description 46
- 235000013336 milk Nutrition 0.000 description 30
- 239000008267 milk Substances 0.000 description 30
- 210000004080 milk Anatomy 0.000 description 30
- 241000283690 Bos taurus Species 0.000 description 19
- 235000013365 dairy product Nutrition 0.000 description 18
- 230000003647 oxidation Effects 0.000 description 15
- 238000007254 oxidation reaction Methods 0.000 description 15
- 238000011088 calibration curve Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 208000015181 infectious disease Diseases 0.000 description 9
- 244000144972 livestock Species 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 6
- 235000018417 cysteine Nutrition 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 229910021607 Silver chloride Inorganic materials 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- SUVIGLJNEAMWEG-UHFFFAOYSA-N propane-1-thiol Chemical group CCCS SUVIGLJNEAMWEG-UHFFFAOYSA-N 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 210000000265 leukocyte Anatomy 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229930003268 Vitamin C Natural products 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 235000019154 vitamin C Nutrition 0.000 description 2
- 239000011718 vitamin C Substances 0.000 description 2
- UODGHRYECKYJEB-UHFFFAOYSA-N 1-aminobutane-1-thiol Chemical compound CCCC(N)S UODGHRYECKYJEB-UHFFFAOYSA-N 0.000 description 1
- ZQXIMYREBUZLPM-UHFFFAOYSA-N 1-aminoethanethiol Chemical compound CC(N)S ZQXIMYREBUZLPM-UHFFFAOYSA-N 0.000 description 1
- AUQNBVXKZQIRAL-UHFFFAOYSA-N 1-aminononane-1-thiol Chemical compound CCCCCCCCC(N)S AUQNBVXKZQIRAL-UHFFFAOYSA-N 0.000 description 1
- RZJWLSPNMSHOHK-UHFFFAOYSA-N 4-methyl-1-phenylpenta-1,4-dien-3-one Chemical compound CC(=C)C(=O)C=CC1=CC=CC=C1 RZJWLSPNMSHOHK-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000003977 dairy farming Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 230000006651 lactation Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/02—Food
- G01N33/04—Dairy products
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/49—Systems involving the determination of the current at a single specific value, or small range of values, of applied voltage for producing selective measurement of one or more particular ionic species
Definitions
- the present invention relates to a method for inspecting raw milk of mammals, particularly dairy cows, and a raw milk inspection apparatus for performing the inspection.
- mastitis of livestock is a major issue. Milk from livestock infected with mastitis has a reduced commercial value due to a decrease in lactose percentage, an increase in salinity, and other changes in milk components. Infection with mastitis also damages livestock animals and breast tissue, leading to reduced lactation capacity and reduced productivity. Therefore, it is very important to detect mastitis and start treatment while the infection level is low.
- the number of somatic cells in milk is generally used as an indicator of infection.
- the number of somatic cells in milk is the total number of blood-derived cells including white blood cells and mammary epithelial cells.
- the rapid increase in the number of somatic cells indicates that leukocytes have moved from blood to milk due to the invasion of bacteria into the breast and proliferated, and that white blood cells have increased in milk. It is useful as an indicator of milk in livestock infected with mastitis.
- somatic cells can be measured with high reliability by microscopic observation or a cell sorter, the devices used for these measurements are usually expensive, large-sized, and complicated to operate.
- the number of somatic cells is measured at a specific laboratory. Therefore, when the results of somatic cell counts are revealed, the milk of livestock infected with mastitis is mixed with normal milk, and the milk of livestock infected with mastitis deteriorates the quality of large quantities of milk in the same tank. As a result, the milk of the tank unit is discarded.
- the milk of livestock with low infectivity is diluted with normal milk, early detection of mastitis is difficult. Therefore, a simple method and apparatus that can measure the number of somatic cells during milking is desired.
- Patent Document 1 discloses a mastitis comprising a milk heating means, a reactive oxygen species sensor, and a mastitis diagnosis means as an apparatus capable of accurately diagnosing mastitis by a simple method.
- a diagnostic device is disclosed.
- the apparatus focuses on the amount of active oxygen generated from neutrophils that increase when infected with mastitis, and determines whether or not mastitis is infected based on the current value detected by the active oxygen sensor.
- the apparatus described in Patent Document 1 has a problem in sensitivity because the current value based on the amount of active oxygen is small.
- an object of the present invention is to easily and highly sensitively test whether the milk of a mammal infected with mastitis is raw.
- the present invention that has solved the above problems includes a step of applying a voltage to raw milk of a mammal (A), and a step of measuring a current generated when an easily oxidizable substance is oxidized by the applied voltage (B). Is a method for inspecting raw milk.
- the present invention also includes at least one set of electrodes including a working electrode including a hydrophilic compound exposed on the surface, and a counter electrode; A circuit for applying a constant voltage between the electrodes; And a means for measuring a current generated when an easily oxidizable substance in raw milk is oxidized by an applied voltage.
- the present invention it is possible to easily and highly sensitively check whether the milk is a mammal infected with mastitis.
- FIG. 3 is a sectional view taken along line III-III in FIG. 2. It is a top view which shows the sensor which abbreviate
- FIG. 2 is a graph showing the relationship between the current value obtained in Example 1 and the ascorbic acid concentration. It is a graph which shows the relationship between the electric current value obtained in Example 1, and the number of somatic cells.
- Healthy milk cow's raw milk contains about 1.5 to 2.0 mg / 100 mL of ascorbic acid (reducible vitamin C) biosynthesized in the body. It has been reported that the amount of ascorbic acid in raw milk decreases as the suspicion of latent mastitis in dairy cows increases (see Non-Patent Document 1). The present inventors pay attention to this phenomenon and electrochemically oxidize an easily oxidizable substance typified by ascorbic acid in raw milk. From the oxidation current value, the raw milk of a mammal infected with mastitis It was found that it can be determined whether or not. Further, the present inventors have found that the oxidation current value is correlated with the number of somatic cells, and the number of somatic cells can be estimated from the oxidation current value.
- the method for inspecting raw milk of the present invention includes the step (A) and the step (B) described above (method A).
- Step (A) In step (A), a voltage is applied to the milk of the mammal.
- Step (A) can be performed, for example, by immersing an electrode including a working electrode and a counter electrode in raw milk and applying a voltage between the electrodes.
- the working electrode preferably contains a hydrophilic compound exposed on the surface.
- the hydrophilic compound functions as an electrode catalyst, and the sensitivity of current measurement can be improved.
- the kind of the hydrophilic compound is not particularly limited as long as it has an electrode catalytic action, and may be appropriately determined according to the kind of the easily oxidizable substance.
- the hydrophilic compound preferably has a cationic group and more preferably has an amino group from the viewpoint of electrocatalysis. Specific examples include cysteine, aminoethanethiol, aminobutanethiol, aminononanethiol, and the like. Since a material such as gold is usually used for the working electrode, the hydrophilic compound preferably has a sulfur atom-containing group (particularly a thiol group) from the viewpoint of affinity with the working electrode. In particular, cysteine is preferred.
- the applied voltage may be appropriately selected according to the kind of the easily oxidizable substance so that the easily oxidizable substance is oxidized, and is preferably in the range of +0.1 to + 0.6V. With an applied voltage in this range, ascorbic acid can be oxidized among easily oxidizable substances.
- mammals those raised as livestock are preferred, and examples include dairy cows and goats.
- Step (A) By applying voltage in step (A), the easily oxidizable substance is oxidized, and an oxidation current flows between the working electrode and the counter electrode.
- Step (B) can be performed by measuring the value of the oxidation current flowing between the working electrode and the counter electrode.
- the easily oxidizable substance is a substance that exists in raw milk and is easily oxidized electrochemically, and its concentration is correlated with mastitis.
- ascorbic acid is preferable.
- the current value measured in step (B) has a correlation with the concentration of the easily oxidizable substance. Therefore, since there is a correlation between the mastitis and the concentration of the easily oxidizable substance, it can be determined from the magnitude of the current value whether the milk is milk of a mammal infected with mastitis. For example, when the easily oxidizable substance is ascorbic acid, when the current value is small, it can be determined that the milk is raw milk of a mammal infected with mastitis.
- the current value of raw milk in a healthy dairy cow is about 50 to 70 nA per square millimeter of electrode area, but the current of raw milk in a dairy cow infected with mastitis. The value is about 20 to 50 nA per square millimeter of electrode area.
- the current value can be measured with a known ammeter such as a galvanometer, for example.
- the raw milk inspection method of the present invention can be carried out by a simple operation.
- the oxidation current value of an easily oxidizable substance is measured. Since this oxidation current value is larger than the current value based on active oxygen, the raw milk can be inspected with high sensitivity. .
- the method of the present invention also has an advantage that the inspection can be performed even after the time after milking has elapsed (usually, the method of the present invention can be performed for about 24 hours from immediately after milking).
- the raw milk inspection method of the present invention further includes the following step (C) (Method B).
- step (C) the number of somatic cells in the raw milk is calculated from the measured current value. Since the concentration of the easily oxidizable substance is related to mastitis, the oxidation current value indicating the concentration of the easily oxidizable substance is also related to the number of somatic cells. For example, when the easily oxidizable substance is ascorbic acid, there is a negative correlation between the oxidation current value and the number of somatic cells. Therefore, a calibration curve can be created for raw milk by obtaining a somatic cell value by a conventional method and a current value by the method of the present invention. Step (C) can be performed by converting the number of somatic cells from the measured current value using this calibration curve.
- the number of somatic cells in raw milk of healthy dairy cows is 20,000 to 100,000 per mL
- the number of somatic cells in raw milk of dairy cows infected with mastitis is , 300,000 pieces / mL or more. Therefore, when the number of somatic cells converted from the measured current value is 300,000 cells / mL or more, it can be determined that the milk is milk of a dairy cow infected with mastitis.
- a dairy cow has four breasts, but mastitis is infected with each breast independently, and all four breasts are infected with mastitis.
- the amount of oxidizable substances in raw milk is slightly different for each cow, and there are individual differences. Therefore, if raw milk obtained from another breast of the same individual is used as a comparison target, the influence of individual differences in the amount of oxidizable substances can be eliminated, and a more accurate examination can be performed.
- the steps (A) and (B) are further performed on raw milk obtained from another breast of the mammal (the same individual), And (D) comparing the current values obtained from the raw milk of each breast (Method C).
- the examined raw milk contains raw milk of the breast infected with mastitis.
- the easily oxidizable substance is ascorbic acid
- it can be determined that raw milk having a small current value is raw milk of a breast infected with mastitis.
- the steps (A) and (B) are further performed on raw milk obtained from another breast of the mammal (the same individual),
- the method includes a step (E) of obtaining a difference between current values obtained from raw milk of each breast (Method D).
- step (E) When there is a large difference in current values obtained in step (E), it can be determined that raw milk infected with mastitis is included in the examined raw milk.
- the magnitude of the difference in the current value obtained from the raw milk of each breast is related to the number of somatic cells.
- a preferred embodiment of the method (D) further includes a step (F) of calculating the number of somatic cells in raw milk obtained from each breast from the difference in current values obtained in the step (E) ( Method E).
- a calibration curve can be created for raw milk by determining the difference between the somatic cell value by the conventional method and the current value by the method of the present invention.
- Step (F) can be performed by converting the number of somatic cells from the difference in the measured current values using this calibration curve.
- Method E may further include comparing the calculated number of somatic cells in the raw milk of each breast.
- the steps (A) to (C) are further performed on raw milk obtained from another breast of the mammal (the same individual), And (G) comparing the number of somatic cells in raw milk obtained from each breast (Method F).
- step (G) if the number of somatic cells is compared, and there is a large difference in the number of somatic cells, it can be determined that the examined raw milk contains raw milk from a breast infected with mastitis. At this time, it can be determined that raw milk having a large number of somatic cells is raw milk of a breast infected with mastitis.
- the present invention is an examination method of raw milk, but can also be applied as a mastitis diagnosis method.
- the raw milk test apparatus of the present invention includes a working electrode including a hydrophilic compound exposed on the surface, at least one set of electrodes including a counter electrode, a circuit for applying a constant voltage between the electrodes, and easy oxidation in raw milk. Means for measuring a current generated when the sex substance is oxidized by the applied voltage (apparatus A).
- inspection method of this invention mentioned above can be performed with the raw milk test
- a set of electrodes includes a working electrode and a counter electrode, but may further include a reference electrode.
- the electrodes may be in two or more sets to allow simultaneous measurement of two or more raw milks, particularly two or more raw milks obtained from different breasts of the same mammal (same individual).
- a conductive material such as gold, silver, silver chloride, platinum, copper, aluminum, and stainless steel can be used for the electrode.
- the hydrophilic compound contained in the working electrode is as described above. From the viewpoint of sensitivity, the working electrode preferably contains the hydrophilic compound as a layer having a thickness of 20 mm or less. In order to form a hydrophilic compound layer on the surface of the working electrode, a coating solution containing the hydrophilic compound may be applied on the working electrode by a known method such as a dipping method, an ink jet method, or an injection method, and dried.
- the circuit electrically connects the working electrode and the counter electrode. If an internal power supply or an external power supply is connected directly or indirectly to this circuit, a voltage can be applied.
- the circuit is preferably configured so that a voltage of about +0.1 to +0.6 V can be applied.
- the means for measuring the current generated when the oxidizable substance in raw milk is oxidized by the applied voltage is preferably a means capable of measuring a current of about 0.01 to 10 ⁇ A, such as a galvanometer. Any known ammeter can be used.
- the raw milk inspection apparatus of the present invention preferably has means for notifying the measurement result.
- the means include a display unit such as a monitor and a lamp, and a speaker.
- the raw milk test apparatus of the present invention calculates the number of somatic cells in the raw milk from the current value measured at the applied voltage at which the oxidizable substance is oxidized. It is preferable to further include an arithmetic unit for calculation (apparatus B). With the apparatus B, the above method B can be carried out.
- the calculation unit includes, for example, a CPU and a storage unit such as a memory and a hard disk. A calibration curve indicating the correlation between the number of somatic cells and the current value is input to the storage unit, and the number of somatic cells is calculated by the CPU.
- the raw milk inspection apparatus of the present invention may have a calculation unit for determining whether the milk is a mammal infected with mastitis from the current value or the number of somatic cells.
- the calculation unit includes a CPU, a storage unit, and the like, and a correlation between the current value or the number of somatic cells and mastitis infection is input to the storage unit.
- This calculation unit may be a calculation unit that calculates the number of somatic cells.
- a preferred embodiment of the raw milk test apparatus includes a storage unit for storing a measured current value in addition to the electrode, the circuit, and the current measuring unit, and a current value obtained by newly measuring. And a data processing unit for comparing the stored current values (device C). According to the apparatus of this embodiment, the method C can be performed by sequentially measuring raw milk obtained from another breast of the same individual.
- the storage unit for storing the measured current value in addition to the electrode, the circuit, and the current measuring unit, and the current value obtained by newly measuring.
- apparatus D the method D can be performed by sequentially measuring raw milk obtained from another breast of the same individual.
- the calculation unit can be constituted by a CPU or the like, for example.
- the device D may further include a calculation unit that calculates the number of somatic cells in raw milk from the difference between the newly obtained current value obtained by measurement and the stored current value (device E).
- the method E can be performed by sequentially measuring raw milk obtained from another breast of the same individual.
- the calculation unit includes, for example, a CPU and a storage unit such as a memory and a hard disk. A calibration curve indicating a correlation between the number of somatic cells and the difference between the current values is input to the storage unit, and the number of somatic cells is calculated by the CPU.
- a CPU of a calculation unit that obtains the difference between the current values may be used.
- the apparatus E may further include a data processing unit that compares the calculated number of somatic cells in the raw milk of each breast.
- Another preferred embodiment of the raw milk test apparatus of the present invention is a memory for storing the calculated number of somatic cells, in addition to the electrode, the circuit, the current measuring means, and the calculation unit for calculating the number of somatic cells. And a data processing unit for comparing the number of somatic cells newly obtained by measurement and the stored number of somatic cells (apparatus F).
- the method F can be performed by sequentially measuring raw milk obtained from another breast of the same individual.
- Another preferable embodiment of the raw milk inspection apparatus of the present invention is an apparatus including the electrode, the circuit, and the current measuring means, and the apparatus includes two or more sets of the electrodes, and each set It further includes a data processing unit that compares the current values measured with respect to the electrodes (device G).
- the method C can be performed in one measurement by using each set of electrodes for each raw milk obtained from another breast of the same individual.
- Another preferable embodiment of the raw milk inspection apparatus of the present invention is an apparatus including the electrode, the circuit, and the current measuring means, and the apparatus includes two or more sets of the electrodes, and each set It further includes a calculation unit for obtaining a difference between the current values measured with respect to the electrodes (apparatus H).
- the above method D can be carried out in one measurement by using each set of electrodes for each raw milk obtained from another breast of the same individual.
- the calculation unit can be constituted by a CPU or the like, for example.
- the apparatus H may further include a calculation unit that calculates the number of somatic cells in raw milk from the difference between the obtained current values (apparatus I).
- the method E can be carried out in one measurement by using each set of electrodes for each raw milk obtained from another breast of the same individual.
- the calculation unit includes, for example, a CPU and a storage unit such as a memory and a hard disk. A calibration curve indicating a correlation between the number of somatic cells and the difference between the current values is input to the storage unit, and the number of somatic cells is calculated by the CPU.
- a CPU of a calculation unit that obtains the difference between the current values may be used.
- Another preferable embodiment of the raw milk test apparatus of the present invention is an apparatus including the electrode, the circuit, the current measuring means, and a calculation unit for calculating the number of somatic cells, wherein the apparatus includes the A data processing unit that includes two or more sets of electrodes and compares the number of somatic cells calculated for each set of electrodes is further included (apparatus J).
- the method F can be performed in one measurement by using each set of electrodes for each raw milk obtained from another breast of the same individual.
- the storage unit that stores the measured current value and the storage unit that stores the calculated number of somatic cells can be configured by a memory, a hard disk, or the like.
- the storage unit that stores the calibration curve of the calculation unit may be used as these storage units, or separately
- a storage unit may be provided.
- the data processing unit can be configured by a CPU or the like, and when the raw milk inspection apparatus has a calculation unit that calculates the number of somatic cells in raw milk, the CPU or the like of the calculation unit may be used as the data processing unit.
- a separate data processing unit may be provided. Therefore, the calculation unit that calculates the number of somatic cells may function as the storage unit and the data processing unit, or the storage unit and the data processing unit may be provided separately.
- the raw milk inspection apparatus of the present invention can be reduced in size and cost, and can easily and rapidly inspect raw milk with high sensitivity.
- the present invention is a raw milk inspection apparatus, but can also be applied as a mastitis diagnosis apparatus.
- Fig. 1 shows a specific example of a raw milk inspection device.
- the raw milk inspection apparatus 1 ⁇ / b> A includes a sensor 2, a connector 5, and a main body 6, and the sensor 2 is detachable from the main body 6 at the connector 5.
- the sensor 2 includes electrodes, and by making the sensor 2 detachable, the measurement can be easily repeated simply by replacing the sensor 2.
- This configuration corresponds to the devices A to F described above.
- the sensor 2 is of a substantially rectangular plate type having an examination room 20 for holding raw milk, and the plate type sensor can easily optimize the electrode arrangement and the like.
- Raw milk is introduced into the examination room 20 by capillary action.
- the volume of the examination room 20 is preferably 0.01 to 5 mL, and more preferably 0.05 to 1 mL.
- a more preferable volume of the examination chamber 20 is 0.1 to 0.3 mL.
- the senor 2 includes a substantially rectangular base plate 21 and three working electrodes 31, a reference electrode 32, and a counter electrode 33 supported by one surface (one surface in the thickness direction) 21 a of the base plate 21.
- An electrode and a substantially rectangular cover plate 22 fixed to one surface 21a of the base plate 21 with the electrodes 31 to 33 interposed therebetween are provided.
- one of the longitudinal directions of the base plate 21 (upper right direction in FIG. 2) is referred to as the front, and the other (lower left direction in FIG. 2) is referred to as the rear.
- (Lower right direction in FIG. 2) is called the right side, and the other (upper left direction in FIG. 2) is called the left side.
- the width of the cover plate 22 is the same as the width of the base plate 21, but the length of the cover plate 22 is set shorter than the length of the base plate 21 so as to expose the rear end portion of the one surface 21 a of the base plate 21. Yes.
- the size of the base plate 21 is, for example, 60 mm long, 30 mm wide, and 1 mm thick.
- the size of the cover plate 22 is, for example, 50 mm long, 30 mm wide, and 3 mm thick.
- the material of the base plate 21 and the cover plate 22 is not particularly limited as long as it is insulative.
- acrylic resin polylactic acid resin, polyglycolic acid resin, styrene resin, methacryl-styrene Copolymer resin (MS resin), polycarbonate resin, polyester resin such as polyethylene terephthalate, polyvinyl alcohol resin, ethylene-vinyl alcohol copolymer resin, thermoplastic elastomer such as styrene elastomer, vinyl chloride resin, poly Examples thereof include silicone resins such as dimethylsiloxane, vinyl acetate resins, and polyvinyl butyral resins.
- the material of the base plate 21 is preferably selected as appropriate in consideration of adhesion with an electrode material described later
- the material of the cover plate 22 is preferably selected as appropriate in consideration of adhesion with the base plate 21. .
- a groove 23 is formed in the end surface of the cover plate 22 along the base plate 21, and the inspection chamber 20 is configured by the groove 23 and one surface 21 a of the base plate 21.
- the examination room 20 is automatically filled with raw milk from the opening 23a by capillary action. That is, the opening 23 a of the groove 23 constitutes an introduction port to the examination room 20.
- the width of the groove 23 is preferably 1 to 50 mm, the depth is 0.05 to 5 mm, and the length is preferably 2 to 100 mm, more preferably the width of the groove 23 is 3 to 30 mm.
- the depth is 0.1 to 3 mm, and the length is 10 to 70 mm.
- the width of the groove 23 may be 10 mm, the depth may be 0.5 mm, and the length may be 40 mm.
- the groove 23 can be formed by machining, injection molding, or the like, and the base plate 21 and the cover plate 22 can be joined by heat fusion, laser fusion, solution adhesion technique, or the like.
- the capillary phenomenon since the capillary phenomenon is used, it is possible to fill the examination room 20 with the raw milk in a short time, for example, within 5 seconds, simply by immersing the end of the sensor 2 on the opening 23a side in the raw milk. .
- the sensor 2 does not necessarily need to utilize a capillary phenomenon, and an examination room may be provided by a through hole that penetrates the cover plate in the thickness direction. At this time, the sensor 2 corresponds to the spotting method.
- the working electrode 31, the reference electrode 32, and the counter electrode 33 are arranged in the left-right direction, and each extends linearly in the front-rear direction from the rear end of the base plate 21 to a predetermined position.
- a circular first electrode part (positive electrode part) 31a is provided at the tip of the working electrode 31, and a circular second electrode part (negative electrode part) larger than the first electrode part 31a is provided at the tip of the counter electrode 33.
- 33a is provided.
- the tip 32a of the reference electrode 32 has a small circular shape.
- the first electrode portion 31 a and the second electrode portion 33 a and the tip 32 a of the reference electrode 32 all face the internal space of the examination room 20.
- portions of the electrodes 31 to 33 that are not covered with the cover plate 22 constitute wide terminal portions 31b to 33b, and these terminal portions 31b to 33b are inserted into the connector 5 with the sensor 2. When attached, it is electrically connected to a terminal (not shown) of the connector 5.
- the hydrophilic compound 4 (eg, cysteine) is immobilized. This immobilization can be performed, for example, by immersing the electrode in a solution of the hydrophilic compound 4.
- the reference electrode 32 is used as a reference electrode.
- a voltage of, for example, 1 V DC is applied uniformly between the working electrode 31 and the counter electrode 33 and between the reference electrode 32 and the counter electrode 33.
- an additional voltage of, for example, 0.3 V is applied to the working electrode 31 in a superimposed manner, the oxidizable substance is oxidized on the first electrode portion 31 a to cause hydrolysis, and the working electrode 31 and the counter electrode 33 are oxidized. Current flows between them.
- the area of the second electrode portion 33a is preferably larger than the area of the first electrode portion 31a.
- “the area of the second electrode portion 33a” and “the area of the first electrode portion 31a” are the areas when the second electrode portion 33a and the first electrode portion 31a are viewed from a direction orthogonal to the base plate 21.
- the area of the first electrode portion 31a is preferably 0.7 to 500 mm 2 , and more preferably 4 to 100 mm 2 .
- the electrodes 31 to 33 can be formed by vapor deposition, sputtering, electrolytic plating, electroless plating, silk screen printing, metal paste injection, or the like. By adopting such an industrially established method, the electrodes 31 to 33 can be formed with high accuracy, and the reproducibility of measured values can be improved in mass production.
- the conductive material used for the electrodes include gold, silver, silver chloride, platinum, copper, aluminum, and stainless steel.
- the working electrode 31 is made of gold
- the reference electrode 32 is made of silver / silver chloride
- the counter electrode 33 is made of platinum.
- each electrode 31 to 33 is 0.5 to 20 mm, the length is 1 to 100 mm, and the thickness is 0.003 to 300 ⁇ m. More preferably, the width of each electrode 31 to 33 is 1 to 10 mm, The length is 2 to 20 mm, and the thickness is 0.02 to 200 ⁇ m.
- an uneven structure or the like may be provided in the electrode portion.
- the apparatus body 6 calculates the number of somatic cells contained in the raw milk based on the current flowing between the working electrode 31 and the counter electrode 33.
- the apparatus main body 6 is configured such that the current flowing between the working electrode 31 and the counter electrode 33 when a voltage is applied between the working electrode 31 and the reference electrode 32 via the power supply 65 and the voltage application circuit 62.
- a calculation unit 64 that calculates the number of somatic cells from the current value. The number of somatic cells calculated by the calculation unit 64 is displayed on the display unit 61.
- the power source 65 may be an internal power source such as a battery or a battery, or may be an external power source such as a household power source.
- a galvanometer or the like can be used as the ammeter 63.
- the calculation unit 64 includes a CPU, a storage unit (RAM), and the like.
- the storage unit stores a calibration curve that associates the current value with the number of somatic cells, and can also store the measured current value and the calculated number of somatic cells.
- the computing unit 64 calculates the number of somatic cells according to the current value sent from the ammeter 63. Further, the calculation unit 64 can compare the current value and the number of somatic cells obtained by the new measurement with the stored current value and the number of somatic cells.
- the calculation unit 64 may be configured to calculate the difference between the current value newly measured and the stored current value, and the storage unit stores the current value difference and the number of somatic cells. It is also possible to store a calibration curve that relates to the number of somatic cells and calculate the somatic cell count by the calculation unit 64. When a plurality of types of sensors 2 having different sensitivities are used, a calibration curve may be stored in the storage unit for each sensor 2.
- the sensor 2 is attached to each connector 5 arranged in the sampling container for raw milk.
- the on button 6a is pressed to turn on the power switch.
- the measurement button 6c is pushed to make it measurable.
- raw milk is filled in the sampling container, raw milk is filled into the examination room 20 from the opening 23a of the sensor 2 by capillary action. If it does so, the easily oxidizable substance in the raw milk hold
- the calculated number of somatic cells is displayed on the display unit 61.
- a configuration in which the oxidation current value is displayed instead of the number of somatic cells is also possible. It is also possible to input a reference somatic cell number into the apparatus main body 6 in advance, and when the calculated somatic cell number exceeds the reference somatic cell number, the lamp can be turned on or notified by voice.
- the measurement is performed by the new sensor 2, and the measurement result of the newly obtained somatic cell count is compared with the measurement result of the previous somatic cell count. Can do.
- the off button 6b is pressed, and thereby the power is turned off.
- the raw milk inspection apparatus 1A of this specific example is suitable for batch measurement, and the examiner etc. quickly uses the raw milk sampled by the dairy farmers, the raw milk collected and delivered to the certification association, etc., the raw milk sampled in units of tanks, etc. Effective when measuring.
- the raw milk inspection apparatus 1A can have outer dimensions of, for example, a height of 120 mm, a width of 80 mm, and a weight of about 300 g so as to be excellent in portability.
- FIG. 6 shows another specific example of the raw milk inspection apparatus of the present invention.
- This raw milk inspection apparatus 1B is composed of four sensors 2 corresponding to the number of dairy cow quarters and an apparatus main body 6 connected to these sensors 2 by a cable 71.
- the apparatus main body 6 is provided with four display sections 61 corresponding to each sensor 2 and various push buttons 6a to 6c.
- This configuration corresponds to the above-described apparatuses G to J. According to this configuration, the raw current obtained from four breasts of the same individual is simultaneously measured for the oxidation current value of an easily oxidizable substance, and the number of somatic cells is determined. Can be found and compared. Since raw milk obtained from four breasts of the same individual can be compared simultaneously, in this configuration, it is not necessary to provide a storage unit that stores the measured current value and a storage unit that stores the calculated number of somatic cells.
- the base plate on which the electrode part was formed was immersed in a 50 mM cysteine aqueous solution for 3 hours to form a cysteine self-assembled film on the surface of the first electrode part.
- polyethylene terephthalate resin Kerpton, Kurapet KS710B-8S
- it has a length of 40mm, width of 10mm, and depth of 0.5mm by injection molding method, length 50mm, width 30mm, thickness 3mm
- a cover plate was formed.
- a base plate and a cover plate were welded using a laser resin welding machine (Miyachi Technos, model: ML-5220B) to obtain a sensor plate.
- Example 1 [Current measurement of raw milk sample]
- the sensor plate obtained in Production Example 1 was connected to a main body having a power source, a voltage application circuit, and a microammeter. Twenty kinds of raw milk samples were dropped on the sensor plate obtained in Production Example 1, and a current flowing when a voltage of +0.3 V (vs. silver / silver chloride reference electrode) was applied to the first electrode part was measured. Further, the concentration of ascorbic acid contained in the same raw milk sample was quantified by high performance liquid chromatography. The relationship between the current value obtained from each raw milk sample and the ascorbic acid concentration is shown in FIG. From the result of FIG. 7, it can be seen that the higher the ascorbic acid concentration contained in the raw milk, the larger the current value obtained. This is because ascorbic acid in raw milk is oxidized near the surface of the first electrode portion by the applied voltage.
- the content of ascorbic acid or the number of somatic cells in the raw milk sample can be indirectly quantified from the amount of current, and based on these results. Thus, mastitis can be diagnosed.
- Example 2 [Comparison by quarter] Raw milk samples were collected for each quarter from two dairy cows (dairy cow A and dairy cow B) suspected of having mastitis infection, and the current value of each sample was measured using the apparatus of Example 1. The number of somatic cells contained in the same sample was measured by the same direct microscopic method as in Example 1. The measurement results of the current value and the number of somatic cells are shown in Table 1. In dairy cow A, the rear left quarter milk and in dairy cow B the left front quarter milk show significantly higher somatic cell counts, and mastitis infection is suspected. At this time, it can be seen that the current value of the raw milk in each abnormal quarter shows a low value exceeding the range of variation between the normal quarters. In this way, abnormal quarters that are suspected of infection can be detected more accurately by comparing each quarter.
- Table 2 shows the results obtained by selecting four types of the 20 types of raw milk used in Example 1 and measuring the current values of these four types of raw milk using the sensor plate obtained in Production Example 2. When an unmodified working electrode was used, only a small current flowed regardless of the ascorbic acid concentration, and an accurate test could not be performed.
- Table 2 shows the results of measuring current values for four types of raw milk using the sensor plate obtained in Production Example 3. Also in this case, since the current value was low, an accurate inspection could not be performed. This is presumed that when the electrode was modified with hydrophobic 1-propanethiol, the ionic ascorbic acid did not easily approach the electrode in the raw milk, so the amount of current did not increase.
- the present invention is used for examining whether or not a mammal infected with mastitis is raw milk, and can also be used for diagnosis of mastitis infection in mammals.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
本発明は、乳房炎に感染した哺乳動物の生乳かどうかを、簡便かつ高感度に検査する方法と、当該方法に使用可能な装置を提供する。本発明の方法は、哺乳動物の生乳に電圧を印加する工程(A)、及び印加電圧によって易酸化性物質が酸化される際に生じる電流を測定する工程(B)を含む生乳の検査方法である。当該方法は、親水性化合物を表面に露出して含む作用極、及び対極を含む少なくとも1組の電極と、該電極間に一定の電圧を印加する回路と、生乳中の易酸化性物質が印加電圧によって酸化される際に生じる電流を測定する手段とを含む、本発明の生乳検査装置によって実施できる。
Description
本発明は、哺乳動物、特に乳牛の生乳を検査する方法及び当該検査を行うための生乳検査装置に関する。
酪農において、家畜の乳房炎が大きな課題となっている。乳房炎に感染した家畜の乳は、乳糖率低下、塩分濃度増加、その他乳成分の変化により、商品価値が低下する。また、乳房炎への感染は家畜個体や乳房組織にダメージを与えて泌乳能力低下を引き起こし、生産性を低下させる。そのため、感染度の低いうちに乳房炎を発見し、治療を開始することがきわめて重要である。
現在、感染の指標として一般に乳中の体細胞数が用いられている。乳中の体細胞数とは、白血球を初めとする血液由来細胞と、乳腺上皮細胞との総数である。体細胞数の急激な増加は、乳房内に菌が侵入して増殖することにより、血中から乳中へ白血球が移行して乳中に白血球が増加していることを表しており、乳中の白血球、中でも感染初期に増える好中球の増加を検知することは、乳房炎に感染した家畜の乳の指標として有用である。
体細胞数は顕微鏡観察やセルソーターによって信頼性の高い値が測定可能であるが、これらの測定に用いられる装置は高額で大型であったり、あるいは操作が煩雑であったりするため、通常は、ある程度集乳された段階で特定の検査機関において体細胞数が測定される。したがって、体細胞数測定結果が判明した時には乳房炎に感染した家畜の乳が正常な乳に混合された状態にあり、乳房炎に感染した家畜の乳によって同じタンク内の大量の乳の品質低下が招かれ、その結果タンク単位の乳の廃棄が行われることになる。また、感染度の低い家畜の乳は正常な乳に希釈されるため、乳房炎の早期の発見は困難である。そのため、搾乳時に体細胞数が測定できる、簡便な方法と装置が望まれている。
そこで、特許文献1には、簡便な方法で正確に乳房炎の診断が可能な装置として、乳汁加熱手段と、活性酸素種センサと、乳房炎診断手段とを備えたことを特徴とする乳房炎診断装置が開示されている。当該装置は、乳房炎に感染すると増加する好中球から発生する活性酸素量に着目し、活性酸素センサが検出した電流値に基づき乳房炎に感染しているか否かを判断するものである。しかし、特許文献1に記載の装置では、活性酸素量に基づく電流値が小さく、感度に問題があった。
一方、過去に、生乳中のアスコルビン酸(還元性ビタミンC)量が、乳牛の潜在性乳房炎の疑いが増大するにつれて、減少することが報告されている(非特許文献1参照)。
ビタミン、1959年、vol.16、676-679頁
上記問題点に鑑み、本発明は、乳房炎に感染した哺乳動物の生乳かどうかを、簡便かつ高感度に検査することを目的とする。
上記課題を解決した本発明は、哺乳動物の生乳に電圧を印加する工程(A)、及び
印加電圧によって易酸化性物質が酸化される際に生じる電流を測定する工程(B)
を含む生乳の検査方法である。
印加電圧によって易酸化性物質が酸化される際に生じる電流を測定する工程(B)
を含む生乳の検査方法である。
本発明はまた、親水性化合物を表面に露出して含む作用極、及び対極を含む少なくとも1組の電極と、
該電極間に一定の電圧を印加する回路と、
生乳中の易酸化性物質が印加電圧によって酸化される際に生じる電流を測定する手段と
を含む、生乳検査装置である。
該電極間に一定の電圧を印加する回路と、
生乳中の易酸化性物質が印加電圧によって酸化される際に生じる電流を測定する手段と
を含む、生乳検査装置である。
本発明によれば、乳房炎に感染した哺乳動物の生乳かどうかを、簡便かつ高感度に検査することができる。
健康な乳牛の生乳中には、体内で生合成されるアスコルビン酸(還元性ビタミンC)が約1.5~2.0mg/100mL含まれている。生乳中のアスコルビン酸量は、乳牛の潜在性乳房炎の疑いが増大するにつれて、減少することが報告されている(非特許文献1参照)。本発明者らは、この現象に着目して、生乳中のアスコルビン酸に代表される易酸化性物質を電気化学的に酸化し、酸化電流値より、乳房炎に感染している哺乳動物の生乳か否かを判定できることを見出した。また、酸化電流値が、体細胞数と相関があり、酸化電流値より体細胞数を概算できることを見出した。
まず、本発明の生乳の検査方法について説明する。本発明の生乳の検査方法は、前記の工程(A)及び工程(B)を含む(方法A)。
工程(A)
工程(A)では、哺乳動物の生乳に電圧を印加する。工程(A)は、例えば、生乳に、作用極及び対極を含む電極を浸し、電極間に電圧を印加することにより行うことができる。
工程(A)では、哺乳動物の生乳に電圧を印加する。工程(A)は、例えば、生乳に、作用極及び対極を含む電極を浸し、電極間に電圧を印加することにより行うことができる。
作用極は、親水性化合物を表面に露出して含むことが好ましい。この場合、親水性化合物が電極触媒として機能し、電流測定の感度を向上させることができる。
親水性化合物の種類は、電極触媒作用を有する限り特に制限はなく、易酸化性物質の種類に応じて適宜決定すればよい。親水性化合物は、電極触媒作用の観点から、カチオン性基を有することが好ましく、アミノ基を有することがより好ましい。具体的には、システイン、アミノエタンチオール、アミノブタンチオール、アミノノナンチオール等が例示される。作用極には、通常、金等の材料が用いられることから、作用極との親和性の観点から、親水性化合物は、硫黄原子を含む基(特に、チオール基)を有することが好ましく、具体的にはシステインが好ましい。
印加電圧は、易酸化性物質の種類に応じて、易酸化性物質が酸化されるように適宜選択すればよく、+0.1~+0.6Vの範囲にあることが好ましい。この範囲の印加電圧においては、易酸化性物質の中でもアスコルビン酸を酸化することができる。
哺乳動物としては、家畜として飼育されるものが好ましく、例としては、乳牛、山羊等が挙げられる。
工程(B)
工程(B)では、印加電圧によって易酸化性物質が酸化される際に生じる電流を測定する。
工程(B)では、印加電圧によって易酸化性物質が酸化される際に生じる電流を測定する。
工程(A)における電圧印加によって、易酸化性物質が酸化され、作用極-対極間に酸化電流が流れる。工程(B)は、作用極-対極間を流れる酸化電流の値を測定することにより実施することができる。
本発明において易酸化性物質は、生乳中に存在し、電気化学的に容易に酸化される物質であって、その濃度が乳房炎と相関のある物質である。易酸化性物質としては、アスコルビン酸が好ましい。
工程(B)で測定される電流値は、易酸化性物質の濃度と相関がある。従って、乳房炎と易酸化性物質の濃度に相関があるため、電流値の大小から、乳房炎に感染した哺乳動物の生乳かどうかを判断することができる。例えば、易酸化性物質がアスコルビン酸であった場合には、前記の電流値が小さいときは、乳房炎に感染した哺乳動物の生乳であると判断することができる。具体的には、アスコルビン酸を電気化学的に酸化する場合、健康な乳牛の生乳の電流値は、電極面積1平方ミリメートルあたり50~70nA程度であるが、乳房炎に感染した乳牛の生乳の電流値は、電極面積1平方ミリメートルあたり20~50nA程度である。
電流値は、例えば、ガルバノメータ等の公知の電流計で測定することができる。
以上のように、本発明の生乳検査方法は、簡便な操作により実施することができる。本発明の生乳検査方法においては、易酸化性物質の酸化電流値を測定するが、この酸化電流値は、活性酸素に基づく電流値よりも大きいため、高感度で生乳の検査を行うことができる。
また、従来の方法では、活性酸素を利用して乳房炎の感染を検査していた。しかし、活性酸素の寿命は短く、測定可能な時間が限られており、搾乳後すぐに測定を行う必要があった。しかし、アスコルビン酸に代表される易酸化性物質は、生乳中に活性酸素よりも長寿命で存在する。そのため、本発明の方法は、搾乳後時間が経過しても検査を実施できるという利点も有する(通常、本発明の方法は、搾乳直後から24時間程度まで実施可能である)。
従来は、生乳中の体細胞数より乳房炎に感染した哺乳動物の生乳かどうかが判断されていた。よって、乳房炎に感染した哺乳動物の生乳かどうかを判断するにあたり、体細胞数が把握されることが好ましい。従って、本発明の生乳の検査方法は、以下の工程(C)をさらに含むことが好ましい(方法B)。
工程(C)
工程(C)では、測定された電流値から前記生乳中の体細胞数を算出する。易酸化性物質の濃度は、乳房炎と関連するものであるから、易酸化性物質の濃度を示す酸化電流値は、体細胞数とも関連する。例えば、易酸化性物質がアスコルビン酸であった場合には、その酸化電流値と体細胞数には、負の相関がある。よって、生乳に対して、従来方法により体細胞数値と、本発明の方法により電流値をそれぞれ求め、検量線を作成することができる。工程(C)は、この検量線を用いて、測定された電流値から体細胞数を換算することにより行うことができる。
工程(C)では、測定された電流値から前記生乳中の体細胞数を算出する。易酸化性物質の濃度は、乳房炎と関連するものであるから、易酸化性物質の濃度を示す酸化電流値は、体細胞数とも関連する。例えば、易酸化性物質がアスコルビン酸であった場合には、その酸化電流値と体細胞数には、負の相関がある。よって、生乳に対して、従来方法により体細胞数値と、本発明の方法により電流値をそれぞれ求め、検量線を作成することができる。工程(C)は、この検量線を用いて、測定された電流値から体細胞数を換算することにより行うことができる。
一例として乳牛の生乳を検査する場合、健康な乳牛の生乳中の体細胞数は、2万~10万個/mLであるのに対し、乳房炎に感染した乳牛の生乳中の体細胞数は、30万個/mL以上である。従って、測定された電流値から換算された体細胞数が30万個/mL以上である場合には、乳房炎に感染した乳牛の生乳であると判断できる。
また、例えば、乳牛は4つの乳房を有しているが、乳房炎には各乳房が独立して感染し、4つの乳房すべてが乳房炎に感染していることは確率的にゼロに近い。また、生乳中の易酸化性物質量は、若干乳牛ごとに異なっており、個体差がある。そこで、同じ個体の別の乳房から得られる生乳を比較対象とすれば、易酸化性物質量の個体差の影響をなくすことができ、より正確な検査を行うことができる。
そこで、本発明の生乳の検査方法の好適な一実施態様は、前記哺乳動物(同じ個体)の別の乳房から得られる生乳に対して前記工程(A)及び(B)をさらに実施し、さらに、各乳房の生乳から得られる電流値を比較する工程(D)を含む(方法C)。
工程(D)で、電流値を比較して、電流値に大きな差があった場合には、検査した生乳の中に乳房炎に感染した乳房の生乳が含まれていると判断できる。例えば、易酸化性物質がアスコルビン酸であった場合には、電流値の小さな生乳が、乳房炎に感染した乳房の生乳であると判断できる。
本発明の生乳の検査方法の別の好適な一実施態様は、前記哺乳動物(同じ個体)の別の乳房から得られる生乳に対して前記工程(A)及び(B)をさらに実施し、さらに、各乳房の生乳から得られる電流値の差を求める工程(E)を含む(方法D)。
工程(E)で得られる電流値の差が大きい場合には、検査した生乳の中に乳房炎に感染した乳房の生乳が含まれていると判断できる。
また、工程(E)で、各乳房の生乳から得られる電流値の差の大きさは、体細胞数とも関連する。例えば、易酸化性物質がアスコルビン酸であった場合には、その酸化電流値の差の大きさと体細胞数には、正の相関がある。そこで、方法(D)の好適な一実施態様は、工程(E)で得られた電流値の差から、各乳房から得られる生乳中の体細胞数を算出する工程(F)をさらに含む(方法E)。生乳に対して、従来方法により体細胞数値と、本発明の方法により電流値の差をそれぞれ求めることにより、検量線を作成することができる。工程(F)は、この検量線を用いて、測定された電流値の差から体細胞数を換算することにより行うことができる。方法Eは、算出された各乳房の生乳中の体細胞数を比較する工程をさらに含んでいてもよい。
本発明の生乳の検査方法の別の好適な一実施態様は、前記哺乳動物(同じ個体)の別の乳房から得られる生乳に対して前記工程(A)~(C)をさらに実施し、さらに、各乳房から得られる生乳中の体細胞数を比較する工程(G)を含む(方法F)。
工程(G)で、体細胞数を比較して、体細胞数に大きな差があった場合には、検査した生乳の中に乳房炎に感染した乳房の生乳が含まれていると判断できる。このとき、体細胞数が大きい生乳が、乳房炎に感染した乳房の生乳であると判断できる。
本発明においては、測定する各個体について、健康な状態での、生乳の電流値及び/又は体細胞数を把握しておくと有益である。
本発明は、生乳の検査方法であるが、乳房炎診断方法として応用することもできる。
次に、本発明の生乳検査装置について説明する。本発明の生乳検査装置は、親水性化合物を表面に露出して含む作用極、及び対極を含む少なくとも1組の電極と、該電極間に一定の電圧を印加する回路と、生乳中の易酸化性物質が印加電圧によって酸化される際に生じる電流を測定する手段とを含む(装置A)。本発明の生乳検査装置により、上述した本発明の生乳検査方法を行うことができる。
1組の電極は、作用極及び対極を含むが、参照極をさらに含んでいてもよい。電極は、2以上の生乳、特に同じ哺乳動物(同じ個体)の別の乳房から得られた2以上の生乳を同時に測定可能にするために、2組以上であってもよい。電極には、金、銀、塩化銀、白金、銅、アルミニウム、ステンレス等の導電性材料を用いることができる。
作用極が含む親水性化合物については、前述の通りである。感度の観点から、作用極は、前記親水性化合物を厚さ20Å以下の層として含むことが好ましい。作用極の表面上に親水性化合物の層を形成するには、ディッピング法、インクジェット法、インジェクション法等の公知方法により親水性化合物を含む塗布液を作用極上に塗布し、乾燥すればよい。
前記回路は、作用極と対極とを電気的に接続する。この回路に内部電源又は外部電源を直接的又は間接的に接続すれば、電圧を印加することができる。当該回路は、+0.1~+0.6V程度の電圧を印加できるように構成されることが好ましい。
生乳中の易酸化性物質が印加電圧によって酸化される際に生じる電流を測定する手段には、特に制限はなく、0.01~10μA程度の電流を測定できる手段であることが好ましく、ガルバノメータ等の公知の電流計を用いることができる。
本発明の生乳検査装置は、測定結果を通知する手段を有することが好ましい。当該手段としては、例えば、モニター、ランプ等の表示部、スピーカーなどが挙げられる。
生乳中の体細胞数が把握されることが好ましいことから、本発明の生乳検査装置は、前記易酸化性物質が酸化される印加電圧で測定した電流値から、前記生乳中の体細胞数を算出する演算部をさらに含むことが好ましい(装置B)。装置Bにより、上記方法Bを実施することができる。演算部は、例えば、CPUと、メモリ、ハードディスク等の記憶部などを含む。記憶部には、体細胞数と電流値との相関を示す検量線が入力されており、CPUにより体細胞数が計算される。
本発明の生乳検査装置は、電流値又は体細胞数から乳房炎に感染した哺乳動物の生乳かどうかを判断するための演算部を有していてもよい。この演算部は、例えば、CPUと記憶部等を有し、当該記憶部には、電流値又は体細胞数と乳房炎感染との相関が入力される。この演算部は、体細胞数を算出する演算部であってもよい。
前述のように、同じ哺乳動物(同じ個体)の別の乳房から得られる生乳を比較対象とすれば、易酸化性物質量の個体差の影響をなくすことができ、より正確な検査を行うことができる。そこで、本発明の生乳検査装置の好ましい一実施態様は、前記電極と、前記回路と、前記電流測定手段に加え、測定した電流値を記憶する記憶部、及び新たに測定して得られる電流値と記憶した電流値を比較するデータ処理部をさらに含む(装置C)。当該実施態様の装置によれば、同じ個体の別の乳房から得られる生乳を逐次測定することにより、上記方法Cを実施することができる。
本発明の生乳検査装置の別の好ましい一実施態様は、前記電極と、前記回路と、前記電流測定手段に加え、測定した電流値を記憶する記憶部、及び新たに測定して得られる電流値と記憶した電流値との差を求める演算部をさらに含む(装置D)。当該実施態様の装置によれば、同じ個体の別の乳房から得られる生乳を逐次測定することにより、上記方法Dを実施することができる。演算部は、例えば、CPU等より構成できる。
装置Dは、求めた新たに測定して得られる電流値と記憶した電流値との差から、生乳中の体細胞数を算出する演算部をさらに含んでいてもよい(装置E)。この場合、同じ個体の別の乳房から得られる生乳を逐次測定することにより、上記方法Eを実施することができる。当該演算部は、例えば、CPUと、メモリ、ハードディスク等の記憶部などを含む。記憶部には、体細胞数と電流値の差との相関を示す検量線が入力されており、CPUにより体細胞数が計算される。当該CPUには、前記電流値の差を求める演算部のCPUを用いてもよい。装置Eは、算出された各乳房の生乳中の体細胞数を比較するデータ処理部をさらに有していてもよい。
本発明の生乳検査装置の別の好ましい一実施態様は、前記電極と、前記回路と、前記電流測定手段と、前記体細胞数を算出する演算部に加え、算出した体細胞数を記憶する記憶部、及び新たに測定して得られる体細胞数と記憶した体細胞数を比較するデータ処理部をさらに含む(装置F)。当該実施態様の装置によれば、同じ個体の別の乳房から得られる生乳を逐次測定することにより、上記方法Fを実施することができる。
本発明の生乳検査装置の別の好ましい一実施態様は、前記電極と、前記回路と、前記電流測定手段を含む装置であって、当該装置が、前記電極を2組以上含み、かつ各組の電極に対して測定した電流値を比較するデータ処理部をさらに含む(装置G)。当該実施態様の装置によれば、同じ個体の別の乳房から得られる生乳それぞれに対し、各組の電極を用いることにより、1回の測定で上記方法Cを実施することができる。
本発明の生乳検査装置の別の好ましい一実施態様は、前記電極と、前記回路と、前記電流測定手段を含む装置であって、当該装置が、前記電極を2組以上含み、かつ各組の電極に対して測定した電流値の差を求める演算部をさらに含む(装置H)。当該実施態様の装置によれば、同じ個体の別の乳房から得られる生乳それぞれに対し、各組の電極を用いることにより、1回の測定で上記方法Dを実施することができる。演算部は、例えば、CPU等より構成できる。
装置Hは、求めた電流値の差から生乳中の体細胞数を算出する演算部をさらに含んでいてもよい(装置I)。このとき、同じ個体の別の乳房から得られる生乳それぞれに対し、各組の電極を用いることにより、1回の測定で上記方法Eを実施することができる。当該演算部は、例えば、CPUと、メモリ、ハードディスク等の記憶部などを含む。記憶部には、体細胞数と電流値の差との相関を示す検量線が入力されており、CPUにより体細胞数が計算される。当該CPUには、前記電流値の差を求める演算部のCPUを用いてもよい。
本発明の生乳検査装置の別の好ましい一実施態様は、前記電極と、前記回路と、前記電流測定手段と、前記体細胞数を算出する演算部を含む装置であって、当該装置が、前記電極を2組以上含み、かつ各組の電極に対して算出した体細胞数を比較するデータ処理部をさらに含む(装置J)。当該実施態様の装置によれば、同じ個体の別の乳房から得られる生乳それぞれに対し、各組の電極を用いることにより、1回の測定で上記方法Fを実施することができる。
測定した電流値を記憶する記憶部、及び算出した体細胞数を記憶する記憶部は、メモリ、ハードディスク等により構成することができる。体細胞数を算出する演算部が、検量線が記憶される記憶部を有する場合には、当該演算部の検量線が記憶される記憶部を、これらの記憶部として用いてもよいし、別途記憶部を設けてもよい。データ処理部は、CPU等により構成することができ、生乳検査装置が生乳中の体細胞数を算出する演算部を有する場合には、演算部のCPU等をデータ処理部として用いてもよいし、別途データ処理部を設けてもよい。従って、体細胞数を算出する演算部が、これらの記憶部及びデータ処理部として機能してもよいし、記憶部及びデータ処理部を別に設けてもよい。
本発明の生乳検査装置は、小型化及び低コスト化が可能であり、簡易かつ迅速に高感度で生乳の検査を行うことができる。
本発明は、生乳検査装置であるが、乳房炎診断装置として応用することもできる。
以下、本発明の生乳検査装置の具体例を示す。
図1に、生乳検査装置の具体例を示す。生乳検査装置1Aは、センサ2、コネクタ5及び本体6を含み、センサ2は、コネクタ5において、本体6と着脱自在となっている。センサ2は後述のように電極を含み、センサ2を着脱自在とすることによって、センサ2を交換するだけで容易に測定を繰り返すことができるようになっている。この構成は、上述の装置A~Fに対応している。
次に、図2~図4を参照して、センサ2の構成について詳細に説明する。このセンサ2は、生乳を保持するための検査室20を有する略長方形状のプレートタイプのものであり、プレートタイプのセンサは、電極の配置等を容易に最適化することができる。検査室20には毛細管現象により生乳が導入される。検査室20の容積は、0.01~5mLが好ましく、0.05~1mLがより好ましい。さらに好ましい検査室20の容積は、0.1~0.3mLである。
具体的に、センサ2は、略長方形状のベースプレート21と、このベースプレート21の一方面(厚み方向の片側の面)21aに支持された、作用極31、参照極32、及び対極33の3つの電極と、これらの電極31~33を挟んでベースプレート21の一方面21aに固定された略長方形状のカバープレート22とを有している。なお、以下では、説明の便宜のために、ベースプレート21の長手方向の一方(図2では右上方向)を前方、他方(図2では左下方向)を後方というとともに、ベースプレート21の短手方向の一方(図2では右下方向)を右方、他方(図2では左上方向)を左方という。
カバープレート22の幅は、ベースプレート21の幅と同じであるが、カバープレート22の長さは、ベースプレート21の一方面21aの後端部を露出させるようにベースプレート21の長さよりも短く設定されている。ベースプレート21のサイズは、例えば、長さ60mm、幅30mm、厚み1mmであり、カバープレート22のサイズは、例えば、長さ50mm、幅30mm、厚み3mmである。
ベースプレート21及びカバープレート22の材質は、絶縁性のものであれば特に制限されるものではないが、例えば、アクリル系樹脂、ポリ乳酸系樹脂、ポリグリコール酸系樹脂、スチレン系樹脂、メタクリル-スチレン系共重合樹脂(MS樹脂)、ポリカーボネート系樹脂、ポリエチレンテレフタレートなどのポリエステル系樹脂、ポリビニルアルコール系樹脂、エチレン-ビニルアルコール系共重合樹脂、スチレン系エラストマーなどの熱可塑性エラストマー、塩化ビニル系樹脂、ポリジメチルシロキサンなどのシリコーン系樹脂、酢酸ビニル系樹脂、ポリビニルブチラール系樹脂等を挙げることができる。ベースプレート21の材質としては、後述する電極材料との接着性を考慮して適宜選択することが好ましく、カバープレート22の材質としては、ベースプレート21との接着性を考慮して適宜選択することが好ましい。
カバープレート22には、ベースプレート21に沿ってカバープレート22の端面に開口する溝23が形成されており、溝23とベースプレート21の一方面21aによって検査室20が構成されている。そして、検査室20には、開口23aから毛細管現象により生乳が自動的に充填される。すなわち、溝23の開口23aは、検査室20への導入口を構成している。毛細管現象を利用するには、溝23の幅は1~50mm、深さは0.05~5mm、長さは2~100mmであることが好ましく、より好ましくは、溝23の幅は3~30mm、深さは、0.1~3mm、長さは10~70mmである。例えば、溝23の幅を10mm、深さを0.5mm、長さを40mmとしてもよい。
溝23の形成は、機械切削加工や射出成型等により行うことができ、ベースプレート21とカバープレート22との接合は、熱融着、レーザー融着、溶液接着技術等により行うことができる。このような工業生産技術として確立された方法を適用することにより、検査室20の容積の精度、すなわちセンサ2への生乳導入量の精度を高めることができる。これにより、同一生乳であれば検査室20内の易酸化性物質量を一定とすることができ、測定精度を高めることが可能になる。
本具体例では、毛細管現象を利用しているため、センサ2の開口23a側の端部を生乳に浸すだけで、短時間で、例えば5秒以内に生乳を検査室20に充填させることができる。なお、センサ2は必ずしも毛細管現象を利用したものである必要はなく、カバープレートを厚み方向に貫通する貫通孔によって検査室が設けられてもよい。このとき、センサ2はスポッティング方式に対応したものとなる。
作用極31、参照極32、及び対極33は、左右方向に並んでおり、それぞれがベースプレート21の後端部から所定位置まで前後方向に直線状に延びている。本具体例では、作用極31の先端に円形状の第1電極部(正極部)31aが設けられ、対極33の先端に第1電極部31aよりも大きな円形状の第2電極部(負極部)33aが設けられている。また、参照極32の先端32aも小さな円形状になっている。第1電極部31a及び第2電極部33a並びに参照極32の先端32aは全て検査室20の内部空間に臨んでいる。また、各電極31~33におけるカバープレート22で覆われていない部分は、幅広の端子部31b~33bを構成しており、これらの端子部31b~33bが、センサ2がコネクタ5に差し込まれて取り付けられたときに、コネクタ5の端子(図示せず)と電気的に接続される。
第1電極部31aの表面31c上には、親水性化合物4(例、システイン)が固定化されている。この固定化は、例えば、親水性化合物4の溶液に、電極を浸漬して行うことができる。参照極32は、基準極として使用される。作用極31と対極33との間及び参照極32と対極33との間には、例えば直流1Vの電圧が均等に印加される。その上で、作用極31に重畳的に例えば0.3Vの追加電圧が印加されると、第1電極部31a上で易酸化性物質が酸化されて加水分解を起こし、作用極31と対極33との間に電流が流れる。作用極31と対極33との間に流れる電流量を測定することにより、生乳中の易酸化性物質量、ひいては生乳中の体細胞数を測定することが可能となる。なお、酸化電流を効率よく検出するために、第2電極部33aの面積は第1電極部31aの面積よりも大きくなっていることが好ましい。ここで、「第2電極部33aの面積」及び「第1電極部31aの面積」とは、第2電極部33a及び第1電極部31aをベースプレート21と直交する方向から見たときの面積をいう。第1電極部31aの面積は、0.7~500mm2であることが好ましく、4~100mm2であることがより好ましい。
電極31~33の形成法は、蒸着、スパッタリング、電解メッキ、無電解メッキ、シルクスクリーン印刷、金属ペーストのインジェクション法等を用いることができる。このような工業的に確立された方法を採用することにより、電極31~33を高精度に形成することが可能となり、大量生産において、測定値の再現性を高めることが可能となる。電極に用いられる導電性材料としては金、銀、塩化銀、白金、銅、アルミニウム、ステンレス等を挙げることができる。本具体例では、易酸化性物質としてアスコルビン酸を検出するために、作用極31を金、参照極32を銀/塩化銀、対極33を白金で構成している。
好ましくは、各電極31~33の幅は0.5~20mm、長さは1~100mm、厚みは0.003~300μmであり、より好ましくは、各電極31~33の幅は1~10mm、長さは2~20mm、厚みは0.02~200μmである。
なお、電極の表面積を増大させるために、例えば、電極部分に凹凸構造等を設けてもよい。
次に、図5を参照して、装置本体6の構成について詳細に説明する。装置本体6は、作用極31と対極33との間に流れる電流に基づいて生乳中に含まれる体細胞数を算出するものである。具体的に、装置本体6は、電源65と、電圧印加回路62を介して作用極31と参照極32との間に電圧を印加したときに、作用極31と対極33との間に流れる電流を検出する電流計63と、電流値から体細胞数を算出する演算部64とを備えており、演算部64で算出された体細胞数が表示部61に表示される。
電源65は、電池やバッテリー等の内部電源であってもよいし、家庭用電源等の外部電源であってもよい。電流計63には、ガルバノメータ等を用いることができる。演算部64は、CPUや記憶部(RAM)等からなっている。記憶部には、電流値と体細胞数とを関係づける検量線が記憶されており、測定した電流値及び算出した体細胞数を記憶することもできる。演算部64は、電流計63から送られる電流値に応じた体細胞数を算出する。また、演算部64では、新たな測定により得られる電流値及び体細胞数を、記憶した電流値及び体細胞数と比較することができる。これとは別に、演算部64によって、新たに測定して得られる電流値と記憶した電流値との差が算出されるよう構成することもでき、前記記憶部に電流値の差と体細胞数とを関係づける検量線を記憶させ、演算部64によって、体細胞数が算出されるように構成することもできる。なお、感度の異なる複数種類のセンサ2を使用する場合には、センサ2毎に検量線を記憶部に記憶させておけばよい。
次に、生乳検査装置1Aを使用して体細胞数を測定する方法を説明する。生乳のサンプリング容器に配置された各コネクタ5に、センサ2を取り付ける。次に、入ボタン6aを押して、電源スイッチをONにする。搾乳が開始される際には、測定ボタン6cを押して測定可能な状態にしておく。サンプリング容器内に生乳が満たされると、毛細管現象により、センサ2の開口23aから検査室20に生乳が充填される。そうすると、検査室20に保持された生乳中の易酸化性物質が反応し、その酸化電流が装置本体6に送られて、体細胞数が算出される。算出された体細胞数は、表示部61に表示される。体細胞数の代わりに酸化電流値を表示するような構成も同様に可能である。なお、装置本体6に予め基準体細胞数を入力しておき、算出した体細胞数が基準体細胞数を超えたときには、ランプを点灯させたり、音声で報知したりすることも可能である。
搾乳及び体細胞数の測定が完了すると、ミルカー等と生乳サンプリング容器を洗浄した後、次の測定に備え、測定に使用したセンサ2を新しいセンサ2と交換する。
体細胞数の測定結果を装置本体6に記憶させれば、新しいセンサ2により測定を行い、新たに得られた体細胞数の測定結果と、以前の体細胞数の測定結果とを比較することができる。なお、測定を終了したい場合には、切ボタン6bを押し、これにより電源がOFFとなる。
本具体例の生乳検査装置1Aは、バッチ測定に適したものであり、酪農家がサンプリングした生乳、検定協会等に集配された生乳、タンク単位でサンプリングされた生乳等を、検定員等が迅速測定する際に効果を発揮する。生乳検査装置1Aは、携帯性に優れるように、外形寸法を例えば高さ120mm、幅80mmとし、重量を300g程度とすることが可能である。
図6に、本発明の生乳検査装置の別の具体例を示す。この生乳検査装置1Bは、乳用牛の分房数に対応した4つのセンサ2と、これらのセンサ2とケーブル71によって接続された装置本体6とからなる。装置本体6には、各センサ2に対応した4つの表示部61と各種の押しボタン6a~6cが設けられている。
この構成は、上述の装置G~Jに対応し、この構成によれば、同じ個体の4つの乳房から得られた生乳について、同時に易酸化性物質の酸化電流値を測定し、体細胞数を求め、比較することができる。同じ個体の4つの乳房から得られた生乳を同時に比較できるため、この構成では、測定した電流値を記憶する記憶部、及び算出した体細胞数を記憶する記憶部を設けなくてもよい。
以下、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は、これら実施例に限定されるものではない。
[生乳検査装置のセンサプレートの製造]
〔製造例1〕
ポリエチレンテレフタレート樹脂(クラレ社製、クラペットKS710B-8S)を使用し、射出成形法により長さ60mm、幅30mm、厚み1mmのベースプレートを形成した。次に、ベースプレートにマスキングを施し、蒸着装置(アルバック社製、型式:UEP)を用いて、作用極(金)、参照極(銀/塩化銀)、対極(白金)を図4に示すパターンで形成した。具体的には、第1電極部の直径は6mmであり、第2電極部の直径は8mmである。次に、電極部を形成した前記ベースプレートを濃度50mMのシステイン水溶液に3時間浸漬し第1電極部表面にシステイン自己組織化膜を形成した。次に、ポリエチレンテレフタレート樹脂(クラレ社製、クラペットKS710B-8S)を使用し、射出成形法により長さ40mm、幅10mm、深さ0.5mmの溝を有する、長さ50mm、幅30mm、厚み3mmのカバープレートを形成した。次に、レーザー樹脂溶着機(ミヤチテクノス社製、型式:ML-5220B)を使用して、ベースプレートとカバープレートを溶着し、センサプレートを得た。
〔製造例1〕
ポリエチレンテレフタレート樹脂(クラレ社製、クラペットKS710B-8S)を使用し、射出成形法により長さ60mm、幅30mm、厚み1mmのベースプレートを形成した。次に、ベースプレートにマスキングを施し、蒸着装置(アルバック社製、型式:UEP)を用いて、作用極(金)、参照極(銀/塩化銀)、対極(白金)を図4に示すパターンで形成した。具体的には、第1電極部の直径は6mmであり、第2電極部の直径は8mmである。次に、電極部を形成した前記ベースプレートを濃度50mMのシステイン水溶液に3時間浸漬し第1電極部表面にシステイン自己組織化膜を形成した。次に、ポリエチレンテレフタレート樹脂(クラレ社製、クラペットKS710B-8S)を使用し、射出成形法により長さ40mm、幅10mm、深さ0.5mmの溝を有する、長さ50mm、幅30mm、厚み3mmのカバープレートを形成した。次に、レーザー樹脂溶着機(ミヤチテクノス社製、型式:ML-5220B)を使用して、ベースプレートとカバープレートを溶着し、センサプレートを得た。
〔製造例2〕
製造例1において、第1電極部表面が化合物で修飾されていないセンサプレートを用いた以外は、製造例1と同様にしてセンサプレートを得た。
製造例1において、第1電極部表面が化合物で修飾されていないセンサプレートを用いた以外は、製造例1と同様にしてセンサプレートを得た。
〔製造例3〕
製造例1において第1電極部表面を、システインに代えて親水性化合物に該当しない1-プロパンチオールで修飾した以外は、製造例1と同様にしてセンサプレートを得た。
製造例1において第1電極部表面を、システインに代えて親水性化合物に該当しない1-プロパンチオールで修飾した以外は、製造例1と同様にしてセンサプレートを得た。
〔実施例1〕
[生乳サンプルの電流測定]
製造例1で得られたセンサプレートを、電源と電圧印加回路と微小電流計とを有する本体と接続した。製造例1で得られたセンサプレートに20種の生乳サンプルを滴下し、第1電極部に+0.3V(対銀/塩化銀参照極)の電圧を印加したときに流れる電流を測定した。また同じ生乳サンプルに含まれるアスコルビン酸濃度を、高速液体クロマトグラフィー法により定量した。各生乳サンプルから得られた電流値とアスコルビン酸濃度の関係を図7に示す。図7の結果から、生乳に含まれるアスコルビン酸濃度が高いほど得られる電流値が大きくなることがわかる。これは、生乳中のアスコルビン酸が印加電圧によって第1電極部表面付近で酸化されるためである。
[生乳サンプルの電流測定]
製造例1で得られたセンサプレートを、電源と電圧印加回路と微小電流計とを有する本体と接続した。製造例1で得られたセンサプレートに20種の生乳サンプルを滴下し、第1電極部に+0.3V(対銀/塩化銀参照極)の電圧を印加したときに流れる電流を測定した。また同じ生乳サンプルに含まれるアスコルビン酸濃度を、高速液体クロマトグラフィー法により定量した。各生乳サンプルから得られた電流値とアスコルビン酸濃度の関係を図7に示す。図7の結果から、生乳に含まれるアスコルビン酸濃度が高いほど得られる電流値が大きくなることがわかる。これは、生乳中のアスコルビン酸が印加電圧によって第1電極部表面付近で酸化されるためである。
[生乳サンプルの体細胞数測定]
また同じ生乳サンプルに含まれる体細胞数を、Burker-Turk型血球計算盤を用いた直接鏡検法によって測定した。各生乳サンプルから得られた電流値と体細胞数の関係を図8に示す。図8の結果から生乳サンプルに含まれる体細胞数が多いほど得られる電流値は低くなることがわかる。これは、生乳中の体細胞の増加によって生乳に含まれるアスコルビン酸が酸化され、結果として生乳中のアスコルビン酸濃度が低下するためである。
また同じ生乳サンプルに含まれる体細胞数を、Burker-Turk型血球計算盤を用いた直接鏡検法によって測定した。各生乳サンプルから得られた電流値と体細胞数の関係を図8に示す。図8の結果から生乳サンプルに含まれる体細胞数が多いほど得られる電流値は低くなることがわかる。これは、生乳中の体細胞の増加によって生乳に含まれるアスコルビン酸が酸化され、結果として生乳中のアスコルビン酸濃度が低下するためである。
以上のように、図7又は図8の結果を検量線として用いれば、電流量から生乳サンプル中のアスコルビン酸の含有量又は体細胞数を間接的に定量することができ、これらの結果に基づいて、乳房炎の診断も可能となる。
〔実施例2〕
[分房ごとの比較]
乳房炎感染が疑われる乳牛2頭(乳牛A、乳牛B)から分房ごとに生乳サンプルを採取し、実施例1の装置を用いて各サンプルの電流値を測定した。また同じサンプルに含まれる体細胞数を実施例1と同様の直接鏡検法によって測定した。電流値と体細胞数の測定結果を表1に示す。乳牛Aでは左後の分房乳、乳牛Bでは左前の分房乳が顕著に高い体細胞数を示しており、乳房炎感染が疑われる。このとき各異常分房の生乳の電流値は、正常分房間のばらつきの範囲を超えて低い値を示していることがわかる。このように分房ごとの比較を行うことで感染の疑われる異常分房をより正確に検知することができる。
[分房ごとの比較]
乳房炎感染が疑われる乳牛2頭(乳牛A、乳牛B)から分房ごとに生乳サンプルを採取し、実施例1の装置を用いて各サンプルの電流値を測定した。また同じサンプルに含まれる体細胞数を実施例1と同様の直接鏡検法によって測定した。電流値と体細胞数の測定結果を表1に示す。乳牛Aでは左後の分房乳、乳牛Bでは左前の分房乳が顕著に高い体細胞数を示しており、乳房炎感染が疑われる。このとき各異常分房の生乳の電流値は、正常分房間のばらつきの範囲を超えて低い値を示していることがわかる。このように分房ごとの比較を行うことで感染の疑われる異常分房をより正確に検知することができる。
〔比較例1〕
実施例1で用いた20種の生乳のうち4種を選び出し、製造例2で得られたセンサプレートを用いてこの4種類の生乳について電流値を測定した結果を表2に示す。修飾されていない作用極を用いた場合は、アスコルビン酸濃度に関わらず小さな電流しか流れておらず、正確な検査が行えなかった。
実施例1で用いた20種の生乳のうち4種を選び出し、製造例2で得られたセンサプレートを用いてこの4種類の生乳について電流値を測定した結果を表2に示す。修飾されていない作用極を用いた場合は、アスコルビン酸濃度に関わらず小さな電流しか流れておらず、正確な検査が行えなかった。
〔比較例2〕
製造例3で得られたセンサプレートを用いて4種類の生乳について電流値を測定した結果を表2に示す。この場合も、電流値が低いため、正確な検査が行えなかった。これは、疎水性である1-プロパンチオールで電極を修飾すると、生乳中においてイオン性のアスコルビン酸が電極に近づきにくいため、電流量が上がらなかったものと推測される。
製造例3で得られたセンサプレートを用いて4種類の生乳について電流値を測定した結果を表2に示す。この場合も、電流値が低いため、正確な検査が行えなかった。これは、疎水性である1-プロパンチオールで電極を修飾すると、生乳中においてイオン性のアスコルビン酸が電極に近づきにくいため、電流量が上がらなかったものと推測される。
本発明は、乳房炎に感染した哺乳動物の生乳かどうかの検査に用いられるものであり、哺乳動物の乳房炎の感染の診断に用いることもできる。
Claims (19)
- 哺乳動物の生乳に電圧を印加する工程(A)、及び
印加電圧によって易酸化性物質が酸化される際に生じる電流を測定する工程(B)
を含む生乳の検査方法。 - 測定された電流値から前記生乳中の体細胞数を算出する工程(C)をさらに含む請求項1に記載の生乳の検査方法。
- 前記哺乳動物の別の乳房から得られる生乳に対して前記工程(A)及び(B)をさらに実施し、さらに、各乳房の生乳から得られる電流値を比較する工程(D)を含む請求項1に記載の生乳の検査方法。
- 前記哺乳動物の別の乳房から得られる生乳に対して前記工程(A)及び(B)をさらに実施し、さらに、各乳房の生乳から得られる電流値の差を求める工程(E)を含む請求項1に記載の生乳の検査方法。
- 前記工程(E)で得られた電流値の差から、各乳房から得られる生乳中の体細胞数を算出する工程(F)をさらに含む請求項4に記載の生乳の検査方法。
- 前記哺乳動物の別の乳房から得られる生乳に対して前記工程(A)~(C)をさらに実施し、さらに、各乳房から得られる生乳中の体細胞数を比較する工程(G)を含む請求項2に記載の生乳の検査方法。
- 前記易酸化性物質が、アスコルビン酸である請求項1に記載の生乳の検査方法。
- 親水性化合物を表面に露出して含む作用極、及び対極を含む少なくとも1組の電極と、
該電極間に一定の電圧を印加する回路と、
生乳中の易酸化性物質が印加電圧によって酸化される際に生じる電流を測定する手段と
を含む、生乳検査装置。 - 前記易酸化性物質が酸化される印加電圧で測定した電流値から、前記生乳中の体細胞数を算出する演算部をさらに含む請求項8に記載の生乳検査装置。
- 測定した電流値を記憶する記憶部、及び
新たに測定して得られる電流値と記憶した電流値を比較するデータ処理部をさらに含む請求項8に記載の生乳検査装置。 - 測定した電流値を記憶する記憶部、及び
新たに測定して得られる電流値と記憶した電流値との差を求める演算部をさらに含む請求項8に記載の生乳検査装置。 - 求めた新たに測定して得られる電流値と記憶した電流値との差から、生乳中の体細胞数を算出する演算部をさらに含む請求項11に記載の生乳検査装置。
- 算出した体細胞数を記憶する記憶部、及び
新たに測定して得られる体細胞数と記憶した体細胞数を比較するデータ処理部をさらに含む請求項9に記載の生乳検査装置。 - 前記電極を2組以上含み、かつ
各組の電極に対して測定した電流値を比較するデータ処理部を
さらに含む請求項8に記載の生乳検査装置。 - 前記電極を2組以上含み、かつ
各組の電極に対して測定した電流値の差を求める演算部を
さらに含む請求項8に記載の生乳検査装置。 - 求めた電流値の差から生乳中の体細胞数を算出する演算部をさらに含む請求項15に記載の生乳検査装置。
- 前記電極を2組以上含み、かつ
各組の電極に対して算出した体細胞数を比較するデータ処理部を
さらに含む請求項9に記載の生乳検査装置。 - 前記親水性化合物が、カチオン性基を有する化合物である請求項8に記載の生乳検査装置。
- 前記易酸化性物質が、アスコルビン酸である請求項8に記載の生乳検査装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010015680 | 2010-01-27 | ||
JP2010-015680 | 2010-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011093039A1 true WO2011093039A1 (ja) | 2011-08-04 |
Family
ID=44319038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/000292 WO2011093039A1 (ja) | 2010-01-27 | 2011-01-20 | 生乳検査方法及び生乳検査装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011093039A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014126376A (ja) * | 2012-12-25 | 2014-07-07 | Ntn Corp | 焼入れ品質検査装置および焼入れ品質検査方法 |
JP2022133509A (ja) * | 2021-03-02 | 2022-09-14 | 学校法人東北工業大学 | 生乳内体細胞評価方法および生乳内体細胞評価システム |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001141695A (ja) * | 1999-11-15 | 2001-05-25 | Matsushita Electric Ind Co Ltd | 修飾電極、それを用いたセンサおよび検出方法 |
JP2005106490A (ja) * | 2003-09-29 | 2005-04-21 | National Agriculture & Bio-Oriented Research Organization | 乳房炎診断装置 |
JP2009236893A (ja) * | 2008-03-27 | 2009-10-15 | Tokachi Telephone Network Kk | 超微量ヒスタミン計測用電気化学バイオセンサ(改良型)と当該セサを用いた超微量抗生物質計測システム |
JP2009244041A (ja) * | 2008-03-31 | 2009-10-22 | National Agriculture & Food Research Organization | 過酸化水素の分解反応による乳房炎検出方法 |
WO2010013757A1 (ja) * | 2008-07-31 | 2010-02-04 | 株式会社クラレ | 体細胞数の測定装置及びセンサ |
JP2010256231A (ja) * | 2009-04-27 | 2010-11-11 | Kuraray Co Ltd | 乳検査方法および乳検査装置ならびに乳房炎診断方法 |
-
2011
- 2011-01-20 WO PCT/JP2011/000292 patent/WO2011093039A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001141695A (ja) * | 1999-11-15 | 2001-05-25 | Matsushita Electric Ind Co Ltd | 修飾電極、それを用いたセンサおよび検出方法 |
JP2005106490A (ja) * | 2003-09-29 | 2005-04-21 | National Agriculture & Bio-Oriented Research Organization | 乳房炎診断装置 |
JP2009236893A (ja) * | 2008-03-27 | 2009-10-15 | Tokachi Telephone Network Kk | 超微量ヒスタミン計測用電気化学バイオセンサ(改良型)と当該セサを用いた超微量抗生物質計測システム |
JP2009244041A (ja) * | 2008-03-31 | 2009-10-22 | National Agriculture & Food Research Organization | 過酸化水素の分解反応による乳房炎検出方法 |
WO2010013757A1 (ja) * | 2008-07-31 | 2010-02-04 | 株式会社クラレ | 体細胞数の測定装置及びセンサ |
JP2010256231A (ja) * | 2009-04-27 | 2010-11-11 | Kuraray Co Ltd | 乳検査方法および乳検査装置ならびに乳房炎診断方法 |
Non-Patent Citations (1)
Title |
---|
TARO NAGASAWA ET AL.: "A STUDY ON THE LEVEL OF ASCORBIC ACID AND ITS FORM IN MILK DRAWN FROM MASTITIS NEGATIVE QUARTERS", VITAMINS, vol. 16, 1959, pages 676 - 679 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014126376A (ja) * | 2012-12-25 | 2014-07-07 | Ntn Corp | 焼入れ品質検査装置および焼入れ品質検査方法 |
JP2022133509A (ja) * | 2021-03-02 | 2022-09-14 | 学校法人東北工業大学 | 生乳内体細胞評価方法および生乳内体細胞評価システム |
JP7679060B2 (ja) | 2021-03-02 | 2025-05-19 | 学校法人東北工業大学 | 生乳内体細胞評価方法および生乳内体細胞評価システム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10520461B2 (en) | Method for measuring temperature of biological sample, measuring device, and biosensor system | |
CA2817163C (en) | Method and apparatus for measuring oxidation-reduction potential | |
CA2535833A1 (en) | Method and apparatus for assay of electrochemical properties | |
KR102024995B1 (ko) | 혈액 분석 장치 및 이를 이용한 혈액 분석 방법 | |
Erkmen et al. | Layer-by-layer modification strategies for electrochemical detection of biomarkers | |
EP2420829A2 (en) | Disease diagnosing biosensor capable of promptly separating blood cells | |
KR102102174B1 (ko) | 혈액 분석 장치 및 이를 이용한 혈액 분석 방법 | |
WO2011093039A1 (ja) | 生乳検査方法及び生乳検査装置 | |
Zhou et al. | An integrated leather-based fluid transport wearable sweat device for electrolyte balance monitoring | |
US20120152764A1 (en) | Hemoglobin-detecting electrode test strip and device comprising the same | |
KR20200003008A (ko) | 감소된 용해도를 갖는 효소로부터 생성된 바이오센서 및 이의 생성 및 사용 방법 | |
JP2011125313A (ja) | 生乳検査装置及び生乳検査方法 | |
US20210131996A1 (en) | Biomarker sensor apparatus and method of measuring biomarker in blood | |
JPWO2020044958A1 (ja) | カルシウムイオン濃度測定装置 | |
TWI746015B (zh) | 穿戴式量測裝置及其生物標的物的量測方法 | |
JP2004053613A (ja) | 酸化還元電位測定装置 | |
JP2006118907A (ja) | 吸引式水質計 | |
CN117990768B (zh) | 一种体液测定方法、装置和电子设备 | |
JPH0658931A (ja) | 健康管理装置 | |
CN120446234A (zh) | 一种检测乳汁电解质和电导率的设备 | |
WO2016037662A1 (en) | A helicobacter pylori sensor with ph sensor | |
KR20180028433A (ko) | 동정맥혈 구분을 위한 휴대용 키트 | |
RO126898B1 (ro) | Sistem de scanare pentru analize biomedicale | |
RO131898B1 (ro) | Minicelulă multimode de unică folosinţă | |
JP2012208006A (ja) | 乳房炎検出方法、及びこの乳房炎検出方法に用いる測定用器具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11736756 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11736756 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |