WO2012081479A1 - Method for producing multilayered co-extruded polyimide film - Google Patents
Method for producing multilayered co-extruded polyimide film Download PDFInfo
- Publication number
- WO2012081479A1 WO2012081479A1 PCT/JP2011/078343 JP2011078343W WO2012081479A1 WO 2012081479 A1 WO2012081479 A1 WO 2012081479A1 JP 2011078343 W JP2011078343 W JP 2011078343W WO 2012081479 A1 WO2012081479 A1 WO 2012081479A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermoplastic polyimide
- polyamic acid
- multilayer
- film
- polyimide
- Prior art date
Links
- 229920001721 polyimide Polymers 0.000 title claims abstract description 75
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 239000002253 acid Substances 0.000 claims abstract description 31
- 239000003054 catalyst Substances 0.000 claims abstract description 30
- 239000004642 Polyimide Substances 0.000 claims abstract description 19
- 229920006259 thermoplastic polyimide Polymers 0.000 claims description 141
- 229920005575 poly(amic acid) Polymers 0.000 claims description 104
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 claims description 63
- 238000000034 method Methods 0.000 claims description 54
- 239000000178 monomer Substances 0.000 claims description 37
- 150000004985 diamines Chemical class 0.000 claims description 24
- 239000000126 substance Substances 0.000 claims description 21
- 239000012024 dehydrating agents Substances 0.000 claims description 17
- 229920001169 thermoplastic Polymers 0.000 claims description 13
- 239000004416 thermosoftening plastic Substances 0.000 claims description 13
- KMKWGXGSGPYISJ-UHFFFAOYSA-N 4-[4-[2-[4-(4-aminophenoxy)phenyl]propan-2-yl]phenoxy]aniline Chemical compound C=1C=C(OC=2C=CC(N)=CC=2)C=CC=1C(C)(C)C(C=C1)=CC=C1OC1=CC=C(N)C=C1 KMKWGXGSGPYISJ-UHFFFAOYSA-N 0.000 claims description 9
- 239000002243 precursor Substances 0.000 claims description 4
- 238000006358 imidation reaction Methods 0.000 abstract description 8
- 239000000758 substrate Substances 0.000 abstract description 6
- 239000004952 Polyamide Substances 0.000 abstract description 4
- 229920002647 polyamide Polymers 0.000 abstract description 4
- 238000001125 extrusion Methods 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 103
- 229910052751 metal Inorganic materials 0.000 description 43
- 239000002184 metal Substances 0.000 description 43
- 239000000463 material Substances 0.000 description 39
- 238000010030 laminating Methods 0.000 description 38
- 239000010408 film Substances 0.000 description 37
- 239000011888 foil Substances 0.000 description 32
- 108010025899 gelatin film Proteins 0.000 description 32
- 230000001681 protective effect Effects 0.000 description 30
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 26
- 238000010438 heat treatment Methods 0.000 description 26
- -1 4, 4'-diaminodiphenyl N-methylamine Chemical compound 0.000 description 22
- 230000015572 biosynthetic process Effects 0.000 description 20
- 238000003786 synthesis reaction Methods 0.000 description 19
- 229910000679 solder Inorganic materials 0.000 description 18
- 239000000945 filler Substances 0.000 description 17
- 125000003118 aryl group Chemical group 0.000 description 16
- 238000006116 polymerization reaction Methods 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 12
- 238000004804 winding Methods 0.000 description 12
- 150000004984 aromatic diamines Chemical class 0.000 description 11
- 125000006158 tetracarboxylic acid group Chemical group 0.000 description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 10
- 239000011889 copper foil Substances 0.000 description 10
- 238000001723 curing Methods 0.000 description 10
- 239000000853 adhesive Substances 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 9
- 238000001035 drying Methods 0.000 description 9
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 9
- 239000002798 polar solvent Substances 0.000 description 9
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 8
- 230000009477 glass transition Effects 0.000 description 8
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 8
- 238000003475 lamination Methods 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 6
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 6
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 239000002648 laminated material Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 150000008065 acid anhydrides Chemical class 0.000 description 5
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 4
- ZBMISJGHVWNWTE-UHFFFAOYSA-N 3-(4-aminophenoxy)aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(N)=C1 ZBMISJGHVWNWTE-UHFFFAOYSA-N 0.000 description 4
- XUSNPFGLKGCWGN-UHFFFAOYSA-N 3-[4-(3-aminopropyl)piperazin-1-yl]propan-1-amine Chemical compound NCCCN1CCN(CCCN)CC1 XUSNPFGLKGCWGN-UHFFFAOYSA-N 0.000 description 4
- GEYAGBVEAJGCFB-UHFFFAOYSA-N 4-[2-(3,4-dicarboxyphenyl)propan-2-yl]phthalic acid Chemical compound C=1C=C(C(O)=O)C(C(O)=O)=CC=1C(C)(C)C1=CC=C(C(O)=O)C(C(O)=O)=C1 GEYAGBVEAJGCFB-UHFFFAOYSA-N 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- 238000000113 differential scanning calorimetry Methods 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 230000000379 polymerizing effect Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- IJJNNSUCZDJDLP-UHFFFAOYSA-N 4-[1-(3,4-dicarboxyphenyl)ethyl]phthalic acid Chemical compound C=1C=C(C(O)=O)C(C(O)=O)=CC=1C(C)C1=CC=C(C(O)=O)C(C(O)=O)=C1 IJJNNSUCZDJDLP-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 239000002313 adhesive film Substances 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000001029 thermal curing Methods 0.000 description 3
- 238000009823 thermal lamination Methods 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 2
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 2
- HUWXDEQWWKGHRV-UHFFFAOYSA-N 3,3'-Dichlorobenzidine Chemical compound C1=C(Cl)C(N)=CC=C1C1=CC=C(N)C(Cl)=C1 HUWXDEQWWKGHRV-UHFFFAOYSA-N 0.000 description 2
- GWHLJVMSZRKEAQ-UHFFFAOYSA-N 3-(2,3-dicarboxyphenyl)phthalic acid Chemical compound OC(=O)C1=CC=CC(C=2C(=C(C(O)=O)C=CC=2)C(O)=O)=C1C(O)=O GWHLJVMSZRKEAQ-UHFFFAOYSA-N 0.000 description 2
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 2
- TYKLCAKICHXQNE-UHFFFAOYSA-N 3-[(2,3-dicarboxyphenyl)methyl]phthalic acid Chemical compound OC(=O)C1=CC=CC(CC=2C(=C(C(O)=O)C=CC=2)C(O)=O)=C1C(O)=O TYKLCAKICHXQNE-UHFFFAOYSA-N 0.000 description 2
- UCFMKTNJZCYBBJ-UHFFFAOYSA-N 3-[1-(2,3-dicarboxyphenyl)ethyl]phthalic acid Chemical compound C=1C=CC(C(O)=O)=C(C(O)=O)C=1C(C)C1=CC=CC(C(O)=O)=C1C(O)=O UCFMKTNJZCYBBJ-UHFFFAOYSA-N 0.000 description 2
- ICNFHJVPAJKPHW-UHFFFAOYSA-N 4,4'-Thiodianiline Chemical compound C1=CC(N)=CC=C1SC1=CC=C(N)C=C1 ICNFHJVPAJKPHW-UHFFFAOYSA-N 0.000 description 2
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 2
- AVCOFPOLGHKJQB-UHFFFAOYSA-N 4-(3,4-dicarboxyphenyl)sulfonylphthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1S(=O)(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 AVCOFPOLGHKJQB-UHFFFAOYSA-N 0.000 description 2
- WUPRYUDHUFLKFL-UHFFFAOYSA-N 4-[3-(4-aminophenoxy)phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(OC=2C=CC(N)=CC=2)=C1 WUPRYUDHUFLKFL-UHFFFAOYSA-N 0.000 description 2
- JCRRFJIVUPSNTA-UHFFFAOYSA-N 4-[4-(4-aminophenoxy)phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC(C=C1)=CC=C1OC1=CC=C(N)C=C1 JCRRFJIVUPSNTA-UHFFFAOYSA-N 0.000 description 2
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WRPSKOREVDHZHP-UHFFFAOYSA-N benzene-1,4-diamine Chemical compound NC1=CC=C(N)C=C1.NC1=CC=C(N)C=C1 WRPSKOREVDHZHP-UHFFFAOYSA-N 0.000 description 2
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N mono-methylamine Natural products NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- OBKARQMATMRWQZ-UHFFFAOYSA-N naphthalene-1,2,5,6-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 OBKARQMATMRWQZ-UHFFFAOYSA-N 0.000 description 2
- KQSABULTKYLFEV-UHFFFAOYSA-N naphthalene-1,5-diamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1N KQSABULTKYLFEV-UHFFFAOYSA-N 0.000 description 2
- DOBFTMLCEYUAQC-UHFFFAOYSA-N naphthalene-2,3,6,7-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C=C2C=C(C(O)=O)C(C(=O)O)=CC2=C1 DOBFTMLCEYUAQC-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- CLYVDMAATCIVBF-UHFFFAOYSA-N pigment red 224 Chemical compound C=12C3=CC=C(C(OC4=O)=O)C2=C4C=CC=1C1=CC=C2C(=O)OC(=O)C4=CC=C3C1=C42 CLYVDMAATCIVBF-UHFFFAOYSA-N 0.000 description 2
- 238000007665 sagging Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- BUZMJVBOGDBMGI-UHFFFAOYSA-N 1-phenylpropylbenzene Chemical compound C=1C=CC=CC=1C(CC)C1=CC=CC=C1 BUZMJVBOGDBMGI-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- SMDGQEQWSSYZKX-UHFFFAOYSA-N 3-(2,3-dicarboxyphenoxy)phthalic acid Chemical compound OC(=O)C1=CC=CC(OC=2C(=C(C(O)=O)C=CC=2)C(O)=O)=C1C(O)=O SMDGQEQWSSYZKX-UHFFFAOYSA-N 0.000 description 1
- ITQTTZVARXURQS-UHFFFAOYSA-N 3-methylpyridine Chemical compound CC1=CC=CN=C1 ITQTTZVARXURQS-UHFFFAOYSA-N 0.000 description 1
- LFBALUPVVFCEPA-UHFFFAOYSA-N 4-(3,4-dicarboxyphenyl)phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)C(C(O)=O)=C1 LFBALUPVVFCEPA-UHFFFAOYSA-N 0.000 description 1
- KHYXYOGWAIYVBD-UHFFFAOYSA-N 4-(4-propylphenoxy)aniline Chemical compound C1=CC(CCC)=CC=C1OC1=CC=C(N)C=C1 KHYXYOGWAIYVBD-UHFFFAOYSA-N 0.000 description 1
- LVRNKEBRXQHJIN-UHFFFAOYSA-N 4-ethylphthalic acid Chemical compound CCC1=CC=C(C(O)=O)C(C(O)=O)=C1 LVRNKEBRXQHJIN-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- JLRGJRBPOGGCBT-UHFFFAOYSA-N Tolbutamide Chemical compound CCCCNC(=O)NS(=O)(=O)C1=CC=C(C)C=C1 JLRGJRBPOGGCBT-UHFFFAOYSA-N 0.000 description 1
- 125000004018 acid anhydride group Chemical group 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 125000006159 dianhydride group Chemical group 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0393—Flexible materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/036—Multilayers with layers of different types
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/18—Articles comprising two or more components, e.g. co-extruded layers the components being layers
- B29C48/21—Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2079/00—Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
- B29K2079/08—PI, i.e. polyimides or derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2079/00—Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
- B29K2079/08—PI, i.e. polyimides or derivatives thereof
- B29K2079/085—Thermoplastic polyimides, e.g. polyesterimides, PEI, i.e. polyetherimides, or polyamideimides; Derivatives thereof
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0104—Properties and characteristics in general
- H05K2201/0129—Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0154—Polyimide
Definitions
- This invention relates to the manufacturing method of the multilayer coextrusion polyimide film which can be used conveniently for a flexible printed wiring board.
- the flexible laminate has a structure in which a circuit made of a metal layer is formed on an insulating film such as a polyimide film.
- the flexible metal-clad laminate that is the basis of the flexible wiring board is generally formed of various insulating materials, and a flexible insulating film is used as a substrate, and metal foil is applied to the surface of the substrate via various adhesive materials. Manufactured by heating and pressure bonding. A polyimide film or the like is preferably used as the insulating film.
- the adhesive material epoxy-type, acrylic-type, etc., thermosetting adhesives are generally used. However, thermosetting adhesives have an advantage that they can be bonded at a relatively low temperature. As required characteristics such as heat resistance, flexibility and electrical reliability become severe, it is considered that it is difficult to produce a three-layer FPC using a thermosetting adhesive.
- a method of producing a multilayer polyimide film by applying a polyamic acid solution on the surface of the polyimide film and drying (imidizing) it can be mentioned.
- the process of applying and drying (imidizing) the polyamic acid solution on the surface is necessary, and there are cases where the number of processes is increased and the cost is increased (for example, refer to Patent Document 1).
- the present invention has been made in view of the above-described problems, and its purpose is that when a polyamic acid solution is cast onto a support by multilayer coextrusion, the polyimide layer partially adheres to the support. It is providing the manufacturing method of the multilayer coextrusion polyimide film which does not have.
- a method for producing a film comprising: imidizing a catalyst only in a polyamic acid solution in direct contact with the support among the plurality of polyamic acid solutions. About.
- a method for producing a multilayer coextrusion polyimide film in which a polyimide layer does not partially stick on the support is provided. Can do.
- a plurality of polyamic acid solutions are cast on a support by multilayer coextrusion, and at least one surface of a non-thermoplastic polyimide layer containing non-thermoplastic polyimide is provided with a thermoplastic polyimide layer containing at least thermoplastic polyimide.
- a method for producing a laminated multilayer polyimide film characterized in that an imidization catalyst is contained only in a polyamide acid solution in direct contact with the support among the plurality of polyamide acid solutions.
- the present invention relates to a film manufacturing method.
- the non-thermoplastic polyimide in the present invention generally means a polyimide that does not soften or show adhesiveness even when heated. In the present invention, even if heating is performed at 450 ° C. for 1 minute on a film obtained by forming a non-thermoplastic polyimide alone, wrinkles do not enter or extend, and the polyimide retains its shape, Or the DSC (differential scanning calorimetry) means the polyimide which does not have a glass transition temperature substantially.
- thermoplastic polyimide generally means a polyimide having a glass transition temperature by DSC (differential scanning calorimetry).
- the thermoplastic polyimide in the present invention refers to those having a glass transition temperature of 150 ° C. to 350 ° C.
- the aromatic acid dianhydride used as a raw material for the non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer of the multilayer polyimide film is not particularly limited, but pyromellitic dianhydride, 2,3,6,7-naphthalene Tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2 ′, 3,3 ′ -Biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4, 9,10-perylenetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphen
- pyromellitic dianhydride 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride
- acid dianhydride is preferable, and in terms of solvent solubility during production, pyromellitic acid dianhydride and 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride are further included. preferable.
- the aromatic diamine used as a raw material for the non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer of the multilayer polyimide film is not particularly limited, but 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4 '-Diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, p-phenylenediamine, 4,4'-diamino Diphenylpropane, 4,4′-diaminodiphenylmethane, benzidine, 3,3′-dichlorobenzidine, 4,4′-diaminodiphenyl sulfide, 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 4, 4'-diamin
- diamine constituting the non-thermoplastic polyimide 2,2-bis [4- (4-aminophenoxy) phenyl] propane is preferably used in terms of forming a thermoplastic block, and has a linear expansion coefficient and strength.
- p-phenylenediamine and 4,4′-diaminodiphenyl ether are preferably used.
- the non-thermoplastic polyimide contains a thermoplastic block component, that is, the polyamic acid that becomes the non-thermoplastic polyimide layer is a polyamic acid that is a precursor of the non-thermoplastic polyimide having a thermoplastic block component in the molecule. This is preferable in that the adhesion between the non-thermoplastic polyimide and the thermoplastic polyimide can be improved.
- the aromatic dianhydride used as a raw material for the thermoplastic polyimide contained in the thermoplastic polyimide layer of the multilayer polyimide film is not particularly limited, but pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic Acid dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyl Tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4,9, 10-perylenetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dian
- pyromellitic dianhydride 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride
- acid dianhydride is preferable, and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is used in order to increase the copper foil peeling strength of the flexible metal-clad laminate.
- Pyromellitic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic acid dicarboxylic acid are preferred in terms of improving solder heat resistance while increasing the copper foil peeling strength of the flexible metal-clad laminate. It is preferable to use an anhydride in combination.
- the aromatic diamine used as a raw material for the thermoplastic polyimide contained in the thermoplastic polyimide layer of the multilayer polyimide film is not particularly limited, but 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4′- Diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, p-phenylenediamine, 4,4'-diaminodiphenylpropane 4,4′-diaminodiphenylmethane, benzidine, 3,3′-dichlorobenzidine, 4,4′-diaminodiphenyl sulfide, 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 4,4 ′ -Diaminodiphenyl ether,
- thermoplastic polyimide 2,2-bis [4- (4-aminophenoxy) phenyl] propane constituting thermoplastic polyimide is preferable in terms of improving the peel strength of the metal foil of the metal foil-clad laminate.
- a multilayer polyimide film is a non-thermoplastic polyimide layer with a thermoplastic polyimide layer formed on at least one side.
- a non-thermoplastic polyimide layer with a thermoplastic polyimide layer formed on both sides is a double-sided metal film. This is preferable in that a laminated board can be manufactured, and the flexible printed wiring board can be reduced in weight, size, and density.
- a multilayer polyimide film is produced by simultaneously casting a multilayer polyamic acid on a support by multilayer coextrusion. At that time, the imidization catalyst is contained only in the polyamic acid solution in direct contact with the support. By including an imidization catalyst, imidation of the polyamic acid that is in direct contact with the support proceeds, self-supporting properties are exhibited, film strength is increased, and partial sticking on the support (peeling residue) The multilayer gel film can be peeled off from the support without leaving a film.
- the imidization reaction proceeds, the solvent oozes out due to the difference in solvent solubility between the polyamic acid and the polyimide, and the multilayer gel film can be easily peeled off from the support. For this reason, it is useful to include an imidization catalyst in the polyamic acid solution that is in direct contact with the support. Furthermore, some imidation catalysts in the polyamic acid that are in direct contact with the support come off in the thickness direction upon heating. At that time, the imidization catalyst also proceeds to the imidization reaction of other polyamic acid solutions. The reaction can proceed efficiently. In addition, reaction can be advanced more efficiently by using an imidation catalyst and a chemical dehydrating agent together.
- the polyamic acid solution in direct contact with the support is a polyamic acid solution of a non-thermoplastic polyimide layer or a polyamic acid solution of a thermoplastic polyimide layer, the same effect is observed, but in particular, the thermoplastic polyimide layer When the polyamic acid solution is in direct contact with the support, the effect is remarkable.
- a polyamic acid solution of a thermoplastic polyimide layer is cast on a support, and the polyamic acid solution obtained by drying the polyamic acid solution on the support has a drying temperature on the support of Even if the temperature is lower than the glass transition temperature of the thermoplastic polyimide, if the polyamic acid skeleton remains partially, the glass transition temperature is lowered, and it is easy to soften depending on the amount of residual solvent in the multilayer gel film. .
- the multi-layer gel film does not exhibit the strength to withstand at least partially peeling from the support, and the multilayer gel film of thermoplastic polyimide is partially attached to the support. Sometimes it stayed on.
- the polyamic acid solution of the thermoplastic polyimide layer when the polyamic acid solution of the thermoplastic polyimide layer is in direct contact with the support, the polyamic acid solution that becomes the thermoplastic polyimide layer contains an imidization catalyst, thereby expressing strength in the multilayer gel film of thermoplastic polyimide. It is possible to reduce adhesion of the thermoplastic polyimide multilayer gel film to the support when it is peeled from the support. Moreover, by using a chemical dehydrating agent in combination with the imidization catalyst, the imidization reaction can proceed more easily, and the strength of the multilayer gel film can be further increased.
- the content of the imidization catalyst in the polyamic acid solution in direct contact with the support is 0.05 to 2.0 mol with respect to 1 mol of the amic acid unit in the polyamic acid contained in the solution containing the imidization catalyst.
- 0.05 to 1.0 mol is more preferable, and 0.1 to 0.8 mol is particularly preferable in terms of balancing the strength of the gel film when peeled from the support and the peelability from the support. preferable.
- the content of the chemical dehydrating agent is preferably 0.5 to 4.5 mol with respect to 1 mol of the amic acid unit in the polyamic acid contained in the solution containing the chemical dehydrating agent and the imidization catalyst. From the viewpoint of balancing the strength of the gel film when peeled from the film and the peelability from the support, 1.0 to 4.0 mol is more preferable.
- the imidization time it suffices to take a sufficient time for the imidization and drying to be substantially completed, and it is not limited uniquely.
- a chemical curing method using a chemical dehydrating agent is used.
- the time is appropriately set within a range of about 1 to 600 seconds, and when a thermal curing method without using a chemical dehydrating agent is employed, a range of 60 to 1800 seconds.
- the tension applied to the polyimide layer during imidization is preferably in the range of 1 kg / m to 15 kg / m, and particularly preferably in the range of 5 kg / m to 10 kg / m. If the tension is smaller than the above range, sagging or meandering may occur during film conveyance, which may cause problems such as wrinkling during winding or inability to uniformly wind. On the other hand, when it is larger than the above range, the metal-clad laminate produced using the substrate for metal-clad laminate may deteriorate in dimensional characteristics because it is heated at a high temperature with a strong tension applied.
- the thickness of the multilayer polyimide film is preferably 7.5 ⁇ m or more and 125 ⁇ m or less.
- the thickness of the thermoplastic polyimide layer on at least one surface of the non-thermoplastic polyimide layer in the multilayer polyimide film is preferably 1.7 ⁇ m or more and 35 ⁇ m or less, more preferably 1.7 ⁇ m or more and 10 ⁇ m or less, and more preferably 1.7 ⁇ m or more and 8 ⁇ m or less. Is particularly preferred. If it is less than 1.7 ⁇ m, the adhesiveness to the metal foil may be deteriorated depending on the roughness of the surface of the metal foil. On the other hand, when the thickness is larger than 35 ⁇ m, the dimensional change rate after etching the metal foil of the metal foil-clad laminate may become larger on the minus side.
- thermoplastic polyimide layer and the non-thermoplastic polyimide layer constituting the multilayer polyimide film will be described.
- thermoplastic polyimide and the structure of the non-thermoplastic polyimide are different, for example, less than 60% of the total number of moles of acid dianhydride monomer and diamine monomer constituting the thermoplastic polyimide is non-
- the acid dianhydride monomer and the diamine monomer are the same as the thermoplastic polyimide
- the multilayer gel film of thermoplastic polyimide is easily peeled off from the multilayer gel film of non-thermoplastic polyimide. In some cases, the multilayer gel film of the plastic polyimide remains partially adhered to the support.
- the polyamic acid of the non-thermoplastic polyimide layer is larger than the imidization rate of the polyamic acid of the thermoplastic polyimide layer.
- an imidization catalyst in the polyamic acid solution of thermoplastic polyimide that is in direct contact with the support, the imidization rate of the polyamic acid of the non-thermoplastic polyimide and the imidization rate of the polyamic acid of the thermoplastic polyimide approach each other. Adhesiveness between the non-thermoplastic polyimide layer and the thermoplastic polyimide layer is improved, and sticking of the gel film portion of the thermoplastic polyimide to the support can be reduced. By using together with an imidation catalyst and a chemical dehydrating agent, it is possible to further reduce the imidization rate and stick the thermoplastic polyimide gel film to the support.
- thermoplastic polyimide and the structure of the non-thermoplastic polyimide are similar, for example, 60% or more of the total number of moles of the acid dianhydride monomer and diamine monomer constituting the thermoplastic polyimide is
- the acid dianhydride monomer and the diamine monomer constituting the thermoplastic polyimide are the same monomer, the structure is similar, so the imidization rate of the polyamic acid of the non-thermoplastic polyimide and the thermoplastic polyimide
- the difference from the imidization rate of the polyamic acid is originally small and the gel film portion of the thermoplastic polyimide is difficult to stick to the support, the gel film of the thermoplastic polyimide can be improved by increasing the line speed in order to improve production efficiency.
- the portion partially adhered to the support.
- an imidization catalyst in the polyamic acid solution of thermoplastic polyimide that is in direct contact with the support, the imidization rate of the polyamic acid of the thermoplastic polyimide is increased, and the solvent soaks between the support and the multilayer gel film.
- the multilayer gel film can be smoothly peeled off from the support, and the gel film portion of the thermoplastic polyimide can be reduced from sticking to the support.
- the imidization catalyst and the chemical dehydrating agent in combination, it is possible to further reduce the imidization rate and stick the thermoplastic polyimide gel film to the support.
- thermoplastic polyimide 60% or more of the total number of moles of the acid dianhydride monomer and diamine monomer constituting the thermoplastic polyimide is the same as the acid dianhydride monomer and diamine monomer constituting the non-thermoplastic polyimide.
- the adhesiveness between the thermoplastic polyimide layer and the non-thermoplastic polyimide layer is increased, and the solder heat resistance is improved.
- the thermoplastic polyimide layer needs to have thermoplasticity in order to express the copper foil peeling strength when it is made into a metal foil-clad laminate.
- the acid dianhydride monomer and diamine monomer constituting the thermoplastic polyimide constitutes the acid dianhydride monomer and diamine monomer constituting the non-thermoplastic polyimide
- the same monomer means that 60% or more of the total number of moles is based on the total number of moles (total number of moles) of the acid dianhydride monomer and diamine monomer constituting the thermoplastic polyimide. It is intended to be the same monomer as the acid dianhydride monomer and diamine monomer constituting the polyamic acid forming the non-thermoplastic polyimide layer. And the said numerical value is computed by the calculation formula of (the same kind mole number) / (total mole number).
- the ratio of the same number of moles of the acid dianhydride monomer and the diamine monomer constituting the thermoplastic polyimide is 60% or more of the total number of moles, the multilayer gel film of thermoplastic polyimide is stuck on the support. Less sticky.
- the numerical value is preferably 70% or more, and more preferably 80% or more. Further, the upper limit of the ratio is preferably 99% or less, and more preferably 98% or less.
- the method for producing a multilayer polyimide film according to the present invention comprises supplying a polyamic acid solution simultaneously to two or more multilayer dies by multilayer coextrusion, and forming a drum, an endless belt as at least two layers of thin film bodies from the discharge port of the die. Casted on a support such as, and heated at 60 ° C. to 150 ° C. on the support, and then peeled off the multilayer gel film from the support and heated at a high temperature of 150 ° C. or more to form at least a non-thermoplastic polyimide layer.
- This is a method for producing a multilayer polyimide film in which a thermoplastic polyimide layer is laminated on one side.
- the number of layers is at least 2 or more, but it is preferably 3 layers in order to suppress curling of the obtained multilayer polyimide film.
- the specific configuration of each layer is not particularly limited.
- each of the thermoplastic polyimide layer and the non-thermoplastic polyimide layer formed on one surface of the non-thermoplastic polyimide layer may be a single layer or a multilayer.
- Multi-layer coextrusion is preferable in terms of productivity and also in terms of moisture absorption solder heat resistance. This is not clear, but the polyamic acid of the non-thermoplastic polyimide layer and the polyamic acid of the thermoplastic polyimide layer are extruded at the same time. This is presumably because the integrity of the thermoplastic polyimide layer is improved.
- the following describes a method for producing a multilayer polyimide film by multilayer coextrusion.
- the solution extruded from two or more multilayer dies is continuously extruded onto a smooth support, and then a multilayer thin film solvent on the support.
- a multilayer gel film having a self-supporting property is obtained by volatilizing at least a part of the film.
- the multilayer polyamic acid on the support it is preferable to heat the multilayer polyamic acid on the support at a maximum temperature of 100 to 200 ° C.
- the multilayer gel film is peeled off from the support, and finally the multilayer gel film is sufficiently heated at a high temperature (250-600 ° C.) to substantially remove the solvent and imidize.
- a multilayer polyimide film can be obtained by making it advance completely.
- the multilayer gel film peeled off from the support is in the middle stage of curing from polyamic acid to polyimide, has a self-supporting property, and has the formula (1) (AB) x 100 / B ... Formula (1)
- a and B represent the following.
- the imidization rate may be intentionally lowered and / or the solvent may be left.
- the support according to the present invention is a casting of a multilayer liquid film extruded from a multilayer die, and the multilayer liquid film is heated and dried on the support to provide self-supporting property to the multilayer liquid film. It is given.
- the shape of the support is not particularly limited, but in consideration of the productivity of the adhesive film, it is preferably a drum shape or a belt shape.
- the material of the support is not particularly limited, and examples thereof include metal, plastic, glass, porcelain, etc., preferably metal, and more preferably SUS material having excellent corrosion resistance.
- the support may be plated with metal such as Cr, Ni, or Sn.
- multilayer die those having various structures can be used.
- a T-die for forming a multi-layer film can be used.
- any conventionally known structure can be suitably used, and feed block T dies and multi-manifold T dies are exemplified as particularly suitable ones.
- any solvent can be used as long as it dissolves the polyamic acid, but amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide And N-methyl-2-pyrrolidone.
- amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide And N-methyl-2-pyrrolidone.
- N, N-dimethylformamide and N, N-dimethylacetamide can be particularly preferably used.
- any monomer addition method may be used for the polymerization of the non-thermoplastic polyamic acid.
- the following methods may be mentioned. That is, 1) Aromatic diamine is dissolved in an organic polar solvent, and this is reacted with substantially equimolar aromatic tetracarboxylic dianhydride to polymerize aromatic diamine and aromatic tetracarboxylic dianhydride. how to, 2) An aromatic tetracarboxylic dianhydride is reacted with a small molar amount of an aromatic diamine compound in an organic polar solvent to obtain a prepolymer having acid anhydride groups at both ends.
- a method of polymerizing the prepolymer using 4) After the aromatic tetracarboxylic dianhydride is dissolved and / or dispersed in an organic polar solvent, the aromatic tetracarboxylic dianhydride is used by using an aromatic diamine compound so as to be substantially equimolar.
- a method for polymerizing a product and an aromatic diamine compound 5) A method of polymerizing an aromatic tetracarboxylic dianhydride and an aromatic diamine compound by reacting a substantially equimolar mixture of an aromatic tetracarboxylic dianhydride and an aromatic diamine in an organic polar solvent. , And so on. These methods may be used singly or in combination.
- the polyamic acid of the non-thermoplastic polyimide layer is preferably obtained in the following steps (a) to (c).
- the prepolymer obtained in (a) is preferably a thermoplastic block component.
- a method for determining whether the prepolymer is a thermoplastic block component will be described.
- thermoplastic block component Correct the acid dianhydride and diamine used in the preparation of the prepolymer to equimolar amounts (if there are multiple types of acid dianhydrides used, the ratio is fixed, and the diamines used are multiple types) In this case, the ratio was fixed.)
- the obtained polyamic acid solution was cast on an aluminum foil using a comma coater, heated at 130 ° C. for 100 seconds, and then self-supporting gel film from the aluminum foil. Is peeled off and fixed to the metal frame. Then, when the film is softened or melted when heat treated at 300 ° C. for 20 seconds and 450 ° C. for 1 minute, the dianhydride and diamine are thermoplastic block components. It was determined that it contains.
- the acid dianhydride and diamine that can serve as the thermoplastic block component are not particularly limited, and as the acid dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4, It is preferable to use 4′-benzophenonetetracarboxylic dianhydride as an essential component.
- the diamine it is preferable to use 2,2-bis [4- (4-aminophenoxy) phenyl] propane as an essential component.
- a method for producing a thermoplastic polyamic acid of a thermoplastic polyimide is as follows: (a) an aromatic dianhydride and an excess molar amount of an aromatic diamine are reacted with each other in an organic polar solvent, and amino groups are present at both ends. (B) Subsequently, the aromatic acid dianhydride is added so that the ratio of the aromatic dianhydride and the aromatic diamine in all the steps becomes a predetermined ratio. It is preferable to polymerize the prepolymer.
- there are a method of adding an aromatic acid dianhydride a method of adding a powder, a method of adding an acid solution in which an acid dianhydride is dissolved in an organic polar solvent in advance, and the reaction is uniform. In view of easy progress, a method of adding an acid solution is preferable.
- the solid component concentration during polymerization is preferably 10 to 30% by weight.
- the solid component concentration can be determined by the polymerization rate and the polymerization viscosity.
- the polymerization viscosity can be set according to the case where the polyamic acid solution of thermoplastic polyimide is applied to the support film, or when it is coextruded with non-thermoplastic polyimide.
- the polymerization viscosity is preferably 100 poise or less at a component concentration of 14% by weight. In the case of coextrusion, for example, the polymerization viscosity is preferably 100 poise to 1200 poise at a solid component concentration of 14% by weight, and 150 poise to 800 poise is more preferable because the resulting multilayer polyimide film can have a uniform film thickness.
- the aromatic dianhydride and aromatic diamine described above can be used by changing the order in consideration of the properties and productivity of the multilayer polyimide film.
- a filler can be added for the purpose of improving various properties of the film such as slidability, thermal conductivity, conductivity, and corona resistance.
- the filler is not particularly limited, and preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.
- the particle size of the filler is 0.1 to 10 ⁇ m, preferably 0.1 to 5 ⁇ m. If the particle diameter is below this range, the effect of improving the slidability is hardly exhibited, and if it exceeds this range, it tends to be difficult to produce a high-definition wiring pattern.
- the dispersion state of the filler is also important, and it is preferable that the aggregate of the filler having an average diameter of 20 ⁇ m or more is 50 pieces / m 2 or less, preferably 40 pieces / m 2 or less.
- the adhesive area will be repelled when the adhesive is applied, or the adhesive area will be reduced when a high-definition wiring pattern is created. It tends to reduce insulation reliability.
- Addition of the filler is, for example, (1) Method of adding filler to polymerization reaction solution before or during polymerization (2) Method of kneading filler using three rolls after completion of polymerization (3) Preparing dispersion containing filler, (4) Any method such as a method of dispersing the filler with a bead mill or the like may be used, but a method of mixing the dispersion containing the filler with the polyamic acid solution, particularly immediately before film formation The mixing method is preferable because contamination with the filler in the production line is minimized.
- a dispersing agent a thickener, etc. can also be used in the range which does not affect a film physical property.
- Polyimide is obtained by a dehydration conversion reaction from a polyimide precursor, that is, a polyamic acid.
- a method for performing the conversion reaction there are two methods of a thermal curing method using only heat and a chemical curing method using a chemical dehydrating agent. Is the most widely known. However, since it is excellent in productivity, it is more preferable to employ a chemical curing method. In both the thermal curing method and the chemical curing method, it is preferable to use an imidization catalyst in terms of allowing the imidization reaction to proceed quickly.
- the chemical dehydrating agent is a dehydrating ring-closing agent for polyamic acid, and its main component is aliphatic acid anhydride, aromatic acid anhydride, N, N′-dialkylcarbodiimide, lower aliphatic halide, halogenated lower fat.
- An aromatic acid anhydride, an aryl sulfonic acid dihalide, a thionyl halide, or a mixture of two or more thereof can be preferably used. Of these, aliphatic acid anhydrides and aromatic acid anhydrides work particularly well.
- the imidation catalyst is a component having an effect of promoting the dehydration ring-closing action of the curing agent on the polyamic acid.
- an aliphatic tertiary amine, an aromatic tertiary amine, or a heterocyclic tertiary amine is used.
- nitrogen-containing heterocyclic compounds such as imidazole, benzimidazole, isoquinoline, quinoline, or ⁇ -picoline are preferred.
- introduction of an organic polar solvent into a solution composed of a chemical dehydrating agent and an imidization catalyst can be appropriately selected.
- the method for producing a flexible metal-clad laminate according to the present invention preferably includes a step of bonding a metal foil to the multilayer polyimide film.
- the metal foil (eg, copper foil) used in the flexible metal laminate can have a thickness of 1 to 25 ⁇ m, and either a rolled copper foil or an electrolytic copper foil can be used.
- a hot roll laminating apparatus having a pair of metal rolls or a continuous treatment by a double belt press can be used.
- DBP double belt press
- the “heat roll laminating apparatus having a pair of metal rolls” herein may be an apparatus having a metal roll for heating and pressurizing a material, and the specific apparatus configuration is particularly limited. It is not a thing.
- thermal lamination process The process of laminating the multilayer polyimide film and the metal foil by thermal lamination is hereinafter referred to as “thermal lamination process”.
- thermal laminating means The specific configuration of the means for carrying out the thermal laminating step (hereinafter also referred to as “thermal laminating means”) is not particularly limited, but in order to improve the appearance of the resulting laminate, It is preferable to arrange a protective material between the pressure surface and the metal foil.
- the protective material examples include materials that can withstand the heating temperature in the heat laminating process, for example, heat-resistant plastics such as non-thermoplastic polyimide films, copper foils, aluminum foils, metal foils such as SUS foils, and the like.
- heat-resistant plastics such as non-thermoplastic polyimide films, copper foils, aluminum foils, metal foils such as SUS foils, and the like.
- a non-thermoplastic polyimide film or a film made of a thermoplastic polyimide having a glass transition temperature (Tg) higher by 50 ° C. or more than the laminating temperature is preferably used from the viewpoint of excellent balance of heat resistance, reusability and the like.
- Tg glass transition temperature
- the thickness of the non-thermoplastic polyimide film is preferably 75 ⁇ m or more.
- the protective material does not necessarily have to be a single layer, and may have a multilayer structure of two or more layers (for example, a three-layer structure) having different characteristics.
- the laminating temperature is high, if the protective material is used for laminating as it is, the appearance and dimensional stability of the obtained flexible metal-clad laminate may not be sufficient due to rapid thermal expansion. Therefore, it is preferable to preheat the protective material before lamination. As described above, when the protective material is preheated and then laminated, since the thermal expansion of the protective material is finished, the appearance and dimensional characteristics of the flexible metal-clad laminate are suppressed.
- a method of bringing a protective material into contact with a heating roll for example, may be mentioned.
- the contact time is preferably 1 second or longer, and more preferably 3 seconds or longer.
- the distance at which the protective material is held on the heating roll is not particularly limited, and may be appropriately adjusted from the diameter of the heating roll and the contact time.
- the heating method of the material to be laminated in the heat laminating means is not particularly limited, and a conventionally known method capable of heating at a predetermined temperature, such as a heat circulation method, a hot air heating method, an induction heating method, etc., is adopted.
- a heating means can be used.
- the method for pressurizing the material to be laminated in the thermal laminating means is not particularly limited, and is a conventionally known method capable of applying a predetermined pressure such as a hydraulic method, a pneumatic method, a gap pressure method, or the like.
- a pressurizing means adopting the method can be used.
- the heating temperature in the thermal laminating step is preferably a glass transition temperature (Tg) of the thermoplastic polyimide contained in the thermoplastic polyimide layer of the multilayer polyimide film + 50 ° C. or higher.
- the glass transition temperature (Tg) of the thermoplastic polyimide contained in the plastic polyimide layer + 100 ° C. or more is more preferable. If it is Tg + 50 degreeC or more temperature, a multilayer polyimide film and metal foil can be heat-laminated favorably. Moreover, if it is Tg + 100 degreeC or more, the lamination speed can be raised and the productivity of a flexible metal-clad laminated board can be improved more.
- the polyimide film used as the core of the multilayer polyimide film of the present invention is designed so that the thermal stress can be effectively relieved when laminating, and flexible with excellent dimensional stability.
- a metal-clad laminate can be obtained with high productivity.
- the contact time of the flexible metal-clad laminate with the heating roll is preferably 0.1 seconds or more, more preferably 0.2 seconds or more, and particularly preferably 0.5 seconds or more.
- the upper limit of the contact time is preferably 5 seconds or less. Even if the contact is made for longer than 5 seconds, the relaxation effect is not increased, and it is not preferable because a decrease in the laminating speed and restrictions on the line handling occur.
- the flexible metal-clad laminate after being brought into contact with the heating roll and gradually cooled is subjected to the post-heating step with the protective material still disposed.
- the tension at this time is preferably in the range of 1 to 10 N / cm.
- the post-heating atmosphere temperature is preferably in the range of (temperature ⁇ 200 ° C.) to (laminate temperature + 100 ° C.).
- Ambient temperature refers to the outer surface temperature of the protective material adhered to both surfaces of the flexible metal-clad laminate.
- the actual temperature of the flexible metal-clad laminate varies somewhat depending on the thickness of the protective material, but if the temperature of the surface of the protective material is within the above range, the effect of post-heating can be exhibited.
- the outer surface temperature of the protective material can be measured using a thermocouple or a thermometer.
- the laminating speed in the thermal laminating step is preferably 0.5 m / min or more, and more preferably 1.0 m / min or more. If it is 0.5 m / min or more, sufficient thermal lamination is possible, and if it is 1.0 m / min or more, productivity can be further improved.
- the laminating pressure is preferably in the range of 49 to 490 N / cm (5 to 50 kgf / cm), and more preferably in the range of 98 to 294 N / cm (10 to 30 kgf / cm). Within this range, the three conditions of laminating temperature, laminating speed, and laminating pressure can be improved, and productivity can be further improved.
- the adhesive film tension in the laminating step is preferably within a range of 0.01 to 4 N / cm, more preferably within a range of 0.02 to 2.5 N / cm, and 0.05 to 1.
- a range of 5 N / cm is particularly preferable.
- a thermal laminating apparatus that continuously press-bonds the material to be laminated while heating.
- a laminated material feeding means for feeding the laminated material may be provided before the thermal laminating means, or a laminated material winding for winding the laminated material is taken after the thermal laminating means. Means may be provided.
- the specific configuration of the laminated material feeding means and the laminated material winding means is not particularly limited.
- a known roll shape capable of winding an adhesive film, a metal foil, or a laminated sheet to be obtained. A winder etc. can be mentioned.
- a protective material winding means or a protective material feeding means for winding or feeding the protective material. If these protective material take-up means and protective material feeding means are provided, the protective material can be reused by winding the protective material once used in the thermal laminating step and installing it again on the pay-out side. .
- an end position detecting means and a winding position correcting means may be provided in order to align both ends of the protective material.
- the end portions of the protective material can be aligned and wound with high accuracy, so that the efficiency of reuse can be increased.
- the specific configurations of the protective material winding means, the protective material feeding means, the end position detecting means, and the winding position correcting means are not particularly limited, and various conventionally known devices can be used.
- the peel strength between the multilayer polyimide film and the metal foil of the flexible metal-clad laminate is preferably 10 N / cm or more.
- the present invention can also be configured as follows.
- the method for producing a multilayer coextruded polyimide film it is preferable to include a chemical dehydrating agent and an imidization catalyst only in the polyamic acid solution in direct contact with the support among the plurality of polyamic acid solutions.
- the polyamic acid solution that is in direct contact with the support is preferably a polyamic acid solution that becomes a thermoplastic polyimide layer.
- 60% or more of the total number of moles of the acid dianhydride monomer and the diamine monomer constituting the thermoplastic polyimide is a single amount of the acid dianhydride monomer and diamine constituting the non-thermoplastic polyimide. It is preferable that it is the same monomer as the body.
- the diamine constituting the thermoplastic polyimide contains 2,2-bis [4- (4-aminophenoxy) phenyl] propane as an essential component.
- the polyamic acid that becomes the non-thermoplastic polyimide layer is preferably a polyamic acid that is a precursor of non-thermoplastic polyimide having a thermoplastic block component in the molecule.
- thermoplastic polyimide layer is laminated on both surfaces of the non-thermoplastic polyimide layer.
- the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
- the evaluation method of the peeling strength of a multilayer polyimide film and metal foil and solder heat resistance in a synthesis example, an Example, and a comparative example is as follows.
- solder heat resistance evaluation A test piece of 3 cm ⁇ 3 cm was cut out from the flexible metal-clad laminate, and the solder heat resistance was evaluated during normal conditions and during moisture absorption. In the normal state, the test piece was adjusted at 23 ° C./55% RH for 24 hours, and then allowed to stand in a float for 30 seconds using a warmed solder bath. Thereafter, the copper foil on the side touching the solder bath was etched to check for swelling. The temperature of the solder bath without blistering is shown in Tables 1-2. When absorbing moisture, the test piece was adjusted at 85 ° C./85% RH for 24 hours, and then allowed to stand for 30 seconds in a float using a heated solder bath. Thereafter, the copper foil on the side touching the solder bath was etched to check for swelling. The temperature of the solder bath without blistering is shown in Tables 1-2.
- the polyamic acid solution synthesized in equimolar amounts of acid dianhydride and diamine used for producing the prepolymer was cast on an aluminum foil using a comma coater, and 130 ° C. ⁇ 100 seconds. Then, the self-supporting gel film was peeled off from the aluminum foil and fixed to the metal frame. Thereafter, when heat treatment was performed at 300 ° C. for 20 seconds and 450 ° C. for 1 minute, the film was melted and the appearance was deformed. Therefore, the block component of Synthesis Example 1 was determined to be a thermoplastic block component.
- Example 1 Using a multi-manifold three-layer coextrusion three-layer die with a lip width of 200 mm, the polyamic acid solution obtained in Synthesis Example 2 / the polyamic acid solution obtained in Synthesis Example 1 / the polyamic acid solution obtained in Synthesis Example 2 Extruded and cast on an aluminum foil with a three-layer structure in the order of Next, after heating this three-layer film at 150 ° C. ⁇ 100 seconds, the three-layer gel film having self-supporting properties is peeled off and fixed to a metal frame, 250 ° C. ⁇ 40 seconds, 300 ° C.
- thermoplastic polyimide layer / non-thermoplastic polyimide layer / thermoplastic polyimide layer is 2.7 ⁇ m / 12.6 ⁇ m / 2.7 ⁇ m. A film was obtained.
- the polyamic acid solution obtained in Synthesis Example 2 was used only for the polyamic acid solution on the surface in direct contact with the support.
- 20 g of a curing agent (chemical dehydrating agent and imidization catalyst) composed of / DMF (weight ratio 33.0 g / 8.3 g / 58.6 g) was added and mixed with a mixer.
- thermoplastic polyimide layer of the surface which touches directly on a support body is described as B surface
- thermoplastic polyimide layer of the opposite side is described as A surface.
- Example 1 The same procedure as in Example 1 was carried out except that the chemical dehydrating agent and the imidization catalyst were not added to the polyamic acid solution of Synthesis Example 2 (polyamic acid solution on the surface (B surface) in direct contact with the support). .
- Example 2 Using a multi-manifold three-layer coextrusion three-layer die with a lip width of 200 mm, the polyamic acid solution obtained in Synthesis Example 3 / the polyamic acid solution obtained in Synthesis Example 1 / the polyamic acid solution obtained in Synthesis Example 3 Extruded and cast on an aluminum foil with a three-layer structure in the order of Next, after heating this three-layer film at 150 ° C. ⁇ 100 seconds, the three-layer gel film having self-supporting properties is peeled off and fixed to a metal frame, 250 ° C. ⁇ 40 seconds, 300 ° C.
- thermoplastic polyimide layer / non-thermoplastic polyimide layer / thermoplastic polyimide layer is 2.7 ⁇ m / 12.6 ⁇ m / 2.7 ⁇ m. A film was obtained.
- the polyamic acid solution obtained in Synthesis Example 3 is only acetic anhydride / isoquinoline with respect to 100 g of this polyamic acid solution just before the polyamic acid solution on the surface directly contacting the support is put into the three-layer die.
- 20 g of a curing agent (chemical dehydrating agent and imidization catalyst) composed of / DMF (weight ratio 33.0 g / 8.3 g / 58.6 g) was added and mixed with a mixer.
- Example 2 The same procedure as in Example 1 was conducted except that the chemical dehydrating agent and the imidization catalyst were not added to the polyamic acid solution of Synthesis Example 3. After producing a metal-clad laminate using a three-layer polyimide film, the peel strength of the metal foil and the solder heat resistance were measured. The results are summarized in Tables 1-2. There was a trace of peeling on the B-side thermoplastic polyimide layer that was in direct contact with the support.
- Example 3 Immediately before the polyamic acid solution 100 g was added to the polyamic acid solution (the polyamic acid solution on the surface (B surface) in direct contact with the support) on the polyamic acid solution of Synthesis Example 2, isoquinoline / DMF (weight ratio) The same procedure as in Example 1 was conducted except that 14 g of a curing agent (8.3 g / 58.6 g) (imidation catalyst only) was added and mixed with a mixer. After producing a metal-clad laminate using a three-layer polyimide film, the peel strength of the metal foil and the solder heat resistance were measured. The results are summarized in Tables 1-2.
- Example 4 Immediately before the polyamic acid solution 100 g was added to the polyamic acid solution of Synthesis Example 3 (polyamic acid solution on the surface (B surface) in direct contact with the support) into the three-layer die, isoquinoline / DMF (weight ratio) The same procedure as in Example 1 was conducted except that 14 g of a curing agent (8.3 g / 58.6 g) (imidation catalyst only) was added and mixed with a mixer. After producing a metal-clad laminate using a three-layer polyimide film, the peel strength of the metal foil and the solder heat resistance were measured. The results are summarized in Tables 1-2.
- the present invention can be used for manufacturing a flexible printed wiring board.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Laminated Bodies (AREA)
- Moulding By Coating Moulds (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Provided is a method for producing multilayered co-extruded polyimide film, with which the partial sticking of a polyimide layer onto a substrate that occurs when a polyamide acid solution is cast by multilayered co-extrusion onto the substrate in order to produce a multilayered polyimide film by multilayered co-extrusion is prevented by adding an imidation catalyst to only the polyamide acid solution that comes into direct contact with the substrate.
Description
本発明は、フレキシブルプリント配線板に好適に使用できる多層共押出ポリイミドフィルムの製造方法に関する。
This invention relates to the manufacturing method of the multilayer coextrusion polyimide film which can be used conveniently for a flexible printed wiring board.
近年、エレクトロニクス製品の軽量化、小型化、高密度化にともない、各種プリント基板の需要が伸びているが、中でも、フレキシブル積層板(フレキシブルプリント配線板(FPC)等とも称する)の需要が特に伸びている。フレキシブル積層板は、ポリイミドフィルム等の絶縁性フィルム上に金属層からなる回路が形成された構造を有している。
In recent years, the demand for various printed circuit boards has increased along with the reduction in weight, size and density of electronic products. In particular, the demand for flexible laminates (also referred to as flexible printed circuit boards (FPCs), etc.) has increased. ing. The flexible laminate has a structure in which a circuit made of a metal layer is formed on an insulating film such as a polyimide film.
上記フレキシブル配線板の元になるフレキシブル金属張積層板は、一般に、各種絶縁材料により形成され、柔軟性を有する絶縁性フィルムを基板とし、この基板の表面に、各種接着材料を介して金属箔を加熱・圧着して貼り合わせる方法により製造される。上記絶縁性フィルムとしては、ポリイミドフィルム等が好ましく用いられる。上記接着材料としては、エポキシ系、アクリル系等の熱硬化性接着剤が一般的に用いられているが、熱硬化性接着剤は、比較的低温での接着が可能であるという利点があるが、耐熱性、屈曲性、電気的信頼性といった要求される特性が厳しくなるに従い、熱硬化性接着剤を用いて三層FPCを作製することは困難になると考えられる。このため、絶縁性フィルムに直接金属層を設けたり、接着層に熱可塑性ポリイミドを使用したりする二層FPCが提案されている。この二層FPCは、三層FPCよりも優れた特性を有し、今後需要が伸びていくと期待される。
The flexible metal-clad laminate that is the basis of the flexible wiring board is generally formed of various insulating materials, and a flexible insulating film is used as a substrate, and metal foil is applied to the surface of the substrate via various adhesive materials. Manufactured by heating and pressure bonding. A polyimide film or the like is preferably used as the insulating film. As the adhesive material, epoxy-type, acrylic-type, etc., thermosetting adhesives are generally used. However, thermosetting adhesives have an advantage that they can be bonded at a relatively low temperature. As required characteristics such as heat resistance, flexibility and electrical reliability become severe, it is considered that it is difficult to produce a three-layer FPC using a thermosetting adhesive. For this reason, a two-layer FPC in which a metal layer is directly provided on an insulating film or a thermoplastic polyimide is used for an adhesive layer has been proposed. This two-layer FPC has characteristics superior to those of the three-layer FPC, and demand is expected to increase in the future.
二層FPC用多層ポリイミドフィルムとして、ポリイミドフィルムの表面に、ポリアミド酸溶液を塗布、乾燥(イミド化)させ、多層ポリイミドフィルムを製造する方法が挙げられるが、ポリイミドフィルムを製造する工程、ポリイミドフィルムの表面にポリアミド酸溶液を塗布、乾燥(イミド化)させる工程が必要であり、工程が複数となり、コストアップになることがあった(例えば、特許文献1参照。)。
As a multilayer polyimide film for two-layer FPC, a method of producing a multilayer polyimide film by applying a polyamic acid solution on the surface of the polyimide film and drying (imidizing) it can be mentioned. The process of applying and drying (imidizing) the polyamic acid solution on the surface is necessary, and there are cases where the number of processes is increased and the cost is increased (for example, refer to Patent Document 1).
また、二層FPC用多層ポリイミドフィルムとして、ポリアミド酸溶液を複数層同時に支持体上へ流延し、乾燥した後に支持体から剥がし、熱処理して多層ポリイミドフィルムを製造する方法が挙げられるが、支持体上に直接接しているポリイミド層が、支持体上に部分的に貼り付き、支持体上に残る問題があった(例えば、特許文献2~3参照。)。
In addition, as a multilayer polyimide film for two-layer FPC, a method in which a polyamic acid solution is cast on a support at the same time, dried, peeled off from the support, and heat treated to produce a multilayer polyimide film. There has been a problem that the polyimide layer in direct contact with the body partially sticks on the support and remains on the support (see, for example, Patent Documents 2 to 3).
本発明は、上記の課題に鑑みてなされたものであって、その目的は、多層共押出でポリアミド酸溶液を支持体上に流延した際、支持体上へポリイミド層が部分的に貼り付くことが無い、多層共押出ポリイミドフィルムの製造方法を提供することである。
The present invention has been made in view of the above-described problems, and its purpose is that when a polyamic acid solution is cast onto a support by multilayer coextrusion, the polyimide layer partially adheres to the support. It is providing the manufacturing method of the multilayer coextrusion polyimide film which does not have.
本発明者らは、上記の課題に鑑み鋭意検討した結果、本発明に至った。
As a result of intensive studies in view of the above problems, the present inventors have reached the present invention.
多層共押出で複数のポリアミド酸溶液を支持体上に流延し、少なくとも非熱可塑性ポリイミドを含む非熱可塑性ポリイミド層の少なくとも片面に、少なくとも熱可塑性ポリイミドを含む熱可塑性ポリイミド層を積層した多層ポリイミドフィルムを製造する方法であって、上記複数のポリアミド酸溶液のうち、上記支持体に直接接するポリアミド酸溶液中のみに、イミド化触媒を含有せしめることを特徴とする多層共押出ポリイミドフィルムの製造方法に関する。
A multilayer polyimide in which a plurality of polyamic acid solutions are cast on a support by multilayer coextrusion, and a thermoplastic polyimide layer containing at least a thermoplastic polyimide is laminated on at least one surface of a non-thermoplastic polyimide layer containing at least a non-thermoplastic polyimide. A method for producing a film, comprising: imidizing a catalyst only in a polyamic acid solution in direct contact with the support among the plurality of polyamic acid solutions. About.
本発明により、多層共押出でポリアミド酸溶液を支持体上に流延した際に、支持体上にポリイミド層が部分的に貼り付くことが無い、多層共押出ポリイミドフィルムの製造方法を提供することができる。
According to the present invention, when a polyamic acid solution is cast on a support by multilayer coextrusion, a method for producing a multilayer coextrusion polyimide film in which a polyimide layer does not partially stick on the support is provided. Can do.
本発明により、支持体からポリイミド層を引き剥がすときに、支持体上にポリイミド層の断片(剥離カス)が残留することがない、多層共押出ポリイミドフィルムの製造方法を提供することができる。
According to the present invention, it is possible to provide a method for producing a multilayer coextruded polyimide film in which when the polyimide layer is peeled off from the support, fragments of the polyimide layer (peeling residue) do not remain on the support.
本発明の実施の一形態について、以下に説明する。
An embodiment of the present invention will be described below.
本発明は、多層共押出で複数のポリアミド酸溶液を支持体上に流延し、少なくとも非熱可塑性ポリイミドを含む非熱可塑性ポリイミド層の少なくとも片面に、少なくとも熱可塑性ポリイミドを含む熱可塑性ポリイミド層を積層した多層ポリイミドフィルムを製造する方法であって、上記複数のポリアミド酸溶液のうち、上記支持体に直接接するポリアミド酸溶液中のみに、イミド化触媒を含有せしめることを特徴とする多層共押出ポリイミドフィルムの製造方法に関する。
In the present invention, a plurality of polyamic acid solutions are cast on a support by multilayer coextrusion, and at least one surface of a non-thermoplastic polyimide layer containing non-thermoplastic polyimide is provided with a thermoplastic polyimide layer containing at least thermoplastic polyimide. A method for producing a laminated multilayer polyimide film, characterized in that an imidization catalyst is contained only in a polyamide acid solution in direct contact with the support among the plurality of polyamide acid solutions. The present invention relates to a film manufacturing method.
本発明における非熱可塑性ポリイミドとは、一般に加熱しても軟化、接着性を示さないポリイミドをいう。本発明では、非熱可塑性ポリイミドを単独で製膜して得られたフィルムに対して450℃、1分間加熱を行っても、シワが入ったり伸びたりせず、形状を保持しているポリイミド、若しくはDSC(示差走査熱量測定)で、実質的にガラス転移温度を有しないポリイミドをいう。
The non-thermoplastic polyimide in the present invention generally means a polyimide that does not soften or show adhesiveness even when heated. In the present invention, even if heating is performed at 450 ° C. for 1 minute on a film obtained by forming a non-thermoplastic polyimide alone, wrinkles do not enter or extend, and the polyimide retains its shape, Or the DSC (differential scanning calorimetry) means the polyimide which does not have a glass transition temperature substantially.
また、熱可塑性ポリイミドとは、一般的にDSC(示差走査熱量測定)で、ガラス転移温度を有するポリイミドをいう。本発明における熱可塑性ポリイミドは、前記ガラス転移温度が、150℃~350℃であるものをいう。
Further, the thermoplastic polyimide generally means a polyimide having a glass transition temperature by DSC (differential scanning calorimetry). The thermoplastic polyimide in the present invention refers to those having a glass transition temperature of 150 ° C. to 350 ° C.
多層ポリイミドフィルムの非熱可塑性ポリイミド層に含まれる非熱可塑性ポリイミドの原料として用いる芳香族酸二無水物としては、特に限定されないが、ピロメリット酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)エタン二無水物、オキシジフタル酸二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)及びそれらの誘導体を挙げることが可能であって、これらを単独で、または任意の割合で混合した混合物を好ましく用いることができる。
The aromatic acid dianhydride used as a raw material for the non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer of the multilayer polyimide film is not particularly limited, but pyromellitic dianhydride, 2,3,6,7-naphthalene Tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2 ′, 3,3 ′ -Biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4, 9,10-perylenetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) ethane dianhydride, Oxydiphthalic dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, p-phenylenebis (trimellitic acid monoester acid anhydride), ethylene bis (trimellitic acid monoester acid anhydride), bisphenol A bis (trimellitic acid monoester anhydride) and derivatives thereof can be mentioned, and these can be used alone or in a mixture in any ratio.
中でも、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物からなる群より選ばれる少なくとも1種の酸二無水物であることが好ましく、製造時の溶媒溶解性の面で、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物がさらに好ましい。
Among them, it is selected from the group consisting of pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride At least one kind of acid dianhydride is preferable, and in terms of solvent solubility during production, pyromellitic acid dianhydride and 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride are further included. preferable.
多層ポリイミドフィルムの非熱可塑性ポリイミド層に含まれる非熱可塑性ポリイミドの原料として用いる芳香族ジアミンは特に制限されないが、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、p-フェニレンジアミン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルメタン、ベンジジン、3,3’-ジクロロベンジジン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、1,5-ジアミノナフタレン、4,4’-ジアミノジフェニルジエチルシラン、4,4’-ジアミノジフェニルシラン、4,4’-ジアミノジフェニルエチルホスフィンオキシド、4,4´-ジアミノジフェニルN-メチルアミン、4,4’-ジアミノジフェニル N-フェニルアミン、1,4-ジアミノベンゼン(p-フェニレンジアミン)、1,3-ジアミノベンゼン、1,2-ジアミノベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン及びそれらの誘導体などが挙げられ、これらを単独で、または任意の割合で混合した混合物を好ましく用いることができる。
The aromatic diamine used as a raw material for the non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer of the multilayer polyimide film is not particularly limited, but 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4 '-Diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, p-phenylenediamine, 4,4'-diamino Diphenylpropane, 4,4′-diaminodiphenylmethane, benzidine, 3,3′-dichlorobenzidine, 4,4′-diaminodiphenyl sulfide, 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 4, 4'-diaminodiphenyl ether, 3,3'-di Minodiphenyl ether, 3,4'-diaminodiphenyl ether, 1,5-diaminonaphthalene, 4,4'-diaminodiphenyldiethylsilane, 4,4'-diaminodiphenylsilane, 4,4'-diaminodiphenylethylphosphine oxide, 4, 4'-diaminodiphenyl N-methylamine, 4,4'-diaminodiphenyl N-phenylamine, 1,4-diaminobenzene (p-phenylenediamine), 1,3-diaminobenzene, 1,2-diaminobenzene, 2 , 2-bis [4- (4-aminophenoxy) phenyl] propane and derivatives thereof, and the like can be preferably used alone or in admixture at any ratio.
中でも、非熱可塑性ポリイミドを構成するジアミンとしては、熱可塑性ブロックを形成する面で2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを用いることが好ましく、線膨張係数及び強度の制御の面でp-フェニレンジアミン、4,4’-ジアミノジフェニルエーテルを用いることが好ましい。
Among these, as the diamine constituting the non-thermoplastic polyimide, 2,2-bis [4- (4-aminophenoxy) phenyl] propane is preferably used in terms of forming a thermoplastic block, and has a linear expansion coefficient and strength. In terms of control, p-phenylenediamine and 4,4′-diaminodiphenyl ether are preferably used.
なお、非熱可塑性ポリイミドが熱可塑性ブロック成分を含むこと、すなわち、非熱可塑性ポリイミド層になるポリアミド酸が、分子中に熱可塑性ブロック成分を有する非熱可塑性ポリイミドの前駆体であるポリアミド酸であることは、非熱可塑性ポリイミドと熱可塑性ポリイミドとの密着性を向上させることができる点で好ましい。
Note that the non-thermoplastic polyimide contains a thermoplastic block component, that is, the polyamic acid that becomes the non-thermoplastic polyimide layer is a polyamic acid that is a precursor of the non-thermoplastic polyimide having a thermoplastic block component in the molecule. This is preferable in that the adhesion between the non-thermoplastic polyimide and the thermoplastic polyimide can be improved.
多層ポリイミドフィルムの熱可塑性ポリイミド層に含まれる熱可塑性ポリイミドの原料として用いる芳香族酸二無水物としては、特に限定されないが、ピロメリット酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)エタン二無水物、オキシジフタル酸二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)及びそれらの誘導体を挙げることが可能であって、これらを単独で、または任意の割合で混合した混合物を好ましく用いることができる。
The aromatic dianhydride used as a raw material for the thermoplastic polyimide contained in the thermoplastic polyimide layer of the multilayer polyimide film is not particularly limited, but pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic Acid dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyl Tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4,9, 10-perylenetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, , 1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) ethane dianhydride, oxydiphthalic acid Dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, p-phenylenebis (trimellitic acid monoester acid anhydride), ethylene bis (trimellitic acid monoester acid anhydride), bisphenol A bis (Trimellitic acid monoester acid anhydride) and derivatives thereof can be mentioned, and a mixture of these alone or in an arbitrary ratio can be preferably used.
中でも、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物からなる群より選ばれる少なくとも1種の酸二無水物であることが好ましく、フレキシブル金属張積層板の銅箔引き剥がし強度を高める点で、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を用いることが好ましく、フレキシブル金属張積層板の銅箔引き剥がし強度を高めたままで、半田耐熱性を向上させる点で、ピロメリット酸二無水物と3,3’,4,4’-ビフェニルテトラカルボン酸二無水物とを併用することが好ましい。
Among them, it is selected from the group consisting of pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride At least one kind of acid dianhydride is preferable, and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is used in order to increase the copper foil peeling strength of the flexible metal-clad laminate. Pyromellitic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic acid dicarboxylic acid are preferred in terms of improving solder heat resistance while increasing the copper foil peeling strength of the flexible metal-clad laminate. It is preferable to use an anhydride in combination.
多層ポリイミドフィルムの熱可塑性ポリイミド層に含まれる熱可塑性ポリイミドの原料として用いる芳香族ジアミンは特に制限されないが、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、p-フェニレンジアミン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルメタン、ベンジジン、3,3’-ジクロロベンジジン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、1,5-ジアミノナフタレン、4,4’-ジアミノジフェニルジエチルシラン、4,4’-ジアミノジフェニルシラン、4,4’-ジアミノジフェニルエチルホスフィンオキシド、4,4’-ジアミノジフェニルN-メチルアミン、4,4’-ジアミノジフェニル N-フェニルアミン、1,4-ジアミノベンゼン(p-フェニレンジアミン)、1,3-ジアミノベンゼン、1,2-ジアミノベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン及びそれらの誘導体などが挙げられ、これらを単独で、または任意の割合で混合した混合物を好ましく用いることができる。
The aromatic diamine used as a raw material for the thermoplastic polyimide contained in the thermoplastic polyimide layer of the multilayer polyimide film is not particularly limited, but 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4′- Diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, p-phenylenediamine, 4,4'-diaminodiphenylpropane 4,4′-diaminodiphenylmethane, benzidine, 3,3′-dichlorobenzidine, 4,4′-diaminodiphenyl sulfide, 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 4,4 ′ -Diaminodiphenyl ether, 3,3'-diamy Diphenyl ether, 3,4'-diaminodiphenyl ether, 1,5-diaminonaphthalene, 4,4'-diaminodiphenyldiethylsilane, 4,4'-diaminodiphenylsilane, 4,4'-diaminodiphenylethylphosphine oxide, 4,4 '-Diaminodiphenyl N-methylamine, 4,4'-diaminodiphenyl N-phenylamine, 1,4-diaminobenzene (p-phenylenediamine), 1,3-diaminobenzene, 1,2-diaminobenzene, 2, Examples thereof include 2-bis [4- (4-aminophenoxy) phenyl] propane and derivatives thereof, and a mixture of these alone or in an arbitrary ratio can be preferably used.
中でも、熱可塑性ポリイミドを構成する2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンは、金属箔張積層板の金属箔の引き剥がし強度を向上させる点で好ましい。
Among these, 2,2-bis [4- (4-aminophenoxy) phenyl] propane constituting thermoplastic polyimide is preferable in terms of improving the peel strength of the metal foil of the metal foil-clad laminate.
多層ポリイミドフィルムは、非熱可塑性ポリイミド層の少なくとも片面に、熱可塑性ポリイミド層を形成したものであるが、非熱可塑性ポリイミド層の両面に熱可塑性ポリイミド層を形成した多層ポリイミドフィルムは、両面金属張積層板を製造でき、フレキシブルプリント配線板の軽量化、小型化、高密度化を実現できる点で好ましい。
A multilayer polyimide film is a non-thermoplastic polyimide layer with a thermoplastic polyimide layer formed on at least one side. A non-thermoplastic polyimide layer with a thermoplastic polyimide layer formed on both sides is a double-sided metal film. This is preferable in that a laminated board can be manufactured, and the flexible printed wiring board can be reduced in weight, size, and density.
多層ポリイミドフィルムの製造方法としては、多層共押出により、同時に多層ポリアミド酸を支持体に流延して、多層ポリイミドフィルムを製造する。その際、支持体に直接接するポリアミド酸溶液中のみに、イミド化触媒を含有させる。イミド化触媒を含有させることで、支持体上に直接接するポリアミド酸のイミド化が進行し、自己支持性が発現し、膜強度が高くなり、支持体上に部分的な貼り付き(剥離カス)を残さず、多層ゲルフィルムを支持体から引き剥がすことが可能となる。また、イミド化反応が進行すると、ポリアミド酸とポリイミドとの溶媒溶解度の差により、溶剤が染み出し、支持体から、多層ゲルフィルムを容易に剥がせるようになる。このため、支持体に直接接するポリアミド酸溶液中に、イミド化触媒を含有させることが有用となる。さらに、支持体上に直接接するポリアミド酸中のイミド化触媒は、加熱時に、厚み方向に抜けていくものもあり、その際、当該イミド化触媒によって他のポリアミド酸溶液もイミド化反応が進行し、反応を効率良く進めることができる。なお、イミド化触媒と化学脱水剤とを併用することで、より反応を効率良く進めることができる。
As a method for producing a multilayer polyimide film, a multilayer polyimide film is produced by simultaneously casting a multilayer polyamic acid on a support by multilayer coextrusion. At that time, the imidization catalyst is contained only in the polyamic acid solution in direct contact with the support. By including an imidization catalyst, imidation of the polyamic acid that is in direct contact with the support proceeds, self-supporting properties are exhibited, film strength is increased, and partial sticking on the support (peeling residue) The multilayer gel film can be peeled off from the support without leaving a film. As the imidization reaction proceeds, the solvent oozes out due to the difference in solvent solubility between the polyamic acid and the polyimide, and the multilayer gel film can be easily peeled off from the support. For this reason, it is useful to include an imidization catalyst in the polyamic acid solution that is in direct contact with the support. Furthermore, some imidation catalysts in the polyamic acid that are in direct contact with the support come off in the thickness direction upon heating. At that time, the imidization catalyst also proceeds to the imidization reaction of other polyamic acid solutions. The reaction can proceed efficiently. In addition, reaction can be advanced more efficiently by using an imidation catalyst and a chemical dehydrating agent together.
支持体に直接接するポリアミド酸溶液が、非熱可塑性ポリイミド層のポリアミド酸溶液であっても、熱可塑性ポリイミド層のポリアミド酸溶液であっても同様の効果が認められるが、特に、熱可塑性ポリイミド層のポリアミド酸溶液が、支持体に直接接する場合、効果は顕著に現れる。
Even if the polyamic acid solution in direct contact with the support is a polyamic acid solution of a non-thermoplastic polyimide layer or a polyamic acid solution of a thermoplastic polyimide layer, the same effect is observed, but in particular, the thermoplastic polyimide layer When the polyamic acid solution is in direct contact with the support, the effect is remarkable.
多層共押出で、熱可塑性ポリイミド層のポリアミド酸溶液が支持体上に流延し、当該ポリアミド酸溶液が支持体上で乾燥することによって得られる多層ゲルフィルムは、支持体上の乾燥温度が、熱可塑性ポリイミドのガラス転移温度よりも低い温度であっても、部分的にポリアミド酸骨格が残っていれば、ガラス転移温度は低下するし、多層ゲルフィルムの残溶媒量によっても、軟化しやすくなる。これにより、支持体上の乾燥だけでは、少なくとも部分的に、支持体から引き剥がすに耐える強度が多層ゲルフィルムに発現しておらず、熱可塑性ポリイミドの多層ゲルフィルムが部分的に支持体に貼り付いたままになることがあった。一方、熱可塑性ポリイミド層のポリアミド酸溶液が、支持体に直接接する場合、熱可塑性ポリイミド層になるポリアミド酸溶液に、イミド化触媒を含有させることで、熱可塑性ポリイミドの多層ゲルフィルムに強度を発現させることができ、支持体から引き剥がす際に、熱可塑性ポリイミドの多層ゲルフィルムが支持体に貼り付くことを低減できるようになる。また、イミド化触媒に化学脱水剤を併用することで、イミド化反応がより進行しやすくなり、多層ゲルフィルムの強度をより高めることができるようになる。
In multilayer coextrusion, a polyamic acid solution of a thermoplastic polyimide layer is cast on a support, and the polyamic acid solution obtained by drying the polyamic acid solution on the support has a drying temperature on the support of Even if the temperature is lower than the glass transition temperature of the thermoplastic polyimide, if the polyamic acid skeleton remains partially, the glass transition temperature is lowered, and it is easy to soften depending on the amount of residual solvent in the multilayer gel film. . As a result, by simply drying on the support, the multi-layer gel film does not exhibit the strength to withstand at least partially peeling from the support, and the multilayer gel film of thermoplastic polyimide is partially attached to the support. Sometimes it stayed on. On the other hand, when the polyamic acid solution of the thermoplastic polyimide layer is in direct contact with the support, the polyamic acid solution that becomes the thermoplastic polyimide layer contains an imidization catalyst, thereby expressing strength in the multilayer gel film of thermoplastic polyimide. It is possible to reduce adhesion of the thermoplastic polyimide multilayer gel film to the support when it is peeled from the support. Moreover, by using a chemical dehydrating agent in combination with the imidization catalyst, the imidization reaction can proceed more easily, and the strength of the multilayer gel film can be further increased.
支持体上に直接接するポリアミド酸溶液のイミド化触媒の含有量は、イミド化触媒を含有せしめる溶液に含まれるポリアミド酸中のアミド酸ユニット1モルに対して、0.05~2.0モルが好ましく、0.05~1.0モルがさらに好ましく、支持体から剥がす際のゲルフィルムの強度と、支持体からの剥れ性とのバランスを取る点で0.1~0.8モルが特に好ましい。
The content of the imidization catalyst in the polyamic acid solution in direct contact with the support is 0.05 to 2.0 mol with respect to 1 mol of the amic acid unit in the polyamic acid contained in the solution containing the imidization catalyst. Preferably, 0.05 to 1.0 mol is more preferable, and 0.1 to 0.8 mol is particularly preferable in terms of balancing the strength of the gel film when peeled from the support and the peelability from the support. preferable.
また、化学脱水剤の含有量は、化学脱水剤及びイミド化触媒を含有せしめる溶液に含まれるポリアミド酸中のアミド酸ユニット1モルに対して、0.5~4.5モルが好ましく、支持体から剥がす際のゲルフィルムの強度と、支持体からの剥れ性とのバランスを取る点で1.0~4.0モルがさらに好ましい。
The content of the chemical dehydrating agent is preferably 0.5 to 4.5 mol with respect to 1 mol of the amic acid unit in the polyamic acid contained in the solution containing the chemical dehydrating agent and the imidization catalyst. From the viewpoint of balancing the strength of the gel film when peeled from the film and the peelability from the support, 1.0 to 4.0 mol is more preferable.
イミド化時間に関しては、実質的にイミド化および乾燥が完結するに十分な時間を取ればよく、一義的に限定されるものではないが、一般的には、化学脱水剤を用いる化学キュア法を採用する場合、1~600秒程度、化学脱水剤を用いない熱キュア法を採用する場合、60~1800秒の範囲で適宜設定される。
With regard to the imidization time, it suffices to take a sufficient time for the imidization and drying to be substantially completed, and it is not limited uniquely. In general, a chemical curing method using a chemical dehydrating agent is used. When employed, the time is appropriately set within a range of about 1 to 600 seconds, and when a thermal curing method without using a chemical dehydrating agent is employed, a range of 60 to 1800 seconds.
イミド化する際にポリイミド層に対してかける張力としては、1kg/m~15kg/mの範囲内とすることが好ましく、5kg/m~10kg/mの範囲内とすることが特に好ましい。張力が上記範囲より小さい場合、フィルム搬送時にたるみや蛇行が生じ、巻取り時にシワが入ったり、均一に巻き取れない等の問題が生じる可能性がある。逆に上記範囲よりも大きい場合、強い張力がかかった状態で高温加熱されるため、金属張積層板用基材を用いて作製される金属張積層板の寸法特性が悪化することがある。
The tension applied to the polyimide layer during imidization is preferably in the range of 1 kg / m to 15 kg / m, and particularly preferably in the range of 5 kg / m to 10 kg / m. If the tension is smaller than the above range, sagging or meandering may occur during film conveyance, which may cause problems such as wrinkling during winding or inability to uniformly wind. On the other hand, when it is larger than the above range, the metal-clad laminate produced using the substrate for metal-clad laminate may deteriorate in dimensional characteristics because it is heated at a high temperature with a strong tension applied.
多層ポリイミドフィルムの厚みとしては、7.5μm以上、125μm以下が好ましい。多層ポリイミドフィルム中の非熱可塑性ポリイミド層の少なくとも片面の熱可塑性ポリイミド層の厚みは、1.7μ以上、35μm以下が好ましく、1.7μm以上、10μm以下がさらに好ましく、1.7μm以上、8μm以下が特に好ましい。1.7μm未満であると、金属箔表面の粗度にもよるが、金属箔との密着性が悪くなることがあった。また、35μmよりも厚い場合、金属箔張積層板の金属箔をエッチングした後の寸法変化率が、マイナス側に大きくなることがあった。
The thickness of the multilayer polyimide film is preferably 7.5 μm or more and 125 μm or less. The thickness of the thermoplastic polyimide layer on at least one surface of the non-thermoplastic polyimide layer in the multilayer polyimide film is preferably 1.7 μm or more and 35 μm or less, more preferably 1.7 μm or more and 10 μm or less, and more preferably 1.7 μm or more and 8 μm or less. Is particularly preferred. If it is less than 1.7 μm, the adhesiveness to the metal foil may be deteriorated depending on the roughness of the surface of the metal foil. On the other hand, when the thickness is larger than 35 μm, the dimensional change rate after etching the metal foil of the metal foil-clad laminate may become larger on the minus side.
次に、多層ポリイミドフィルムを構成する熱可塑性ポリイミド層と非熱可塑性ポリイミド層の密着性について述べる。
Next, the adhesion between the thermoplastic polyimide layer and the non-thermoplastic polyimide layer constituting the multilayer polyimide film will be described.
熱可塑性ポリイミドの構造と非熱可塑性ポリイミドの構造とが異なる場合、例えば、熱可塑性ポリイミドを構成する酸二無水物単量体及びジアミン単量体の合計モル数の内、60%未満が、非熱可塑性ポリイミドを構成する酸二無水物単量体及びジアミン単量体と同じ単量体である場合、非熱可塑性ポリイミドの多層ゲルフィルムから、熱可塑性ポリイミドの多層ゲルフィルムが剥がれやすくなり、熱可塑性ポリイミドの多層ゲルフィルムが部分的に支持体に貼り付いたままになることがあった。これは、非熱可塑性ポリイミド層のポリアミド酸が、熱可塑性ポリイミド層のポリアミド酸のイミド化速度よりも大きいことが影響していると考えられる。しかし、支持体に直接接する熱可塑性ポリイミドのポリアミド酸溶液にイミド化触媒を含有させることで、非熱可塑性ポリイミドのポリアミド酸のイミド化速度と、熱可塑性ポリイミドのポリアミド酸のイミド化速度とが近づき、非熱可塑性ポリイミド層と熱可塑性ポリイミド層との密着性が向上し、熱可塑性ポリイミドのゲルフィルム部分が支持体に貼り付くことを低減できる。イミド化触媒と化学脱水剤と併用することで、イミド化速度がより近づき、熱可塑性ポリイミドのゲルフィルムが支持体に貼り付くことをさらに低減できる。
When the structure of the thermoplastic polyimide and the structure of the non-thermoplastic polyimide are different, for example, less than 60% of the total number of moles of acid dianhydride monomer and diamine monomer constituting the thermoplastic polyimide is non- When the acid dianhydride monomer and the diamine monomer are the same as the thermoplastic polyimide, the multilayer gel film of thermoplastic polyimide is easily peeled off from the multilayer gel film of non-thermoplastic polyimide. In some cases, the multilayer gel film of the plastic polyimide remains partially adhered to the support. This is considered to be due to the fact that the polyamic acid of the non-thermoplastic polyimide layer is larger than the imidization rate of the polyamic acid of the thermoplastic polyimide layer. However, by including an imidization catalyst in the polyamic acid solution of thermoplastic polyimide that is in direct contact with the support, the imidization rate of the polyamic acid of the non-thermoplastic polyimide and the imidization rate of the polyamic acid of the thermoplastic polyimide approach each other. Adhesiveness between the non-thermoplastic polyimide layer and the thermoplastic polyimide layer is improved, and sticking of the gel film portion of the thermoplastic polyimide to the support can be reduced. By using together with an imidation catalyst and a chemical dehydrating agent, it is possible to further reduce the imidization rate and stick the thermoplastic polyimide gel film to the support.
熱可塑性ポリイミドの構造と非熱可塑性ポリイミドの構造とが類似である場合、例えば、熱可塑性ポリイミドを構成する酸二無水物単量体及びジアミン単量体の合計モル数の60%以上が、非熱可塑性ポリイミドを構成する酸二無水物単量体及びジアミン単量体と同じ単量体である場合、構造が類似であるため、非熱可塑性ポリイミドのポリアミド酸のイミド化速度と、熱可塑性ポリイミドのポリアミド酸のイミド化速度との差がもともと小さく、熱可塑性ポリイミドのゲルフィルム部分が支持体に貼り付きにくくなるものの、生産効率を向上させるため、ラインスピードを高めると、熱可塑性ポリイミドのゲルフィルム部分が支持体に部分的に貼り付くことがあった。しかし、支持体に直接接する熱可塑性ポリイミドのポリアミド酸溶液にイミド化触媒を含有させることで、熱可塑性ポリイミドのポリアミド酸のイミド化速度が高まり、支持体と多層ゲルフィルムとの間に溶剤が染み出して、多層ゲルフィルムが支持体からスムーズに剥がれ、熱可塑性ポリイミドのゲルフィルム部分が支持体に貼り付くことを低減できる。イミド化触媒と化学脱水剤とを併用することで、イミド化速度がより近づき、熱可塑性ポリイミドのゲルフィルムが支持体に貼り付くことをさらに低減できる。
When the structure of the thermoplastic polyimide and the structure of the non-thermoplastic polyimide are similar, for example, 60% or more of the total number of moles of the acid dianhydride monomer and diamine monomer constituting the thermoplastic polyimide is When the acid dianhydride monomer and the diamine monomer constituting the thermoplastic polyimide are the same monomer, the structure is similar, so the imidization rate of the polyamic acid of the non-thermoplastic polyimide and the thermoplastic polyimide Although the difference from the imidization rate of the polyamic acid is originally small and the gel film portion of the thermoplastic polyimide is difficult to stick to the support, the gel film of the thermoplastic polyimide can be improved by increasing the line speed in order to improve production efficiency. In some cases, the portion partially adhered to the support. However, by including an imidization catalyst in the polyamic acid solution of thermoplastic polyimide that is in direct contact with the support, the imidization rate of the polyamic acid of the thermoplastic polyimide is increased, and the solvent soaks between the support and the multilayer gel film. The multilayer gel film can be smoothly peeled off from the support, and the gel film portion of the thermoplastic polyimide can be reduced from sticking to the support. By using the imidization catalyst and the chemical dehydrating agent in combination, it is possible to further reduce the imidization rate and stick the thermoplastic polyimide gel film to the support.
また、熱可塑性ポリイミドを構成する酸二無水物単量体及びジアミン単量体の合計モル数の60%以上が非熱可塑性ポリイミドを構成する酸二無水物単量体及びジアミン単量体と同じ単量体である場合、熱可塑性ポリイミド層と非熱可塑性ポリイミド層との密着性が高まり、半田耐熱性が向上する。ただし、熱可塑性ポリイミド層は、金属箔張積層板にした場合の銅箔引き剥がし強度を発現するため、熱可塑性を有する必要がある。
In addition, 60% or more of the total number of moles of the acid dianhydride monomer and diamine monomer constituting the thermoplastic polyimide is the same as the acid dianhydride monomer and diamine monomer constituting the non-thermoplastic polyimide. When it is a monomer, the adhesiveness between the thermoplastic polyimide layer and the non-thermoplastic polyimide layer is increased, and the solder heat resistance is improved. However, the thermoplastic polyimide layer needs to have thermoplasticity in order to express the copper foil peeling strength when it is made into a metal foil-clad laminate.
ここで、熱可塑性ポリイミドを構成する酸二無水物単量体及びジアミン単量体の合計モル数の60%以上が非熱可塑性ポリイミドを構成する酸二無水物単量体及びジアミン単量体と同じ単量体であるとは、熱可塑性ポリイミドを構成する酸二無水物単量体及びジアミン単量体の合計モル数(総モル数)を基準にして、当該合計モル数の60%以上が、非熱可塑性ポリイミド層を形成するポリアミド酸を構成する酸二無水物単量体及びジアミン単量体と同じ単量体であることを意図している。そして、上記数値は、(同種モル数)/(総モル数)の算出式で算出される。
Here, 60% or more of the total number of moles of the acid dianhydride monomer and diamine monomer constituting the thermoplastic polyimide constitutes the acid dianhydride monomer and diamine monomer constituting the non-thermoplastic polyimide, and The same monomer means that 60% or more of the total number of moles is based on the total number of moles (total number of moles) of the acid dianhydride monomer and diamine monomer constituting the thermoplastic polyimide. It is intended to be the same monomer as the acid dianhydride monomer and diamine monomer constituting the polyamic acid forming the non-thermoplastic polyimide layer. And the said numerical value is computed by the calculation formula of (the same kind mole number) / (total mole number).
上記熱可塑性ポリイミドを構成する酸二無水物単量体及びジアミン単量体の同種モル数の比率が、総モル数の60%以上であれば、熱可塑性ポリイミドの多層ゲルフィルムが支持体に貼り付くことは少なくなる。当該数値は、70%以上が好ましく、80%以上がさらに好ましい。また、比率の上限は、99%以下が好ましく、98%以下がさらに好ましい。
If the ratio of the same number of moles of the acid dianhydride monomer and the diamine monomer constituting the thermoplastic polyimide is 60% or more of the total number of moles, the multilayer gel film of thermoplastic polyimide is stuck on the support. Less sticky. The numerical value is preferably 70% or more, and more preferably 80% or more. Further, the upper limit of the ratio is preferably 99% or less, and more preferably 98% or less.
本発明の多層ポリイミドフィルムの製造方法は、多層共押出でポリアミド酸溶液を二層以上の多層ダイへ同時に供給し、前記ダイの吐出口から少なくとも二層以上の薄膜状体として、ドラム、エンドレスベルト等の支持体上に流延し、支持体上で60℃~150℃で加熱した後、多層ゲルフィルムを支持体から剥がし、150℃以上の高温で加熱して、非熱可塑性ポリイミド層の少なくとも片面に熱可塑性ポリイミド層を積層した多層ポリイミドフィルムを製造する方法である。層の数は少なくとも2層以上であれば問題無いが、得られた多層ポリイミドフィルムのカール抑制のため、3層であることが好ましい。3層である場合、各層の具体的な構成は特に限定されないが、例えば、非熱可塑性ポリイミドの両面上に熱可塑性ポリイミド層を積層することが可能であり、非熱可塑性ポリイミド層の一方の面上に熱可塑性ポリイミド層を積層するとともに他方の面上に非熱可塑性ポリイミド層を積層することも可能である。この場合、非熱可塑性ポリイミド層の片方の面上に形成される熱可塑性ポリイミド層および非熱可塑性ポリイミド層の各々は、1層であってもよく多層であってもよい。また、多層共押出は、生産性の面で好ましく、吸湿半田耐熱性の面でも、好ましい。これは、明確では無いが、非熱可塑性ポリイミド層のポリアミド酸と熱可塑性ポリイミド層のポリアミド酸とが同時に押出されることで、界面で双方のポリアミド酸が少なからず混合し、非熱可塑性ポリイミド層と熱可塑性ポリイミド層の一体性が向上するためと推定される。
The method for producing a multilayer polyimide film according to the present invention comprises supplying a polyamic acid solution simultaneously to two or more multilayer dies by multilayer coextrusion, and forming a drum, an endless belt as at least two layers of thin film bodies from the discharge port of the die. Casted on a support such as, and heated at 60 ° C. to 150 ° C. on the support, and then peeled off the multilayer gel film from the support and heated at a high temperature of 150 ° C. or more to form at least a non-thermoplastic polyimide layer. This is a method for producing a multilayer polyimide film in which a thermoplastic polyimide layer is laminated on one side. There is no problem if the number of layers is at least 2 or more, but it is preferably 3 layers in order to suppress curling of the obtained multilayer polyimide film. In the case of three layers, the specific configuration of each layer is not particularly limited. For example, it is possible to laminate a thermoplastic polyimide layer on both surfaces of a non-thermoplastic polyimide, and one surface of the non-thermoplastic polyimide layer. It is also possible to laminate a thermoplastic polyimide layer on top and a non-thermoplastic polyimide layer on the other side. In this case, each of the thermoplastic polyimide layer and the non-thermoplastic polyimide layer formed on one surface of the non-thermoplastic polyimide layer may be a single layer or a multilayer. Multi-layer coextrusion is preferable in terms of productivity and also in terms of moisture absorption solder heat resistance. This is not clear, but the polyamic acid of the non-thermoplastic polyimide layer and the polyamic acid of the thermoplastic polyimide layer are extruded at the same time. This is presumably because the integrity of the thermoplastic polyimide layer is improved.
以下に、多層共押出により多層ポリイミドフィルムの製造方法について述べる。
The following describes a method for producing a multilayer polyimide film by multilayer coextrusion.
一般的に用いられる方法について説明すると、二層以上の多層ダイから押出された前記の溶液を、平滑な支持体上に連続的に押し出し、次いで、前記支持体上の多層の薄膜状体の溶媒の少なくとも一部を揮散せしめることで、自己支持性を有する多層ゲルフィルムを得る。
To describe a generally used method, the solution extruded from two or more multilayer dies is continuously extruded onto a smooth support, and then a multilayer thin film solvent on the support. A multilayer gel film having a self-supporting property is obtained by volatilizing at least a part of the film.
支持体上の多層ポリアミド酸を最高温度100~200℃で加熱することが好ましい。
It is preferable to heat the multilayer polyamic acid on the support at a maximum temperature of 100 to 200 ° C.
さらに、当該多層ゲルフィルムを前記支持体上から剥離し、最後に、当該多層ゲルフィルムを高温(250-600℃)で充分に加熱処理することによって、溶媒を実質的に除去すると共にイミド化を完全に進行させることで多層ポリイミドフィルムを得ることができる。支持体から引き剥がした多層ゲルフィルムは、ポリアミド酸からポリイミドへの硬化の中間段階にあり、自己支持性を有し、式(1)
(A-B)×100/B・・・・式(1)
式(1)中、A,Bは以下のものを表す。
A:多層膜の重量
B:多層膜を450℃で20分間加熱した後の重量
から算出される揮発分含量は5~200重量%の範囲、好ましくは10~100重量%、より好ましくは30~80重量%の範囲にある。この範囲の多層ゲルフィルムを用いることが好適であり、焼成過程でのフィルムの破断、乾燥ムラによるフィルムの色調ムラ、特性ばらつき等の不具合を抑制できる点で好ましい。また、熱可塑性ポリイミド層の熔融流動性を向上させる目的で、意図的にイミド化率を低くする及び/又は溶媒を残留させてもよい。 Further, the multilayer gel film is peeled off from the support, and finally the multilayer gel film is sufficiently heated at a high temperature (250-600 ° C.) to substantially remove the solvent and imidize. A multilayer polyimide film can be obtained by making it advance completely. The multilayer gel film peeled off from the support is in the middle stage of curing from polyamic acid to polyimide, has a self-supporting property, and has the formula (1)
(AB) x 100 / B ... Formula (1)
In formula (1), A and B represent the following.
A: Weight of the multilayer film B: The volatile content calculated from the weight after heating the multilayer film at 450 ° C. for 20 minutes is in the range of 5 to 200% by weight, preferably 10 to 100% by weight, more preferably 30 to 30%. It is in the range of 80% by weight. It is preferable to use a multilayer gel film in this range, which is preferable in that defects such as film breakage in the baking process, film color unevenness due to uneven drying, and characteristic variations can be suppressed. Further, for the purpose of improving the melt fluidity of the thermoplastic polyimide layer, the imidization rate may be intentionally lowered and / or the solvent may be left.
(A-B)×100/B・・・・式(1)
式(1)中、A,Bは以下のものを表す。
A:多層膜の重量
B:多層膜を450℃で20分間加熱した後の重量
から算出される揮発分含量は5~200重量%の範囲、好ましくは10~100重量%、より好ましくは30~80重量%の範囲にある。この範囲の多層ゲルフィルムを用いることが好適であり、焼成過程でのフィルムの破断、乾燥ムラによるフィルムの色調ムラ、特性ばらつき等の不具合を抑制できる点で好ましい。また、熱可塑性ポリイミド層の熔融流動性を向上させる目的で、意図的にイミド化率を低くする及び/又は溶媒を残留させてもよい。 Further, the multilayer gel film is peeled off from the support, and finally the multilayer gel film is sufficiently heated at a high temperature (250-600 ° C.) to substantially remove the solvent and imidize. A multilayer polyimide film can be obtained by making it advance completely. The multilayer gel film peeled off from the support is in the middle stage of curing from polyamic acid to polyimide, has a self-supporting property, and has the formula (1)
(AB) x 100 / B ... Formula (1)
In formula (1), A and B represent the following.
A: Weight of the multilayer film B: The volatile content calculated from the weight after heating the multilayer film at 450 ° C. for 20 minutes is in the range of 5 to 200% by weight, preferably 10 to 100% by weight, more preferably 30 to 30%. It is in the range of 80% by weight. It is preferable to use a multilayer gel film in this range, which is preferable in that defects such as film breakage in the baking process, film color unevenness due to uneven drying, and characteristic variations can be suppressed. Further, for the purpose of improving the melt fluidity of the thermoplastic polyimide layer, the imidization rate may be intentionally lowered and / or the solvent may be left.
本発明に係る支持体とは、多層ダイから押出された多層液膜を流延するものであって、当該支持体上で多層液膜を加熱乾燥せしめ、多層液膜に対して自己支持性を付与するものである。該支持体の形状は特に問わないが、接着フィルムの生産性を考慮すると、ドラム状若しくはベルト状であることが好ましい。また、該支持体の材質も特に問わず、金属、プラスチック、ガラス、磁器などが挙げられ、好ましくは金属であり、更に好ましくは耐腐食性に優れるSUS材である。また、支持体に対して、Cr、Ni、Snなどの金属メッキをしても良い。
The support according to the present invention is a casting of a multilayer liquid film extruded from a multilayer die, and the multilayer liquid film is heated and dried on the support to provide self-supporting property to the multilayer liquid film. It is given. The shape of the support is not particularly limited, but in consideration of the productivity of the adhesive film, it is preferably a drum shape or a belt shape. The material of the support is not particularly limited, and examples thereof include metal, plastic, glass, porcelain, etc., preferably metal, and more preferably SUS material having excellent corrosion resistance. In addition, the support may be plated with metal such as Cr, Ni, or Sn.
上記の多層ダイとしては各種構造のものが使用できるが、例えば複数層のフィルム作成用のTダイス等が使用できる。また、従来既知のあらゆる構造のものを好適に使用可能であるが、特に好適に使用可能なものとして、フィードブロックTダイやマルチマニホールドTダイが例示される。
As the above-mentioned multilayer die, those having various structures can be used. For example, a T-die for forming a multi-layer film can be used. In addition, any conventionally known structure can be suitably used, and feed block T dies and multi-manifold T dies are exemplified as particularly suitable ones.
本発明においてポリアミド酸を合成するための好ましい溶媒は、ポリアミド酸を溶解する溶媒であればいかなるものも用いることができるが、アミド系溶媒、すなわちN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンなどを例示することができる。中でも、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドを特に好ましく用いることができる。
As the preferred solvent for synthesizing the polyamic acid in the present invention, any solvent can be used as long as it dissolves the polyamic acid, but amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide And N-methyl-2-pyrrolidone. Of these, N, N-dimethylformamide and N, N-dimethylacetamide can be particularly preferably used.
本発明において非熱可塑性ポリアミド酸の重合にはいかなるモノマーの添加方法を用いても良い。代表的な重合方法として、次のような方法が挙げられる。すなわち、
1)芳香族ジアミンを有機極性溶媒中に溶解し、これと実質的に等モルの芳香族テトラカルボン酸二無水物を反応させて、芳香族ジアミンと芳香族テトラカルボン酸二無水物とを重合する方法、
2)芳香族テトラカルボン酸二無水物とこれに対し過小モル量の芳香族ジアミン化合物とを有機極性溶媒中で反応させ、両末端に酸無水物基を有するプレポリマーを得る。続いて、全工程において芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物とが実質的に等モルとなるように、芳香族ジアミン化合物を用いて、上記プレポリマーを重合させる方法、
3)芳香族テトラカルボン酸二無水物とこれに対し過剰モル量の芳香族ジアミン化合物とを有機極性溶媒中で反応させ、両末端にアミノ基を有するプレポリマーを得る。続いてここに芳香族ジアミン化合物を追加添加後、全工程において芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物とが実質的に等モルとなるように、芳香族テトラカルボン酸二無水物を用いて、上記プレポリマーを重合する方法、
4)芳香族テトラカルボン酸二無水物を有機極性溶媒中に溶解および/または分散させた後、実質的に等モルとなるように、芳香族ジアミン化合物を用いて、芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物とを重合させる方法、
5)実質的に等モルの芳香族テトラカルボン酸二無水物と芳香族ジアミンの混合物を有機極性溶媒中で反応させて、芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物とを重合する方法、
などのような方法である。これらの方法を単独で用いても良いし、部分的に組み合わせて用いることもできる。 In the present invention, any monomer addition method may be used for the polymerization of the non-thermoplastic polyamic acid. As typical polymerization methods, the following methods may be mentioned. That is,
1) Aromatic diamine is dissolved in an organic polar solvent, and this is reacted with substantially equimolar aromatic tetracarboxylic dianhydride to polymerize aromatic diamine and aromatic tetracarboxylic dianhydride. how to,
2) An aromatic tetracarboxylic dianhydride is reacted with a small molar amount of an aromatic diamine compound in an organic polar solvent to obtain a prepolymer having acid anhydride groups at both ends. Subsequently, a method of polymerizing the prepolymer using the aromatic diamine compound so that the aromatic tetracarboxylic dianhydride and the aromatic diamine compound are substantially equimolar in all steps,
3) An aromatic tetracarboxylic dianhydride and an excess molar amount of the aromatic diamine compound are reacted in an organic polar solvent to obtain a prepolymer having amino groups at both ends. Subsequently, after adding an aromatic diamine compound here, the aromatic tetracarboxylic dianhydride is added so that the aromatic tetracarboxylic dianhydride and the aromatic diamine compound are substantially equimolar in all steps. A method of polymerizing the prepolymer using,
4) After the aromatic tetracarboxylic dianhydride is dissolved and / or dispersed in an organic polar solvent, the aromatic tetracarboxylic dianhydride is used by using an aromatic diamine compound so as to be substantially equimolar. A method for polymerizing a product and an aromatic diamine compound,
5) A method of polymerizing an aromatic tetracarboxylic dianhydride and an aromatic diamine compound by reacting a substantially equimolar mixture of an aromatic tetracarboxylic dianhydride and an aromatic diamine in an organic polar solvent. ,
And so on. These methods may be used singly or in combination.
1)芳香族ジアミンを有機極性溶媒中に溶解し、これと実質的に等モルの芳香族テトラカルボン酸二無水物を反応させて、芳香族ジアミンと芳香族テトラカルボン酸二無水物とを重合する方法、
2)芳香族テトラカルボン酸二無水物とこれに対し過小モル量の芳香族ジアミン化合物とを有機極性溶媒中で反応させ、両末端に酸無水物基を有するプレポリマーを得る。続いて、全工程において芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物とが実質的に等モルとなるように、芳香族ジアミン化合物を用いて、上記プレポリマーを重合させる方法、
3)芳香族テトラカルボン酸二無水物とこれに対し過剰モル量の芳香族ジアミン化合物とを有機極性溶媒中で反応させ、両末端にアミノ基を有するプレポリマーを得る。続いてここに芳香族ジアミン化合物を追加添加後、全工程において芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物とが実質的に等モルとなるように、芳香族テトラカルボン酸二無水物を用いて、上記プレポリマーを重合する方法、
4)芳香族テトラカルボン酸二無水物を有機極性溶媒中に溶解および/または分散させた後、実質的に等モルとなるように、芳香族ジアミン化合物を用いて、芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物とを重合させる方法、
5)実質的に等モルの芳香族テトラカルボン酸二無水物と芳香族ジアミンの混合物を有機極性溶媒中で反応させて、芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物とを重合する方法、
などのような方法である。これらの方法を単独で用いても良いし、部分的に組み合わせて用いることもできる。 In the present invention, any monomer addition method may be used for the polymerization of the non-thermoplastic polyamic acid. As typical polymerization methods, the following methods may be mentioned. That is,
1) Aromatic diamine is dissolved in an organic polar solvent, and this is reacted with substantially equimolar aromatic tetracarboxylic dianhydride to polymerize aromatic diamine and aromatic tetracarboxylic dianhydride. how to,
2) An aromatic tetracarboxylic dianhydride is reacted with a small molar amount of an aromatic diamine compound in an organic polar solvent to obtain a prepolymer having acid anhydride groups at both ends. Subsequently, a method of polymerizing the prepolymer using the aromatic diamine compound so that the aromatic tetracarboxylic dianhydride and the aromatic diamine compound are substantially equimolar in all steps,
3) An aromatic tetracarboxylic dianhydride and an excess molar amount of the aromatic diamine compound are reacted in an organic polar solvent to obtain a prepolymer having amino groups at both ends. Subsequently, after adding an aromatic diamine compound here, the aromatic tetracarboxylic dianhydride is added so that the aromatic tetracarboxylic dianhydride and the aromatic diamine compound are substantially equimolar in all steps. A method of polymerizing the prepolymer using,
4) After the aromatic tetracarboxylic dianhydride is dissolved and / or dispersed in an organic polar solvent, the aromatic tetracarboxylic dianhydride is used by using an aromatic diamine compound so as to be substantially equimolar. A method for polymerizing a product and an aromatic diamine compound,
5) A method of polymerizing an aromatic tetracarboxylic dianhydride and an aromatic diamine compound by reacting a substantially equimolar mixture of an aromatic tetracarboxylic dianhydride and an aromatic diamine in an organic polar solvent. ,
And so on. These methods may be used singly or in combination.
中でも、非熱可塑性ポリイミド層のポリアミド酸は、下記の工程(a)~(c)で得られることが好ましい。
(a)芳香族酸二無水物と、これに対し過剰モル量の芳香族ジアミンとを有機極性溶媒中で反応させ、両末端にアミノ基を有するプレポリマーを得る、
(b)続いて、ここに芳香族ジアミンを追加添加する、
(c)更に、全工程における芳香族酸二無水物と芳香族ジアミンとが実質的に等モルとなるように芳香族酸二無水物を添加して、プレポリマーを重合し、ポリアミド酸溶液を得る。 Among them, the polyamic acid of the non-thermoplastic polyimide layer is preferably obtained in the following steps (a) to (c).
(A) reacting an aromatic dianhydride with an excess molar amount of aromatic diamine in an organic polar solvent to obtain a prepolymer having amino groups at both ends;
(B) Subsequently, an aromatic diamine is additionally added thereto.
(C) Furthermore, the aromatic acid dianhydride is added so that the aromatic acid dianhydride and the aromatic diamine are substantially equimolar in all steps, the prepolymer is polymerized, and the polyamic acid solution is prepared. obtain.
(a)芳香族酸二無水物と、これに対し過剰モル量の芳香族ジアミンとを有機極性溶媒中で反応させ、両末端にアミノ基を有するプレポリマーを得る、
(b)続いて、ここに芳香族ジアミンを追加添加する、
(c)更に、全工程における芳香族酸二無水物と芳香族ジアミンとが実質的に等モルとなるように芳香族酸二無水物を添加して、プレポリマーを重合し、ポリアミド酸溶液を得る。 Among them, the polyamic acid of the non-thermoplastic polyimide layer is preferably obtained in the following steps (a) to (c).
(A) reacting an aromatic dianhydride with an excess molar amount of aromatic diamine in an organic polar solvent to obtain a prepolymer having amino groups at both ends;
(B) Subsequently, an aromatic diamine is additionally added thereto.
(C) Furthermore, the aromatic acid dianhydride is added so that the aromatic acid dianhydride and the aromatic diamine are substantially equimolar in all steps, the prepolymer is polymerized, and the polyamic acid solution is prepared. obtain.
前記方法の中でも、(a)で得られたプレポリマーが、熱可塑性ブロック成分となることが好ましい。次に、プレポリマーが熱可塑性ブロック成分であるかの判定方法について述べる。
Among the above methods, the prepolymer obtained in (a) is preferably a thermoplastic block component. Next, a method for determining whether the prepolymer is a thermoplastic block component will be described.
(熱可塑性ブロック成分の判定方法)
プレポリマー製造時に使用した酸二無水物とジアミンとを等モル量に補正して(使用した酸二無水物が複数種である場合、その比率は固定し、また使用したジアミンが複数種である場合も、その比率は固定した。)得られたポリアミド酸溶液を、コンマコーターを用いてアルミ箔上に流延し、130℃×100秒で加熱した後、アルミ箔から自己支持性のゲルフィルムを引き剥がして、金属枠に固定する。その後、300℃×20秒、450℃×1分熱処理した際に、フィルムが軟化したり、溶融したりして、外観が変形している場合、酸二無水物およびジアミンは、熱可塑性ブロック成分を含んでいると判定した。 (Judgment method of thermoplastic block component)
Correct the acid dianhydride and diamine used in the preparation of the prepolymer to equimolar amounts (if there are multiple types of acid dianhydrides used, the ratio is fixed, and the diamines used are multiple types) In this case, the ratio was fixed.) The obtained polyamic acid solution was cast on an aluminum foil using a comma coater, heated at 130 ° C. for 100 seconds, and then self-supporting gel film from the aluminum foil. Is peeled off and fixed to the metal frame. Then, when the film is softened or melted when heat treated at 300 ° C. for 20 seconds and 450 ° C. for 1 minute, the dianhydride and diamine are thermoplastic block components. It was determined that it contains.
プレポリマー製造時に使用した酸二無水物とジアミンとを等モル量に補正して(使用した酸二無水物が複数種である場合、その比率は固定し、また使用したジアミンが複数種である場合も、その比率は固定した。)得られたポリアミド酸溶液を、コンマコーターを用いてアルミ箔上に流延し、130℃×100秒で加熱した後、アルミ箔から自己支持性のゲルフィルムを引き剥がして、金属枠に固定する。その後、300℃×20秒、450℃×1分熱処理した際に、フィルムが軟化したり、溶融したりして、外観が変形している場合、酸二無水物およびジアミンは、熱可塑性ブロック成分を含んでいると判定した。 (Judgment method of thermoplastic block component)
Correct the acid dianhydride and diamine used in the preparation of the prepolymer to equimolar amounts (if there are multiple types of acid dianhydrides used, the ratio is fixed, and the diamines used are multiple types) In this case, the ratio was fixed.) The obtained polyamic acid solution was cast on an aluminum foil using a comma coater, heated at 130 ° C. for 100 seconds, and then self-supporting gel film from the aluminum foil. Is peeled off and fixed to the metal frame. Then, when the film is softened or melted when heat treated at 300 ° C. for 20 seconds and 450 ° C. for 1 minute, the dianhydride and diamine are thermoplastic block components. It was determined that it contains.
熱可塑性ブロック成分となりうる酸二無水物及びジアミンは特に制限されないが、酸二無水物としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物を必須成分として用いることが好ましい。また、ジアミンとしては、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを必須成分として用いることが好ましい。
The acid dianhydride and diamine that can serve as the thermoplastic block component are not particularly limited, and as the acid dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4, It is preferable to use 4′-benzophenonetetracarboxylic dianhydride as an essential component. As the diamine, it is preferable to use 2,2-bis [4- (4-aminophenoxy) phenyl] propane as an essential component.
熱可塑性ポリイミドの熱可塑性ポリアミド酸の製造方法は、(a)芳香族酸二無水物と、これに対して過剰モル量の芳香族ジアミンとを有機極性溶媒中で反応させ、両末端にアミノ基を有するプレポリマーを得る工程、(b)続いて、全工程における芳香族酸二無水物と芳香族ジアミンとの比が、決めた比になるように、芳香族酸二無水物を添加して、プレポリマーを重合することが好ましい。(b)で、芳香族酸二無水物を添加する方法として、粉末を投入する方法、予め酸二無水物を有機極性溶媒に溶解した酸溶液を投入する方法等があるが、反応が均一に進行しやすい面で、酸溶液を投入する方法が好ましい。
A method for producing a thermoplastic polyamic acid of a thermoplastic polyimide is as follows: (a) an aromatic dianhydride and an excess molar amount of an aromatic diamine are reacted with each other in an organic polar solvent, and amino groups are present at both ends. (B) Subsequently, the aromatic acid dianhydride is added so that the ratio of the aromatic dianhydride and the aromatic diamine in all the steps becomes a predetermined ratio. It is preferable to polymerize the prepolymer. In (b), there are a method of adding an aromatic acid dianhydride, a method of adding a powder, a method of adding an acid solution in which an acid dianhydride is dissolved in an organic polar solvent in advance, and the reaction is uniform. In view of easy progress, a method of adding an acid solution is preferable.
重合時の固形成分濃度は、10~30重量%であることが好ましい。固形成分濃度は、重合速度、重合粘度で決めることができる。重合粘度は、熱可塑性ポリイミドのポリアミド酸溶液を、支持体フィルムに塗工する場合、又は非熱可塑性ポリイミドと共押出する場合に合わせて設定することができるが、塗工する場合、例えば、固形成分濃度14重量%において重合粘度は100poise以下であることが好ましい。また、共押出する場合、例えば、固形成分濃度14重量%において重合粘度が100poise~1200poiseであることが好ましく、150poise~800poiseは、得られる多層ポリイミドフィルムの膜厚を均一にできるので更に好ましい。前記で説明した芳香族酸二無水物と芳香族ジアミンは、多層ポリイミドフィルムの特性及び生産性を考慮し、順番を変更して用いることができる。
The solid component concentration during polymerization is preferably 10 to 30% by weight. The solid component concentration can be determined by the polymerization rate and the polymerization viscosity. The polymerization viscosity can be set according to the case where the polyamic acid solution of thermoplastic polyimide is applied to the support film, or when it is coextruded with non-thermoplastic polyimide. The polymerization viscosity is preferably 100 poise or less at a component concentration of 14% by weight. In the case of coextrusion, for example, the polymerization viscosity is preferably 100 poise to 1200 poise at a solid component concentration of 14% by weight, and 150 poise to 800 poise is more preferable because the resulting multilayer polyimide film can have a uniform film thickness. The aromatic dianhydride and aromatic diamine described above can be used by changing the order in consideration of the properties and productivity of the multilayer polyimide film.
また、摺動性、熱伝導性、導電性、耐コロナ性等のフィルムの諸特性を改善する目的でフィラーを添加することもできる。フィラーとしては特に制限されないが、好ましい例としてはシリカ、酸化チタン、アルミナ、窒化珪素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母などが挙げられる。
Also, a filler can be added for the purpose of improving various properties of the film such as slidability, thermal conductivity, conductivity, and corona resistance. The filler is not particularly limited, and preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.
フィルムの摺動性改善のためにフィラーを添加する場合、フィラーの粒子径は0.1~10μm、好ましくは0.1~5μmである。粒子径がこの範囲を下回ると摺動性改善の効果が発現しにくく、この範囲を上回ると高精細な配線パターンを作成し難くなる傾向にある。また、フィラーを添加する場合、フィラーの分散状態も重要であり、20μm以上の平均直径を有するフィラーの凝集物が50個/m2以下、好ましくは40個/m2以下にするのが好ましい。20μm以上の平均直径を有するフィラー凝集物がこの範囲よりも多いと、接着剤塗工時に接着剤をはじいたり、高精細配線パターンを作成したときに接着面積の減少をきたしてフレキシブルプリント基板そのものの絶縁信頼性を落とす傾向にある。
When a filler is added to improve the slidability of the film, the particle size of the filler is 0.1 to 10 μm, preferably 0.1 to 5 μm. If the particle diameter is below this range, the effect of improving the slidability is hardly exhibited, and if it exceeds this range, it tends to be difficult to produce a high-definition wiring pattern. In addition, when the filler is added, the dispersion state of the filler is also important, and it is preferable that the aggregate of the filler having an average diameter of 20 μm or more is 50 pieces / m 2 or less, preferably 40 pieces / m 2 or less. If there are more filler aggregates with an average diameter of 20 μm or more than this range, the adhesive area will be repelled when the adhesive is applied, or the adhesive area will be reduced when a high-definition wiring pattern is created. It tends to reduce insulation reliability.
フィラーの添加は、例えば、
(1)重合前または途中に重合反応液へフィラーを添加する方法
(2)重合完了後、3本ロールなどを用いてフィラーを混錬する方法
(3)フィラーを含む分散液を用意し、これをポリアミド酸有機溶媒溶液に混合する方法
(4)ビーズミル等によりフィラーを分散する方法
などいかなる方法を用いてもよいが、フィラーを含む分散液をポリアミド酸溶液に混合する方法、特に製膜直前に混合する方法が、製造ラインのフィラーによる汚染が最も少なくてすむため、好ましい。 Addition of the filler is, for example,
(1) Method of adding filler to polymerization reaction solution before or during polymerization (2) Method of kneading filler using three rolls after completion of polymerization (3) Preparing dispersion containing filler, (4) Any method such as a method of dispersing the filler with a bead mill or the like may be used, but a method of mixing the dispersion containing the filler with the polyamic acid solution, particularly immediately before film formation The mixing method is preferable because contamination with the filler in the production line is minimized.
(1)重合前または途中に重合反応液へフィラーを添加する方法
(2)重合完了後、3本ロールなどを用いてフィラーを混錬する方法
(3)フィラーを含む分散液を用意し、これをポリアミド酸有機溶媒溶液に混合する方法
(4)ビーズミル等によりフィラーを分散する方法
などいかなる方法を用いてもよいが、フィラーを含む分散液をポリアミド酸溶液に混合する方法、特に製膜直前に混合する方法が、製造ラインのフィラーによる汚染が最も少なくてすむため、好ましい。 Addition of the filler is, for example,
(1) Method of adding filler to polymerization reaction solution before or during polymerization (2) Method of kneading filler using three rolls after completion of polymerization (3) Preparing dispersion containing filler, (4) Any method such as a method of dispersing the filler with a bead mill or the like may be used, but a method of mixing the dispersion containing the filler with the polyamic acid solution, particularly immediately before film formation The mixing method is preferable because contamination with the filler in the production line is minimized.
フィラーを含む分散液を用意する場合、当該分散液としては、ポリアミド酸の重合溶媒と同じ溶媒を用いるのが好ましい。また、フィラーを良好に分散させ、また分散状態を安定化させるために、分散剤、増粘剤等をフィルム物性に影響を及ぼさない範囲内で用いることもできる。
When preparing a dispersion containing a filler, it is preferable to use the same solvent as the polyamic acid polymerization solvent as the dispersion. Moreover, in order to disperse | distribute a filler favorably and stabilize a dispersion state, a dispersing agent, a thickener, etc. can also be used in the range which does not affect a film physical property.
ポリイミドは、ポリイミドの前駆体、即ちポリアミド酸からの脱水転化反応により得られ、当該転化反応を行う方法としては、熱によってのみ行う熱キュア法と、化学脱水剤を使用する化学キュア法の2法が最も広く知られている。しかしながら、生産性に優れていることから、化学キュア法の採用がより好ましい。熱キュア法と化学キュア法とはともに、イミド化触媒を用いることがイミド化反応を早く進行させる面で好ましい。
Polyimide is obtained by a dehydration conversion reaction from a polyimide precursor, that is, a polyamic acid. As a method for performing the conversion reaction, there are two methods of a thermal curing method using only heat and a chemical curing method using a chemical dehydrating agent. Is the most widely known. However, since it is excellent in productivity, it is more preferable to employ a chemical curing method. In both the thermal curing method and the chemical curing method, it is preferable to use an imidization catalyst in terms of allowing the imidization reaction to proceed quickly.
化学脱水剤とは、ポリアミック酸に対する脱水閉環剤であり、その主成分として、脂肪族酸無水物、芳香族酸無水物、N,N’-ジアルキルカルボジイミド、低級脂肪族ハロゲン化物、ハロゲン化低級脂肪族酸無水物、アリールスルホン酸ジハロゲン化物、チオニルハロゲン化物またはそれら2種以上の混合物を好ましく用いることができる。その中でも特に、脂肪族酸無水物及び芳香族酸無水物が良好に作用する。また、イミド化触媒とは硬化剤のポリアミック酸に対する脱水閉環作用を促進する効果を有する成分であるが、例えば、脂肪族3級アミン、芳香族3級アミン、複素環式3級アミンを用いることができる。そのうち、イミダゾ-ル、ベンズイミダゾ-ル、イソキノリン、キノリン、またはβ-ピコリンなどの含窒素複素環化合物であることが好ましい。さらに、化学脱水剤及びイミド化触媒からなる溶液中に、有機極性溶媒を導入することも適宜選択されうる。
The chemical dehydrating agent is a dehydrating ring-closing agent for polyamic acid, and its main component is aliphatic acid anhydride, aromatic acid anhydride, N, N′-dialkylcarbodiimide, lower aliphatic halide, halogenated lower fat. An aromatic acid anhydride, an aryl sulfonic acid dihalide, a thionyl halide, or a mixture of two or more thereof can be preferably used. Of these, aliphatic acid anhydrides and aromatic acid anhydrides work particularly well. The imidation catalyst is a component having an effect of promoting the dehydration ring-closing action of the curing agent on the polyamic acid. For example, an aliphatic tertiary amine, an aromatic tertiary amine, or a heterocyclic tertiary amine is used. Can do. Of these, nitrogen-containing heterocyclic compounds such as imidazole, benzimidazole, isoquinoline, quinoline, or β-picoline are preferred. Furthermore, introduction of an organic polar solvent into a solution composed of a chemical dehydrating agent and an imidization catalyst can be appropriately selected.
本発明にかかるフレキシブル金属張積層板の製造方法は、上記多層ポリイミドフィルムに金属箔を貼り合わせる工程を含むことが好ましい。フレキシブル金属積層板で用いられる金属箔(例えば、銅箔)は、厚みは1~25μmを用いることができ、圧延銅箔、電解銅箔のどちらを用いても良い。
The method for producing a flexible metal-clad laminate according to the present invention preferably includes a step of bonding a metal foil to the multilayer polyimide film. The metal foil (eg, copper foil) used in the flexible metal laminate can have a thickness of 1 to 25 μm, and either a rolled copper foil or an electrolytic copper foil can be used.
多層ポリイミドフィルムと金属箔とを貼り合わせる方法としては、例えば、一対以上の金属ロールを有する熱ロールラミネート装置、またはダブルベルトプレス(DBP)による連続処理を用いることができる。中でも、装置構成が単純であり保守コストの面で有利であるという点から、一対以上の金属ロールを有する熱ロールラミネート装置を用いることが好ましい。
As a method for laminating the multilayer polyimide film and the metal foil, for example, a hot roll laminating apparatus having a pair of metal rolls or a continuous treatment by a double belt press (DBP) can be used. Among these, it is preferable to use a hot roll laminating apparatus having a pair of metal rolls because the apparatus configuration is simple and advantageous in terms of maintenance cost.
ここでいう「一対以上の金属ロールを有する熱ロールラミネート装置」とは、材料を加熱加圧するための金属ロールを有している装置であればよく、その具体的な装置構成は特に限定されるものではない。
The “heat roll laminating apparatus having a pair of metal rolls” herein may be an apparatus having a metal roll for heating and pressurizing a material, and the specific apparatus configuration is particularly limited. It is not a thing.
なお、多層ポリイミドフィルムと金属箔とを熱ラミネートにより貼り合わせる工程を、以下、「熱ラミネート工程」と称する。
The process of laminating the multilayer polyimide film and the metal foil by thermal lamination is hereinafter referred to as “thermal lamination process”.
上記熱ラミネート工程を実施する手段(以下、「熱ラミネート手段」ともいう)の具体的な構成は特に限定されるものではないが、得られる積層板の外観を良好なものとするために、加圧面と金属箔との間に保護材料を配置することが好ましい。
The specific configuration of the means for carrying out the thermal laminating step (hereinafter also referred to as “thermal laminating means”) is not particularly limited, but in order to improve the appearance of the resulting laminate, It is preferable to arrange a protective material between the pressure surface and the metal foil.
上記保護材料としては、熱ラミネート工程の加熱温度に耐えうる材料、例えば、非熱可塑性ポリイミドフィルム等の耐熱性プラスチック、銅箔、アルミニウム箔、SUS箔等の金属箔等が挙げられる。中でも、耐熱性、再使用性等のバランスが優れる点から、非熱可塑性ポリイミドフィルム、もしくは、ガラス転移温度(Tg)がラミネート温度よりも50℃以上高い熱可塑性ポリイミドからなるフィルムが好ましく用いられる。熱可塑性ポリイミドを使用する場合、上記の条件を満たすものを選択することによって、熱可塑性ポリイミドのロールへの付着を防ぐことができる。
Examples of the protective material include materials that can withstand the heating temperature in the heat laminating process, for example, heat-resistant plastics such as non-thermoplastic polyimide films, copper foils, aluminum foils, metal foils such as SUS foils, and the like. Among these, a non-thermoplastic polyimide film or a film made of a thermoplastic polyimide having a glass transition temperature (Tg) higher by 50 ° C. or more than the laminating temperature is preferably used from the viewpoint of excellent balance of heat resistance, reusability and the like. When using thermoplastic polyimide, adhesion of the thermoplastic polyimide to the roll can be prevented by selecting one that satisfies the above conditions.
また、保護材料の厚みが薄いと、ラミネート時の緩衝並びに保護の役目を十分に果たさなくなるため、非熱可塑性ポリイミドフィルムの厚みは75μm以上であることが好ましい。
In addition, if the thickness of the protective material is thin, the role of buffering and protection at the time of lamination is not sufficiently fulfilled, so the thickness of the non-thermoplastic polyimide film is preferably 75 μm or more.
また、この保護材料は、必ずしも1層である必要はなく、異なる特性を有する2層以上の多層構造(例えば、三層構造)でもよい。
The protective material does not necessarily have to be a single layer, and may have a multilayer structure of two or more layers (for example, a three-layer structure) having different characteristics.
また、ラミネート温度が高温の場合、保護材料をそのままラミネートに用いると、急激な熱膨張により、得られるフレキシブル金属張積層板の外観や寸法安定性が充分でない場合がある。従って、ラミネート前に、保護材料に予備加熱を施すことが好ましい。このように、保護材料の予備加熱を行った後、ラミネートする場合、保護材料の熱膨張が終了しているため、フレキシブル金属張積層板の外観や寸法特性に影響を与えることが抑制される。
Also, when the laminating temperature is high, if the protective material is used for laminating as it is, the appearance and dimensional stability of the obtained flexible metal-clad laminate may not be sufficient due to rapid thermal expansion. Therefore, it is preferable to preheat the protective material before lamination. As described above, when the protective material is preheated and then laminated, since the thermal expansion of the protective material is finished, the appearance and dimensional characteristics of the flexible metal-clad laminate are suppressed.
予備加熱の手段としては、保護材料を加熱ロールに抱かせるなどして接触させる方法が挙げられる。接触時間としては、1秒間以上が好ましく、3秒間以上がさらに好ましい。接触時間が上記よりも短い場合、保護材料の熱膨張が終了しないままラミネートが行われるため、ラミネート時に保護材料の急激な熱膨張が起こり、得られるフレキシブル金属張積層板の外観や寸法特性が悪化することがある。保護材料を加熱ロールに抱かせる距離については、特に限定されず、加熱ロールの径と上記接触時間とから適宜調整すればよい。
As a preheating means, a method of bringing a protective material into contact with a heating roll, for example, may be mentioned. The contact time is preferably 1 second or longer, and more preferably 3 seconds or longer. When the contact time is shorter than the above, since the lamination is performed without the thermal expansion of the protective material, the thermal expansion of the protective material occurs during the lamination, and the appearance and dimensional characteristics of the resulting flexible metal-clad laminate are deteriorated. There are things to do. The distance at which the protective material is held on the heating roll is not particularly limited, and may be appropriately adjusted from the diameter of the heating roll and the contact time.
上記熱ラミネート手段における被積層材料の加熱方式は、特に限定されるものではなく、例えば、熱循環方式、熱風加熱方式、誘導加熱方式等、所定の温度で加熱しうる従来公知の方式を採用した加熱手段を用いることができる。同様に、上記熱ラミネート手段における被積層材料の加圧方式も、特に限定されるものではなく、例えば、油圧方式、空気圧方式、ギャップ間圧力方式等、所定の圧力を加えることができる従来公知の方式を採用した加圧手段を用いることができる。
The heating method of the material to be laminated in the heat laminating means is not particularly limited, and a conventionally known method capable of heating at a predetermined temperature, such as a heat circulation method, a hot air heating method, an induction heating method, etc., is adopted. A heating means can be used. Similarly, the method for pressurizing the material to be laminated in the thermal laminating means is not particularly limited, and is a conventionally known method capable of applying a predetermined pressure such as a hydraulic method, a pneumatic method, a gap pressure method, or the like. A pressurizing means adopting the method can be used.
上記熱ラミネート工程における加熱温度、すなわちラミネート温度は、多層ポリイミドフィルムの熱可塑性ポリイミド層に含まれる熱可塑性ポリイミドのガラス転移温度(Tg)+50℃以上の温度であることが好ましく、多層ポリイミドフィルムの熱可塑性ポリイミド層に含まれる熱可塑性ポリイミドのガラス転移温度(Tg)+100℃以上がより好ましい。Tg+50℃以上の温度であれば、多層ポリイミドフィルムと金属箔とを良好に熱ラミネートすることができる。また、Tg+100℃以上であれば、ラミネート速度を上昇させてフレキシブル金属張積層板の生産性をより向上させることができる。
The heating temperature in the thermal laminating step, that is, the laminating temperature, is preferably a glass transition temperature (Tg) of the thermoplastic polyimide contained in the thermoplastic polyimide layer of the multilayer polyimide film + 50 ° C. or higher. The glass transition temperature (Tg) of the thermoplastic polyimide contained in the plastic polyimide layer + 100 ° C. or more is more preferable. If it is Tg + 50 degreeC or more temperature, a multilayer polyimide film and metal foil can be heat-laminated favorably. Moreover, if it is Tg + 100 degreeC or more, the lamination speed can be raised and the productivity of a flexible metal-clad laminated board can be improved more.
特に、本発明の多層ポリイミドフィルムのコアとして使用しているポリイミドフィルムは、ラミネートを行った場合に、熱応力の緩和が有効に作用するように設計することが好ましく、寸法安定性に優れたフレキシブル金属張積層板が、生産性良く得られる。
In particular, it is preferable that the polyimide film used as the core of the multilayer polyimide film of the present invention is designed so that the thermal stress can be effectively relieved when laminating, and flexible with excellent dimensional stability. A metal-clad laminate can be obtained with high productivity.
フレキシブル金属張積層板の加熱ロールへの接触時間は、0.1秒間以上が好ましく、より好ましくは0.2秒間以上、0.5秒間以上が特に好ましい。接触時間が上記範囲より短い場合、緩和効果が十分に発生しない場合がある。接触時間の上限は、5秒間以下が好ましい。5秒間よりも長く接触させても緩和効果が、より大きくなるわけではなく、ラミネート速度の低下やラインの取り回しに制約が生じるため好ましくない。
The contact time of the flexible metal-clad laminate with the heating roll is preferably 0.1 seconds or more, more preferably 0.2 seconds or more, and particularly preferably 0.5 seconds or more. When the contact time is shorter than the above range, the relaxation effect may not be sufficiently generated. The upper limit of the contact time is preferably 5 seconds or less. Even if the contact is made for longer than 5 seconds, the relaxation effect is not increased, and it is not preferable because a decrease in the laminating speed and restrictions on the line handling occur.
また、ラミネート後に加熱ロールにフレキシブル金属張積層板を接触させて徐冷を行ったとしても、依然としてフレキシブル金属張積層板と室温との差は大きく、また、残留歪みを緩和しきれていない場合もある。そのため、加熱ロールに接触させて徐冷した後のフレキシブル金属張積層板は、保護材料を配したままの状態で、後加熱工程を行うことが好ましい。この際の張力は、1~10N/cmの範囲とすることが好ましい。また、後加熱の雰囲気温度は(温度-200℃)~(ラミネート温度+100℃)の範囲とすることが好ましい。
Moreover, even if the flexible metal-clad laminate is brought into contact with the heating roll after lamination and the annealing is performed slowly, the difference between the flexible metal-clad laminate and room temperature is still large, and the residual strain may not be alleviated. is there. Therefore, it is preferable that the flexible metal-clad laminate after being brought into contact with the heating roll and gradually cooled is subjected to the post-heating step with the protective material still disposed. The tension at this time is preferably in the range of 1 to 10 N / cm. Further, the post-heating atmosphere temperature is preferably in the range of (temperature −200 ° C.) to (laminate temperature + 100 ° C.).
ここでいう「雰囲気温度」とは、フレキシブル金属張積層板の両面に密着させている保護材料の外表面温度をいう。実際のフレキシブル金属張積層板の温度は、保護材料の厚みによって多少変化するが、保護材料表面の温度を上記範囲内にすれば、後加熱の効果を発現させることが可能である。保護材料の外表面温度測定は、熱電対や温度計などを用いて行うことができる。
“Ambient temperature” as used herein refers to the outer surface temperature of the protective material adhered to both surfaces of the flexible metal-clad laminate. The actual temperature of the flexible metal-clad laminate varies somewhat depending on the thickness of the protective material, but if the temperature of the surface of the protective material is within the above range, the effect of post-heating can be exhibited. The outer surface temperature of the protective material can be measured using a thermocouple or a thermometer.
上記熱ラミネート工程におけるラミネート速度は、0.5m/分以上であることが好ましく、1.0m/分以上であることがより好ましい。0.5m/分以上であれば、十分な熱ラミネートが可能になり、さらに、1.0m/分以上であれば、生産性をより一層向上することができる。
The laminating speed in the thermal laminating step is preferably 0.5 m / min or more, and more preferably 1.0 m / min or more. If it is 0.5 m / min or more, sufficient thermal lamination is possible, and if it is 1.0 m / min or more, productivity can be further improved.
上記熱ラミネート工程における圧力、すなわちラミネート圧力は、高ければ高いほどラミネート温度を低く、かつラミネート速度を速くすることができる利点があるが、一般に、ラミネート圧力が高すぎると、得られる積層板の寸法変化が悪化する傾向がある。逆に、ラミネート圧力が低すぎると、得られる積層板の金属箔の接着強度が低くなる。そのため、ラミネート圧力は、49~490N/cm(5~50kgf/cm)の範囲内であることが好ましく、98~294N/cm(10~30kgf/cm)の範囲内であることがより好ましい。この範囲内であれば、ラミネート温度、ラミネート速度、およびラミネート圧力の三条件を良好なものにすることができ、生産性をより一層向上することができる。
The higher the pressure in the thermal laminating process, that is, the laminating pressure, there is an advantage that the laminating temperature can be lowered and the laminating speed can be increased. However, in general, when the laminating pressure is too high, the dimensions of the obtained laminate are obtained. Changes tend to get worse. On the other hand, when the lamination pressure is too low, the adhesive strength of the metal foil of the resulting laminate is reduced. Therefore, the laminating pressure is preferably in the range of 49 to 490 N / cm (5 to 50 kgf / cm), and more preferably in the range of 98 to 294 N / cm (10 to 30 kgf / cm). Within this range, the three conditions of laminating temperature, laminating speed, and laminating pressure can be improved, and productivity can be further improved.
上記ラミネート工程における接着フィルム張力は、0.01~4N/cmの範囲内であることが好ましく、0.02~2.5N/cmの範囲内であることがより好ましく、0.05~1.5N/cmの範囲内であることが特に好ましい。張力が上記範囲を下回ると、ラミネートの搬送時に、たるみや蛇行が生じ、均一に加熱ロールに送り込まれないために、外観の良好なフレキシブル金属張積層板を得ることが困難となることがある。逆に、上記範囲を上回ると、接着層のTgと貯蔵弾性率の制御とでは緩和できないほど張力の影響が強くなり、寸法安定性が劣ることがある。
The adhesive film tension in the laminating step is preferably within a range of 0.01 to 4 N / cm, more preferably within a range of 0.02 to 2.5 N / cm, and 0.05 to 1. A range of 5 N / cm is particularly preferable. When the tension is below the above range, sagging or meandering occurs during the conveyance of the laminate, and it is difficult to obtain a flexible metal-clad laminate having a good appearance because it is not uniformly fed into the heating roll. On the other hand, if it exceeds the above range, the influence of the tension becomes so strong that the Tg of the adhesive layer and the storage elastic modulus cannot be relaxed, and the dimensional stability may be inferior.
本発明にかかるフレキシブル金属張積層板を得るためには、連続的に被積層材料を加熱しながら圧着する熱ラミネート装置を用いることが好ましい。さらに、この熱ラミネート装置では、熱ラミネート手段の前段に、被積層材料を繰り出す被積層材料繰出手段を設けてもよいし、熱ラミネート手段の後段に、被積層材料を巻き取る被積層材料巻取手段を設けてもよい。これらの手段を設けることで、上記熱ラミネート装置の生産性をより一層向上させることができる。
In order to obtain the flexible metal-clad laminate according to the present invention, it is preferable to use a thermal laminating apparatus that continuously press-bonds the material to be laminated while heating. Further, in this thermal laminating apparatus, a laminated material feeding means for feeding the laminated material may be provided before the thermal laminating means, or a laminated material winding for winding the laminated material is taken after the thermal laminating means. Means may be provided. By providing these means, the productivity of the thermal laminating apparatus can be further improved.
上記被積層材料繰出手段および被積層材料巻取手段の具体的な構成は特に限定されるものではなく、例えば、接着フィルムや金属箔、あるいは得られる積層板を巻き取ることのできる公知のロール状巻取機等を挙げることができる。
The specific configuration of the laminated material feeding means and the laminated material winding means is not particularly limited. For example, a known roll shape capable of winding an adhesive film, a metal foil, or a laminated sheet to be obtained. A winder etc. can be mentioned.
さらに、保護材料を巻き取ったり繰り出したりする保護材料巻取手段や保護材料繰出手段を設けると、より好ましい。これら保護材料巻取手段・保護材料繰出手段を備えていれば、熱ラミネート工程で、一度使用された保護材料を巻き取って繰り出し側に再度設置することで、保護材料を再使用することができる。
Furthermore, it is more preferable to provide a protective material winding means or a protective material feeding means for winding or feeding the protective material. If these protective material take-up means and protective material feeding means are provided, the protective material can be reused by winding the protective material once used in the thermal laminating step and installing it again on the pay-out side. .
また、保護材料を巻き取る際に、保護材料の両端部を揃えるために、端部位置検出手段および巻取位置修正手段を設けてもよい。これによって、精度よく保護材料の端部を揃えて巻き取ることができるので、再使用の効率を高めることができる。なお、これら保護材料巻取手段、保護材料繰出手段、端部位置検出手段および巻取位置修正手段の具体的な構成は特に限定されるものではなく、従来公知の各種装置を用いることができる。
Further, when winding the protective material, an end position detecting means and a winding position correcting means may be provided in order to align both ends of the protective material. As a result, the end portions of the protective material can be aligned and wound with high accuracy, so that the efficiency of reuse can be increased. The specific configurations of the protective material winding means, the protective material feeding means, the end position detecting means, and the winding position correcting means are not particularly limited, and various conventionally known devices can be used.
フレキシブル金属張積層板の多層ポリイミドフィルムと金属箔の引き剥がし強度は、10N/cm以上が好ましい。
The peel strength between the multilayer polyimide film and the metal foil of the flexible metal-clad laminate is preferably 10 N / cm or more.
本発明は、以下のように構成することも可能である。
The present invention can also be configured as follows.
上記多層共押出ポリイミドフィルムの製造方法において、上記複数のポリアミド酸溶液のうち、支持体に直接接するポリアミド酸溶液中のみに、化学脱水剤及びイミド化触媒を含有せしめることが好ましい。
In the method for producing a multilayer coextruded polyimide film, it is preferable to include a chemical dehydrating agent and an imidization catalyst only in the polyamic acid solution in direct contact with the support among the plurality of polyamic acid solutions.
また、上記複数のポリアミド酸溶液のうち、上記支持体に直接接するポリアミド酸溶液が、熱可塑性ポリイミド層になるポリアミド酸溶液であることが好ましい。
Of the plurality of polyamic acid solutions, the polyamic acid solution that is in direct contact with the support is preferably a polyamic acid solution that becomes a thermoplastic polyimide layer.
また、上記熱可塑性ポリイミドを構成する酸二無水物単量体及びジアミン単量体の合計モル数の60%以上が、上記非熱可塑性ポリイミドを構成する酸二無水物単量体及びジアミン単量体と同じ単量体であることが好ましい。
In addition, 60% or more of the total number of moles of the acid dianhydride monomer and the diamine monomer constituting the thermoplastic polyimide is a single amount of the acid dianhydride monomer and diamine constituting the non-thermoplastic polyimide. It is preferable that it is the same monomer as the body.
また、上記熱可塑性ポリイミドを構成するジアミンが2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを必須成分とすることが好ましい。
Further, it is preferable that the diamine constituting the thermoplastic polyimide contains 2,2-bis [4- (4-aminophenoxy) phenyl] propane as an essential component.
また、上記非熱可塑性ポリイミド層になるポリアミド酸が、分子中に熱可塑性ブロック成分を有する非熱可塑性ポリイミドの前駆体であるポリアミド酸であることが好ましい。
The polyamic acid that becomes the non-thermoplastic polyimide layer is preferably a polyamic acid that is a precursor of non-thermoplastic polyimide having a thermoplastic block component in the molecule.
また、上記非熱可塑性ポリイミド層の両面に上記熱可塑性ポリイミド層が積層されることが好ましい。
Further, it is preferable that the thermoplastic polyimide layer is laminated on both surfaces of the non-thermoplastic polyimide layer.
以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。なお、合成例、実施例及び比較例における多層ポリイミドフィルムと金属箔の引き剥がし強度および半田耐熱性の評価法は次の通りである。
Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples. In addition, the evaluation method of the peeling strength of a multilayer polyimide film and metal foil and solder heat resistance in a synthesis example, an Example, and a comparative example is as follows.
(金属張積層板の作製方法)
多層ポリイミドフィルムの両面に厚さが18μmの圧延銅箔(BHY-22B-T;日鉱金属製)、さらにその両側に保護材料(アピカル125NPI;カネカ製)を配して、熱ロールラミネート機を用いて、ラミネート温度380℃、ラミネート圧力294N/cm(30kgf/cm)、ラミネート速度1.0m/分の条件で連続的に熱ラミネートを行い、フレキシブル金属張積層板を作製した。 (Method for producing metal-clad laminate)
Rolled copper foil (BHY-22B-T; manufactured by Nikko Metal) with a thickness of 18 μm on both sides of the multilayer polyimide film, and protective materials (Apical 125 NPI; manufactured by Kaneka) on both sides, and using a hot roll laminator Then, heat lamination was carried out continuously under the conditions of a laminating temperature of 380 ° C., a laminating pressure of 294 N / cm (30 kgf / cm), and a laminating speed of 1.0 m / min to produce a flexible metal-clad laminate.
多層ポリイミドフィルムの両面に厚さが18μmの圧延銅箔(BHY-22B-T;日鉱金属製)、さらにその両側に保護材料(アピカル125NPI;カネカ製)を配して、熱ロールラミネート機を用いて、ラミネート温度380℃、ラミネート圧力294N/cm(30kgf/cm)、ラミネート速度1.0m/分の条件で連続的に熱ラミネートを行い、フレキシブル金属張積層板を作製した。 (Method for producing metal-clad laminate)
Rolled copper foil (BHY-22B-T; manufactured by Nikko Metal) with a thickness of 18 μm on both sides of the multilayer polyimide film, and protective materials (Apical 125 NPI; manufactured by Kaneka) on both sides, and using a hot roll laminator Then, heat lamination was carried out continuously under the conditions of a laminating temperature of 380 ° C., a laminating pressure of 294 N / cm (30 kgf / cm), and a laminating speed of 1.0 m / min to produce a flexible metal-clad laminate.
(金属箔の引き剥がし強度)
JIS C6471の「6.5 引きはがし強さ」に従って、サンプルを作製し、3mm幅の金属箔部分を、180度の剥離角度、50mm/分の条件で剥離し、その荷重を測定した。 (Stripping strength of metal foil)
A sample was prepared according to “6.5 peel strength” of JIS C6471, and a 3 mm wide metal foil part was peeled off at a peeling angle of 180 degrees and 50 mm / min, and the load was measured.
JIS C6471の「6.5 引きはがし強さ」に従って、サンプルを作製し、3mm幅の金属箔部分を、180度の剥離角度、50mm/分の条件で剥離し、その荷重を測定した。 (Stripping strength of metal foil)
A sample was prepared according to “6.5 peel strength” of JIS C6471, and a 3 mm wide metal foil part was peeled off at a peeling angle of 180 degrees and 50 mm / min, and the load was measured.
(半田耐熱性評価)
フレキシブル金属張積層板から3cm×3cmの試験片を切り出し、常態時と吸湿時との半田耐熱性評価を実施した。常態時は、試験片を23℃/55%RHで24時間調整した後、加温した半田浴を用い、フロートで30秒放置した。その後、半田浴に触れた側の銅箔をエッチングし、膨れが無いか確認した。膨れが無い半田浴の温度を表1~2に記載した。また、吸湿時は、試験片を85℃/85%RHで24時間調整した後、加温した半田浴を用い、フロートで30秒放置した。その後、半田浴に触れた側の銅箔をエッチングし、膨れが無いか確認した。膨れが無い半田浴の温度を表1~2に記載した。 (Solder heat resistance evaluation)
A test piece of 3 cm × 3 cm was cut out from the flexible metal-clad laminate, and the solder heat resistance was evaluated during normal conditions and during moisture absorption. In the normal state, the test piece was adjusted at 23 ° C./55% RH for 24 hours, and then allowed to stand in a float for 30 seconds using a warmed solder bath. Thereafter, the copper foil on the side touching the solder bath was etched to check for swelling. The temperature of the solder bath without blistering is shown in Tables 1-2. When absorbing moisture, the test piece was adjusted at 85 ° C./85% RH for 24 hours, and then allowed to stand for 30 seconds in a float using a heated solder bath. Thereafter, the copper foil on the side touching the solder bath was etched to check for swelling. The temperature of the solder bath without blistering is shown in Tables 1-2.
フレキシブル金属張積層板から3cm×3cmの試験片を切り出し、常態時と吸湿時との半田耐熱性評価を実施した。常態時は、試験片を23℃/55%RHで24時間調整した後、加温した半田浴を用い、フロートで30秒放置した。その後、半田浴に触れた側の銅箔をエッチングし、膨れが無いか確認した。膨れが無い半田浴の温度を表1~2に記載した。また、吸湿時は、試験片を85℃/85%RHで24時間調整した後、加温した半田浴を用い、フロートで30秒放置した。その後、半田浴に触れた側の銅箔をエッチングし、膨れが無いか確認した。膨れが無い半田浴の温度を表1~2に記載した。 (Solder heat resistance evaluation)
A test piece of 3 cm × 3 cm was cut out from the flexible metal-clad laminate, and the solder heat resistance was evaluated during normal conditions and during moisture absorption. In the normal state, the test piece was adjusted at 23 ° C./55% RH for 24 hours, and then allowed to stand in a float for 30 seconds using a warmed solder bath. Thereafter, the copper foil on the side touching the solder bath was etched to check for swelling. The temperature of the solder bath without blistering is shown in Tables 1-2. When absorbing moisture, the test piece was adjusted at 85 ° C./85% RH for 24 hours, and then allowed to stand for 30 seconds in a float using a heated solder bath. Thereafter, the copper foil on the side touching the solder bath was etched to check for swelling. The temperature of the solder bath without blistering is shown in Tables 1-2.
以下に、合成例で用いるモノマーの略称を示す。
DMF :N,N-ジメチルホルムアミド
BAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン
ODA :4,4’-ジアミノジフェニルエーテル
PDA :p-フェニレンジアミン
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
BTDA:3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
以下に、ポリアミド酸溶液の合成例を示す。 The abbreviations of the monomers used in the synthesis examples are shown below.
DMF: N, N-dimethylformamide BAPP: 2,2-bis [4- (4-aminophenoxy) phenyl] propane ODA: 4,4′-diaminodiphenyl ether PDA: p-phenylenediamine BPDA: 3,3 ′, 4 , 4′-biphenyltetracarboxylic dianhydride BTDA: 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride PMDA: pyromellitic dianhydride The following is a synthesis example of a polyamic acid solution.
DMF :N,N-ジメチルホルムアミド
BAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン
ODA :4,4’-ジアミノジフェニルエーテル
PDA :p-フェニレンジアミン
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
BTDA:3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
以下に、ポリアミド酸溶液の合成例を示す。 The abbreviations of the monomers used in the synthesis examples are shown below.
DMF: N, N-dimethylformamide BAPP: 2,2-bis [4- (4-aminophenoxy) phenyl] propane ODA: 4,4′-diaminodiphenyl ether PDA: p-phenylenediamine BPDA: 3,3 ′, 4 , 4′-biphenyltetracarboxylic dianhydride BTDA: 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride PMDA: pyromellitic dianhydride The following is a synthesis example of a polyamic acid solution.
(合成例1)
10℃に冷却したDMF(1173.5g)に、BAPP(57.3g:0.140mol)、ODA(18.6g:0.093mol)、を溶解した。ここに、BTDA(30.0g:0.093mol)、PMDA(25.4g:0.116mol)を添加して、30分間均一攪拌し、プレポリマーを得た。
この溶液にPDA(25.2g:0.233mol)を溶解した後、PMDA(46.9g:0.215mol)を溶解し、別途調製してあったPMDAの7.2重量%DMF溶液を注意深く115.1g(PMDA:0.038mol)添加し、粘度が2500poise程度に達したところで添加を止めた。1時間撹拌を行って、23℃での回転粘度が2600ポイズのポリアミック酸溶液を得た。 (Synthesis Example 1)
BAPP (57.3 g: 0.140 mol) and ODA (18.6 g: 0.093 mol) were dissolved in DMF (1173.5 g) cooled to 10 ° C. BTDA (30.0 g: 0.093 mol) and PMDA (25.4 g: 0.116 mol) were added thereto, and the mixture was stirred uniformly for 30 minutes to obtain a prepolymer.
PDA (25.2 g: 0.233 mol) was dissolved in this solution, PMDA (46.9 g: 0.215 mol) was dissolved, and a 7.2 wt% DMF solution of PMDA prepared separately was carefully 115%. 0.1 g (PMDA: 0.038 mol) was added, and the addition was stopped when the viscosity reached about 2500 poise. Stirring was performed for 1 hour to obtain a polyamic acid solution having a rotational viscosity at 23 ° C. of 2600 poise.
10℃に冷却したDMF(1173.5g)に、BAPP(57.3g:0.140mol)、ODA(18.6g:0.093mol)、を溶解した。ここに、BTDA(30.0g:0.093mol)、PMDA(25.4g:0.116mol)を添加して、30分間均一攪拌し、プレポリマーを得た。
この溶液にPDA(25.2g:0.233mol)を溶解した後、PMDA(46.9g:0.215mol)を溶解し、別途調製してあったPMDAの7.2重量%DMF溶液を注意深く115.1g(PMDA:0.038mol)添加し、粘度が2500poise程度に達したところで添加を止めた。1時間撹拌を行って、23℃での回転粘度が2600ポイズのポリアミック酸溶液を得た。 (Synthesis Example 1)
BAPP (57.3 g: 0.140 mol) and ODA (18.6 g: 0.093 mol) were dissolved in DMF (1173.5 g) cooled to 10 ° C. BTDA (30.0 g: 0.093 mol) and PMDA (25.4 g: 0.116 mol) were added thereto, and the mixture was stirred uniformly for 30 minutes to obtain a prepolymer.
PDA (25.2 g: 0.233 mol) was dissolved in this solution, PMDA (46.9 g: 0.215 mol) was dissolved, and a 7.2 wt% DMF solution of PMDA prepared separately was carefully 115%. 0.1 g (PMDA: 0.038 mol) was added, and the addition was stopped when the viscosity reached about 2500 poise. Stirring was performed for 1 hour to obtain a polyamic acid solution having a rotational viscosity at 23 ° C. of 2600 poise.
なお、プレポリマーを製造する際に用いた、酸二無水物とジアミンとを等モル量にして合成したポリアミド酸溶液を、コンマコーターを用いてアルミ箔上に流延し、130℃×100秒で加熱した後、アルミ箔から自己支持性のゲルフィルムを引き剥がして、金属枠に固定した。その後、300℃×20秒、450℃×1分熱処理したところ、フィルムが溶融し、外観が変形していたため、本合成例1のブロック成分は熱可塑性ブロック成分であると判定した。
The polyamic acid solution synthesized in equimolar amounts of acid dianhydride and diamine used for producing the prepolymer was cast on an aluminum foil using a comma coater, and 130 ° C. × 100 seconds. Then, the self-supporting gel film was peeled off from the aluminum foil and fixed to the metal frame. Thereafter, when heat treatment was performed at 300 ° C. for 20 seconds and 450 ° C. for 1 minute, the film was melted and the appearance was deformed. Therefore, the block component of Synthesis Example 1 was determined to be a thermoplastic block component.
(合成例2)
N,N-ジメチルホルムアミド(DMF)937.6gに、BPDA(85.6g:0.291mol)を添加した後、BAPP(118.6g:0.289mol)を添加し、固形成分濃度約17%で粘度が23℃において800poiseのポリアミド酸溶液を得た。その後、DMFを加え、固形成分濃度14重量%のポリアミド酸溶液を得た。 (Synthesis Example 2)
BPDA (85.6 g: 0.291 mol) was added to 937.6 g of N, N-dimethylformamide (DMF), then BAPP (118.6 g: 0.289 mol) was added, and the solid component concentration was about 17%. A polyamic acid solution having a viscosity of 800 poise at 23 ° C. was obtained. Thereafter, DMF was added to obtain a polyamic acid solution having a solid component concentration of 14% by weight.
N,N-ジメチルホルムアミド(DMF)937.6gに、BPDA(85.6g:0.291mol)を添加した後、BAPP(118.6g:0.289mol)を添加し、固形成分濃度約17%で粘度が23℃において800poiseのポリアミド酸溶液を得た。その後、DMFを加え、固形成分濃度14重量%のポリアミド酸溶液を得た。 (Synthesis Example 2)
BPDA (85.6 g: 0.291 mol) was added to 937.6 g of N, N-dimethylformamide (DMF), then BAPP (118.6 g: 0.289 mol) was added, and the solid component concentration was about 17%. A polyamic acid solution having a viscosity of 800 poise at 23 ° C. was obtained. Thereafter, DMF was added to obtain a polyamic acid solution having a solid component concentration of 14% by weight.
(合成例3)
N,N-ジメチルホルムアミド(DMF)843.4gに、BAPP(118.6g:0.289mol)を溶解した。ここに、BPDA(12.7g:0.043mol)を投入し、50℃に加熱した後、10℃に冷却し、PMDA(48.6g:0.223mol)を添加し、プレポリマーを得た。 (Synthesis Example 3)
BAPP (118.6 g: 0.289 mol) was dissolved in 843.4 g of N, N-dimethylformamide (DMF). BPDA (12.7 g: 0.043 mol) was added thereto, heated to 50 ° C., cooled to 10 ° C., and PMDA (48.6 g: 0.223 mol) was added to obtain a prepolymer.
N,N-ジメチルホルムアミド(DMF)843.4gに、BAPP(118.6g:0.289mol)を溶解した。ここに、BPDA(12.7g:0.043mol)を投入し、50℃に加熱した後、10℃に冷却し、PMDA(48.6g:0.223mol)を添加し、プレポリマーを得た。 (Synthesis Example 3)
BAPP (118.6 g: 0.289 mol) was dissolved in 843.4 g of N, N-dimethylformamide (DMF). BPDA (12.7 g: 0.043 mol) was added thereto, heated to 50 ° C., cooled to 10 ° C., and PMDA (48.6 g: 0.223 mol) was added to obtain a prepolymer.
その後、別途調製してあったPMDAの7重量%DMF溶液65.4g(PMDA:0.021mol)を注意深く添加し、固形成分濃度約17%で粘度が23℃において800poiseのポリアミド酸溶液を得た。その後、DMFを加え、固形成分濃度14重量%のポリアミド酸溶液を得た。
Thereafter, 65.4 g (PMDA: 0.021 mol) of a 7% by weight PMDA solution prepared separately was carefully added to obtain a polyamic acid solution having a solid component concentration of about 17% and a viscosity of 23 p. . Thereafter, DMF was added to obtain a polyamic acid solution having a solid component concentration of 14% by weight.
(実施例1)
リップ幅200mmのマルチマニホールド式の3層共押出三層ダイを用い、合成例2で得られたポリアミド酸溶液/合成例1で得られたポリアミド酸溶液/合成例2で得られたポリアミド酸溶液の順の3層構造でアルミ箔上に押出し流延した。次いで、この三層膜を150℃×100秒で加熱した後、自己支持性を有する三層ゲルフィルムを引き剥がして、金属枠に固定し、250℃×40秒、300℃×60秒、350℃×60秒、370℃×30秒で乾燥・イミド化し、熱可塑性ポリイミド層/非熱可塑性ポリイミド層/熱可塑性ポリイミド層の厚みが、2.7μm/12.6μm/2.7μmの三層ポリイミドフィルムを得た。 Example 1
Using a multi-manifold three-layer coextrusion three-layer die with a lip width of 200 mm, the polyamic acid solution obtained in Synthesis Example 2 / the polyamic acid solution obtained in Synthesis Example 1 / the polyamic acid solution obtained in Synthesis Example 2 Extruded and cast on an aluminum foil with a three-layer structure in the order of Next, after heating this three-layer film at 150 ° C. × 100 seconds, the three-layer gel film having self-supporting properties is peeled off and fixed to a metal frame, 250 ° C. × 40 seconds, 300 ° C. × 60 seconds, 350 Drying and imidization at ℃ × 60 seconds, 370 ° C × 30 seconds, and the thickness of the thermoplastic polyimide layer / non-thermoplastic polyimide layer / thermoplastic polyimide layer is 2.7 μm / 12.6 μm / 2.7 μm. A film was obtained.
リップ幅200mmのマルチマニホールド式の3層共押出三層ダイを用い、合成例2で得られたポリアミド酸溶液/合成例1で得られたポリアミド酸溶液/合成例2で得られたポリアミド酸溶液の順の3層構造でアルミ箔上に押出し流延した。次いで、この三層膜を150℃×100秒で加熱した後、自己支持性を有する三層ゲルフィルムを引き剥がして、金属枠に固定し、250℃×40秒、300℃×60秒、350℃×60秒、370℃×30秒で乾燥・イミド化し、熱可塑性ポリイミド層/非熱可塑性ポリイミド層/熱可塑性ポリイミド層の厚みが、2.7μm/12.6μm/2.7μmの三層ポリイミドフィルムを得た。 Example 1
Using a multi-manifold three-layer coextrusion three-layer die with a lip width of 200 mm, the polyamic acid solution obtained in Synthesis Example 2 / the polyamic acid solution obtained in Synthesis Example 1 / the polyamic acid solution obtained in Synthesis Example 2 Extruded and cast on an aluminum foil with a three-layer structure in the order of Next, after heating this three-layer film at 150 ° C. × 100 seconds, the three-layer gel film having self-supporting properties is peeled off and fixed to a metal frame, 250 ° C. × 40 seconds, 300 ° C. × 60 seconds, 350 Drying and imidization at ℃ × 60 seconds, 370 ° C × 30 seconds, and the thickness of the thermoplastic polyimide layer / non-thermoplastic polyimide layer / thermoplastic polyimide layer is 2.7 μm / 12.6 μm / 2.7 μm. A film was obtained.
この際、合成例2で得られたポリアミド酸溶液は、支持体上に直接接する面のポリアミド酸溶液のみ、三層ダイに投入する直前に、このポリアミック酸溶液100gに対して、無水酢酸/イソキノリン/DMF(重量比33.0g/8.3g/58.6g)からなる硬化剤(化学脱水剤およびイミド化触媒)を20g添加し、ミキサーで混合した。
At this time, the polyamic acid solution obtained in Synthesis Example 2 was used only for the polyamic acid solution on the surface in direct contact with the support. 20 g of a curing agent (chemical dehydrating agent and imidization catalyst) composed of / DMF (weight ratio 33.0 g / 8.3 g / 58.6 g) was added and mixed with a mixer.
三層ポリイミドフィルムを用いて金属張積層板を作製した後、金属箔の引き剥がし強度と半田耐熱性とを測定した。結果は表1~2にまとめた。なお、表中、支持体上に直接接する面の熱可塑性ポリイミド層をB面、反対側の熱可塑性ポリイミド層をA面として記載している。
After producing a metal-clad laminate using a three-layer polyimide film, the peel strength and solder heat resistance of the metal foil were measured. The results are summarized in Tables 1-2. In addition, in the table | surface, the thermoplastic polyimide layer of the surface which touches directly on a support body is described as B surface, and the thermoplastic polyimide layer of the opposite side is described as A surface.
(比較例1)
合成例2のポリアミド酸溶液(支持体上に直接接する面(B面)のポリアミド酸溶液)に、化学脱水剤及びイミド化触媒を添加しなかったことを除き、実施例1と同様に実施した。 (Comparative Example 1)
The same procedure as in Example 1 was carried out except that the chemical dehydrating agent and the imidization catalyst were not added to the polyamic acid solution of Synthesis Example 2 (polyamic acid solution on the surface (B surface) in direct contact with the support). .
合成例2のポリアミド酸溶液(支持体上に直接接する面(B面)のポリアミド酸溶液)に、化学脱水剤及びイミド化触媒を添加しなかったことを除き、実施例1と同様に実施した。 (Comparative Example 1)
The same procedure as in Example 1 was carried out except that the chemical dehydrating agent and the imidization catalyst were not added to the polyamic acid solution of Synthesis Example 2 (polyamic acid solution on the surface (B surface) in direct contact with the support). .
支持体上に直接接していたB面の熱可塑性ポリイミド層に、部分的に剥離した痕があった。三層ポリイミドフィルムを用いて金属張積層板を作製した後、金属箔の引き剥がし強度と半田耐熱性を測定した。結果は表1~2にまとめた。
There was a trace of partial peeling in the B-side thermoplastic polyimide layer that was in direct contact with the support. After producing a metal-clad laminate using a three-layer polyimide film, the peel strength of the metal foil and the solder heat resistance were measured. The results are summarized in Tables 1-2.
(実施例2)
リップ幅200mmのマルチマニホールド式の3層共押出三層ダイを用い、合成例3で得られたポリアミド酸溶液/合成例1で得られたポリアミド酸溶液/合成例3で得られたポリアミド酸溶液の順の3層構造でアルミ箔上に押出し流延した。次いで、この三層膜を150℃×100秒で加熱した後、自己支持性を有する三層ゲルフィルムを引き剥がして、金属枠に固定し、250℃×40秒、300℃×60秒、350℃×60秒、370℃×30秒で乾燥・イミド化し、熱可塑性ポリイミド層/非熱可塑性ポリイミド層/熱可塑性ポリイミド層の厚みが、2.7μm/12.6μm/2.7μmの三層ポリイミドフィルムを得た。 (Example 2)
Using a multi-manifold three-layer coextrusion three-layer die with a lip width of 200 mm, the polyamic acid solution obtained in Synthesis Example 3 / the polyamic acid solution obtained in Synthesis Example 1 / the polyamic acid solution obtained in Synthesis Example 3 Extruded and cast on an aluminum foil with a three-layer structure in the order of Next, after heating this three-layer film at 150 ° C. × 100 seconds, the three-layer gel film having self-supporting properties is peeled off and fixed to a metal frame, 250 ° C. × 40 seconds, 300 ° C. × 60 seconds, 350 Drying and imidization at ℃ × 60 seconds, 370 ° C × 30 seconds, and the thickness of the thermoplastic polyimide layer / non-thermoplastic polyimide layer / thermoplastic polyimide layer is 2.7 μm / 12.6 μm / 2.7 μm. A film was obtained.
リップ幅200mmのマルチマニホールド式の3層共押出三層ダイを用い、合成例3で得られたポリアミド酸溶液/合成例1で得られたポリアミド酸溶液/合成例3で得られたポリアミド酸溶液の順の3層構造でアルミ箔上に押出し流延した。次いで、この三層膜を150℃×100秒で加熱した後、自己支持性を有する三層ゲルフィルムを引き剥がして、金属枠に固定し、250℃×40秒、300℃×60秒、350℃×60秒、370℃×30秒で乾燥・イミド化し、熱可塑性ポリイミド層/非熱可塑性ポリイミド層/熱可塑性ポリイミド層の厚みが、2.7μm/12.6μm/2.7μmの三層ポリイミドフィルムを得た。 (Example 2)
Using a multi-manifold three-layer coextrusion three-layer die with a lip width of 200 mm, the polyamic acid solution obtained in Synthesis Example 3 / the polyamic acid solution obtained in Synthesis Example 1 / the polyamic acid solution obtained in Synthesis Example 3 Extruded and cast on an aluminum foil with a three-layer structure in the order of Next, after heating this three-layer film at 150 ° C. × 100 seconds, the three-layer gel film having self-supporting properties is peeled off and fixed to a metal frame, 250 ° C. × 40 seconds, 300 ° C. × 60 seconds, 350 Drying and imidization at ℃ × 60 seconds, 370 ° C × 30 seconds, and the thickness of the thermoplastic polyimide layer / non-thermoplastic polyimide layer / thermoplastic polyimide layer is 2.7 μm / 12.6 μm / 2.7 μm. A film was obtained.
この際、合成例3で得られたポリアミド酸溶液は、支持体上に直接接する面のポリアミド酸溶液のみ、三層ダイに投入する直前に、このポリアミック酸溶液100gに対して、無水酢酸/イソキノリン/DMF(重量比33.0g/8.3g/58.6g)からなる硬化剤(化学脱水剤およびイミド化触媒)を20g添加し、ミキサーで混合した。
At this time, the polyamic acid solution obtained in Synthesis Example 3 is only acetic anhydride / isoquinoline with respect to 100 g of this polyamic acid solution just before the polyamic acid solution on the surface directly contacting the support is put into the three-layer die. 20 g of a curing agent (chemical dehydrating agent and imidization catalyst) composed of / DMF (weight ratio 33.0 g / 8.3 g / 58.6 g) was added and mixed with a mixer.
三層ポリイミドフィルムを用い金属張積層板を作製した後、金属箔の引き剥がし強度と半田耐熱性を測定した。結果は表1~2にまとめた。
After producing a metal-clad laminate using a three-layer polyimide film, the peel strength and solder heat resistance of the metal foil were measured. The results are summarized in Tables 1-2.
(比較例2)
合成例3のポリアミド酸溶液に、化学脱水剤及びイミド化触媒を添加しなかったことを除き、実施例1と同様に実施した。三層ポリイミドフィルムを用い金属張積層板を作製した後、金属箔の引き剥がし強度と半田耐熱性を測定した。結果は表1~2にまとめた。支持体上に直接接していたB面の熱可塑性ポリイミド層に、剥離した痕があった。
(実施例3)
合成例2のポリアミド酸溶液(支持体上に直接接する面(B面)のポリアミド酸溶液)に、三層ダイに投入する直前に、このポリアミック酸溶液100gに対して、イソキノリン/DMF(重量比8.3g/58.6g)からなる硬化剤(イミド化触媒のみ)を14g添加し、ミキサーで混合したことを除き、実施例1と同様に実施した。
三層ポリイミドフィルムを用いて金属張積層板を作製した後、金属箔の引き剥がし強度と半田耐熱性を測定した。結果は表1~2にまとめた。
(実施例4)
合成例3のポリアミド酸溶液(支持体上に直接接する面(B面)のポリアミド酸溶液)に、三層ダイに投入する直前に、このポリアミック酸溶液100gに対して、イソキノリン/DMF(重量比8.3g/58.6g)からなる硬化剤(イミド化触媒のみ)を14g添加し、ミキサーで混合したことを除き、実施例1と同様に実施した。
三層ポリイミドフィルムを用い金属張積層板を作製した後、金属箔の引き剥がし強度と半田耐熱性を測定した。結果は表1~2にまとめた。 (Comparative Example 2)
The same procedure as in Example 1 was conducted except that the chemical dehydrating agent and the imidization catalyst were not added to the polyamic acid solution of Synthesis Example 3. After producing a metal-clad laminate using a three-layer polyimide film, the peel strength of the metal foil and the solder heat resistance were measured. The results are summarized in Tables 1-2. There was a trace of peeling on the B-side thermoplastic polyimide layer that was in direct contact with the support.
(Example 3)
Immediately before the polyamic acid solution 100 g was added to the polyamic acid solution (the polyamic acid solution on the surface (B surface) in direct contact with the support) on the polyamic acid solution of Synthesis Example 2, isoquinoline / DMF (weight ratio) The same procedure as in Example 1 was conducted except that 14 g of a curing agent (8.3 g / 58.6 g) (imidation catalyst only) was added and mixed with a mixer.
After producing a metal-clad laminate using a three-layer polyimide film, the peel strength of the metal foil and the solder heat resistance were measured. The results are summarized in Tables 1-2.
Example 4
Immediately before the polyamic acid solution 100 g was added to the polyamic acid solution of Synthesis Example 3 (polyamic acid solution on the surface (B surface) in direct contact with the support) into the three-layer die, isoquinoline / DMF (weight ratio) The same procedure as in Example 1 was conducted except that 14 g of a curing agent (8.3 g / 58.6 g) (imidation catalyst only) was added and mixed with a mixer.
After producing a metal-clad laminate using a three-layer polyimide film, the peel strength of the metal foil and the solder heat resistance were measured. The results are summarized in Tables 1-2.
合成例3のポリアミド酸溶液に、化学脱水剤及びイミド化触媒を添加しなかったことを除き、実施例1と同様に実施した。三層ポリイミドフィルムを用い金属張積層板を作製した後、金属箔の引き剥がし強度と半田耐熱性を測定した。結果は表1~2にまとめた。支持体上に直接接していたB面の熱可塑性ポリイミド層に、剥離した痕があった。
(実施例3)
合成例2のポリアミド酸溶液(支持体上に直接接する面(B面)のポリアミド酸溶液)に、三層ダイに投入する直前に、このポリアミック酸溶液100gに対して、イソキノリン/DMF(重量比8.3g/58.6g)からなる硬化剤(イミド化触媒のみ)を14g添加し、ミキサーで混合したことを除き、実施例1と同様に実施した。
三層ポリイミドフィルムを用いて金属張積層板を作製した後、金属箔の引き剥がし強度と半田耐熱性を測定した。結果は表1~2にまとめた。
(実施例4)
合成例3のポリアミド酸溶液(支持体上に直接接する面(B面)のポリアミド酸溶液)に、三層ダイに投入する直前に、このポリアミック酸溶液100gに対して、イソキノリン/DMF(重量比8.3g/58.6g)からなる硬化剤(イミド化触媒のみ)を14g添加し、ミキサーで混合したことを除き、実施例1と同様に実施した。
三層ポリイミドフィルムを用い金属張積層板を作製した後、金属箔の引き剥がし強度と半田耐熱性を測定した。結果は表1~2にまとめた。 (Comparative Example 2)
The same procedure as in Example 1 was conducted except that the chemical dehydrating agent and the imidization catalyst were not added to the polyamic acid solution of Synthesis Example 3. After producing a metal-clad laminate using a three-layer polyimide film, the peel strength of the metal foil and the solder heat resistance were measured. The results are summarized in Tables 1-2. There was a trace of peeling on the B-side thermoplastic polyimide layer that was in direct contact with the support.
(Example 3)
Immediately before the polyamic acid solution 100 g was added to the polyamic acid solution (the polyamic acid solution on the surface (B surface) in direct contact with the support) on the polyamic acid solution of Synthesis Example 2, isoquinoline / DMF (weight ratio) The same procedure as in Example 1 was conducted except that 14 g of a curing agent (8.3 g / 58.6 g) (imidation catalyst only) was added and mixed with a mixer.
After producing a metal-clad laminate using a three-layer polyimide film, the peel strength of the metal foil and the solder heat resistance were measured. The results are summarized in Tables 1-2.
Example 4
Immediately before the polyamic acid solution 100 g was added to the polyamic acid solution of Synthesis Example 3 (polyamic acid solution on the surface (B surface) in direct contact with the support) into the three-layer die, isoquinoline / DMF (weight ratio) The same procedure as in Example 1 was conducted except that 14 g of a curing agent (8.3 g / 58.6 g) (imidation catalyst only) was added and mixed with a mixer.
After producing a metal-clad laminate using a three-layer polyimide film, the peel strength of the metal foil and the solder heat resistance were measured. The results are summarized in Tables 1-2.
本発明は、フレキシブルプリント配線板の製造などに利用することが可能である。
The present invention can be used for manufacturing a flexible printed wiring board.
Claims (7)
- 多層共押出で複数のポリアミド酸溶液を支持体上に流延し、少なくとも非熱可塑性ポリイミドを含む非熱可塑性ポリイミド層の少なくとも片面に、少なくとも熱可塑性ポリイミドを含む熱可塑性ポリイミド層を積層した多層ポリイミドフィルムを製造する方法であって、
上記複数のポリアミド酸溶液のうち、上記支持体に直接接するポリアミド酸溶液中のみに、イミド化触媒を含有せしめることを特徴とする多層共押出ポリイミドフィルムの製造方法。 A multilayer polyimide in which a plurality of polyamic acid solutions are cast on a support by multilayer coextrusion, and a thermoplastic polyimide layer containing at least a thermoplastic polyimide is laminated on at least one surface of a non-thermoplastic polyimide layer containing at least a non-thermoplastic polyimide. A method of manufacturing a film comprising:
A method for producing a multilayer coextruded polyimide film, wherein an imidization catalyst is contained only in a polyamic acid solution in direct contact with the support among the plurality of polyamic acid solutions. - 上記複数のポリアミド酸溶液のうち、上記支持体に直接接するポリアミド酸溶液中のみに、化学脱水剤及びイミド化触媒を含有せしめることを特徴とする請求項1に記載の多層共押出ポリイミドフィルムの製造方法。 2. The production of a multilayer coextruded polyimide film according to claim 1, wherein a chemical dehydrating agent and an imidization catalyst are contained only in the polyamic acid solution in direct contact with the support among the plurality of polyamic acid solutions. Method.
- 上記複数のポリアミド酸溶液のうち、上記支持体に直接接するポリアミド酸溶液が、熱可塑性ポリイミド層になるポリアミド酸溶液であることを特徴とする請求項1又は2に記載の多層共押出ポリイミドフィルムの製造方法。 3. The multilayer coextruded polyimide film according to claim 1, wherein among the plurality of polyamic acid solutions, the polyamic acid solution that is in direct contact with the support is a polyamic acid solution that becomes a thermoplastic polyimide layer. Production method.
- 上記熱可塑性ポリイミドを構成する酸二無水物単量体及びジアミン単量体の合計モル数の60%以上が、上記非熱可塑性ポリイミドを構成する酸二無水物単量体及びジアミン単量体と同じ単量体であることを特徴とする請求項1~3のいずれか1項に記載の多層共押出ポリイミドフィルムの製造方法。 60% or more of the total number of moles of the acid dianhydride monomer and diamine monomer constituting the thermoplastic polyimide is the acid dianhydride monomer and diamine monomer constituting the non-thermoplastic polyimide, The method for producing a multilayer coextruded polyimide film according to any one of claims 1 to 3, wherein the same monomers are used.
- 上記熱可塑性ポリイミドを構成するジアミンが、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを必須成分とすることを特徴とする請求項1~4のいずれか1項に記載の多層共押出ポリイミドフィルムの製造方法。 5. The diamine constituting the thermoplastic polyimide comprises 2,2-bis [4- (4-aminophenoxy) phenyl] propane as an essential component. A method for producing a multilayer coextruded polyimide film.
- 上記非熱可塑性ポリイミド層になるポリアミド酸が、分子中に熱可塑性ブロック成分を有する非熱可塑性ポリイミドの前駆体であるポリアミド酸であることを特徴とする請求項1~5のいずれか1項に記載の多層共押出ポリイミドフィルムの製造方法。 6. The polyamic acid as the non-thermoplastic polyimide layer is a polyamic acid which is a precursor of a non-thermoplastic polyimide having a thermoplastic block component in the molecule. The manufacturing method of the multilayer coextruded polyimide film of description.
- 上記非熱可塑性ポリイミド層の両面に上記熱可塑性ポリイミド層が積層されることを特徴とする請求項1~6のいずれか1項に記載の多層共押出ポリイミドフィルムの製造方法。 The method for producing a multilayer coextruded polyimide film according to any one of claims 1 to 6, wherein the thermoplastic polyimide layer is laminated on both surfaces of the non-thermoplastic polyimide layer.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010278588A JP2014040003A (en) | 2010-12-14 | 2010-12-14 | Method for producing multilayer coextrusion polyimide film |
| JP2010-278588 | 2010-12-14 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2012081479A1 true WO2012081479A1 (en) | 2012-06-21 |
Family
ID=46244586
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2011/078343 WO2012081479A1 (en) | 2010-12-14 | 2011-12-07 | Method for producing multilayered co-extruded polyimide film |
Country Status (3)
| Country | Link |
|---|---|
| JP (1) | JP2014040003A (en) |
| TW (1) | TW201233715A (en) |
| WO (1) | WO2012081479A1 (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103282180B (en) * | 2010-12-14 | 2016-04-27 | 株式会社钟化 | The manufacture method of three-layer co-extruded pressure type polyimide film |
| JP5711989B2 (en) * | 2011-02-02 | 2015-05-07 | 株式会社カネカ | Method for producing polyimide multilayer film |
| TWI683836B (en) * | 2015-03-31 | 2020-02-01 | 日商鐘化股份有限公司 | Polyimide laminated film, method for producing polyimide laminated film, method for producing thermoplastic polyimide, and method for producing flexible metal clad laminate |
| JP6621294B2 (en) * | 2015-10-15 | 2019-12-18 | 株式会社カネカ | Method for producing multilayer polyimide film |
| WO2021025454A1 (en) * | 2019-08-05 | 2021-02-11 | 피아이첨단소재 주식회사 | Multilayer polyimide film for graphite sheet, production method therefor and graphite sheet produced thereby |
| KR20210018110A (en) * | 2019-08-05 | 2021-02-17 | 피아이첨단소재 주식회사 | Multilayer polyimide film for graphite sheet, preparing method thereof and graphite sheet prepared therefrom |
| WO2023162644A1 (en) * | 2022-02-25 | 2023-08-31 | 株式会社カネカ | Polyimide film for graphite sheet, graphite sheet, and production methods therefor |
| WO2023162643A1 (en) * | 2022-02-25 | 2023-08-31 | 株式会社カネカ | Polyimide film for graphite sheet, graphite sheet, and production methods therefor |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007099801A1 (en) * | 2006-03-01 | 2007-09-07 | Kaneka Corporation | Process for producing multilayered polyimide film |
| JP2007290256A (en) * | 2006-04-25 | 2007-11-08 | Kaneka Corp | Manufacturing process of polyimide based multilayer film, and polyimide based multilayer film obtained by this |
| JP2008188843A (en) * | 2007-02-02 | 2008-08-21 | Kaneka Corp | Multilayer film of polyimide precursor solution, multilayer polyimide film, single sided metal-clad laminated sheet and manufacturing method of multilayer polyimide film |
| JP2008188778A (en) * | 2007-01-31 | 2008-08-21 | Kaneka Corp | Multilayer film of polyimide precursor solution, multilayer polyimide film, single-sided metal-clad laminate, and method for producing multilayer polyimide film |
-
2010
- 2010-12-14 JP JP2010278588A patent/JP2014040003A/en active Pending
-
2011
- 2011-12-07 WO PCT/JP2011/078343 patent/WO2012081479A1/en active Application Filing
- 2011-12-09 TW TW100145667A patent/TW201233715A/en unknown
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007099801A1 (en) * | 2006-03-01 | 2007-09-07 | Kaneka Corporation | Process for producing multilayered polyimide film |
| JP2007290256A (en) * | 2006-04-25 | 2007-11-08 | Kaneka Corp | Manufacturing process of polyimide based multilayer film, and polyimide based multilayer film obtained by this |
| JP2008188778A (en) * | 2007-01-31 | 2008-08-21 | Kaneka Corp | Multilayer film of polyimide precursor solution, multilayer polyimide film, single-sided metal-clad laminate, and method for producing multilayer polyimide film |
| JP2008188843A (en) * | 2007-02-02 | 2008-08-21 | Kaneka Corp | Multilayer film of polyimide precursor solution, multilayer polyimide film, single sided metal-clad laminated sheet and manufacturing method of multilayer polyimide film |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2014040003A (en) | 2014-03-06 |
| TW201233715A (en) | 2012-08-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5766125B2 (en) | Multilayer polyimide film and flexible metal-clad laminate using the same | |
| JP6175239B2 (en) | Method for producing three-layer coextruded polyimide film | |
| JP2013032532A (en) | Method for producing adhesive film | |
| WO2012081479A1 (en) | Method for producing multilayered co-extruded polyimide film | |
| JPWO2007108284A1 (en) | Adhesive film | |
| JPWO2006115258A1 (en) | Novel polyimide film and its use | |
| JP5735287B2 (en) | Multilayer polyimide film and flexible metal foil-clad laminate using the same | |
| JP5069846B2 (en) | Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate | |
| JP4901509B2 (en) | Multilayer film of polyimide precursor solution, multilayer polyimide film, single-sided metal-clad laminate, and method for producing multilayer polyimide film | |
| JPWO2005115752A1 (en) | Polyimide laminate and method for producing the same | |
| JP5711989B2 (en) | Method for producing polyimide multilayer film | |
| JP5546304B2 (en) | Method for producing adhesive film and flexible metal-clad laminate | |
| JP2006110772A (en) | Manufacturing method of adhesive film | |
| JP5839900B2 (en) | Method for producing multilayer polyimide film | |
| JP2007230019A (en) | Manufacturing method of metal clad laminated sheet | |
| JP2007313854A (en) | Copper-clad laminated sheet | |
| JP5985733B2 (en) | Method for producing multilayer polyimide film | |
| JP4398839B2 (en) | Method for producing multilayer film and multilayer film obtained thereby | |
| JP5355993B2 (en) | Adhesive film | |
| JP2006159785A (en) | Manufacturing method of adhesive film | |
| JP2006160957A (en) | Adhesive film | |
| JP2006316232A (en) | Adhesive film and its preparation process | |
| JP2009045820A (en) | Multilayer film of polyimide precursor solution and method for producing adhesive film | |
| JP2006199871A (en) | Adhesive film |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11848812 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 11848812 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: JP |