[go: up one dir, main page]

WO2012036056A1 - Stereoscopic image display device, stereoscopic image display method, program for executing stereoscopic image display method on computer, and recording medium on which said program is recorded - Google Patents

Stereoscopic image display device, stereoscopic image display method, program for executing stereoscopic image display method on computer, and recording medium on which said program is recorded Download PDF

Info

Publication number
WO2012036056A1
WO2012036056A1 PCT/JP2011/070441 JP2011070441W WO2012036056A1 WO 2012036056 A1 WO2012036056 A1 WO 2012036056A1 JP 2011070441 W JP2011070441 W JP 2011070441W WO 2012036056 A1 WO2012036056 A1 WO 2012036056A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
parallax
eye
adjustment
stereoscopic
Prior art date
Application number
PCT/JP2011/070441
Other languages
French (fr)
Japanese (ja)
Inventor
永雄 服部
山本 健一郎
久雄 熊井
郁子 椿
幹生 瀬戸
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012036056A1 publication Critical patent/WO2012036056A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity

Definitions

  • the present invention relates to an apparatus for displaying a stereoscopic image, and more particularly to a display method for adjusting the stereoscopic effect of a stereoscopic image, a stereoscopic image display program, and a computer-readable recording medium on which the recording method is recorded.
  • stereoscopic images Humans have the ability to grasp the space from the difference in images obtained by two eyes with a fixed interval.
  • the shift of the corresponding points in the image obtained from different viewpoints by the left and right eyes is called parallax, and the positional relationship of the target is grasped three-dimensionally using parallax as one of the cues.
  • a means for displaying a right eye image and a left eye image on the right eye is provided, and stereoscopic images can be displayed by presenting parallax images as the right eye image and the left eye image. It is known to be possible.
  • a plurality of images provided with parallax for the purpose of stereoscopic viewing are referred to as stereoscopic images.
  • extreme parallax also causes an unnatural positional relationship on the short distance side, and an extreme crossing is forced on the viewer, making it impossible to perform comfortable stereoscopic viewing.
  • stereoscopic viewing can be comfortably performed within a certain range of the parallax amount of the stereoscopic image.
  • the parallax amount is large, the images of both eyes are not fused and stereoscopic viewing is impossible.
  • the parallax is adjusted by shifting the display position of the left and right images to the left and right so that the stereoscopic image can be easily viewed.
  • the method is shown in Patent Document 1 below.
  • Patent Document 2 a method of creating an interpolation image with a small parallax and displaying the parallax gradually when displaying two stereoscopic images in succession is disclosed in Patent Document 2 below.
  • parallax adjustment is performed by shifting the display positions of the left and right images, and the depth position of the displayed object is moved back and forth as a whole, so that the displayed objects can be easily fused. it can.
  • the display position is shifted to the left or right with the left and right images displayed, the display position in the depth direction of the displayed image will change, and stereoscopic viewing will not be possible at the moment of changing the parallax amount, or even if it can be displayed causess the viewer to feel a sudden movement in the front-rear direction, creating a sense of incongruity.
  • An object of the present invention is to provide a stereoscopic image display device, a stereoscopic image display method, and a stereoscopic image display method that achieve comfortable stereoscopic viewing while avoiding an uncomfortable feeling and 3D sickness of an observer with respect to image position fluctuation in the depth direction when adjusting parallax.
  • a program for causing a computer to execute the method and a recording medium recording the program are provided.
  • a stereoscopic image including a right-eye image and a left-eye image is displayed, and stereoscopic viewing is possible by presenting the right-eye image to the right eye and the left-eye image to the left eye
  • a parallax adjustment unit that adjusts parallax by applying processing based on the parallax amount adjustment information to at least one of the right-eye image and the left-eye image that constitutes data, and the stereoscopic image data
  • the right-eye image and the left-eye image are presented to the right eye and the left eye, respectively, and a display unit that displays a stereoscopic image and the parallax adjustment unit are based on the parallax amount adjustment information input from the input unit.
  • an image conversion processing unit that displays a different image from the image whose current amount of parallax is being adjusted between the display screen before adjustment and the display screen after adjustment.
  • a stereoscopic image display device characterized by this is provided. Thereby, a depth position can be adjusted without a sense of incongruity.
  • the other image may be displayed so as to cover part of the image.
  • the image conversion processing unit preferably displays a uniform image without a pattern as the another image. In this way, it can be realized with simple hardware.
  • the image conversion processing unit preferably displays an image having a uniform parallax as the another image.
  • the convergence angle of the observer during the image conversion can be set to an intended angle.
  • the image conversion processing unit displays an image having a parallax value between the parallax of the image before adjustment and the parallax of the image after adjustment as the other image.
  • parallax can be changed smoothly.
  • the image conversion processing unit displays a plurality of images whose parallax is continuously changed as the another image.
  • the vergence angle of the observer during image conversion can be controlled intentionally.
  • the portion where the parallax is changed is a part of the screen. Thereby, 3D sickness can be avoided.
  • a part where the parallax is changed among the other images including a plurality of images whose parallax is continuously changed is determined based on a characteristic part of the stereoscopic image data.
  • the another image composed of a plurality of images whose parallax is continuously changed is preferably selected so that the parallax is continuously changed from the parallax of the image before adjustment to the parallax of the image after adjustment. . Thereby, parallax can be changed smoothly.
  • the time for displaying the another image is preferably 0.3 seconds or more. This can prevent video sickness.
  • Crossfade processing is performed on at least one of the display screen at the time of switching from the display screen before the adjustment to the other image and the conversion from the other image to the image after the adjustment.
  • preferable Thereby, it is possible to weaken the stimulation of the image and reduce fatigue.
  • a stereoscopic image including a right-eye image and a left-eye image is displayed, and the stereoscopic image is displayed by presenting the right-eye image to the right eye and the left-eye image to the left eye.
  • a method for displaying a stereoscopic image the step of inputting parallax amount adjustment information for changing a parallax amount of stereoscopic image data composed of a right-eye image and a left-eye image, and the stereoscopic image
  • the current parallax amount is different between the display screen before the adjustment and the display screen after the adjustment.
  • a stereoscopic image display method comprising the step of displaying another image.
  • the step of displaying another image different from the image whose parallax amount is currently being adjusted may cover a part of the image.
  • the present invention may be a program for causing a computer to execute the stereoscopic image display method described above, or a computer-readable recording medium for recording the program.
  • the parallax when adjusting the parallax, it is possible to avoid a sense of incongruity and 3D sickness associated with changing the parallax and realize a comfortable stereoscopic view.
  • FIG. 1 is a block diagram illustrating a configuration example of the stereoscopic image display apparatus according to the present embodiment.
  • the stereoscopic image display apparatus A processes the input image data with the input unit 10 and generates display data that can be stereoscopically displayed (hereinafter, stereoscopic image data).
  • a stereoscopic image processing unit 100 that performs image processing for performing image processing, a parallax adjustment unit 101 that adjusts parallax of the image, a display control unit 102 that controls display by matching an image with the display unit, and a display unit 103 that displays an image
  • the system control unit 104 controls the entire system, the user input unit 105 that the user inputs, and the glasses synchronization unit 106 that synchronizes the shutter glasses, and uses the shutter glasses 107 that the user wears separately.
  • FIG. 2 is a diagram illustrating a configuration example of the parallax adjustment unit 101.
  • the parallax adjustment unit 101 includes a left-eye image shift processing unit 1011 and a right-eye pixel shift processing unit 1012, a left-eye image conversion processing unit 1013, and a right-eye image conversion processing unit 1014, The conversion image recording unit 1015 and the communication / control unit 1016 are included. Next, the operation of each component will be described.
  • the image data input via the input unit 10 is expanded into left-eye image data and right-eye image data in the stereoscopic image processing unit 100 according to the input format.
  • the additional information is extracted and transmitted to the system control unit 104.
  • the input image data may be any data such as data based on broadcast waves, data read electronically from a recording medium, or data transmitted from a network.
  • the right-eye image data and the left-eye image data may be created from a single piece of image data. That is, it may be a multi-viewpoint image synthesized from image data and depth data, or a multi-viewpoint image created by estimating depth information.
  • the developed left-eye image data and right-eye image data are sent to the parallax adjustment unit 101 to adjust parallax.
  • a communication / control unit 1016 communicating with the system control unit 104 controls each component.
  • the left-eye image shift processing unit 1011 and the right-eye image shift processing unit 1012 receive an instruction (parallax amount adjustment information) from the system control unit 104 via the communication / control unit 1016, and receive the left-eye image and the right-eye image. Each is shifted left and right to adjust the parallax.
  • the left and right eye image data whose parallax has been adjusted are input to the left eye image conversion processing unit 1013 and the right eye 1014, respectively.
  • Image data from the converted image recording unit 1015 can be input to the left-eye image conversion processing unit 1013 and the right-eye image conversion processing unit 1014, and an instruction from the system control unit 104 is received via the communication / control unit 1016. In response, the image is converted between the input left and right eye image and another image to be a converted image.
  • the left-eye image and right-eye image whose parallax has been adjusted are sent to the display control unit 102.
  • the display control unit 102 performs display control in accordance with the display unit 103 and sends a signal to the glasses synchronization unit 106.
  • the glasses synchronization unit 106 sends a synchronization signal to the shutter glasses 107 worn by the user, and synchronization processing with the display unit 103 is performed. More specifically, for example, a liquid crystal display panel is used for the display unit 103 to alternately display a left-eye image and a right-eye image, and perform stereoscopic viewing in synchronization with the shutter glasses 107 worn by the observer.
  • the display control unit 102 outputs the left-eye image and the right-eye image to the display unit 103 alternately.
  • the output frequency is, for example, 120 images for the left eye and for the right eye, each per second.
  • the display unit 103 displays the image sent from the display control unit 102 at any time.
  • the left-eye image is displayed on the display unit 103
  • the left-eye shutter of the shutter glasses 107 is opened and the right-eye shutter is closed.
  • the left-eye image is displayed on the left eye, and when the right-eye image is displayed, the left-eye shutter is closed, and the right-eye shutter is opened to display the right-eye image on the right eye.
  • the observer uses the user input unit 105 to input parallax amount adjustment data for the screen to be displayed.
  • the user input unit 105 can be realized by a remote controller, for example, but can be realized by various means such as a keyboard, a mouse, a touch panel, and a dial, and may be gesture recognition regardless of the format.
  • the parallax amount adjustment data input from the user input unit 105 is transmitted to the parallax adjustment unit 101 via the system control unit 104.
  • the parallax adjustment unit 101 performs parallax adjustment processing based on the received parallax amount adjustment data. If the parallax amount adjustment data is data indicating no parallax adjustment, the parallax adjustment unit 101 outputs the left and right eye image data as it is without performing the parallax adjustment processing.
  • FIG. 3 is a top view of the viewer and the display.
  • FIG. 3A shows a normal two-dimensional display state, in which a corresponding point between the right-eye image and the left-eye image is at the same position on the display (display surface) when a stereoscopic image is displayed. In this case, this corresponding point is perceived as being on the display.
  • FIG. 3B shows a state where the corresponding points P 2 and P 3 between the right-eye image and the left-eye image are shifted to the right on the display and the left-eye image to the left on the display. In this state, the observer perceives this point behind the display surface (P 4 ).
  • FIG. 3C shows a state where the corresponding points P 5 and P 6 of the right-eye image and the left-eye image are shifted to the left on the display and the left-eye image to the right on the display. In this state, the observer perceives this point in front of the display surface (P 7 ).
  • FIG. 3D is a diagram summarizing these.
  • the corresponding point between the right eye image and the left eye image is displayed with the right eye image shifted to the right and the left eye image shifted to the left, and the distance between the corresponding points is equal to the binocular distance, this point is Although it is perceived at infinity, if the distance between corresponding points exceeds the distance between both eyes, the line of sight does not become a divergent direction and cannot be fused.
  • the corresponding points of the right-eye image and the left-eye image on the display are greatly shifted to the left for the right-eye image and to the right for the left-eye image (P 8 , P 9 )
  • the line of sight is extremely crossed. It becomes a state and cannot be fused. Accordingly, the depth range in which stereoscopic viewing can be comfortably performed, that is, the comfortable fusion range shown in FIG. 3D is inside the display surface with respect to the fusion range.
  • FIG. 4 shows a display example on the display unit 103 in the parallax amount adjustment mode.
  • an image and a slide bar 103 a are displayed on the display unit, and the slide bar 103 a displayed on the right side of the screen by operating the user input unit 105 in this state is indicated by an arrow.
  • the corresponding parallax adjustment amount can be set.
  • the system control unit 104 sets the shift amount of the left and right images to the parallax adjustment unit 101 and instructs the start of parallax adjustment.
  • the parallax adjustment unit 101 performs parallax adjustment according to the following three steps.
  • FIG. 5 is a flowchart showing a flow of suggestion adjustment processing according to the present embodiment.
  • FIG. 6 is a diagram illustrating a display example along the flow of processing.
  • the process is started (Start: Step S1).
  • the left-eye and right-eye image conversion processing units 1013 and 1014 cross-fade, that is, gradually darken the current image display shown in FIG. 5 (step S2 in FIG. 5 and (a) to (b) in FIG. 6), finally, a process of “another image” recorded in the converted image recording unit 1015 is performed (step in FIG. 5).
  • S3, (c) of FIG. This process is sometimes referred to as dissolve.
  • “another image” is preferably an image with little light stimulation, and may be a black screen as an example. In FIG. 6C, a black image is displayed.
  • the relationship between convergence and adjustment differs depending on which position on the screen the observer is looking at. More specifically, the adjustment corresponds to the distance from the screen.
  • this state there is a convergence according to the parallax of the object being observed and the depth is perceived.
  • the screen is changed in this state, the parallax at the position that was viewed on the screen is changed abruptly.
  • the line of sight is guided by the displayed parallax image, and is set to a convergence corresponding to the image.
  • the change in the parallax before and after the screen change can be performed via the intended state. By guiding, stereoscopic viewing can be facilitated.
  • An image that is easy to recognize is preferable, but may be a character, for example.
  • the parallax adjustment unit 101 performs a process of holding another image display for 0.3 seconds or longer (step S4 in FIG. 5, (c) to (d) in FIG. 6).
  • PES photosensitive seizures
  • the parallax adjustment unit 101 crosses the display from “another image” recorded in the converted image recording unit 1015 to the image after parallax adjustment in the left-eye and right-eye image conversion processing units 1013 and 1014. Processing for fading is performed (step S5 in FIG. 5, (d)-(e) in FIG. 6). Next, the image after parallax adjustment is displayed (step S6 in FIG. 5, (f) in FIG. 6), thereby completing the parallax adjustment processing (step S7 in FIG. 5).
  • the parallax adjustment unit 101 resets the state of congestion and adjustment of the observer to an intended state, and presents a screen on which further parallax adjustment has been performed to the observer. .
  • the observer can perform the parallax adjustment without feeling a sense of incongruity in which the parallax is rapidly adjusted or a sense of movement accompanying the parallax being gradually adjusted.
  • the “different image” is better if it is an image having a uniform parallax, and more preferably if it has an intermediate parallax between the pre-adjustment and post-adjustment images.
  • the respective images are converted by the cross-fade process.
  • This is a process for suppressing the movement of the image and reducing the light stimulus. . Therefore, this process is not limited to the crossfade process, and the object can be achieved by, for example, a wipe process.
  • two images are given as the stereoscopic images.
  • the number of images is not limited to two, and may be image data for a multi-viewpoint image.
  • a time-division type stereoscopic display unit using shutter glasses is shown as a stereoscopic display system.
  • the stereoscopic display system is not limited to the time-division type, and uses a parallax barrier or a lenticular lens. Any type of display system capable of stereoscopic viewing, such as a projector, may be used. As described above, a display for multi-viewpoint images may be used.
  • the processing unit for inserting “another image” to be a conversion image is configured as the left-eye image conversion processing unit 1013 and the right-eye image conversion processing unit 1014 in the parallax adjustment unit 101. As long as it is performed between the parallax adjustment unit 101 and the display unit 103, it may be executed anywhere.
  • the parallax adjustment unit 101 in FIG. 1 performs parallax adjustment according to the following three steps upon receiving an instruction to start parallax adjustment.
  • FIG. 7 is a flowchart showing the flow of processing in the present embodiment.
  • the parallax adjustment unit 101 records the current display in the converted image recording unit 1015 in the left and right eye image conversion processing units 1013 and 1014.
  • a process of crossfading to “another image” is performed (step S12).
  • “another image” reads an image corresponding to the current parallax amount setting from among the converted images recorded in the converted image recording unit 1015 (step S12).
  • the converted image recording unit 1015 has, for example, a parallax amount corresponding to a settable parallax amount adjustment range, that is, an object at a distance corresponding to infinity on the back side of the screen from the image on which the object is displayed on the near side of the screen.
  • a plurality of images in which the parallax continuously changes are recorded up to the image on which is displayed, and an image having a specific parallax can be obtained by reading the specific image.
  • the part where the parallax is changed is a part of the image.
  • the parallax adjustment unit 101 performs a process of displaying the converted image for 0.3 seconds or more.
  • the converted image continuously displays from the converted image having the parallax before the parallax adjustment to the converted image having the parallax after the parallax adjustment, and the parallax continuously before and after the parallax adjustment.
  • Processing to connect with the changing image is performed (steps S13 and S14).
  • the part where the parallax changes is selected in association with the characteristic part of the stereoscopic image.
  • the characteristic part may be a point that is likely to attract attention in the stereoscopic image.
  • the parallax adjustment unit 101 performs a fade process of converting an image from a converted image corresponding to the parallax after parallax adjustment to a stereoscopic image after parallax adjustment (step S15). Thereby, the process ends (step S16: end).
  • the parallax adjustment unit 101 once sets the observer's state of convergence and adjustment to an intended state, and presents the observer with a screen on which the parallax adjustment has been performed gradually.
  • the observer feels that the object is not moving but the object is facing him Get. Thereby, the observer can perform the parallax adjustment without feeling a sense of incongruity in which the parallax is suddenly adjusted or a sense of movement accompanying the parallax being gradually adjusted.
  • the converted image is a plurality of images having continuous parallax.
  • the image obtained by such processing is used. May be.
  • the region where the parallax changes is a part of the image, but the part of the region may be a region having a size that does not allow the observer to feel a sense of movement.
  • the parallax of the stereoscopic image is obtained, and a converted image having a parallax corresponding to the parallax before and after the parallax adjustment is displayed, or the gaze point of the stereoscopic image is estimated, and the converted image corresponding to the parallax change of the place is the same It is even better to display it on the place.
  • the parallax of the stereoscopic image is obtained from the left and right images, and there are several known methods for obtaining the parallax, such as block matching.
  • FIG. 8 is a flowchart showing a flow of parallax amount adjustment processing in the present embodiment
  • FIG. 9 is a view showing a display example along the flow of processing.
  • the parallax adjustment unit 101 When the process is started (FIG. 8, step S21), as a first step, the parallax adjustment unit 101 superimposes and displays a mask pattern prepared in advance on the current display (FIG. 8: step S22, FIG. 9: (A)-(b)).
  • the mask pattern is an image that blocks a partial region R1 of the image, and in the present embodiment, a pattern like a window that transmits only a partial region R2 of the image is adopted.
  • the mask pattern may be translucent, but it is desirable that the mask pattern has a pattern and can guide the line of sight to the pattern itself. Here, it is possible to guide the line of sight to the letters “Adjusting”. By guiding the line of sight to the pattern itself, the vergence of the observer can be changed in accordance with the parallax of the pattern. It is preferable to display the mask pattern by performing a process of gradually shielding the mask pattern itself without moving it.
  • the parallax adjustment unit 101 performs a process of displaying the mask pattern for 0.3 seconds or longer (step S23 in FIG. 8, (c) to (d) in FIG. 9). During this time, the parallax adjustment unit 101 performs parallax adjustment on the input stereoscopic image in a stepwise manner (step S24 in FIG. 8, (c) to (d) in FIG. 9). That is, it is observed that the parallax of the input stereoscopic image gradually changes from the transmission region R2 of the mask pattern. In FIG. 9D, the slide bar is slid from the back side to the near side.
  • the parallax adjustment unit 101 performs display processing for removing the mask pattern (step S25 in FIG. 8, (e) to (f) in FIG. 9). It is preferable to perform a process of removing the mask pattern gradually by crossfade without moving the mask pattern itself.
  • the parallax adjustment unit 101 continuously changes the state of congestion and adjustment of the observer while performing parallax adjustment gradually.
  • the region that can be observed in the image on which the parallax adjustment is gradually performed is a part of the image, the observer feels not to be moving but to observe the moving object from the window. Thereby, the observer can perform the parallax adjustment without feeling a sense of incongruity in which the parallax is suddenly adjusted or a sense of movement accompanying the parallax being gradually adjusted.
  • the size of the area may be a size that does not allow the observer to feel a sense of movement.
  • stereoscopic image processing is performed using a personal computer (PC), and stereoscopic display is performed using a display device capable of stereoscopic display.
  • PC personal computer
  • a user performs a stereoscopic image process by operating a GUI application using an operation device of the PC, such as a mouse, a keyboard, or a touch panel.
  • an operation device of the PC such as a mouse, a keyboard, or a touch panel.
  • a CPU provided in the PC processes a moving image or a still image according to stereoscopic display application software recorded on a storage device, for example, a hard disk or a CD-ROM, and performs stereoscopic display on the stereoscopic display device.
  • FIG. 10 is a diagram for explaining a display screen of the stereoscopic display device according to the fourth embodiment.
  • the stereoscopic display device 210 is provided with a display unit 203, and the display unit 203 displays an image display 203a and a GUI display unit 203b.
  • an operation unit 205 for playing, stopping, rewinding, fast-forwarding, a depth adjustment tab 211, and a slide bar 215 are displayed.
  • a screen by a stereoscopic image display application is displayed on the image display unit 203a.
  • the user can process a stereoscopic image by operating the setting buttons 211a to 211e and the slide bar 215 on the GUI display unit using an operation device such as a mouse or a keyboard.
  • an operation device such as a mouse or a keyboard.
  • display is performed according to any of the procedures in the above embodiments.
  • a program for realizing the functions described in the present embodiment is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed to execute processing of each unit. May be performed.
  • the “computer system” here includes an OS and hardware such as peripheral devices.
  • the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included.
  • the program may be a program for realizing a part of the above-described functions, or may be a program that can realize the above-described functions in combination with a program already recorded in a computer system.
  • the present invention can be used for 3D television receivers and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

Provided is a stereoscopic image display device which displays an image for use in stereoscopy formed from a right-eye image and a left-eye image, and which enables stereoscopy by presenting the right-eye image to the right eye and the left-eye image to the left eye. The stereoscopic image display device comprises: an input unit which inputs degree of visual disparity adjustment information for changing the degree of visual disparity of image data for use in stereoscopy formed from the right-eye image and the left-eye image; a visual disparity adjustment unit which adds a process to at least one of the right-eye image and the left-eye image which configure the stereoscopic image data, adjusting the visual disparity; a display means for presenting the right-eye image and the left-eye image of the image data for use in stereoscopy respectively to the right eye and the left eye, displaying the stereoscopic image; and an image changeover processing unit, which, when the visual disparity adjustment unit adjusts the visual disparity of the image data for use in stereoscopy based on the degree of visual disparity adjustment information which is inputted from the input unit, displays a different image between a pre-adjustment display screen and a post-adjustment display screen, such that a portion of the image is concealed, said different image differing from the current image having the visual disparity being adjusted. It is thus possible to avoid observer discomfort or 3-D disorientation when adjusting visual disparity, and to achieve ideal stereoscopic viewing.

Description

立体画像表示装置、立体画像表示方法、立体画像表示方法をコンピュータに実行させるためのプログラム、及びそのプログラムを記録した記録媒体Stereoscopic image display apparatus, stereoscopic image display method, program for causing computer to execute stereoscopic image display method, and recording medium recording the program
 本発明は、立体画像を表示する装置に関し、特に立体画像の立体感を調整する際の表示方法、立体画像表示プログラム、及びこれを記録したコンピュータ読み取り可能な記録媒体に関するものである。 The present invention relates to an apparatus for displaying a stereoscopic image, and more particularly to a display method for adjusting the stereoscopic effect of a stereoscopic image, a stereoscopic image display program, and a computer-readable recording medium on which the recording method is recorded.
 人間は一定の間隔を持つ2つの目により得られる画像の違いから空間を把握する能力を持つ。左右の眼による異なる視点から得られる画像中の対応点のずれを視差と呼び、視差を手掛かりの一つとして対象物の位置関係を立体的に把握している。このことを利用して、右目用画像を右目に表示し、左目用画像を左目に表示する手段を設けて、右目用画像、左目用画像として視差を設けた画像を提示することにより立体視が可能であることが知られている。ここでは、立体視を意図して視差を設けた複数の画像のことを立体画像と称する。 Humans have the ability to grasp the space from the difference in images obtained by two eyes with a fixed interval. The shift of the corresponding points in the image obtained from different viewpoints by the left and right eyes is called parallax, and the positional relationship of the target is grasped three-dimensionally using parallax as one of the cues. By utilizing this, a means for displaying a right eye image and a left eye image on the right eye is provided, and stereoscopic images can be displayed by presenting parallax images as the right eye image and the left eye image. It is known to be possible. Here, a plurality of images provided with parallax for the purpose of stereoscopic viewing are referred to as stereoscopic images.
 立体視において、人間は視差に応じた両眼の光軸のなす角度、すなわち輻輳の大きさを対象物までの距離に対応付けていると言われている。よって、右目用画像を右に、左目用画像を左に相対的にずらし、視差を付けた画像を見せると、実際の表示面より遠くに表示物を知覚させることができる。しかし、このときに視差をつけすぎ、観察者の目の間隔、正確には無限遠を見ている時の瞳孔間の距離を超えた視差とすると、自然界では起き得ない状態となり、立体視が不可能となる。同様に、近距離側でも極端な視差は不自然な位置関係を生じ、また、極度な寄り目を観察者に強いることとなり、快適な立体視ができなくなる。このように、立体画像の視差量がある一定の範囲では快適に立体視が可能であるが、視差量が大きくなると両目の画像が融合しなくなり、立体視が不可能となる。 In stereoscopic vision, it is said that humans associate the angle between the optical axes of both eyes according to parallax, that is, the magnitude of convergence with the distance to the object. Therefore, if the right-eye image is shifted to the right and the left-eye image is relatively shifted to the left and the parallax image is shown, the display object can be perceived farther than the actual display surface. However, if too much parallax is applied at this time and the parallax exceeds the distance between the eyes of the observer, more precisely the distance between the pupils when looking at infinity, the situation cannot occur in the natural world, and stereoscopic viewing is not possible. It becomes impossible. Similarly, extreme parallax also causes an unnatural positional relationship on the short distance side, and an extreme crossing is forced on the viewer, making it impossible to perform comfortable stereoscopic viewing. As described above, stereoscopic viewing can be comfortably performed within a certain range of the parallax amount of the stereoscopic image. However, when the parallax amount is large, the images of both eyes are not fused and stereoscopic viewing is impossible.
 そこで、視差量が大きすぎて立体視しにくい、あるいは立体視が不可能な立体画像を表示する際に、左右画像の表示位置を左右にずらすことで視差を調整し、立体画像を見やすく表示する方法が、以下の特許文献1に示されている。 Therefore, when displaying a stereoscopic image that is difficult to stereoscopically view due to an excessive amount of parallax or impossible to stereoscopically display, the parallax is adjusted by shifting the display position of the left and right images to the left and right so that the stereoscopic image can be easily viewed. The method is shown in Patent Document 1 below.
 また、2つの立体画像を連続して表示する際、視差の小さな補間画像を作って、徐々に視差を変更するように表示する方法が、以下の特許文献2に示されている。 Further, a method of creating an interpolation image with a small parallax and displaying the parallax gradually when displaying two stereoscopic images in succession is disclosed in Patent Document 2 below.
特開平9-121370号公報JP-A-9-121370 特開2009-239389号公報JP 2009-239389 A
 特許文献1の方法によれば、左右画像の表示位置をずらすことによって視差調整を行い、表示している物体の奥行き位置を全体的に前後させ、表示している物体を融合しやすくすることができる。しかしながら、左右画像を表示したまま表示位置を左右にずらすと、表示している画像の奥行き方向の表示位置が変化し、視差量切り替えの瞬間に立体視ができなくなるか、できたとしても表示物が観察者に対して急激に前後方向に移動した感覚を起こさせ、違和感を生じさせる。 According to the method of Patent Document 1, parallax adjustment is performed by shifting the display positions of the left and right images, and the depth position of the displayed object is moved back and forth as a whole, so that the displayed objects can be easily fused. it can. However, if the display position is shifted to the left or right with the left and right images displayed, the display position in the depth direction of the displayed image will change, and stereoscopic viewing will not be possible at the moment of changing the parallax amount, or even if it can be displayed Causes the viewer to feel a sudden movement in the front-rear direction, creating a sense of incongruity.
 そこで、特許文献2の方法に従い、視差調整を行う際、視差量を徐々に変更するような処理を行うと、観察者は連続して立体視を続けることができる。しかしながら、特に観察者の視界に占める表示画面の大きさが大きい場合や、集中して画面を観察している場合には、観察者は視差量の変化に伴い、あたかも奥行き方向、すなわち観察者にとっては前後方向に移動したかのような感覚を得る。移動を伴わないにもかかわらず移動した感覚があると、感覚の不一致(Sensory Conflict)として違和感を覚え、条件によっては乗り物酔いに近い状態である映像酔い、特に立体視に固有の奥行き方向の移動に関しての問題である、いわゆる3D酔いを生ずることがある。 Therefore, when performing a process of gradually changing the amount of parallax when performing parallax adjustment according to the method of Patent Document 2, the observer can continue stereoscopic viewing. However, especially when the size of the display screen occupying the viewer's field of view is large or when the screen is being observed in a concentrated manner, the observer will feel as if it is in the depth direction, that is, Gets the sensation of moving back and forth. If there is a sense of movement that is not accompanied by movement, a sense of incongruity (Sensory Conflict) is felt, and depending on the conditions, motion sickness, which is close to motion sickness, especially movement in the depth direction inherent to stereoscopic vision May cause so-called 3D sickness.
 3D酔いを避けるために、視差調整を人間に知覚できないほどゆっくり行う方法がある。しかしながら、一般的に船酔いの起きやすい振動周期は6秒といわれる。映像酔いと乗り物酔いは必ずしも同じメカニズムによるものとはいえないが、仮にこの6秒周期より十分に長い周期で、移動を知覚できないほどゆっくりと視差調整を行うとすると、かなりの長時間が必要となってしまう。 To avoid 3D sickness, there is a method of performing parallax adjustment so slowly that humans cannot perceive it. However, the vibration period at which seasickness is likely to occur is generally 6 seconds. Video sickness and motion sickness are not necessarily due to the same mechanism, but if you adjust the parallax slowly so that you can't perceive movement in a period sufficiently longer than this 6-second period, it takes a considerable amount of time. turn into.
 本発明の目的は、視差の調整を行う際、奥行き方向の画像位置変動に対して観察者の違和感や3D酔いを避け、快適な立体視を実現する立体画像表示装置、立体画像表示方法、その方法をコンピュータに実行させるためのプログラム及びそのプログラムを記録した記録媒体を提供することである。 An object of the present invention is to provide a stereoscopic image display device, a stereoscopic image display method, and a stereoscopic image display method that achieve comfortable stereoscopic viewing while avoiding an uncomfortable feeling and 3D sickness of an observer with respect to image position fluctuation in the depth direction when adjusting parallax. A program for causing a computer to execute the method and a recording medium recording the program are provided.
 本発明の一観点によれば、右目用画像と左目用画像とからなる立体視用画像を表示し、前記右目用画像を右目に、前記左目用画像を左目に呈示することにより立体視を可能とする立体視画像表示装置であって、右目用画像と左目用画像とからなる立体視用画像データの視差量を変化させるための視差量調整情報を入力する入力部と、前記立体視用画像データを構成する、前記右目用画像と前記左目用画像とのうち少なくともいずれか一方に前記視差量調整情報に基づく処理を加え、視差を調整する視差調整部と、前記立体視用画像データの前記右目用画像及び前記左目用画像をそれぞれ右目及び左目に呈示し、立体画像を表示する表示部と、前記視差調整部が、前記入力部から入力された視差量調整情報に基づき、前記立体視用画像データの視差量を調整する際に、調整前の表示画面と調整後の表示画面の表示の間に、現在視差量を調整中の画像とは異なる別の画像を表示する画像転換処理部と、を有することを特徴とする立体画像表示装置が提供される。これにより、違和感なく奥行き位置を調整することができる。 According to an aspect of the present invention, a stereoscopic image including a right-eye image and a left-eye image is displayed, and stereoscopic viewing is possible by presenting the right-eye image to the right eye and the left-eye image to the left eye An input unit for inputting parallax amount adjustment information for changing the parallax amount of stereoscopic image data including a right-eye image and a left-eye image, and the stereoscopic image A parallax adjustment unit that adjusts parallax by applying processing based on the parallax amount adjustment information to at least one of the right-eye image and the left-eye image that constitutes data, and the stereoscopic image data The right-eye image and the left-eye image are presented to the right eye and the left eye, respectively, and a display unit that displays a stereoscopic image and the parallax adjustment unit are based on the parallax amount adjustment information input from the input unit. image data When adjusting the amount of parallax, an image conversion processing unit that displays a different image from the image whose current amount of parallax is being adjusted between the display screen before adjustment and the display screen after adjustment. A stereoscopic image display device characterized by this is provided. Thereby, a depth position can be adjusted without a sense of incongruity.
 前記別の画像を、画像の一部を覆い隠すように表示させるようにしても良い。 The other image may be displayed so as to cover part of the image.
 前記画像転換処理部は、前記別の画像として、模様のない一様な画像を表示させることが好ましい。このようにすると、簡単なハードウエアで実現することができる。 The image conversion processing unit preferably displays a uniform image without a pattern as the another image. In this way, it can be realized with simple hardware.
 前記画像転換処理部は、前記別の画像として、一様な視差を持つ画像を表示させることが好ましい。画像転換中の観察者の輻輳角を意図した角度に設定できる。 The image conversion processing unit preferably displays an image having a uniform parallax as the another image. The convergence angle of the observer during the image conversion can be set to an intended angle.
 前記画像転換処理部は、前記別の画像として、調整前の画像の視差と調整後の画像の視差の間の値の視差を有する画像を表示させることが好ましい。これにより、視差をスムーズに変更することができる。 Preferably, the image conversion processing unit displays an image having a parallax value between the parallax of the image before adjustment and the parallax of the image after adjustment as the other image. Thereby, parallax can be changed smoothly.
 前記画像転換処理部は、前記別の画像として、連続的に視差が変更される複数の画像を表示させることが好ましい。これにより、画像転換中の観察者の輻輳角を意図的に制御することができる。 Preferably, the image conversion processing unit displays a plurality of images whose parallax is continuously changed as the another image. Thereby, the vergence angle of the observer during image conversion can be controlled intentionally.
 連続的に視差が変更される複数の画像からなる前記別の画像は、視差が変更される部分が画面の一部であることが好ましい。これにより、3D酔いを避けることができる。 In another image composed of a plurality of images whose parallax is continuously changed, it is preferable that the portion where the parallax is changed is a part of the screen. Thereby, 3D sickness can be avoided.
 連続的に視差が変更される複数の画像からなる前記別の画像のうち、視差が変更される部分は、前記立体視用画像データの特徴的な部分に基づいて決定されることが好ましい。これにより、視差を違和感なく変更することができる。 It is preferable that a part where the parallax is changed among the other images including a plurality of images whose parallax is continuously changed is determined based on a characteristic part of the stereoscopic image data. Thereby, parallax can be changed without a sense of incongruity.
 連続的に視差が変更される複数の画像からなる前記別の画像は、調整前の画像の視差から調整後の画像の視差へと連続的に視差が変更されるように選択されることが好ましい。これにより、視差をスムーズに変更することができる。 The another image composed of a plurality of images whose parallax is continuously changed is preferably selected so that the parallax is continuously changed from the parallax of the image before adjustment to the parallax of the image after adjustment. . Thereby, parallax can be changed smoothly.
 前記別の画像を表示する時間は、0.3秒以上であることが好ましい。これにより、映像酔いを防ぐことができる。 The time for displaying the another image is preferably 0.3 seconds or more. This can prevent video sickness.
 前記調整前の表示画面から前記別の画像への転換時、及び、前記別の画像から前記調整後の画像への転換時の表示画面のうち、少なくともいずれか一方にクロスフェード処理を施すことが好ましい。これにより、映像の刺激を弱め、疲労を軽減することができる。 
 前記調整前の表示画面から前記別の画像への転換時、及び前記別の画像から前記調整後の画像への転換時の表示画面のうち、少なくともいずれか一方にワイプ処理を施すことが好ましい。これにより、映像の刺激を弱め、疲労を軽減することができる。
Crossfade processing is performed on at least one of the display screen at the time of switching from the display screen before the adjustment to the other image and the conversion from the other image to the image after the adjustment. preferable. Thereby, it is possible to weaken the stimulation of the image and reduce fatigue.
It is preferable to perform a wipe process on at least one of the display screen at the time of conversion from the display screen before the adjustment to the other image and the conversion from the other image to the image after the adjustment. Thereby, it is possible to weaken the stimulation of the image and reduce fatigue.
 本発明の他の観点によれば、右目用画像と左目用画像とからなる立体視用画像を表示し、前記右目用画像を右目に、前記左目用画像を左目に呈示することにより立体視を可能とする立体視画像表示方法であって、右目用画像と左目用画像とからなる立体視用画像データの視差量を変化させるための視差量調整情報を入力するステップと、前記立体視用画像データを構成する、前記右目用画像と前記左目用画像とのうち少なくともいずれか一方に前記視差量調整情報に基づく処理を加え、視差を調整する視差調整ステップと、前記立体視用画像データの前記右目用画像及び前記左目用画像をそれぞれ右目及び左目に呈示し、立体画像を表示する表示ステップと、を有し、前記視差調整ステップにおいて、前記入力するステップにより入力された視差量調整情報に基づき、前記立体視用画像データの視差量を調整する際に、調整前の表示画面と調整後の表示画面の表示の間に、現在視差量を調整中の画像とは異なる別の画像を表示するステップを有することを特徴とする立体画像表示方法が提供される。 According to another aspect of the present invention, a stereoscopic image including a right-eye image and a left-eye image is displayed, and the stereoscopic image is displayed by presenting the right-eye image to the right eye and the left-eye image to the left eye. A method for displaying a stereoscopic image, the step of inputting parallax amount adjustment information for changing a parallax amount of stereoscopic image data composed of a right-eye image and a left-eye image, and the stereoscopic image A parallax adjustment step of adjusting the parallax by applying processing based on the parallax amount adjustment information to at least one of the right-eye image and the left-eye image that constitutes the data; and the stereoscopic image data A display step for displaying a right-eye image and a left-eye image to the right eye and the left eye, respectively, and displaying a stereoscopic image, and input in the parallax adjustment step by the input step When adjusting the parallax amount of the stereoscopic image data based on the parallax amount adjustment information, the current parallax amount is different between the display screen before the adjustment and the display screen after the adjustment. There is provided a stereoscopic image display method comprising the step of displaying another image.
 前記視差調整ステップにおいて、現在視差量を調整中の画像とは異なる別の画像を表示するステップは、画像の一部を覆い隠すようにしても良い。 In the parallax adjustment step, the step of displaying another image different from the image whose parallax amount is currently being adjusted may cover a part of the image.
 本発明は、コンピュータに、上記に記載の立体画像表示方法を実行させるためのプログラムであっても良く、当該プログラムを記録するコンピュータ読み取り可能な記録媒体であっても良い。 The present invention may be a program for causing a computer to execute the stereoscopic image display method described above, or a computer-readable recording medium for recording the program.
 本明細書は本願の優先権の基礎である日本国特許出願2010-207056号の明細書および/または図面に記載される内容を包含する。 This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2010-207056 which is the basis of the priority of the present application.
 本発明によれば、視差の調整を行う際、視差を変更することに伴う違和感や3D酔いを避け、快適な立体視を実現することができる。 According to the present invention, when adjusting the parallax, it is possible to avoid a sense of incongruity and 3D sickness associated with changing the parallax and realize a comfortable stereoscopic view.
本発明の実施形態による立体画像表示装置の一構成例を示す機能ブロック図である。It is a functional block diagram which shows the example of 1 structure of the stereo image display apparatus by embodiment of this invention. 本実施形態による視差調整部の一構成例を示す機能ブロック図である。It is a functional block diagram which shows the example of 1 structure of the parallax adjustment part by this embodiment. 視差と奥行き表示との関係を上から見た図である。It is the figure which looked at the relationship between parallax and depth display from the top. 本実施形態による表示画面例を示す図である。It is a figure which shows the example of a display screen by this embodiment. 本発明の第1の実施の形態による立体画像表示における視差調整処理の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the parallax adjustment process in the stereo image display by the 1st Embodiment of this invention. 発明の第1の実施の形態による立体画像表示における視差調整処理に沿う表示例を示す図である。It is a figure which shows the example of a display in alignment with the parallax adjustment process in the stereo image display by the 1st Embodiment of invention. 本発明の第2の実施の形態による立体画像表示における視差調整処理の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the parallax adjustment process in the stereo image display by the 2nd Embodiment of this invention. 本発明の第3の実施の形態による立体画像表示における視差調整処理の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the parallax adjustment process in the stereo image display by the 3rd Embodiment of this invention. 本発明の第3の実施の形態による立体画像表示における視差調整処理に沿う表示例を示す図である。It is a figure which shows the example of a display in alignment with the parallax adjustment process in the stereo image display by the 3rd Embodiment of this invention. 本発明の第4の実施の形態による立体画像表示装置の外観構成例を示す図である。It is a figure which shows the example of an external appearance structure of the three-dimensional image display apparatus by the 4th Embodiment of this invention.
 <第1の実施形態>
 以下に、本発明の第1の実施形態による立体画像表示装置について、図面を参照して説明する。図1は、本実施形態による立体画像表示装置の構成例を示すブロック図である。図1が示すように、本実施形態による立体画像表示装置Aは、入力部10と、入力された画像データを処理し、立体表示が可能な表示データ(以下、立体視用画像データ)を生成するための画像処理を行う立体画像処理部100と、画像の視差を調整する視差調整部101と、画像を表示部に合わせ表示制御を行う表示制御部102と、画像を表示する表示部103と、システム全体を制御するシステム制御部104と、ユーザが入力を行うユーザ入力部105と、シャッタメガネの同期を行うメガネ同期部106と、から構成され、別途、ユーザが装着するシャッタメガネ107を用いる。
<First Embodiment>
Hereinafter, a stereoscopic image display device according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram illustrating a configuration example of the stereoscopic image display apparatus according to the present embodiment. As shown in FIG. 1, the stereoscopic image display apparatus A according to the present embodiment processes the input image data with the input unit 10 and generates display data that can be stereoscopically displayed (hereinafter, stereoscopic image data). A stereoscopic image processing unit 100 that performs image processing for performing image processing, a parallax adjustment unit 101 that adjusts parallax of the image, a display control unit 102 that controls display by matching an image with the display unit, and a display unit 103 that displays an image The system control unit 104 controls the entire system, the user input unit 105 that the user inputs, and the glasses synchronization unit 106 that synchronizes the shutter glasses, and uses the shutter glasses 107 that the user wears separately. .
 図2は、視差調整部101の構成例を示す図である。図2に示すように、視差調整部101は、左目用の画像ずらし処理部1011及び右目用の画素ずらし処理部1012と、左目用の画像転換処理部1013及び右目用の画像転換処理部1014と、転換画像記録部1015と、通信・制御部1016と、を有して構成される。 次に、各構成部の動作について説明する。 FIG. 2 is a diagram illustrating a configuration example of the parallax adjustment unit 101. As shown in FIG. 2, the parallax adjustment unit 101 includes a left-eye image shift processing unit 1011 and a right-eye pixel shift processing unit 1012, a left-eye image conversion processing unit 1013, and a right-eye image conversion processing unit 1014, The conversion image recording unit 1015 and the communication / control unit 1016 are included. Next, the operation of each component will be described.
 立体画像表示装置Aにおいて、入力部10を経由して入力された画像データは、立体画像処理部100において、入力形式に合わせて、左目用画像データと右目用画像データとに展開される。同時に、入力された画像データに付加情報がある場合は付加情報を抽出し、システム制御部104に伝送する。ここで、入力される画像データは、放送波によるもの、記録メディアから電子的に読みだされたもの、ネットワークから伝送されたものなど、どのようなものでも構わない。また、右目用画像データ、左目用画像データは、1枚の画像データから作成されたものでも良い。すなわち、画像データと奥行きデータから合成された複数視点画像、奥行き情報を推定して作成された複数視点画像であってもよい。 In the stereoscopic image display apparatus A, the image data input via the input unit 10 is expanded into left-eye image data and right-eye image data in the stereoscopic image processing unit 100 according to the input format. At the same time, if there is additional information in the input image data, the additional information is extracted and transmitted to the system control unit 104. Here, the input image data may be any data such as data based on broadcast waves, data read electronically from a recording medium, or data transmitted from a network. Further, the right-eye image data and the left-eye image data may be created from a single piece of image data. That is, it may be a multi-viewpoint image synthesized from image data and depth data, or a multi-viewpoint image created by estimating depth information.
 展開された左目用画像データと右目用画像データとは、視差調整部101に送られ、視差を調整される。視差調整部101の内部では、システム制御部104と通信する通信・制御部1016が各構成部を制御している。左目用画像ずらし処理部1011及び右目用画像ずらし処理部1012は、システム制御部104の指示(視差量調整情報)を、通信・制御部1016を経由して受け、左目用画像及び右目用画像をそれぞれ左右にずらす処理を行い、視差を調整する。視差が調整された左右目用画像データは、それぞれ左目用画像転換処理部1013及び右目用1014に入力される。左目用画像転換処理部1013及び右目用画像転換処理部1014には、転換画像記録部1015からの画像データも入力可能であり、通信・制御部1016を経由してシステム制御部104からの指示を受け、入力された左右目用画像及び転換画像となる別の画像との間で画像を転換する処理を行う。 The developed left-eye image data and right-eye image data are sent to the parallax adjustment unit 101 to adjust parallax. Inside the parallax adjustment unit 101, a communication / control unit 1016 communicating with the system control unit 104 controls each component. The left-eye image shift processing unit 1011 and the right-eye image shift processing unit 1012 receive an instruction (parallax amount adjustment information) from the system control unit 104 via the communication / control unit 1016, and receive the left-eye image and the right-eye image. Each is shifted left and right to adjust the parallax. The left and right eye image data whose parallax has been adjusted are input to the left eye image conversion processing unit 1013 and the right eye 1014, respectively. Image data from the converted image recording unit 1015 can be input to the left-eye image conversion processing unit 1013 and the right-eye image conversion processing unit 1014, and an instruction from the system control unit 104 is received via the communication / control unit 1016. In response, the image is converted between the input left and right eye image and another image to be a converted image.
 視差が調整された左目用画像と右目用画像とは、表示制御部102に送られる。表示制御部102は、表示部103に合わせた表示制御をするとともに、メガネ同期部106に対し信号を送る。メガネ同期部106は、ユーザの装着するシャッタメガネ107に対し同期信号を送り、表示部103と同期処理が行われる。より具体的には、例えば、表示部103に液晶表示パネルを用い、左目用画像と右目用画像とを交互に表示し、観察者の装着したシャッタメガネ107と同期して立体視を行う方式の場合、表示制御部102は表示部103に対し、左目用画像と右目用画像とを交互に出力する。出力の頻度は、例えば左目用画像と右目用画像をそれぞれ毎秒120枚とする。表示部103は、表示制御部102から送られる画像を随時表示するが、表示部103に左目用画像が表示されているときはシャッタメガネ107の左目用シャッタを開にし、右目用シャッタを閉とすることにより左目用画像を左目に表示し、右目用画像が表示されているときには左目用シャッタを閉にし、右目用シャッタを開とすることにより右目用画像を右目に表示して、立体視を実現する。 The left-eye image and right-eye image whose parallax has been adjusted are sent to the display control unit 102. The display control unit 102 performs display control in accordance with the display unit 103 and sends a signal to the glasses synchronization unit 106. The glasses synchronization unit 106 sends a synchronization signal to the shutter glasses 107 worn by the user, and synchronization processing with the display unit 103 is performed. More specifically, for example, a liquid crystal display panel is used for the display unit 103 to alternately display a left-eye image and a right-eye image, and perform stereoscopic viewing in synchronization with the shutter glasses 107 worn by the observer. In this case, the display control unit 102 outputs the left-eye image and the right-eye image to the display unit 103 alternately. The output frequency is, for example, 120 images for the left eye and for the right eye, each per second. The display unit 103 displays the image sent from the display control unit 102 at any time. When the left-eye image is displayed on the display unit 103, the left-eye shutter of the shutter glasses 107 is opened and the right-eye shutter is closed. The left-eye image is displayed on the left eye, and when the right-eye image is displayed, the left-eye shutter is closed, and the right-eye shutter is opened to display the right-eye image on the right eye. Realize.
 観察者は、ユーザ入力部105を用いて、表示する画面の視差量調整用データを入力する。ユーザ入力部105は、例えばリモコンなどで実現できるが、キーボードやマウス、タッチパネル、ダイヤルなど、いろいろな手段により実現することができ、その形式を問わず、ジェスチャ認識などであっても良い。ユーザ入力部105より入力された視差量調整用データは、システム制御部104を経由して視差調整部101に伝達される。視差調整部101では、受け取った視差量調整用データに基づき、視差調整処理を行う。視差量調整用データが視差調整なしを表すデータであった場合には、視差調整部101では視差調整処理を行わず、そのまま左右目用画像データを出力する。 The observer uses the user input unit 105 to input parallax amount adjustment data for the screen to be displayed. The user input unit 105 can be realized by a remote controller, for example, but can be realized by various means such as a keyboard, a mouse, a touch panel, and a dial, and may be gesture recognition regardless of the format. The parallax amount adjustment data input from the user input unit 105 is transmitted to the parallax adjustment unit 101 via the system control unit 104. The parallax adjustment unit 101 performs parallax adjustment processing based on the received parallax amount adjustment data. If the parallax amount adjustment data is data indicating no parallax adjustment, the parallax adjustment unit 101 outputs the left and right eye image data as it is without performing the parallax adjustment processing.
 次に、視差と奥行き表示との関係を図3に示す。図3は観察者とディスプレイを上から見た図である。図3(a)は、通常の2次元表示状態であり、立体画像表示時には、右目用画像と左目用画像の対応点がディスプレイ(表示面)上で同じ位置にある状態である。この場合、この対応点はディスプレイ上にあるように知覚される。図3(b)は、ディスプレイ上で、右目用画像と左目用画像との対応点P、Pが、右目用画像は右に、左目用画像は左にずれた状態である。この状態では、観察者にはこの点はディスプレイ面よりも奥に知覚される(P)。 Next, the relationship between parallax and depth display is shown in FIG. FIG. 3 is a top view of the viewer and the display. FIG. 3A shows a normal two-dimensional display state, in which a corresponding point between the right-eye image and the left-eye image is at the same position on the display (display surface) when a stereoscopic image is displayed. In this case, this corresponding point is perceived as being on the display. FIG. 3B shows a state where the corresponding points P 2 and P 3 between the right-eye image and the left-eye image are shifted to the right on the display and the left-eye image to the left on the display. In this state, the observer perceives this point behind the display surface (P 4 ).
 図3(c)は、ディスプレイ上で、右目用画像と左目用画像の対応点P、Pが、右目用画像は左に、左目用画像は右にずれた状態である。この状態では、観察者にはこの点はディスプレイ面よりも手前に知覚される(P)。 FIG. 3C shows a state where the corresponding points P 5 and P 6 of the right-eye image and the left-eye image are shifted to the left on the display and the left-eye image to the right on the display. In this state, the observer perceives this point in front of the display surface (P 7 ).
 図3(d)は、これらをまとめた図である。前述したとおり、右目用画像と左目用画像の対応点が、右目用画像が右、左目用画像が左にずれて表示され、かつ対応点間の距離が両眼距離に等しい場合、この点は無限遠に知覚されるが、対応点間の距離が両眼距離を超えた場合、視線は開散方向にはならず、融合できなくなる。同様に、ディスプレイ上で、右目用画像と左目用画像の対応点が、右目用画像は左に、左目用画像は右に大きくずれた状態では(P、P)、視線は極端な寄り目状態となり、融合できなくなる。従って、快適に立体視できる奥行きの範囲、すなわち、図3(d)に示した快適融合範囲は、これらの融合範囲よりもディスプレイ面に対し内側となる。 FIG. 3D is a diagram summarizing these. As described above, when the corresponding point between the right eye image and the left eye image is displayed with the right eye image shifted to the right and the left eye image shifted to the left, and the distance between the corresponding points is equal to the binocular distance, this point is Although it is perceived at infinity, if the distance between corresponding points exceeds the distance between both eyes, the line of sight does not become a divergent direction and cannot be fused. Similarly, when the corresponding points of the right-eye image and the left-eye image on the display are greatly shifted to the left for the right-eye image and to the right for the left-eye image (P 8 , P 9 ), the line of sight is extremely crossed. It becomes a state and cannot be fused. Accordingly, the depth range in which stereoscopic viewing can be comfortably performed, that is, the comfortable fusion range shown in FIG. 3D is inside the display surface with respect to the fusion range.
 これらの原理を応用し、左右目用画像を相対的に左右にずらすことによって、立体画像の奥行き感を全体的に奥や手前に移動することができる。 By applying these principles and shifting the left and right eye images relatively to the left and right, it is possible to move the depth of the stereoscopic image as a whole toward the back and the front.
 ここで、観察者の実際の操作例を示す。観察者は、ユーザ入力部105を操作して、視差量を調整するモードに入る。図4に視差量調整モードにおける表示部103における表示例を示す。図4に示す状態では、表示部には画像と、スライドバー103aとが表示されており、この状態でユーザ入力部105を操作することにより画面右に表示されているスライドバー103aを矢印のように移動させ、対応する視差調整量を設定することができる。 Here is an example of the actual operation of the observer. The observer operates the user input unit 105 to enter a mode for adjusting the parallax amount. FIG. 4 shows a display example on the display unit 103 in the parallax amount adjustment mode. In the state shown in FIG. 4, an image and a slide bar 103 a are displayed on the display unit, and the slide bar 103 a displayed on the right side of the screen by operating the user input unit 105 in this state is indicated by an arrow. And the corresponding parallax adjustment amount can be set.
 観察者による上記の操作により、システム制御部104は視差調整部101に左右画像のずらし量を設定するとともに、視差調整の開始を指示する。視差調整部101は、視差調整開始の指示を受けると、以下の3ステップに従って視差調整を行う。 Through the above operation by the observer, the system control unit 104 sets the shift amount of the left and right images to the parallax adjustment unit 101 and instructs the start of parallax adjustment. When receiving the instruction to start parallax adjustment, the parallax adjustment unit 101 performs parallax adjustment according to the following three steps.
 図5は、本実施の形態による示唆調整処理に流れを示すフローチャート図である。図6は、処理の流れに沿った表示例を示す図である。 FIG. 5 is a flowchart showing a flow of suggestion adjustment processing according to the present embodiment. FIG. 6 is a diagram illustrating a display example along the flow of processing.
 処理を開始し(Start:ステップS1)、第1ステップとして、左目用及び右目用の画像転換処理部1013及び1014において、図4に示す現在の画像表示を、クロスフェード、すなわち、徐々に暗くしていき(図5のステップS2、図6の(a)から(b))、最終的には、転換画像記録部1015に記録された「別の画像」とする処理を行う(図5のステップS3、図6の(c))。この処理はディゾルブ等と称されることもある。ここで、「別の画像」は光刺激の少ないものが好ましく、一例として黒画面でもよい。図6(c)では、黒画像を表示させている。 The process is started (Start: Step S1). As a first step, the left-eye and right-eye image conversion processing units 1013 and 1014 cross-fade, that is, gradually darken the current image display shown in FIG. 5 (step S2 in FIG. 5 and (a) to (b) in FIG. 6), finally, a process of “another image” recorded in the converted image recording unit 1015 is performed (step in FIG. 5). S3, (c) of FIG. This process is sometimes referred to as dissolve. Here, “another image” is preferably an image with little light stimulation, and may be a black screen as an example. In FIG. 6C, a black image is displayed.
 また、「別の画像」によって、意図的に輻輳と調節の状態を意図した状態に設定し直すことも可能であり、それに合わせた画像を用意しておくとよい。 Also, it is possible to intentionally reset the state of congestion and adjustment to the intended state by “another image”, and it is advisable to prepare an image according to that.
 例えば、奥行きを持つ立体画像を観察している時、観察者は画面上のどの位置を見ているかによって輻輳と調節の関係が異なり、より具体的には、調節は画面との距離に対応している状態で、観察している物体の視差に合わせた輻輳をもち、奥行きを知覚している状態にある。この状態で画面が転換されると、画面上の見ていた位置の視差は急激に転換されることになる。この現象を避けるために、例えば模様のない一様な背景画面の小領域に意図した視差の画像を表示すると、視線は表示した視差画像に誘導され、画像に合わせた輻輳に設定される。この状態で次の画面に転換すれば、画面の転換前後の視差変化を意図した状態を経由して行うことができ、例えば転換後の画像のうち、融像しやすい視差のない領域に視線を誘導することにより立体視を容易にすることができる。 For example, when observing a stereoscopic image with depth, the relationship between convergence and adjustment differs depending on which position on the screen the observer is looking at. More specifically, the adjustment corresponds to the distance from the screen. In this state, there is a convergence according to the parallax of the object being observed and the depth is perceived. If the screen is changed in this state, the parallax at the position that was viewed on the screen is changed abruptly. In order to avoid this phenomenon, for example, when an image with an intended parallax is displayed in a small area of a uniform background screen without a pattern, the line of sight is guided by the displayed parallax image, and is set to a convergence corresponding to the image. If the screen is changed to the next screen in this state, the change in the parallax before and after the screen change can be performed via the intended state. By guiding, stereoscopic viewing can be facilitated.
 画像としては認識しやすいものが好ましいが、例えば文字などでもよい。 An image that is easy to recognize is preferable, but may be a character, for example.
 次に、第2ステップとして、視差調整部101は、別の画像の表示を0.3秒以上保持する処理を行う(図5のステップS4、図6の(c)-(d))。 Next, as a second step, the parallax adjustment unit 101 performs a process of holding another image display for 0.3 seconds or longer (step S4 in FIG. 5, (c) to (d) in FIG. 6).
 人間は、光の明滅など、強い光刺激を受けると光感受性発作(PSS)を起こすことがある。光感受性発作を避ける目的で、強い光刺激となりうる1秒間に3回以上の明滅を避けるよう勧告されている。また、一般的に人間が物体に対しピントを調節するのにおよそ0.2秒かかると言われている。従って、立体視により輻輳とピント位置の調節が不一致の状態から、輻輳と調節が一致した状態に一旦戻すのにも同程度かかると推測される。これらのことから、第2ステップの継続時間は0.3秒以上とするのが望ましい。 Humans may experience photosensitive seizures (PSS) when subjected to strong light stimuli such as blinking of light. In order to avoid light-sensitive seizures, it is recommended to avoid more than 3 blinks per second, which can be a strong light stimulus. It is generally said that it takes about 0.2 seconds for a human to adjust the focus with respect to an object. Therefore, it is estimated that it takes about the same time to return from the state where the convergence and the adjustment of the focus position do not coincide with each other to the state where the convergence and the adjustment coincide with each other. For these reasons, it is desirable that the duration of the second step be 0.3 seconds or longer.
 第3ステップとして、視差調整部101は、左目用及び右目用の画像転換処理部1013及び1014において、表示を転換画像記録部1015に記録された「別の画像」から視差調整後の画像へクロスフェードさせる処理を行う(図5のステップS5、図6の(d)-(e))。次いで、視差調整後の画像を表示させる(図5のステップS6、図6の(f)。これにより、視差調整処理を終了する(図5のステップS7)。 As a third step, the parallax adjustment unit 101 crosses the display from “another image” recorded in the converted image recording unit 1015 to the image after parallax adjustment in the left-eye and right-eye image conversion processing units 1013 and 1014. Processing for fading is performed (step S5 in FIG. 5, (d)-(e) in FIG. 6). Next, the image after parallax adjustment is displayed (step S6 in FIG. 5, (f) in FIG. 6), thereby completing the parallax adjustment processing (step S7 in FIG. 5).
 図5、図6に示す処理を行うことにより、視差調整部101は、観察者の輻輳と調節の状態を一旦意図した状態に設定し直し、更に視差調整を行った画面を観察者に呈示する。それにより観察者が、急激に視差が調整される違和感や、徐々に視差が調整されることに伴う移動の感覚を感じることなく、視差調整を行うことができる。上記の理由で、「別の画像」は、一様な視差を持つ画像であるとよりよく、さらに調整前と調整後の画像の持つ視差の中間の視差を持つとなお良い。 By performing the processing shown in FIGS. 5 and 6, the parallax adjustment unit 101 resets the state of congestion and adjustment of the observer to an intended state, and presents a screen on which further parallax adjustment has been performed to the observer. . Thereby, the observer can perform the parallax adjustment without feeling a sense of incongruity in which the parallax is rapidly adjusted or a sense of movement accompanying the parallax being gradually adjusted. For the above reason, the “different image” is better if it is an image having a uniform parallax, and more preferably if it has an intermediate parallax between the pre-adjustment and post-adjustment images.
 尚、上記の第1のステップと第3のステップとでは、それぞれの画像をクロスフェード処理で転換しているが、これは画像の移動を抑え、かつ、光刺激を低減させるための処理である。従って、この処理はクロスフェード処理に限定されるものではなく、例えばワイプ処理などでも目的を果たすことができる。 In the first step and the third step, the respective images are converted by the cross-fade process. This is a process for suppressing the movement of the image and reducing the light stimulus. . Therefore, this process is not limited to the crossfade process, and the object can be achieved by, for example, a wipe process.
 また、上記の例では、立体画像として右目用画像と左目用画像との2つを挙げたが、画像は2つに限定されるものではなく、多視点画像用の画像データであっても良い。また、立体視可能な表示システムとしてシャッタメガネを用いた時分割方式の立体表示手段を示したが、立体表示システムは時分割方式に限定するものではなく、パララクスバリアによるもの、レンチキュラレンズを用いるもの、プロジェクタによるものなど、立体視が可能な表示システムなら形式を問わない。前述のとおり、多視点画像を対象としたディスプレイであっても良い。 In the above example, two images, the right-eye image and the left-eye image, are given as the stereoscopic images. However, the number of images is not limited to two, and may be image data for a multi-viewpoint image. . In addition, a time-division type stereoscopic display unit using shutter glasses is shown as a stereoscopic display system. However, the stereoscopic display system is not limited to the time-division type, and uses a parallax barrier or a lenticular lens. Any type of display system capable of stereoscopic viewing, such as a projector, may be used. As described above, a display for multi-viewpoint images may be used.
 さらに、転換画像となる「別の画像」を挿入する処理部を、視差調整部101の中に左目用画像転換処理部1013及び右目用画像転換処理部1014として構成したが、転換画像挿入処理は、視差調整部101と表示部103の間で行われればどこで実行されても良い。 Furthermore, the processing unit for inserting “another image” to be a conversion image is configured as the left-eye image conversion processing unit 1013 and the right-eye image conversion processing unit 1014 in the parallax adjustment unit 101. As long as it is performed between the parallax adjustment unit 101 and the display unit 103, it may be executed anywhere.
 以上に説明したように、本実施の形態によれば、視差量を調整する際に、光刺激の少ない「別の画像」を所定時間だけ表示させることにより、視差を変更することに伴う違和感や3D酔いを避け、快適な立体視を簡単に実現することができる。 As described above, according to the present embodiment, when adjusting the amount of parallax, by displaying “another image” with less light stimulation for a predetermined time, discomfort associated with changing the parallax, 3D sickness can be avoided and comfortable stereoscopic vision can be easily realized.
 <第2の実施形態>
 以下に、本発明の第2の実施形態による立体画像表示装置について説明する。第2の実施形態においては、第1の実施形態の中の視差調整のステップの内容のみが第1の実施形態の内容と異なる。それ以外のハードウエア構成やユーザインタフェースの実現の仕方は第1の実施形態において説明したもので実現可能であり、その詳細な説明を省略する。
<Second Embodiment>
The stereoscopic image display device according to the second embodiment of the present invention will be described below. In the second embodiment, only the content of the parallax adjustment step in the first embodiment is different from the content of the first embodiment. Other hardware configurations and user interface implementation methods are the same as those described in the first embodiment, and detailed description thereof is omitted.
 本実施の形態においては、図1の視差調整部101は、視差調整開始の指示を受けると、以下の3ステップに従って視差調整を行う。図7は、本実施の形態における処理の流れを示すフローチャート図である。 In the present embodiment, the parallax adjustment unit 101 in FIG. 1 performs parallax adjustment according to the following three steps upon receiving an instruction to start parallax adjustment. FIG. 7 is a flowchart showing the flow of processing in the present embodiment.
 処理を開始すると、(Start:ステップS11)、第1のステップとして、視差調整部101は、左右目用画像転換処理部1013及び1014において、現在の表示を転換画像記録部1015に記録された「別の画像」にクロスフェードする処理を行う(ステップS12)。この際、「別の画像」は、転換画像記録部1015に記録された転換画像のうち、現在の視差量設定に対応する画像を読み出す(ステップS12)。 When the process is started (Start: Step S11), as the first step, the parallax adjustment unit 101 records the current display in the converted image recording unit 1015 in the left and right eye image conversion processing units 1013 and 1014. A process of crossfading to “another image” is performed (step S12). At this time, “another image” reads an image corresponding to the current parallax amount setting from among the converted images recorded in the converted image recording unit 1015 (step S12).
 尚、転換画像記録部1015には、例えば、設定可能な視差量調整範囲に対応した視差量、すなわち画面手前側に物体が表示されている画像から画面奥側の無限遠に対応する距離に物体が表示されている画像まで、視差が連続的に変化する複数の画像が記録されており、特定の画像を読み出すことにより特定の視差を持つ画像を得ることができる。また、記録された転換画像の中で、視差を変化させる部分は画像の一部であることとする。 Note that the converted image recording unit 1015 has, for example, a parallax amount corresponding to a settable parallax amount adjustment range, that is, an object at a distance corresponding to infinity on the back side of the screen from the image on which the object is displayed on the near side of the screen. A plurality of images in which the parallax continuously changes are recorded up to the image on which is displayed, and an image having a specific parallax can be obtained by reading the specific image. In the recorded converted image, the part where the parallax is changed is a part of the image.
 第2のステップとして、視差調整部101は、転換画像を0.3秒以上表示する処理を行う。この際、転換画像は、視差が変化する部分が視差調整前の視差を持つ転換画像から視差調整後の視差を持つ転換画像までを連続的に表示し、視差調整の前後を連続的に視差が変化する画像でつなぐ処理を行う(ステップS13、S14)。なお、この際、視差が変化する部分は立体視画像の特徴的な部分と対応付けて選択されるようにするとなお良い。特徴的な部分とは、具体的には、立体視画像の中で注目を集めそうな点であるとよい。 As a second step, the parallax adjustment unit 101 performs a process of displaying the converted image for 0.3 seconds or more. At this time, the converted image continuously displays from the converted image having the parallax before the parallax adjustment to the converted image having the parallax after the parallax adjustment, and the parallax continuously before and after the parallax adjustment. Processing to connect with the changing image is performed (steps S13 and S14). In this case, it is more preferable that the part where the parallax changes is selected in association with the characteristic part of the stereoscopic image. Specifically, the characteristic part may be a point that is likely to attract attention in the stereoscopic image.
 第3のステップとして、視差調整部101は、視差調整後の視差に対応する転換画像から、視差調整後の立体画像へ画像を転換するフェード処理を行う(ステップS15)。これにより処理が終了する(ステップS16:end)。 As a third step, the parallax adjustment unit 101 performs a fade process of converting an image from a converted image corresponding to the parallax after parallax adjustment to a stereoscopic image after parallax adjustment (step S15). Thereby, the process ends (step S16: end).
 以上の3ステップで、視差調整部101は、観察者の輻輳と調節の状態を一旦意図した状態に設定し、徐々に視差調整を行った画面を観察者に呈示する。ここで、徐々に視差調整を行う転換画像のうち視差量が変化する領域は画像の一部であることから、観察者は自分が移動しているのではなく、物体が自分に向かってくる感覚を得る。それにより観察者は、急激に視差が調整される違和感や、徐々に視差が調整されることに伴う移動の感覚を感じることなく、視差調整を行うことができる。 Through the above three steps, the parallax adjustment unit 101 once sets the observer's state of convergence and adjustment to an intended state, and presents the observer with a screen on which the parallax adjustment has been performed gradually. Here, since the region where the amount of parallax changes is part of the converted image in which the parallax adjustment is gradually performed, the observer feels that the object is not moving but the object is facing him Get. Thereby, the observer can perform the parallax adjustment without feeling a sense of incongruity in which the parallax is suddenly adjusted or a sense of movement accompanying the parallax being gradually adjusted.
 尚、上記の例では、転換画像は連続する視差を持つ複数の画像としたが、視差調整処理や立体画像合成処理により同様の画像が得られる場合はそのような処理によって得られた画像を用いても良い。また、視差が変化する領域は画像の一部としたが、その一部の領域とは、観察者が移動感覚を感じない程度の大きさの領域であればよい。また、立体画像の視差を求めて、視差調整前後の視差に対応した視差を持つ転換画像を表示したり、立体画像の注視点を推定して、その場所の視差変化に対応した転換画像を同じ場所に表示したりするとなお良い。この場合、立体画像の視差は左右画像から得られ、視差を得る方法はブロックマッチングなど、いくつかの公知の方法がある。 In the above example, the converted image is a plurality of images having continuous parallax. However, when a similar image can be obtained by the parallax adjustment processing or the stereoscopic image synthesis processing, the image obtained by such processing is used. May be. In addition, the region where the parallax changes is a part of the image, but the part of the region may be a region having a size that does not allow the observer to feel a sense of movement. In addition, the parallax of the stereoscopic image is obtained, and a converted image having a parallax corresponding to the parallax before and after the parallax adjustment is displayed, or the gaze point of the stereoscopic image is estimated, and the converted image corresponding to the parallax change of the place is the same It is even better to display it on the place. In this case, the parallax of the stereoscopic image is obtained from the left and right images, and there are several known methods for obtaining the parallax, such as block matching.
 <第3の実施形態>
 以下に、本発明の第3の実施形態による立体画像表示装置について説明する。第3の実施形態においては、第1の実施形態の中の視差調整のステップの内容のみが第1の実施形態の内容と異なる。それ以外のハードウエア構成やユーザインタフェースの実現の仕方は第1の実施形態において説明したもので実現可能であり、その詳細な説明を省略する。図8は、本実施の形態における視差量調整処理の流れを示すフローチャート図であり、図9は、処理の流れに沿った表示例を示す図である。
<Third Embodiment>
The stereoscopic image display device according to the third embodiment of the present invention will be described below. In the third embodiment, only the content of the parallax adjustment step in the first embodiment is different from the content of the first embodiment. Other hardware configurations and user interface implementation methods are the same as those described in the first embodiment, and detailed description thereof is omitted. FIG. 8 is a flowchart showing a flow of parallax amount adjustment processing in the present embodiment, and FIG. 9 is a view showing a display example along the flow of processing.
 図1の視差調整部101は、視差調整開始の指示を受けると、以下の3ステップに従って視差調整を行う。 1 receives the instruction to start parallax adjustment, and performs parallax adjustment according to the following three steps.
 処理を開始すると(図8、ステップS21)、第1のステップとして、視差調整部101は、現在の表示に、予め用意したマスクパターンを重畳して表示する(図8:ステップS22、図9:(a)-(b))。ここで、マスクパターンとは、画像の一部領域R1を遮蔽する画像であり、本実施形態では、画像の一部の領域R2のみ透過する、窓のようなパターンを採用する。なお、このマスクパターンは、半透明であっても良いが、模様があり、パターン自体に視線を誘導できるものの方が望ましい。ここでは、「調整中です」という文字に視線を誘導できるようにしている。パターン自体に視線を誘導することにより、パターンの持つ視差に合わせて観察者の輻輳を変化させることができる。マスクパターンの表示は、マスクパターン自体を動かさず、かつ徐々に遮蔽するような処理を行った方が好ましい。 When the process is started (FIG. 8, step S21), as a first step, the parallax adjustment unit 101 superimposes and displays a mask pattern prepared in advance on the current display (FIG. 8: step S22, FIG. 9: (A)-(b)). Here, the mask pattern is an image that blocks a partial region R1 of the image, and in the present embodiment, a pattern like a window that transmits only a partial region R2 of the image is adopted. The mask pattern may be translucent, but it is desirable that the mask pattern has a pattern and can guide the line of sight to the pattern itself. Here, it is possible to guide the line of sight to the letters “Adjusting”. By guiding the line of sight to the pattern itself, the vergence of the observer can be changed in accordance with the parallax of the pattern. It is preferable to display the mask pattern by performing a process of gradually shielding the mask pattern itself without moving it.
 第2のステップとして、視差調整部101は、マスクパターンを0.3秒以上表示する処理を行う(図8のステップS23、図9の(c)-(d))。この間に、視差調整部101は、入力された立体画像に段階的に視差調整を施す(図8のステップS24、図9の(c)-(d))。すなわち、マスクパターンの透過領域R2から、入力された立体画像の視差が徐々に変化していくさまが観察されるようにする。図9(d)では、スライドバーが奥側から手前側にスライドされている。 As a second step, the parallax adjustment unit 101 performs a process of displaying the mask pattern for 0.3 seconds or longer (step S23 in FIG. 8, (c) to (d) in FIG. 9). During this time, the parallax adjustment unit 101 performs parallax adjustment on the input stereoscopic image in a stepwise manner (step S24 in FIG. 8, (c) to (d) in FIG. 9). That is, it is observed that the parallax of the input stereoscopic image gradually changes from the transmission region R2 of the mask pattern. In FIG. 9D, the slide bar is slid from the back side to the near side.
 第3のステップとして、視差調整部101は、マスクパターンを取り除く表示処理を行う(図8のステップS25、図9の(e)-(f))。マスクパターン自体を動かさず、かつ徐々にクロスフェードで取り除くような処理を行った方が好ましい。 As a third step, the parallax adjustment unit 101 performs display processing for removing the mask pattern (step S25 in FIG. 8, (e) to (f) in FIG. 9). It is preferable to perform a process of removing the mask pattern gradually by crossfade without moving the mask pattern itself.
 以上の3ステップにおいて、視差調整部101は、徐々に視差調整を行ないつつ、観察者の輻輳と調節の状態を連続的に変化させる。ここで、徐々に視差調整を行う画像のうち観察できる領域は画像の一部であることから、観察者は自分が移動しているのではなく、窓から動く物体を観察する感覚を得る。それにより観察者は、急激に視差が調整される違和感や、徐々に視差が調整されることに伴う移動の感覚を感じることなく、視差調整を行うことができる。 In the above three steps, the parallax adjustment unit 101 continuously changes the state of congestion and adjustment of the observer while performing parallax adjustment gradually. Here, since the region that can be observed in the image on which the parallax adjustment is gradually performed is a part of the image, the observer feels not to be moving but to observe the moving object from the window. Thereby, the observer can perform the parallax adjustment without feeling a sense of incongruity in which the parallax is suddenly adjusted or a sense of movement accompanying the parallax being gradually adjusted.
 なお、マスクパターンの透過領域は画像の一部としたが、その領域の大きさは、観察者が移動感覚を感じない程度の大きさであればよい。 Although the transmission area of the mask pattern is a part of the image, the size of the area may be a size that does not allow the observer to feel a sense of movement.
 <第4の実施形態>
 本発明の第4の実施形態においては、パーソナルコンピュータ(PC)を用いて立体画像処理を行い、立体表示可能な表示デバイスを用いて立体表示する。PC上では、ユーザがPCの操作デバイス、例えばマウスやキーボード、タッチパネル等を用いて、GUIアプリケーションを操作して立体画像処理を行う。すなわち、PCに供えられたCPUが記憶装置、例えばハードディスクやCD-ROMに記録されている立体表示アプリケーションソフトウェアに従って、動画や静止画に対し処理を行い、立体表示デバイスに立体表示をする。
<Fourth Embodiment>
In the fourth embodiment of the present invention, stereoscopic image processing is performed using a personal computer (PC), and stereoscopic display is performed using a display device capable of stereoscopic display. On the PC, a user performs a stereoscopic image process by operating a GUI application using an operation device of the PC, such as a mouse, a keyboard, or a touch panel. That is, a CPU provided in the PC processes a moving image or a still image according to stereoscopic display application software recorded on a storage device, for example, a hard disk or a CD-ROM, and performs stereoscopic display on the stereoscopic display device.
 図10は、第4の実施形態による立体表示デバイスの表示画面を説明する図である。立体表示デバイス210には、表示部203が設けられ、表示部203には、画像表示203aと、GUI表示部203bとが表示されている。GUI表示部203bには、再生、停止、巻き戻し、早送りなどをするための操作部205と、奥行き調整タブ211とスライドバー215とが表示さえている。画像表示部203aには、立体画像表示アプリケーションによる画面が表示されている。ユーザはマウスやキーボード等の操作デバイスを用いて、GUI表示部上の設定ボタン211a~211eやスライドバー215を操作することにより、立体画像を処理することができる。ここで視差調整を行う際には、上記の各実施の形態におけるいずれかの手順で表示を行う。 FIG. 10 is a diagram for explaining a display screen of the stereoscopic display device according to the fourth embodiment. The stereoscopic display device 210 is provided with a display unit 203, and the display unit 203 displays an image display 203a and a GUI display unit 203b. On the GUI display unit 203b, an operation unit 205 for playing, stopping, rewinding, fast-forwarding, a depth adjustment tab 211, and a slide bar 215 are displayed. A screen by a stereoscopic image display application is displayed on the image display unit 203a. The user can process a stereoscopic image by operating the setting buttons 211a to 211e and the slide bar 215 on the GUI display unit using an operation device such as a mouse or a keyboard. Here, when performing parallax adjustment, display is performed according to any of the procedures in the above embodiments.
 また、上記の実施の形態において、添付図面に図示されている構成等については、これらに限定されるものではなく、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。 In the above-described embodiment, the configuration illustrated in the accompanying drawings is not limited to these, and can be appropriately changed within a range in which the effect of the present invention is exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.
 また、本実施の形態で説明した機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。尚、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。 In addition, a program for realizing the functions described in the present embodiment is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed to execute processing of each unit. May be performed. The “computer system” here includes an OS and hardware such as peripheral devices.
 また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。 In addition, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また前記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。 Further, the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included. The program may be a program for realizing a part of the above-described functions, or may be a program that can realize the above-described functions in combination with a program already recorded in a computer system.
 本発明は、3Dテレビジョン受信装置などに利用可能である。 The present invention can be used for 3D television receivers and the like.
10 入力部
100 立体画像処理部
101 視差調整部
102 表示制御部
103 表示部
104 システム制御部
105 ユーザ入力部
106 メガネ同期部
107 シャッタメガネ
1011 左目用画像ずらし処理部
1012 右目用画像ずらし処理部
1013 左目用画像転換処理部
1014 右目用画像転換処理部
1015 転換画像記録部
1016 通信・制御部
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
DESCRIPTION OF SYMBOLS 10 Input part 100 Stereo image processing part 101 Parallax adjustment part 102 Display control part 103 Display part 104 System control part 105 User input part 106 Glasses synchronization part 107 Shutter glasses 1011 Left eye image shift process part 1012 Right eye image shift process part 1013 Left eye Image conversion processing unit 1014 Right-eye image conversion processing unit 1015 Conversion image recording unit 1016 Communication / control unit All publications, patents and patent applications cited in this specification are incorporated herein by reference in their entirety.

Claims (15)

  1.  右目用画像と左目用画像とからなる立体視用画像を表示し、前記右目用画像を右目に、前記左目用画像を左目に呈示することにより立体視を可能とする立体視画像表示装置であって、
     右目用画像と左目用画像とからなる立体視用画像データの視差量を変化させるための視差量調整情報を入力する入力部と、
     前記立体視用画像データを構成する、前記右目用画像と前記左目用画像とのうち少なくともいずれか一方に前記視差量調整情報に基づく処理を加え、視差を調整する視差調整部と、
     前記立体視用画像データの前記右目用画像及び前記左目用画像をそれぞれ右目及び左目に呈示し、立体画像を表示する表示部と、
     前記視差調整部が、前記入力部から入力された視差量調整情報に基づき、前記立体視用画像データの視差量を調整する際に、調整前の表示画像と調整後の表示画像の表示の間に、現在視差量を調整中の画像とは異なる別の画像を表示する画像転換処理部と、を有することを特徴とする立体画像表示装置。
    A stereoscopic image display device that enables stereoscopic viewing by displaying a stereoscopic image including a right-eye image and a left-eye image, and presenting the right-eye image to the right eye and the left-eye image to the left eye. And
    An input unit for inputting parallax amount adjustment information for changing the parallax amount of the stereoscopic image data including the right-eye image and the left-eye image;
    A parallax adjustment unit that adjusts the parallax by applying a process based on the parallax amount adjustment information to at least one of the right-eye image and the left-eye image that constitutes the stereoscopic image data;
    A display unit that presents the right-eye image and the left-eye image of the stereoscopic image data to the right eye and the left eye, respectively, and displays a stereoscopic image;
    When the parallax adjustment unit adjusts the parallax amount of the stereoscopic image data based on the parallax amount adjustment information input from the input unit, between the display image before adjustment and the display image after adjustment. A stereoscopic image display apparatus comprising: an image conversion processing unit that displays another image different from the image whose parallax amount is currently being adjusted.
  2.  前記別の画像を、画像の一部を覆い隠すように表示させることを特徴とする請求項1に記載の立体画像表示装置。 The stereoscopic image display device according to claim 1, wherein the other image is displayed so as to partially cover the image.
  3.  前記画像転換処理部は、前記別の画像として、一様な視差を持つ画像を表示させることを特徴とする、請求項1又は2に記載の立体画像表示装置。 The stereoscopic image display device according to claim 1 or 2, wherein the image conversion processing unit displays an image having a uniform parallax as the another image.
  4.  前記画像転換処理部は、前記別の画像として、調整前の画像の視差と調整後の画像の視差の間の値の視差を有する画像を表示させることを特徴とする、請求項3に記載の立体画像表示装置。 The said image conversion process part displays the image which has the parallax of the value between the parallax of the image before adjustment, and the parallax of the image after adjustment as said another image, It is characterized by the above-mentioned. Stereoscopic image display device.
  5.  前記画像転換処理部は、前記別の画像として、連続的に視差が変更される複数の画像を表示させることを特徴とする、請求項1又は2に記載の立体画像表示装置。 3. The stereoscopic image display device according to claim 1, wherein the image conversion processing unit displays a plurality of images whose parallax is continuously changed as the another image.
  6.  連続的に視差が変更される複数の画像からなる前記別の画像は、視差が変更される部分が画面の一部であることを特徴とする、請求項5に記載の立体画像表示装置。 The stereoscopic image display device according to claim 5, wherein, in the another image composed of a plurality of images whose parallax is continuously changed, a portion where the parallax is changed is a part of the screen.
  7.  連続的に視差が変更される複数の画像からなる前記別の画像のうち、視差が変更される部分は、前記立体視用画像データの特徴的な部分に基づいて決定されることを特徴とする、請求項6に記載の立体画像表示装置。 Of the another image composed of a plurality of images whose parallax is continuously changed, a portion where the parallax is changed is determined based on a characteristic portion of the stereoscopic image data. The stereoscopic image display device according to claim 6.
  8.  連続的に視差が変更される複数の画像からなる前記別の画像は、調整前の画像の視差から調整後の画像の視差へと連続的に視差が変更されるように選択されることを特徴とする、請求項5に記載の立体画像表示装置。 The another image including a plurality of images whose parallax is continuously changed is selected so that the parallax is continuously changed from the parallax of the image before adjustment to the parallax of the image after adjustment. The stereoscopic image display device according to claim 5.
  9.  前記別の画像を表示する時間は、生体への影響度に基づいた時間であることを特徴とする、請求項1から8までのいずれか1項に記載の立体画像表示装置。 The stereoscopic image display device according to any one of claims 1 to 8, wherein the time for displaying the another image is a time based on the degree of influence on a living body.
  10.  前記調整前の表示画面から前記別の画像への転換時、及び、前記別の画像から前記調整後の画像への転換時の表示画面のうち、少なくともいずれか一方にクロスフェード処理を施すことを特徴とする、請求項1から9までのいずれか1項に記載の立体画像表示装置。 Crossfade processing is performed on at least one of the display screen at the time of conversion from the display screen before the adjustment to the other image and the conversion from the other image to the image after the adjustment. The stereoscopic image display device according to claim 1, wherein the stereoscopic image display device is a feature.
  11.  前記調整前の表示画面から前記別の画像への転換時、及び前記別の画像から前記調整後の画像への転換時の表示画面のうち、少なくともいずれか一方にワイプ処理を施すことを特徴とする、請求項1から9のいずれか1項に記載の立体画像表示装置。 A wipe process is performed on at least one of the display screen at the time of conversion from the display screen before the adjustment to the other image and the conversion from the other image to the image after the adjustment. The three-dimensional image display device according to any one of claims 1 to 9.
  12.  右目用画像と左目用画像とからなる立体視用画像を表示し、前記右目用画像を右目に、前記左目用画像を左目に呈示することにより立体視を可能とする立体視画像表示方法であって、
     右目用画像と左目用画像とからなる立体視用画像データの視差量を変化させるための視差量調整情報を入力するステップと、
     前記立体視用画像データを構成する、前記右目用画像と前記左目用画像とのうち少なくともいずれか一方に前記視差量調整情報に基づく処理を加え、視差を調整する視差調整ステップと、
     前記立体視用画像データの前記右目用画像及び前記左目用画像をそれぞれ右目及び左目に呈示し、立体画像を表示する表示ステップと、を有し、
     前記視差調整ステップにおいて、前記入力するステップにより入力された視差量調整情報に基づき、前記立体視用画像データの視差量を調整する際に、調整前の表示画像と調整後の表示画像の表示の間に、現在視差量を調整中の画像とは異なる別の画像を表示するステップを有することを特徴とする立体画像表示方法。
    A stereoscopic image display method that enables stereoscopic viewing by displaying a stereoscopic image including a right-eye image and a left-eye image, and presenting the right-eye image to the right eye and the left-eye image to the left eye. And
    Inputting parallax amount adjustment information for changing the parallax amount of the stereoscopic image data composed of the right-eye image and the left-eye image;
    A parallax adjustment step of adjusting the parallax by applying processing based on the parallax amount adjustment information to at least one of the right-eye image and the left-eye image constituting the stereoscopic image data;
    Displaying the right-eye image and the left-eye image of the stereoscopic image data to the right eye and the left eye, respectively, and displaying a stereoscopic image, and
    In the parallax adjustment step, when adjusting the parallax amount of the stereoscopic image data based on the parallax amount adjustment information input in the input step, display of the display image before adjustment and the display image after adjustment is displayed. A stereoscopic image display method characterized by comprising a step of displaying another image different from the image whose parallax amount is currently being adjusted.
  13.  前記視差調整ステップにおいて、現在視差量を調整中の画像とは異なる別の画像を表示するステップは、画像の一部を覆い隠すようにするステップを有することを特徴とする請求項12に記載の立体画像表示方法。 The step of displaying another image different from the image whose parallax amount is currently being adjusted in the parallax adjustment step includes a step of covering a part of the image. 3D image display method.
  14.  コンピュータに、請求項12又は13に記載の立体画像表示方法を実行させるためのプログラム。 A program for causing a computer to execute the stereoscopic image display method according to claim 12 or 13.
  15.  請求項14に記載のプログラムを記録するコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium for recording the program according to claim 14.
PCT/JP2011/070441 2010-09-15 2011-09-08 Stereoscopic image display device, stereoscopic image display method, program for executing stereoscopic image display method on computer, and recording medium on which said program is recorded WO2012036056A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010207056A JP2012065111A (en) 2010-09-15 2010-09-15 Stereoscopic image display device, stereoscopic image display method, program for allowing computer to perform stereoscopic image display method, and recording medium with program recorded therein
JP2010-207056 2010-09-15

Publications (1)

Publication Number Publication Date
WO2012036056A1 true WO2012036056A1 (en) 2012-03-22

Family

ID=45831519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070441 WO2012036056A1 (en) 2010-09-15 2011-09-08 Stereoscopic image display device, stereoscopic image display method, program for executing stereoscopic image display method on computer, and recording medium on which said program is recorded

Country Status (2)

Country Link
JP (1) JP2012065111A (en)
WO (1) WO2012036056A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9118911B2 (en) 2013-02-07 2015-08-25 Delphi Technologies, Inc. Variable disparity three-dimensional (3D) display system and method of operating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003209858A (en) * 2002-01-17 2003-07-25 Canon Inc Stereoscopic image generation method and recording medium
JP2006165795A (en) * 2004-12-03 2006-06-22 Canon Inc Image forming apparatus and method
JP2010199740A (en) * 2009-02-23 2010-09-09 Fujifilm Corp Apparatus and method of displaying stereoscopic images

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002092656A (en) * 2000-09-11 2002-03-29 Canon Inc Stereoscopic image display device and image data display method
JP2002232913A (en) * 2001-01-31 2002-08-16 Canon Inc Compound eye camera and stereoscopic image observation system
JP4637942B2 (en) * 2008-09-30 2011-02-23 富士フイルム株式会社 Three-dimensional display device, method and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003209858A (en) * 2002-01-17 2003-07-25 Canon Inc Stereoscopic image generation method and recording medium
JP2006165795A (en) * 2004-12-03 2006-06-22 Canon Inc Image forming apparatus and method
JP2010199740A (en) * 2009-02-23 2010-09-09 Fujifilm Corp Apparatus and method of displaying stereoscopic images

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9118911B2 (en) 2013-02-07 2015-08-25 Delphi Technologies, Inc. Variable disparity three-dimensional (3D) display system and method of operating the same

Also Published As

Publication number Publication date
JP2012065111A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5059922B2 (en) Stereoscopic image generating apparatus, stereoscopic image display apparatus, stereoscopic image adjustment method, program for causing computer to execute stereoscopic image adjustment method, and recording medium recording the program
WO2010084724A1 (en) Image processing device, program, image processing method, recording method, and recording medium
KR101926577B1 (en) Expanded 3D stereoscopic display system
WO2007117471A2 (en) Vertical surround parallax correction
WO2011036827A1 (en) 3d image display device and 3d image display method
JP2011188118A (en) Display device, system, and glasses
KR20110114257A (en) 3D display device and its display mode setting method, and 3D image providing system
KR20110080035A (en) 3D glass driving method and 3D glass and 3D display device using same
JP2020137128A (en) Computer-readable non-transient storage medium, web server, and interpupillary calibration method
CN106293561B (en) Display control method and device and display equipment
JP2018157331A (en) Program, recording medium, image generating apparatus, image generation method
JP5396877B2 (en) Image processing apparatus, program, image processing method, and recording method
JP2013005238A (en) Three-dimensional image processing apparatus, three-dimensional image processing method, display apparatus, and computer program
WO2012063595A1 (en) Stereo image display device, stereo image display method, program for executing stereo image display method on computer, and recording medium with same program recorded thereon
JP2007260372A (en) How to display an electronic screen for eye training
AU2011348147B2 (en) Method and system for disparity adjustment during stereoscopic zoom
WO2012036056A1 (en) Stereoscopic image display device, stereoscopic image display method, program for executing stereoscopic image display method on computer, and recording medium on which said program is recorded
US20120098831A1 (en) 3d display apparatus and method for processing 3d image
JP2013057697A (en) Stereoscopic image displaying apparatus
JP2012257252A (en) Stereoscopic image display device, stereoscopic image display method, program for allowing computer to execute stereoscopic image display method, and recording medium for recording the program
WO2012147482A1 (en) Stereoscopic image display device and stereoscopic image display method
JP2011254176A (en) Image processor and control method thereof
JPH09233499A (en) Stereoscopic image generator
WO2012060169A1 (en) 3d image display device and display adjustment method for same
JP2011223126A (en) Three-dimensional video display apparatus and three-dimensional video display method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825059

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825059

Country of ref document: EP

Kind code of ref document: A1