WO2012169154A1 - Lens assembly and camera - Google Patents
Lens assembly and camera Download PDFInfo
- Publication number
- WO2012169154A1 WO2012169154A1 PCT/JP2012/003553 JP2012003553W WO2012169154A1 WO 2012169154 A1 WO2012169154 A1 WO 2012169154A1 JP 2012003553 W JP2012003553 W JP 2012003553W WO 2012169154 A1 WO2012169154 A1 WO 2012169154A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- image
- lens group
- image side
- lens system
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/146—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
- G02B15/1461—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/144—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
- G02B15/1441—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
- G02B15/144111—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged ++-+
Definitions
- the technology disclosed here relates to a lens system and a camera.
- Patent Document 1 discloses a photographing lens in which ghost and flare are further reduced. Patent Document 1 discloses an antireflection film whose reflectance is suppressed to 0.2% or less.
- the technique disclosed herein aims to suppress the generation of ghosts at a low cost in a lens system that satisfies specific conditions.
- the lens system is Consists of a plurality of lens groups arranged in order from the object side to the image side, The at least one of zooming and focusing can be performed by changing a distance between the lens groups.
- Each of the lens groups is composed of at least one lens element,
- the lens group arranged on the most image side of the lens group is composed of one lens element,
- the following condition (1) R ⁇ 0.2 (1) (here, R: Energy reflectance for d-line (%) Is) Is satisfied.
- the camera It consists of a plurality of lens groups arranged in order from the object side to the image side, The at least one of zooming and focusing can be performed by changing a distance between the lens groups.
- Each of the lens groups is composed of at least one lens element
- the lens group arranged on the most image side of the lens group is composed of one lens element
- the following condition (1) R ⁇ 0.2 (1) (here, R: Energy reflectance for d-line (%) Is)
- R Energy reflectance for d-line (%) Is)
- a lens system characterized by satisfying An image sensor that receives an optical image formed by the lens system and converts it into an electrical image signal.
- the lens system is Consists of a plurality of lens groups arranged in order from the object side to the image side, The at least one of zooming and focusing can be performed by changing a distance between the lens groups.
- Each of the lens groups is composed of at least one lens element,
- the lens group arranged on the most image side of the lens group is composed of one lens element,
- the energy reflectance with respect to d-line of at least one lens surface of the lens elements constituting the lens group disposed on the most image side is the reflectance with respect to d-line of all lens surfaces of the lens elements included in the lens system. Characterized by the lowest.
- the camera Consists of a plurality of lens groups arranged in order from the object side to the image side, The at least one of zooming and focusing can be performed by changing a distance between the lens groups.
- Each of the lens groups is composed of at least one lens element
- the lens group arranged on the most image side of the lens group is composed of one lens element
- the energy reflectance with respect to d-line of at least one lens surface of the lens elements constituting the lens group disposed on the most image side is the reflectance with respect to d-line of all lens surfaces of the lens elements included in the lens system.
- FIG. 1 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 1 (Numerical Example 1).
- FIG. 2 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 when the zoom lens system is in focus at infinity.
- FIG. 3 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 in the close object in-focus state.
- 4 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of the zoom lens system according to Numerical Example 1.
- FIG. FIG. 5 is a lens arrangement diagram of the inner focus lens according to Embodiment 2 (Numerical Example 2) in an infinitely focused state.
- FIG. 6 is a longitudinal aberration diagram of the inner focus lens according to Numerical Example 2 in a focused state at infinity.
- FIG. 7 is a lens layout diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 3 (Numerical Example 3).
- FIG. 8 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 when the zoom lens system is in focus at infinity.
- FIG. 9 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 in the close object in-focus state.
- FIG. 10 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 3.
- FIG. 11 is a schematic configuration diagram of a camera system according to the fourth embodiment.
- FIG. 12 is a schematic configuration diagram of a camera according to the fifth embodiment.
- FIG. 1 is a lens arrangement diagram of the zoom lens system according to Embodiment 1, and represents the zoom lens system in an infinite focus state.
- the lens configuration of T )) and (c) show the lens configuration at the telephoto end (longest focal length state: focal length f T ).
- the broken line arrows provided between FIGS. 1A and 1B are obtained by connecting the positions of the lens groups in the wide-angle end, the intermediate position, and the telephoto end in order from the top. Straight line.
- the wide-angle end and the intermediate position, and the intermediate position and the telephoto end are simply connected by a straight line, which is different from the actual movement of each lens group.
- an arrow attached to the lens group represents focusing from an infinitely focused state to a close object focused state. That is, FIG. 1 shows a direction in which a later-described fourth lens group G4 moves during focusing from the infinite focus state to the close object focus state.
- FIG. 1 since the reference numerals of the respective lens groups are shown in FIG. 1A, for the sake of convenience, an arrow indicating focusing is attached below the reference numerals of the respective lens groups.
- FIG. 1A since the reference numerals of the respective lens groups are shown in FIG. 1A, for the sake of convenience, an arrow indicating focusing is attached below the reference numerals of the respective lens groups.
- FIG. 1A since the reference numerals of the respective lens groups are shown in FIG. 1A, for the sake of convenience, an arrow indicating focusing is attached below the reference numerals of the respective lens groups.
- the direction in which each lens group moves during focusing will be described in detail later.
- the zoom lens system according to Embodiment 1 includes, in order from the object side to the image side, a first lens group G1 having a positive power, a second lens group G2 having a negative power, and a first lens group having a positive power.
- the distance between the lens groups that is, the distance between the first lens group G1 and the second lens group G2, the second lens group G2 and the third lens group G3, The distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, and the distance between the fifth lens group G5 and the sixth lens group G6.
- the second lens group G2, the fourth lens group G4, and the fifth lens group G5 move in the direction along the optical axis so as to change.
- the zoom lens system according to Embodiment 1 by making these lens groups have a desired power arrangement, the entire lens system can be reduced in size while maintaining high optical performance.
- an asterisk * attached to a specific surface indicates that the surface is aspherical.
- a symbol (+) and a symbol ( ⁇ ) attached to a symbol of each lens group correspond to a power symbol of each lens group.
- the straight line described on the rightmost side represents the position of the image plane S.
- the first lens group G1 includes, in order from the object side to the image side, a biconvex first lens element L1 and a negative meniscus second lens element L2 with a convex surface facing the object side. And a positive meniscus third lens element L3 having a convex surface facing the object side.
- the second lens element L2 and the third lens element L3 are cemented.
- the second lens group G2 includes, in order from the object side to the image side, a negative meniscus fourth lens element L4 with a convex surface facing the object side, and a positive meniscus fifth lens element L5 with a convex surface facing the object side. And a biconcave sixth lens element L6. Among these, the fourth lens element L4 and the fifth lens element L5 are cemented.
- the third lens group G3 includes, in order from the object side to the image side, a biconvex seventh lens element L7, a negative meniscus eighth lens element L8 with a convex surface facing the object side, and a convex surface facing the object side. It comprises a positive meniscus ninth lens element L9 directed, a biconvex tenth lens element L10, and a negative meniscus eleventh lens element L11 with a convex surface facing the image side.
- the eighth lens element L8 and the ninth lens element L9 are cemented, and the tenth lens element L10 and the eleventh lens element L11 are cemented.
- the seventh lens element L7 has two aspheric surfaces, and the tenth lens element L10 has an aspheric object side surface. Further, an aperture stop A is provided between the seventh lens element L7 and the eighth lens element L8.
- the fourth lens group G4 comprises solely a negative meniscus twelfth lens element L12 with the convex surface facing the object side.
- the fifth lens group G5 comprises solely a bi-concave thirteenth lens element L13.
- the sixth lens group G6 comprises solely a biconvex fourteenth lens element L14.
- the tenth lens element L10 and the eleventh lens element L11 in the third lens group G3 are arranged on the optical axis to optically correct image blur, which will be described later. This corresponds to an image blur correction lens group that moves in the vertical direction.
- the zoom lens system according to Embodiment 1 during zooming from the wide-angle end to the telephoto end during imaging, the second lens group G2 monotonously moves toward the image side, and the fourth lens group G4 moves toward the image side.
- the fifth lens group G5 moves to the object side substantially monotonously, and the first lens group G1, the third lens group G3, and the sixth lens group G6 move relative to the image plane S. Is fixed.
- the distance between the first lens group G1 and the second lens group G2 and the distance between the fifth lens group G5 and the sixth lens group G6 increase, and the second lens group G2 and the third lens group G3 And the fourth lens group G4 and the fifth lens group G5 are decreased, and the distance between the third lens group G3 and the fourth lens group G4 is changed.
- the group G4 and the fifth lens group G5 move along the optical axis.
- the fourth lens group G4 moves toward the image side along the optical axis in any zooming state when focusing from the infinitely focused state to the close object focused state. Moving.
- Numerical Example 1 in which the zoom lens system according to Embodiment 1 is specifically implemented will be described.
- the units of length in the table are all “mm”, and the units of angle of view are all “°”.
- r is a radius of curvature
- d is a surface interval
- nd is a refractive index with respect to the d line
- ⁇ d is an Abbe number with respect to the d line.
- the surface marked with * is an aspheric surface
- the aspheric surface shape is defined by the following equation (AC).
- Z distance from a point on the aspheric surface having a height h from the optical axis to the tangent plane of the aspheric vertex
- h height from the optical axis
- r vertex radius of curvature
- ⁇ conic constant
- An n-order aspherical coefficient.
- FIG. 2 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 in a focused state at infinity.
- FIG. 3 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 in the close object in-focus state.
- the object distance in Numerical Example 1 is 1887 mm.
- each longitudinal aberration diagram shows spherical aberration (SA (mm)), astigmatism (AST (mm)), and distortion (DIS (%)) in order from the left side.
- SA spherical aberration
- AST mm
- DIS distortion
- the vertical axis represents the F number (indicated by F in the figure)
- the solid line is the d line (wavelength: 587.6 nm, d-line)
- the short broken line is the F line (wavelength: 486.1 nm, F -Line)
- the long broken line are the characteristics of the C-line (wavelength: 656.3 nm, C-line).
- the vertical axis represents the image height (indicated by H in the figure), the solid line represents the sagittal plane (indicated by s), and the broken line represents the meridional plane (indicated by m in the figure). is there.
- the vertical axis represents the image height (indicated by H in the figure).
- FIG. 4 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of the zoom lens system according to Numerical Example 1.
- FIG. 4 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of the zoom lens system according to Numerical Example 1.
- the upper three aberration diagrams show the basic state in which image blur correction is not performed at the telephoto end
- the lower three aberration diagrams show the image blur correction lens group moved by a predetermined amount in a direction perpendicular to the optical axis.
- Each corresponds to the image blur correction state at the telephoto end.
- the upper row shows the lateral aberration at the image point of 70% of the maximum image height
- the middle row shows the lateral aberration at the axial image point
- the lower row shows the lateral aberration at the image point of -70% of the maximum image height.
- the upper stage is the lateral aberration at the image point of 70% of the maximum image height
- the middle stage is the lateral aberration at the axial image point
- the lower stage is at the image point of -70% of the maximum image height.
- the horizontal axis represents the distance from the principal ray on the pupil plane
- the solid line is the d line (d-line)
- the short broken line is the F line (F-line)
- the long broken line is the C line ( C-line) characteristics.
- the meridional plane is a plane including the optical axis of the first lens group G1 and the optical axis of the third lens group G3.
- the moving amount in the direction perpendicular to the optical axis of the image blur correction lens group in the image blur correction state at the telephoto end is 0.300 mm.
- the image decentering amount is the image when the image blur correction lens group translates by the above values in the direction perpendicular to the optical axis. Equal to eccentricity.
- the symmetry of the lateral aberration at the axial image point is good.
- the curvature is small and the inclinations of the aberration curves are almost equal. It can be seen that the aberration is small. This means that sufficient imaging performance is obtained even in the image blur correction state.
- the image blur correction angle of the zoom lens system is the same, the amount of parallel movement required for image blur correction decreases as the focal length of the entire zoom lens system decreases. Therefore, at any zoom position, it is possible to perform sufficient image blur correction without deteriorating the imaging characteristics with respect to the image blur correction angle up to a predetermined angle.
- FIG. 5 is a lens arrangement diagram of the inner focus lens according to Embodiment 2 in an infinitely focused state.
- the inner focus lens according to Embodiment 2 includes, in order from the object side to the image side, a first lens group G1 having a positive power, a second lens group G2 having a negative power, and a third lens having a positive power. It consists of a lens group G3.
- the first lens group G1 includes, in order from the object side to the image side, a positive meniscus first lens element L1 having a convex surface facing the object side, and a negative meniscus second lens having a concave surface with a strong curvature on the image side.
- a cemented lens element of an element L2, an aperture stop A, a biconcave third lens element L3 having a concave surface with a strong curvature on the object side, and a biconvex fourth lens element L4, and an image side surface is aspheric. It is composed of a biconvex fifth lens element L5.
- the second lens group G2 is composed of only a biconcave sixth lens element L6 having aspherical surfaces on both sides and a concave surface with a strong curvature on the image side. By moving the second lens group G2 to the image side along the optical axis, focusing from the infinity object side to the near object side is performed.
- the third lens group G3 includes only a biconvex seventh lens element L7.
- Numerical Example 2 in which the inner focus lens according to Embodiment 2 is specifically implemented will be described.
- the units of length in the table are all “mm”, and the units of angle of view are all “°”.
- surface number is the i-th surface counted from the object side
- r is the paraxial radius of curvature of the i-th surface from the object side
- d is the i-th surface. Is the refractive index with respect to the d-line of the glass material having the i-th surface on the object side
- vd is the d-line of the glass material having the i-th surface on the object side.
- the Abbe numbers for are respectively shown. “Variable” indicates that the shaft upper surface interval is a variable interval. Further, the surface with “*” after the surface number i is an aspherical surface, and the aspherical shape is defined by the formula (AC).
- FIG. 6 is a longitudinal aberration diagram of the inner focus lens according to Numerical Example 2 in a focused state at infinity.
- Each longitudinal aberration diagram shows spherical aberration, astigmatism, and distortion aberration in order from the left side.
- the vertical axis represents the ratio to the open F number
- the horizontal axis represents defocus
- the solid line is d-line
- the long broken line is C line (C-line)
- the short broken line is F line ( F-line) represents spherical aberration.
- the vertical axis is the image height
- the horizontal axis is the focus
- the solid line is the sagittal image plane (indicated by s)
- the broken line is the astigmatism of the meridional image plane (indicated by m in the figure). Represent.
- the vertical axis represents the image height, and the distortion is expressed in%.
- FIG. 7 is a lens arrangement diagram of the zoom lens system according to Embodiment 3, and represents the zoom lens system in the infinitely focused state.
- the lens configuration of T )) and (c) show the lens configuration at the telephoto end (longest focal length state: focal length f T ).
- the broken line arrows provided between FIGS. 7A and 7B are obtained by connecting the positions of the lens groups in the wide-angle end, intermediate position, and telephoto end states in order from the top.
- Straight line The wide-angle end and the intermediate position, and the intermediate position and the telephoto end are simply connected by a straight line, which is different from the actual movement of each lens group.
- an arrow attached to the lens group represents focusing from an infinitely focused state to a close object focused state. That is, FIG. 7 shows a direction in which a third lens group G3, which will be described later, moves during focusing from the infinite focus state to the close object focus state.
- FIG. 7 since the reference numerals of the respective lens groups are described in FIG. 7A, for convenience, an arrow indicating focusing is attached below the reference numerals of the respective lens groups. In each zooming state, The direction in which each lens group moves during focusing will be described in detail later.
- the zoom lens system according to Embodiment 3 includes, in order from the object side to the image side, a first lens group G1 having negative power, a second lens group G2 having positive power, and a first lens group having negative power. 3 lens group G3 and 4th lens group G4 which has positive power are provided.
- the distance between the lens groups that is, the distance between the first lens group G1 and the second lens group G2, the second lens group G2 and the third lens group G3,
- the first lens group G1, the second lens group G2, and the third lens group G3 are in a direction along the optical axis so that the distance between the third lens group G3 and the fourth lens group G4 changes.
- these lens groups are arranged in a desired power arrangement, so that the entire lens system can be reduced in size while maintaining high optical performance.
- an asterisk * attached to a specific surface indicates that the surface is aspherical.
- a symbol (+) and a symbol ( ⁇ ) attached to a symbol of each lens group correspond to a power symbol of each lens group.
- the straight line described on the rightmost side represents the position of the image plane S.
- the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a negative meniscus having a convex surface facing the image side. It comprises a second lens element L2 having a shape and a third lens element L3 having a positive meniscus shape with a convex surface facing the object side.
- the first lens element L1 has an aspheric image side surface
- the second lens element L2 has both aspheric surfaces.
- the second lens group G2 includes, in order from the object side to the image side, a biconvex fourth lens element L4, a negative meniscus fifth lens element L5 with a convex surface facing the object side, and a biconvex second lens element L5. 6 lens elements L6 and a biconvex seventh lens element L7. Among these, the fifth lens element L5 and the sixth lens element L6 are cemented.
- the fourth lens element L4 has two aspheric surfaces. Furthermore, an aperture stop A is provided between the fourth lens element L4 and the fifth lens element L5.
- the third lens group G3 comprises solely a negative meniscus eighth lens element L8 with the convex surface facing the object side.
- the eighth lens element L8 has two aspheric surfaces.
- the fourth lens group G4 comprises solely a biconvex ninth lens element L9.
- the ninth lens element L9 has two aspheric surfaces.
- the seventh lens element L7 in the second lens group G2 moves in the direction perpendicular to the optical axis to optically correct image blur, which will be described later. This corresponds to the image blur correction lens group.
- the zoom lens system according to Embodiment 3 during zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves along a locus convex toward the image side, and the second lens group G2 Is monotonously moved to the object side, the third lens group G3 is monotonously slightly moved to the object side, and the fourth lens group G4 is fixed with respect to the image plane S. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 decreases, the distance between the second lens group G2 and the third lens group G3 increases, and the third lens group G3 and the fourth lens.
- the first lens group G1, the second lens group G2, and the third lens group G3 move along the optical axis so that the distance from the group G4 changes.
- the third lens group G3 moves toward the image side along the optical axis in any zooming state during focusing from the infinitely focused state to the close object focused state. Moving.
- Numerical Example 3 in which the zoom lens system according to Embodiment 3 is specifically implemented will be described.
- the unit of length in the table is “mm”, and the unit of angle of view is “°”.
- r is a radius of curvature
- d is a surface interval
- nd is a refractive index with respect to the d line
- ⁇ d is an Abbe number with respect to the d line.
- the surface marked with * is an aspherical surface, and the aspherical shape is defined by the formula (AC).
- FIG. 8 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 when the zoom lens system is in focus at infinity.
- FIG. 9 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 in the close object in-focus state.
- the object distance in Numerical Example 3 is 300 mm.
- each longitudinal aberration diagram shows the aberration at the wide angle end, (b) shows the intermediate position, and (c) shows the aberration at the telephoto end.
- SA spherical aberration
- AST mm
- DIS distortion
- the vertical axis represents the F number (indicated by F in the figure)
- the solid line is the d line (d-line)
- the short broken line is the F line (F-line)
- the long broken line is the C line (C- line).
- the vertical axis represents the image height (indicated by H in the figure), the solid line represents the sagittal plane (indicated by s), and the broken line represents the meridional plane (indicated by m in the figure). is there.
- the vertical axis represents the image height (indicated by H in the figure).
- FIG. 10 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of the zoom lens system according to Numerical Example 3.
- the upper three aberration diagrams show the basic state in which image blur correction is not performed at the telephoto end
- the lower three aberration diagrams show the image blur correction lens group moved by a predetermined amount in a direction perpendicular to the optical axis.
- Each corresponds to the image blur correction state at the telephoto end.
- the upper row shows the lateral aberration at the image point of 70% of the maximum image height
- the middle row shows the lateral aberration at the axial image point
- the lower row shows the lateral aberration at the image point of -70% of the maximum image height.
- the upper stage is the lateral aberration at the image point of 70% of the maximum image height
- the middle stage is the lateral aberration at the axial image point
- the lower stage is at the image point of -70% of the maximum image height.
- the horizontal axis represents the distance from the principal ray on the pupil plane
- the solid line is the d line (d-line)
- the short broken line is the F line (F-line)
- the long broken line is the C line ( C-line) characteristics.
- the meridional plane is a plane including the optical axis of the first lens group G1 and the optical axis of the second lens group G2.
- the amount of movement of the image blur correction lens group in the image blur correction state at the telephoto end in the direction perpendicular to the optical axis is 0.187 mm.
- the image decentering amount is the value when the image blur correction lens group translates by the above values in the direction perpendicular to the optical axis. Equal to image eccentricity.
- the symmetry of the lateral aberration at the axial image point is good.
- the curvature is small and the inclinations of the aberration curves are almost equal. It can be seen that the aberration is small. This means that sufficient imaging performance is obtained even in the image blur correction state.
- the image blur correction angle of the zoom lens system is the same, the amount of parallel movement required for image blur correction decreases as the focal length of the entire zoom lens system decreases. Therefore, at any zoom position, it is possible to perform sufficient image blur correction without deteriorating the imaging characteristics for an image blur correction angle up to 0.3 °.
- Table 9 (Various data in the proximity object in-focus state) Wide angle Medium telephoto Object distance 300.0000 300.0000 300.0000 BF 14.1990 14.1990 14.1990 d6 17.0129 6.6327 0.6000 d14 2.3848 7.3054 15.2480 d16 6.2496 6.5118 7.5052
- Each of the lens systems according to Embodiments 1 to 3 includes a plurality of lens groups arranged in order from the object side to the image side, and changes the mutual distance between the lens groups to perform at least zooming and focusing.
- Each of the lens groups is composed of at least one lens element.
- the lens group disposed on the most image side (hereinafter also referred to as the most image side lens group) is composed of one lens element.
- the most image-side lens unit is composed of one lens element, so that the thickness in the optical axis direction can be minimized, and the lens system can be downsized. Can be realized.
- the lens systems according to Embodiments 1 to 3 if an appropriate power is given to the most image side lens unit, the aberration of the lens system is improved.
- the most image side lens unit is composed of one lens element, it is necessary to give a strong power to the lens element. In such a case, the influence of the ghost due to the reflection at the most image side lens group is further increased.
- the effective radius of the most image side lens unit tends to increase. In such a case, the influence of the ghost due to the reflection at the most image side lens group is further increased.
- L14R1 Object side surface R1 of the fourteenth lens element L14 constituting the most image side lens unit.
- L13R2 Image side surface R2 of the thirteenth lens element L13
- L7R1 Object side surface R1 of the seventh lens element L7 constituting the most image side lens unit
- L2R2 Image side surface R2 of the second lens element
- L9R1 Object side surface R1 of the ninth lens element L9 constituting the most image side lens unit
- L2R2 Image side surface R2 of the second lens element L2
- the “ghost intensity” The intensity of the light that is further reflected by the lens surface and incident on the image sensor is quantified.
- the “ghost intensity” generated by the L14R1 reflecting again the unnecessary reflected light from the image sensor is that the lens surface of the lens element other than the fourteenth lens element L14, for example, L13R2, is the unnecessary reflected light from the image sensor.
- the “ghost intensity” generated by the L7R1 reflecting the unnecessary reflected light from the image sensor again is an unnecessary reflected light from the lens surface of the lens elements other than the seventh lens element L7, for example, the L2R2.
- the “ghost intensity” generated by the L9R1 reflecting the unnecessary reflected light from the image sensor again is that the lens surface of the lens element other than the ninth lens element L9, for example L2R2, is the unnecessary reflected light from the image sensor.
- the “ghost intensity” produced by reflecting the light again is that the lens surface of the lens element other than the ninth lens element L9, for example L2R2, is the unnecessary reflected light from the image sensor.
- an antireflection film is formed so that the energy reflectance is relatively low on at least one lens surface of the lens elements constituting the most image side lens group.
- the following condition (1) is satisfied on at least one lens surface of the lens elements constituting the most image side lens group.
- An antireflection film exhibiting such energy reflectivity can be realized by the technique described in Patent Document 1 and the like, but the antireflection film is difficult to mold and the cost of film formation is high.
- the lens surface that is the main cause of the ghost is specified, and the antireflection film is formed on the lens surface.
- the occurrence of ghost can be suppressed. That is, in the lens systems according to Embodiments 1 to 3, ghosting can be suppressed at a low cost.
- the energy reflectivity for d-line of at least one lens surface of the lens elements constituting the most image side lens group is the lowest among the reflectivities for d-line of all lens surfaces of the lens elements included in the lens system. . Therefore, for example, even if an expensive antireflection film is formed on the lens surface that is a main cause of ghosting, the ghosting can be suppressed at low cost by forming an inexpensive antireflection film on the other lens surface. be able to.
- the effect is more prominent when the following condition (1) ′ is satisfied on at least one lens surface of the lens elements constituting the most image side lens group.
- the effect is more remarkable when the lens system satisfies at least one of the following conditions (2) ′ and (2) ′′. 0.8 ⁇ D eff / H max (2) ′ D eff / H max ⁇ 1.1 (2) ''
- Table 11 shows the corresponding values for each condition in the lens system of each numerical example.
- FIG. 11 is a schematic configuration diagram of a camera system according to the fourth embodiment.
- the camera system 100 includes a camera body 101 and an interchangeable lens device 201 that is detachably connected to the camera body 101.
- the camera body 101 receives an optical image formed by the lens system 202 of the interchangeable lens device 201 and converts it into an electrical image signal, and a display for displaying the image signal converted by the image sensor 102. Part 103 and camera mount part 104.
- the interchangeable lens device 201 is connected to the lens system 202 according to any of Embodiments 1 to 3, the lens barrel 203 (an example of a holding unit) that holds the lens system 202, and the camera mount unit 104 of the camera body. And a lens mount unit 204 (an example of a mount).
- the camera mount unit 104 and the lens mount unit 204 electrically connect not only a physical connection but also a controller (not shown) in the camera body 101 and a controller (not shown) in the interchangeable lens device 201. It also functions as an interface that enables mutual signal exchange.
- the configuration illustrated as the lens system 202 is an example, and the lens system according to any embodiment may be used.
- the interchangeable lens device 201 since the lens system 202 according to any one of the first to third embodiments is used, the interchangeable lens device 201 having excellent imaging performance and suppressing the occurrence of ghost can be realized at low cost. . In addition, it is possible to suppress the occurrence of ghost in the entire camera system 100 according to Embodiment 4 at a low cost.
- the camera system is a concept included in the camera.
- FIG. 12 is a schematic configuration diagram of a camera according to the fifth embodiment.
- the camera 300 includes a camera main body 301 and a lens barrel 403 fixed to the camera main body 301.
- the camera body 301 receives an optical image formed by the lens system 402 of the lens barrel 403 and converts it into an electrical image signal, and a display for displaying the image signal converted by the image sensor 302 Part 303.
- the lens barrel 403 holds the lens system 402 according to any of Embodiments 1 to 3 by its holding unit.
- the configuration illustrated as the lens system 402 is an example, and the lens system of any embodiment may be used.
- the lens system 402 since the lens system 402 according to any one of the first to third embodiments is used, it is possible to realize the lens barrel 403 that has excellent imaging performance and suppresses the generation of ghosts at low cost. . In addition, it is possible to suppress the occurrence of ghost in the entire camera 300 according to Embodiment 5 at a low cost.
- the lens system disclosed herein can be applied to a digital still camera, a digital video camera, a camera of a portable information terminal such as a smartphone, a surveillance camera in a surveillance system, a web camera, an in-vehicle camera, and the like. It is suitable for a photographing optical system that requires high image quality, such as a digital video camera system.
- Aperture stop S Image surface 100 Camera system 101, 301 Camera body 102, 302 Image sensor 103, 303 Display unit 104 Camera mount unit 201 Interchangeable lens device 202, 402 Lens system 203, 403 Lens barrel 204 Lens mount unit 300 Camera
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
ここに開示された技術は、レンズ系及びカメラに関する。 The technology disclosed here relates to a lens system and a camera.
従来より、カメラ等に用いられるレンズ系が種々提案されている。レンズ系において、ゴーストやフレアを低減することが重要である。 Conventionally, various lens systems used for cameras and the like have been proposed. In the lens system, it is important to reduce ghosts and flares.
特許文献1は、ゴーストやフレアをより低減させた撮影レンズを開示している。また、特許文献1は、反射率を0.2%以下に抑えた反射防止膜を開示している。 Patent Document 1 discloses a photographing lens in which ghost and flare are further reduced. Patent Document 1 discloses an antireflection film whose reflectance is suppressed to 0.2% or less.
しかしながら、特許文献1に開示された反射防止膜のように、反射率を低くする膜は、成型が困難であり、膜形成のコストも高い。そのため、レンズ系を構成するレンズの多数の面にこのような膜を形成すると、レンズ系の製造コストが高くなる。 However, a film that lowers the reflectivity, such as the antireflection film disclosed in Patent Document 1, is difficult to mold and the cost of film formation is high. For this reason, when such a film is formed on a large number of surfaces of the lens constituting the lens system, the manufacturing cost of the lens system increases.
一方、ゴースト発生の主な原因となっている面を特定することができれば、当該面に反射率の低い膜を形成することで、安価にゴーストの発生を抑制することができる。しかしながら、どのようなレンズ系に対して何が原因でゴーストが発生するかは未だ明らかでない。 On the other hand, if the surface that is the main cause of ghost generation can be identified, the generation of ghost can be suppressed at low cost by forming a film with low reflectance on the surface. However, it is still unclear what causes ghosts for what lens system.
ここに開示された技術は、特定の条件を満足するレンズ系において、安価にゴーストの発生を抑制することを目的とする。 The technique disclosed herein aims to suppress the generation of ghosts at a low cost in a lens system that satisfies specific conditions.
(I)上記目的の1つは、以下のレンズ系により達成される。当該レンズ系は、
物体側から像側へと順に配置された複数のレンズ群からなり、
前記レンズ群の相互の間隔を変化させて、ズーミング及びフォーカシングの少なくとも1つが可能であり、
前記レンズ群は、それぞれ、少なくとも1枚のレンズ素子で構成され、
前記レンズ群のうち最像側に配置されたレンズ群は、1枚のレンズ素子で構成され、
前記最像側に配置されたレンズ群を構成するレンズ素子の少なくとも1つのレンズ面において、以下の条件(1):
R<0.2 ・・・(1)
(ここで、
R:d線に対するエネルギー反射率(%)
である)
が満足されることを特徴とする。
(I) One of the above objects is achieved by the following lens system. The lens system is
Consists of a plurality of lens groups arranged in order from the object side to the image side,
The at least one of zooming and focusing can be performed by changing a distance between the lens groups.
Each of the lens groups is composed of at least one lens element,
The lens group arranged on the most image side of the lens group is composed of one lens element,
On at least one lens surface of the lens elements constituting the lens group disposed on the most image side, the following condition (1):
R <0.2 (1)
(here,
R: Energy reflectance for d-line (%)
Is)
Is satisfied.
上記目的の1つは、以下のカメラにより達成される。当該カメラは、
物体側から像側へと順に配置された複数のレンズ群からなり、
前記レンズ群の相互の間隔を変化させて、ズーミング及びフォーカシングの少なくとも1つが可能であり、
前記レンズ群は、それぞれ、少なくとも1枚のレンズ素子で構成され、
前記レンズ群のうち最像側に配置されたレンズ群は、1枚のレンズ素子で構成され、
前記最像側に配置されたレンズ群を構成するレンズ素子の少なくとも1つのレンズ面において、以下の条件(1):
R<0.2 ・・・(1)
(ここで、
R:d線に対するエネルギー反射率(%)
である)
が満足されることを特徴とするレンズ系と、
前記レンズ系が形成する光学像を受光して電気的な画像信号に変換する撮像素子と
を備える。
One of the above objects is achieved by the following camera. The camera
It consists of a plurality of lens groups arranged in order from the object side to the image side,
The at least one of zooming and focusing can be performed by changing a distance between the lens groups.
Each of the lens groups is composed of at least one lens element,
The lens group arranged on the most image side of the lens group is composed of one lens element,
On at least one lens surface of the lens elements constituting the lens group disposed on the most image side, the following condition (1):
R <0.2 (1)
(here,
R: Energy reflectance for d-line (%)
Is)
A lens system characterized by satisfying
An image sensor that receives an optical image formed by the lens system and converts it into an electrical image signal.
(II)上記目的の1つは、以下のレンズ系により達成される。当該レンズ系は、
物体側から像側へと順に配置された複数のレンズ群からなり、
前記レンズ群の相互の間隔を変化させて、ズーミング及びフォーカシングの少なくとも1つが可能であり、
前記レンズ群は、それぞれ、少なくとも1枚のレンズ素子で構成され、
前記レンズ群のうち最像側に配置されたレンズ群は、1枚のレンズ素子で構成され、
前記最像側に配置されたレンズ群を構成するレンズ素子の少なくとも1つのレンズ面のd線に対するエネルギー反射率は、レンズ系に含まれるレンズ素子の全レンズ面のd線に対する反射率の中で最も低いことを特徴とする。
(II) One of the above objects is achieved by the following lens system. The lens system is
Consists of a plurality of lens groups arranged in order from the object side to the image side,
The at least one of zooming and focusing can be performed by changing a distance between the lens groups.
Each of the lens groups is composed of at least one lens element,
The lens group arranged on the most image side of the lens group is composed of one lens element,
The energy reflectance with respect to d-line of at least one lens surface of the lens elements constituting the lens group disposed on the most image side is the reflectance with respect to d-line of all lens surfaces of the lens elements included in the lens system. Characterized by the lowest.
上記目的の1つは、以下のカメラにより達成される。当該カメラは、
物体側から像側へと順に配置された複数のレンズ群からなり、
前記レンズ群の相互の間隔を変化させて、ズーミング及びフォーカシングの少なくとも1つが可能であり、
前記レンズ群は、それぞれ、少なくとも1枚のレンズ素子で構成され、
前記レンズ群のうち最像側に配置されたレンズ群は、1枚のレンズ素子で構成され、
前記最像側に配置されたレンズ群を構成するレンズ素子の少なくとも1つのレンズ面のd線に対するエネルギー反射率は、レンズ系に含まれるレンズ素子の全レンズ面のd線に対する反射率の中で最も低いことを特徴とするレンズ系と、
前記レンズ系が形成する光学像を受光して電気的な画像信号に変換する撮像素子と
を備える。
One of the above objects is achieved by the following camera. The camera
Consists of a plurality of lens groups arranged in order from the object side to the image side,
The at least one of zooming and focusing can be performed by changing a distance between the lens groups.
Each of the lens groups is composed of at least one lens element,
The lens group arranged on the most image side of the lens group is composed of one lens element,
The energy reflectance with respect to d-line of at least one lens surface of the lens elements constituting the lens group disposed on the most image side is the reflectance with respect to d-line of all lens surfaces of the lens elements included in the lens system. A lens system characterized by the lowest,
An image sensor that receives an optical image formed by the lens system and converts it into an electrical image signal.
ここに開示された技術によれば、特定の条件を満足するレンズ系において、安価にゴーストの発生を抑制することができる。 According to the technology disclosed herein, it is possible to suppress the generation of ghosts at a low cost in a lens system that satisfies specific conditions.
<実施の形態1>
図1は、実施の形態1に係るズームレンズ系のレンズ配置図であり、無限遠合焦状態にあるズームレンズ系を表している。
<Embodiment 1>
FIG. 1 is a lens arrangement diagram of the zoom lens system according to Embodiment 1, and represents the zoom lens system in an infinite focus state.
図1において、(a)図は広角端(最短焦点距離状態:焦点距離fW)のレンズ構成、(b)図は中間位置(中間焦点距離状態:焦点距離fM=√(fW*fT))のレンズ構成、(c)図は望遠端(最長焦点距離状態:焦点距離fT)のレンズ構成をそれぞれ表している。また図1において、(a)図と(b)図との間に設けられた折れ線の矢印は、上から順に、広角端、中間位置、望遠端の各状態におけるレンズ群の位置を結んで得られる直線である。広角端と中間位置との間、中間位置と望遠端との間は、単純に直線で接続されているだけであり、実際の各レンズ群の動きとは異なる。 1A shows a lens configuration at the wide-angle end (shortest focal length state: focal length f W ), and FIG. 1B shows an intermediate position (intermediate focal length state: focal length f M = √ (f W * f). The lens configuration of T )) and (c) show the lens configuration at the telephoto end (longest focal length state: focal length f T ). Further, in FIG. 1, the broken line arrows provided between FIGS. 1A and 1B are obtained by connecting the positions of the lens groups in the wide-angle end, the intermediate position, and the telephoto end in order from the top. Straight line. The wide-angle end and the intermediate position, and the intermediate position and the telephoto end are simply connected by a straight line, which is different from the actual movement of each lens group.
さらに図1において、レンズ群に付された矢印は、無限遠合焦状態から近接物体合焦状態へのフォーカシングを表す。すなわち、図1では、後述する第4レンズ群G4が無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に移動する方向を示している。なお、図1では、(a)図に各レンズ群の符号が記載されているため、便宜上、この各レンズ群の符号の下部にフォーカシングを表す矢印を付しているが、各ズーミング状態において、フォーカシングの際に各レンズ群が移動する方向は、後に具体的に説明する。 Further, in FIG. 1, an arrow attached to the lens group represents focusing from an infinitely focused state to a close object focused state. That is, FIG. 1 shows a direction in which a later-described fourth lens group G4 moves during focusing from the infinite focus state to the close object focus state. In FIG. 1, since the reference numerals of the respective lens groups are shown in FIG. 1A, for the sake of convenience, an arrow indicating focusing is attached below the reference numerals of the respective lens groups. However, in each zooming state, The direction in which each lens group moves during focusing will be described in detail later.
実施の形態1に係るズームレンズ系は、物体側から像側へと順に、正のパワーを有する第1レンズ群G1と、負のパワーを有する第2レンズ群G2と、正のパワーを有する第3レンズ群G3と、負のパワーを有する第4レンズ群G4と、負のパワーを有する第5レンズ群G5と、正のパワーを有する第6レンズ群G6とを備える。実施の形態1に係るズームレンズ系では、ズーミングに際して、各レンズ群の間隔、すなわち、前記第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、第4レンズ群G4と第5レンズ群G5との間隔、及び第5レンズ群G5と第6レンズ群G6との間隔がいずれも変化するように、第2レンズ群G2、第4レンズ群G4及び第5レンズ群G5が光軸に沿った方向にそれぞれ移動する。実施の形態1に係るズームレンズ系は、これら各レンズ群を所望のパワー配置にすることにより、高い光学性能を保持しつつ、レンズ系全体の小型化を可能にしている。 The zoom lens system according to Embodiment 1 includes, in order from the object side to the image side, a first lens group G1 having a positive power, a second lens group G2 having a negative power, and a first lens group having a positive power. A third lens group G3; a fourth lens group G4 having negative power; a fifth lens group G5 having negative power; and a sixth lens group G6 having positive power. In the zoom lens system according to Embodiment 1, during zooming, the distance between the lens groups, that is, the distance between the first lens group G1 and the second lens group G2, the second lens group G2 and the third lens group G3, The distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, and the distance between the fifth lens group G5 and the sixth lens group G6. Also, the second lens group G2, the fourth lens group G4, and the fifth lens group G5 move in the direction along the optical axis so as to change. In the zoom lens system according to Embodiment 1, by making these lens groups have a desired power arrangement, the entire lens system can be reduced in size while maintaining high optical performance.
なお図1において、特定の面に付されたアスタリスク*は、該面が非球面であることを示している。また図1において、各レンズ群の符号に付された記号(+)及び記号(-)は、各レンズ群のパワーの符号に対応する。また各図において、最も右側に記載された直線は、像面Sの位置を表す。 In FIG. 1, an asterisk * attached to a specific surface indicates that the surface is aspherical. In FIG. 1, a symbol (+) and a symbol (−) attached to a symbol of each lens group correspond to a power symbol of each lens group. In each figure, the straight line described on the rightmost side represents the position of the image plane S.
図1に示すように、第1レンズ群G1は、物体側から像側へと順に、両凸形状の第1レンズ素子L1と、物体側に凸面を向けた負メニスカス形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第2レンズ素子L2と第3レンズ素子L3とは接合されている。 As shown in FIG. 1, the first lens group G1 includes, in order from the object side to the image side, a biconvex first lens element L1 and a negative meniscus second lens element L2 with a convex surface facing the object side. And a positive meniscus third lens element L3 having a convex surface facing the object side. Among these, the second lens element L2 and the third lens element L3 are cemented.
第2レンズ群G2は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第4レンズ素子L4と、物体側に凸面を向けた正メニスカス形状の第5レンズ素子L5と、両凹形状の第6レンズ素子L6とからなる。これらのうち、第4レンズ素子L4と第5レンズ素子L5とは接合されている。 The second lens group G2 includes, in order from the object side to the image side, a negative meniscus fourth lens element L4 with a convex surface facing the object side, and a positive meniscus fifth lens element L5 with a convex surface facing the object side. And a biconcave sixth lens element L6. Among these, the fourth lens element L4 and the fifth lens element L5 are cemented.
第3レンズ群G3は、物体側から像側へと順に、両凸形状の第7レンズ素子L7と、物体側に凸面を向けた負メニスカス形状の第8レンズ素子L8と、物体側に凸面を向けた正メニスカス形状の第9レンズ素子L9と、両凸形状の第10レンズ素子L10と、像側に凸面を向けた負メニスカス形状の第11レンズ素子L11とからなる。これらのうち、第8レンズ素子L8と第9レンズ素子L9とは接合されており、第10レンズ素子L10と第11レンズ素子L11とは接合されている。また、第7レンズ素子L7は、その両面が非球面であり、第10レンズ素子L10は、その物体側面が非球面である。さらに、第7レンズ素子L7と第8レンズ素子L8との間には、開口絞りAが設けられている。 The third lens group G3 includes, in order from the object side to the image side, a biconvex seventh lens element L7, a negative meniscus eighth lens element L8 with a convex surface facing the object side, and a convex surface facing the object side. It comprises a positive meniscus ninth lens element L9 directed, a biconvex tenth lens element L10, and a negative meniscus eleventh lens element L11 with a convex surface facing the image side. Among these, the eighth lens element L8 and the ninth lens element L9 are cemented, and the tenth lens element L10 and the eleventh lens element L11 are cemented. The seventh lens element L7 has two aspheric surfaces, and the tenth lens element L10 has an aspheric object side surface. Further, an aperture stop A is provided between the seventh lens element L7 and the eighth lens element L8.
第4レンズ群G4は、物体側に凸面を向けた負メニスカス形状の第12レンズ素子L12のみからなる。 The fourth lens group G4 comprises solely a negative meniscus twelfth lens element L12 with the convex surface facing the object side.
第5レンズ群G5は、両凹形状の第13レンズ素子L13のみからなる。 The fifth lens group G5 comprises solely a bi-concave thirteenth lens element L13.
第6レンズ群G6は、両凸形状の第14レンズ素子L14のみからなる。 The sixth lens group G6 comprises solely a biconvex fourteenth lens element L14.
なお、実施の形態1に係るズームレンズ系では、第3レンズ群G3中の第10レンズ素子L10及び第11レンズ素子L11が、後述する、像のぶれを光学的に補正するために光軸に対して垂直方向に移動する像ぶれ補正レンズ群に相当する。 In the zoom lens system according to Embodiment 1, the tenth lens element L10 and the eleventh lens element L11 in the third lens group G3 are arranged on the optical axis to optically correct image blur, which will be described later. This corresponds to an image blur correction lens group that moves in the vertical direction.
実施の形態1に係るズームレンズ系において、撮像時の広角端から望遠端へのズーミングの際に、第2レンズ群G2は、単調に像側へ移動し、第4レンズ群G4は、像側に凸の軌跡を描いて移動し、第5レンズ群G5は、略単調に物体側へ移動し、第1レンズ群G1、第3レンズ群G3及び第6レンズ群G6は、像面Sに対して固定されている。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔及び第5レンズ群G5と第6レンズ群G6との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔及び第4レンズ群G4と第5レンズ群G5との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が変化するように、第2レンズ群G2、第4レンズ群G4及び第5レンズ群G5が光軸に沿ってそれぞれ移動する。 In the zoom lens system according to Embodiment 1, during zooming from the wide-angle end to the telephoto end during imaging, the second lens group G2 monotonously moves toward the image side, and the fourth lens group G4 moves toward the image side. The fifth lens group G5 moves to the object side substantially monotonously, and the first lens group G1, the third lens group G3, and the sixth lens group G6 move relative to the image plane S. Is fixed. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 and the distance between the fifth lens group G5 and the sixth lens group G6 increase, and the second lens group G2 and the third lens group G3 And the fourth lens group G4 and the fifth lens group G5 are decreased, and the distance between the third lens group G3 and the fourth lens group G4 is changed. The group G4 and the fifth lens group G5 move along the optical axis.
さらに実施の形態1に係るズームレンズ系において、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4は、いずれのズーミング状態でも光軸に沿って像側へ移動する。 Furthermore, in the zoom lens system according to Embodiment 1, the fourth lens group G4 moves toward the image side along the optical axis in any zooming state when focusing from the infinitely focused state to the close object focused state. Moving.
次に、実施の形態1に係るズームレンズ系を具体的に実施した数値実施例1を説明する。なお、数値実施例1において、表中の長さの単位はすべて「mm」であり、画角の単位はすべて「°」である。また、数値実施例1において、rは曲率半径、dは面間隔、ndはd線に対する屈折率、νdはd線に対するアッベ数である。また、数値実施例1において、*印を付した面は非球面であり、非球面形状は次式(AC)で定義している。
Z:光軸からの高さがhの非球面上の点から、非球面頂点の接平面までの距離、
h:光軸からの高さ、
r:頂点曲率半径、
κ:円錐定数、
An:n次の非球面係数
である。
Next, Numerical Example 1 in which the zoom lens system according to Embodiment 1 is specifically implemented will be described. In Numerical Example 1, the units of length in the table are all “mm”, and the units of angle of view are all “°”. In Numerical Example 1, r is a radius of curvature, d is a surface interval, nd is a refractive index with respect to the d line, and νd is an Abbe number with respect to the d line. In Numerical Example 1, the surface marked with * is an aspheric surface, and the aspheric surface shape is defined by the following equation (AC).
Z: distance from a point on the aspheric surface having a height h from the optical axis to the tangent plane of the aspheric vertex,
h: height from the optical axis,
r: vertex radius of curvature,
κ: conic constant,
An: n-order aspherical coefficient.
図2は、数値実施例1に係るズームレンズ系の無限遠合焦状態の縦収差図である。 FIG. 2 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 in a focused state at infinity.
図3は、数値実施例1に係るズームレンズ系の近接物体合焦状態の縦収差図である。なお、数値実施例1における物体距離は、1887mmである。 FIG. 3 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 in the close object in-focus state. The object distance in Numerical Example 1 is 1887 mm.
各縦収差図において、(a)図は広角端、(b)図は中間位置、(c)図は望遠端における各収差を表す。各縦収差図は、左側から順に、球面収差(SA(mm))、非点収差(AST(mm))、歪曲収差(DIS(%))を示す。球面収差図において、縦軸はFナンバー(図中、Fで示す)を表し、実線はd線(波長:587.6nm、d-line)、短破線はF線(波長:486.1nm、F-line)、長破線はC線(波長:656.3nm、C-line)の特性である。非点収差図において、縦軸は像高(図中、Hで示す)を表し、実線はサジタル平面(図中、sで示す)、破線はメリディオナル平面(図中、mで示す)の特性である。歪曲収差図において、縦軸は像高(図中、Hで示す)を表す。 In each longitudinal aberration diagram, (a) shows the aberration at the wide angle end, (b) shows the intermediate position, and (c) shows the aberration at the telephoto end. Each longitudinal aberration diagram shows spherical aberration (SA (mm)), astigmatism (AST (mm)), and distortion (DIS (%)) in order from the left side. In the spherical aberration diagram, the vertical axis represents the F number (indicated by F in the figure), the solid line is the d line (wavelength: 587.6 nm, d-line), and the short broken line is the F line (wavelength: 486.1 nm, F -Line) and the long broken line are the characteristics of the C-line (wavelength: 656.3 nm, C-line). In the astigmatism diagram, the vertical axis represents the image height (indicated by H in the figure), the solid line represents the sagittal plane (indicated by s), and the broken line represents the meridional plane (indicated by m in the figure). is there. In the distortion diagram, the vertical axis represents the image height (indicated by H in the figure).
図4は、数値実施例1に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。 4 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of the zoom lens system according to Numerical Example 1. FIG.
横収差図において、上段3つの収差図は、望遠端における像ぶれ補正を行っていない基本状態、下段3つの収差図は、像ぶれ補正レンズ群を光軸と垂直な方向に所定量移動させた望遠端における像ぶれ補正状態に、それぞれ対応する。基本状態の各横収差図のうち、上段は最大像高の70%の像点における横収差、中段は軸上像点における横収差、下段は最大像高の-70%の像点における横収差に、それぞれ対応する。像ぶれ補正状態の各横収差図のうち、上段は最大像高の70%の像点における横収差、中段は軸上像点における横収差、下段は最大像高の-70%の像点における横収差に、それぞれ対応する。また各横収差図において、横軸は瞳面上での主光線からの距離を表し、実線はd線(d-line)、短破線はF線(F-line)、長破線はC線(C-line)の特性である。なお各横収差図において、メリディオナル平面を、第1レンズ群G1の光軸と第3レンズ群G3の光軸とを含む平面としている。 In the lateral aberration diagram, the upper three aberration diagrams show the basic state in which image blur correction is not performed at the telephoto end, and the lower three aberration diagrams show the image blur correction lens group moved by a predetermined amount in a direction perpendicular to the optical axis. Each corresponds to the image blur correction state at the telephoto end. Of the lateral aberration diagrams in the basic state, the upper row shows the lateral aberration at the image point of 70% of the maximum image height, the middle row shows the lateral aberration at the axial image point, and the lower row shows the lateral aberration at the image point of -70% of the maximum image height. Respectively. Of each lateral aberration diagram in the image blur correction state, the upper stage is the lateral aberration at the image point of 70% of the maximum image height, the middle stage is the lateral aberration at the axial image point, and the lower stage is at the image point of -70% of the maximum image height. Each corresponds to lateral aberration. In each lateral aberration diagram, the horizontal axis represents the distance from the principal ray on the pupil plane, the solid line is the d line (d-line), the short broken line is the F line (F-line), and the long broken line is the C line ( C-line) characteristics. In each lateral aberration diagram, the meridional plane is a plane including the optical axis of the first lens group G1 and the optical axis of the third lens group G3.
なお、数値実施例1のズームレンズ系について、望遠端における、像ぶれ補正状態での像ぶれ補正レンズ群の光軸と垂直な方向への移動量は、0.300mmである。 In the zoom lens system of Numerical Example 1, the moving amount in the direction perpendicular to the optical axis of the image blur correction lens group in the image blur correction state at the telephoto end is 0.300 mm.
撮影距離が∞で望遠端において、ズームレンズ系が所定の角度だけ傾いた場合の像偏心量は、像ぶれ補正レンズ群が光軸と垂直な方向に上記の各値だけ平行移動するときの像偏心量に等しい。 When the shooting distance is ∞ and the zoom lens system is tilted by a predetermined angle at the telephoto end, the image decentering amount is the image when the image blur correction lens group translates by the above values in the direction perpendicular to the optical axis. Equal to eccentricity.
横収差図から明らかなように、軸上像点における横収差の対称性は良好であることがわかる。また、+70%像点における横収差と-70%像点における横収差とを基本状態で比較すると、いずれも湾曲度が小さく、収差曲線の傾斜がほぼ等しいことから、偏心コマ収差、偏心非点収差が小さいことがわかる。このことは、像ぶれ補正状態であっても充分な結像性能が得られていることを意味している。また、ズームレンズ系の像ぶれ補正角が同じ場合には、ズームレンズ系全体の焦点距離が短くなるにつれて、像ぶれ補正に必要な平行移動量が減少する。したがって、いずれのズーム位置であっても、所定の角度までの像ぶれ補正角に対して、結像特性を低下させることなく充分な像ぶれ補正を行うことが可能である。 As is apparent from the lateral aberration diagram, it is understood that the symmetry of the lateral aberration at the axial image point is good. In addition, when the lateral aberration at the + 70% image point and the lateral aberration at the −70% image point are compared in the basic state, the curvature is small and the inclinations of the aberration curves are almost equal. It can be seen that the aberration is small. This means that sufficient imaging performance is obtained even in the image blur correction state. When the image blur correction angle of the zoom lens system is the same, the amount of parallel movement required for image blur correction decreases as the focal length of the entire zoom lens system decreases. Therefore, at any zoom position, it is possible to perform sufficient image blur correction without deteriorating the imaging characteristics with respect to the image blur correction angle up to a predetermined angle.
(数値実施例1)
数値実施例1のズームレンズ系は、図1に示した実施の形態1に対応する。数値実施例1のズームレンズ系の面データを表1に、非球面データを表2に、無限遠合焦状態での各種データを表3に、近接物体合焦状態での各種データを表4に示す。
(Numerical example 1)
The zoom lens system of Numerical Example 1 corresponds to Embodiment 1 shown in FIG. Table 1 shows surface data of the zoom lens system of Numerical Example 1, Table 2 shows aspheric data, Table 3 shows various data in the infinite focus state, and Table 4 shows various data in the close object in focus state. Shown in
表 1(面データ)
面番号 r d nd vd 有効半径
物面 ∞
1 52.40790 4.16040 1.48749 70.4 15.284
2 -409.46720 0.15000 14.986
3 38.20510 1.00000 1.85026 32.3 14.051
4 25.19230 5.00000 1.49700 81.6 13.459
5 129.07560 可変 13.129
6 3610.88200 0.80000 1.80610 33.3 8.154
7 13.09000 2.75540 1.94595 18.0 7.378
8 25.71900 1.82700 6.973
9 -42.76750 0.70000 1.80420 46.5 6.914
10 86.12560 可変 6.866
11* 17.89940 4.44090 1.73077 40.5 8.919
12* -551.13770 1.50000 8.705
13(絞り) ∞ 1.84180 8.312
14 47.14250 0.80000 1.90366 31.3 7.712
15 12.32910 3.27170 1.48749 70.4 7.201
16 33.57730 1.60000 7.077
17* 21.15520 4.77640 1.58913 61.3 7.251
18 -20.47470 0.70000 1.76182 26.6 7.095
19 -32.11930 可変 7.096
20 41.83650 0.70000 1.77250 49.6 6.404
21 15.88470 可変 6.160
22 -25.74280 0.80000 1.80420 46.5 7.366
23 157.00800 可変 7.787
24 48.74570 3.86270 1.84666 23.8 10.768
25 -62.66020 (BF) 10.901
像面 ∞
Table 1 (surface data)
Surface number r d nd vd Effective radius
Object ∞
1 52.40790 4.16040 1.48749 70.4 15.284
2 -409.46720 0.15000 14.986
3 38.20510 1.00000 1.85026 32.3 14.051
4 25.19230 5.00000 1.49700 81.6 13.459
5 129.07560 Variable 13.129
6 3610.88200 0.80000 1.80610 33.3 8.154
7 13.09000 2.75540 1.94595 18.0 7.378
8 25.71900 1.82700 6.973
9 -42.76750 0.70000 1.80420 46.5 6.914
10 86.12560 Variable 6.866
11 * 17.89940 4.44090 1.73077 40.5 8.919
12 * -551.13770 1.50000 8.705
13 (Aperture) ∞ 1.84 180 8.312
14 47.14250 0.80000 1.90366 31.3 7.712
15 12.32910 3.27170 1.48749 70.4 7.201
16 33.57730 1.60000 7.077
17 * 21.15520 4.77640 1.58913 61.3 7.251
18 -20.47470 0.70000 1.76182 26.6 7.095
19 -32.11930 Variable 7.096
20 41.83650 0.70000 1.77250 49.6 6.404
21 15.88470 Variable 6.160
22 -25.74280 0.80000 1.80420 46.5 7.366
23 157.00800 Variable 7.787
24 48.74570 3.86270 1.84666 23.8 10.768
25 -62.66020 (BF) 10.901
Image plane ∞
表 2(非球面データ)
第11面
K= 0.00000E+00, A4=-1.40838E-05, A6=-3.36993E-08, A8=-7.27662E-10
A10=-1.68262E-11
第12面
K= 0.00000E+00, A4= 5.37846E-06, A6= 6.25748E-08, A8=-3.61395E-09
A10= 3.00574E-12
第17面
K= 0.00000E+00, A4=-2.54955E-05, A6= 1.56273E-07, A8=-6.17885E-09
A10= 5.91994E-11
Table 2 (Aspheric data)
11th surface K = 0.00000E + 00, A4 = -1.40838E-05, A6 = -3.36993E-08, A8 = -7.27662E-10
A10 = -1.68262E-11
12th surface K = 0.00000E + 00, A4 = 5.37846E-06, A6 = 6.25748E-08, A8 = -3.61395E-09
A10 = 3.00574E-12
17th surface K = 0.00000E + 00, A4 = -2.54955E-05, A6 = 1.56273E-07, A8 = -6.17885E-09
A10 = 5.91994E-11
表 3(無限遠合焦状態での各種データ)
ズーム比 4.12019
広角 中間 望遠
焦点距離 41.1999 83.6183 169.7513
Fナンバー 4.12035 4.94425 5.76854
画角 15.0728 7.2789 3.5687
像高 10.8150 10.8150 10.8150
レンズ全長 113.00 113.00 113.00
BF 15.05 15.05 15.05
d5 1.2806 16.2389 29.2395
d10 29.1045 14.1462 1.1455
d19 2.6014 6.5190 2.6000
d21 22.7760 16.2979 15.5666
d23 1.5000 4.0605 8.7109
ズームレンズ群データ
群 始面 焦点距離
1 1 65.47364
2 6 -18.35878
3 11 21.26021
4 20 -33.54315
5 22 -27.44782
6 24 32.90549
Table 3 (Various data in focus at infinity)
Zoom ratio 4.12019
Wide angle Medium telephoto Focal length 41.1999 83.6183 169.7513
F number 4.12035 4.94425 5.76854
Angle of view 15.0728 7.2789 3.5687
Image height 10.8150 10.8150 10.8150
Total lens length 113.00 113.00 113.00
BF 15.05 15.05 15.05
d5 1.2806 16.2389 29.2395
d10 29.1045 14.1462 1.1455
d19 2.6014 6.5190 2.6000
d21 22.7760 16.2979 15.5666
d23 1.5000 4.0605 8.7109
Zoom lens group data Group Start surface Focal length 1 1 65.47364
2 6 -18.35878
3 11 21.26021
4 20 -33.54315
5 22 -27.44782
6 24 32.90549
表 4(近接物体合焦状態での各種データ)
ズーム比 3.66941
広角 中間 望遠
物体距離 1887.0000 1887.0000 1887.0000
焦点距離 40.6198 79.4226 149.0505
Fナンバー 4.13170 4.96652 5.89019
画角 15.0401 7.2497 3.4904
像高 10.8150 10.8150 10.8150
レンズ全長 113.00 113.00 113.00
BF 15.05 15.05 15.05
d5 1.2806 16.2389 29.2395
d10 29.1045 14.1462 1.1455
d19 2.7907 7.4215 5.9664
d21 22.5867 15.3954 12.2002
d23 1.5000 4.0605 8.7109
ズームレンズ群データ
群 始面 焦点距離
1 1 65.47364
2 6 -18.35878
3 11 21.26021
4 20 -33.54315
5 22 -27.44782
6 24 32.90549
Table 4 (Various data in the state of focusing on a close object)
Zoom ratio 3.66941
Wide angle Medium telephoto Object distance 1887.0000 1887.0000 1887.0000
Focal length 40.6198 79.4226 149.0505
F number 4.13170 4.96652 5.89019
Angle of view 15.0401 7.2497 3.4904
Image height 10.8150 10.8150 10.8150
Total lens length 113.00 113.00 113.00
BF 15.05 15.05 15.05
d5 1.2806 16.2389 29.2395
d10 29.1045 14.1462 1.1455
d19 2.7907 7.4215 5.9664
d21 22.5867 15.3954 12.2002
d23 1.5000 4.0605 8.7109
Zoom lens group data Group Start surface Focal length 1 1 65.47364
2 6 -18.35878
3 11 21.26021
4 20 -33.54315
5 22 -27.44782
6 24 32.90549
<実施の形態2>
図5は、実施の形態2に係るインナーフォーカスレンズの無限遠合焦状態のレンズ配置図である。
<Embodiment 2>
FIG. 5 is a lens arrangement diagram of the inner focus lens according to Embodiment 2 in an infinitely focused state.
実施の形態2に係るインナーフォーカスレンズは、物体側から像側へ順に、正のパワーを有する第1レンズ群G1と、負のパワーを有する第2レンズ群G2と、正のパワーを有する第3レンズ群G3とからなる。 The inner focus lens according to Embodiment 2 includes, in order from the object side to the image side, a first lens group G1 having a positive power, a second lens group G2 having a negative power, and a third lens having a positive power. It consists of a lens group G3.
第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた正メニスカス形状の第1レンズ素子L1と、像側に強い曲率の凹面を有する負メニスカス形状の第2レンズ素子L2と、開口絞りAと、物体側に強い曲率の凹面を有する両凹形状の第3レンズ素子L3と両凸形状の第4レンズ素子L4との接合レンズ素子と、像側面が非球面である両凸形状の第5レンズ素子L5とで構成される。 The first lens group G1 includes, in order from the object side to the image side, a positive meniscus first lens element L1 having a convex surface facing the object side, and a negative meniscus second lens having a concave surface with a strong curvature on the image side. A cemented lens element of an element L2, an aperture stop A, a biconcave third lens element L3 having a concave surface with a strong curvature on the object side, and a biconvex fourth lens element L4, and an image side surface is aspheric. It is composed of a biconvex fifth lens element L5.
第2レンズ群G2は、両面が非球面であり、像側に強い曲率の凹面を有する両凹形状の第6レンズ素子L6のみで構成される。該第2レンズ群G2を光軸に沿って像側へ移動させることにより、無限遠物体側から近距離物体側へのフォーカシングを行う。 The second lens group G2 is composed of only a biconcave sixth lens element L6 having aspherical surfaces on both sides and a concave surface with a strong curvature on the image side. By moving the second lens group G2 to the image side along the optical axis, focusing from the infinity object side to the near object side is performed.
第3レンズ群G3は、両凸形状の第7レンズ素子L7のみで構成される。 The third lens group G3 includes only a biconvex seventh lens element L7.
以下、実施の形態2に係るインナーフォーカスレンズを具体的に実施した数値実施例2を説明する。なお、数値実施例2において、表中の長さの単位はすべて「mm」であり、画角の単位はすべて「°」である。数値実施例2において、「面番号」は物体側から数えてi番目の面であることを、「r」は物体側からi番目の面の近軸曲率半径を、「d」は第i面と第i+1面との間の軸上面間隔を、「nd」は物体側に第i面を有する硝材のd線に対する屈折率を、「vd」は物体側に第i面を有する硝材のd線に対するアッベ数をそれぞれ示す。「可変」は軸上面間隔が可変間隔であることを示す。また、面番号iの後に「*」を付した面は非球面であり、非球面形状は前記式(AC)で定義している。 Hereinafter, Numerical Example 2 in which the inner focus lens according to Embodiment 2 is specifically implemented will be described. In Numerical Example 2, the units of length in the table are all “mm”, and the units of angle of view are all “°”. In Numerical Example 2, “surface number” is the i-th surface counted from the object side, “r” is the paraxial radius of curvature of the i-th surface from the object side, and “d” is the i-th surface. Is the refractive index with respect to the d-line of the glass material having the i-th surface on the object side, and “vd” is the d-line of the glass material having the i-th surface on the object side. The Abbe numbers for are respectively shown. “Variable” indicates that the shaft upper surface interval is a variable interval. Further, the surface with “*” after the surface number i is an aspherical surface, and the aspherical shape is defined by the formula (AC).
図6は、数値実施例2に係るインナーフォーカスレンズの無限遠合焦状態の縦収差図である。各縦収差図は、左側から順に、球面収差、非点収差、歪曲収差を示す。球面収差図において、縦軸に開放Fナンバーとの割合、横軸にデフォーカスをとり、実線はd線(d-line)、長破線はC線(C-line)、短破線はF線(F-line)に対する球面収差をそれぞれ表わす。非点収差図において、縦軸は像高、横軸はフォーカスで、実線はサジタル像面(図中、sで示す)、破線はメリディオナル像面(図中、mで示す)の非点収差を表わす。歪曲収差図において、縦軸は像高で、歪曲収差を%で表わす。 FIG. 6 is a longitudinal aberration diagram of the inner focus lens according to Numerical Example 2 in a focused state at infinity. Each longitudinal aberration diagram shows spherical aberration, astigmatism, and distortion aberration in order from the left side. In the spherical aberration diagram, the vertical axis represents the ratio to the open F number, the horizontal axis represents defocus, the solid line is d-line, the long broken line is C line (C-line), and the short broken line is F line ( F-line) represents spherical aberration. In the astigmatism diagram, the vertical axis is the image height, the horizontal axis is the focus, the solid line is the sagittal image plane (indicated by s), and the broken line is the astigmatism of the meridional image plane (indicated by m in the figure). Represent. In the distortion diagram, the vertical axis represents the image height, and the distortion is expressed in%.
(数値実施例2)
数値実施例2のインナーフォーカスレンズは、図5に示した実施の形態2に対応する。数値実施例2のインナーフォーカスレンズのレンズデータを表5に示す。
(Numerical example 2)
The inner focus lens of Numerical Example 2 corresponds to Embodiment 2 shown in FIG. Table 5 shows lens data of the inner focus lens of Numerical Example 2.
表 5(レンズデータ)
面データ
面番号 r d nd vd 有効半径
物面 ∞
1 18.74540 4.20230 1.88300 40.8 10.699
2 68.34600 0.58830 9.850
3 39.42090 1.20000 1.51198 54.6 8.840
4 10.02710 5.97820 7.316
5(絞り) ∞ 5.64000 6.953
6 -11.03380 1.00000 1.80518 25.5 7.078
7 34.67830 6.54960 1.88300 40.8 8.805
8 -17.84130 0.10000 9.665
9 37.38830 4.20550 1.80139 45.4 10.100
10* -32.91630 可変 10.092
11* -126.83080 1.00000 1.68893 31.2 9.000
12* 27.17400 可変 9.092
13 114.19150 3.92620 1.83480 42.7 10.974
14 -33.79120 (BF) 11.194
像面 ∞
非球面データ
第10面
K= 0.00000E+00, A4= 2.11487E-05, A6=-4.74672E-08, A8= 2.19448E-10
A10=-5.03837E-13, A12= 0.00000E+00
第11面
K= 0.00000E+00, A4= 3.62979E-05, A6=-4.48579E-07, A8= 2.76766E-09
A10=-7.32635E-12, A12= 2.28019E-15
第12面
K= 0.00000E+00, A4= 4.29240E-05, A6=-4.05961E-07, A8= 2.90164E-09
A10=-1.27839E-11, A12= 3.16035E-14
各種データ
焦点距離 25.6692
Fナンバー 1.44319
画角 22.9335
像高 10.8150
レンズ全長 60.5607
BF 18.03332
間隔データ
d0 ∞ 938 238
d10 1.9100 2.5773 4.5173
d12 6.2273 5.5599 3.6200
単レンズデータ
レンズ 始面 焦点距離
1 1 28.1345
2 3 -26.6341
3 6 -10.2953
4 7 14.1701
5 9 22.4406
6 11 -32.3981
7 13 31.6167
レンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 23.59025 29.46390 28.45049 28.34207
2 11 -32.39815 1.00000 0.48633 0.89580
3 13 31.61672 3.92620 1.67140 3.43160
レンズ群倍率
群 始面 ∞ 1000 300
1 1 0.00000 -0.02502 -0.09714
2 11 2.62843 2.61210 2.56276
3 13 0.41398 0.41324 0.41140
Table 5 (Lens data)
Surface data Surface number r d nd vd Effective radius
Object ∞
1 18.74540 4.20230 1.88300 40.8 10.699
2 68.34600 0.58830 9.850
3 39.42090 1.20000 1.51198 54.6 8.840
4 10.02710 5.97820 7.316
5 (Aperture) ∞ 5.64000 6.953
6 -11.03380 1.00000 1.80518 25.5 7.078
7 34.67830 6.54960 1.88300 40.8 8.805
8 -17.84130 0.10000 9.665
9 37.38830 4.20550 1.80139 45.4 10.100
10 * -32.91630 Variable 10.092
11 * -126.83080 1.00000 1.68893 31.2 9.000
12 * 27.17400 Variable 9.092
13 114.19150 3.92620 1.83480 42.7 10.974
14 -33.79120 (BF) 11.194
Image plane ∞
Aspheric data 10th surface K = 0.00000E + 00, A4 = 2.11487E-05, A6 = -4.74672E-08, A8 = 2.19448E-10
A10 = -5.03837E-13, A12 = 0.00000E + 00
11th surface K = 0.00000E + 00, A4 = 3.62979E-05, A6 = -4.48579E-07, A8 = 2.76766E-09
A10 = -7.32635E-12, A12 = 2.28019E-15
12th surface K = 0.00000E + 00, A4 = 4.29240E-05, A6 = -4.05961E-07, A8 = 2.90164E-09
A10 = -1.27839E-11, A12 = 3.16035E-14
Various data Focal length 25.6692
F number 1.44319
Angle of View 22.9335
Statue height 10.8150
Total lens length 60.5607
BF 18.03332
Interval data d0 ∞ 938 238
d10 1.9100 2.5773 4.5173
d12 6.2273 5.5599 3.6200
Single lens data Lens Start surface Focal length 1 1 28.1345
2 3 -26.6341
3 6 -10.2953
4 7 14.1701
5 9 22.4406
6 11 -32.3981
7 13 31.6167
Lens group data Group Start surface Focal length Lens composition length Front principal point position Rear principal point position 1 1 23.59025 29.46390 28.45049 28.34207
2 11 -32.39815 1.00000 0.48633 0.89580
3 13 31.61672 3.92620 1.67140 3.43160
Lens group magnification Group Start surface ∞ 1000 300
1 1 0.00000 -0.02502 -0.09714
2 11 2.62843 2.61210 2.56276
3 13 0.41398 0.41324 0.41140
<実施の形態3>
図7は、実施の形態3に係るズームレンズ系のレンズ配置図であり、無限遠合焦状態にあるズームレンズ系を表している。
<Embodiment 3>
FIG. 7 is a lens arrangement diagram of the zoom lens system according to Embodiment 3, and represents the zoom lens system in the infinitely focused state.
図7において、(a)図は広角端(最短焦点距離状態:焦点距離fW)のレンズ構成、(b)図は中間位置(中間焦点距離状態:焦点距離fM=√(fW*fT))のレンズ構成、(c)図は望遠端(最長焦点距離状態:焦点距離fT)のレンズ構成をそれぞれ表している。また図7において、(a)図と(b)図との間に設けられた折れ線の矢印は、上から順に、広角端、中間位置、望遠端の各状態におけるレンズ群の位置を結んで得られる直線である。広角端と中間位置との間、中間位置と望遠端との間は、単純に直線で接続されているだけであり、実際の各レンズ群の動きとは異なる。 7A shows a lens configuration at the wide angle end (shortest focal length state: focal length f W ), and FIG. 7B shows an intermediate position (intermediate focal length state: focal length f M = √ (f W * f). The lens configuration of T )) and (c) show the lens configuration at the telephoto end (longest focal length state: focal length f T ). In FIG. 7, the broken line arrows provided between FIGS. 7A and 7B are obtained by connecting the positions of the lens groups in the wide-angle end, intermediate position, and telephoto end states in order from the top. Straight line. The wide-angle end and the intermediate position, and the intermediate position and the telephoto end are simply connected by a straight line, which is different from the actual movement of each lens group.
さらに図7において、レンズ群に付された矢印は、無限遠合焦状態から近接物体合焦状態へのフォーカシングを表す。すなわち、図7では、後述する第3レンズ群G3が無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に移動する方向を示している。なお、図7では、(a)図に各レンズ群の符号が記載されているため、便宜上、この各レンズ群の符号の下部にフォーカシングを表す矢印を付しているが、各ズーミング状態において、フォーカシングの際に各レンズ群が移動する方向は、後に具体的に説明する。 Further, in FIG. 7, an arrow attached to the lens group represents focusing from an infinitely focused state to a close object focused state. That is, FIG. 7 shows a direction in which a third lens group G3, which will be described later, moves during focusing from the infinite focus state to the close object focus state. In FIG. 7, since the reference numerals of the respective lens groups are described in FIG. 7A, for convenience, an arrow indicating focusing is attached below the reference numerals of the respective lens groups. In each zooming state, The direction in which each lens group moves during focusing will be described in detail later.
実施の形態3に係るズームレンズ系は、物体側から像側へと順に、負のパワーを有する第1レンズ群G1と、正のパワーを有する第2レンズ群G2と、負のパワーを有する第3レンズ群G3と、正のパワーを有する第4レンズ群G4とを備える。実施の形態3に係るズームレンズ系では、ズーミングに際して、各レンズ群の間隔、すなわち、前記第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、及び第3レンズ群G3と第4レンズ群G4との間隔がいずれも変化するように、第1レンズ群G1、第2レンズ群G2及び第3レンズ群G3が光軸に沿った方向にそれぞれ移動する。実施の形態3に係るズームレンズ系は、これら各レンズ群を所望のパワー配置にすることにより、高い光学性能を保持しつつ、レンズ系全体の小型化を可能にしている。 The zoom lens system according to Embodiment 3 includes, in order from the object side to the image side, a first lens group G1 having negative power, a second lens group G2 having positive power, and a first lens group having negative power. 3 lens group G3 and 4th lens group G4 which has positive power are provided. In the zoom lens system according to Embodiment 3, during zooming, the distance between the lens groups, that is, the distance between the first lens group G1 and the second lens group G2, the second lens group G2 and the third lens group G3, The first lens group G1, the second lens group G2, and the third lens group G3 are in a direction along the optical axis so that the distance between the third lens group G3 and the fourth lens group G4 changes. Move to each. In the zoom lens system according to Embodiment 3, these lens groups are arranged in a desired power arrangement, so that the entire lens system can be reduced in size while maintaining high optical performance.
なお図7において、特定の面に付されたアスタリスク*は、該面が非球面であることを示している。また図7において、各レンズ群の符号に付された記号(+)及び記号(-)は、各レンズ群のパワーの符号に対応する。また各図において、最も右側に記載された直線は、像面Sの位置を表す。 In FIG. 7, an asterisk * attached to a specific surface indicates that the surface is aspherical. In FIG. 7, a symbol (+) and a symbol (−) attached to a symbol of each lens group correspond to a power symbol of each lens group. In each figure, the straight line described on the rightmost side represents the position of the image plane S.
図7に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、像側に凸面を向けた負メニスカス形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第1レンズ素子L1は、その像側面が非球面であり、第2レンズ素子L2は、その両面が非球面である。 As shown in FIG. 7, the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a negative meniscus having a convex surface facing the image side. It comprises a second lens element L2 having a shape and a third lens element L3 having a positive meniscus shape with a convex surface facing the object side. Among these, the first lens element L1 has an aspheric image side surface, and the second lens element L2 has both aspheric surfaces.
第2レンズ群G2は、物体側から像側へと順に、両凸形状の第4レンズ素子L4と、物体側に凸面を向けた負メニスカス形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6と、両凸形状の第7レンズ素子L7とからなる。これらのうち、第5レンズ素子L5と第6レンズ素子L6とは接合されている。また、第4レンズ素子L4は、その両面が非球面である。さらに、第4レンズ素子L4と第5レンズ素子L5との間には、開口絞りAが設けられている。 The second lens group G2 includes, in order from the object side to the image side, a biconvex fourth lens element L4, a negative meniscus fifth lens element L5 with a convex surface facing the object side, and a biconvex second lens element L5. 6 lens elements L6 and a biconvex seventh lens element L7. Among these, the fifth lens element L5 and the sixth lens element L6 are cemented. The fourth lens element L4 has two aspheric surfaces. Furthermore, an aperture stop A is provided between the fourth lens element L4 and the fifth lens element L5.
第3レンズ群G3は、物体側に凸面を向けた負メニスカス形状の第8レンズ素子L8のみからなる。この第8レンズ素子L8は、その両面が非球面である。 The third lens group G3 comprises solely a negative meniscus eighth lens element L8 with the convex surface facing the object side. The eighth lens element L8 has two aspheric surfaces.
第4レンズ群G4は、両凸形状の第9レンズ素子L9のみからなる。この第9レンズ素子L9は、その両面が非球面である。 The fourth lens group G4 comprises solely a biconvex ninth lens element L9. The ninth lens element L9 has two aspheric surfaces.
なお、実施の形態3に係るズームレンズ系では、第2レンズ群G2中の第7レンズ素子L7が、後述する、像のぶれを光学的に補正するために光軸に対して垂直方向に移動する像ぶれ補正レンズ群に相当する。 In the zoom lens system according to Embodiment 3, the seventh lens element L7 in the second lens group G2 moves in the direction perpendicular to the optical axis to optically correct image blur, which will be described later. This corresponds to the image blur correction lens group.
実施の形態3に係るズームレンズ系において、撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に凸の軌跡を描いて移動し、第2レンズ群G2は、単調に物体側へ移動し、第3レンズ群G3は、単調に僅かに物体側へ移動し、第4レンズ群G4は、像面Sに対して固定されている。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が減少し、第2レンズ群G2と第3レンズ群G3との間隔が増大し、第3レンズ群G3と第4レンズ群G4との間隔が変化するように、第1レンズ群G1、第2レンズ群G2及び第3レンズ群G3が光軸に沿ってそれぞれ移動する。 In the zoom lens system according to Embodiment 3, during zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves along a locus convex toward the image side, and the second lens group G2 Is monotonously moved to the object side, the third lens group G3 is monotonously slightly moved to the object side, and the fourth lens group G4 is fixed with respect to the image plane S. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 decreases, the distance between the second lens group G2 and the third lens group G3 increases, and the third lens group G3 and the fourth lens. The first lens group G1, the second lens group G2, and the third lens group G3 move along the optical axis so that the distance from the group G4 changes.
さらに実施の形態3に係るズームレンズ系において、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第3レンズ群G3は、いずれのズーミング状態でも光軸に沿って像側へ移動する。 Further, in the zoom lens system according to Embodiment 3, the third lens group G3 moves toward the image side along the optical axis in any zooming state during focusing from the infinitely focused state to the close object focused state. Moving.
次に、実施の形態3に係るズームレンズ系を具体的に実施した数値実施例3を説明する。なお、数値実施例3において、表中の長さの単位はすべて「mm」であり、画角の単位はすべて「°」である。また、数値実施例3において、rは曲率半径、dは面間隔、ndはd線に対する屈折率、νdはd線に対するアッベ数である。また、数値実施例3において、*印を付した面は非球面であり、非球面形状は前記式(AC)で定義している。 Next, Numerical Example 3 in which the zoom lens system according to Embodiment 3 is specifically implemented will be described. In Numerical Example 3, the unit of length in the table is “mm”, and the unit of angle of view is “°”. In Numerical Example 3, r is a radius of curvature, d is a surface interval, nd is a refractive index with respect to the d line, and νd is an Abbe number with respect to the d line. In Numerical Example 3, the surface marked with * is an aspherical surface, and the aspherical shape is defined by the formula (AC).
図8は、数値実施例3に係るズームレンズ系の無限遠合焦状態の縦収差図である。 FIG. 8 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 when the zoom lens system is in focus at infinity.
図9は、数値実施例3に係るズームレンズ系の近接物体合焦状態の縦収差図である。なお、数値実施例3における物体距離は、300mmである。 FIG. 9 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 in the close object in-focus state. In addition, the object distance in Numerical Example 3 is 300 mm.
各縦収差図において、(a)図は広角端、(b)図は中間位置、(c)図は望遠端における各収差を表す。各縦収差図は、左側から順に、球面収差(SA(mm))、非点収差(AST(mm))、歪曲収差(DIS(%))を示す。球面収差図において、縦軸はFナンバー(図中、Fで示す)を表し、実線はd線(d-line)、短破線はF線(F-line)、長破線はC線(C-line)の特性である。非点収差図において、縦軸は像高(図中、Hで示す)を表し、実線はサジタル平面(図中、sで示す)、破線はメリディオナル平面(図中、mで示す)の特性である。歪曲収差図において、縦軸は像高(図中、Hで示す)を表す。 In each longitudinal aberration diagram, (a) shows the aberration at the wide angle end, (b) shows the intermediate position, and (c) shows the aberration at the telephoto end. Each longitudinal aberration diagram shows spherical aberration (SA (mm)), astigmatism (AST (mm)), and distortion (DIS (%)) in order from the left side. In the spherical aberration diagram, the vertical axis represents the F number (indicated by F in the figure), the solid line is the d line (d-line), the short broken line is the F line (F-line), and the long broken line is the C line (C- line). In the astigmatism diagram, the vertical axis represents the image height (indicated by H in the figure), the solid line represents the sagittal plane (indicated by s), and the broken line represents the meridional plane (indicated by m in the figure). is there. In the distortion diagram, the vertical axis represents the image height (indicated by H in the figure).
図10は、数値実施例3に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。 FIG. 10 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of the zoom lens system according to Numerical Example 3.
横収差図において、上段3つの収差図は、望遠端における像ぶれ補正を行っていない基本状態、下段3つの収差図は、像ぶれ補正レンズ群を光軸と垂直な方向に所定量移動させた望遠端における像ぶれ補正状態に、それぞれ対応する。基本状態の各横収差図のうち、上段は最大像高の70%の像点における横収差、中段は軸上像点における横収差、下段は最大像高の-70%の像点における横収差に、それぞれ対応する。像ぶれ補正状態の各横収差図のうち、上段は最大像高の70%の像点における横収差、中段は軸上像点における横収差、下段は最大像高の-70%の像点における横収差に、それぞれ対応する。また各横収差図において、横軸は瞳面上での主光線からの距離を表し、実線はd線(d-line)、短破線はF線(F-line)、長破線はC線(C-line)の特性である。なお各横収差図において、メリディオナル平面を、第1レンズ群G1の光軸と第2レンズ群G2の光軸とを含む平面としている。 In the lateral aberration diagram, the upper three aberration diagrams show the basic state in which image blur correction is not performed at the telephoto end, and the lower three aberration diagrams show the image blur correction lens group moved by a predetermined amount in a direction perpendicular to the optical axis. Each corresponds to the image blur correction state at the telephoto end. Of the lateral aberration diagrams in the basic state, the upper row shows the lateral aberration at the image point of 70% of the maximum image height, the middle row shows the lateral aberration at the axial image point, and the lower row shows the lateral aberration at the image point of -70% of the maximum image height. Respectively. Of each lateral aberration diagram in the image blur correction state, the upper stage is the lateral aberration at the image point of 70% of the maximum image height, the middle stage is the lateral aberration at the axial image point, and the lower stage is at the image point of -70% of the maximum image height. Each corresponds to lateral aberration. In each lateral aberration diagram, the horizontal axis represents the distance from the principal ray on the pupil plane, the solid line is the d line (d-line), the short broken line is the F line (F-line), and the long broken line is the C line ( C-line) characteristics. In each lateral aberration diagram, the meridional plane is a plane including the optical axis of the first lens group G1 and the optical axis of the second lens group G2.
なお、数値実施例3のズームレンズ系について、望遠端における、像ぶれ補正状態での像ぶれ補正レンズ群の光軸と垂直な方向への移動量は、0.187mmである。 In the zoom lens system of Numerical Example 3, the amount of movement of the image blur correction lens group in the image blur correction state at the telephoto end in the direction perpendicular to the optical axis is 0.187 mm.
撮影距離が∞で望遠端において、ズームレンズ系が0.3°だけ傾いた場合の像偏心量は、像ぶれ補正レンズ群が光軸と垂直な方向に上記の各値だけ平行移動するときの像偏心量に等しい。 When the shooting distance is ∞ and the zoom lens system is tilted by 0.3 ° at the telephoto end, the image decentering amount is the value when the image blur correction lens group translates by the above values in the direction perpendicular to the optical axis. Equal to image eccentricity.
横収差図から明らかなように、軸上像点における横収差の対称性は良好であることがわかる。また、+70%像点における横収差と-70%像点における横収差とを基本状態で比較すると、いずれも湾曲度が小さく、収差曲線の傾斜がほぼ等しいことから、偏心コマ収差、偏心非点収差が小さいことがわかる。このことは、像ぶれ補正状態であっても充分な結像性能が得られていることを意味している。また、ズームレンズ系の像ぶれ補正角が同じ場合には、ズームレンズ系全体の焦点距離が短くなるにつれて、像ぶれ補正に必要な平行移動量が減少する。したがって、いずれのズーム位置であっても、0.3°までの像ぶれ補正角に対して、結像特性を低下させることなく充分な像ぶれ補正を行うことが可能である。 As is apparent from the lateral aberration diagram, it is understood that the symmetry of the lateral aberration at the axial image point is good. In addition, when the lateral aberration at the + 70% image point and the lateral aberration at the −70% image point are compared in the basic state, the curvature is small and the inclinations of the aberration curves are almost equal. It can be seen that the aberration is small. This means that sufficient imaging performance is obtained even in the image blur correction state. When the image blur correction angle of the zoom lens system is the same, the amount of parallel movement required for image blur correction decreases as the focal length of the entire zoom lens system decreases. Therefore, at any zoom position, it is possible to perform sufficient image blur correction without deteriorating the imaging characteristics for an image blur correction angle up to 0.3 °.
(数値実施例3)
数値実施例3のズームレンズ系は、図7に示した実施の形態3に対応する。数値実施例3のズームレンズ系の面データを表6に、非球面データを表7に、無限遠合焦状態での各種データを表8に、近接物体合焦状態での各種データを表9に示す。
(Numerical Example 3)
The zoom lens system of Numerical Example 3 corresponds to Embodiment 3 shown in FIG. Table 6 shows surface data of the zoom lens system of Numerical Example 3, Table 7 shows aspheric data, Table 8 shows various data in the infinite focus state, and Table 9 shows various data in the close object in focus state. Shown in
表 6(面データ)
面番号 r d nd vd 有効半径
物面 ∞
1 16.42280 0.80000 1.85400 40.4 8.030
2* 8.69880 5.35360 6.761
3* -16.24340 0.50000 1.58700 59.6 6.363
4* -1000.00000 0.20000 6.236
5 21.90190 1.25200 1.94595 18.0 6.114
6 40.03200 可変 6.004
7* 11.89960 2.02150 1.77200 50.0 4.892
8* -1000.00000 1.00000 4.833
9(絞り) ∞ 2.00000 4.526
10 25.47380 0.58990 1.90366 31.3 4.448
11 7.34840 2.70950 1.49700 81.6 4.301
12 -33.68110 1.50000 4.382
13 33.63990 1.20000 1.58144 40.9 4.653
14 -86.34380 可変 4.636
15* 89.01190 0.40000 1.77200 50.0 4.227
16* 10.64130 可変 4.311
17* 43.32750 3.19620 1.77200 50.0 9.416
18* -62.33520 (BF) 9.654
像面 ∞
Table 6 (surface data)
Surface number r d nd vd Effective radius
Object ∞
1 16.42280 0.80000 1.85400 40.4 8.030
2 * 8.69880 5.35360 6.761
3 * -16.24340 0.50000 1.58700 59.6 6.363
4 * -1000.00000 0.20000 6.236
5 21.90190 1.25200 1.94595 18.0 6.114
6 40.03200 Variable 6.004
7 * 11.89960 2.02150 1.77200 50.0 4.892
8 * -1000.00000 1.00000 4.833
9 (Aperture) ∞ 2.00000 4.526
10 25.47380 0.58990 1.90366 31.3 4.448
11 7.34840 2.70950 1.49700 81.6 4.301
12 -33.68110 1.50000 4.382
13 33.63990 1.20000 1.58144 40.9 4.653
14 -86.34380 Variable 4.636
15 * 89.01190 0.40000 1.77200 50.0 4.227
16 * 10.64130 Variable 4.311
17 * 43.32750 3.19620 1.77200 50.0 9.416
18 * -62.33520 (BF) 9.654
Image plane ∞
表 7(非球面データ)
第2面
K= 0.00000E+00, A4=-3.04224E-05, A6=-3.39736E-07, A8= 0.00000E+00
A10= 0.00000E+00
第3面
K= 0.00000E+00, A4= 8.94998E-05, A6=-1.77785E-06, A8= 3.92646E-08
A10=-3.91376E-10
第4面
K= 0.00000E+00, A4= 7.11423E-05, A6=-1.79171E-06, A8= 2.82400E-08
A10=-2.93586E-10
第7面
K= 0.00000E+00, A4=-4.57043E-05, A6=-8.52737E-08, A8= 3.62974E-09
A10=-1.40385E-09
第8面
K= 0.00000E+00, A4= 4.15779E-05, A6=-2.33061E-07, A8=-3.98850E-09
A10=-1.29915E-09
第15面
K= 0.00000E+00, A4= 1.00000E-04, A6=-1.10837E-05, A8= 2.79906E-07
A10=-2.65808E-09
第16面
K= 0.00000E+00, A4= 1.21515E-04, A6=-1.15513E-05, A8= 1.97566E-07
A10=-9.89769E-10
第17面
K= 0.00000E+00, A4= 7.90705E-05, A6=-1.03130E-06, A8= 1.21938E-08
A10=-8.96221E-11
第18面
K= 0.00000E+00, A4= 5.73840E-05, A6=-1.13324E-06, A8= 1.43220E-08
A10=-1.00247E-10
Table 7 (Aspherical data)
2nd surface K = 0.00000E + 00, A4 = -3.04224E-05, A6 = -3.39736E-07, A8 = 0.00000E + 00
A10 = 0.00000E + 00
3rd surface K = 0.00000E + 00, A4 = 8.94998E-05, A6 = -1.77785E-06, A8 = 3.92646E-08
A10 = -3.91376E-10
4th surface K = 0.00000E + 00, A4 = 7.11423E-05, A6 = -1.79171E-06, A8 = 2.82400E-08
A10 = -2.93586E-10
7th surface K = 0.00000E + 00, A4 = -4.57043E-05, A6 = -8.52737E-08, A8 = 3.62974E-09
A10 = -1.40385E-09
8th surface K = 0.00000E + 00, A4 = 4.15779E-05, A6 = -2.33061E-07, A8 = -3.98850E-09
A10 = -1.29915E-09
15th surface K = 0.00000E + 00, A4 = 1.00000E-04, A6 = -1.10837E-05, A8 = 2.79906E-07
A10 = -2.65808E-09
16th surface K = 0.00000E + 00, A4 = 1.21515E-04, A6 = -1.15513E-05, A8 = 1.97566E-07
A10 = -9.89769E-10
17th surface K = 0.00000E + 00, A4 = 7.90705E-05, A6 = -1.03130E-06, A8 = 1.21938E-08
A10 = -8.96221E-11
18th surface K = 0.00000E + 00, A4 = 5.73840E-05, A6 = -1.13324E-06, A8 = 1.43220E-08
A10 = -1.00247E-10
表 8(無限遠合焦状態での各種データ)
ズーム比 2.79708
広角 中間 望遠
焦点距離 14.4901 24.2333 40.5299
Fナンバー 3.64071 5.30497 5.82465
画角 40.7465 24.2568 14.8037
像高 10.8150 10.8150 10.8150
レンズ全長 62.5692 57.3716 60.2745
BF 14.1990 14.1990 14.1990
d6 17.0129 6.6327 0.6000
d14 2.1442 6.6384 13.4790
d16 6.4901 7.1788 9.2741
ズームレンズ群データ
群 始面 焦点距離
1 1 -15.88153
2 7 13.59210
3 15 -15.69064
4 17 33.55220
Table 8 (Various data in focus at infinity)
Zoom ratio 2.79708
Wide angle Medium telephoto Focal length 14.4901 24.2333 40.5299
F number 3.64071 5.30497 5.82465
Angle of view 40.7465 24.2568 14.8037
Image height 10.8150 10.8150 10.8150
Total lens length 62.5692 57.3716 60.2745
BF 14.1990 14.1990 14.1990
d6 17.0129 6.6327 0.6000
d14 2.1442 6.6384 13.4790
d16 6.4901 7.1788 9.2741
Zoom lens group data Start surface Focal length 1 1 -15.88153
2 7 13.59210
3 15 -15.69064
4 17 33.55220
表 9(近接物体合焦状態での各種データ)
広角 中間 望遠
物体距離 300.0000 300.0000 300.0000
BF 14.1990 14.1990 14.1990
d6 17.0129 6.6327 0.6000
d14 2.3848 7.3054 15.2480
d16 6.2496 6.5118 7.5052
Table 9 (Various data in the proximity object in-focus state)
Wide angle Medium telephoto Object distance 300.0000 300.0000 300.0000
BF 14.1990 14.1990 14.1990
d6 17.0129 6.6327 0.6000
d14 2.3848 7.3054 15.2480
d16 6.2496 6.5118 7.5052
<ゴーストの発生の抑制>
実施の形態1~3に係るレンズ系は、いずれも、物体側から像側へと順に配置された複数のレンズ群を備え、前記レンズ群の相互の間隔を変化させて、ズーミング及びフォーカシングの少なくとも1つが可能であり、前記レンズ群は、それぞれ、少なくとも1枚のレンズ素子で構成されている。前記レンズ群のうち最像側に配置されたレンズ群(以下、最像側レンズ群ともいう)は、1枚のレンズ素子で構成されている。
<Inhibition of ghosting>
Each of the lens systems according to Embodiments 1 to 3 includes a plurality of lens groups arranged in order from the object side to the image side, and changes the mutual distance between the lens groups to perform at least zooming and focusing. Each of the lens groups is composed of at least one lens element. Among the lens groups, the lens group disposed on the most image side (hereinafter also referred to as the most image side lens group) is composed of one lens element.
実施の形態1~3に係るレンズ系のように、最像側レンズ群を1枚のレンズ素子で構成することにより、光軸方向の厚みを最小限に抑えることができ、レンズ系の小型化を実現することが可能である。 As in the lens systems according to Embodiments 1 to 3, the most image-side lens unit is composed of one lens element, so that the thickness in the optical axis direction can be minimized, and the lens system can be downsized. Can be realized.
このようなレンズ系において、ゴーストの発生の主な原因が明らかにされた。具体的には、撮像素子や、撮像素子の保護ガラスといった部材から生じる不要反射光が、最像側レンズ群で再度反射され、この反射光が撮像素子に導かれ易いということが見出された。 In such a lens system, the main cause of ghosting has been clarified. Specifically, it was found that unnecessary reflected light generated from a member such as an image sensor or a protective glass of the image sensor is reflected again by the most image side lens group, and this reflected light is easily guided to the image sensor. .
ここで、実施の形態1~3に係るレンズ系のように、最像側レンズ群に適切なパワーを与えれば、レンズ系の収差が良好になる。しかしながら、最像側レンズ群が1枚のレンズ素子で構成されていると、そのレンズ素子に強いパワーを与えなければならない。このような場合、最像側レンズ群での反射によるゴーストの影響がさらに大きくなる。 Here, as in the lens systems according to Embodiments 1 to 3, if an appropriate power is given to the most image side lens unit, the aberration of the lens system is improved. However, when the most image side lens unit is composed of one lens element, it is necessary to give a strong power to the lens element. In such a case, the influence of the ghost due to the reflection at the most image side lens group is further increased.
また、最像側レンズ群が1枚のレンズ素子で構成されていると、最像側レンズ群の有効半径は大きくなる傾向がある。このような場合、最像側レンズ群での反射によるゴーストの影響がさらに大きくなる。 Further, when the most image side lens unit is composed of one lens element, the effective radius of the most image side lens unit tends to increase. In such a case, the influence of the ghost due to the reflection at the most image side lens group is further increased.
これらより、実施の形態1~3(数値実施例1~3)に係るレンズ系を用いてシミュレーションを行った。数値実施例1~3のレンズ系いずれにおいても、最像側レンズ群が1枚のレンズ素子で構成されている。シミュレーション結果を以下の表10に示す。 From these, simulation was performed using the lens systems according to Embodiments 1 to 3 (Numerical Examples 1 to 3). In any of the lens systems of Numerical Examples 1 to 3, the most image side lens unit is composed of one lens element. The simulation results are shown in Table 10 below.
表 10(シミュレーション結果)
なお「評価対象」は、各々以下のとおりである。
L14R1:最像側レンズ群を構成する第14レンズ素子L14の物体側面R1
L13R2:第13レンズ素子L13の像側面R2
L7R1:最像側レンズ群を構成する第7レンズ素子L7の物体側面R1
L2R2:第2レンズ素子L2の像側面R2
L9R1:最像側レンズ群を構成する第9レンズ素子L9の物体側面R1
L2R2:第2レンズ素子L2の像側面R2
The “evaluation targets” are as follows.
L14R1: Object side surface R1 of the fourteenth lens element L14 constituting the most image side lens unit.
L13R2: Image side surface R2 of the thirteenth lens element L13
L7R1: Object side surface R1 of the seventh lens element L7 constituting the most image side lens unit
L2R2: Image side surface R2 of the second lens element L2
L9R1: Object side surface R1 of the ninth lens element L9 constituting the most image side lens unit
L2R2: Image side surface R2 of the second lens element L2
また「ゴースト強度」は、解析対象のレンズ系が広角端の状態において、光軸に対して所定の角度の光がレンズ系に入射したとき、当該光が撮像素子で反射され、「評価対象」であるレンズ面でさらに反射され、撮像素子に入射する光の強度を数値化したものである。 In addition, when the lens system to be analyzed is in the wide-angle end and light having a predetermined angle with respect to the optical axis is incident on the lens system, the “ghost intensity” The intensity of the light that is further reflected by the lens surface and incident on the image sensor is quantified.
図1に示す数値実施例1のレンズ系において、光軸に対して5.0°の光がレンズ系に入射するシミュレーションを行った。その結果、L14R1が、撮像素子からの不要反射光を再び反射することにより生じる「ゴースト強度」は、第14レンズ素子L14以外のレンズ素子のレンズ面、例えばL13R2が、撮像素子からの不要反射光を再び反射することにより生じる「ゴースト強度」よりも、約19.8倍高かった。 In the lens system of Numerical Example 1 shown in FIG. 1, a simulation was performed in which 5.0 ° light with respect to the optical axis was incident on the lens system. As a result, the “ghost intensity” generated by the L14R1 reflecting again the unnecessary reflected light from the image sensor is that the lens surface of the lens element other than the fourteenth lens element L14, for example, L13R2, is the unnecessary reflected light from the image sensor. Was about 19.8 times higher than the “ghost intensity” caused by re-reflection.
図5に示す数値実施例2のレンズ系において、光軸に対して7.5°の光がレンズ系に入射するシミュレーションを行った。その結果、L7R1が、撮像素子からの不要反射光を再び反射することにより生じる「ゴースト強度」は、第7レンズ素子L7以外のレンズ素子のレンズ面、例えばL2R2が、撮像素子からの不要反射光を再び反射することにより生じる「ゴースト強度」よりも、約3.8倍高かった。 In the lens system of Numerical Example 2 shown in FIG. 5, a simulation was performed in which 7.5 ° light with respect to the optical axis was incident on the lens system. As a result, the “ghost intensity” generated by the L7R1 reflecting the unnecessary reflected light from the image sensor again is an unnecessary reflected light from the lens surface of the lens elements other than the seventh lens element L7, for example, the L2R2. Was about 3.8 times higher than the “ghost intensity” caused by re-reflection.
図7に示す数値実施例3のレンズ系において、光軸に対して7.5°の光がレンズ系に入射するシミュレーションを行った。その結果、L9R1が、撮像素子からの不要反射光を再び反射することにより生じる「ゴースト強度」は、第9レンズ素子L9以外のレンズ素子のレンズ面、例えばL2R2が、撮像素子からの不要反射光を再び反射することにより生じる「ゴースト強度」よりも、約8.8倍高かった。 In the lens system of Numerical Example 3 shown in FIG. 7, a simulation was performed in which 7.5 ° light with respect to the optical axis was incident on the lens system. As a result, the “ghost intensity” generated by the L9R1 reflecting the unnecessary reflected light from the image sensor again is that the lens surface of the lens element other than the ninth lens element L9, for example L2R2, is the unnecessary reflected light from the image sensor. Was about 8.8 times higher than the “ghost intensity” produced by reflecting the light again.
これらのシミュレーション結果から、最像側レンズ群が1枚のレンズ素子で構成されたレンズ系において、ゴーストの主な原因が、最像側レンズ群を構成するレンズ素子による反射であることが見出された。 From these simulation results, in the lens system in which the most image side lens group is composed of one lens element, it is found that the main cause of ghost is reflection by the lens elements constituting the most image side lens group. It was done.
そこで、実施の形態1~3に係るレンズ系においては、最像側レンズ群を構成するレンズ素子の少なくとも1つのレンズ面において、エネルギー反射率が比較的低くなるように、例えば反射防止膜が形成されている。具体的には、最像側レンズ群を構成するレンズ素子の少なくとも1つのレンズ面において、以下の条件(1)が満足される。
R<0.2 ・・・(1)
ここで、
R:d線に対するエネルギー反射率(%)
である。
Therefore, in the lens systems according to Embodiments 1 to 3, for example, an antireflection film is formed so that the energy reflectance is relatively low on at least one lens surface of the lens elements constituting the most image side lens group. Has been. Specifically, the following condition (1) is satisfied on at least one lens surface of the lens elements constituting the most image side lens group.
R <0.2 (1)
here,
R: Energy reflectance for d-line (%)
It is.
このようなエネルギー反射率を示す反射防止膜は、前記特許文献1等に記載された技術により実現可能であるが、該反射防止膜は、成型が困難であり、膜形成のコストも高い。しかしながら、実施の形態1~3に係るレンズ系においては、ゴースト発生の主要因となるレンズ面が特定され、該レンズ面に該反射防止膜が形成されている。そして、例えばその他のレンズ面には安価な反射防止膜が形成されているとしても、ゴーストの発生を抑制することができる。すなわち、実施の形態1~3に係るレンズ系では、ゴーストの発生を安価に抑制することができる。 An antireflection film exhibiting such energy reflectivity can be realized by the technique described in Patent Document 1 and the like, but the antireflection film is difficult to mold and the cost of film formation is high. However, in the lens systems according to Embodiments 1 to 3, the lens surface that is the main cause of the ghost is specified, and the antireflection film is formed on the lens surface. For example, even if an inexpensive antireflection film is formed on other lens surfaces, the occurrence of ghost can be suppressed. That is, in the lens systems according to Embodiments 1 to 3, ghosting can be suppressed at a low cost.
また、前記最像側レンズ群を構成するレンズ素子の少なくとも1つのレンズ面のd線に対するエネルギー反射率は、レンズ系に含まれるレンズ素子の全レンズ面のd線に対する反射率の中で最も低い。したがって、例えばゴースト発生の主要因となるレンズ面に高価な反射防止膜が形成されているとしても、他のレンズ面に安価な反射防止膜を形成することで、ゴーストの発生を安価に抑制することができる。 In addition, the energy reflectivity for d-line of at least one lens surface of the lens elements constituting the most image side lens group is the lowest among the reflectivities for d-line of all lens surfaces of the lens elements included in the lens system. . Therefore, for example, even if an expensive antireflection film is formed on the lens surface that is a main cause of ghosting, the ghosting can be suppressed at low cost by forming an inexpensive antireflection film on the other lens surface. be able to.
なお、前記効果は、最像側レンズ群を構成するレンズ素子の少なくとも1つのレンズ面において、以下の条件(1)’が満足される場合に、より顕著である。
R<0.1 ・・・(1)’
The effect is more prominent when the following condition (1) ′ is satisfied on at least one lens surface of the lens elements constituting the most image side lens group.
R <0.1 (1) '
また、前記効果は、レンズ系が以下の条件(2)を満足する場合に、より顕著である。
0.5<Deff/Hmax<1.4 ・・・(2)
ここで、
Deff:最像側レンズ群を構成するレンズ素子の物体側の有効半径、
Hmax:レンズ系の最大像高
である。
The effect is more remarkable when the lens system satisfies the following condition (2).
0.5 <D eff / H max <1.4 (2)
here,
D eff : Effective radius on the object side of the lens elements constituting the most image side lens group,
H max : The maximum image height of the lens system.
なお、前記効果は、レンズ系が以下の条件(2)’及び(2)’’の少なくとも1つを満足する場合に、さらに顕著である。
0.8<Deff/Hmax ・・・(2)’
Deff/Hmax<1.1 ・・・(2)’’
The effect is more remarkable when the lens system satisfies at least one of the following conditions (2) ′ and (2) ″.
0.8 <D eff / H max (2) ′
D eff / H max <1.1 (2) ''
また、前記効果は、レンズ系が以下の条件(3)を満足する場合に、より顕著である。
fb/Hmax<3.5 ・・・(3)
ここで、
fb:最像側レンズ群の焦点距離、
Hmax:レンズ系の最大像高
である。
The effect is more prominent when the lens system satisfies the following condition (3).
f b / H max <3.5 (3)
here,
f b : focal length of the most image side lens unit,
H max : The maximum image height of the lens system.
なお、前記効果は、レンズ系が以下の条件(3)’を満足する場合に、さらに顕著である。
fb/Hmax<3.2 ・・・(3)’
The effect is more remarkable when the lens system satisfies the following condition (3) ′.
f b / H max <3.2 (3) ′
以下の表11に、各数値実施例のレンズ系における各条件の対応値を示す。 Table 11 below shows the corresponding values for each condition in the lens system of each numerical example.
表 11(条件の対応値)
<実施の形態4>
図11は、実施の形態4に係るカメラシステムの概略構成図である。
<Embodiment 4>
FIG. 11 is a schematic configuration diagram of a camera system according to the fourth embodiment.
本実施の形態4に係るカメラシステム100は、カメラ本体101と、カメラ本体101に着脱自在に接続される交換レンズ装置201とを備える。
The
カメラ本体101は、交換レンズ装置201のレンズ系202によって形成される光学像を受光して、電気的な画像信号に変換する撮像素子102と、撮像素子102によって変換された画像信号を表示する表示部103と、カメラマウント部104とを含む。一方、交換レンズ装置201は、実施の形態1~3いずれかに係るレンズ系202と、レンズ系202を保持するレンズ鏡筒203(保持部の一例)と、カメラ本体のカメラマウント部104に接続されるレンズマウント部204(マウントの一例)とを含む。カメラマウント部104及びレンズマウント部204は、物理的な接続のみならず、カメラ本体101内のコントローラ(図示せず)と交換レンズ装置201内のコントローラ(図示せず)とを電気的に接続し、相互の信号のやり取りを可能とするインターフェースとしても機能する。なお、図11において、レンズ系202として図示した構成は一例であり、いずれの実施の形態に係るレンズ系を用いてもよい。
The
本実施の形態4では、実施の形態1~3いずれかに係るレンズ系202を用いているので、結像性能に優れ、ゴーストの発生を抑制した交換レンズ装置201を安価に実現することができる。また、本実施の形態4に係るカメラシステム100全体のゴーストの発生を安価に抑制することができる。
In the fourth embodiment, since the
なお、ここに開示された技術において、カメラシステムはカメラに含まれる概念である。 In the technology disclosed here, the camera system is a concept included in the camera.
<実施の形態5>
図12は、実施の形態5に係るカメラの概略構成図である。
<Embodiment 5>
FIG. 12 is a schematic configuration diagram of a camera according to the fifth embodiment.
本実施の形態5に係るカメラ300は、カメラ本体301と、カメラ本体301に固定されているレンズ鏡筒403とを備える。
The
カメラ本体301は、レンズ鏡筒403のレンズ系402によって形成される光学像を受光して、電気的な画像信号に変換する撮像素子302と、撮像素子302によって変換された画像信号を表示する表示部303とを含む。一方、レンズ鏡筒403は、実施の形態1~3いずれかに係るレンズ系402を、その保持部にて保持している。なお、図12において、レンズ系402として図示した構成は一例であり、いずれの実施の形態のレンズ系を用いてもよい。
The
本実施の形態5では、実施の形態1~3いずれかに係るレンズ系402を用いているので、結像性能に優れ、ゴーストの発生を安価に抑制したレンズ鏡筒403を実現することができる。また、本実施の形態5に係るカメラ300全体のゴーストの発生を安価に抑制することができる。
In the fifth embodiment, since the
ここに開示されたレンズ系は、デジタルスチルカメラ、デジタルビデオカメラ、スマートフォン等の携帯情報端末のカメラ、監視システムにおける監視カメラ、Webカメラ、車載カメラ等に適用可能であり、特にデジタルスチルカメラシステム、デジタルビデオカメラシステムといった高画質が要求される撮影光学系に好適である。 The lens system disclosed herein can be applied to a digital still camera, a digital video camera, a camera of a portable information terminal such as a smartphone, a surveillance camera in a surveillance system, a web camera, an in-vehicle camera, and the like. It is suitable for a photographing optical system that requires high image quality, such as a digital video camera system.
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
G6 第6レンズ群
L1 第1レンズ素子
L2 第2レンズ素子
L3 第3レンズ素子
L4 第4レンズ素子
L5 第5レンズ素子
L6 第6レンズ素子
L7 第7レンズ素子
L8 第8レンズ素子
L9 第9レンズ素子
L10 第10レンズ素子
L11 第11レンズ素子
L12 第12レンズ素子
L13 第13レンズ素子
L14 第14レンズ素子
A 開口絞り
S 像面
100 カメラシステム
101、301 カメラ本体
102、302 撮像素子
103、303 表示部
104 カメラマウント部
201 交換レンズ装置
202、402 レンズ系
203、403 レンズ鏡筒
204 レンズマウント部
300 カメラ
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group G6 6th lens group L1 1st lens element L2 2nd lens element L3 3rd lens element L4 4th lens element L5 5th lens element L6 6th lens element L7 7th lens element L8 8th lens element L9 9th lens element L10 10th lens element L11 11th lens element L12 12th lens element L13 13th lens element L14 14th lens element A Aperture stop S
Claims (5)
前記レンズ群の相互の間隔を変化させて、ズーミング及びフォーカシングの少なくとも1つが可能であり、
前記レンズ群は、それぞれ、少なくとも1枚のレンズ素子で構成され、
前記レンズ群のうち最像側に配置されたレンズ群は、1枚のレンズ素子で構成され、
前記最像側に配置されたレンズ群を構成するレンズ素子の少なくとも1つのレンズ面において、以下の条件(1)が満足されることを特徴とする、レンズ系:
R<0.2 ・・・(1)
ここで、
R:d線に対するエネルギー反射率(%)
である。 It consists of a plurality of lens groups arranged in order from the object side to the image side,
The at least one of zooming and focusing can be performed by changing a distance between the lens groups.
Each of the lens groups is composed of at least one lens element,
The lens group arranged on the most image side of the lens group is composed of one lens element,
The lens system characterized in that the following condition (1) is satisfied on at least one lens surface of a lens element constituting the lens group disposed on the most image side:
R <0.2 (1)
here,
R: Energy reflectance for d-line (%)
It is.
前記レンズ群の相互の間隔を変化させて、ズーミング及びフォーカシングの少なくとも1つが可能であり、
前記レンズ群は、それぞれ、少なくとも1枚のレンズ素子で構成され、
前記レンズ群のうち最像側に配置されたレンズ群は、1枚のレンズ素子で構成され、
前記最像側に配置されたレンズ群を構成するレンズ素子の少なくとも1つのレンズ面のd線に対するエネルギー反射率は、レンズ系に含まれるレンズ素子の全レンズ面のd線に対する反射率の中で最も低いことを特徴とする、レンズ系。 It consists of a plurality of lens groups arranged in order from the object side to the image side,
The at least one of zooming and focusing can be performed by changing a distance between the lens groups.
Each of the lens groups is composed of at least one lens element,
The lens group arranged on the most image side of the lens group is composed of one lens element,
The energy reflectance with respect to d-line of at least one lens surface of the lens elements constituting the lens group disposed on the most image side is the reflectance with respect to d-line of all lens surfaces of the lens elements included in the lens system. Lens system characterized by the lowest.
0.5<Deff/Hmax<1.4 ・・・(2)
ここで、
Deff:最像側に配置されたレンズ群を構成するレンズ素子の物体側の有効半径、
Hmax:レンズ系の最大像高
である。 The lens system according to claim 1 or 2, wherein the following condition (2) is satisfied:
0.5 <D eff / H max <1.4 (2)
here,
D eff : Effective radius on the object side of the lens element constituting the lens group arranged on the most image side,
H max : The maximum image height of the lens system.
fb/Hmax<3.5 ・・・(3)
ここで、
fb:最像側に配置されたレンズ群の焦点距離、
Hmax:レンズ系の最大像高
である。 The lens system according to claim 1 or 2, which satisfies the following condition (3):
f b / H max <3.5 (3)
here,
f b : the focal length of the lens unit disposed on the most image side,
H max : The maximum image height of the lens system.
前記レンズ系が形成する光学像を受光して電気的な画像信号に変換する撮像素子と
を備える、カメラ。
The lens system according to claim 1 or 2,
A camera comprising: an imaging device that receives an optical image formed by the lens system and converts the optical image into an electrical image signal.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011-129902 | 2011-06-10 | ||
| JP2011129902A JP2014157168A (en) | 2011-06-10 | 2011-06-10 | Lens system and camera |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2012169154A1 true WO2012169154A1 (en) | 2012-12-13 |
Family
ID=47295741
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2012/003553 WO2012169154A1 (en) | 2011-06-10 | 2012-05-30 | Lens assembly and camera |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP2014157168A (en) |
| WO (1) | WO2012169154A1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2014153401A (en) * | 2013-02-05 | 2014-08-25 | Olympus Imaging Corp | Zoom lens |
| JP2014228811A (en) * | 2013-05-24 | 2014-12-08 | 株式会社タムロン | Zoom lens and imaging apparatus |
| JP2014228810A (en) * | 2013-05-24 | 2014-12-08 | 株式会社タムロン | Zoom lens and imaging apparatus |
| CN104459961A (en) * | 2013-09-17 | 2015-03-25 | 索尼公司 | Zoom lens and imaging apparatus |
| JP2015163928A (en) * | 2014-02-28 | 2015-09-10 | 株式会社タムロン | Inner focus lens |
| US20220082803A1 (en) * | 2020-09-17 | 2022-03-17 | Zhejiang Sunny Optics Co.,Ltd. | Optical Imaging Lens Assembly |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5822649B2 (en) * | 2011-10-24 | 2015-11-24 | キヤノン株式会社 | Optical system and imaging apparatus |
| JP2015018124A (en) * | 2013-07-11 | 2015-01-29 | 株式会社タムロン | Zoom lens and image capturing device |
| JP6525613B2 (en) * | 2015-01-30 | 2019-06-05 | キヤノン株式会社 | Zoom lens and imaging device having the same |
| JP6517563B2 (en) * | 2015-03-30 | 2019-05-22 | 株式会社タムロン | Inner focus type lens |
| JP6434352B2 (en) * | 2015-03-30 | 2018-12-05 | 株式会社タムロン | Inner focus lens |
| JP6951857B2 (en) * | 2017-03-30 | 2021-10-20 | 株式会社タムロン | Zoom lens and imaging device |
| JP6797768B2 (en) | 2017-08-24 | 2020-12-09 | 富士フイルム株式会社 | Zoom lens and imaging device |
| JP7035839B2 (en) * | 2018-06-19 | 2022-03-15 | 株式会社リコー | Imaging lens system and imaging device |
| JP7265075B2 (en) * | 2020-11-18 | 2023-04-25 | 富士フイルム株式会社 | Zoom lens and imaging device |
| JP7105852B2 (en) * | 2020-11-18 | 2022-07-25 | 富士フイルム株式会社 | Zoom lens and imaging device |
| JP2023069385A (en) * | 2021-11-05 | 2023-05-18 | キヤノン株式会社 | ZOOM LENS AND IMAGING DEVICE HAVING THE SAME |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63104011A (en) * | 1986-10-22 | 1988-05-09 | Konica Corp | Small-sized three-group zoom lens |
| JPS63161422A (en) * | 1986-12-25 | 1988-07-05 | Konica Corp | Small-sized zoom lens |
| JP2010231238A (en) * | 2010-07-08 | 2010-10-14 | Olympus Corp | Variable power optical system |
| JP2011028256A (en) * | 2009-07-01 | 2011-02-10 | Hoya Corp | Imaging optical device including anti-reflection structure, and imaging optical system including anti-reflection structure |
| JP2011095505A (en) * | 2009-10-29 | 2011-05-12 | Sony Corp | Zoom lens and imaging apparatus |
| JP2011095488A (en) * | 2009-10-29 | 2011-05-12 | Olympus Imaging Corp | Lens component, image forming optical system, and electronic imaging apparatus having the same |
-
2011
- 2011-06-10 JP JP2011129902A patent/JP2014157168A/en not_active Withdrawn
-
2012
- 2012-05-30 WO PCT/JP2012/003553 patent/WO2012169154A1/en active Application Filing
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63104011A (en) * | 1986-10-22 | 1988-05-09 | Konica Corp | Small-sized three-group zoom lens |
| JPS63161422A (en) * | 1986-12-25 | 1988-07-05 | Konica Corp | Small-sized zoom lens |
| JP2011028256A (en) * | 2009-07-01 | 2011-02-10 | Hoya Corp | Imaging optical device including anti-reflection structure, and imaging optical system including anti-reflection structure |
| JP2011095505A (en) * | 2009-10-29 | 2011-05-12 | Sony Corp | Zoom lens and imaging apparatus |
| JP2011095488A (en) * | 2009-10-29 | 2011-05-12 | Olympus Imaging Corp | Lens component, image forming optical system, and electronic imaging apparatus having the same |
| JP2010231238A (en) * | 2010-07-08 | 2010-10-14 | Olympus Corp | Variable power optical system |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2014153401A (en) * | 2013-02-05 | 2014-08-25 | Olympus Imaging Corp | Zoom lens |
| JP2014228811A (en) * | 2013-05-24 | 2014-12-08 | 株式会社タムロン | Zoom lens and imaging apparatus |
| JP2014228810A (en) * | 2013-05-24 | 2014-12-08 | 株式会社タムロン | Zoom lens and imaging apparatus |
| CN104459961A (en) * | 2013-09-17 | 2015-03-25 | 索尼公司 | Zoom lens and imaging apparatus |
| JP2015163928A (en) * | 2014-02-28 | 2015-09-10 | 株式会社タムロン | Inner focus lens |
| US9841608B2 (en) | 2014-02-28 | 2017-12-12 | Tamron Co., Ltd. | Inner focus lens |
| US20220082803A1 (en) * | 2020-09-17 | 2022-03-17 | Zhejiang Sunny Optics Co.,Ltd. | Optical Imaging Lens Assembly |
| US12174348B2 (en) * | 2020-09-17 | 2024-12-24 | Zhejiang Sunny Optics Co., Ltd. | Optical imaging lens assembly |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2014157168A (en) | 2014-08-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2012169154A1 (en) | Lens assembly and camera | |
| JP5816845B2 (en) | Zoom lens system, interchangeable lens device and camera system | |
| JP5274877B2 (en) | Zoom lens system and electronic imaging apparatus using the same | |
| JP5975773B2 (en) | Zoom lens and imaging apparatus having the same | |
| JP5891447B2 (en) | Zoom lens system, interchangeable lens device and camera system | |
| JP5495654B2 (en) | Zoom lens and optical apparatus having the same | |
| JP5919519B2 (en) | Zoom lens system, imaging device and camera | |
| JP2011197470A (en) | Zoom lens system, interchangeable lens device, and camera system | |
| WO2014129170A1 (en) | Zoom lens system, interchangeable lens device, and camera system | |
| JP2012198504A (en) | Zoom lens system, imaging device, and camera | |
| JP2011107312A (en) | Zoom lens and image pickup device having the same | |
| JP2013218291A (en) | Zoom lens system, interchangeable lens apparatus and camera system | |
| JP2011197469A (en) | Zoom lens system, interchangeable lens device, and camera system | |
| JP2012242739A (en) | Zoom lens and imaging device including the same | |
| JP5665637B2 (en) | Zoom lens and imaging apparatus having the same | |
| JP5919518B2 (en) | Zoom lens system, imaging device and camera | |
| JP2011197471A (en) | Zoom lens system, interchangeable lens device, and camera system | |
| JPWO2014006653A1 (en) | Zoom lens system, imaging device and camera | |
| JP6164894B2 (en) | Zoom lens and imaging apparatus having the same | |
| JP2012198506A (en) | Zoom lens system, imaging device, and camera | |
| JP5582918B2 (en) | Zoom lens and imaging apparatus having the same | |
| JP7086579B2 (en) | Zoom lens and image pickup device | |
| JP6355076B2 (en) | Zoom lens system, interchangeable lens device and camera system | |
| JP2014048312A (en) | Image capturing device | |
| JP6198071B2 (en) | Zoom lens system, imaging device and camera |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12796836 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 12796836 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: JP |