[go: up one dir, main page]

WO2012127810A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2012127810A1
WO2012127810A1 PCT/JP2012/001699 JP2012001699W WO2012127810A1 WO 2012127810 A1 WO2012127810 A1 WO 2012127810A1 JP 2012001699 W JP2012001699 W JP 2012001699W WO 2012127810 A1 WO2012127810 A1 WO 2012127810A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
liquid crystal
visibility
pixels
Prior art date
Application number
PCT/JP2012/001699
Other languages
French (fr)
Japanese (ja)
Inventor
宮本 忠芳
中野 文樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012127810A1 publication Critical patent/WO2012127810A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy

Definitions

  • the present invention relates to a liquid crystal display device.
  • Patent Document 1 As a means for reducing the power consumption of a liquid crystal display device, it is known to drive the liquid crystal display device at a low frequency as disclosed in, for example, Patent Document 1.
  • the temperature sensor and the frequency modulation connected to the temperature sensor are taken into consideration that flicker is particularly easily recognized. Circuit.
  • the drive frequency is gradually increased by the frequency modulation circuit as the temperature of the display panel detected by the temperature sensor becomes higher.
  • the liquid crystal display device driven at a low frequency tries to suppress flicker.
  • the display quality tends to be lower than when the liquid crystal device is driven at a high frequency.
  • the present invention has been made in view of such a point, and an object of the present invention is to reduce power consumption while maintaining high display quality of a liquid crystal display device.
  • a liquid crystal display device includes a plurality of pixels, a plurality of sub-pixels provided for each of the plurality of pixels and formed for each of a plurality of display colors, and the plurality of the plurality of pixels.
  • a driving circuit that drives the plurality of sub-pixels, and among the plurality of sub-pixels included in the pixel, the visibility of the display color is the other sub-pixel in the pixel.
  • the signal voltage applied to the high visibility subpixel is modulated to a relatively high frequency so that the high visibility subpixel higher than the pixel is driven at a high frequency, while the other subpixels in the pixel are low
  • the signal voltage applied to the low visibility subpixel is set to a relatively high frequency equal to or higher than the signal voltage applied to the high visibility subpixel so that the visibility subpixel is driven at high frequency or low frequency.
  • the high visibility sub-pixel is driven at high frequency, while the low visibility sub-pixel is driven at high frequency or low frequency, so that the display quality of the liquid crystal display device is maintained high.
  • the power consumption can be reduced.
  • FIG. 1 is a wiring diagram schematically showing a circuit configuration of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating a schematic structure of a liquid crystal display device provided in the electronic apparatus according to the first embodiment.
  • FIG. 3 is a wiring diagram schematically showing the overall configuration of the liquid crystal display device according to the first embodiment.
  • FIG. 4 is a wiring diagram showing sub-pixels included in one pixel in the first embodiment.
  • FIG. 5 is a waveform diagram showing signal voltages applied to the sub-pixels.
  • FIG. 6 is a waveform diagram showing signal voltages applied to the sub-pixels.
  • FIG. 7 is a table showing the frequency of the signal voltage modulated by each sub-pixel.
  • FIG. 8 is a wiring diagram showing sub-pixels included in one pixel in the second embodiment.
  • FIG. 9 is a wiring diagram showing sub-pixels included in one pixel in the third embodiment.
  • Embodiment 1 of the Invention 1 to 7 show Embodiment 1 of the present invention.
  • FIG. 1 is a wiring diagram schematically showing a circuit configuration of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating a schematic structure of a liquid crystal display device provided in the electronic apparatus according to the first embodiment.
  • FIG. 3 is a wiring diagram schematically showing the overall configuration of the liquid crystal display device according to the first embodiment.
  • FIG. 4 is a wiring diagram showing sub-pixels included in one pixel.
  • 5 and 6 are waveform diagrams showing signal voltages applied to the sub-pixels.
  • FIG. 7 is a table showing the frequency of the signal voltage modulated by each sub-pixel.
  • the liquid crystal display device 1 includes a liquid crystal display panel 11 and a backlight unit 12 that is a light source disposed on the back side of the liquid crystal display panel 11. That is, the liquid crystal display device 1 is configured to perform transmissive display by selectively transmitting at least light from the backlight unit 12.
  • the liquid crystal display panel 11 includes a TFT substrate 13 that is a first substrate, and a counter substrate 14 that is a second substrate disposed to face the TFT substrate 13.
  • a liquid crystal layer 15 is sealed between the TFT substrate 13 and the counter substrate 14 by a seal member 16.
  • the liquid crystal display panel 11 has a display screen 10 as a display area and a frame-like non-display area (not shown) provided around the display screen 10.
  • a plurality of pixels 18 provided in a matrix are formed in the display area.
  • Each pixel 18 is provided with a plurality of sub-pixels 19 formed for each of a plurality of display colors.
  • the TFT substrate 13 is composed of an active matrix substrate.
  • the TFT substrate 13 has a glass substrate 21 as a transparent substrate.
  • a plurality of source lines 23 extending in parallel with each other and a plurality of gate lines 22 extending so as to intersect the source lines 23 are formed.
  • the liquid crystal display device 1 includes a source driver 31 connected to the source line 23, a COG driver 32 connected to the source driver, and a gate driver 33 connected to the gate line 22.
  • the plurality of gate lines 22 and the plurality of source lines 23 are formed in a lattice shape as a whole, and the sub-pixels 19 are formed in regions surrounded by the gate lines 22 and the source lines 23 in a rectangular shape.
  • Each subpixel 19 is provided with a TFT (thin film transistor) 20 in the vicinity of the intersection of the gate wiring 22 and the source wiring 23.
  • the gate wiring 22 and the source wiring 23 are connected to the TFT 20.
  • Each subpixel 19 is formed with a pixel electrode (not shown) connected to the drain electrode (not shown) of the TFT 20 provided in the subpixel 19.
  • the pixel electrode 30 is made of a transparent conductive film such as ITO (Indium Tin Oxide).
  • the structure of the TFT 20 may be a bottom gate type or a top gate type.
  • a storage capacitor Cs may be formed on the glass substrate 21 between the storage capacitor line and the drain electrode of the TFT 20. Thereby, the potential fluctuation of the pixel electrode due to the parasitic capacitance and the off-leak current of the TFT 20 can be suppressed.
  • a color filter (not shown) having a plurality of colored layers and a common electrode (not shown) provided in common with the plurality of pixel electrodes are formed on the counter substrate 14.
  • the common electrode is also formed of a transparent conductive film such as ITO.
  • one pixel 18 is provided with sub-pixels 19r, 19g, and 19b of three primary colors of red (R), green (G), and blue (B).
  • the green (G) sub-pixel 19 g is configured to display a green (G) display color by a green (G) colored layer formed on the counter substrate 14.
  • the red (R) sub-pixel 19r and the blue (B) sub-pixel 19b are respectively formed by a red (R) coloring layer and a blue (B) coloring layer.
  • the display color of red (R) or blue (B) is displayed.
  • the liquid crystal display device 1 is a drive circuit that drives a plurality of subpixels 19r, 19g, and 19b by applying a signal voltage to the plurality of subpixels 19r, 19g, and 19b.
  • the source driver 31 and a signal voltage modulation circuit 40 that modulates the frequency of the signal voltage are provided.
  • a video line 25 provided for each color of red (R), green (G), and blue (B) is connected to the source driver 31.
  • One end of a plurality of source lines 23 is connected to the video line 25.
  • Each source line 23 is provided with a switch 26. The other end of the source line 23 is connected to each pixel 18.
  • the signal voltage modulation circuit 40 is provided on a video line between the source driver 31 and the source wiring 23.
  • the signal voltage modulation circuit 40 is provided in each pixel 18.
  • the green (G) sub-pixel 19g has a higher visibility sensitivity than the other sub-pixels 19r and 19b in the pixel 18 in which the sub-pixel 19g is provided. It is a pixel.
  • the other sub-pixels 19r and 19b in the pixel 18 are low-visibility sub-pixels whose visual sensitivities of red (R) and blue (B) are lower than that of green (G).
  • the signal voltage modulation circuit 40 modulates the signal voltage applied to the high visibility subpixel 19g to a relatively high frequency so that the high visibility subpixel 19g is driven at a high frequency.
  • the signal voltage applied to the low visibility subpixels 19r and 19b is applied to the high visibility subpixel 19g so that the low visibility subpixels 19r and 19b are driven at high frequency or low frequency. It is configured to modulate to the same relatively high frequency as the voltage or a frequency lower than that frequency.
  • the source driver 31 is configured to apply a signal voltage for displaying a still image or a moving image on the display screen 10 to the plurality of sub-pixels 19.
  • the signal voltage modulation circuit 40 displays a still image on the display screen 10
  • the high-visibility subpixel 19g is driven at a high frequency
  • the low-visibility subpixels 19r and 19b are driven at a low frequency.
  • the high visibility sub-pixel 19g and the low visibility sub-pixels 19r and 19b are configured to be driven at a high frequency.
  • the signal voltage modulation circuit 40 includes a modulation unit 41 provided on each of the red (R) video line 25r and the blue (B) video line 25b, and a determination unit 42 connected to the modulation unit 41. ing.
  • the determination unit 42 determines whether the image displayed on the display screen 10 is a still image or a moving image. When the determination unit 42 determines that the display image is a still image, the modulation unit 41 lowers the frequency of the signal voltage. On the other hand, when the determination unit 42 determines that the display image is a moving image, the modulation unit 41 maintains the signal voltage at a high frequency.
  • FIG. 7 shows changes in the frequency of the signal voltage in the region a on the source driver 31 side of the modulation unit 41 in FIG. 1 and the region b on the sub-pixel 19 side of the modulation unit 41 in FIG.
  • the signal voltages in the region a output from the source driver 31 to the video lines 25r, 25g, and 25b all have a relatively high frequency of 60 Hz, as shown in FIG. .
  • the frequency of the signal voltage of the video lines 25 r and 25 b is modulated from 60 Hz to 15 Hz, for example, by the modulation unit 41.
  • the frequency of the signal voltage is maintained at 60 Hz.
  • the video line 25g signal voltage is applied to the high visibility sub-pixel 19g at a high frequency of 60 Hz.
  • the signal voltages of the video lines 25r and 25b are applied to the low visibility sub-pixels 19r and 19b at a low frequency of 15 Hz.
  • the low visibility subpixels 19r and 19b are driven at a low frequency
  • the high visibility subpixel 19g is driven at a high frequency.
  • each signal voltage is applied to the high visibility subpixel 19g and the low visibility subpixels 19r and 19b at a high frequency of 60 Hz.
  • all the sub-pixels 19r, 19g, 19b are driven at a high frequency.
  • the high visibility sub-pixel 19g that is easy to be visually recognized by the user of the liquid crystal display device 1 is low-frequency that is difficult for the user to visually recognize while maintaining high display quality by driving at high frequency.
  • the sensitivity sub-pixels 19r and 19b can be driven at a high frequency or a low frequency so that the power consumption of the liquid crystal display device 1 can be reduced. Therefore, it is possible to reduce the power consumption while maintaining the display quality of the liquid crystal display device 1 high.
  • the high visibility subpixel 19g when the high visibility subpixel 19g is driven at a low frequency, flicker is likely to be visually recognized.
  • the high visibility subpixel 19g when displaying a still image on the display screen 10, the high visibility subpixel 19g is driven at a high frequency to reduce flicker.
  • the low-visibility sub-pixels 19r and 19b that are less likely to occur and difficult to be recognized even when flicker occurs are driven at a low frequency, so that low power consumption is achieved by driving at a low frequency while a still image is displayed.
  • the display quality can be maintained high so that the flicker is hardly visually recognized while aiming. Further, high-quality display can always be performed with high-frequency driving for moving images.
  • the liquid crystal display device 1 when used in a mobile device such as a smartphone, there may be a case where a still image display such as a standby image and a moving image display are frequently switched. Therefore, the liquid crystal display device 1 is also suitable for such mobile devices.
  • FIG. 8 shows Embodiment 2 of the present invention.
  • FIG. 8 is a wiring diagram showing sub-pixels included in one pixel in the second embodiment.
  • the same portions as those in FIGS. 1 to 7 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • This embodiment is obtained by improving the pixel 18 in the first embodiment.
  • one source 18 is connected with three source lines 23 and two gate lines 22 respectively connected to the sub-pixels 19r, 19g, and 19b.
  • Two sub-pixels 19r and 19b are connected to one gate wiring 22, and the remaining one sub-pixel 19g is connected to the other gate wiring.
  • the low visibility sub-pixels 19r and 19b are formed with a functional circuit unit 50 for keeping the signal voltage applied to the sub-pixels 19r and 19b constant.
  • a memory circuit unit 51 that stores display information in the sub-pixels 19r and 19b is formed as a functional circuit unit 50.
  • the memory circuit unit 51 includes a dynamic random access memory (DRAM) and a static random access memory (SRAM).
  • DRAM dynamic random access memory
  • SRAM static random access memory
  • the functional circuit unit 50 can be configured by a refresh circuit unit 52 that re-applies the signal voltage applied to the low visibility sub-pixels 19r and 19b. For example, when inverting the polarity of the signal voltage, the same voltage is refreshed and applied again to the low visibility sub-pixels 19r and 19b.
  • the signal voltage modulation circuit 40 includes the modulation unit 41 provided on the red (R) video line 25r and the blue (B) video line 25b, respectively, and the determination connected to the modulation unit 41. Part 42.
  • the determination unit 42 determines whether the image displayed on the display screen 10 is a still image or a moving image. When the determination unit 42 determines that the display image is a still image, the modulation unit 41 lowers the frequency of the signal voltage. On the other hand, when the determination unit 42 determines that the display image is a moving image, the modulation unit 41 maintains the signal voltage at a high frequency.
  • the signal voltages in the region a output from the source driver 31 to the video lines 25r, 25g, and 25b all have a relatively high frequency of 60 Hz.
  • the frequency of the signal voltage of the video lines 25r and 25b is modulated by the modulation unit 41 from 60 Hz to, for example, about 1 Hz.
  • the frequency of the signal voltage is maintained at 60 Hz.
  • the video line 25g signal voltage is applied to the high visibility sub-pixel 19g at a high frequency of 60 Hz.
  • the signal voltages of the video lines 25r and 25b are applied to the low visibility sub-pixels 19r and 19b at a frequency as low as about 1 Hz.
  • the memory circuit unit 51 stores the signal voltage applied to the low visibility sub-pixels 19r and 19b.
  • the functional circuit unit 50 is the refresh circuit unit 52, refresh is performed when the polarity of the signal voltage is inverted, and the same voltage is applied again to the low visibility sub-pixels 19r and 19b. As a result, the signal voltage in the low visibility sub-pixels 19r and 19b is maintained.
  • the low visibility sub-pixels 19r and 19b are driven at a low frequency
  • the high visibility sub-pixel 19g is driven at a high frequency.
  • the determination unit 42 determines that the display image is a moving image
  • the frequency of the signal voltage of each video line 25r, 25g, 25b is maintained at 60 Hz by the modulation unit 41.
  • each signal voltage is applied to the high visibility subpixel 19g and the low visibility subpixels 19r and 19b at a high frequency of 60 Hz.
  • all the sub-pixels 19r, 19g, 19b are driven at a high frequency.
  • the second embodiment it is possible to reduce the power consumption while maintaining the display quality of the liquid crystal display device 1 high. That is, the high visibility sub-pixel 19g is likely to visually recognize flicker when driven at a low frequency. However, in this embodiment, when displaying a still image on the display screen 10, the high visibility sub-pixel 19g is driven at a high frequency to reduce flicker.
  • the low visibility sub-pixels 19r and 19b that are less likely to occur and difficult to be recognized even when flicker occurs are driven at a low frequency, so that low power consumption is achieved by driving at a low frequency while a still image is displayed.
  • the display quality can be maintained high so that the flicker is hardly visually recognized while aiming. Further, high-quality display can always be performed with high-frequency driving for moving images.
  • the functional circuit unit 50 since the functional circuit unit 50 is provided in the low visibility sub-pixels 19r and 19b, the sub-pixels 19r and 19b can be driven at a lower frequency. Can be reduced. In addition, when such a functional circuit unit 50 is provided, the aperture ratio of the sub-pixel 19 is reduced. In this embodiment, the functional circuit unit 50 is provided on the low-viscosity sub-pixels 19r and 19b that are difficult for the user to visually recognize. Since it is not provided in the high visibility sub-pixel 19g that is easily visible to the user, it is possible to achieve low power consumption while suppressing deterioration in display quality.
  • FIG. 9 shows Embodiment 3 of the present invention.
  • FIG. 9 is a wiring diagram showing sub-pixels included in one pixel in the third embodiment.
  • the driving frequencies of the two low visibility subpixels 19r and 19b are set to the same frequency, whereas in the present embodiment, the driving frequencies of the two low visibility subpixels 19r and 19b are different from each other. It is a frequency.
  • one pixel 18 in the present embodiment is provided with a plurality of sub-pixels 19r, 19g, and 19b of three primary colors of red (R), green (G), and blue (B).
  • one source 18 is connected with three source lines 23 and three gate lines 22 respectively connected to the sub-pixels 19r, 19g, and 19b.
  • the sub-pixels 19r, 19g, and 19b are connected to different gate lines 22.
  • the display color of each of the sub-pixels 19r, 19g, and 19b is green (G), which has the highest visibility, and green (G), red (R), and blue (B) in order of decreasing visibility (G > R> B).
  • the signal voltage modulation circuit 40 in the present embodiment modulates the signal voltage applied to the low visibility subpixel 19b having a low display color visibility among the plurality of low visibility subpixels 19r and 19b to a lower frequency. It is configured as follows.
  • the signal voltage modulation circuit 40 is provided with a modulation unit 41 provided for each of the red (R) video line 25r and the blue (B) video line 25b, and determination of being connected to the modulation unit 41. Part 42.
  • the determination unit 42 determines whether the image displayed on the display screen 10 is a still image or a moving image. When the determination unit 42 determines that the display image is a still image, the modulation unit 41 lowers the frequency of the signal voltage. On the other hand, when the determination unit 42 determines that the display image is a moving image, the modulation unit 41 maintains the signal voltage at a high frequency.
  • the signal voltages in the region a output from the source driver 31 to the video lines 25r, 25g, and 25b all have a relatively high frequency of 60 Hz.
  • the modulation unit 41 reduces the frequency of the signal voltage in the video line 25r from 60 Hz to, for example, 30 Hz, and reduces the frequency of the signal voltage in the video line 25b to 60 Hz. To, for example, 15 Hz. On the other hand, for the video line 25g, the frequency of the signal voltage is maintained at 60 Hz.
  • the video line 25g signal voltage is applied to the high visibility sub-pixel 19g at a high frequency of 60 Hz.
  • the signal voltage of the video line 25r is applied to the low visibility sub-pixel 19r at a low frequency of about 30 Hz.
  • the signal voltage of the video line 25b is applied to the low visibility sub-pixel 19b at a lower frequency of about 15 Hz.
  • the low visibility sub-pixels 19r and 19b are driven at a low frequency, and the high visibility sub-pixel 19g is driven at a high frequency. Further, the low visibility subpixel 19b is driven at a lower frequency than the low visibility subpixel 19r.
  • the determination unit 42 determines that the display image is a moving image
  • the frequency of the signal voltage of each video line 25r, 25g, 25b is maintained at 60 Hz by the modulation unit 41.
  • each signal voltage is applied to the high visibility subpixel 19g and the low visibility subpixels 19r and 19b at a high frequency of 60 Hz.
  • all the sub-pixels 19r, 19g, 19b are driven at a high frequency.
  • the third embodiment it is possible to reduce the power consumption while maintaining the display quality of the liquid crystal display device 1 high. That is, the high visibility sub-pixel 19g is likely to visually recognize flicker when driven at a low frequency. However, in this embodiment, when displaying a still image on the display screen 10, the high visibility sub-pixel 19g is driven at a high frequency to reduce flicker.
  • the low visibility sub-pixels 19r and 19b that are less likely to occur and difficult to be recognized even when flicker occurs are driven at a low frequency, so that low power consumption is achieved by driving at a low frequency while a still image is displayed.
  • the display quality can be maintained high so that the flicker is hardly visually recognized while aiming. Further, high-quality display can always be performed with high-frequency driving for moving images.
  • the plurality of low visibility sub-pixels 19r and 19b are also provided with a difference in driving frequency according to the visibility, so that the visibility is the highest. Since the driving frequency of the low low visibility sub-pixel 19b is set lower than the driving frequency of the other low visibility sub-pixel 19r, the sub-pixel 19b having a lower visibility and less likely to see flicker is set to a lower frequency. Can drive.
  • the driving frequency of the sub-pixel 19 is lowered and flicker is likely to occur, the visibility of the display color can be lowered and the visual recognition is difficult.
  • the balance between the improvement in display quality by reducing the visibility of flicker and the reduction in power consumption by low-frequency driving is optimized according to the visibility of each sub-pixel 19r, 19g, 19b. can do.
  • the display color of the sub-pixel 19 is the three primary colors R, G, and B has been described, but the present invention is not limited to this.
  • the display color of the sub-pixel 19 may be four colors of R, G, B, and Y (yellow), or may be R, G, B, and W (white).
  • the green (G) sub-pixel 19g is used as the high visibility sub-pixel and a still image is displayed.
  • the driving frequencies of the other low visibility sub-pixels 19r, 19b, and 19y may be decreased in the order of Y, R, and B (G ⁇ Y ⁇ R ⁇ B).
  • the present invention is not limited to the above-described first to third embodiments, and the present invention includes a configuration in which these first to third embodiments are appropriately combined. Therefore, for example, when a still image is displayed while the functional circuit unit 50 is provided in the low visibility sub-pixels 19r and 19b as in the second embodiment, the driving frequency of the sub-pixel 19b is higher than the driving frequency of the sub-pixel 19r. You may make it low.
  • the present invention is useful for a liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

In the present invention, a liquid crystal display device is provided with the following: a drive circuit that drives a plurality of sub-pixels by applying a signal voltage; and a signal voltage modulation circuit that modulates a signal voltage that is applied to high luminosity sub-pixels to a relatively high frequency, and that modulates the signal voltage applied to low luminosity sub-pixels to the same relatively high frequency as that of the signal voltage applied to the high luminosity sub-pixels, or to a frequency lower than that frequency.

Description

液晶表示装置Liquid crystal display
 本発明は、液晶表示装置に関するものである。 The present invention relates to a liquid crystal display device.
 近年、例えば、携帯電話、スマートフォン及びタブレット端末等のモバイル機器の需要が拡大しており、その表示装置として中型又は小型の液晶表示装置が広く用いられている。これらのモバイル機器では、バッテリの容量が限られていることから、低消費電力化に対する要望が益々高まっている。 In recent years, for example, the demand for mobile devices such as mobile phones, smartphones, and tablet terminals is increasing, and medium-sized or small-sized liquid crystal display devices are widely used as display devices. In these mobile devices, since the capacity of the battery is limited, there is an increasing demand for low power consumption.
 液晶表示装置の消費電力を低下させる手段として、例えば特許文献1に開示されているように、液晶表示装置を低周波駆動することが知られている。 As a means for reducing the power consumption of a liquid crystal display device, it is known to drive the liquid crystal display device at a low frequency as disclosed in, for example, Patent Document 1.
 しかし、液晶表示装置を低周波駆動すると、低消費電力化が可能になるものの、フリッカ(画面のちらつき)が生じ易くなり、表示品位が低下してしまう問題がある。フリッカは、画面更新の周期(フレーム周期)が目の残像時間に近いときに起きる現象であり、駆動周波数を低下させるに連れてフリッカが増加する傾向にある。 However, when the liquid crystal display device is driven at a low frequency, it is possible to reduce the power consumption, but there is a problem that flicker (flickering of the screen) easily occurs and the display quality is deteriorated. Flicker is a phenomenon that occurs when the screen update cycle (frame cycle) is close to the afterimage time of the eye, and flicker tends to increase as the drive frequency decreases.
 ここで、上記特許文献1の液晶表示装置では、低周波駆動時に表示パネルの温度が上昇すると、特にフリッカが視認されやすくなることも考慮して、温度センサと、温度センサに接続された周波数変調回路とが設けられている。そして、低周波駆動している液晶表示装置において、温度センサによって検出された表示パネルの温度が高温になるに連れて、駆動周波数を周波数変調回路によって徐々に高く変調させるようにしている。そのことにより、低周波駆動される液晶表示装置について、フリッカを抑制しようとしている。 Here, in the liquid crystal display device of the above-mentioned Patent Document 1, when the temperature of the display panel rises at the time of low-frequency driving, the temperature sensor and the frequency modulation connected to the temperature sensor are taken into consideration that flicker is particularly easily recognized. Circuit. In a liquid crystal display device that is driven at a low frequency, the drive frequency is gradually increased by the frequency modulation circuit as the temperature of the display panel detected by the temperature sensor becomes higher. As a result, the liquid crystal display device driven at a low frequency tries to suppress flicker.
特開2005-091385号公報JP 2005-091385 A
 しかし、上記特許文献1の液晶表示装置では、例えば長時間の表示動作が継続されること等により、表示パネルの温度が十分に上昇してしまうと、比較的高い周波数によって駆動され続けることになるため、低消費電力化の観点では改良の余地がある。 However, in the liquid crystal display device of Patent Document 1, when the temperature of the display panel rises sufficiently due to, for example, continuous display operation for a long time, the liquid crystal display device continues to be driven at a relatively high frequency. Therefore, there is room for improvement in terms of reducing power consumption.
 一方、表示品位の観点では、高周波駆動することが望ましい場合がある。例えば、動画を表示する場合等では、液晶表示装置を低周波駆動すると、高周波駆動するときに比べて表示品位が低下し易くなる。 On the other hand, it may be desirable to drive at high frequency from the viewpoint of display quality. For example, in the case of displaying a moving image, when the liquid crystal display device is driven at a low frequency, the display quality tends to be lower than when the liquid crystal device is driven at a high frequency.
 本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、液晶表示装置の表示品位を高く維持しながらも、その低消費電力化を図ることにある。 The present invention has been made in view of such a point, and an object of the present invention is to reduce power consumption while maintaining high display quality of a liquid crystal display device.
 上記の目的を達成するために、本発明に係る液晶表示装置は、複数の画素と、上記複数の画素にそれぞれ設けられ、複数の表示色毎に形成された複数のサブ画素と、上記複数のサブ画素に信号電圧を印加することにより、該複数のサブ画素を駆動する駆動回路と、上記画素に含まれる上記複数のサブ画素のうち、上記表示色の視感度が当該画素における他の上記サブ画素よりも高い高視感度サブ画素が高周波駆動されるように、該高視感度サブ画素に印加される信号電圧を比較的高い周波数に変調する一方、当該画素における上記他のサブ画素である低視感度サブ画素が高周波駆動又は低周波駆動されるように、該低視感度サブ画素に印加される信号電圧を、上記高視感度サブ画素に印加される信号電圧と同じ比較的高い周波数又は該周波数よりも低い周波数に変調する信号電圧変調回路とを備えている。 In order to achieve the above object, a liquid crystal display device according to the present invention includes a plurality of pixels, a plurality of sub-pixels provided for each of the plurality of pixels and formed for each of a plurality of display colors, and the plurality of the plurality of pixels. By applying a signal voltage to the sub-pixel, a driving circuit that drives the plurality of sub-pixels, and among the plurality of sub-pixels included in the pixel, the visibility of the display color is the other sub-pixel in the pixel. The signal voltage applied to the high visibility subpixel is modulated to a relatively high frequency so that the high visibility subpixel higher than the pixel is driven at a high frequency, while the other subpixels in the pixel are low The signal voltage applied to the low visibility subpixel is set to a relatively high frequency equal to or higher than the signal voltage applied to the high visibility subpixel so that the visibility subpixel is driven at high frequency or low frequency. frequency And a signal voltage modulation circuit for modulating a frequency lower than.
 本発明によれば、高視感度サブ画素については高周波駆動する一方、低視感度サブ画素については高周波駆動又は低周波駆動するように構成したので、液晶表示装置の表示品位を高く維持しながらも、その低消費電力化を図ることができる。 According to the present invention, the high visibility sub-pixel is driven at high frequency, while the low visibility sub-pixel is driven at high frequency or low frequency, so that the display quality of the liquid crystal display device is maintained high. The power consumption can be reduced.
図1は、本実施形態1における液晶表示装置の回路構成を模式的に示す配線図である。FIG. 1 is a wiring diagram schematically showing a circuit configuration of the liquid crystal display device according to the first embodiment. 図2は、本実施形態1における電子機器に設けられた液晶表示装置の概略構造を示す断面図である。FIG. 2 is a cross-sectional view illustrating a schematic structure of a liquid crystal display device provided in the electronic apparatus according to the first embodiment. 図3は、本実施形態1における液晶表示装置の全体構成を模式的に示す配線図である。FIG. 3 is a wiring diagram schematically showing the overall configuration of the liquid crystal display device according to the first embodiment. 図4は、本実施形態1における1つの画素に含まれるサブ画素を示す配線図である。FIG. 4 is a wiring diagram showing sub-pixels included in one pixel in the first embodiment. 図5は、サブ画素に印加される信号電圧を示す波形図である。FIG. 5 is a waveform diagram showing signal voltages applied to the sub-pixels. 図6は、サブ画素に印加される信号電圧を示す波形図である。FIG. 6 is a waveform diagram showing signal voltages applied to the sub-pixels. 図7は、各サブ画素で変調される信号電圧の周波数を示す表である。FIG. 7 is a table showing the frequency of the signal voltage modulated by each sub-pixel. 図8は、本実施形態2における1つの画素に含まれるサブ画素を示す配線図である。FIG. 8 is a wiring diagram showing sub-pixels included in one pixel in the second embodiment. 図9は、本実施形態3における1つの画素に含まれるサブ画素を示す配線図である。FIG. 9 is a wiring diagram showing sub-pixels included in one pixel in the third embodiment.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiment.
 《発明の実施形態1》
 図1~図7は、本発明の実施形態1を示している。
Embodiment 1 of the Invention
1 to 7 show Embodiment 1 of the present invention.
 図1は、本実施形態1における液晶表示装置の回路構成を模式的に示す配線図である。図2は、本実施形態1における電子機器に設けられた液晶表示装置の概略構造を示す断面図である。 FIG. 1 is a wiring diagram schematically showing a circuit configuration of the liquid crystal display device according to the first embodiment. FIG. 2 is a cross-sectional view illustrating a schematic structure of a liquid crystal display device provided in the electronic apparatus according to the first embodiment.
 図3は、本実施形態1における液晶表示装置の全体構成を模式的に示す配線図である。図4は、1つの画素に含まれるサブ画素を示す配線図である。図5及び図6は、サブ画素に印加される信号電圧を示す波形図である。図7は、各サブ画素で変調される信号電圧の周波数を示す表である。 FIG. 3 is a wiring diagram schematically showing the overall configuration of the liquid crystal display device according to the first embodiment. FIG. 4 is a wiring diagram showing sub-pixels included in one pixel. 5 and 6 are waveform diagrams showing signal voltages applied to the sub-pixels. FIG. 7 is a table showing the frequency of the signal voltage modulated by each sub-pixel.
 本実施形態1における液晶表示装置1は、図2に示すように、液晶表示パネル11と、この液晶表示パネル11の背面側に配置された光源であるバックライトユニット12とを備えている。すなわち、液晶表示装置1は、少なくともバックライトユニット12の光を選択的に透過させて透過表示を行うように構成されている。 As shown in FIG. 2, the liquid crystal display device 1 according to Embodiment 1 includes a liquid crystal display panel 11 and a backlight unit 12 that is a light source disposed on the back side of the liquid crystal display panel 11. That is, the liquid crystal display device 1 is configured to perform transmissive display by selectively transmitting at least light from the backlight unit 12.
 液晶表示パネル11は、図2に示すように、第1基板であるTFT基板13と、TFT基板13に対向して配置された第2基板である対向基板14とを有している。TFT基板13と対向基板14との間には、液晶層15がシール部材16によって封入されている。 As shown in FIG. 2, the liquid crystal display panel 11 includes a TFT substrate 13 that is a first substrate, and a counter substrate 14 that is a second substrate disposed to face the TFT substrate 13. A liquid crystal layer 15 is sealed between the TFT substrate 13 and the counter substrate 14 by a seal member 16.
 液晶表示パネル11は、表示領域である表示画面10と、その周囲に設けられた額縁状の非表示領域(図示省略)とを有している。表示領域には、マトリクス状に設けられた複数の画素18が形成されている。各画素18には、複数の表示色毎に形成された複数のサブ画素19がそれぞれ設けられている。 The liquid crystal display panel 11 has a display screen 10 as a display area and a frame-like non-display area (not shown) provided around the display screen 10. A plurality of pixels 18 provided in a matrix are formed in the display area. Each pixel 18 is provided with a plurality of sub-pixels 19 formed for each of a plurality of display colors.
 図3に簡略化して示すように、TFT基板13は、アクティブマトリクス基板によって構成されている。TFT基板13は、透明基板としてのガラス基板21を有している。上記ガラス基板21上には、互いに並行して延びる複数のソース配線23と、ソース配線23に交差して延びる複数のゲート配線22とが形成されている。 As shown in FIG. 3 in a simplified manner, the TFT substrate 13 is composed of an active matrix substrate. The TFT substrate 13 has a glass substrate 21 as a transparent substrate. On the glass substrate 21, a plurality of source lines 23 extending in parallel with each other and a plurality of gate lines 22 extending so as to intersect the source lines 23 are formed.
 また、液晶表示装置1は、ソース配線23に接続されたソースドライバ31と、ソースドライバに接続されたCOGドライバ32と、ゲート配線22に接続されたゲートドライバ33とを有している。 Further, the liquid crystal display device 1 includes a source driver 31 connected to the source line 23, a COG driver 32 connected to the source driver, and a gate driver 33 connected to the gate line 22.
 そして、複数のゲート配線22及び複数のソース配線23は、全体として格子状に形成され、ゲート配線22及びソース配線23に矩形状に囲まれた領域にサブ画素19がそれぞれ形成されている。 The plurality of gate lines 22 and the plurality of source lines 23 are formed in a lattice shape as a whole, and the sub-pixels 19 are formed in regions surrounded by the gate lines 22 and the source lines 23 in a rectangular shape.
 各サブ画素19には、ゲート配線22及びソース配線23の交差部分近傍にTFT(薄膜トランジスタ)20がそれぞれ設けられている。TFT20には、上記ゲート配線22及びソース配線23が接続されている。また、各サブ画素19には、当該サブ画素19に設けられているTFT20のドレイン電極(図示省略)に接続された画素電極(図示省略)が形成されている。画素電極30は、例えばITO(Indium Tin Oxide)等の透明導電性膜によって構成されている。 Each subpixel 19 is provided with a TFT (thin film transistor) 20 in the vicinity of the intersection of the gate wiring 22 and the source wiring 23. The gate wiring 22 and the source wiring 23 are connected to the TFT 20. Each subpixel 19 is formed with a pixel electrode (not shown) connected to the drain electrode (not shown) of the TFT 20 provided in the subpixel 19. The pixel electrode 30 is made of a transparent conductive film such as ITO (Indium Tin Oxide).
 尚、TFT20の構造としては、ボトムゲート型でもよいし、トップゲート型でもよい。また、図示を省略するが、ガラス基板21上に、保持容量配線とTFT20のドレイン電極との間に保持容量Csを形成してもよい。そのことにより、寄生容量やTFT20のオフリーク電流による画素電極の電位変動を抑制できる。 The structure of the TFT 20 may be a bottom gate type or a top gate type. Although not shown, a storage capacitor Cs may be formed on the glass substrate 21 between the storage capacitor line and the drain electrode of the TFT 20. Thereby, the potential fluctuation of the pixel electrode due to the parasitic capacitance and the off-leak current of the TFT 20 can be suppressed.
 一方、対向基板14には、複数色の着色層を有するカラーフィルタ(図示省略)と、上記複数の画素電極に共通して設けられた共通電極(図示省略)とが形成されている。上記共通電極も、画素電極と同様に例えばITO等の透明導電性膜によって形成されている。そうして、所定電位の共通電極と、各サブ画素19の画素電極との電位差を制御することによって、液晶層15を各サブ画素19毎に配向制御するようになっている。 On the other hand, a color filter (not shown) having a plurality of colored layers and a common electrode (not shown) provided in common with the plurality of pixel electrodes are formed on the counter substrate 14. Similarly to the pixel electrode, the common electrode is also formed of a transparent conductive film such as ITO. Thus, the orientation of the liquid crystal layer 15 is controlled for each sub-pixel 19 by controlling the potential difference between the common electrode having a predetermined potential and the pixel electrode of each sub-pixel 19.
 本実施形態における1つの画素18には、赤色(R)、緑色(G)及び青色(B)の3原色のサブ画素19r,19g,19bが設けられている。緑色(G)のサブ画素19gは、対向基板14に形成された緑色(G)の着色層によって、緑色(G)の表示色を表示するように構成されている。赤色(R)のサブ画素19r及び青色(B)のサブ画素19bについても、緑色(G)のサブ画素19gと同様に、それぞれ赤色(R)の着色層及び青色(B)の着色層によって、赤色(R)又は青色(B)の表示色を表示するようになっている。 In the present embodiment, one pixel 18 is provided with sub-pixels 19r, 19g, and 19b of three primary colors of red (R), green (G), and blue (B). The green (G) sub-pixel 19 g is configured to display a green (G) display color by a green (G) colored layer formed on the counter substrate 14. Similarly to the green (G) sub-pixel 19g, the red (R) sub-pixel 19r and the blue (B) sub-pixel 19b are respectively formed by a red (R) coloring layer and a blue (B) coloring layer. The display color of red (R) or blue (B) is displayed.
 図4に示すように、1つの画素18には、各サブ画素19r,19g,19bにそれぞれ接続された3本のソース配線23と、2本のゲート配線22が接続されている。2つのサブ画素19r,19bが一方のゲート配線22に接続され、残る1つのサブ画素19gが他方のゲート配線に接続されている。 As shown in FIG. 4, to one pixel 18, three source wirings 23 and two gate wirings 22 respectively connected to the sub-pixels 19r, 19g, and 19b are connected. Two sub-pixels 19r and 19b are connected to one gate wiring 22, and the remaining one sub-pixel 19g is connected to the other gate wiring.
 そして、液晶表示装置1は、図1に示すように、上記複数のサブ画素19r,19g,19bに信号電圧を印加することにより、その複数のサブ画素19r,19g,19bを駆動する駆動回路である上記ソースドライバ31と、上記信号電圧の周波数を変調する信号電圧変調回路40とを備えている。 As shown in FIG. 1, the liquid crystal display device 1 is a drive circuit that drives a plurality of subpixels 19r, 19g, and 19b by applying a signal voltage to the plurality of subpixels 19r, 19g, and 19b. The source driver 31 and a signal voltage modulation circuit 40 that modulates the frequency of the signal voltage are provided.
 ソースドライバ31には、赤色(R)、緑色(G)及び青色(B)の各色ごとに設けられたビデオライン25が接続されている。ビデオライン25には、複数のソース配線23の一端が接続されている。各ソース配線23にはスイッチ26がそれぞれ設けられている。そして、ソース配線23の他端側が各画素18に接続されている。 A video line 25 provided for each color of red (R), green (G), and blue (B) is connected to the source driver 31. One end of a plurality of source lines 23 is connected to the video line 25. Each source line 23 is provided with a switch 26. The other end of the source line 23 is connected to each pixel 18.
 上記信号電圧変調回路40は、ソースドライバ31とソース配線23との間のビデオラインに設けられている。信号電圧変調回路40は、各画素18に設けられている。 The signal voltage modulation circuit 40 is provided on a video line between the source driver 31 and the source wiring 23. The signal voltage modulation circuit 40 is provided in each pixel 18.
 ここで、緑色(G)のサブ画素19gは、その表示色(G)の視感度が、当該サブ画素19gが設けられている画素18における他のサブ画素19r,19bよりも高い高視感度サブ画素となっている。一方、当該画素18における他のサブ画素19r,19bは、その表示色である赤色(R)及び青色(B)の視感度が緑色(G)よりも低い低視感度サブ画素となっている。 Here, the green (G) sub-pixel 19g has a higher visibility sensitivity than the other sub-pixels 19r and 19b in the pixel 18 in which the sub-pixel 19g is provided. It is a pixel. On the other hand, the other sub-pixels 19r and 19b in the pixel 18 are low-visibility sub-pixels whose visual sensitivities of red (R) and blue (B) are lower than that of green (G).
 信号電圧変調回路40は、図1及び図4に示すように、高視感度サブ画素19gが高周波駆動されるように、高視感度サブ画素19gに印加される信号電圧を比較的高い周波数に変調する一方、低視感度サブ画素19r,19bが高周波駆動又は低周波駆動されるように、低視感度サブ画素19r,19bに印加される信号電圧を、高視感度サブ画素19gに印加される信号電圧と同じ比較的高い周波数又はその周波数よりも低い周波数に変調するように構成されている。 As shown in FIGS. 1 and 4, the signal voltage modulation circuit 40 modulates the signal voltage applied to the high visibility subpixel 19g to a relatively high frequency so that the high visibility subpixel 19g is driven at a high frequency. On the other hand, the signal voltage applied to the low visibility subpixels 19r and 19b is applied to the high visibility subpixel 19g so that the low visibility subpixels 19r and 19b are driven at high frequency or low frequency. It is configured to modulate to the same relatively high frequency as the voltage or a frequency lower than that frequency.
 また、ソースドライバ31は、表示画面10に静止画又は動画を表示するための信号電圧を複数のサブ画素19に印加するように構成されている。そして、上記信号電圧変調回路40は、表示画面10に静止画を表示するときに、高視感度サブ画素19gを高周波駆動すると共に低視感度サブ画素19r,19bを低周波駆動する一方、表示画面に動画を表示するときに、高視感度サブ画素19g及び低視感度サブ画素19r,19bを高周波駆動するように構成されている。 The source driver 31 is configured to apply a signal voltage for displaying a still image or a moving image on the display screen 10 to the plurality of sub-pixels 19. When the signal voltage modulation circuit 40 displays a still image on the display screen 10, the high-visibility subpixel 19g is driven at a high frequency and the low- visibility subpixels 19r and 19b are driven at a low frequency. When displaying a moving image, the high visibility sub-pixel 19g and the low visibility sub-pixels 19r and 19b are configured to be driven at a high frequency.
 信号電圧変調回路40は、赤色(R)のビデオライン25rと、青色(B)のビデオライン25bとにそれぞれ設けられた変調部41と、変調部41に接続された判断部42とを有している。 The signal voltage modulation circuit 40 includes a modulation unit 41 provided on each of the red (R) video line 25r and the blue (B) video line 25b, and a determination unit 42 connected to the modulation unit 41. ing.
 判断部42は、表示画面10に表示する画像が静止画及び動画の何れであるかを判断する。そして、判断部42が、当該表示画像は静止画であると判断したときに、変調部41が信号電圧の周波数を低くする。一方、判断部42が表示画像は動画であると判断したときに、変調部41は信号電圧を高い周波数に維持する。 The determination unit 42 determines whether the image displayed on the display screen 10 is a still image or a moving image. When the determination unit 42 determines that the display image is a still image, the modulation unit 41 lowers the frequency of the signal voltage. On the other hand, when the determination unit 42 determines that the display image is a moving image, the modulation unit 41 maintains the signal voltage at a high frequency.
 ここで、図1において変調部41のソースドライバ31側の領域aと、同図において変調部41のサブ画素19側の領域bとにおける信号電圧の周波数の変化を図7に示す。図7に示すように、ソースドライバ31から各ビデオライン25r,25g,25bに出力された領域aの信号電圧は、図5にも示すように、全て60Hzの比較的高い周波数を有している。 Here, FIG. 7 shows changes in the frequency of the signal voltage in the region a on the source driver 31 side of the modulation unit 41 in FIG. 1 and the region b on the sub-pixel 19 side of the modulation unit 41 in FIG. As shown in FIG. 7, the signal voltages in the region a output from the source driver 31 to the video lines 25r, 25g, and 25b all have a relatively high frequency of 60 Hz, as shown in FIG. .
 図6に示すように、表示画像が静止画であると判断部42により判断された場合、ビデオライン25r,25bについて、その信号電圧の周波数は、変調部41によって60Hzから例えば15Hzに変調される。一方、ビデオライン25gについて、その信号電圧の周波数は60Hzのまま維持される。 As shown in FIG. 6, when the determination unit 42 determines that the display image is a still image, the frequency of the signal voltage of the video lines 25 r and 25 b is modulated from 60 Hz to 15 Hz, for example, by the modulation unit 41. . On the other hand, for the video line 25g, the frequency of the signal voltage is maintained at 60 Hz.
 そうして、ビデオライン25g信号電圧は、60Hzの高い周波数で高視感度サブ画素19gに印加される。また、ビデオライン25r,25bの信号電圧は、15Hzの低い周波数で低視感度サブ画素19r,19bに印加される。その結果、静止画表示の場合には、低視感度サブ画素19r,19bが低周波駆動されると共に、高視感度サブ画素19gが高周波駆動される。 Thus, the video line 25g signal voltage is applied to the high visibility sub-pixel 19g at a high frequency of 60 Hz. The signal voltages of the video lines 25r and 25b are applied to the low visibility sub-pixels 19r and 19b at a low frequency of 15 Hz. As a result, in the case of still image display, the low visibility subpixels 19r and 19b are driven at a low frequency, and the high visibility subpixel 19g is driven at a high frequency.
 図5に示すように、表示画像が動画であると判断部42により判断された場合、各ビデオライン25r,25g,25bの信号電圧の周波数は、変調部41によって60Hzのまま維持される。そうして、各信号電圧は、60Hzの高い周波数で、高視感度サブ画素19g及び低視感度サブ画素19r,19bに印加される。その結果、動画表示の場合には、全てのサブ画素19r,19g,19bが高周波駆動される。 As shown in FIG. 5, when the determination unit 42 determines that the display image is a moving image, the frequency of the signal voltage of each video line 25r, 25g, 25b is maintained at 60 Hz by the modulation unit 41. Thus, each signal voltage is applied to the high visibility subpixel 19g and the low visibility subpixels 19r and 19b at a high frequency of 60 Hz. As a result, in the case of moving image display, all the sub-pixels 19r, 19g, 19b are driven at a high frequency.
  -実施形態1の効果-
 したがって、この実施形態1によると、液晶表示装置1の使用者が視認しやすい高視感度サブ画素19gについては、高周波駆動して表示品位を高く維持しながらも、使用者が視認し難い低視感度サブ画素19r,19bについては、高周波駆動又は低周波駆動するようにして、液晶表示装置1の低消費電力化を図ることができる。よって、液晶表示装置1の表示品位を高く維持しながらも、その低消費電力化を図ることが可能になる。
-Effect of Embodiment 1-
Therefore, according to the first embodiment, the high visibility sub-pixel 19g that is easy to be visually recognized by the user of the liquid crystal display device 1 is low-frequency that is difficult for the user to visually recognize while maintaining high display quality by driving at high frequency. The sensitivity sub-pixels 19r and 19b can be driven at a high frequency or a low frequency so that the power consumption of the liquid crystal display device 1 can be reduced. Therefore, it is possible to reduce the power consumption while maintaining the display quality of the liquid crystal display device 1 high.
 特に、高視感度サブ画素19gは低周波駆動するとフリッカが視認され易いが、本実施形態では、表示画面10に静止画を表示するときに、高視感度サブ画素19gを高周波駆動してフリッカを生じ難くし、且つ、フリッカが生じても視認され難い低視感度サブ画素19r,19bを低周波駆動するようにしたので、静止画を表示している間に、低周波駆動による低消費電力化を図りながらもフリッカが視認され難いようにして表示品位を高く維持することができる。さらに、動画については常に高周波駆動による高品位な表示を行うことができる。 In particular, when the high visibility subpixel 19g is driven at a low frequency, flicker is likely to be visually recognized. However, in this embodiment, when displaying a still image on the display screen 10, the high visibility subpixel 19g is driven at a high frequency to reduce flicker. The low- visibility sub-pixels 19r and 19b that are less likely to occur and difficult to be recognized even when flicker occurs are driven at a low frequency, so that low power consumption is achieved by driving at a low frequency while a still image is displayed. The display quality can be maintained high so that the flicker is hardly visually recognized while aiming. Further, high-quality display can always be performed with high-frequency driving for moving images.
 例えば、スマートフォン等のモバイル機器に液晶表示装置1が用いられる場合、待ち受け画像等の静止画表示と、動画表示とを頻繁に切り替えて使用するような場合がある。したがって、上記液晶表示装置1は、かかるモバイル機器にも好適である。 For example, when the liquid crystal display device 1 is used in a mobile device such as a smartphone, there may be a case where a still image display such as a standby image and a moving image display are frequently switched. Therefore, the liquid crystal display device 1 is also suitable for such mobile devices.
 《発明の実施形態2》
 図8は、本発明の実施形態2を示している。
<< Embodiment 2 of the Invention >>
FIG. 8 shows Embodiment 2 of the present invention.
 図8は、本実施形態2における1つの画素に含まれるサブ画素を示す配線図である。尚、以降の各実施形態では、図1~図7と同じ部分については同じ符号を付して、その詳細な説明を省略する。 FIG. 8 is a wiring diagram showing sub-pixels included in one pixel in the second embodiment. In the following embodiments, the same portions as those in FIGS. 1 to 7 are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態は、上記実施形態1における画素18に改良を加えたものである。図8に示すように、1つの画素18には、各サブ画素19r,19g,19bにそれぞれ接続された3本のソース配線23と、2本のゲート配線22が接続されている。2つのサブ画素19r,19bが一方のゲート配線22に接続され、残る1つのサブ画素19gが他方のゲート配線に接続されている。 This embodiment is obtained by improving the pixel 18 in the first embodiment. As shown in FIG. 8, one source 18 is connected with three source lines 23 and two gate lines 22 respectively connected to the sub-pixels 19r, 19g, and 19b. Two sub-pixels 19r and 19b are connected to one gate wiring 22, and the remaining one sub-pixel 19g is connected to the other gate wiring.
 そして、図8に示すように、低視感度サブ画素19r,19bには、当該サブ画素19r,19bに印加された信号電圧を一定に維持するための機能回路部50が形成されている。 As shown in FIG. 8, the low visibility sub-pixels 19r and 19b are formed with a functional circuit unit 50 for keeping the signal voltage applied to the sub-pixels 19r and 19b constant.
 例えば、低視感度サブ画素19r,19bには、当該サブ画素19r,19bにおける表示情報を記憶するメモリ回路部51が機能回路部50として形成されている。メモリ回路部51は、ダイナミック・ランダム・アクセス・メモリ(DRAM)や、スタティック・ランダム・アクセス・メモリ(SRAM)によって構成されている。 For example, in the low visibility sub-pixels 19r and 19b, a memory circuit unit 51 that stores display information in the sub-pixels 19r and 19b is formed as a functional circuit unit 50. The memory circuit unit 51 includes a dynamic random access memory (DRAM) and a static random access memory (SRAM).
 また、機能回路部50としては、その他にも、低視感度サブ画素19r,19bに印加されている信号電圧を再度印加するリフレッシュ回路部52によって構成することも可能である。例えば、信号電圧の極性を反転させる際にリフレッシュして再度同じ電圧を低視感度サブ画素19r,19bに印加する。 In addition, the functional circuit unit 50 can be configured by a refresh circuit unit 52 that re-applies the signal voltage applied to the low visibility sub-pixels 19r and 19b. For example, when inverting the polarity of the signal voltage, the same voltage is refreshed and applied again to the low visibility sub-pixels 19r and 19b.
 本実施形態においても、信号電圧変調回路40は、赤色(R)のビデオライン25rと、青色(B)のビデオライン25bとにそれぞれ設けられた変調部41と、変調部41に接続された判断部42とを有している。 Also in the present embodiment, the signal voltage modulation circuit 40 includes the modulation unit 41 provided on the red (R) video line 25r and the blue (B) video line 25b, respectively, and the determination connected to the modulation unit 41. Part 42.
 判断部42は、表示画面10に表示する画像が静止画及び動画の何れであるかを判断する。そして、判断部42が、当該表示画像は静止画であると判断したときに、変調部41が信号電圧の周波数を低くする。一方、判断部42が表示画像は動画であると判断したときに、変調部41は信号電圧を高い周波数に維持する。 The determination unit 42 determines whether the image displayed on the display screen 10 is a still image or a moving image. When the determination unit 42 determines that the display image is a still image, the modulation unit 41 lowers the frequency of the signal voltage. On the other hand, when the determination unit 42 determines that the display image is a moving image, the modulation unit 41 maintains the signal voltage at a high frequency.
 すなわち、図7に示すように、ソースドライバ31から各ビデオライン25r,25g,25bに出力された領域aの信号電圧は、全て60Hzの比較的高い周波数を有している。 That is, as shown in FIG. 7, the signal voltages in the region a output from the source driver 31 to the video lines 25r, 25g, and 25b all have a relatively high frequency of 60 Hz.
 表示画像が静止画であると判断部42により判断された場合、ビデオライン25r,25bについて、その信号電圧の周波数は、変調部41によって60Hzから例えば1Hz程度に変調される。一方、ビデオライン25gについて、その信号電圧の周波数は60Hzのまま維持される。 When the determination unit 42 determines that the display image is a still image, the frequency of the signal voltage of the video lines 25r and 25b is modulated by the modulation unit 41 from 60 Hz to, for example, about 1 Hz. On the other hand, for the video line 25g, the frequency of the signal voltage is maintained at 60 Hz.
 そうして、ビデオライン25g信号電圧は、60Hzの高い周波数で高視感度サブ画素19gに印加される。また、ビデオライン25r,25bの信号電圧は、1Hz程度の低い周波数で低視感度サブ画素19r,19bに印加される。 Thus, the video line 25g signal voltage is applied to the high visibility sub-pixel 19g at a high frequency of 60 Hz. The signal voltages of the video lines 25r and 25b are applied to the low visibility sub-pixels 19r and 19b at a frequency as low as about 1 Hz.
 機能回路部50がメモリ回路部51である場合には、当該低視感度サブ画素19r,19bに印加された信号電圧をメモリ回路部51によって記憶させる。一方、機能回路部50がリフレッシュ回路部52である場合には、信号電圧の極性を反転させる際にリフレッシュして再度同じ電圧を低視感度サブ画素19r,19bに印加する。そのことにより、低視感度サブ画素19r,19bにおける信号電圧が維持されることとなる。 When the functional circuit unit 50 is the memory circuit unit 51, the memory circuit unit 51 stores the signal voltage applied to the low visibility sub-pixels 19r and 19b. On the other hand, when the functional circuit unit 50 is the refresh circuit unit 52, refresh is performed when the polarity of the signal voltage is inverted, and the same voltage is applied again to the low visibility sub-pixels 19r and 19b. As a result, the signal voltage in the low visibility sub-pixels 19r and 19b is maintained.
 その結果、静止画表示の場合には、低視感度サブ画素19r,19bが低周波駆動されると共に、高視感度サブ画素19gが高周波駆動される。 As a result, in the case of still image display, the low visibility sub-pixels 19r and 19b are driven at a low frequency, and the high visibility sub-pixel 19g is driven at a high frequency.
 一方、表示画像が動画であると判断部42により判断された場合、各ビデオライン25r,25g,25bの信号電圧の周波数は、変調部41によって60Hzのまま維持される。そうして、各信号電圧は、60Hzの高い周波数で、高視感度サブ画素19g及び低視感度サブ画素19r,19bに印加される。その結果、動画表示の場合には、全てのサブ画素19r,19g,19bが高周波駆動される。 On the other hand, when the determination unit 42 determines that the display image is a moving image, the frequency of the signal voltage of each video line 25r, 25g, 25b is maintained at 60 Hz by the modulation unit 41. Thus, each signal voltage is applied to the high visibility subpixel 19g and the low visibility subpixels 19r and 19b at a high frequency of 60 Hz. As a result, in the case of moving image display, all the sub-pixels 19r, 19g, 19b are driven at a high frequency.
  -実施形態2の効果-
 したがって、この実施形態2によっても、液晶表示装置1の表示品位を高く維持しながらも、その低消費電力化を図ることができる。すなわち、高視感度サブ画素19gは低周波駆動するとフリッカが視認され易いが、本実施形態では、表示画面10に静止画を表示するときに、高視感度サブ画素19gを高周波駆動してフリッカを生じ難くし、且つ、フリッカが生じても視認され難い低視感度サブ画素19r,19bを低周波駆動するようにしたので、静止画を表示している間に、低周波駆動による低消費電力化を図りながらもフリッカが視認され難いようにして表示品位を高く維持することができる。さらに、動画については常に高周波駆動による高品位な表示を行うことができる。
-Effect of Embodiment 2-
Therefore, according to the second embodiment, it is possible to reduce the power consumption while maintaining the display quality of the liquid crystal display device 1 high. That is, the high visibility sub-pixel 19g is likely to visually recognize flicker when driven at a low frequency. However, in this embodiment, when displaying a still image on the display screen 10, the high visibility sub-pixel 19g is driven at a high frequency to reduce flicker. The low visibility sub-pixels 19r and 19b that are less likely to occur and difficult to be recognized even when flicker occurs are driven at a low frequency, so that low power consumption is achieved by driving at a low frequency while a still image is displayed. The display quality can be maintained high so that the flicker is hardly visually recognized while aiming. Further, high-quality display can always be performed with high-frequency driving for moving images.
 しかも、本実施形態では、機能回路部50を低視感度サブ画素19r,19bに設けるようにしたので、当該サブ画素19r,19bをより低い周波数で駆動することができるため、消費電力を大幅に低下させることができる。その上、かかる機能回路部50を設けるとサブ画素19の開口率が低下するが、本実施形態では機能回路部50を使用者に視認され難い低視感度サブ画素19r,19bに設けて、使用者に視認されやすい高視感度サブ画素19gに設けないようにしたので、表示品位の低下を抑制しつつ低消費電力化を図ることができる。 In addition, in this embodiment, since the functional circuit unit 50 is provided in the low visibility sub-pixels 19r and 19b, the sub-pixels 19r and 19b can be driven at a lower frequency. Can be reduced. In addition, when such a functional circuit unit 50 is provided, the aperture ratio of the sub-pixel 19 is reduced. In this embodiment, the functional circuit unit 50 is provided on the low- viscosity sub-pixels 19r and 19b that are difficult for the user to visually recognize. Since it is not provided in the high visibility sub-pixel 19g that is easily visible to the user, it is possible to achieve low power consumption while suppressing deterioration in display quality.
 さらに、メモリドライバを設けることにより、フリッカを抑制することだけでなく、1Hz程度の超低周波駆動による画像の焼き付きも抑制することができ、表示装置の信頼性を高めることが可能となる。 Furthermore, by providing a memory driver, not only flicker can be suppressed, but also image burn-in due to ultra-low frequency driving of about 1 Hz can be suppressed, and the reliability of the display device can be improved.
 《発明の実施形態3》
 図9は、本発明の実施形態3を示している。
<< Embodiment 3 of the Invention >>
FIG. 9 shows Embodiment 3 of the present invention.
 図9は、本実施形態3における1つの画素に含まれるサブ画素を示す配線図である。 FIG. 9 is a wiring diagram showing sub-pixels included in one pixel in the third embodiment.
 上記実施形態1では、2つの低視感度サブ画素19r,19bの駆動周波数を互いに同じ周波数としたのに対し、本実施形態は、2つの低視感度サブ画素19r,19bの駆動周波数を互いに異なる周波数としたものである。 In the first embodiment, the driving frequencies of the two low visibility subpixels 19r and 19b are set to the same frequency, whereas in the present embodiment, the driving frequencies of the two low visibility subpixels 19r and 19b are different from each other. It is a frequency.
 ここで、本実施形態における1つの画素18には、赤色(R)、緑色(G)及び青色(B)の3原色の複数のサブ画素19r,19g,19bが設けられている。図9に示すように、1つの画素18には、各サブ画素19r,19g,19bにそれぞれ接続された3本のソース配線23と、3本のゲート配線22が接続されている。各サブ画素19r,19g,19bは、互いに異なるゲート配線22に接続されている。 Here, one pixel 18 in the present embodiment is provided with a plurality of sub-pixels 19r, 19g, and 19b of three primary colors of red (R), green (G), and blue (B). As shown in FIG. 9, one source 18 is connected with three source lines 23 and three gate lines 22 respectively connected to the sub-pixels 19r, 19g, and 19b. The sub-pixels 19r, 19g, and 19b are connected to different gate lines 22.
 各サブ画素19r,19g,19bの表示色は、緑色(G)が最も高い視感度であり、緑色(G)、赤色(R)及び青色(B)の順に低い視感度となっている(G>R>B)。そして、本実施形態における信号電圧変調回路40は、複数の低視感度サブ画素19r,19bのうち表示色の視感度が低い低視感度サブ画素19bに印加される信号電圧ほど低い周波数に変調するように構成されている。 The display color of each of the sub-pixels 19r, 19g, and 19b is green (G), which has the highest visibility, and green (G), red (R), and blue (B) in order of decreasing visibility (G > R> B). The signal voltage modulation circuit 40 in the present embodiment modulates the signal voltage applied to the low visibility subpixel 19b having a low display color visibility among the plurality of low visibility subpixels 19r and 19b to a lower frequency. It is configured as follows.
 信号電圧変調回路40は、本実施形態においても、赤色(R)のビデオライン25rと、青色(B)のビデオライン25bとにそれぞれ設けられた変調部41と、変調部41に接続された判断部42とを有している。 Also in this embodiment, the signal voltage modulation circuit 40 is provided with a modulation unit 41 provided for each of the red (R) video line 25r and the blue (B) video line 25b, and determination of being connected to the modulation unit 41. Part 42.
 判断部42は、表示画面10に表示する画像が静止画及び動画の何れであるかを判断する。そして、判断部42が、当該表示画像は静止画であると判断したときに、変調部41が信号電圧の周波数を低くする。一方、判断部42が表示画像は動画であると判断したときに、変調部41は信号電圧を高い周波数に維持する。 The determination unit 42 determines whether the image displayed on the display screen 10 is a still image or a moving image. When the determination unit 42 determines that the display image is a still image, the modulation unit 41 lowers the frequency of the signal voltage. On the other hand, when the determination unit 42 determines that the display image is a moving image, the modulation unit 41 maintains the signal voltage at a high frequency.
 すなわち、図7に示すように、ソースドライバ31から各ビデオライン25r,25g,25bに出力された領域aの信号電圧は、全て60Hzの比較的高い周波数を有している。 That is, as shown in FIG. 7, the signal voltages in the region a output from the source driver 31 to the video lines 25r, 25g, and 25b all have a relatively high frequency of 60 Hz.
 表示画像が静止画であると判断部42により判断された場合、変調部41は、ビデオライン25rにおける信号電圧の周波数を60Hzから例えば30Hzに低下させると共に、ビデオライン25bにおける信号電圧の周波数を60Hzから例えば15Hzに低下させる。一方、ビデオライン25gについて、その信号電圧の周波数は60Hzのまま維持される。 When the determination unit 42 determines that the display image is a still image, the modulation unit 41 reduces the frequency of the signal voltage in the video line 25r from 60 Hz to, for example, 30 Hz, and reduces the frequency of the signal voltage in the video line 25b to 60 Hz. To, for example, 15 Hz. On the other hand, for the video line 25g, the frequency of the signal voltage is maintained at 60 Hz.
 そうして、ビデオライン25g信号電圧は、60Hzの高い周波数で高視感度サブ画素19gに印加される。また、ビデオライン25rの信号電圧は、30Hz程度の低い周波数で低視感度サブ画素19rに印加される。一方、ビデオライン25bの信号電圧は、15Hz程度のより低い周波数で低視感度サブ画素19bに印加される。 Thus, the video line 25g signal voltage is applied to the high visibility sub-pixel 19g at a high frequency of 60 Hz. The signal voltage of the video line 25r is applied to the low visibility sub-pixel 19r at a low frequency of about 30 Hz. On the other hand, the signal voltage of the video line 25b is applied to the low visibility sub-pixel 19b at a lower frequency of about 15 Hz.
 その結果、静止画表示の場合には、低視感度サブ画素19r,19bが低周波駆動されると共に、高視感度サブ画素19gが高周波駆動される。さらに、低視感度サブ画素19bは、低視感度サブ画素19rよりも低い周波数で駆動される。 As a result, in the case of still image display, the low visibility sub-pixels 19r and 19b are driven at a low frequency, and the high visibility sub-pixel 19g is driven at a high frequency. Further, the low visibility subpixel 19b is driven at a lower frequency than the low visibility subpixel 19r.
 一方、表示画像が動画であると判断部42により判断された場合、各ビデオライン25r,25g,25bの信号電圧の周波数は、変調部41によって60Hzのまま維持される。そうして、各信号電圧は、60Hzの高い周波数で、高視感度サブ画素19g及び低視感度サブ画素19r,19bに印加される。その結果、動画表示の場合には、全てのサブ画素19r,19g,19bが高周波駆動される。 On the other hand, when the determination unit 42 determines that the display image is a moving image, the frequency of the signal voltage of each video line 25r, 25g, 25b is maintained at 60 Hz by the modulation unit 41. Thus, each signal voltage is applied to the high visibility subpixel 19g and the low visibility subpixels 19r and 19b at a high frequency of 60 Hz. As a result, in the case of moving image display, all the sub-pixels 19r, 19g, 19b are driven at a high frequency.
  -実施形態3の効果-
 したがって、この実施形態3によっても、液晶表示装置1の表示品位を高く維持しながらも、その低消費電力化を図ることができる。すなわち、高視感度サブ画素19gは低周波駆動するとフリッカが視認され易いが、本実施形態では、表示画面10に静止画を表示するときに、高視感度サブ画素19gを高周波駆動してフリッカを生じ難くし、且つ、フリッカが生じても視認され難い低視感度サブ画素19r,19bを低周波駆動するようにしたので、静止画を表示している間に、低周波駆動による低消費電力化を図りながらもフリッカが視認され難いようにして表示品位を高く維持することができる。さらに、動画については常に高周波駆動による高品位な表示を行うことができる。
-Effect of Embodiment 3-
Therefore, according to the third embodiment, it is possible to reduce the power consumption while maintaining the display quality of the liquid crystal display device 1 high. That is, the high visibility sub-pixel 19g is likely to visually recognize flicker when driven at a low frequency. However, in this embodiment, when displaying a still image on the display screen 10, the high visibility sub-pixel 19g is driven at a high frequency to reduce flicker. The low visibility sub-pixels 19r and 19b that are less likely to occur and difficult to be recognized even when flicker occurs are driven at a low frequency, so that low power consumption is achieved by driving at a low frequency while a still image is displayed. The display quality can be maintained high so that the flicker is hardly visually recognized while aiming. Further, high-quality display can always be performed with high-frequency driving for moving images.
 しかも、本実施形態では、静止画を表示する際に、複数の低視感度サブ画素19r,19b同士についても、視感度の高さに応じて駆動周波数に差を設けることとし、視感度が最も低い低視感度サブ画素19bの駆動周波数を他の低視感度サブ画素19rの駆動周波数よりも低くするようにしたので、視感度がより低くてフリッカが視認され難いサブ画素19bをより低い周波数で駆動できる。 In addition, in the present embodiment, when displaying a still image, the plurality of low visibility sub-pixels 19r and 19b are also provided with a difference in driving frequency according to the visibility, so that the visibility is the highest. Since the driving frequency of the low low visibility sub-pixel 19b is set lower than the driving frequency of the other low visibility sub-pixel 19r, the sub-pixel 19b having a lower visibility and less likely to see flicker is set to a lower frequency. Can drive.
 よって、サブ画素19の駆動周波数が低くなってフリッカが生じ易くなるに従って、その表示色の視感度を低くして視認され難くすることができる。その結果、フリッカの視認性を低下させることによる表示品位の向上と、低周波駆動による低消費電力化とのバランスを、各サブ画素19r,19g,19bにおける視感度の高さに応じて好適化することができる。 Therefore, as the driving frequency of the sub-pixel 19 is lowered and flicker is likely to occur, the visibility of the display color can be lowered and the visual recognition is difficult. As a result, the balance between the improvement in display quality by reducing the visibility of flicker and the reduction in power consumption by low-frequency driving is optimized according to the visibility of each sub-pixel 19r, 19g, 19b. can do.
 《その他の実施形態》
 上記各実施形態では、サブ画素19の表示色がR,G,Bの3原色である場合について説明したが、本発明はこれに限定されない。例えば、サブ画素19の表示色がR,G,B,Y(黄色)の4色としてもよく、R,G,B,W(白色)としてもよい。
<< Other Embodiments >>
In each of the above embodiments, the case where the display color of the sub-pixel 19 is the three primary colors R, G, and B has been described, but the present invention is not limited to this. For example, the display color of the sub-pixel 19 may be four colors of R, G, B, and Y (yellow), or may be R, G, B, and W (white).
 サブ画素19の表示色がR,G,B,Yの4色である場合には、上記実施形態2において、緑色(G)のサブ画素19gを高視感度サブ画素とし、静止画を表示する際に、その他の低視感度サブ画素19r,19b,19yの駆動周波数をY,R,Bの順に低くするようにしてもよい(G<Y<R<B)。 When the display colors of the sub-pixel 19 are four colors of R, G, B, and Y, in the second embodiment, the green (G) sub-pixel 19g is used as the high visibility sub-pixel and a still image is displayed. At this time, the driving frequencies of the other low visibility sub-pixels 19r, 19b, and 19y may be decreased in the order of Y, R, and B (G <Y <R <B).
 また、本発明は上記実施形態1~3に限定されるものでなく、本発明には、これらの実施形態1~3を適宜組み合わせた構成が含まれる。したがって、例えば、実施形態2のように機能回路部50を低視感度サブ画素19r,19bに設けつつ、静止画を表示する際に、サブ画素19bの駆動周波数をサブ画素19rの駆動周波数よりも低くするようにしてもよい。 Further, the present invention is not limited to the above-described first to third embodiments, and the present invention includes a configuration in which these first to third embodiments are appropriately combined. Therefore, for example, when a still image is displayed while the functional circuit unit 50 is provided in the low visibility sub-pixels 19r and 19b as in the second embodiment, the driving frequency of the sub-pixel 19b is higher than the driving frequency of the sub-pixel 19r. You may make it low.
 以上説明したように、本発明は、液晶表示装置について有用である。 As described above, the present invention is useful for a liquid crystal display device.
      1   液晶表示装置 
     10   表示画面 
     18   画素 
     19   サブ画素 
     19r,19b  低視感度サブ画素 
     19g  高視感度サブ画素 
     31   ソースドライバ(駆動回路) 
     40   信号電圧変調回路 
     41   変調部 
     42   判断部 
     50   機能回路部 
     51   メモリ回路部 
     52   リフレッシュ回路部 
1 Liquid crystal display device
10 Display screen
18 pixels
19 sub-pixels
19r, 19b Low visibility sub-pixel
19g high visibility sub-pixel
31 Source driver (drive circuit)
40 Signal voltage modulation circuit
41 Modulator
42 Judgment part
50 Function circuit
51 Memory circuit section
52 Refresh circuit section

Claims (7)

  1.  複数の画素と、
     上記複数の画素にそれぞれ設けられ、複数の表示色毎に形成された複数のサブ画素と、
     上記複数のサブ画素に信号電圧を印加することにより、該複数のサブ画素を駆動する駆動回路と、
     上記画素に含まれる上記複数のサブ画素のうち、上記表示色の視感度が当該画素における他の上記サブ画素よりも高い高視感度サブ画素が高周波駆動されるように、該高視感度サブ画素に印加される信号電圧を比較的高い周波数に変調する一方、当該画素における上記他のサブ画素である低視感度サブ画素が高周波駆動又は低周波駆動されるように、該低視感度サブ画素に印加される信号電圧を、上記高視感度サブ画素に印加される信号電圧と同じ比較的高い周波数又は該周波数よりも低い周波数に変調する信号電圧変調回路とを備えている
    ことを特徴とする液晶表示装置。
    A plurality of pixels;
    A plurality of sub-pixels provided for each of the plurality of pixels and formed for each of a plurality of display colors;
    A driving circuit for driving the plurality of subpixels by applying a signal voltage to the plurality of subpixels;
    Among the plurality of sub-pixels included in the pixel, the high-visibility sub-pixel such that a high-visibility sub-pixel having a higher visibility than the other sub-pixels in the pixel is driven at high frequency. The low-viscosity subpixel is modulated so that the low-viscosity subpixel, which is the other subpixel in the pixel, is driven at a high frequency or a low frequency while the signal voltage applied to is modulated to a relatively high frequency. A liquid crystal comprising: a signal voltage modulation circuit that modulates an applied signal voltage to the same relatively high frequency as the signal voltage applied to the high visibility sub-pixel or a frequency lower than the same. Display device.
  2.  請求項1に記載された液晶表示装置において、
     上記複数の画素を有する表示画面を備え、
     上記駆動回路は、上記表示画面に静止画又は動画を表示するための信号電圧を上記複数のサブ画素に印加するように構成され、
     上記信号電圧変調回路は、上記表示画面に静止画を表示するときに、上記高視感度サブ画素を高周波駆動すると共に上記低視感度サブ画素を低周波駆動する一方、上記表示画面に動画を表示するときに、上記高視感度サブ画素及び上記低視感度サブ画素を高周波駆動するように構成されている
    ことを特徴とする液晶表示装置。
    The liquid crystal display device according to claim 1,
    A display screen having the plurality of pixels,
    The drive circuit is configured to apply a signal voltage for displaying a still image or a moving image on the display screen to the plurality of sub-pixels,
    When displaying a still image on the display screen, the signal voltage modulation circuit drives the high visibility sub-pixel at a high frequency and drives the low visibility sub-pixel at a low frequency while displaying a moving image on the display screen. In this case, the liquid crystal display device is configured to drive the high visibility sub-pixel and the low visibility sub-pixel at a high frequency.
  3.  請求項1又は2に記載された液晶表示装置において、
     1つの上記画素には、複数の上記低視感度サブ画素が設けられ、
     上記信号電圧変調回路は、上記複数の低視感度サブ画素のうち表示色の視感度が低い低視感度サブ画素に印加される信号電圧ほど低い周波数に変調する
    ことを特徴とする液晶表示装置。
    The liquid crystal display device according to claim 1 or 2,
    One pixel is provided with a plurality of the low visibility sub-pixels,
    The liquid crystal display device, wherein the signal voltage modulation circuit modulates a signal voltage applied to a low visibility subpixel having a low visibility of display color among the plurality of low visibility subpixels to a lower frequency.
  4.  請求項1乃至3の何れか1つに記載された液晶表示装置において、
     上記低視感度サブ画素には、当該低視感度サブ画素における表示情報を記憶するメモリ回路部が形成されている
    ことを特徴とする液晶表示装置。
    The liquid crystal display device according to any one of claims 1 to 3,
    The liquid crystal display device according to claim 1, wherein a memory circuit unit for storing display information in the low visibility subpixel is formed in the low visibility subpixel.
  5.  請求項1乃至3の何れか1つに記載された液晶表示装置において、
     上記低視感度サブ画素には、当該低視感度サブ画素に印加されている信号電圧を再度印加するリフレッシュ回路部が形成されている
    ことを特徴とする液晶表示装置。
    The liquid crystal display device according to any one of claims 1 to 3,
    The liquid crystal display device according to claim 1, wherein the low visibility sub-pixel is provided with a refresh circuit portion for reapplying a signal voltage applied to the low visibility sub-pixel.
  6.  請求項1乃至5の何れか1つに記載された液晶表示装置において、
     上記画素には、赤色、緑色及び青色の3色の上記サブ画素が設けられている
    ことを特徴とする液晶表示装置。
    The liquid crystal display device according to any one of claims 1 to 5,
    The liquid crystal display device, wherein the pixel is provided with the sub-pixels of three colors of red, green, and blue.
  7.  請求項6に記載された液晶表示装置において、
     上記高視感度サブ画素は、緑色のサブ画素である
    ことを特徴とする液晶表示装置。
    The liquid crystal display device according to claim 6,
    The liquid crystal display device, wherein the high visibility subpixel is a green subpixel.
PCT/JP2012/001699 2011-03-18 2012-03-12 Liquid crystal display device WO2012127810A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011060383 2011-03-18
JP2011-060383 2011-03-18

Publications (1)

Publication Number Publication Date
WO2012127810A1 true WO2012127810A1 (en) 2012-09-27

Family

ID=46878990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001699 WO2012127810A1 (en) 2011-03-18 2012-03-12 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2012127810A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298997A (en) * 2007-05-30 2008-12-11 Toshiba Matsushita Display Technology Co Ltd Display, and driving method for display
JP2009122364A (en) * 2007-11-14 2009-06-04 Nec Lcd Technologies Ltd Liquid crystal display device and driving method thereof
JP2009175563A (en) * 2008-01-28 2009-08-06 Sony Corp Display device
JP2009229961A (en) * 2008-03-25 2009-10-08 Seiko Epson Corp Liquid crystal display control device and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298997A (en) * 2007-05-30 2008-12-11 Toshiba Matsushita Display Technology Co Ltd Display, and driving method for display
JP2009122364A (en) * 2007-11-14 2009-06-04 Nec Lcd Technologies Ltd Liquid crystal display device and driving method thereof
JP2009175563A (en) * 2008-01-28 2009-08-06 Sony Corp Display device
JP2009229961A (en) * 2008-03-25 2009-10-08 Seiko Epson Corp Liquid crystal display control device and electronic device

Similar Documents

Publication Publication Date Title
JP5414974B2 (en) Liquid crystal display
KR101072375B1 (en) Liquid Crystal Display Device Automatically Adjusting Aperture Ratio In Each Pixel
CN104851401B (en) Display device and driving method thereof
US6433764B1 (en) Liquid crystal display
KR101082286B1 (en) Liquid Crystal Display Device and Driving Method Thereof
GB2537955A (en) Display device capable of low-speed driving and method of driving the same
US9940885B2 (en) Display device
US8144138B2 (en) Liquid crystal display device
US10438550B2 (en) Display device
JP2013195869A (en) Liquid crystal display apparatus, method of driving liquid crystal display apparatus, and electronic apparatus
JP2006023738A (en) Liquid crystal display device and driving method thereof
US8780437B1 (en) Electrophoretic display apparatus
US20140362129A1 (en) Liquid crystal display apparatus and method for driving the same
JP2006018284A (en) Liquid crystal display device and driving method thereof
US10514569B2 (en) Array substrate, display panel and display device
US10665184B2 (en) Liquid crystal display device reducing color shift
US20150293413A1 (en) Thin-film transistor array substrate and liquid crystal display device
KR102270257B1 (en) Display device and driving method for display device using the same
US7349037B2 (en) Liquid crystal display device
KR100531478B1 (en) Liquid crystal display panel and method of dirving the same
JP2009276653A (en) Liquid crystal display device and liquid crystal driving method
JP2010061034A (en) Liquid crystal display device
WO2012127810A1 (en) Liquid crystal display device
US20180108318A1 (en) A lcd and drviing method thereof
US8970474B2 (en) Method for driving electrophoresis display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12761173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP