WO2013059137A1 - High molecular weight zwitterion-containing polymers - Google Patents
High molecular weight zwitterion-containing polymers Download PDFInfo
- Publication number
- WO2013059137A1 WO2013059137A1 PCT/US2012/060301 US2012060301W WO2013059137A1 WO 2013059137 A1 WO2013059137 A1 WO 2013059137A1 US 2012060301 W US2012060301 W US 2012060301W WO 2013059137 A1 WO2013059137 A1 WO 2013059137A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- alkyl
- group
- initiator
- polymers
- Prior art date
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 451
- -1 methaciylamide Chemical compound 0.000 claims description 181
- 239000003999 initiator Substances 0.000 claims description 151
- 108090000623 proteins and genes Proteins 0.000 claims description 136
- 102000004169 proteins and genes Human genes 0.000 claims description 134
- 239000003795 chemical substances by application Substances 0.000 claims description 128
- 125000005647 linker group Chemical group 0.000 claims description 113
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 87
- 239000000178 monomer Substances 0.000 claims description 86
- 125000000217 alkyl group Chemical group 0.000 claims description 75
- 239000003814 drug Substances 0.000 claims description 70
- 239000012634 fragment Substances 0.000 claims description 67
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 60
- 229940079593 drug Drugs 0.000 claims description 59
- 239000012867 bioactive agent Substances 0.000 claims description 54
- 238000006116 polymerization reaction Methods 0.000 claims description 51
- 229920001184 polypeptide Polymers 0.000 claims description 38
- 229910052736 halogen Inorganic materials 0.000 claims description 37
- 238000010526 radical polymerization reaction Methods 0.000 claims description 37
- 125000003118 aryl group Chemical group 0.000 claims description 34
- 150000002367 halogens Chemical class 0.000 claims description 30
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 28
- 229950004354 phosphorylcholine Drugs 0.000 claims description 22
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 17
- 229910052739 hydrogen Inorganic materials 0.000 claims description 17
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 claims description 15
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 15
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 15
- 108010003723 Single-Domain Antibodies Proteins 0.000 claims description 15
- 229920001567 vinyl ester resin Polymers 0.000 claims description 15
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 14
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 claims description 14
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 14
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 14
- 239000000032 diagnostic agent Substances 0.000 claims description 14
- 229940039227 diagnostic agent Drugs 0.000 claims description 14
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 claims description 14
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 13
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 13
- 150000001720 carbohydrates Chemical class 0.000 claims description 11
- 239000002872 contrast media Substances 0.000 claims description 11
- 108091034117 Oligonucleotide Proteins 0.000 claims description 10
- 229910052796 boron Inorganic materials 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 229920001282 polysaccharide Polymers 0.000 claims description 10
- 229910019142 PO4 Inorganic materials 0.000 claims description 9
- 150000004676 glycans Chemical class 0.000 claims description 9
- 239000002773 nucleotide Substances 0.000 claims description 9
- 125000003729 nucleotide group Chemical group 0.000 claims description 9
- 239000005017 polysaccharide Substances 0.000 claims description 9
- 150000002632 lipids Chemical class 0.000 claims description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 8
- 239000010452 phosphate Substances 0.000 claims description 8
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 7
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims description 7
- 102000039446 nucleic acids Human genes 0.000 claims description 7
- 108020004707 nucleic acids Proteins 0.000 claims description 7
- 150000007523 nucleic acids Chemical class 0.000 claims description 7
- 108091033319 polynucleotide Proteins 0.000 claims description 7
- 102000040430 polynucleotide Human genes 0.000 claims description 7
- 239000002157 polynucleotide Substances 0.000 claims description 7
- 150000003431 steroids Chemical class 0.000 claims description 7
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- 229910052740 iodine Inorganic materials 0.000 claims description 6
- 239000011782 vitamin Substances 0.000 claims description 6
- 229940088594 vitamin Drugs 0.000 claims description 6
- 229930003231 vitamin Natural products 0.000 claims description 6
- 235000013343 vitamin Nutrition 0.000 claims description 6
- 150000001540 azides Chemical class 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N Acetylene Chemical compound C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 4
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 4
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 claims description 4
- 150000003722 vitamin derivatives Chemical class 0.000 claims description 4
- 150000001345 alkine derivatives Chemical class 0.000 claims description 3
- 229920002554 vinyl polymer Polymers 0.000 claims description 3
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 claims description 2
- 125000005336 allyloxy group Chemical group 0.000 claims description 2
- 238000000149 argon plasma sintering Methods 0.000 claims description 2
- 150000002009 diols Chemical class 0.000 claims description 2
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical compound CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 claims description 2
- 229960002317 succinimide Drugs 0.000 claims description 2
- YHHSONZFOIEMCP-UHFFFAOYSA-O phosphocholine Chemical compound C[N+](C)(C)CCOP(O)(O)=O YHHSONZFOIEMCP-UHFFFAOYSA-O 0.000 claims 4
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 60
- 235000018102 proteins Nutrition 0.000 description 130
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 96
- 239000000047 product Substances 0.000 description 84
- 238000006243 chemical reaction Methods 0.000 description 83
- 239000000562 conjugate Substances 0.000 description 79
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 69
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 65
- 229910001868 water Inorganic materials 0.000 description 65
- 230000021615 conjugation Effects 0.000 description 61
- 229940024606 amino acid Drugs 0.000 description 59
- 235000001014 amino acid Nutrition 0.000 description 59
- 229920001223 polyethylene glycol Polymers 0.000 description 58
- 239000002202 Polyethylene glycol Substances 0.000 description 57
- 150000001413 amino acids Chemical class 0.000 description 57
- 239000000243 solution Substances 0.000 description 56
- 239000000203 mixture Substances 0.000 description 52
- 239000002516 radical scavenger Substances 0.000 description 39
- 150000001875 compounds Chemical class 0.000 description 38
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 36
- 125000004429 atom Chemical group 0.000 description 35
- 150000003254 radicals Chemical class 0.000 description 32
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 30
- 238000005516 engineering process Methods 0.000 description 30
- 230000001225 therapeutic effect Effects 0.000 description 30
- 239000003054 catalyst Substances 0.000 description 29
- 238000001727 in vivo Methods 0.000 description 29
- 239000003446 ligand Substances 0.000 description 27
- 230000027455 binding Effects 0.000 description 25
- 238000010560 atom transfer radical polymerization reaction Methods 0.000 description 23
- 150000002148 esters Chemical class 0.000 description 23
- 238000004519 manufacturing process Methods 0.000 description 23
- 238000002360 preparation method Methods 0.000 description 22
- 230000008901 benefit Effects 0.000 description 21
- 239000003153 chemical reaction reagent Substances 0.000 description 21
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 20
- 239000011541 reaction mixture Substances 0.000 description 20
- 230000008569 process Effects 0.000 description 19
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 18
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 18
- 239000013543 active substance Substances 0.000 description 18
- 125000004432 carbon atom Chemical group C* 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 18
- 239000008194 pharmaceutical composition Substances 0.000 description 18
- PYJNAPOPMIJKJZ-UHFFFAOYSA-N phosphorylcholine chloride Chemical compound [Cl-].C[N+](C)(C)CCOP(O)(O)=O PYJNAPOPMIJKJZ-UHFFFAOYSA-N 0.000 description 18
- 125000001424 substituent group Chemical group 0.000 description 17
- 102000004190 Enzymes Human genes 0.000 description 16
- 108090000790 Enzymes Proteins 0.000 description 16
- 241001529936 Murinae Species 0.000 description 16
- 239000000427 antigen Substances 0.000 description 16
- 108091007433 antigens Proteins 0.000 description 16
- 102000036639 antigens Human genes 0.000 description 16
- 229940088598 enzyme Drugs 0.000 description 16
- 125000003545 alkoxy group Chemical group 0.000 description 15
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 15
- 239000000546 pharmaceutical excipient Substances 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 125000000524 functional group Chemical group 0.000 description 14
- 238000000338 in vitro Methods 0.000 description 14
- 230000006320 pegylation Effects 0.000 description 14
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 14
- 239000002904 solvent Substances 0.000 description 14
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 13
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 13
- 238000013459 approach Methods 0.000 description 13
- 201000010099 disease Diseases 0.000 description 13
- 239000012044 organic layer Substances 0.000 description 13
- 229940080818 propionamide Drugs 0.000 description 13
- 102100026735 Coagulation factor VIII Human genes 0.000 description 12
- 238000005481 NMR spectroscopy Methods 0.000 description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- 108020001507 fusion proteins Proteins 0.000 description 12
- 102000037865 fusion proteins Human genes 0.000 description 12
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- 239000003921 oil Substances 0.000 description 12
- 102000005962 receptors Human genes 0.000 description 12
- 108020003175 receptors Proteins 0.000 description 12
- 239000000741 silica gel Substances 0.000 description 12
- 229910002027 silica gel Inorganic materials 0.000 description 12
- 230000008685 targeting Effects 0.000 description 12
- 229920003169 water-soluble polymer Polymers 0.000 description 12
- 206010028980 Neoplasm Diseases 0.000 description 11
- 229960000074 biopharmaceutical Drugs 0.000 description 11
- 239000012267 brine Substances 0.000 description 11
- 229960000301 factor viii Drugs 0.000 description 11
- 125000001072 heteroaryl group Chemical group 0.000 description 11
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 11
- 230000009467 reduction Effects 0.000 description 11
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 241000894007 species Species 0.000 description 11
- 238000007920 subcutaneous administration Methods 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- 108010054218 Factor VIII Proteins 0.000 description 10
- 102000001690 Factor VIII Human genes 0.000 description 10
- 238000003818 flash chromatography Methods 0.000 description 10
- 238000009472 formulation Methods 0.000 description 10
- 239000003112 inhibitor Substances 0.000 description 10
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- 125000006850 spacer group Chemical group 0.000 description 10
- 238000011282 treatment Methods 0.000 description 10
- 229940086542 triethylamine Drugs 0.000 description 10
- 102000004127 Cytokines Human genes 0.000 description 9
- 108090000695 Cytokines Proteins 0.000 description 9
- 102000003951 Erythropoietin Human genes 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 125000003342 alkenyl group Chemical group 0.000 description 9
- 125000000304 alkynyl group Chemical group 0.000 description 9
- 150000001408 amides Chemical class 0.000 description 9
- 150000001412 amines Chemical class 0.000 description 9
- 125000003277 amino group Chemical group 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 235000014633 carbohydrates Nutrition 0.000 description 9
- 235000018417 cysteine Nutrition 0.000 description 9
- 229940105423 erythropoietin Drugs 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 230000007935 neutral effect Effects 0.000 description 9
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- 238000010254 subcutaneous injection Methods 0.000 description 9
- 239000007929 subcutaneous injection Substances 0.000 description 9
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 9
- 108090000394 Erythropoietin Proteins 0.000 description 8
- 208000008955 Mucolipidoses Diseases 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 8
- 229960002433 cysteine Drugs 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000003379 elimination reaction Methods 0.000 description 8
- 125000005842 heteroatom Chemical group 0.000 description 8
- 229920001477 hydrophilic polymer Polymers 0.000 description 8
- 230000005847 immunogenicity Effects 0.000 description 8
- 230000006872 improvement Effects 0.000 description 8
- 239000002105 nanoparticle Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000012299 nitrogen atmosphere Substances 0.000 description 8
- 125000006239 protecting group Chemical group 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000002560 therapeutic procedure Methods 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- ODEIBUOYFKFCCA-UHFFFAOYSA-N 2-[3-(2-bromo-2-methylpropanoyl)oxy-2,2-bis[(2-bromo-2-methylpropanoyl)oxymethyl]propoxy]acetic acid Chemical compound CC(C)(Br)C(=O)OCC(COCC(O)=O)(COC(=O)C(C)(C)Br)COC(=O)C(C)(C)Br ODEIBUOYFKFCCA-UHFFFAOYSA-N 0.000 description 7
- XXSPGBOGLXKMDU-UHFFFAOYSA-N 2-bromo-2-methylpropanoic acid Chemical compound CC(C)(Br)C(O)=O XXSPGBOGLXKMDU-UHFFFAOYSA-N 0.000 description 7
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 7
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 7
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 7
- 125000002947 alkylene group Chemical group 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 125000000732 arylene group Chemical group 0.000 description 7
- 229910052794 bromium Inorganic materials 0.000 description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 7
- 230000008030 elimination Effects 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- 125000004404 heteroalkyl group Chemical group 0.000 description 7
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 7
- 238000003384 imaging method Methods 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- 238000012705 nitroxide-mediated radical polymerization Methods 0.000 description 7
- 239000003208 petroleum Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 125000003396 thiol group Chemical group [H]S* 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 6
- 241000282832 Camelidae Species 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- 241000282412 Homo Species 0.000 description 6
- 108010000521 Human Growth Hormone Proteins 0.000 description 6
- 102000002265 Human Growth Hormone Human genes 0.000 description 6
- 239000000854 Human Growth Hormone Substances 0.000 description 6
- 102000014150 Interferons Human genes 0.000 description 6
- 108010050904 Interferons Proteins 0.000 description 6
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- 150000001299 aldehydes Chemical class 0.000 description 6
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- ZYPBKYCUPQQMKH-UHFFFAOYSA-N dec-8-ene-3,5-dione Chemical compound CCC(=O)CC(=O)CCC=CC ZYPBKYCUPQQMKH-UHFFFAOYSA-N 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 150000002170 ethers Chemical class 0.000 description 6
- 125000005843 halogen group Chemical group 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 238000001990 intravenous administration Methods 0.000 description 6
- 235000018977 lysine Nutrition 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000003472 neutralizing effect Effects 0.000 description 6
- 239000012038 nucleophile Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 229940124597 therapeutic agent Drugs 0.000 description 6
- 150000003573 thiols Chemical class 0.000 description 6
- 229910052723 transition metal Inorganic materials 0.000 description 6
- 230000003442 weekly effect Effects 0.000 description 6
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 5
- 235000002198 Annona diversifolia Nutrition 0.000 description 5
- 108091023037 Aptamer Proteins 0.000 description 5
- 241000271566 Aves Species 0.000 description 5
- 241000282836 Camelus dromedarius Species 0.000 description 5
- 241000251730 Chondrichthyes Species 0.000 description 5
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 5
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 5
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 5
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 102000003996 Interferon-beta Human genes 0.000 description 5
- 108090000467 Interferon-beta Proteins 0.000 description 5
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 5
- 239000004472 Lysine Substances 0.000 description 5
- 102000003982 Parathyroid hormone Human genes 0.000 description 5
- 108090000445 Parathyroid hormone Proteins 0.000 description 5
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 5
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 5
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 230000001270 agonistic effect Effects 0.000 description 5
- 230000000975 bioactive effect Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 210000002744 extracellular matrix Anatomy 0.000 description 5
- 239000003925 fat Substances 0.000 description 5
- 125000004474 heteroalkylene group Chemical group 0.000 description 5
- 229920006158 high molecular weight polymer Polymers 0.000 description 5
- 239000005457 ice water Substances 0.000 description 5
- 125000001841 imino group Chemical group [H]N=* 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 230000000977 initiatory effect Effects 0.000 description 5
- 229960001388 interferon-beta Drugs 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 229960001319 parathyroid hormone Drugs 0.000 description 5
- 239000000199 parathyroid hormone Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 125000004076 pyridyl group Chemical group 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 230000032258 transport Effects 0.000 description 5
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 4
- GMKMEZVLHJARHF-UHFFFAOYSA-N 2,6-diaminopimelic acid Chemical compound OC(=O)C(N)CCCC(N)C(O)=O GMKMEZVLHJARHF-UHFFFAOYSA-N 0.000 description 4
- WTRIMJTZOOLIFZ-UHFFFAOYSA-N 2-bromo-2-methylpropanamide Chemical compound CC(C)(Br)C(N)=O WTRIMJTZOOLIFZ-UHFFFAOYSA-N 0.000 description 4
- 241000282693 Cercopithecidae Species 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 4
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 4
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 4
- 108060003951 Immunoglobulin Proteins 0.000 description 4
- 102000004877 Insulin Human genes 0.000 description 4
- 108090001061 Insulin Proteins 0.000 description 4
- 108010001831 LDL receptors Proteins 0.000 description 4
- 241000282838 Lama Species 0.000 description 4
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 4
- 241001416177 Vicugna pacos Species 0.000 description 4
- 150000001241 acetals Chemical class 0.000 description 4
- 239000012190 activator Substances 0.000 description 4
- 150000001335 aliphatic alkanes Chemical class 0.000 description 4
- 125000004450 alkenylene group Chemical group 0.000 description 4
- 125000004419 alkynylene group Chemical group 0.000 description 4
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 125000002619 bicyclic group Chemical group 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 229940090100 cimzia Drugs 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 4
- 125000002993 cycloalkylene group Chemical group 0.000 description 4
- 239000012039 electrophile Substances 0.000 description 4
- 239000003480 eluent Substances 0.000 description 4
- 239000002158 endotoxin Substances 0.000 description 4
- 125000001188 haloalkyl group Chemical group 0.000 description 4
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 239000012216 imaging agent Substances 0.000 description 4
- 150000002466 imines Chemical class 0.000 description 4
- 102000018358 immunoglobulin Human genes 0.000 description 4
- 238000001802 infusion Methods 0.000 description 4
- 229940125396 insulin Drugs 0.000 description 4
- 229940047124 interferons Drugs 0.000 description 4
- 238000010253 intravenous injection Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 239000012669 liquid formulation Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 125000002950 monocyclic group Chemical group 0.000 description 4
- 238000000569 multi-angle light scattering Methods 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 108010092853 peginterferon alfa-2a Proteins 0.000 description 4
- 229920000765 poly(2-oxazolines) Polymers 0.000 description 4
- 239000000580 polymer-drug conjugate Substances 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 229960001153 serine Drugs 0.000 description 4
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 4
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical group CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 3
- HINBZZBSDKUDPC-UHFFFAOYSA-N 2-(2-bromo-2-methylpropanoyl)oxy-2-methylpropanoic acid Chemical compound CC(C)(Br)C(=O)OC(C)(C)C(O)=O HINBZZBSDKUDPC-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- PALNTXUFUXCZCI-UHFFFAOYSA-N 2-[3-phenylmethoxy-2,2-bis(phenylmethoxymethyl)propoxy]acetic acid Chemical compound C=1C=CC=CC=1COCC(COCC=1C=CC=CC=1)(COCC(=O)O)COCC1=CC=CC=C1 PALNTXUFUXCZCI-UHFFFAOYSA-N 0.000 description 3
- SFJRWKLVKSBULU-UHFFFAOYSA-N 3-phenylmethoxy-2,2-bis(phenylmethoxymethyl)propan-1-ol Chemical compound C=1C=CC=CC=1COCC(COCC=1C=CC=CC=1)(CO)COCC1=CC=CC=C1 SFJRWKLVKSBULU-UHFFFAOYSA-N 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- 101800000263 Acidic protein Proteins 0.000 description 3
- 208000023275 Autoimmune disease Diseases 0.000 description 3
- 102000053642 Catalytic RNA Human genes 0.000 description 3
- 108090000994 Catalytic RNA Proteins 0.000 description 3
- 102100022641 Coagulation factor IX Human genes 0.000 description 3
- 102100023804 Coagulation factor VII Human genes 0.000 description 3
- GUTLYIVDDKVIGB-AHCXROLUSA-N Cobalt-55 Chemical compound [55Co] GUTLYIVDDKVIGB-AHCXROLUSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 3
- 108010019673 Darbepoetin alfa Proteins 0.000 description 3
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 3
- 108010076282 Factor IX Proteins 0.000 description 3
- 108010023321 Factor VII Proteins 0.000 description 3
- 108010014173 Factor X Proteins 0.000 description 3
- GYHNNYVSQQEPJS-OIOBTWANSA-N Gallium-67 Chemical compound [67Ga] GYHNNYVSQQEPJS-OIOBTWANSA-N 0.000 description 3
- GYHNNYVSQQEPJS-YPZZEJLDSA-N Gallium-68 Chemical compound [68Ga] GYHNNYVSQQEPJS-YPZZEJLDSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 206010053185 Glycogen storage disease type II Diseases 0.000 description 3
- 102000003886 Glycoproteins Human genes 0.000 description 3
- 108090000288 Glycoproteins Proteins 0.000 description 3
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 3
- 102000003839 Human Proteins Human genes 0.000 description 3
- 108090000144 Human Proteins Proteins 0.000 description 3
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 3
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 3
- 108010008212 Integrin alpha4beta1 Proteins 0.000 description 3
- 102000006992 Interferon-alpha Human genes 0.000 description 3
- 108010047761 Interferon-alpha Proteins 0.000 description 3
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 3
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- 206010072927 Mucolipidosis type I Diseases 0.000 description 3
- 206010056886 Mucopolysaccharidosis I Diseases 0.000 description 3
- 108020004485 Nonsense Codon Proteins 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 101710093543 Probable non-specific lipid-transfer protein Proteins 0.000 description 3
- 108010003894 Protein-Lysine 6-Oxidase Proteins 0.000 description 3
- 102100026858 Protein-lysine 6-oxidase Human genes 0.000 description 3
- 108091030071 RNAI Proteins 0.000 description 3
- IGLNJRXAVVLDKE-OIOBTWANSA-N Rubidium-82 Chemical compound [82Rb] IGLNJRXAVVLDKE-OIOBTWANSA-N 0.000 description 3
- 108020004688 Small Nuclear RNA Proteins 0.000 description 3
- 102000039471 Small Nuclear RNA Human genes 0.000 description 3
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 3
- 102000013275 Somatomedins Human genes 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 108020004566 Transfer RNA Proteins 0.000 description 3
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- VWQVUPCCIRVNHF-OIOBTWANSA-N Yttrium-86 Chemical compound [86Y] VWQVUPCCIRVNHF-OIOBTWANSA-N 0.000 description 3
- VWQVUPCCIRVNHF-OUBTZVSYSA-N Yttrium-90 Chemical compound [90Y] VWQVUPCCIRVNHF-OUBTZVSYSA-N 0.000 description 3
- BTJIPBGWVCNJAP-UHFFFAOYSA-N [2,2-bis[(2-bromo-2-methylpropanoyl)oxymethyl]-3-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethoxy]propyl] 2-bromo-2-methylpropanoate Chemical compound CC(C)(C)OC(=O)COCC(COC(=O)C(C)(C)Br)(COC(=O)C(C)(C)Br)COC(=O)C(C)(C)Br BTJIPBGWVCNJAP-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000000556 agonist Substances 0.000 description 3
- 229960002459 alefacept Drugs 0.000 description 3
- 125000003275 alpha amino acid group Chemical group 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- 210000003719 b-lymphocyte Anatomy 0.000 description 3
- 239000003124 biologic agent Substances 0.000 description 3
- JCXGWMGPZLAOME-AKLPVKDBSA-N bismuth-212 Chemical compound [212Bi] JCXGWMGPZLAOME-AKLPVKDBSA-N 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 229960003115 certolizumab pegol Drugs 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 230000001268 conjugating effect Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-AHCXROLUSA-N copper-60 Chemical compound [60Cu] RYGMFSIKBFXOCR-AHCXROLUSA-N 0.000 description 3
- RYGMFSIKBFXOCR-OIOBTWANSA-N copper-61 Chemical compound [61Cu] RYGMFSIKBFXOCR-OIOBTWANSA-N 0.000 description 3
- RYGMFSIKBFXOCR-YPZZEJLDSA-N copper-62 Chemical compound [62Cu] RYGMFSIKBFXOCR-YPZZEJLDSA-N 0.000 description 3
- 239000012043 crude product Substances 0.000 description 3
- 150000001924 cycloalkanes Chemical class 0.000 description 3
- 231100000135 cytotoxicity Toxicity 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 229960004222 factor ix Drugs 0.000 description 3
- 229940012413 factor vii Drugs 0.000 description 3
- 229940012426 factor x Drugs 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 3
- GYHNNYVSQQEPJS-AHCXROLUSA-N gallium-66 Chemical compound [66Ga] GYHNNYVSQQEPJS-AHCXROLUSA-N 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 230000009368 gene silencing by RNA Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 210000003714 granulocyte Anatomy 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- 125000006588 heterocycloalkylene group Chemical group 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 229920002674 hyaluronan Polymers 0.000 description 3
- 229960003160 hyaluronic acid Drugs 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 3
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 3
- 229960002591 hydroxyproline Drugs 0.000 description 3
- 108010039650 imiglucerase Proteins 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 3
- 229960004452 methionine Drugs 0.000 description 3
- 230000000921 morphogenic effect Effects 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229940002988 pegasys Drugs 0.000 description 3
- OJUGVDODNPJEEC-UHFFFAOYSA-N phenylglyoxal Chemical group O=CC(=O)C1=CC=CC=C1 OJUGVDODNPJEEC-UHFFFAOYSA-N 0.000 description 3
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 229940002612 prodrug Drugs 0.000 description 3
- 239000000651 prodrug Substances 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 238000011321 prophylaxis Methods 0.000 description 3
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 3
- 229920005604 random copolymer Polymers 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- 108091092562 ribozyme Proteins 0.000 description 3
- 125000006413 ring segment Chemical group 0.000 description 3
- 238000013341 scale-up Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- MTCFGRXMJLQNBG-UHFFFAOYSA-N serine Chemical compound OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 3
- 239000012312 sodium hydride Substances 0.000 description 3
- 229910000104 sodium hydride Inorganic materials 0.000 description 3
- 239000011877 solvent mixture Substances 0.000 description 3
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- 125000004434 sulfur atom Chemical group 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 125000003831 tetrazolyl group Chemical group 0.000 description 3
- 125000000335 thiazolyl group Chemical group 0.000 description 3
- 125000001544 thienyl group Chemical group 0.000 description 3
- 230000014616 translation Effects 0.000 description 3
- 125000001425 triazolyl group Chemical group 0.000 description 3
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 3
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical class C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 3
- VLPIATFUUWWMKC-SNVBAGLBSA-N (2r)-1-(2,6-dimethylphenoxy)propan-2-amine Chemical compound C[C@@H](N)COC1=C(C)C=CC=C1C VLPIATFUUWWMKC-SNVBAGLBSA-N 0.000 description 2
- NPDBDJFLKKQMCM-SCSAIBSYSA-N (2s)-2-amino-3,3-dimethylbutanoic acid Chemical compound CC(C)(C)[C@H](N)C(O)=O NPDBDJFLKKQMCM-SCSAIBSYSA-N 0.000 description 2
- DEQANNDTNATYII-OULOTJBUSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-benzyl-n-[(2r,3r)-1,3-dihydroxybutan-2-yl]-7-[(1r)-1-hydroxyethyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carboxa Chemical compound C([C@@H](N)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC=CC=2)NC1=O)C(=O)N[C@H](CO)[C@H](O)C)C1=CC=CC=C1 DEQANNDTNATYII-OULOTJBUSA-N 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- WQADWIOXOXRPLN-UHFFFAOYSA-N 1,3-dithiane Chemical compound C1CSCSC1 WQADWIOXOXRPLN-UHFFFAOYSA-N 0.000 description 2
- LOZWAPSEEHRYPG-UHFFFAOYSA-N 1,4-dithiane Chemical compound C1CSCCS1 LOZWAPSEEHRYPG-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- 125000004214 1-pyrrolidinyl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 2
- WUAPFZMCVAUBPE-NJFSPNSNSA-N 188Re Chemical compound [188Re] WUAPFZMCVAUBPE-NJFSPNSNSA-N 0.000 description 2
- OGNSCSPNOLGXSM-UHFFFAOYSA-N 2,4-diaminobutyric acid Chemical compound NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 2
- ZSZRUEAFVQITHH-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethyl 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CC(=C)C(=O)OCCOP([O-])(=O)OCC[N+](C)(C)C ZSZRUEAFVQITHH-UHFFFAOYSA-N 0.000 description 2
- ZOBLUXXWNCGHEH-UHFFFAOYSA-N 2-[3-[(2-bromo-2-methylpropanoyl)amino]-2,2-bis[[(2-bromo-2-methylpropanoyl)amino]methyl]propoxy]acetic acid Chemical compound CC(C)(Br)C(=O)NCC(CNC(=O)C(C)(C)Br)(CNC(=O)C(C)(C)Br)COCC(O)=O ZOBLUXXWNCGHEH-UHFFFAOYSA-N 0.000 description 2
- ZDJKWQYVXBFEJU-UHFFFAOYSA-N 2-[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]acetic acid Chemical compound OCC(CO)(CO)COCC(O)=O ZDJKWQYVXBFEJU-UHFFFAOYSA-N 0.000 description 2
- YOCIJWAHRAJQFT-UHFFFAOYSA-N 2-bromo-2-methylpropanoyl bromide Chemical compound CC(C)(Br)C(Br)=O YOCIJWAHRAJQFT-UHFFFAOYSA-N 0.000 description 2
- IZHVBANLECCAGF-UHFFFAOYSA-N 2-hydroxy-3-(octadecanoyloxy)propyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)COC(=O)CCCCCCCCCCCCCCCCC IZHVBANLECCAGF-UHFFFAOYSA-N 0.000 description 2
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 2
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 2
- VENXSELNXQXCNT-OHAABKCISA-N 3-[(1r,2s)-2-amino-1-hydroxypropyl]phenol;(2r,3s)-2,3-dihydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)[C@@H](O)C(O)=O.C[C@H](N)[C@H](O)C1=CC=CC(O)=C1 VENXSELNXQXCNT-OHAABKCISA-N 0.000 description 2
- PECYZEOJVXMISF-UHFFFAOYSA-N 3-aminoalanine Chemical compound [NH3+]CC(N)C([O-])=O PECYZEOJVXMISF-UHFFFAOYSA-N 0.000 description 2
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 description 2
- JSAKRLDIZOGQTN-UHFFFAOYSA-M 4-[(2-hydroxynaphthalen-1-yl)diazenyl]naphthalene-1-sulfonate Chemical compound OC1=C(C2=CC=CC=C2C=C1)N=NC1=CC=C(C2=CC=CC=C12)S(=O)(=O)[O-] JSAKRLDIZOGQTN-UHFFFAOYSA-M 0.000 description 2
- WUBBRNOQWQTFEX-UHFFFAOYSA-N 4-aminosalicylic acid Chemical compound NC1=CC=C(C(O)=O)C(O)=C1 WUBBRNOQWQTFEX-UHFFFAOYSA-N 0.000 description 2
- KDDQRKBRJSGMQE-UHFFFAOYSA-N 4-thiazolyl Chemical group [C]1=CSC=N1 KDDQRKBRJSGMQE-UHFFFAOYSA-N 0.000 description 2
- 229940117976 5-hydroxylysine Drugs 0.000 description 2
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 2
- WLCZTRVUXYALDD-IBGZPJMESA-N 7-[[(2s)-2,6-bis(2-methoxyethoxycarbonylamino)hexanoyl]amino]heptoxy-methylphosphinic acid Chemical compound COCCOC(=O)NCCCC[C@H](NC(=O)OCCOC)C(=O)NCCCCCCCOP(C)(O)=O WLCZTRVUXYALDD-IBGZPJMESA-N 0.000 description 2
- ZGXJTSGNIOSYLO-UHFFFAOYSA-N 88755TAZ87 Chemical compound NCC(=O)CCC(O)=O ZGXJTSGNIOSYLO-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 2
- 108010089996 B-domain-deleted factor VIII Proteins 0.000 description 2
- 102100033735 Bactericidal permeability-increasing protein Human genes 0.000 description 2
- 239000004342 Benzoyl peroxide Substances 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- 102100022548 Beta-hexosaminidase subunit alpha Human genes 0.000 description 2
- 108030001720 Bontoxilysin Proteins 0.000 description 2
- 101001069913 Bos taurus Growth-regulated protein homolog beta Proteins 0.000 description 2
- 101800000407 Brain natriuretic peptide 32 Proteins 0.000 description 2
- 102100039398 C-X-C motif chemokine 2 Human genes 0.000 description 2
- OBMZMSLWNNWEJA-XNCRXQDQSA-N C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 Chemical compound C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 OBMZMSLWNNWEJA-XNCRXQDQSA-N 0.000 description 2
- 241000282828 Camelus bactrianus Species 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical group NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 2
- 108060002063 Cyclotide Proteins 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 108010013198 Daptomycin Proteins 0.000 description 2
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- 108010008165 Etanercept Proteins 0.000 description 2
- 108010014172 Factor V Proteins 0.000 description 2
- 102000003973 Fibroblast growth factor 21 Human genes 0.000 description 2
- 108090000376 Fibroblast growth factor 21 Proteins 0.000 description 2
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 2
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 2
- 101710198884 GATA-type zinc finger protein 1 Proteins 0.000 description 2
- 208000001905 GM2 Gangliosidoses Diseases 0.000 description 2
- 201000008905 GM2 gangliosidosis Diseases 0.000 description 2
- 108700012941 GNRH1 Proteins 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- DTHNMHAUYICORS-KTKZVXAJSA-N Glucagon-like peptide 1 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 DTHNMHAUYICORS-KTKZVXAJSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 208000032007 Glycogen storage disease due to acid maltase deficiency Diseases 0.000 description 2
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 description 2
- 108010051696 Growth Hormone Proteins 0.000 description 2
- 102000018997 Growth Hormone Human genes 0.000 description 2
- 239000000095 Growth Hormone-Releasing Hormone Substances 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 108010053317 Hexosaminidase A Proteins 0.000 description 2
- 102000016871 Hexosaminidase A Human genes 0.000 description 2
- 101000871785 Homo sapiens Bactericidal permeability-increasing protein Proteins 0.000 description 2
- 101001045440 Homo sapiens Beta-hexosaminidase subunit alpha Proteins 0.000 description 2
- 101000987586 Homo sapiens Eosinophil peroxidase Proteins 0.000 description 2
- 101000920686 Homo sapiens Erythropoietin Proteins 0.000 description 2
- 102000008100 Human Serum Albumin Human genes 0.000 description 2
- 108091006905 Human Serum Albumin Proteins 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 2
- 102100026120 IgG receptor FcRn large subunit p51 Human genes 0.000 description 2
- 101710177940 IgG receptor FcRn large subunit p51 Proteins 0.000 description 2
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 2
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 2
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 2
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 2
- 208000026350 Inborn Genetic disease Diseases 0.000 description 2
- 102000051628 Interleukin-1 receptor antagonist Human genes 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 102000000588 Interleukin-2 Human genes 0.000 description 2
- 102000010789 Interleukin-2 Receptors Human genes 0.000 description 2
- 108010038453 Interleukin-2 Receptors Proteins 0.000 description 2
- 102100039078 Interleukin-4 receptor subunit alpha Human genes 0.000 description 2
- 102000004889 Interleukin-6 Human genes 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- 108090001007 Interleukin-8 Proteins 0.000 description 2
- 102000004890 Interleukin-8 Human genes 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- 241000282852 Lama guanicoe Species 0.000 description 2
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 2
- 108010007859 Lisinopril Proteins 0.000 description 2
- 102000004083 Lymphotoxin-alpha Human genes 0.000 description 2
- 108090000542 Lymphotoxin-alpha Proteins 0.000 description 2
- 102100033342 Lysosomal acid glucosylceramidase Human genes 0.000 description 2
- 102100033448 Lysosomal alpha-glucosidase Human genes 0.000 description 2
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 2
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 108010006035 Metalloproteases Proteins 0.000 description 2
- 102000005741 Metalloproteases Human genes 0.000 description 2
- 108700011259 MicroRNAs Proteins 0.000 description 2
- 108010006519 Molecular Chaperones Proteins 0.000 description 2
- 206010072928 Mucolipidosis type II Diseases 0.000 description 2
- 206010028095 Mucopolysaccharidosis IV Diseases 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- UBQYURCVBFRUQT-UHFFFAOYSA-N N-benzoyl-Ferrioxamine B Chemical compound CC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCN UBQYURCVBFRUQT-UHFFFAOYSA-N 0.000 description 2
- UGJBHEZMOKVTIM-UHFFFAOYSA-N N-formylglycine Chemical compound OC(=O)CNC=O UGJBHEZMOKVTIM-UHFFFAOYSA-N 0.000 description 2
- 108010025020 Nerve Growth Factor Proteins 0.000 description 2
- 102000015336 Nerve Growth Factor Human genes 0.000 description 2
- 102400000058 Neuregulin-1 Human genes 0.000 description 2
- 108090000556 Neuregulin-1 Proteins 0.000 description 2
- 108010016076 Octreotide Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 108700020797 Parathyroid Hormone-Related Proteins 0.000 description 2
- 102000043299 Parathyroid hormone-related Human genes 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 101710176384 Peptide 1 Proteins 0.000 description 2
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 2
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 2
- 102100040918 Pro-glucagon Human genes 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 102000014128 RANK Ligand Human genes 0.000 description 2
- 108010025832 RANK Ligand Proteins 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 108020004459 Small interfering RNA Proteins 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 101710142969 Somatoliberin Proteins 0.000 description 2
- 102100022831 Somatoliberin Human genes 0.000 description 2
- 108010056088 Somatostatin Proteins 0.000 description 2
- 102000005157 Somatostatin Human genes 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 108700012920 TNF Proteins 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 102000036693 Thrombopoietin Human genes 0.000 description 2
- 108010041111 Thrombopoietin Proteins 0.000 description 2
- 108010078233 Thymalfasin Proteins 0.000 description 2
- 102400000800 Thymosin alpha-1 Human genes 0.000 description 2
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 2
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 2
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- 102100040247 Tumor necrosis factor Human genes 0.000 description 2
- 241000282830 Tylopoda Species 0.000 description 2
- 108010004977 Vasopressins Proteins 0.000 description 2
- 102000002852 Vasopressins Human genes 0.000 description 2
- 241000282840 Vicugna vicugna Species 0.000 description 2
- RLAHNGKRJJEIJL-RFZPGFLSSA-N [(2r,4r)-4-(2,6-diaminopurin-9-yl)-1,3-dioxolan-2-yl]methanol Chemical compound C12=NC(N)=NC(N)=C2N=CN1[C@H]1CO[C@@H](CO)O1 RLAHNGKRJJEIJL-RFZPGFLSSA-N 0.000 description 2
- 229960000446 abciximab Drugs 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 150000003926 acrylamides Chemical class 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 229960002964 adalimumab Drugs 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229960003767 alanine Drugs 0.000 description 2
- 229960000548 alemtuzumab Drugs 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 125000005530 alkylenedioxy group Chemical group 0.000 description 2
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 2
- 102000015395 alpha 1-Antitrypsin Human genes 0.000 description 2
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 2
- 229960003318 alteplase Drugs 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229960001097 amifostine Drugs 0.000 description 2
- JKOQGQFVAUAYPM-UHFFFAOYSA-N amifostine Chemical compound NCCCNCCSP(O)(O)=O JKOQGQFVAUAYPM-UHFFFAOYSA-N 0.000 description 2
- 229940090667 aminohippurate sodium Drugs 0.000 description 2
- 229960002749 aminolevulinic acid Drugs 0.000 description 2
- 229960004909 aminosalicylic acid Drugs 0.000 description 2
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 2
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 2
- 229960003942 amphotericin b Drugs 0.000 description 2
- 238000012415 analytical development Methods 0.000 description 2
- 239000005557 antagonist Substances 0.000 description 2
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229940115115 aranesp Drugs 0.000 description 2
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 229960005261 aspartic acid Drugs 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 2
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 229940053031 botulinum toxin Drugs 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 229940112129 campath Drugs 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 150000001718 carbodiimides Chemical class 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 229940106164 cephalexin Drugs 0.000 description 2
- ZAIPMKNFIOOWCQ-UEKVPHQBSA-N cephalexin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=CC=C1 ZAIPMKNFIOOWCQ-UEKVPHQBSA-N 0.000 description 2
- 229960005395 cetuximab Drugs 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 235000013330 chicken meat Nutrition 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 229960001231 choline Drugs 0.000 description 2
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 2
- 238000011210 chromatographic step Methods 0.000 description 2
- 229960003716 cilastatin sodium Drugs 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 230000010405 clearance mechanism Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000004154 complement system Effects 0.000 description 2
- 108010084052 continuous erythropoietin receptor activator Proteins 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 125000006165 cyclic alkyl group Chemical group 0.000 description 2
- 125000000392 cycloalkenyl group Chemical group 0.000 description 2
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 2
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 229960002806 daclizumab Drugs 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- DOAKLVKFURWEDJ-QCMAZARJSA-N daptomycin Chemical compound C([C@H]1C(=O)O[C@H](C)[C@@H](C(NCC(=O)N[C@@H](CCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@H](CO)C(=O)N[C@H](C(=O)N1)[C@H](C)CC(O)=O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](CC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)CCCCCCCCC)C(=O)C1=CC=CC=C1N DOAKLVKFURWEDJ-QCMAZARJSA-N 0.000 description 2
- 229960005484 daptomycin Drugs 0.000 description 2
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 2
- 229960000975 daunorubicin Drugs 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 229960000958 deferoxamine Drugs 0.000 description 2
- 230000003412 degenerative effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000012024 dehydrating agents Substances 0.000 description 2
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 2
- 239000000412 dendrimer Substances 0.000 description 2
- 229920000736 dendritic polymer Polymers 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- DGODWNOPHMXOTR-UHFFFAOYSA-N dipotassium;dioxido(dioxo)osmium;dihydrate Chemical compound O.O.[K+].[K+].[O-][Os]([O-])(=O)=O DGODWNOPHMXOTR-UHFFFAOYSA-N 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- ADEBPBSSDYVVLD-UHFFFAOYSA-N donepezil Chemical compound O=C1C=2C=C(OC)C(OC)=CC=2CC1CC(CC1)CCN1CC1=CC=CC=C1 ADEBPBSSDYVVLD-UHFFFAOYSA-N 0.000 description 2
- 108010067396 dornase alfa Proteins 0.000 description 2
- 238000011143 downstream manufacturing Methods 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 229960002472 eletriptan Drugs 0.000 description 2
- OTLDLQZJRFYOJR-LJQANCHMSA-N eletriptan Chemical compound CN1CCC[C@@H]1CC1=CN=C2[C]1C=C(CCS(=O)(=O)C=1C=CC=CC=1)C=C2 OTLDLQZJRFYOJR-LJQANCHMSA-N 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 2
- 229960000403 etanercept Drugs 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 229940028334 follicle stimulating hormone Drugs 0.000 description 2
- 125000002541 furyl group Chemical group 0.000 description 2
- ASUTZQLVASHGKV-JDFRZJQESA-N galanthamine Chemical compound O1C(=C23)C(OC)=CC=C2CN(C)CC[C@]23[C@@H]1C[C@@H](O)C=C2 ASUTZQLVASHGKV-JDFRZJQESA-N 0.000 description 2
- 229960003297 gemtuzumab ozogamicin Drugs 0.000 description 2
- 208000016361 genetic disease Diseases 0.000 description 2
- 229960002989 glutamic acid Drugs 0.000 description 2
- 201000004502 glycogen storage disease II Diseases 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 125000004438 haloalkoxy group Chemical group 0.000 description 2
- 108010013846 hematide Proteins 0.000 description 2
- 229960002897 heparin Drugs 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 125000004366 heterocycloalkenyl group Chemical group 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 150000002463 imidates Chemical class 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 229960002127 imiglucerase Drugs 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 2
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 2
- 125000001041 indolyl group Chemical group 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 229960000598 infliximab Drugs 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 108010044426 integrins Proteins 0.000 description 2
- 102000006495 integrins Human genes 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- 102000002467 interleukin receptors Human genes 0.000 description 2
- 108010093036 interleukin receptors Proteins 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 125000000842 isoxazolyl group Chemical group 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- CSSYQJWUGATIHM-IKGCZBKSSA-N l-phenylalanyl-l-lysyl-l-cysteinyl-l-arginyl-l-arginyl-l-tryptophyl-l-glutaminyl-l-tryptophyl-l-arginyl-l-methionyl-l-lysyl-l-lysyl-l-leucylglycyl-l-alanyl-l-prolyl-l-seryl-l-isoleucyl-l-threonyl-l-cysteinyl-l-valyl-l-arginyl-l-arginyl-l-alanyl-l-phenylal Chemical compound C([C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 CSSYQJWUGATIHM-IKGCZBKSSA-N 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 229960002486 laronidase Drugs 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 2
- 229960002394 lisinopril Drugs 0.000 description 2
- 239000003055 low molecular weight heparin Substances 0.000 description 2
- 229940127215 low-molecular weight heparin Drugs 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229960004640 memantine Drugs 0.000 description 2
- LDDHMLJTFXJGPI-UHFFFAOYSA-N memantine hydrochloride Chemical compound Cl.C1C(C2)CC3(C)CC1(C)CC2(N)C3 LDDHMLJTFXJGPI-UHFFFAOYSA-N 0.000 description 2
- 208000030159 metabolic disease Diseases 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 229960002984 metaraminol bitartrate Drugs 0.000 description 2
- HNQIVZYLYMDVSB-UHFFFAOYSA-N methanesulfonimidic acid Chemical compound CS(N)(=O)=O HNQIVZYLYMDVSB-UHFFFAOYSA-N 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 2
- 229960003404 mexiletine Drugs 0.000 description 2
- 239000002679 microRNA Substances 0.000 description 2
- 229940029238 mircera Drugs 0.000 description 2
- 229950003063 mitumomab Drugs 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 2
- 201000007769 mucolipidosis Diseases 0.000 description 2
- 208000020460 mucolipidosis II alpha/beta Diseases 0.000 description 2
- 208000010978 mucopolysaccharidosis type 4 Diseases 0.000 description 2
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 2
- 229940053128 nerve growth factor Drugs 0.000 description 2
- NQDJXKOVJZTUJA-UHFFFAOYSA-N nevirapine Chemical compound C12=NC=CC=C2C(=O)NC=2C(C)=CC=NC=2N1C1CC1 NQDJXKOVJZTUJA-UHFFFAOYSA-N 0.000 description 2
- UMRZSTCPUPJPOJ-KNVOCYPGSA-N norbornane Chemical compound C1C[C@H]2CC[C@@H]1C2 UMRZSTCPUPJPOJ-KNVOCYPGSA-N 0.000 description 2
- 230000000269 nucleophilic effect Effects 0.000 description 2
- 229960002700 octreotide Drugs 0.000 description 2
- 229960000470 omalizumab Drugs 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 210000003463 organelle Anatomy 0.000 description 2
- 150000002905 orthoesters Chemical class 0.000 description 2
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 2
- 229960001756 oxaliplatin Drugs 0.000 description 2
- 125000002971 oxazolyl group Chemical group 0.000 description 2
- 150000002924 oxiranes Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 2
- 229960002131 palonosetron Drugs 0.000 description 2
- CPZBLNMUGSZIPR-NVXWUHKLSA-N palonosetron Chemical compound C1N(CC2)CCC2[C@@H]1N1C(=O)C(C=CC=C2CCC3)=C2[C@H]3C1 CPZBLNMUGSZIPR-NVXWUHKLSA-N 0.000 description 2
- WRUUGTRCQOWXEG-UHFFFAOYSA-N pamidronate Chemical compound NCCC(O)(P(O)(O)=O)P(O)(O)=O WRUUGTRCQOWXEG-UHFFFAOYSA-N 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 108010044644 pegfilgrastim Proteins 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 150000002960 penicillins Chemical class 0.000 description 2
- 230000003285 pharmacodynamic effect Effects 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 238000002953 preparative HPLC Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000011165 process development Methods 0.000 description 2
- VQMWBBYLQSCNPO-RNFDNDRNSA-N promethium-149 Chemical compound [149Pm] VQMWBBYLQSCNPO-RNFDNDRNSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 125000003226 pyrazolyl group Chemical group 0.000 description 2
- 125000000168 pyrrolyl group Chemical group 0.000 description 2
- SBYHFKPVCBCYGV-UHFFFAOYSA-N quinuclidine Chemical compound C1CC2CCN1CC2 SBYHFKPVCBCYGV-UHFFFAOYSA-N 0.000 description 2
- 108010084837 rasburicase Proteins 0.000 description 2
- 229960000424 rasburicase Drugs 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 108010051412 reteplase Proteins 0.000 description 2
- 229960002917 reteplase Drugs 0.000 description 2
- WUAPFZMCVAUBPE-IGMARMGPSA-N rhenium-186 Chemical compound [186Re] WUAPFZMCVAUBPE-IGMARMGPSA-N 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- MHOVAHRLVXNVSD-NJFSPNSNSA-N rhodium-105 Chemical compound [105Rh] MHOVAHRLVXNVSD-NJFSPNSNSA-N 0.000 description 2
- 210000003705 ribosome Anatomy 0.000 description 2
- 238000009118 salvage therapy Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- BNRNXUUZRGQAQC-UHFFFAOYSA-N sildenafil Chemical compound CCCC1=NN(C)C(C(N2)=O)=C1N=C2C(C(=CC=1)OCC)=CC=1S(=O)(=O)N1CCN(C)CC1 BNRNXUUZRGQAQC-UHFFFAOYSA-N 0.000 description 2
- 238000010898 silica gel chromatography Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- MGIBTQJHFKUHFD-UHFFFAOYSA-M sodium;2-amino-2-benzamidoacetate Chemical compound [Na+].[O-]C(=O)C(N)NC(=O)C1=CC=CC=C1 MGIBTQJHFKUHFD-UHFFFAOYSA-M 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 238000005063 solubilization Methods 0.000 description 2
- 230000007928 solubilization Effects 0.000 description 2
- 229960000553 somatostatin Drugs 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 210000000225 synapse Anatomy 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- NPDBDJFLKKQMCM-UHFFFAOYSA-N tert-butylglycine Chemical compound CC(C)(C)C(N)C(O)=O NPDBDJFLKKQMCM-UHFFFAOYSA-N 0.000 description 2
- 125000005309 thioalkoxy group Chemical group 0.000 description 2
- 229960002898 threonine Drugs 0.000 description 2
- NZVYCXVTEHPMHE-ZSUJOUNUSA-N thymalfasin Chemical compound CC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O NZVYCXVTEHPMHE-ZSUJOUNUSA-N 0.000 description 2
- 229960004231 thymalfasin Drugs 0.000 description 2
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 2
- 229960005267 tositumomab Drugs 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 229960000575 trastuzumab Drugs 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 2
- 229960004441 tyrosine Drugs 0.000 description 2
- 229960005486 vaccine Drugs 0.000 description 2
- 238000010626 work up procedure Methods 0.000 description 2
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- NKUZQMZWTZAPSN-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 2-bromoacetate Chemical compound BrCC(=O)ON1C(=O)CCC1=O NKUZQMZWTZAPSN-UHFFFAOYSA-N 0.000 description 1
- YIRMFCGQZJVDNO-FFXVZKRQSA-N (2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-1-[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-acetamidopropanoyl]amino]-3-carboxypropanoyl]amino]-6-aminohexanoyl]pyrrolidine-2-carbonyl]amino]-3-carboxypropanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-4-carboxybutanoyl]amino]-3-methylpentanoyl]amino]-4-amino-4-oxobutanoyl]amino]-3-hydroxypropanoyl]amino]-3-phenylpropanoyl]amino]-3-carboxypropanoyl]amino]-6-aminohexanoyl]amino]propanoyl]amino]-6-aminohexanoyl]amino]-4-methylpentanoyl]amino]-6-aminohexanoyl]amino]-6-aminohexanoyl]amino]-3-hydroxybutanoyl]amino]-4-carboxybutanoyl]amino]-3-hydroxybutanoyl]amino]-5-amino-5-oxopentanoyl]amino]-4-carboxybutanoyl]amino]-6-aminohexanoyl]amino]-4-amino-4-oxobutanoyl]amino]-3-hydroxybutanoyl]amino]-4-methylpentanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxybutanoyl]amino]-6-aminohexanoyl]amino]-4-carboxybutanoyl]amino]-3-hydroxybutanoyl]amino]-3-methylpentanoyl]amino]-4-carboxybutanoyl]amino]-5-amino-5-oxopentanoyl]amino]-4-carboxybutanoyl]amino]-6-aminohexanoyl]amino]-5-amino-5-oxopentanoyl]amino]propanoyl]amino]-6-aminohexanoic acid Chemical compound CC[C@H](C)[C@H](NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCCN)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(C)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(O)=O YIRMFCGQZJVDNO-FFXVZKRQSA-N 0.000 description 1
- BVAUMRCGVHUWOZ-ZETCQYMHSA-N (2s)-2-(cyclohexylazaniumyl)propanoate Chemical compound OC(=O)[C@H](C)NC1CCCCC1 BVAUMRCGVHUWOZ-ZETCQYMHSA-N 0.000 description 1
- DHALQLNIDMSKHU-REOHCLBHSA-N (2s)-2-(fluoroamino)propanoic acid Chemical compound FN[C@@H](C)C(O)=O DHALQLNIDMSKHU-REOHCLBHSA-N 0.000 description 1
- ZMEWRPBAQVSBBB-GOTSBHOMSA-N (2s)-2-[[(2s)-2-[(2-aminoacetyl)amino]-3-(4-hydroxyphenyl)propanoyl]amino]-6-[[2-[2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetyl]amino]hexanoic acid Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CCN(CC(O)=O)CC(=O)NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CC1=CC=C(O)C=C1 ZMEWRPBAQVSBBB-GOTSBHOMSA-N 0.000 description 1
- XHBJLKMBAFTWJD-JTQLQIEISA-N (2s)-2-amino-3-(3-ethynylphenyl)propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=CC(C#C)=C1 XHBJLKMBAFTWJD-JTQLQIEISA-N 0.000 description 1
- PEMUHKUIQHFMTH-QMMMGPOBSA-N (2s)-2-amino-3-(4-bromophenyl)propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=C(Br)C=C1 PEMUHKUIQHFMTH-QMMMGPOBSA-N 0.000 description 1
- PPDNGMUGVMESGE-JTQLQIEISA-N (2s)-2-amino-3-(4-ethynylphenyl)propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=C(C#C)C=C1 PPDNGMUGVMESGE-JTQLQIEISA-N 0.000 description 1
- CDYBDVURNMMPPW-VIFPVBQESA-N (2s)-2-amino-3-(5-bromo-1h-indol-2-yl)propanoic acid Chemical compound BrC1=CC=C2NC(C[C@H](N)C(O)=O)=CC2=C1 CDYBDVURNMMPPW-VIFPVBQESA-N 0.000 description 1
- FLHDTNWRXMTPMP-NSHDSACASA-N (2s)-2-amino-3-(5-ethynyl-1h-indol-3-yl)propanoic acid Chemical compound C1=C(C#C)C=C2C(C[C@H](N)C(O)=O)=CNC2=C1 FLHDTNWRXMTPMP-NSHDSACASA-N 0.000 description 1
- XVALICRNYTVUGO-VIFPVBQESA-N (2s)-2-amino-3-(6-bromo-1h-indol-2-yl)propanoic acid Chemical compound C1=C(Br)C=C2NC(C[C@H](N)C(O)=O)=CC2=C1 XVALICRNYTVUGO-VIFPVBQESA-N 0.000 description 1
- BICOQUSYRMBRLR-VIFPVBQESA-N (2s)-2-amino-3-(6-chloro-1h-indol-2-yl)propanoic acid Chemical compound C1=C(Cl)C=C2NC(C[C@H](N)C(O)=O)=CC2=C1 BICOQUSYRMBRLR-VIFPVBQESA-N 0.000 description 1
- UIKHEWRXMDFLKN-NSHDSACASA-N (2s)-2-amino-3-(6-ethynyl-1h-indol-3-yl)propanoic acid Chemical compound C#CC1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 UIKHEWRXMDFLKN-NSHDSACASA-N 0.000 description 1
- VEVRNHHLCPGNDU-MUGJNUQGSA-N (2s)-2-amino-5-[1-[(5s)-5-amino-5-carboxypentyl]-3,5-bis[(3s)-3-amino-3-carboxypropyl]pyridin-1-ium-4-yl]pentanoate Chemical compound OC(=O)[C@@H](N)CCCC[N+]1=CC(CC[C@H](N)C(O)=O)=C(CCC[C@H](N)C([O-])=O)C(CC[C@H](N)C(O)=O)=C1 VEVRNHHLCPGNDU-MUGJNUQGSA-N 0.000 description 1
- HTFFMYRVHHNNBE-YFKPBYRVSA-N (2s)-2-amino-6-azidohexanoic acid Chemical compound OC(=O)[C@@H](N)CCCCN=[N+]=[N-] HTFFMYRVHHNNBE-YFKPBYRVSA-N 0.000 description 1
- NEMHIKRLROONTL-QMMMGPOBSA-N (2s)-2-azaniumyl-3-(4-azidophenyl)propanoate Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N=[N+]=[N-])C=C1 NEMHIKRLROONTL-QMMMGPOBSA-N 0.000 description 1
- NNWQLZWAZSJGLY-VKHMYHEASA-N (2s)-2-azaniumyl-4-azidobutanoate Chemical compound OC(=O)[C@@H](N)CCN=[N+]=[N-] NNWQLZWAZSJGLY-VKHMYHEASA-N 0.000 description 1
- ZXSBHXZKWRIEIA-JTQLQIEISA-N (2s)-3-(4-acetylphenyl)-2-azaniumylpropanoate Chemical compound CC(=O)C1=CC=C(C[C@H](N)C(O)=O)C=C1 ZXSBHXZKWRIEIA-JTQLQIEISA-N 0.000 description 1
- MJGBOFOZSAEULI-RUCXOUQFSA-N (2s)-5-oxopyrrolidine-2-carboxylic acid Chemical compound OC(=O)[C@@H]1CCC(=O)N1.OC(=O)[C@@H]1CCC(=O)N1 MJGBOFOZSAEULI-RUCXOUQFSA-N 0.000 description 1
- FELGMEQIXOGIFQ-CYBMUJFWSA-N (3r)-9-methyl-3-[(2-methylimidazol-1-yl)methyl]-2,3-dihydro-1h-carbazol-4-one Chemical compound CC1=NC=CN1C[C@@H]1C(=O)C(C=2C(=CC=CC=2)N2C)=C2CC1 FELGMEQIXOGIFQ-CYBMUJFWSA-N 0.000 description 1
- VCOPTHOUUNAYKQ-WBTCAYNUSA-N (3s)-3,6-diamino-n-[[(2s,5s,8e,11s,15s)-15-amino-11-[(6r)-2-amino-1,4,5,6-tetrahydropyrimidin-6-yl]-8-[(carbamoylamino)methylidene]-2-(hydroxymethyl)-3,6,9,12,16-pentaoxo-1,4,7,10,13-pentazacyclohexadec-5-yl]methyl]hexanamide;(3s)-3,6-diamino-n-[[(2s,5s,8 Chemical compound N1C(=O)\C(=C/NC(N)=O)NC(=O)[C@H](CNC(=O)C[C@@H](N)CCCN)NC(=O)[C@H](C)NC(=O)[C@@H](N)CNC(=O)[C@@H]1[C@@H]1NC(N)=NCC1.N1C(=O)\C(=C/NC(N)=O)NC(=O)[C@H](CNC(=O)C[C@@H](N)CCCN)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CNC(=O)[C@@H]1[C@@H]1NC(N)=NCC1 VCOPTHOUUNAYKQ-WBTCAYNUSA-N 0.000 description 1
- WDLWHQDACQUCJR-ZAMMOSSLSA-N (6r,7r)-7-[[(2r)-2-azaniumyl-2-(4-hydroxyphenyl)acetyl]amino]-8-oxo-3-[(e)-prop-1-enyl]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)/C=C/C)C(O)=O)=CC=C(O)C=C1 WDLWHQDACQUCJR-ZAMMOSSLSA-N 0.000 description 1
- ORFOPKXBNMVMKC-DWVKKRMSSA-O (6r,7r)-7-[[(2z)-2-(2-amino-1,3-thiazol-4-yl)-2-(2-carboxypropan-2-yloxyimino)acetyl]amino]-8-oxo-3-(pyridin-1-ium-1-ylmethyl)-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC(C)(C)C(O)=O)C=2N=C(N)SC=2)CC=1C[N+]1=CC=CC=C1 ORFOPKXBNMVMKC-DWVKKRMSSA-O 0.000 description 1
- MMRINLZOZVAPDZ-LSGRDSQZSA-N (6r,7r)-7-[[(2z)-2-(2-amino-1,3-thiazol-4-yl)-2-methoxyiminoacetyl]amino]-3-[(1-methylpyrrolidin-1-ium-1-yl)methyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid;chloride Chemical compound Cl.S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1C[N+]1(C)CCCC1 MMRINLZOZVAPDZ-LSGRDSQZSA-N 0.000 description 1
- GPYKKBAAPVOCIW-HSASPSRMSA-N (6r,7s)-7-[[(2r)-2-amino-2-phenylacetyl]amino]-3-chloro-8-oxo-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid;hydrate Chemical compound O.C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CC[C@@H]32)C(O)=O)=O)N)=CC=CC=C1 GPYKKBAAPVOCIW-HSASPSRMSA-N 0.000 description 1
- HMLGSIZOMSVISS-ONJSNURVSA-N (7r)-7-[[(2z)-2-(2-amino-1,3-thiazol-4-yl)-2-(2,2-dimethylpropanoyloxymethoxyimino)acetyl]amino]-3-ethenyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid Chemical compound N([C@@H]1C(N2C(=C(C=C)CSC21)C(O)=O)=O)C(=O)\C(=N/OCOC(=O)C(C)(C)C)C1=CSC(N)=N1 HMLGSIZOMSVISS-ONJSNURVSA-N 0.000 description 1
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 1
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- RXZBMPWDPOLZGW-XMRMVWPWSA-N (E)-roxithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=N/OCOCCOC)/[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 RXZBMPWDPOLZGW-XMRMVWPWSA-N 0.000 description 1
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- LKJPYSCBVHEWIU-KRWDZBQOSA-N (R)-bicalutamide Chemical compound C([C@@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-KRWDZBQOSA-N 0.000 description 1
- QKDHBVNJCZBTMR-LLVKDONJSA-N (R)-temafloxacin Chemical compound C1CN[C@H](C)CN1C(C(=C1)F)=CC2=C1C(=O)C(C(O)=O)=CN2C1=CC=C(F)C=C1F QKDHBVNJCZBTMR-LLVKDONJSA-N 0.000 description 1
- IADUEWIQBXOCDZ-VKHMYHEASA-N (S)-azetidine-2-carboxylic acid Chemical compound OC(=O)[C@@H]1CCN1 IADUEWIQBXOCDZ-VKHMYHEASA-N 0.000 description 1
- XUBOMFCQGDBHNK-JTQLQIEISA-N (S)-gatifloxacin Chemical compound FC1=CC(C(C(C(O)=O)=CN2C3CC3)=O)=C2C(OC)=C1N1CCN[C@@H](C)C1 XUBOMFCQGDBHNK-JTQLQIEISA-N 0.000 description 1
- NYPYHUZRZVSYKL-UHFFFAOYSA-N -3,5-Diiodotyrosine Natural products OC(=O)C(N)CC1=CC(I)=C(O)C(I)=C1 NYPYHUZRZVSYKL-UHFFFAOYSA-N 0.000 description 1
- BWKMGYQJPOAASG-UHFFFAOYSA-N 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid Chemical compound C1=CC=C2CNC(C(=O)O)CC2=C1 BWKMGYQJPOAASG-UHFFFAOYSA-N 0.000 description 1
- ADFXKUOMJKEIND-UHFFFAOYSA-N 1,3-dicyclohexylurea Chemical compound C1CCCCC1NC(=O)NC1CCCCC1 ADFXKUOMJKEIND-UHFFFAOYSA-N 0.000 description 1
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical compound C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- JBYHSSAVUBIJMK-UHFFFAOYSA-N 1,4-oxathiane Chemical compound C1CSCCO1 JBYHSSAVUBIJMK-UHFFFAOYSA-N 0.000 description 1
- 125000000196 1,4-pentadienyl group Chemical group [H]C([*])=C([H])C([H])([H])C([H])=C([H])[H] 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- NILQLFBWTXNUOE-UHFFFAOYSA-N 1-aminocyclopentanecarboxylic acid Chemical compound OC(=O)C1(N)CCCC1 NILQLFBWTXNUOE-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000004972 1-butynyl group Chemical group [H]C([H])([H])C([H])([H])C#C* 0.000 description 1
- RZLHGQLYNZQZQQ-UHFFFAOYSA-N 1-ethyl-6-fluoro-4-oxo-7-pyrrol-1-ylquinoline-3-carboxylic acid Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1C=CC=C1 RZLHGQLYNZQZQQ-UHFFFAOYSA-N 0.000 description 1
- 125000006039 1-hexenyl group Chemical group 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- VSNHCAURESNICA-NJFSPNSNSA-N 1-oxidanylurea Chemical compound N[14C](=O)NO VSNHCAURESNICA-NJFSPNSNSA-N 0.000 description 1
- 125000006023 1-pentenyl group Chemical group 0.000 description 1
- JLGKQTAYUIMGRK-UHFFFAOYSA-N 1-{2-[(7-chloro-1-benzothiophen-3-yl)methoxy]-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound ClC1=CC(Cl)=CC=C1C(OCC=1C2=CC=CC(Cl)=C2SC=1)CN1C=NC=C1 JLGKQTAYUIMGRK-UHFFFAOYSA-N 0.000 description 1
- PNDPGZBMCMUPRI-HVTJNCQCSA-N 10043-66-0 Chemical compound [131I][131I] PNDPGZBMCMUPRI-HVTJNCQCSA-N 0.000 description 1
- DGHHQBMTXTWTJV-BQAIUKQQSA-N 119413-54-6 Chemical compound Cl.C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 DGHHQBMTXTWTJV-BQAIUKQQSA-N 0.000 description 1
- BFPYWIDHMRZLRN-UHFFFAOYSA-N 17alpha-ethynyl estradiol Natural products OC1=CC=C2C3CCC(C)(C(CC4)(O)C#C)C4C3CCC2=C1 BFPYWIDHMRZLRN-UHFFFAOYSA-N 0.000 description 1
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- SXGZJKUKBWWHRA-UHFFFAOYSA-N 2-(N-morpholiniumyl)ethanesulfonate Chemical compound [O-]S(=O)(=O)CC[NH+]1CCOCC1 SXGZJKUKBWWHRA-UHFFFAOYSA-N 0.000 description 1
- GVNVAWHJIKLAGL-UHFFFAOYSA-N 2-(cyclohexen-1-yl)cyclohexan-1-one Chemical compound O=C1CCCCC1C1=CCCCC1 GVNVAWHJIKLAGL-UHFFFAOYSA-N 0.000 description 1
- LUCZWAOSWZMDJO-UHFFFAOYSA-N 2-(hydroxyamino)-3,3-dimethylbutanoic acid Chemical compound CC(C)(C)C(NO)C(O)=O LUCZWAOSWZMDJO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 1
- VHVPQPYKVGDNFY-DFMJLFEVSA-N 2-[(2r)-butan-2-yl]-4-[4-[4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N([C@H](C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-DFMJLFEVSA-N 0.000 description 1
- ACTOXUHEUCPTEW-BWHGAVFKSA-N 2-[(4r,5s,6s,7r,9r,10r,11e,13e,16r)-6-[(2s,3r,4r,5s,6r)-5-[(2s,4r,5s,6s)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-10-[(2s,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy-4-hydroxy-5-methoxy-9,16-dimethyl-2-o Chemical compound O([C@H]1/C=C/C=C/C[C@@H](C)OC(=O)C[C@@H](O)[C@@H]([C@H]([C@@H](CC=O)C[C@H]1C)O[C@H]1[C@@H]([C@H]([C@H](O[C@@H]2O[C@@H](C)[C@H](O)[C@](C)(O)C2)[C@@H](C)O1)N(C)C)O)OC)[C@@H]1CC[C@H](N(C)C)[C@@H](C)O1 ACTOXUHEUCPTEW-BWHGAVFKSA-N 0.000 description 1
- YFGHCGITMMYXAQ-UHFFFAOYSA-N 2-[(diphenylmethyl)sulfinyl]acetamide Chemical compound C=1C=CC=CC=1C(S(=O)CC(=O)N)C1=CC=CC=C1 YFGHCGITMMYXAQ-UHFFFAOYSA-N 0.000 description 1
- WZPBZJONDBGPKJ-VEHQQRBSSA-L 2-[(z)-[1-(2-amino-1,3-thiazol-4-yl)-2-[[(2s,3s)-2-methyl-4-oxo-1-sulfonatoazetidin-3-yl]amino]-2-oxoethylidene]amino]oxy-2-methylpropanoate Chemical compound O=C1N(S([O-])(=O)=O)[C@@H](C)[C@@H]1NC(=O)C(=N/OC(C)(C)C([O-])=O)\C1=CSC(N)=N1 WZPBZJONDBGPKJ-VEHQQRBSSA-L 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- RTQWWZBSTRGEAV-PKHIMPSTSA-N 2-[[(2s)-2-[bis(carboxymethyl)amino]-3-[4-(methylcarbamoylamino)phenyl]propyl]-[2-[bis(carboxymethyl)amino]propyl]amino]acetic acid Chemical compound CNC(=O)NC1=CC=C(C[C@@H](CN(CC(C)N(CC(O)=O)CC(O)=O)CC(O)=O)N(CC(O)=O)CC(O)=O)C=C1 RTQWWZBSTRGEAV-PKHIMPSTSA-N 0.000 description 1
- PWKSKIMOESPYIA-UHFFFAOYSA-N 2-acetamido-3-sulfanylpropanoic acid Chemical compound CC(=O)NC(CS)C(O)=O PWKSKIMOESPYIA-UHFFFAOYSA-N 0.000 description 1
- QDGAVODICPCDMU-UHFFFAOYSA-N 2-amino-3-[3-[bis(2-chloroethyl)amino]phenyl]propanoic acid Chemical compound OC(=O)C(N)CC1=CC=CC(N(CCCl)CCCl)=C1 QDGAVODICPCDMU-UHFFFAOYSA-N 0.000 description 1
- SCGJGNWMYSYORS-UHFFFAOYSA-N 2-azaniumylhex-5-ynoate Chemical compound OC(=O)C(N)CCC#C SCGJGNWMYSYORS-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- 125000006040 2-hexenyl group Chemical group 0.000 description 1
- BWLBGMIXKSTLSX-UHFFFAOYSA-N 2-hydroxyisobutyric acid Chemical compound CC(C)(O)C(O)=O BWLBGMIXKSTLSX-UHFFFAOYSA-N 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- 125000006024 2-pentenyl group Chemical group 0.000 description 1
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- JGSARLDLIJGVTE-UHFFFAOYSA-N 3,3-dimethyl-7-oxo-6-[(2-phenylacetyl)amino]-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid Chemical compound O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-UHFFFAOYSA-N 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- NYPYHUZRZVSYKL-ZETCQYMHSA-N 3,5-diiodo-L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC(I)=C(O)C(I)=C1 NYPYHUZRZVSYKL-ZETCQYMHSA-N 0.000 description 1
- BRMWTNUJHUMWMS-UHFFFAOYSA-N 3-Methylhistidine Natural products CN1C=NC(CC(N)C(O)=O)=C1 BRMWTNUJHUMWMS-UHFFFAOYSA-N 0.000 description 1
- WCFJUSRQHZPVKY-UHFFFAOYSA-N 3-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound CC(C)(C)OC(=O)NCCC(O)=O WCFJUSRQHZPVKY-UHFFFAOYSA-N 0.000 description 1
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 1
- 125000006041 3-hexenyl group Chemical group 0.000 description 1
- 125000001541 3-thienyl group Chemical group S1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- VOUAQYXWVJDEQY-QENPJCQMSA-N 33017-11-7 Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)NCC(=O)NCC(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N1[C@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)CCC1 VOUAQYXWVJDEQY-QENPJCQMSA-N 0.000 description 1
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 1
- SJZRECIVHVDYJC-UHFFFAOYSA-M 4-hydroxybutyrate Chemical compound OCCCC([O-])=O SJZRECIVHVDYJC-UHFFFAOYSA-M 0.000 description 1
- PZNQZSRPDOEBMS-QMMMGPOBSA-N 4-iodo-L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(I)C=C1 PZNQZSRPDOEBMS-QMMMGPOBSA-N 0.000 description 1
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- VVIAGPKUTFNRDU-UHFFFAOYSA-N 6S-folinic acid Natural products C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-UHFFFAOYSA-N 0.000 description 1
- WUWFMDMBOJLQIV-UHFFFAOYSA-N 7-(3-aminopyrrolidin-1-yl)-1-(2,4-difluorophenyl)-6-fluoro-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid Chemical compound C1C(N)CCN1C(C(=C1)F)=NC2=C1C(=O)C(C(O)=O)=CN2C1=CC=C(F)C=C1F WUWFMDMBOJLQIV-UHFFFAOYSA-N 0.000 description 1
- VCCNKWWXYVWTLT-CYZBKYQRSA-N 7-[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-one Chemical compound C1=C(O)C(OC)=CC=C1C(OC1=C2)=CC(=O)C1=C(O)C=C2O[C@H]1[C@H](O[C@H]2[C@@H]([C@H](O)[C@@H](O)[C@H](C)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 VCCNKWWXYVWTLT-CYZBKYQRSA-N 0.000 description 1
- MPORYQCGWFQFLA-ONPDANIMSA-N 7-[(7s)-7-amino-5-azaspiro[2.4]heptan-5-yl]-8-chloro-6-fluoro-1-[(1r,2s)-2-fluorocyclopropyl]-4-oxoquinoline-3-carboxylic acid;trihydrate Chemical compound O.O.O.C([C@H]1N)N(C=2C(=C3C(C(C(C(O)=O)=CN3[C@H]3[C@H](C3)F)=O)=CC=2F)Cl)CC11CC1.C([C@H]1N)N(C=2C(=C3C(C(C(C(O)=O)=CN3[C@H]3[C@H](C3)F)=O)=CC=2F)Cl)CC11CC1 MPORYQCGWFQFLA-ONPDANIMSA-N 0.000 description 1
- GSDSWSVVBLHKDQ-UHFFFAOYSA-N 9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid Chemical compound FC1=CC(C(C(C(O)=O)=C2)=O)=C3N2C(C)COC3=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-UHFFFAOYSA-N 0.000 description 1
- 240000005020 Acaciella glauca Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 239000012099 Alexa Fluor family Substances 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 208000029602 Alpha-N-acetylgalactosaminidase deficiency Diseases 0.000 description 1
- RUXPNBWPIRDVTH-UHFFFAOYSA-N Amifloxacin Chemical compound C1=C2N(NC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCN(C)CC1 RUXPNBWPIRDVTH-UHFFFAOYSA-N 0.000 description 1
- ITPDYQOUSLNIHG-UHFFFAOYSA-N Amiodarone hydrochloride Chemical compound [Cl-].CCCCC=1OC2=CC=CC=C2C=1C(=O)C1=CC(I)=C(OCC[NH+](CC)CC)C(I)=C1 ITPDYQOUSLNIHG-UHFFFAOYSA-N 0.000 description 1
- 101800002011 Amphipathic peptide Proteins 0.000 description 1
- 101800001718 Amyloid-beta protein Proteins 0.000 description 1
- 206010061424 Anal cancer Diseases 0.000 description 1
- 206010002198 Anaphylactic reaction Diseases 0.000 description 1
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 1
- 244000303258 Annona diversifolia Species 0.000 description 1
- 241000272517 Anseriformes Species 0.000 description 1
- WZPBZJONDBGPKJ-UHFFFAOYSA-N Antibiotic SQ 26917 Natural products O=C1N(S(O)(=O)=O)C(C)C1NC(=O)C(=NOC(C)(C)C(O)=O)C1=CSC(N)=N1 WZPBZJONDBGPKJ-UHFFFAOYSA-N 0.000 description 1
- 208000007860 Anus Neoplasms Diseases 0.000 description 1
- 206010073360 Appendix cancer Diseases 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- CEUORZQYGODEFX-UHFFFAOYSA-N Aripirazole Chemical compound ClC1=CC=CC(N2CCN(CCCCOC=3C=C4NC(=O)CCC4=CC=3)CC2)=C1Cl CEUORZQYGODEFX-UHFFFAOYSA-N 0.000 description 1
- BFYIZQONLCFLEV-DAELLWKTSA-N Aromasine Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC(=C)C2=C1 BFYIZQONLCFLEV-DAELLWKTSA-N 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- 102000015790 Asparaginase Human genes 0.000 description 1
- 206010068220 Aspartylglucosaminuria Diseases 0.000 description 1
- AXRYRYVKAWYZBR-UHFFFAOYSA-N Atazanavir Natural products C=1C=C(C=2N=CC=CC=2)C=CC=1CN(NC(=O)C(NC(=O)OC)C(C)(C)C)CC(O)C(NC(=O)C(NC(=O)OC)C(C)(C)C)CC1=CC=CC=C1 AXRYRYVKAWYZBR-UHFFFAOYSA-N 0.000 description 1
- 108010019625 Atazanavir Sulfate Proteins 0.000 description 1
- XUKUURHRXDUEBC-KAYWLYCHSA-N Atorvastatin Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-KAYWLYCHSA-N 0.000 description 1
- XUKUURHRXDUEBC-UHFFFAOYSA-N Atorvastatin Natural products C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CCC(O)CC(O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-UHFFFAOYSA-N 0.000 description 1
- 206010050245 Autoimmune thrombocytopenia Diseases 0.000 description 1
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 description 1
- 108010001478 Bacitracin Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108010081589 Becaplermin Proteins 0.000 description 1
- 208000009137 Behcet syndrome Diseases 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 206010004593 Bile duct cancer Diseases 0.000 description 1
- 208000008439 Biliary Liver Cirrhosis Diseases 0.000 description 1
- 208000033222 Biliary cirrhosis primary Diseases 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 206010055113 Breast cancer metastatic Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 108010037003 Buserelin Proteins 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 1
- 108010075254 C-Peptide Proteins 0.000 description 1
- 102100024217 CAMPATH-1 antigen Human genes 0.000 description 1
- 108010029697 CD40 Ligand Proteins 0.000 description 1
- 102100032937 CD40 ligand Human genes 0.000 description 1
- 108010065524 CD52 Antigen Proteins 0.000 description 1
- LWLHCZLCSDUDEL-UHFFFAOYSA-O C[N+](C)(C)CC(O)=P(=O)CCOC(=O)C=C Chemical group C[N+](C)(C)CC(O)=P(=O)CCOC(=O)C=C LWLHCZLCSDUDEL-UHFFFAOYSA-O 0.000 description 1
- KORNTPPJEAJQIU-KJXAQDMKSA-N Cabaser Chemical compound C1=CC([C@H]2C[C@H](CN(CC=C)[C@@H]2C2)C(=O)N(CCCN(C)C)C(=O)NCC)=C3C2=CNC3=C1 KORNTPPJEAJQIU-KJXAQDMKSA-N 0.000 description 1
- 101100337060 Caenorhabditis elegans glp-1 gene Proteins 0.000 description 1
- 101100314454 Caenorhabditis elegans tra-1 gene Proteins 0.000 description 1
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 108010065839 Capreomycin Proteins 0.000 description 1
- OKTJSMMVPCPJKN-NJFSPNSNSA-N Carbon-14 Chemical compound [14C] OKTJSMMVPCPJKN-NJFSPNSNSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 1
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 1
- 102100025473 Carcinoembryonic antigen-related cell adhesion molecule 6 Human genes 0.000 description 1
- 206010007279 Carcinoid tumour of the gastrointestinal tract Diseases 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 102000013602 Cardiac Myosins Human genes 0.000 description 1
- 108010051609 Cardiac Myosins Proteins 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- UQLLWWBDSUHNEB-CZUORRHYSA-N Cefaprin Chemical compound N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC(=O)C)C(O)=O)C(=O)CSC1=CC=NC=C1 UQLLWWBDSUHNEB-CZUORRHYSA-N 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 102000000018 Chemokine CCL2 Human genes 0.000 description 1
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 1
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 1
- 101150065749 Churc1 gene Proteins 0.000 description 1
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 description 1
- 108010078777 Colistin Proteins 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 1
- 102100031506 Complement C5 Human genes 0.000 description 1
- 108010028773 Complement C5 Proteins 0.000 description 1
- 102000016550 Complement Factor H Human genes 0.000 description 1
- 108010053085 Complement Factor H Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 102400000739 Corticotropin Human genes 0.000 description 1
- 101800000414 Corticotropin Proteins 0.000 description 1
- 239000000055 Corticotropin-Releasing Hormone Substances 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 206010011777 Cystinosis Diseases 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- 208000011518 Danon disease Diseases 0.000 description 1
- 108010000437 Deamino Arginine Vasopressin Proteins 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 206010012468 Dermatitis herpetiformis Diseases 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- YXHKONLOYHBTNS-UHFFFAOYSA-N Diazomethane Chemical compound C=[N+]=[N-] YXHKONLOYHBTNS-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- JWCSIUVGFCSJCK-CAVRMKNVSA-N Disodium Moxalactam Chemical compound N([C@]1(OC)C(N2C(=C(CSC=3N(N=NN=3)C)CO[C@@H]21)C(O)=O)=O)C(=O)C(C(O)=O)C1=CC=C(O)C=C1 JWCSIUVGFCSJCK-CAVRMKNVSA-N 0.000 description 1
- 239000012988 Dithioester Substances 0.000 description 1
- 101100120663 Drosophila melanogaster fs(1)h gene Proteins 0.000 description 1
- 108060006698 EGF receptor Proteins 0.000 description 1
- XQSPYNMVSIKCOC-NTSWFWBYSA-N Emtricitabine Chemical compound C1=C(F)C(N)=NC(=O)N1[C@H]1O[C@@H](CO)SC1 XQSPYNMVSIKCOC-NTSWFWBYSA-N 0.000 description 1
- 108010041308 Endothelial Growth Factors Proteins 0.000 description 1
- 108010032976 Enfuvirtide Proteins 0.000 description 1
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 1
- 108010075944 Erythropoietin Receptors Proteins 0.000 description 1
- 102100036509 Erythropoietin receptor Human genes 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- BFPYWIDHMRZLRN-SLHNCBLASA-N Ethinyl estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 BFPYWIDHMRZLRN-SLHNCBLASA-N 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 108010011459 Exenatide Proteins 0.000 description 1
- 208000024720 Fabry Disease Diseases 0.000 description 1
- 108010080865 Factor XII Proteins 0.000 description 1
- 102000000429 Factor XII Human genes 0.000 description 1
- 108010071289 Factor XIII Proteins 0.000 description 1
- 208000001948 Farber Lipogranulomatosis Diseases 0.000 description 1
- 208000033149 Farber disease Diseases 0.000 description 1
- NIGWMJHCCYYCSF-UHFFFAOYSA-N Fenclonine Chemical compound OC(=O)C(N)CC1=CC=C(Cl)C=C1 NIGWMJHCCYYCSF-UHFFFAOYSA-N 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 102000003971 Fibroblast Growth Factor 1 Human genes 0.000 description 1
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 description 1
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 102000003972 Fibroblast growth factor 7 Human genes 0.000 description 1
- 108090000385 Fibroblast growth factor 7 Proteins 0.000 description 1
- 102000002090 Fibronectin type III Human genes 0.000 description 1
- 108050009401 Fibronectin type III Proteins 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 108010029961 Filgrastim Proteins 0.000 description 1
- UIOFUWFRIANQPC-JKIFEVAISA-N Floxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=C(F)C=CC=C1Cl UIOFUWFRIANQPC-JKIFEVAISA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- VWUXBMIQPBEWFH-WCCTWKNTSA-N Fulvestrant Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3[C@H](CCCCCCCCCS(=O)CCCC(F)(F)C(F)(F)F)CC2=C1 VWUXBMIQPBEWFH-WCCTWKNTSA-N 0.000 description 1
- 201000008892 GM1 Gangliosidosis Diseases 0.000 description 1
- 208000017462 Galactosialidosis Diseases 0.000 description 1
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 1
- 208000015872 Gaucher disease Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 208000010055 Globoid Cell Leukodystrophy Diseases 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- 102400000321 Glucagon Human genes 0.000 description 1
- 108010088406 Glucagon-Like Peptides Proteins 0.000 description 1
- FAEKWTJYAYMJKF-QHCPKHFHSA-N GlucoNorm Chemical compound C1=C(C(O)=O)C(OCC)=CC(CC(=O)N[C@@H](CC(C)C)C=2C(=CC=CC=2)N2CCCCC2)=C1 FAEKWTJYAYMJKF-QHCPKHFHSA-N 0.000 description 1
- 108010017544 Glucosylceramidase Proteins 0.000 description 1
- 102000004547 Glucosylceramidase Human genes 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- 101100128612 Glycine max LOX1.2 gene Proteins 0.000 description 1
- 208000001500 Glycogen Storage Disease Type IIb Diseases 0.000 description 1
- 208000035148 Glycogen storage disease due to LAMP-2 deficiency Diseases 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- BLCLNMBMMGCOAS-URPVMXJPSA-N Goserelin Chemical compound C([C@@H](C(=O)N[C@H](COC(C)(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1[C@@H](CCC1)C(=O)NNC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 BLCLNMBMMGCOAS-URPVMXJPSA-N 0.000 description 1
- 108010069236 Goserelin Proteins 0.000 description 1
- 108010026389 Gramicidin Proteins 0.000 description 1
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 1
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 description 1
- 101001113903 Grapevine leafroll-associated virus 3 (isolate United States/NY1) Protein P4 Proteins 0.000 description 1
- 208000003807 Graves Disease Diseases 0.000 description 1
- 208000015023 Graves' disease Diseases 0.000 description 1
- AIJTTZAVMXIJGM-UHFFFAOYSA-N Grepafloxacin Chemical compound C1CNC(C)CN1C(C(=C1C)F)=CC2=C1C(=O)C(C(O)=O)=CN2C1CC1 AIJTTZAVMXIJGM-UHFFFAOYSA-N 0.000 description 1
- 229940124013 Growth hormone receptor antagonist Drugs 0.000 description 1
- 102100032610 Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas Human genes 0.000 description 1
- 208000035895 Guillain-Barré syndrome Diseases 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 102100031547 HLA class II histocompatibility antigen, DO alpha chain Human genes 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 1
- 208000035186 Hemolytic Autoimmune Anemia Diseases 0.000 description 1
- 208000031220 Hemophilia Diseases 0.000 description 1
- 208000009292 Hemophilia A Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 102000007625 Hirudins Human genes 0.000 description 1
- 108010007267 Hirudins Proteins 0.000 description 1
- 101000914326 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 6 Proteins 0.000 description 1
- 101000866278 Homo sapiens HLA class II histocompatibility antigen, DO alpha chain Proteins 0.000 description 1
- 101001076407 Homo sapiens Interleukin-1 receptor antagonist protein Proteins 0.000 description 1
- 101000871708 Homo sapiens Proheparin-binding EGF-like growth factor Proteins 0.000 description 1
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 238000006736 Huisgen cycloaddition reaction Methods 0.000 description 1
- 208000015178 Hurler syndrome Diseases 0.000 description 1
- 208000015204 Hurler-Scheie syndrome Diseases 0.000 description 1
- 108700037017 Hyaluronidase Deficiency Proteins 0.000 description 1
- 208000005503 Hyaluronidase deficiency Diseases 0.000 description 1
- 206010049933 Hypophosphatasia Diseases 0.000 description 1
- 229920002177 Icodextrin Polymers 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 108010073961 Insulin Aspart Chemical class 0.000 description 1
- 108010057186 Insulin Glargine Chemical class 0.000 description 1
- 108010065920 Insulin Lispro Chemical class 0.000 description 1
- COCFEDIXXNGUNL-RFKWWTKHSA-N Insulin glargine Chemical class C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(=O)NCC(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)[C@@H](C)CC)[C@@H](C)O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 COCFEDIXXNGUNL-RFKWWTKHSA-N 0.000 description 1
- 108010005716 Interferon beta-1a Proteins 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 229940119178 Interleukin 1 receptor antagonist Drugs 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000019223 Interleukin-1 receptor Human genes 0.000 description 1
- 108050006617 Interleukin-1 receptor Proteins 0.000 description 1
- 108700021006 Interleukin-1 receptor antagonist Proteins 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 108010017511 Interleukin-13 Receptors Proteins 0.000 description 1
- 102000004554 Interleukin-17 Receptors Human genes 0.000 description 1
- 108010017525 Interleukin-17 Receptors Proteins 0.000 description 1
- 102100030704 Interleukin-21 Human genes 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 102000000646 Interleukin-3 Human genes 0.000 description 1
- 102000004388 Interleukin-4 Human genes 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010038486 Interleukin-4 Receptors Proteins 0.000 description 1
- JUZNIMUFDBIJCM-ANEDZVCMSA-N Invanz Chemical compound O=C([C@H]1NC[C@H](C1)SC=1[C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)NC1=CC=CC(C(O)=O)=C1 JUZNIMUFDBIJCM-ANEDZVCMSA-N 0.000 description 1
- 102000036770 Islet Amyloid Polypeptide Human genes 0.000 description 1
- 108010041872 Islet Amyloid Polypeptide Proteins 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- SHGAZHPCJJPHSC-NUEINMDLSA-N Isotretinoin Chemical compound OC(=O)C=C(C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-NUEINMDLSA-N 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 102000010638 Kinesin Human genes 0.000 description 1
- 108010063296 Kinesin Proteins 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- 208000028226 Krabbe disease Diseases 0.000 description 1
- CZWARROQQFCFJB-UHFFFAOYSA-N L-2-Amino-5-hydroxypentanoic acid Chemical compound OC(=O)C(N)CCCO CZWARROQQFCFJB-UHFFFAOYSA-N 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N L-Alanine Natural products C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UWTATZPHSA-N L-Aspartic acid Natural products OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 1
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- QUOGESRFPZDMMT-UHFFFAOYSA-N L-Homoarginine Natural products OC(=O)C(N)CCCCNC(N)=N QUOGESRFPZDMMT-UHFFFAOYSA-N 0.000 description 1
- FFEARJCKVFRZRR-UHFFFAOYSA-N L-Methionine Natural products CSCCC(N)C(O)=O FFEARJCKVFRZRR-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ZGUNAGUHMKGQNY-ZETCQYMHSA-N L-alpha-phenylglycine zwitterion Chemical compound OC(=O)[C@@H](N)C1=CC=CC=C1 ZGUNAGUHMKGQNY-ZETCQYMHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 1
- 229930064664 L-arginine Natural products 0.000 description 1
- 235000014852 L-arginine Nutrition 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- QUOGESRFPZDMMT-YFKPBYRVSA-N L-homoarginine Chemical compound OC(=O)[C@@H](N)CCCCNC(N)=N QUOGESRFPZDMMT-YFKPBYRVSA-N 0.000 description 1
- FFFHZYDWPBMWHY-VKHMYHEASA-N L-homocysteine Chemical compound OC(=O)[C@@H](N)CCS FFFHZYDWPBMWHY-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- 229930182844 L-isoleucine Natural products 0.000 description 1
- 239000004395 L-leucine Substances 0.000 description 1
- 235000019454 L-leucine Nutrition 0.000 description 1
- 229930195722 L-methionine Natural products 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- 229930182821 L-proline Natural products 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 1
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 1
- 101150046318 LOX2 gene Proteins 0.000 description 1
- XAGMUUZPGZWTRP-ZETCQYMHSA-N LSM-5745 Chemical compound C([C@@H](N1C2=C(C(C(C(O)=O)=C1)=O)C=C1F)C)OC2=C1C1(N)CC1 XAGMUUZPGZWTRP-ZETCQYMHSA-N 0.000 description 1
- 108010063045 Lactoferrin Proteins 0.000 description 1
- 102000010445 Lactoferrin Human genes 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- IEMDOFXTVAPVLX-YWQHLDGFSA-N Leucomycin A1 Chemical compound CO[C@H]1[C@H](O)CC(=O)O[C@H](C)C\C=C\C=C\[C@H](O)[C@H](C)C[C@H](CC=O)[C@@H]1O[C@H]1[C@H](O)[C@@H](N(C)C)[C@H](O[C@@H]2O[C@@H](C)[C@H](OC(=O)CC(C)C)[C@](C)(O)C2)[C@@H](C)O1 IEMDOFXTVAPVLX-YWQHLDGFSA-N 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- HLFSDGLLUJUHTE-SNVBAGLBSA-N Levamisole Chemical compound C1([C@H]2CN3CCSC3=N2)=CC=CC=C1 HLFSDGLLUJUHTE-SNVBAGLBSA-N 0.000 description 1
- GSDSWSVVBLHKDQ-JTQLQIEISA-N Levofloxacin Chemical compound C([C@@H](N1C2=C(C(C(C(O)=O)=C1)=O)C=C1F)C)OC2=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-JTQLQIEISA-N 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 1
- 108010092217 Long-Acting Insulin Chemical class 0.000 description 1
- 102000016261 Long-Acting Insulin Human genes 0.000 description 1
- 229940100066 Long-acting insulin Drugs 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 102000009151 Luteinizing Hormone Human genes 0.000 description 1
- 108010073521 Luteinizing Hormone Proteins 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 208000015439 Lysosomal storage disease Diseases 0.000 description 1
- 239000007987 MES buffer Substances 0.000 description 1
- 241000282567 Macaca fascicularis Species 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 1
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 1
- 201000011442 Metachromatic leukodystrophy Diseases 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-M Methanesulfonate Chemical compound CS([O-])(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-M 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- DMUAPQTXSSNEDD-QALJCMCCSA-N Midecamycin Chemical compound C1[C@](O)(C)[C@@H](OC(=O)CC)[C@H](C)O[C@H]1O[C@H]1[C@H](N(C)C)[C@@H](O)[C@H](O[C@@H]2[C@H]([C@H](OC(=O)CC)CC(=O)O[C@H](C)C/C=C/C=C/[C@H](O)[C@H](C)C[C@@H]2CC=O)OC)O[C@@H]1C DMUAPQTXSSNEDD-QALJCMCCSA-N 0.000 description 1
- 206010049567 Miller Fisher syndrome Diseases 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 206010072929 Mucolipidosis type III Diseases 0.000 description 1
- 208000002678 Mucopolysaccharidoses Diseases 0.000 description 1
- 206010056893 Mucopolysaccharidosis VII Diseases 0.000 description 1
- 208000000149 Multiple Sulfatase Deficiency Disease Diseases 0.000 description 1
- 208000035032 Multiple sulfatase deficiency Diseases 0.000 description 1
- 101100343701 Mus musculus Loxl1 gene Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 1
- PQNASZJZHFPQLE-LURJTMIESA-N N(6)-methyl-L-lysine Chemical compound CNCCCC[C@H](N)C(O)=O PQNASZJZHFPQLE-LURJTMIESA-N 0.000 description 1
- JDHILDINMRGULE-LURJTMIESA-N N(pros)-methyl-L-histidine Chemical compound CN1C=NC=C1C[C@H](N)C(O)=O JDHILDINMRGULE-LURJTMIESA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- 101710099863 N-acetylgalactosamine-6-sulfatase Proteins 0.000 description 1
- 102100031688 N-acetylgalactosamine-6-sulfatase Human genes 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- JAUOIFJMECXRGI-UHFFFAOYSA-N Neoclaritin Chemical compound C=1C(Cl)=CC=C2C=1CCC1=CC=CN=C1C2=C1CCNCC1 JAUOIFJMECXRGI-UHFFFAOYSA-N 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000002537 Neuronal Ceroid-Lipofuscinoses Diseases 0.000 description 1
- 208000014060 Niemann-Pick disease Diseases 0.000 description 1
- 108091060545 Nonsense suppressor Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 230000004989 O-glycosylation Effects 0.000 description 1
- GEYBMYRBIABFTA-VIFPVBQESA-N O-methyl-L-tyrosine Chemical compound COC1=CC=C(C[C@H](N)C(O)=O)C=C1 GEYBMYRBIABFTA-VIFPVBQESA-N 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 239000004104 Oleandomycin Substances 0.000 description 1
- RZPAKFUAFGMUPI-UHFFFAOYSA-N Oleandomycin Natural products O1C(C)C(O)C(OC)CC1OC1C(C)C(=O)OC(C)C(C)C(O)C(C)C(=O)C2(OC2)CC(C)C(OC2C(C(CC(C)O2)N(C)C)O)C1C RZPAKFUAFGMUPI-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 108010035042 Osteoprotegerin Proteins 0.000 description 1
- 102000008108 Osteoprotegerin Human genes 0.000 description 1
- 101710160107 Outer membrane protein A Proteins 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 108091006006 PEGylated Proteins Proteins 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 201000011152 Pemphigus Diseases 0.000 description 1
- 229930195708 Penicillin V Natural products 0.000 description 1
- 108010087702 Penicillinase Proteins 0.000 description 1
- 108010043958 Peptoids Proteins 0.000 description 1
- 208000031845 Pernicious anaemia Diseases 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-OUBTZVSYSA-N Phosphorus-32 Chemical compound [32P] OAICVXFJPJFONN-OUBTZVSYSA-N 0.000 description 1
- 108010001014 Plasminogen Activators Proteins 0.000 description 1
- 102000001938 Plasminogen Activators Human genes 0.000 description 1
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 1
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 1
- 102100040990 Platelet-derived growth factor subunit B Human genes 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 102100025067 Potassium voltage-gated channel subfamily H member 4 Human genes 0.000 description 1
- 101710163352 Potassium voltage-gated channel subfamily H member 4 Proteins 0.000 description 1
- 208000012654 Primary biliary cholangitis Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102100033237 Pro-epidermal growth factor Human genes 0.000 description 1
- 102100033762 Proheparin-binding EGF-like growth factor Human genes 0.000 description 1
- 108010076181 Proinsulin Proteins 0.000 description 1
- 108010057464 Prolactin Proteins 0.000 description 1
- 102000003946 Prolactin Human genes 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 102100038239 Protein Churchill Human genes 0.000 description 1
- PWNMXPDKBYZCOO-UHFFFAOYSA-N Prulifloxacin Chemical compound C1=C2N3C(C)SC3=C(C(O)=O)C(=O)C2=CC(F)=C1N(CC1)CCN1CC=1OC(=O)OC=1C PWNMXPDKBYZCOO-UHFFFAOYSA-N 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 241000725643 Respiratory syncytial virus Species 0.000 description 1
- XSVMFMHYUFZWBK-NSHDSACASA-N Rivastigmine Chemical compound CCN(C)C(=O)OC1=CC=CC([C@H](C)N(C)C)=C1 XSVMFMHYUFZWBK-NSHDSACASA-N 0.000 description 1
- VYWWNRMSAPEJLS-MDWYKHENSA-N Rokitamycin Chemical compound C1[C@](OC(=O)CC)(C)[C@@H](OC(=O)CCC)[C@H](C)O[C@H]1O[C@H]1[C@H](N(C)C)[C@@H](O)[C@H](O[C@@H]2[C@H]([C@H](O)CC(=O)O[C@H](C)C/C=C/C=C/[C@H](O)[C@H](C)C[C@@H]2CC=O)OC)O[C@@H]1C VYWWNRMSAPEJLS-MDWYKHENSA-N 0.000 description 1
- 208000013608 Salla disease Diseases 0.000 description 1
- 208000021811 Sandhoff disease Diseases 0.000 description 1
- 201000002883 Scheie syndrome Diseases 0.000 description 1
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical group 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- GIIZNNXWQWCKIB-UHFFFAOYSA-N Serevent Chemical compound C1=C(O)C(CO)=CC(C(O)CNCCCCCCOCCCCC=2C=CC=CC=2)=C1 GIIZNNXWQWCKIB-UHFFFAOYSA-N 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 208000000828 Sialic Acid Storage Disease Diseases 0.000 description 1
- 208000017460 Sialidosis type 2 Diseases 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 201000001828 Sly syndrome Diseases 0.000 description 1
- 239000004187 Spiramycin Substances 0.000 description 1
- 208000006045 Spondylarthropathies Diseases 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 108010023197 Streptokinase Proteins 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 201000009594 Systemic Scleroderma Diseases 0.000 description 1
- 206010042953 Systemic sclerosis Diseases 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- CYQFCXCEBYINGO-UHFFFAOYSA-N THC Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3C21 CYQFCXCEBYINGO-UHFFFAOYSA-N 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- NAVMQTYZDKMPEU-UHFFFAOYSA-N Targretin Chemical compound CC1=CC(C(CCC2(C)C)(C)C)=C2C=C1C(=C)C1=CC=C(C(O)=O)C=C1 NAVMQTYZDKMPEU-UHFFFAOYSA-N 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- GKLVYJBZJHMRIY-OUBTZVSYSA-N Technetium-99 Chemical compound [99Tc] GKLVYJBZJHMRIY-OUBTZVSYSA-N 0.000 description 1
- 108010053950 Teicoplanin Proteins 0.000 description 1
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 1
- 108010049264 Teriparatide Proteins 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- YPWFISCTZQNZAU-UHFFFAOYSA-N Thiane Chemical compound C1CCSCC1 YPWFISCTZQNZAU-UHFFFAOYSA-N 0.000 description 1
- WKDDRNSBRWANNC-UHFFFAOYSA-N Thienamycin Natural products C1C(SCCN)=C(C(O)=O)N2C(=O)C(C(O)C)C21 WKDDRNSBRWANNC-UHFFFAOYSA-N 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- 241001061127 Thione Species 0.000 description 1
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 208000031981 Thrombocytopenic Idiopathic Purpura Diseases 0.000 description 1
- 108010046075 Thymosin Proteins 0.000 description 1
- 102000007501 Thymosin Human genes 0.000 description 1
- UGPMCIBIHRSCBV-XNBOLLIBSA-N Thymosin beta 4 Chemical compound N([C@@H](CC(O)=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O)C(=O)[C@@H]1CCCN1C(=O)[C@H](CCCCN)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(C)=O UGPMCIBIHRSCBV-XNBOLLIBSA-N 0.000 description 1
- 102100035000 Thymosin beta-4 Human genes 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 108010061174 Thyrotropin Proteins 0.000 description 1
- 102000011923 Thyrotropin Human genes 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- IVTVGDXNLFLDRM-HNNXBMFYSA-N Tomudex Chemical compound C=1C=C2NC(C)=NC(=O)C2=CC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)S1 IVTVGDXNLFLDRM-HNNXBMFYSA-N 0.000 description 1
- KJADKKWYZYXHBB-XBWDGYHZSA-N Topiramic acid Chemical compound C1O[C@@]2(COS(N)(=O)=O)OC(C)(C)O[C@H]2[C@@H]2OC(C)(C)O[C@@H]21 KJADKKWYZYXHBB-XBWDGYHZSA-N 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 108700002109 Transmembrane Activator and CAML Interactor Proteins 0.000 description 1
- 102000050862 Transmembrane Activator and CAML Interactor Human genes 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 108700001567 Type I Schindler Disease Proteins 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- HDOVUKNUBWVHOX-QMMMGPOBSA-N Valacyclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCOC(=O)[C@@H](N)C(C)C)C=N2 HDOVUKNUBWVHOX-QMMMGPOBSA-N 0.000 description 1
- WPVFJKSGQUFQAP-GKAPJAKFSA-N Valcyte Chemical compound N1C(N)=NC(=O)C2=C1N(COC(CO)COC(=O)[C@@H](N)C(C)C)C=N2 WPVFJKSGQUFQAP-GKAPJAKFSA-N 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- SECKRCOLJRRGGV-UHFFFAOYSA-N Vardenafil Chemical compound CCCC1=NC(C)=C(C(N=2)=O)N1NC=2C(C(=CC=1)OCC)=CC=1S(=O)(=O)N1CCN(CC)CC1 SECKRCOLJRRGGV-UHFFFAOYSA-N 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 206010047112 Vasculitides Diseases 0.000 description 1
- 206010047115 Vasculitis Diseases 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 206010047642 Vitiligo Diseases 0.000 description 1
- 208000000208 Wet Macular Degeneration Diseases 0.000 description 1
- 208000026589 Wolman disease Diseases 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- PNDPGZBMCMUPRI-XXSWNUTMSA-N [125I][125I] Chemical compound [125I][125I] PNDPGZBMCMUPRI-XXSWNUTMSA-N 0.000 description 1
- MKFFGUZYVNDHIH-UHFFFAOYSA-N [2-(3,5-dihydroxyphenyl)-2-hydroxyethyl]-propan-2-ylazanium;sulfate Chemical compound OS(O)(=O)=O.CC(C)NCC(O)C1=CC(O)=CC(O)=C1.CC(C)NCC(O)C1=CC(O)=CC(O)=C1 MKFFGUZYVNDHIH-UHFFFAOYSA-N 0.000 description 1
- SZPWXAOBLNYOHY-UHFFFAOYSA-N [C]1=CC=NC2=CC=CC=C12 Chemical group [C]1=CC=NC2=CC=CC=C12 SZPWXAOBLNYOHY-UHFFFAOYSA-N 0.000 description 1
- AIWRTTMUVOZGPW-HSPKUQOVSA-N abarelix Chemical compound C([C@@H](C(=O)N[C@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCNC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@H](C)C(N)=O)N(C)C(=O)[C@H](CO)NC(=O)[C@@H](CC=1C=NC=CC=1)NC(=O)[C@@H](CC=1C=CC(Cl)=CC=1)NC(=O)[C@@H](CC=1C=C2C=CC=CC2=CC=1)NC(C)=O)C1=CC=C(O)C=C1 AIWRTTMUVOZGPW-HSPKUQOVSA-N 0.000 description 1
- 108010023617 abarelix Proteins 0.000 description 1
- 229960002184 abarelix Drugs 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 125000004036 acetal group Chemical group 0.000 description 1
- YQNQNVDNTFHQSW-UHFFFAOYSA-N acetic acid [2-[[(5-nitro-2-thiazolyl)amino]-oxomethyl]phenyl] ester Chemical compound CC(=O)OC1=CC=CC=C1C(=O)NC1=NC=C([N+]([O-])=O)S1 YQNQNVDNTFHQSW-UHFFFAOYSA-N 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 229960001997 adefovir Drugs 0.000 description 1
- WOZSCQDILHKSGG-UHFFFAOYSA-N adefovir depivoxil Chemical compound N1=CN=C2N(CCOCP(=O)(OCOC(=O)C(C)(C)C)OCOC(=O)C(C)(C)C)C=NC2=C1N WOZSCQDILHKSGG-UHFFFAOYSA-N 0.000 description 1
- 229960003227 afelimomab Drugs 0.000 description 1
- 108010056760 agalsidase beta Proteins 0.000 description 1
- 229960004470 agalsidase beta Drugs 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 230000008484 agonism Effects 0.000 description 1
- UUZPPAMZDFLUHD-VUJLHGSVSA-N alatrofloxacin Chemical compound C([C@@H]1[C@H]([C@@H]1C1)NC(=O)[C@H](C)NC(=O)[C@@H](N)C)N1C(C(=CC=1C(=O)C(C(O)=O)=C2)F)=NC=1N2C1=CC=C(F)C=C1F UUZPPAMZDFLUHD-VUJLHGSVSA-N 0.000 description 1
- 229960000919 alatrofloxacin Drugs 0.000 description 1
- BNPSSFBOAGDEEL-UHFFFAOYSA-N albuterol sulfate Chemical compound OS(O)(=O)=O.CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1.CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 BNPSSFBOAGDEEL-UHFFFAOYSA-N 0.000 description 1
- 229940057282 albuterol sulfate Drugs 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- HAXFWIACAGNFHA-UHFFFAOYSA-N aldrithiol Chemical compound C=1C=CC=NC=1SSC1=CC=CC=N1 HAXFWIACAGNFHA-UHFFFAOYSA-N 0.000 description 1
- WNMJYKCGWZFFKR-UHFFFAOYSA-N alfuzosin Chemical compound N=1C(N)=C2C=C(OC)C(OC)=CC2=NC=1N(C)CCCNC(=O)C1CCCO1 WNMJYKCGWZFFKR-UHFFFAOYSA-N 0.000 description 1
- 229960004607 alfuzosin Drugs 0.000 description 1
- 108010060162 alglucerase Proteins 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 150000001356 alkyl thiols Chemical class 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- 229960003550 alosetron Drugs 0.000 description 1
- FLZQKRKHLSUHOR-UHFFFAOYSA-N alosetron Chemical compound CC1=NC=N[C]1CN1C(=O)C(C=2C(=CC=CC=2)N2C)=C2CC1 FLZQKRKHLSUHOR-UHFFFAOYSA-N 0.000 description 1
- 229940024142 alpha 1-antitrypsin Drugs 0.000 description 1
- 102000018568 alpha-Defensin Human genes 0.000 description 1
- 108010028144 alpha-Glucosidases Proteins 0.000 description 1
- 108050007802 alpha-defensin Proteins 0.000 description 1
- 201000008333 alpha-mannosidosis Diseases 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 229960004538 alprazolam Drugs 0.000 description 1
- 229950005846 amdoxovir Drugs 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 229950009484 amifloxacin Drugs 0.000 description 1
- 229960004821 amikacin Drugs 0.000 description 1
- LKCWBDHBTVXHDL-RMDFUYIESA-N amikacin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O1)O)NC(=O)[C@@H](O)CCN)[C@H]1O[C@H](CN)[C@@H](O)[C@H](O)[C@H]1O LKCWBDHBTVXHDL-RMDFUYIESA-N 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 229940124277 aminobutyric acid Drugs 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 1
- 229960003437 aminoglutethimide Drugs 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 125000004202 aminomethyl group Chemical group [H]N([H])C([H])([H])* 0.000 description 1
- 229960005260 amiodarone Drugs 0.000 description 1
- HTIQEAQVCYTUBX-UHFFFAOYSA-N amlodipine Chemical compound CCOC(=O)C1=C(COCCN)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1Cl HTIQEAQVCYTUBX-UHFFFAOYSA-N 0.000 description 1
- 229960000528 amlodipine Drugs 0.000 description 1
- 229960003022 amoxicillin Drugs 0.000 description 1
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 description 1
- 229960001220 amsacrine Drugs 0.000 description 1
- 229960001694 anagrelide Drugs 0.000 description 1
- OTBXOEAOVRKTNQ-UHFFFAOYSA-N anagrelide Chemical compound N1=C2NC(=O)CN2CC2=C(Cl)C(Cl)=CC=C21 OTBXOEAOVRKTNQ-UHFFFAOYSA-N 0.000 description 1
- 229960004238 anakinra Drugs 0.000 description 1
- 230000036783 anaphylactic response Effects 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 description 1
- 229960002932 anastrozole Drugs 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000002391 anti-complement effect Effects 0.000 description 1
- 230000003302 anti-idiotype Effects 0.000 description 1
- 230000000244 anti-pseudomonal effect Effects 0.000 description 1
- 239000000611 antibody drug conjugate Substances 0.000 description 1
- 230000009833 antibody interaction Effects 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 229940049595 antibody-drug conjugate Drugs 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 108010008730 anticomplement Proteins 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 201000011165 anus cancer Diseases 0.000 description 1
- 208000021780 appendiceal neoplasm Diseases 0.000 description 1
- ATALOFNDEOCMKK-OITMNORJSA-N aprepitant Chemical compound O([C@@H]([C@@H]1C=2C=CC(F)=CC=2)O[C@H](C)C=2C=C(C=C(C=2)C(F)(F)F)C(F)(F)F)CCN1CC1=NNC(=O)N1 ATALOFNDEOCMKK-OITMNORJSA-N 0.000 description 1
- 229960001372 aprepitant Drugs 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009697 arginine Nutrition 0.000 description 1
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 1
- 229960004372 aripiprazole Drugs 0.000 description 1
- 125000005228 aryl sulfonate group Chemical group 0.000 description 1
- 229960003272 asparaginase Drugs 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- RYXHOMYVWAEKHL-UHFFFAOYSA-N astatine atom Chemical compound [At] RYXHOMYVWAEKHL-UHFFFAOYSA-N 0.000 description 1
- AXRYRYVKAWYZBR-GASGPIRDSA-N atazanavir Chemical compound C([C@H](NC(=O)[C@@H](NC(=O)OC)C(C)(C)C)[C@@H](O)CN(CC=1C=CC(=CC=1)C=1N=CC=CC=1)NC(=O)[C@@H](NC(=O)OC)C(C)(C)C)C1=CC=CC=C1 AXRYRYVKAWYZBR-GASGPIRDSA-N 0.000 description 1
- 229960003277 atazanavir Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229960002430 atomoxetine Drugs 0.000 description 1
- LUCXVPAZUDVVBT-UNTBIKODSA-N atomoxetine hydrochloride Chemical compound Cl.O([C@H](CCNC)C=1C=CC=CC=1)C1=CC=CC=C1C LUCXVPAZUDVVBT-UNTBIKODSA-N 0.000 description 1
- 229960005370 atorvastatin Drugs 0.000 description 1
- 229940090047 auto-injector Drugs 0.000 description 1
- 201000000448 autoimmune hemolytic anemia Diseases 0.000 description 1
- 229940003504 avonex Drugs 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- 229960004099 azithromycin Drugs 0.000 description 1
- MQTOSJVFKKJCRP-BICOPXKESA-N azithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)N(C)C[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 MQTOSJVFKKJCRP-BICOPXKESA-N 0.000 description 1
- JTWOMNBEOCYFNV-NFFDBFGFSA-N azlocillin Chemical compound N([C@@H](C(=O)N[C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C=1C=CC=CC=1)C(=O)N1CCNC1=O JTWOMNBEOCYFNV-NFFDBFGFSA-N 0.000 description 1
- 229960003623 azlocillin Drugs 0.000 description 1
- 125000000751 azo group Chemical class [*]N=N[*] 0.000 description 1
- 229960003644 aztreonam Drugs 0.000 description 1
- 229960003071 bacitracin Drugs 0.000 description 1
- 229930184125 bacitracin Natural products 0.000 description 1
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229960004669 basiliximab Drugs 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- HYNPZTKLUNHGPM-KKERQHFVSA-N becaplermin Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](Cc2cnc[nH]2)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(=N)N)C(=O)N3CCC[C@H]3C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)O)NC(=O)[C@@H]4CCCN4C(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](C(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](C(C)C)NC(=O)[C@@H]5CCCN5C(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H]6CCCN6C(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CS)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CS)NC(=O)[C@H](CS)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CS)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@@H]7CCCN7C(=O)[C@H](Cc8c[nH]c9c8cccc9)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](C)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CO)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CS)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CCSC)NC(=O)[C@H](C)NC(=O)[C@@H]1CCCN1C(=O)[C@H](CCC(=O)O)NC(=O)[C@H](C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)N HYNPZTKLUNHGPM-KKERQHFVSA-N 0.000 description 1
- 229960004787 becaplermin Drugs 0.000 description 1
- 229940092705 beclomethasone Drugs 0.000 description 1
- NBMKJKDGKREAPL-DVTGEIKXSA-N beclomethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O NBMKJKDGKREAPL-DVTGEIKXSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 125000004619 benzopyranyl group Chemical group O1C(C=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004600 benzothiopyranyl group Chemical group S1C(C=CC2=C1C=CC=C2)* 0.000 description 1
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 1
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 229950010015 bertilimumab Drugs 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 108050002883 beta-defensin Proteins 0.000 description 1
- 102000012265 beta-defensin Human genes 0.000 description 1
- 229960000397 bevacizumab Drugs 0.000 description 1
- 229960002938 bexarotene Drugs 0.000 description 1
- 229960000997 bicalutamide Drugs 0.000 description 1
- 229950001303 biciromab Drugs 0.000 description 1
- 208000026900 bile duct neoplasm Diseases 0.000 description 1
- 230000009141 biological interaction Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 239000003114 blood coagulation factor Substances 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 229960001467 bortezomib Drugs 0.000 description 1
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 1
- 150000003842 bromide salts Chemical class 0.000 description 1
- 229960002719 buserelin Drugs 0.000 description 1
- CUWODFFVMXJOKD-UVLQAERKSA-N buserelin Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](COC(C)(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 CUWODFFVMXJOKD-UVLQAERKSA-N 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- GRADOOOISCPIDG-UHFFFAOYSA-N buta-1,3-diyne Chemical group [C]#CC#C GRADOOOISCPIDG-UHFFFAOYSA-N 0.000 description 1
- 125000005569 butenylene group Chemical group 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229960004596 cabergoline Drugs 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- 229960004602 capreomycin Drugs 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229940041011 carbapenems Drugs 0.000 description 1
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 1
- 229960003669 carbenicillin Drugs 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- SKOLWUPSYHWYAM-UHFFFAOYSA-N carbonodithioic O,S-acid Chemical compound SC(S)=O SKOLWUPSYHWYAM-UHFFFAOYSA-N 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 125000004181 carboxyalkyl group Chemical group 0.000 description 1
- 125000005352 carboxycycloalkyl group Chemical group 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- RRYMAQUWDLIUPV-BXKDBHETSA-N cefacetrile Chemical compound S1CC(COC(=O)C)=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CC#N)[C@@H]12 RRYMAQUWDLIUPV-BXKDBHETSA-N 0.000 description 1
- 229960003972 cefacetrile Drugs 0.000 description 1
- QYIYFLOTGYLRGG-GPCCPHFNSA-N cefaclor Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CS[C@@H]32)C(O)=O)=O)N)=CC=CC=C1 QYIYFLOTGYLRGG-GPCCPHFNSA-N 0.000 description 1
- 229960005361 cefaclor Drugs 0.000 description 1
- 229960004841 cefadroxil Drugs 0.000 description 1
- NBFNMSULHIODTC-CYJZLJNKSA-N cefadroxil monohydrate Chemical compound O.C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=C(O)C=C1 NBFNMSULHIODTC-CYJZLJNKSA-N 0.000 description 1
- FUBBGQLTSCSAON-PBFPGSCMSA-N cefaloglycin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)COC(=O)C)C(O)=O)=CC=CC=C1 FUBBGQLTSCSAON-PBFPGSCMSA-N 0.000 description 1
- 229950004030 cefaloglycin Drugs 0.000 description 1
- CZTQZXZIADLWOZ-CRAIPNDOSA-N cefaloridine Chemical compound O=C([C@@H](NC(=O)CC=1SC=CC=1)[C@H]1SC2)N1C(C(=O)[O-])=C2C[N+]1=CC=CC=C1 CZTQZXZIADLWOZ-CRAIPNDOSA-N 0.000 description 1
- 229960003866 cefaloridine Drugs 0.000 description 1
- 229960000603 cefalotin Drugs 0.000 description 1
- XIURVHNZVLADCM-IUODEOHRSA-N cefalotin Chemical compound N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC(=O)C)C(O)=O)C(=O)CC1=CC=CS1 XIURVHNZVLADCM-IUODEOHRSA-N 0.000 description 1
- 229960003012 cefamandole Drugs 0.000 description 1
- OLVCFLKTBJRLHI-AXAPSJFSSA-N cefamandole Chemical compound CN1N=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)[C@H](O)C=3C=CC=CC=3)[C@H]2SC1 OLVCFLKTBJRLHI-AXAPSJFSSA-N 0.000 description 1
- 229960004350 cefapirin Drugs 0.000 description 1
- UOCJDOLVGGIYIQ-PBFPGSCMSA-N cefatrizine Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)[C@H](N)C=2C=CC(O)=CC=2)CC=1CSC=1C=NNN=1 UOCJDOLVGGIYIQ-PBFPGSCMSA-N 0.000 description 1
- 229960002420 cefatrizine Drugs 0.000 description 1
- 229960001139 cefazolin Drugs 0.000 description 1
- MLYYVTUWGNIJIB-BXKDBHETSA-N cefazolin Chemical compound S1C(C)=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CN3N=NN=C3)[C@H]2SC1 MLYYVTUWGNIJIB-BXKDBHETSA-N 0.000 description 1
- 229960002100 cefepime Drugs 0.000 description 1
- 229960002129 cefixime Drugs 0.000 description 1
- OKBVVJOGVLARMR-QSWIMTSFSA-N cefixime Chemical compound S1C(N)=NC(C(=N\OCC(O)=O)\C(=O)N[C@@H]2C(N3C(=C(C=C)CS[C@@H]32)C(O)=O)=O)=C1 OKBVVJOGVLARMR-QSWIMTSFSA-N 0.000 description 1
- SNBUBQHDYVFSQF-HIFRSBDPSA-N cefmetazole Chemical compound S([C@@H]1[C@@](C(N1C=1C(O)=O)=O)(NC(=O)CSCC#N)OC)CC=1CSC1=NN=NN1C SNBUBQHDYVFSQF-HIFRSBDPSA-N 0.000 description 1
- 229960003585 cefmetazole Drugs 0.000 description 1
- 229960004489 cefonicid Drugs 0.000 description 1
- DYAIAHUQIPBDIP-AXAPSJFSSA-N cefonicid Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)[C@H](O)C=2C=CC=CC=2)CC=1CSC1=NN=NN1CS(O)(=O)=O DYAIAHUQIPBDIP-AXAPSJFSSA-N 0.000 description 1
- 229960004682 cefoperazone Drugs 0.000 description 1
- GCFBRXLSHGKWDP-XCGNWRKASA-N cefoperazone Chemical compound O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC(O)=CC=1)C(=O)N[C@@H]1C(=O)N2C(C(O)=O)=C(CSC=3N(N=NN=3)C)CS[C@@H]21 GCFBRXLSHGKWDP-XCGNWRKASA-N 0.000 description 1
- SLAYUXIURFNXPG-CRAIPNDOSA-N ceforanide Chemical compound NCC1=CC=CC=C1CC(=O)N[C@@H]1C(=O)N2C(C(O)=O)=C(CSC=3N(N=NN=3)CC(O)=O)CS[C@@H]21 SLAYUXIURFNXPG-CRAIPNDOSA-N 0.000 description 1
- 229960004292 ceforanide Drugs 0.000 description 1
- 229960004261 cefotaxime Drugs 0.000 description 1
- GPRBEKHLDVQUJE-VINNURBNSA-N cefotaxime Chemical compound N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C(O)=O)=O)C(=O)/C(=N/OC)C1=CSC(N)=N1 GPRBEKHLDVQUJE-VINNURBNSA-N 0.000 description 1
- SRZNHPXWXCNNDU-RHBCBLIFSA-N cefotetan Chemical compound N([C@]1(OC)C(N2C(=C(CSC=3N(N=NN=3)C)CS[C@@H]21)C(O)=O)=O)C(=O)C1SC(=C(C(N)=O)C(O)=O)S1 SRZNHPXWXCNNDU-RHBCBLIFSA-N 0.000 description 1
- 229960005495 cefotetan Drugs 0.000 description 1
- WZOZEZRFJCJXNZ-ZBFHGGJFSA-N cefoxitin Chemical compound N([C@]1(OC)C(N2C(=C(COC(N)=O)CS[C@@H]21)C(O)=O)=O)C(=O)CC1=CC=CS1 WZOZEZRFJCJXNZ-ZBFHGGJFSA-N 0.000 description 1
- 229960002682 cefoxitin Drugs 0.000 description 1
- WYUSVOMTXWRGEK-HBWVYFAYSA-N cefpodoxime Chemical compound N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC)C(O)=O)C(=O)C(=N/OC)\C1=CSC(N)=N1 WYUSVOMTXWRGEK-HBWVYFAYSA-N 0.000 description 1
- 229960005090 cefpodoxime Drugs 0.000 description 1
- 229960002580 cefprozil Drugs 0.000 description 1
- 229960000484 ceftazidime Drugs 0.000 description 1
- 229960001991 ceftizoxime Drugs 0.000 description 1
- NNULBSISHYWZJU-LLKWHZGFSA-N ceftizoxime Chemical compound N([C@@H]1C(N2C(=CCS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 NNULBSISHYWZJU-LLKWHZGFSA-N 0.000 description 1
- 229960004755 ceftriaxone Drugs 0.000 description 1
- VAAUVRVFOQPIGI-SPQHTLEESA-N ceftriaxone Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1CSC1=NC(=O)C(=O)NN1C VAAUVRVFOQPIGI-SPQHTLEESA-N 0.000 description 1
- 229960001668 cefuroxime Drugs 0.000 description 1
- JFPVXVDWJQMJEE-IZRZKJBUSA-N cefuroxime Chemical compound N([C@@H]1C(N2C(=C(COC(N)=O)CS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CC=CO1 JFPVXVDWJQMJEE-IZRZKJBUSA-N 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 230000008568 cell cell communication Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 201000007455 central nervous system cancer Diseases 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- 229940049197 cerezyme Drugs 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- JUFFVKRROAPVBI-PVOYSMBESA-N chembl1210015 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(=O)N[C@H]1[C@@H]([C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO[C@]3(O[C@@H](C[C@H](O)[C@H](O)CO)[C@H](NC(C)=O)[C@@H](O)C3)C(O)=O)O2)O)[C@@H](CO)O1)NC(C)=O)C(=O)NCC(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 JUFFVKRROAPVBI-PVOYSMBESA-N 0.000 description 1
- DDPFHDCZUJFNAT-PZPWKVFESA-N chembl2104402 Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CCCCCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 DDPFHDCZUJFNAT-PZPWKVFESA-N 0.000 description 1
- DDTDNCYHLGRFBM-YZEKDTGTSA-N chembl2367892 Chemical compound CC(=O)N[C@H]1[C@@H](O)[C@H](O)[C@H](CO)O[C@H]1O[C@@H]([C@H]1C(N[C@@H](C2=CC(O)=CC(O[C@@H]3[C@H]([C@H](O)[C@H](O)[C@@H](CO)O3)O)=C2C=2C(O)=CC=C(C=2)[C@@H](NC(=O)[C@@H]2NC(=O)[C@@H]3C=4C=C(O)C=C(C=4)OC=4C(O)=CC=C(C=4)[C@@H](N)C(=O)N[C@H](CC=4C=C(Cl)C(O5)=CC=4)C(=O)N3)C(=O)N1)C(O)=O)=O)C(C=C1Cl)=CC=C1OC1=C(O[C@H]3[C@H]([C@@H](O)[C@H](O)[C@H](CO)O3)NC(C)=O)C5=CC2=C1 DDTDNCYHLGRFBM-YZEKDTGTSA-N 0.000 description 1
- UKTAZPQNNNJVKR-KJGYPYNMSA-N chembl2368925 Chemical compound C1=CC=C2C(C(O[C@@H]3C[C@@H]4C[C@H]5C[C@@H](N4CC5=O)C3)=O)=CNC2=C1 UKTAZPQNNNJVKR-KJGYPYNMSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 150000001805 chlorine compounds Chemical group 0.000 description 1
- 208000006990 cholangiocarcinoma Diseases 0.000 description 1
- 208000024042 cholesterol ester storage disease Diseases 0.000 description 1
- 208000013760 cholesteryl ester storage disease Diseases 0.000 description 1
- 229940015047 chorionic gonadotropin Drugs 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 208000020832 chronic kidney disease Diseases 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 229960002436 cladribine Drugs 0.000 description 1
- 229960002626 clarithromycin Drugs 0.000 description 1
- AGOYDEPGAOXOCK-KCBOHYOISA-N clarithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@](C)([C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)OC)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 AGOYDEPGAOXOCK-KCBOHYOISA-N 0.000 description 1
- 229950002334 clenoliximab Drugs 0.000 description 1
- QGPKADBNRMWEQR-UHFFFAOYSA-N clinafloxacin Chemical compound C1C(N)CCN1C1=C(F)C=C2C(=O)C(C(O)=O)=CN(C3CC3)C2=C1Cl QGPKADBNRMWEQR-UHFFFAOYSA-N 0.000 description 1
- 229950001320 clinafloxacin Drugs 0.000 description 1
- ACSIXWWBWUQEHA-UHFFFAOYSA-N clodronic acid Chemical compound OP(O)(=O)C(Cl)(Cl)P(O)(O)=O ACSIXWWBWUQEHA-UHFFFAOYSA-N 0.000 description 1
- 229960002286 clodronic acid Drugs 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 229960003326 cloxacillin Drugs 0.000 description 1
- LQOLIRLGBULYKD-JKIFEVAISA-N cloxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1Cl LQOLIRLGBULYKD-JKIFEVAISA-N 0.000 description 1
- 230000008045 co-localization Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229960003346 colistin Drugs 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 229940047120 colony stimulating factors Drugs 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-IGMARMGPSA-N copper-64 Chemical compound [64Cu] RYGMFSIKBFXOCR-IGMARMGPSA-N 0.000 description 1
- RYGMFSIKBFXOCR-AKLPVKDBSA-N copper-67 Chemical compound [67Cu] RYGMFSIKBFXOCR-AKLPVKDBSA-N 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 1
- 229960000258 corticotropin Drugs 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229960000265 cromoglicic acid Drugs 0.000 description 1
- IMZMKUWMOSJXDT-UHFFFAOYSA-N cromoglycic acid Chemical compound O1C(C(O)=O)=CC(=O)C2=C1C=CC=C2OCC(O)COC1=CC=CC2=C1C(=O)C=C(C(O)=O)O2 IMZMKUWMOSJXDT-UHFFFAOYSA-N 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 125000004976 cyclobutylene group Chemical group 0.000 description 1
- 125000004956 cyclohexylene group Chemical group 0.000 description 1
- 125000004978 cyclooctylene group Chemical group 0.000 description 1
- 125000004979 cyclopentylene group Chemical group 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 125000004980 cyclopropylene group Chemical group 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- 229960003843 cyproterone Drugs 0.000 description 1
- DUSHUSLJJMDGTE-ZJPMUUANSA-N cyproterone Chemical compound C1=C(Cl)C2=CC(=O)[C@@H]3C[C@@H]3[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2 DUSHUSLJJMDGTE-ZJPMUUANSA-N 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- NKLGIWNNVDPGCA-ZDYKNUMJSA-N davercin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@]2(OC(=O)O[C@@H]2[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)C)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 NKLGIWNNVDPGCA-ZDYKNUMJSA-N 0.000 description 1
- 229950010035 davercin Drugs 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 108010005905 delta-hGHR Proteins 0.000 description 1
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 1
- 108010017271 denileukin diftitox Proteins 0.000 description 1
- 229960002923 denileukin diftitox Drugs 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229960001271 desloratadine Drugs 0.000 description 1
- NFLWUMRGJYTJIN-NXBWRCJVSA-N desmopressin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSCCC(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(N)=O)=O)CCC(=O)N)C1=CC=CC=C1 NFLWUMRGJYTJIN-NXBWRCJVSA-N 0.000 description 1
- 229960004281 desmopressin Drugs 0.000 description 1
- WBGKWQHBNHJJPZ-LECWWXJVSA-N desonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O WBGKWQHBNHJJPZ-LECWWXJVSA-N 0.000 description 1
- 229960003662 desonide Drugs 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- VILAVOFMIJHSJA-UHFFFAOYSA-N dicarbon monoxide Chemical group [C]=C=O VILAVOFMIJHSJA-UHFFFAOYSA-N 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- YFAGHNZHGGCZAX-JKIFEVAISA-N dicloxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=C(Cl)C=CC=C1Cl YFAGHNZHGGCZAX-JKIFEVAISA-N 0.000 description 1
- 229960001585 dicloxacillin Drugs 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- RGLYKWWBQGJZGM-ISLYRVAYSA-N diethylstilbestrol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(\CC)C1=CC=C(O)C=C1 RGLYKWWBQGJZGM-ISLYRVAYSA-N 0.000 description 1
- 229960000452 diethylstilbestrol Drugs 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- HRKQOINLCJTGBK-UHFFFAOYSA-N dihydroxidosulfur Chemical class OSO HRKQOINLCJTGBK-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 229960004100 dirithromycin Drugs 0.000 description 1
- WLOHNSSYAXHWNR-NXPDYKKBSA-N dirithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H]2O[C@H](COCCOC)N[C@H]([C@@H]2C)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 WLOHNSSYAXHWNR-NXPDYKKBSA-N 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 150000004659 dithiocarbamates Chemical class 0.000 description 1
- 125000005022 dithioester group Chemical group 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 229960003413 dolasetron Drugs 0.000 description 1
- 229960003530 donepezil Drugs 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000012444 downstream purification process Methods 0.000 description 1
- 229960004242 dronabinol Drugs 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 208000011325 dry age related macular degeneration Diseases 0.000 description 1
- JWJOTENAMICLJG-QWBYCMEYSA-N dutasteride Chemical compound O=C([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)N[C@@H]4CC3)C)CC[C@@]21C)NC1=CC(C(F)(F)F)=CC=C1C(F)(F)F JWJOTENAMICLJG-QWBYCMEYSA-N 0.000 description 1
- 229960004199 dutasteride Drugs 0.000 description 1
- 229960002224 eculizumab Drugs 0.000 description 1
- 229960000284 efalizumab Drugs 0.000 description 1
- 108700032313 elcatonin Proteins 0.000 description 1
- 229960000756 elcatonin Drugs 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- KUBARPMUNHKBIQ-VTHUDJRQSA-N eliglustat tartrate Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.C([C@@H](NC(=O)CCCCCCC)[C@H](O)C=1C=C2OCCOC2=CC=1)N1CCCC1.C([C@@H](NC(=O)CCCCCCC)[C@H](O)C=1C=C2OCCOC2=CC=1)N1CCCC1 KUBARPMUNHKBIQ-VTHUDJRQSA-N 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 229960000366 emtricitabine Drugs 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 229960002062 enfuvirtide Drugs 0.000 description 1
- PEASPLKKXBYDKL-FXEVSJAOSA-N enfuvirtide Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(C)=O)[C@@H](C)O)[C@@H](C)CC)C1=CN=CN1 PEASPLKKXBYDKL-FXEVSJAOSA-N 0.000 description 1
- 229960002549 enoxacin Drugs 0.000 description 1
- IDYZIJYBMGIQMJ-UHFFFAOYSA-N enoxacin Chemical compound N1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 IDYZIJYBMGIQMJ-UHFFFAOYSA-N 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 229960001904 epirubicin Drugs 0.000 description 1
- 229960001208 eplerenone Drugs 0.000 description 1
- JUKPWJGBANNWMW-VWBFHTRKSA-N eplerenone Chemical compound C([C@@H]1[C@]2(C)C[C@H]3O[C@]33[C@@]4(C)CCC(=O)C=C4C[C@H]([C@@H]13)C(=O)OC)C[C@@]21CCC(=O)O1 JUKPWJGBANNWMW-VWBFHTRKSA-N 0.000 description 1
- 229950009760 epratuzumab Drugs 0.000 description 1
- 229960001903 ergotamine tartrate Drugs 0.000 description 1
- 229960002770 ertapenem Drugs 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 230000010437 erythropoiesis Effects 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- FRPJXPJMRWBBIH-RBRWEJTLSA-N estramustine Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 FRPJXPJMRWBBIH-RBRWEJTLSA-N 0.000 description 1
- 229960001842 estramustine Drugs 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 125000005677 ethinylene group Chemical group [*:2]C#C[*:1] 0.000 description 1
- 229960002568 ethinylestradiol Drugs 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- ZJXZSIYSNXKHEA-UHFFFAOYSA-N ethyl dihydrogen phosphate Chemical compound CCOP(O)(O)=O ZJXZSIYSNXKHEA-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 229960000255 exemestane Drugs 0.000 description 1
- 229960001519 exenatide Drugs 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000027948 extracellular matrix binding Effects 0.000 description 1
- 102000036444 extracellular matrix enzymes Human genes 0.000 description 1
- 108091007167 extracellular matrix enzymes Proteins 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- OLNTVTPDXPETLC-XPWALMASSA-N ezetimibe Chemical compound N1([C@@H]([C@H](C1=O)CC[C@H](O)C=1C=CC(F)=CC=1)C=1C=CC(O)=CC=1)C1=CC=C(F)C=C1 OLNTVTPDXPETLC-XPWALMASSA-N 0.000 description 1
- 229960000815 ezetimibe Drugs 0.000 description 1
- 229940012444 factor xiii Drugs 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229960002428 fentanyl Drugs 0.000 description 1
- IVLVTNPOHDFFCJ-UHFFFAOYSA-N fentanyl citrate Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C=1C=CC=CC=1N(C(=O)CC)C(CC1)CCN1CCC1=CC=CC=C1 IVLVTNPOHDFFCJ-UHFFFAOYSA-N 0.000 description 1
- RWTNPBWLLIMQHL-UHFFFAOYSA-N fexofenadine Chemical compound C1=CC(C(C)(C(O)=O)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 RWTNPBWLLIMQHL-UHFFFAOYSA-N 0.000 description 1
- 229960003592 fexofenadine Drugs 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 229960004177 filgrastim Drugs 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 229960003306 fleroxacin Drugs 0.000 description 1
- XBJBPGROQZJDOJ-UHFFFAOYSA-N fleroxacin Chemical compound C1CN(C)CCN1C1=C(F)C=C2C(=O)C(C(O)=O)=CN(CCF)C2=C1F XBJBPGROQZJDOJ-UHFFFAOYSA-N 0.000 description 1
- 229960004273 floxacillin Drugs 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- AAXVEMMRQDVLJB-BULBTXNYSA-N fludrocortisone Chemical compound O=C1CC[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 AAXVEMMRQDVLJB-BULBTXNYSA-N 0.000 description 1
- 229960002011 fludrocortisone Drugs 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229960000676 flunisolide Drugs 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- YCKRFDGAMUMZLT-BJUDXGSMSA-N fluorine-18 atom Chemical compound [18F] YCKRFDGAMUMZLT-BJUDXGSMSA-N 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 229940124307 fluoroquinolone Drugs 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- YLRFCQOZQXIBAB-RBZZARIASA-N fluoxymesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)C[C@@H]2O YLRFCQOZQXIBAB-RBZZARIASA-N 0.000 description 1
- 229960001751 fluoxymesterone Drugs 0.000 description 1
- 229960001398 flurithromycin Drugs 0.000 description 1
- XOEUHCONYHZURQ-HNUBZJOYSA-N flurithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@@](C)(F)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 XOEUHCONYHZURQ-HNUBZJOYSA-N 0.000 description 1
- 229960002714 fluticasone Drugs 0.000 description 1
- MGNNYOODZCAHBA-GQKYHHCASA-N fluticasone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCF)(O)[C@@]2(C)C[C@@H]1O MGNNYOODZCAHBA-GQKYHHCASA-N 0.000 description 1
- 229940014144 folate Drugs 0.000 description 1
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- VVIAGPKUTFNRDU-ABLWVSNPSA-N folinic acid Chemical compound C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-ABLWVSNPSA-N 0.000 description 1
- 235000008191 folinic acid Nutrition 0.000 description 1
- 239000011672 folinic acid Substances 0.000 description 1
- 108010081934 follitropin beta Proteins 0.000 description 1
- 229960002907 follitropin beta Drugs 0.000 description 1
- KANJSNBRCNMZMV-ABRZTLGGSA-N fondaparinux Chemical compound O[C@@H]1[C@@H](NS(O)(=O)=O)[C@@H](OC)O[C@H](COS(O)(=O)=O)[C@H]1O[C@H]1[C@H](OS(O)(=O)=O)[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O[C@@H]4[C@@H]([C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O4)NS(O)(=O)=O)[C@H](O3)C(O)=O)O)[C@@H](COS(O)(=O)=O)O2)NS(O)(=O)=O)[C@H](C(O)=O)O1 KANJSNBRCNMZMV-ABRZTLGGSA-N 0.000 description 1
- 229960001318 fondaparinux Drugs 0.000 description 1
- 229950004923 fontolizumab Drugs 0.000 description 1
- 150000003948 formamides Chemical class 0.000 description 1
- 229960002848 formoterol Drugs 0.000 description 1
- BPZSYCZIITTYBL-UHFFFAOYSA-N formoterol Chemical compound C1=CC(OC)=CC=C1CC(C)NCC(O)C1=CC=C(O)C(NC=O)=C1 BPZSYCZIITTYBL-UHFFFAOYSA-N 0.000 description 1
- MLBVMOWEQCZNCC-OEMFJLHTSA-N fosamprenavir Chemical compound C([C@@H]([C@H](OP(O)(O)=O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1COCC1)C1=CC=CC=C1 MLBVMOWEQCZNCC-OEMFJLHTSA-N 0.000 description 1
- 229960003142 fosamprenavir Drugs 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 201000008049 fucosidosis Diseases 0.000 description 1
- 229960002258 fulvestrant Drugs 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229960003980 galantamine Drugs 0.000 description 1
- ASUTZQLVASHGKV-UHFFFAOYSA-N galanthamine hydrochloride Natural products O1C(=C23)C(OC)=CC=C2CN(C)CCC23C1CC(O)C=C2 ASUTZQLVASHGKV-UHFFFAOYSA-N 0.000 description 1
- 201000010175 gallbladder cancer Diseases 0.000 description 1
- 229940006110 gallium-67 Drugs 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 229960003923 gatifloxacin Drugs 0.000 description 1
- 229950004792 gavilimomab Drugs 0.000 description 1
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 1
- 229960002584 gefitinib Drugs 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- 229960003170 gemifloxacin Drugs 0.000 description 1
- ZRCVYEYHRGVLOC-HYARGMPZSA-N gemifloxacin Chemical compound C1C(CN)C(=N/OC)/CN1C(C(=C1)F)=NC2=C1C(=O)C(C(O)=O)=CN2C1CC1 ZRCVYEYHRGVLOC-HYARGMPZSA-N 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229940074045 glyceryl distearate Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 201000008977 glycoproteinosis Diseases 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229960002913 goserelin Drugs 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229960004905 gramicidin Drugs 0.000 description 1
- ZWCXYZRRTRDGQE-SORVKSEFSA-N gramicidina Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](NC(=O)[C@H](C)NC(=O)CNC(=O)[C@@H](NC=O)C(C)C)CC(C)C)C(=O)NCCO)=CNC2=C1 ZWCXYZRRTRDGQE-SORVKSEFSA-N 0.000 description 1
- 229960003727 granisetron Drugs 0.000 description 1
- MFWNKCLOYSRHCJ-BTTYYORXSA-N granisetron Chemical compound C1=CC=C2C(C(=O)N[C@H]3C[C@H]4CCC[C@@H](C3)N4C)=NN(C)C2=C1 MFWNKCLOYSRHCJ-BTTYYORXSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229960000642 grepafloxacin Drugs 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 150000002373 hemiacetals Chemical class 0.000 description 1
- 108010038082 heparin proteoglycan Proteins 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- DXVUYOAEDJXBPY-NFFDBFGFSA-N hetacillin Chemical compound C1([C@@H]2C(=O)N(C(N2)(C)C)[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 DXVUYOAEDJXBPY-NFFDBFGFSA-N 0.000 description 1
- 229960003884 hetacillin Drugs 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229940006607 hirudin Drugs 0.000 description 1
- WQPDUTSPKFMPDP-OUMQNGNKSA-N hirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 WQPDUTSPKFMPDP-OUMQNGNKSA-N 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 229960002885 histidine Drugs 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- KJZYNXUDTRRSPN-OUBTZVSYSA-N holmium-166 Chemical compound [166Ho] KJZYNXUDTRRSPN-OUBTZVSYSA-N 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- WNRQPCUGRUFHED-DETKDSODSA-N humalog Chemical class C([C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CS)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CO)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CS)NC(=O)[C@H](CS)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(O)=O)C1=CC=C(O)C=C1.C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CS)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CS)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 WNRQPCUGRUFHED-DETKDSODSA-N 0.000 description 1
- 102000044890 human EPO Human genes 0.000 description 1
- 102000051957 human ERBB2 Human genes 0.000 description 1
- 102000057593 human F8 Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 229960000900 human factor viii Drugs 0.000 description 1
- 229940048921 humira Drugs 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- DCPMPXBYPZGNDC-UHFFFAOYSA-N hydron;methanediimine;chloride Chemical compound Cl.N=C=N DCPMPXBYPZGNDC-UHFFFAOYSA-N 0.000 description 1
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 229960001001 ibritumomab tiuxetan Drugs 0.000 description 1
- 229940016836 icodextrin Drugs 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 1
- 229960002411 imatinib Drugs 0.000 description 1
- 125000002632 imidazolidinyl group Chemical group 0.000 description 1
- 125000002636 imidazolinyl group Chemical group 0.000 description 1
- ZSKVGTPCRGIANV-ZXFLCMHBSA-N imipenem Chemical compound C1C(SCC\N=C\N)=C(C(O)=O)N2C(=O)[C@H]([C@H](O)C)[C@H]21 ZSKVGTPCRGIANV-ZXFLCMHBSA-N 0.000 description 1
- 229960002182 imipenem Drugs 0.000 description 1
- 239000003622 immobilized catalyst Substances 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- QNRXNRGSOJZINA-UHFFFAOYSA-N indoline-2-carboxylic acid Chemical compound C1=CC=C2NC(C(=O)O)CC2=C1 QNRXNRGSOJZINA-UHFFFAOYSA-N 0.000 description 1
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 229960003971 influenza vaccine Drugs 0.000 description 1
- 239000013033 iniferter Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 108091005434 innate immune receptors Proteins 0.000 description 1
- 229950007937 inolimomab Drugs 0.000 description 1
- 229960004717 insulin aspart Drugs 0.000 description 1
- 229960002869 insulin glargine Drugs 0.000 description 1
- 229960002068 insulin lispro Drugs 0.000 description 1
- 230000017730 intein-mediated protein splicing Effects 0.000 description 1
- 229950000038 interferon alfa Drugs 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 108010045648 interferon omega 1 Proteins 0.000 description 1
- 108700027921 interferon tau Proteins 0.000 description 1
- 239000003407 interleukin 1 receptor blocking agent Substances 0.000 description 1
- 229940117681 interleukin-12 Drugs 0.000 description 1
- 108010074108 interleukin-21 Proteins 0.000 description 1
- 229940076264 interleukin-3 Drugs 0.000 description 1
- 229940028885 interleukin-4 Drugs 0.000 description 1
- 229940100601 interleukin-6 Drugs 0.000 description 1
- 229940096397 interleukin-8 Drugs 0.000 description 1
- XKTZWUACRZHVAN-VADRZIEHSA-N interleukin-8 Chemical compound C([C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](NC(C)=O)CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCSC)C(=O)N1[C@H](CCC1)C(=O)N1[C@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC(O)=CC=1)C(=O)N[C@H](CO)C(=O)N1[C@H](CCC1)C(N)=O)C1=CC=CC=C1 XKTZWUACRZHVAN-VADRZIEHSA-N 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000010189 intracellular transport Effects 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- XMBWDFGMSWQBCA-OIOBTWANSA-N iodane Chemical compound [124IH] XMBWDFGMSWQBCA-OIOBTWANSA-N 0.000 description 1
- 229940044173 iodine-125 Drugs 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229960001361 ipratropium bromide Drugs 0.000 description 1
- KEWHKYJURDBRMN-ZEODDXGYSA-M ipratropium bromide hydrate Chemical compound O.[Br-].O([C@H]1C[C@H]2CC[C@@H](C1)[N@@+]2(C)C(C)C)C(=O)C(CO)C1=CC=CC=C1 KEWHKYJURDBRMN-ZEODDXGYSA-M 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- GURKHSYORGJETM-WAQYZQTGSA-N irinotecan hydrochloride (anhydrous) Chemical compound Cl.C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 GURKHSYORGJETM-WAQYZQTGSA-N 0.000 description 1
- 229950003514 irloxacin Drugs 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- RGXCTRIQQODGIZ-UHFFFAOYSA-O isodesmosine Chemical compound OC(=O)C(N)CCCC[N+]1=CC(CCC(N)C(O)=O)=CC(CCC(N)C(O)=O)=C1CCCC(N)C(O)=O RGXCTRIQQODGIZ-UHFFFAOYSA-O 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 229960005280 isotretinoin Drugs 0.000 description 1
- 229960004130 itraconazole Drugs 0.000 description 1
- QRYFGTULTGLGHU-NBERXCRTSA-N iturelix Chemical compound C([C@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCNC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@H](C)C(N)=O)NC(=O)[C@H](CCCCNC(=O)C=1C=NC=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](CC=1C=NC=CC=1)NC(=O)[C@@H](CC=1C=CC(Cl)=CC=1)NC(=O)[C@@H](CC=1C=C2C=CC=CC2=CC=1)NC(C)=O)CCCNC(=O)C1=CC=CN=C1 QRYFGTULTGLGHU-NBERXCRTSA-N 0.000 description 1
- 108010083551 iturelix Proteins 0.000 description 1
- 229960004144 josamycin Drugs 0.000 description 1
- XJSFLOJWULLJQS-NGVXBBESSA-N josamycin Chemical compound CO[C@H]1[C@H](OC(C)=O)CC(=O)O[C@H](C)C\C=C\C=C\[C@H](O)[C@H](C)C[C@H](CC=O)[C@@H]1O[C@H]1[C@H](O)[C@@H](N(C)C)[C@H](O[C@@H]2O[C@@H](C)[C@H](OC(=O)CC(C)C)[C@](C)(O)C2)[C@@H](C)O1 XJSFLOJWULLJQS-NGVXBBESSA-N 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 229950010828 keliximab Drugs 0.000 description 1
- BQINXKOTJQCISL-GRCPKETISA-N keto-neuraminic acid Chemical compound OC(=O)C(=O)C[C@H](O)[C@@H](N)[C@@H](O)[C@H](O)[C@H](O)CO BQINXKOTJQCISL-GRCPKETISA-N 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- HXEACLLIILLPRG-RXMQYKEDSA-N l-pipecolic acid Natural products OC(=O)[C@H]1CCCCN1 HXEACLLIILLPRG-RXMQYKEDSA-N 0.000 description 1
- 229950000518 labetuzumab Drugs 0.000 description 1
- 229940078795 lactoferrin Drugs 0.000 description 1
- 235000021242 lactoferrin Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 108010051044 lanoteplase Proteins 0.000 description 1
- 229950010645 lanoteplase Drugs 0.000 description 1
- SIXIIKVOZAGHPV-UHFFFAOYSA-N lansoprazole Chemical compound CC1=C(OCC(F)(F)F)C=CN=C1CS(=O)C1=NC2=CC=C[CH]C2=N1 SIXIIKVOZAGHPV-UHFFFAOYSA-N 0.000 description 1
- 229960003174 lansoprazole Drugs 0.000 description 1
- 229960000433 latamoxef Drugs 0.000 description 1
- 229950010470 lerdelimumab Drugs 0.000 description 1
- 229960003881 letrozole Drugs 0.000 description 1
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 description 1
- 229960003136 leucine Drugs 0.000 description 1
- 229960001691 leucovorin Drugs 0.000 description 1
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 229960001614 levamisole Drugs 0.000 description 1
- 229960004002 levetiracetam Drugs 0.000 description 1
- HPHUVLMMVZITSG-ZCFIWIBFSA-N levetiracetam Chemical compound CC[C@H](C(N)=O)N1CCCC1=O HPHUVLMMVZITSG-ZCFIWIBFSA-N 0.000 description 1
- 229960003376 levofloxacin Drugs 0.000 description 1
- 229960003918 levothyroxine sodium Drugs 0.000 description 1
- YDTFRJLNMPSCFM-YDALLXLXSA-M levothyroxine sodium anhydrous Chemical compound [Na+].IC1=CC(C[C@H](N)C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 YDTFRJLNMPSCFM-YDALLXLXSA-M 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 229960002422 lomefloxacin Drugs 0.000 description 1
- ZEKZLJVOYLTDKK-UHFFFAOYSA-N lomefloxacin Chemical compound FC1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNC(C)C1 ZEKZLJVOYLTDKK-UHFFFAOYSA-N 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- 229960001977 loracarbef Drugs 0.000 description 1
- JCCNYMKQOSZNPW-UHFFFAOYSA-N loratadine Chemical compound C1CN(C(=O)OCC)CCC1=C1C2=NC=CC=C2CCC2=CC(Cl)=CC=C21 JCCNYMKQOSZNPW-UHFFFAOYSA-N 0.000 description 1
- 229960003088 loratadine Drugs 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 229940040129 luteinizing hormone Drugs 0.000 description 1
- OHSVLFRHMCKCQY-NJFSPNSNSA-N lutetium-177 Chemical compound [177Lu] OHSVLFRHMCKCQY-NJFSPNSNSA-N 0.000 description 1
- 229960003646 lysine Drugs 0.000 description 1
- 239000003120 macrolide antibiotic agent Substances 0.000 description 1
- 229940041033 macrolides Drugs 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 229940092110 macugen Drugs 0.000 description 1
- 208000002780 macular degeneration Diseases 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229960004616 medroxyprogesterone Drugs 0.000 description 1
- FRQMUZJSZHZSGN-HBNHAYAOSA-N medroxyprogesterone Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](O)(C(C)=O)CC[C@H]21 FRQMUZJSZHZSGN-HBNHAYAOSA-N 0.000 description 1
- 229960001786 megestrol Drugs 0.000 description 1
- JBVNBBXAMBZTMQ-CEGNMAFCSA-N megestrol Chemical compound C1=CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2 JBVNBBXAMBZTMQ-CEGNMAFCSA-N 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229960005108 mepolizumab Drugs 0.000 description 1
- 229960003505 mequinol Drugs 0.000 description 1
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 1
- 229960001428 mercaptopurine Drugs 0.000 description 1
- 229960002260 meropenem Drugs 0.000 description 1
- DMJNNHOOLUXYBV-PQTSNVLCSA-N meropenem Chemical compound C=1([C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)S[C@@H]1CN[C@H](C(=O)N(C)C)C1 DMJNNHOOLUXYBV-PQTSNVLCSA-N 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- 229940042006 metaproterenol sulfate Drugs 0.000 description 1
- 229950005555 metelimumab Drugs 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- TTWJBBZEZQICBI-UHFFFAOYSA-N metoclopramide Chemical compound CCN(CC)CCNC(=O)C1=CC(Cl)=C(N)C=C1OC TTWJBBZEZQICBI-UHFFFAOYSA-N 0.000 description 1
- 229960004503 metoclopramide Drugs 0.000 description 1
- YPBATNHYBCGSSN-VWPFQQQWSA-N mezlocillin Chemical compound N([C@@H](C(=O)N[C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C=1C=CC=CC=1)C(=O)N1CCN(S(C)(=O)=O)C1=O YPBATNHYBCGSSN-VWPFQQQWSA-N 0.000 description 1
- 229960000198 mezlocillin Drugs 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229960003793 midazolam Drugs 0.000 description 1
- DDLIGBOFAVUZHB-UHFFFAOYSA-N midazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NC=C2CN=C1C1=CC=CC=C1F DDLIGBOFAVUZHB-UHFFFAOYSA-N 0.000 description 1
- 229960002757 midecamycin Drugs 0.000 description 1
- KVZUWEFUEGGULL-GNEXTGJLSA-N mideplanin Chemical compound CC(C)CCCCCCC(=O)N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC(C(=C1)OC=2C(=CC(=CC=2)[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@H]2C(N[C@H](C3=CC(O)=CC(O[C@@H]4[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O4)O)=C3C=3C(O)=CC=C(C=3)[C@@H](NC3=O)C(=O)N2)C(=O)NCCCN(C)C)=O)Cl)=C(OC=2C(=CC(C[C@H](C(N4)=O)NC(=O)[C@@H](N)C=5C=C(O6)C(O)=CC=5)=CC=2)Cl)C=C1[C@H]3NC(=O)[C@@H]4C1=CC6=CC(O)=C1 KVZUWEFUEGGULL-GNEXTGJLSA-N 0.000 description 1
- 229950000714 mideplanin Drugs 0.000 description 1
- UQRORFVVSGFNRO-UTINFBMNSA-N miglustat Chemical compound CCCCN1C[C@H](O)[C@@H](O)[C@H](O)[C@H]1CO UQRORFVVSGFNRO-UTINFBMNSA-N 0.000 description 1
- 229960001512 miglustat Drugs 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229960000931 miocamycin Drugs 0.000 description 1
- GQNZGCARKRHPOH-RQIKCTSVSA-N miocamycin Chemical compound C1[C@](OC(C)=O)(C)[C@@H](OC(=O)CC)[C@H](C)O[C@H]1O[C@H]1[C@H](N(C)C)[C@@H](O)[C@H](O[C@@H]2[C@H]([C@H](OC(=O)CC)CC(=O)O[C@H](C)C/C=C/C=C/[C@H](OC(C)=O)[C@H](C)C[C@@H]2CC=O)OC)O[C@@H]1C GQNZGCARKRHPOH-RQIKCTSVSA-N 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 229960000350 mitotane Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- 229960001165 modafinil Drugs 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229940041009 monobactams Drugs 0.000 description 1
- 208000020468 mucolipidosis III alpha/beta Diseases 0.000 description 1
- 206010028093 mucopolysaccharidosis Diseases 0.000 description 1
- 201000002273 mucopolysaccharidosis II Diseases 0.000 description 1
- 208000005340 mucopolysaccharidosis III Diseases 0.000 description 1
- 208000022018 mucopolysaccharidosis type 2 Diseases 0.000 description 1
- 208000011045 mucopolysaccharidosis type 3 Diseases 0.000 description 1
- 208000025919 mucopolysaccharidosis type 7 Diseases 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- JORAUNFTUVJTNG-BSTBCYLQSA-N n-[(2s)-4-amino-1-[[(2s,3r)-1-[[(2s)-4-amino-1-oxo-1-[[(3s,6s,9s,12s,15r,18s,21s)-6,9,18-tris(2-aminoethyl)-3-[(1r)-1-hydroxyethyl]-12,15-bis(2-methylpropyl)-2,5,8,11,14,17,20-heptaoxo-1,4,7,10,13,16,19-heptazacyclotricos-21-yl]amino]butan-2-yl]amino]-3-h Chemical compound CC(C)CCCCC(=O)N[C@@H](CCN)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCN)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCN)NC1=O.CCC(C)CCCCC(=O)N[C@@H](CCN)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCN)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCN)NC1=O JORAUNFTUVJTNG-BSTBCYLQSA-N 0.000 description 1
- GPXLMGHLHQJAGZ-JTDSTZFVSA-N nafcillin Chemical compound C1=CC=CC2=C(C(=O)N[C@@H]3C(N4[C@H](C(C)(C)S[C@@H]43)C(O)=O)=O)C(OCC)=CC=C21 GPXLMGHLHQJAGZ-JTDSTZFVSA-N 0.000 description 1
- 229960000515 nafcillin Drugs 0.000 description 1
- UZHSEJADLWPNLE-GRGSLBFTSA-N naloxone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(O)C2=C5[C@@]13CCN4CC=C UZHSEJADLWPNLE-GRGSLBFTSA-N 0.000 description 1
- 229960004127 naloxone Drugs 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- OFYAYGJCPXRNBL-LBPRGKRZSA-N naphthalen-2-yl-3-alanine Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CC=CC2=C1 OFYAYGJCPXRNBL-LBPRGKRZSA-N 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-M naproxen(1-) Chemical compound C1=C([C@H](C)C([O-])=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-M 0.000 description 1
- 229960005027 natalizumab Drugs 0.000 description 1
- 229960002915 nebacumab Drugs 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- HPNRHPKXQZSDFX-OAQDCNSJSA-N nesiritide Chemical compound C([C@H]1C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)CNC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CO)C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1N=CNC=1)C(O)=O)=O)[C@@H](C)CC)C1=CC=CC=C1 HPNRHPKXQZSDFX-OAQDCNSJSA-N 0.000 description 1
- 229960001267 nesiritide Drugs 0.000 description 1
- 229960000808 netilmicin Drugs 0.000 description 1
- ZBGPYVZLYBDXKO-HILBYHGXSA-N netilmycin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@]([C@H](NC)[C@@H](O)CO1)(C)O)NCC)[C@H]1OC(CN)=CC[C@H]1N ZBGPYVZLYBDXKO-HILBYHGXSA-N 0.000 description 1
- 229940071846 neulasta Drugs 0.000 description 1
- CERZMXAJYMMUDR-UHFFFAOYSA-N neuraminic acid Natural products NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO CERZMXAJYMMUDR-UHFFFAOYSA-N 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 229960000689 nevirapine Drugs 0.000 description 1
- 229960002715 nicotine Drugs 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- XWXYUMMDTVBTOU-UHFFFAOYSA-N nilutamide Chemical compound O=C1C(C)(C)NC(=O)N1C1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 XWXYUMMDTVBTOU-UHFFFAOYSA-N 0.000 description 1
- 229960002653 nilutamide Drugs 0.000 description 1
- 229960002480 nitazoxanide Drugs 0.000 description 1
- OUBCNLGXQFSTLU-UHFFFAOYSA-N nitisinone Chemical compound [O-][N+](=O)C1=CC(C(F)(F)F)=CC=C1C(=O)C1C(=O)CCCC1=O OUBCNLGXQFSTLU-UHFFFAOYSA-N 0.000 description 1
- 229960001721 nitisinone Drugs 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940053934 norethindrone Drugs 0.000 description 1
- VIKNJXKGJWUCNN-XGXHKTLJSA-N norethisterone Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 VIKNJXKGJWUCNN-XGXHKTLJSA-N 0.000 description 1
- 229960001180 norfloxacin Drugs 0.000 description 1
- OGJPXUAPXNRGGI-UHFFFAOYSA-N norfloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 OGJPXUAPXNRGGI-UHFFFAOYSA-N 0.000 description 1
- VOMXSOIBEJBQNF-UTTRGDHVSA-N novorapid Chemical class C([C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CS)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CO)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CS)NC(=O)[C@H](CS)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(O)=O)C1=CC=C(O)C=C1.C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CS)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CS)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 VOMXSOIBEJBQNF-UTTRGDHVSA-N 0.000 description 1
- 239000012434 nucleophilic reagent Substances 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- XXUPLYBCNPLTIW-UHFFFAOYSA-N octadec-7-ynoic acid Chemical compound CCCCCCCCCCC#CCCCCCC(O)=O XXUPLYBCNPLTIW-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229950010465 odulimomab Drugs 0.000 description 1
- 229960001699 ofloxacin Drugs 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- RZPAKFUAFGMUPI-KGIGTXTPSA-N oleandomycin Chemical compound O1[C@@H](C)[C@H](O)[C@@H](OC)C[C@@H]1O[C@@H]1[C@@H](C)C(=O)O[C@H](C)[C@H](C)[C@H](O)[C@@H](C)C(=O)[C@]2(OC2)C[C@H](C)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C RZPAKFUAFGMUPI-KGIGTXTPSA-N 0.000 description 1
- 229960002351 oleandomycin Drugs 0.000 description 1
- 235000019367 oleandomycin Nutrition 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000002482 oligosaccharides Polymers 0.000 description 1
- 229960005343 ondansetron Drugs 0.000 description 1
- 229950007283 oregovomab Drugs 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000012430 organic reaction media Substances 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- VSZGPKBBMSAYNT-RRFJBIMHSA-N oseltamivir Chemical compound CCOC(=O)C1=C[C@@H](OC(CC)CC)[C@H](NC(C)=O)[C@@H](N)C1 VSZGPKBBMSAYNT-RRFJBIMHSA-N 0.000 description 1
- 229960003752 oseltamivir Drugs 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- UWYHMGVUTGAWSP-JKIFEVAISA-N oxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1 UWYHMGVUTGAWSP-JKIFEVAISA-N 0.000 description 1
- 229960001019 oxacillin Drugs 0.000 description 1
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 1
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 229960000402 palivizumab Drugs 0.000 description 1
- 229940046231 pamidronate Drugs 0.000 description 1
- 229960003978 pamidronic acid Drugs 0.000 description 1
- 108010085108 pamiteplase Proteins 0.000 description 1
- 229950003603 pamiteplase Drugs 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229960002625 pazufloxacin Drugs 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229960004236 pefloxacin Drugs 0.000 description 1
- FHFYDNQZQSQIAI-UHFFFAOYSA-N pefloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCN(C)CC1 FHFYDNQZQSQIAI-UHFFFAOYSA-N 0.000 description 1
- HQQSBEDKMRHYME-UHFFFAOYSA-N pefloxacin mesylate Chemical compound [H+].CS([O-])(=O)=O.C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCN(C)CC1 HQQSBEDKMRHYME-UHFFFAOYSA-N 0.000 description 1
- 229960003407 pegaptanib Drugs 0.000 description 1
- 229960001373 pegfilgrastim Drugs 0.000 description 1
- 229960003930 peginterferon alfa-2a Drugs 0.000 description 1
- 229960002995 pegvisomant Drugs 0.000 description 1
- 108700037519 pegvisomant Proteins 0.000 description 1
- 229960005079 pemetrexed Drugs 0.000 description 1
- WBXPDJSOTKVWSJ-ZDUSSCGKSA-N pemetrexed Chemical compound C=1NC=2NC(N)=NC(=O)C=2C=1CCC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 WBXPDJSOTKVWSJ-ZDUSSCGKSA-N 0.000 description 1
- 201000001976 pemphigus vulgaris Diseases 0.000 description 1
- 229960005570 pemtumomab Drugs 0.000 description 1
- 229950011098 pendetide Drugs 0.000 description 1
- 150000002961 penems Chemical class 0.000 description 1
- VVNCNSJFMMFHPL-UHFFFAOYSA-N penicillamine Chemical compound CC(C)(S)C(N)C(O)=O VVNCNSJFMMFHPL-UHFFFAOYSA-N 0.000 description 1
- 229940056360 penicillin g Drugs 0.000 description 1
- 229940056367 penicillin v Drugs 0.000 description 1
- 229950009506 penicillinase Drugs 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 229960004448 pentamidine Drugs 0.000 description 1
- YBVNFKZSMZGRAD-UHFFFAOYSA-N pentamidine isethionate Chemical compound OCCS(O)(=O)=O.OCCS(O)(=O)=O.C1=CC(C(=N)N)=CC=C1OCCCCCOC1=CC=C(C(N)=N)C=C1 YBVNFKZSMZGRAD-UHFFFAOYSA-N 0.000 description 1
- 229960002340 pentostatin Drugs 0.000 description 1
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 125000005062 perfluorophenyl group Chemical group FC1=C(C(=C(C(=C1F)F)F)F)* 0.000 description 1
- 229960004851 pergolide Drugs 0.000 description 1
- YEHCICAEULNIGD-MZMPZRCHSA-N pergolide Chemical compound C1=CC([C@H]2C[C@@H](CSC)CN([C@@H]2C2)CCC)=C3C2=CNC3=C1 YEHCICAEULNIGD-MZMPZRCHSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 229950003203 pexelizumab Drugs 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- BPLBGHOLXOTWMN-MBNYWOFBSA-N phenoxymethylpenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)COC1=CC=CC=C1 BPLBGHOLXOTWMN-MBNYWOFBSA-N 0.000 description 1
- 229960005190 phenylalanine Drugs 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- NMHMNPHRMNGLLB-UHFFFAOYSA-N phloretic acid Chemical compound OC(=O)CCC1=CC=C(O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-N 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229940097886 phosphorus 32 Drugs 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- KASDHRXLYQOAKZ-ZPSXYTITSA-N pimecrolimus Chemical compound C/C([C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@]2(O)O[C@@H]([C@H](C[C@H]2C)OC)[C@@H](OC)C[C@@H](C)C/C(C)=C/[C@H](C(C[C@H](O)[C@H]1C)=O)CC)=C\[C@@H]1CC[C@@H](Cl)[C@H](OC)C1 KASDHRXLYQOAKZ-ZPSXYTITSA-N 0.000 description 1
- 229960005330 pimecrolimus Drugs 0.000 description 1
- HXEACLLIILLPRG-UHFFFAOYSA-N pipecolic acid Chemical compound OC(=O)C1CCCCN1 HXEACLLIILLPRG-UHFFFAOYSA-N 0.000 description 1
- 229960002292 piperacillin Drugs 0.000 description 1
- WCMIIGXFCMNQDS-IDYPWDAWSA-M piperacillin sodium Chemical compound [Na+].O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC=CC=1)C(=O)N[C@@H]1C(=O)N2[C@@H](C([O-])=O)C(C)(C)S[C@@H]21 WCMIIGXFCMNQDS-IDYPWDAWSA-M 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229940127126 plasminogen activator Drugs 0.000 description 1
- 201000003437 pleural cancer Diseases 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- XDJYMJULXQKGMM-UHFFFAOYSA-N polymyxin E1 Natural products CCC(C)CCCCC(=O)NC(CCN)C(=O)NC(C(C)O)C(=O)NC(CCN)C(=O)NC1CCNC(=O)C(C(C)O)NC(=O)C(CCN)NC(=O)C(CCN)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CCN)NC1=O XDJYMJULXQKGMM-UHFFFAOYSA-N 0.000 description 1
- KNIWPHSUTGNZST-UHFFFAOYSA-N polymyxin E2 Natural products CC(C)CCCCC(=O)NC(CCN)C(=O)NC(C(C)O)C(=O)NC(CCN)C(=O)NC1CCNC(=O)C(C(C)O)NC(=O)C(CCN)NC(=O)C(CCN)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CCN)NC1=O KNIWPHSUTGNZST-UHFFFAOYSA-N 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 229940071643 prefilled syringe Drugs 0.000 description 1
- 150000003141 primary amines Chemical group 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- WIKYUJGCLQQFNW-UHFFFAOYSA-N prochlorperazine Chemical compound C1CN(C)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 WIKYUJGCLQQFNW-UHFFFAOYSA-N 0.000 description 1
- 229960003111 prochlorperazine Drugs 0.000 description 1
- 229940097325 prolactin Drugs 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 229960002429 proline Drugs 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000006410 propenylene group Chemical group 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 230000002633 protecting effect Effects 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 229960000856 protein c Drugs 0.000 description 1
- 238000012514 protein characterization Methods 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 229960001224 prulifloxacin Drugs 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 201000010108 pycnodysostosis Diseases 0.000 description 1
- 125000003072 pyrazolidinyl group Chemical group 0.000 description 1
- 125000002755 pyrazolinyl group Chemical group 0.000 description 1
- WHMDPDGBKYUEMW-UHFFFAOYSA-N pyridine-2-thiol Chemical compound SC1=CC=CC=N1 WHMDPDGBKYUEMW-UHFFFAOYSA-N 0.000 description 1
- 125000001422 pyrrolinyl group Chemical group 0.000 description 1
- MIXMJCQRHVAJIO-TZHJZOAOSA-N qk4dys664x Chemical compound O.C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O.C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O MIXMJCQRHVAJIO-TZHJZOAOSA-N 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 125000004621 quinuclidinyl group Chemical group N12C(CC(CC1)CC2)* 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 229910052705 radium Inorganic materials 0.000 description 1
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 description 1
- 229960004432 raltitrexed Drugs 0.000 description 1
- 229960003876 ranibizumab Drugs 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 235000003499 redwood Nutrition 0.000 description 1
- 210000003289 regulatory T cell Anatomy 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 230000013878 renal filtration Effects 0.000 description 1
- 229960002354 repaglinide Drugs 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 238000012712 reversible addition−fragmentation chain-transfer polymerization Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 229960004136 rivastigmine Drugs 0.000 description 1
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 description 1
- 229960000371 rofecoxib Drugs 0.000 description 1
- 229960001170 rokitamycin Drugs 0.000 description 1
- BPRHUIZQVSMCRT-VEUZHWNKSA-N rosuvastatin Chemical compound CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1\C=C\[C@@H](O)C[C@@H](O)CC(O)=O BPRHUIZQVSMCRT-VEUZHWNKSA-N 0.000 description 1
- 229960000672 rosuvastatin Drugs 0.000 description 1
- 229960005224 roxithromycin Drugs 0.000 description 1
- 229960004017 salmeterol Drugs 0.000 description 1
- KZUNJOHGWZRPMI-AKLPVKDBSA-N samarium-153 Chemical compound [153Sm] KZUNJOHGWZRPMI-AKLPVKDBSA-N 0.000 description 1
- 238000005464 sample preparation method Methods 0.000 description 1
- 229950007308 satumomab Drugs 0.000 description 1
- SIXSYDAISGFNSX-NJFSPNSNSA-N scandium-47 Chemical compound [47Sc] SIXSYDAISGFNSX-NJFSPNSNSA-N 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229960005429 sertaconazole Drugs 0.000 description 1
- 229950004951 sevirumab Drugs 0.000 description 1
- 208000011985 sialidosis Diseases 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229960003310 sildenafil Drugs 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229940068638 simponi Drugs 0.000 description 1
- 229950003804 siplizumab Drugs 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 229960003177 sitafloxacin Drugs 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 201000002314 small intestine cancer Diseases 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- IFGCUJZIWBUILZ-UHFFFAOYSA-N sodium 2-[[2-[[hydroxy-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyphosphoryl]amino]-4-methylpentanoyl]amino]-3-(1H-indol-3-yl)propanoic acid Chemical compound [Na+].C=1NC2=CC=CC=C2C=1CC(C(O)=O)NC(=O)C(CC(C)C)NP(O)(=O)OC1OC(C)C(O)C(O)C1O IFGCUJZIWBUILZ-UHFFFAOYSA-N 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- BEOOHQFXGBMRKU-UHFFFAOYSA-N sodium cyanoborohydride Chemical compound [Na+].[B-]C#N BEOOHQFXGBMRKU-UHFFFAOYSA-N 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 229960004532 somatropin Drugs 0.000 description 1
- 229960004954 sparfloxacin Drugs 0.000 description 1
- DZZWHBIBMUVIIW-DTORHVGOSA-N sparfloxacin Chemical compound C1[C@@H](C)N[C@@H](C)CN1C1=C(F)C(N)=C2C(=O)C(C(O)=O)=CN(C3CC3)C2=C1F DZZWHBIBMUVIIW-DTORHVGOSA-N 0.000 description 1
- 229960001294 spiramycin Drugs 0.000 description 1
- 235000019372 spiramycin Nutrition 0.000 description 1
- 229930191512 spiramycin Natural products 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 201000005671 spondyloarthropathy Diseases 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 108010004034 stable plasma protein solution Proteins 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 229960005202 streptokinase Drugs 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 239000012609 strong anion exchange resin Substances 0.000 description 1
- CIOAGBVUUVVLOB-OUBTZVSYSA-N strontium-89 Chemical compound [89Sr] CIOAGBVUUVVLOB-OUBTZVSYSA-N 0.000 description 1
- 229940006509 strontium-89 Drugs 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 108020001568 subdomains Proteins 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- WPLOVIFNBMNBPD-ATHMIXSHSA-N subtilin Chemical compound CC1SCC(NC2=O)C(=O)NC(CC(N)=O)C(=O)NC(C(=O)NC(CCCCN)C(=O)NC(C(C)CC)C(=O)NC(=C)C(=O)NC(CCCCN)C(O)=O)CSC(C)C2NC(=O)C(CC(C)C)NC(=O)C1NC(=O)C(CCC(N)=O)NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C1NC(=O)C(=C/C)/NC(=O)C(CCC(N)=O)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C2NC(=O)CNC(=O)C3CCCN3C(=O)C(NC(=O)C3NC(=O)C(CC(C)C)NC(=O)C(=C)NC(=O)C(CCC(O)=O)NC(=O)C(NC(=O)C(CCCCN)NC(=O)C(N)CC=4C5=CC=CC=C5NC=4)CSC3)C(C)SC2)C(C)C)C(C)SC1)CC1=CC=CC=C1 WPLOVIFNBMNBPD-ATHMIXSHSA-N 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000003774 sulfhydryl reagent Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- KQKPFRSPSRPDEB-UHFFFAOYSA-N sumatriptan Chemical compound CNS(=O)(=O)CC1=CC=C2NC=C(CCN(C)C)C2=C1 KQKPFRSPSRPDEB-UHFFFAOYSA-N 0.000 description 1
- 229960003708 sumatriptan Drugs 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 230000001839 systemic circulation Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229960001685 tacrine Drugs 0.000 description 1
- YLJREFDVOIBQDA-UHFFFAOYSA-N tacrine Chemical compound C1=CC=C2C(N)=C(CCCC3)C3=NC2=C1 YLJREFDVOIBQDA-UHFFFAOYSA-N 0.000 description 1
- 229960001967 tacrolimus Drugs 0.000 description 1
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 1
- 229960000835 tadalafil Drugs 0.000 description 1
- IEHKWSGCTWLXFU-IIBYNOLFSA-N tadalafil Chemical compound C1=C2OCOC2=CC([C@@H]2C3=C([C]4C=CC=CC4=N3)C[C@H]3N2C(=O)CN(C3=O)C)=C1 IEHKWSGCTWLXFU-IIBYNOLFSA-N 0.000 description 1
- 101150047061 tag-72 gene Proteins 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 229940056501 technetium 99m Drugs 0.000 description 1
- 229960002876 tegaserod Drugs 0.000 description 1
- IKBKZGMPCYNSLU-RGVLZGJSSA-N tegaserod Chemical compound C1=C(OC)C=C2C(/C=N/NC(=N)NCCCCC)=CNC2=C1 IKBKZGMPCYNSLU-RGVLZGJSSA-N 0.000 description 1
- 229960001608 teicoplanin Drugs 0.000 description 1
- 229960004576 temafloxacin Drugs 0.000 description 1
- 229960004964 temozolomide Drugs 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- OGBMKVWORPGQRR-UMXFMPSGSA-N teriparatide Chemical compound C([C@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@@H](N)CO)C(C)C)[C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CNC=N1 OGBMKVWORPGQRR-UMXFMPSGSA-N 0.000 description 1
- 229960005460 teriparatide Drugs 0.000 description 1
- BLFVZPUZWRYHDB-UHFFFAOYSA-N tert-butyl 2-[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]acetate Chemical compound CC(C)(C)OC(=O)COCC(CO)(CO)CO BLFVZPUZWRYHDB-UHFFFAOYSA-N 0.000 description 1
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000003507 tetrahydrothiofenyl group Chemical group 0.000 description 1
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- MSLRPWGRFCKNIZ-UHFFFAOYSA-J tetrasodium;hydrogen peroxide;dicarbonate Chemical compound [Na+].[Na+].[Na+].[Na+].OO.OO.OO.[O-]C([O-])=O.[O-]C([O-])=O MSLRPWGRFCKNIZ-UHFFFAOYSA-J 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- 229960003433 thalidomide Drugs 0.000 description 1
- BKVIYDNLLOSFOA-OIOBTWANSA-N thallium-201 Chemical compound [201Tl] BKVIYDNLLOSFOA-OIOBTWANSA-N 0.000 description 1
- XSROQCDVUIHRSI-UHFFFAOYSA-N thietane Chemical compound C1CSC1 XSROQCDVUIHRSI-UHFFFAOYSA-N 0.000 description 1
- 125000004001 thioalkyl group Chemical group 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- CNHYKKNIIGEXAY-UHFFFAOYSA-N thiolan-2-imine Chemical compound N=C1CCCS1 CNHYKKNIIGEXAY-UHFFFAOYSA-N 0.000 description 1
- 229960001196 thiotepa Drugs 0.000 description 1
- LCJVIYPJPCBWKS-NXPQJCNCSA-N thymosin Chemical compound SC[C@@H](N)C(=O)N[C@H](CO)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@H](C(C)C)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](C(C)C)C(=O)N[C@H](CO)C(=O)N[C@H](CO)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@H]([C@H](C)O)C(=O)N[C@H](C(C)C)C(=O)N[C@H](CCCCN)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CCCCN)C(=O)N[C@H](CCCCN)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](C(C)C)C(=O)N[C@H](C(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@H](CCC(O)=O)C(O)=O LCJVIYPJPCBWKS-NXPQJCNCSA-N 0.000 description 1
- 108010085828 thymosin beta(1) Proteins 0.000 description 1
- 108010079996 thymosin beta(4) Proteins 0.000 description 1
- 108010079161 thymosin beta(9) Proteins 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- OHKOGUYZJXTSFX-KZFFXBSXSA-N ticarcillin Chemical compound C=1([C@@H](C(O)=O)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)C=CSC=1 OHKOGUYZJXTSFX-KZFFXBSXSA-N 0.000 description 1
- 229960004659 ticarcillin Drugs 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- LERNTVKEWCAPOY-DZZGSBJMSA-N tiotropium Chemical compound O([C@H]1C[C@@H]2[N+]([C@H](C1)[C@@H]1[C@H]2O1)(C)C)C(=O)C(O)(C=1SC=CC=1)C1=CC=CS1 LERNTVKEWCAPOY-DZZGSBJMSA-N 0.000 description 1
- 229940110309 tiotropium Drugs 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- 229960000707 tobramycin Drugs 0.000 description 1
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 1
- 229960003989 tocilizumab Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- 229960004394 topiramate Drugs 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- 229950008187 tosufloxacin Drugs 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000759 toxicological effect Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 230000007888 toxin activity Effects 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- PAJMKGZZBBTTOY-ZFORQUDYSA-N treprostinil Chemical compound C1=CC=C(OCC(O)=O)C2=C1C[C@@H]1[C@@H](CC[C@@H](O)CCCCC)[C@H](O)C[C@@H]1C2 PAJMKGZZBBTTOY-ZFORQUDYSA-N 0.000 description 1
- 229960005032 treprostinil Drugs 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 229960005294 triamcinolone Drugs 0.000 description 1
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 1
- 150000003852 triazoles Chemical group 0.000 description 1
- 239000012989 trithiocarbonate Substances 0.000 description 1
- 229960005041 troleandomycin Drugs 0.000 description 1
- LQCLVBQBTUVCEQ-QTFUVMRISA-N troleandomycin Chemical compound O1[C@@H](C)[C@H](OC(C)=O)[C@@H](OC)C[C@@H]1O[C@@H]1[C@@H](C)C(=O)O[C@H](C)[C@H](C)[C@H](OC(C)=O)[C@@H](C)C(=O)[C@@]2(OC2)C[C@H](C)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)OC(C)=O)[C@H]1C LQCLVBQBTUVCEQ-QTFUVMRISA-N 0.000 description 1
- 229960000497 trovafloxacin Drugs 0.000 description 1
- WVPSKSLAZQPAKQ-CDMJZVDBSA-N trovafloxacin Chemical compound C([C@H]1[C@@H]([C@H]1C1)N)N1C(C(=CC=1C(=O)C(C(O)=O)=C2)F)=NC=1N2C1=CC=C(F)C=C1F WVPSKSLAZQPAKQ-CDMJZVDBSA-N 0.000 description 1
- 229960004799 tryptophan Drugs 0.000 description 1
- 229950005082 tuvirumab Drugs 0.000 description 1
- 208000035408 type 1 diabetes mellitus 1 Diseases 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 229940093257 valacyclovir Drugs 0.000 description 1
- 229960002004 valdecoxib Drugs 0.000 description 1
- LNPDTQAFDNKSHK-UHFFFAOYSA-N valdecoxib Chemical compound CC=1ON=C(C=2C=CC=CC=2)C=1C1=CC=C(S(N)(=O)=O)C=C1 LNPDTQAFDNKSHK-UHFFFAOYSA-N 0.000 description 1
- 229960002149 valganciclovir Drugs 0.000 description 1
- 229960004295 valine Drugs 0.000 description 1
- 229960000653 valrubicin Drugs 0.000 description 1
- ZOCKGBMQLCSHFP-KQRAQHLDSA-N valrubicin Chemical compound O([C@H]1C[C@](CC2=C(O)C=3C(=O)C4=CC=CC(OC)=C4C(=O)C=3C(O)=C21)(O)C(=O)COC(=O)CCCC)[C@H]1C[C@H](NC(=O)C(F)(F)F)[C@H](O)[C@H](C)O1 ZOCKGBMQLCSHFP-KQRAQHLDSA-N 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 229960002381 vardenafil Drugs 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 238000000196 viscometry Methods 0.000 description 1
- 229950004393 visilizumab Drugs 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 108010047303 von Willebrand Factor Proteins 0.000 description 1
- 102100036537 von Willebrand factor Human genes 0.000 description 1
- 229960001134 von willebrand factor Drugs 0.000 description 1
- BCEHBSKCWLPMDN-MGPLVRAMSA-N voriconazole Chemical compound C1([C@H](C)[C@](O)(CN2N=CN=C2)C=2C(=CC(F)=CC=2)F)=NC=NC=C1F BCEHBSKCWLPMDN-MGPLVRAMSA-N 0.000 description 1
- 229960004740 voriconazole Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000012991 xanthate Substances 0.000 description 1
- VWQVUPCCIRVNHF-YPZZEJLDSA-N yttrium-87 Chemical compound [87Y] VWQVUPCCIRVNHF-YPZZEJLDSA-N 0.000 description 1
- JPZXHKDZASGCLU-LBPRGKRZSA-N β-(2-naphthyl)-alanine Chemical compound C1=CC=CC2=CC(C[C@H](N)C(O)=O)=CC=C21 JPZXHKDZASGCLU-LBPRGKRZSA-N 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F230/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
- C08F230/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/58—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly[meth]acrylate, polyacrylamide, polystyrene, polyvinylpyrrolidone, polyvinylalcohol or polystyrene sulfonic acid resin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2438/00—Living radical polymerisation
- C08F2438/01—Atom Transfer Radical Polymerization [ATRP] or reverse ATRP
Definitions
- biopharmaceuticals will be modular, multifunctional, and targeted. These drugs wi ll be designed with a view towards understanding the broader disease biology being targeted and applying that knowledge in a multifaceted drug. Antibodies are fantastic drugs, but despite a significant amount of antibody protein engineering they are and will continue to be a rigid and inflexible format.
- the trajectory is also towards subcutaneous injection in smaller volumes (l mL, 0.8mL, 0.4mL), more stable liquid formulations (versus lyophilized formulations requiring physician reconstitution), storage at higher concentrations (50mg/mL, l OOmg/mL, 200mg/mL) and at higher temperatures (-80 degrees, -20 degrees, 2 - 8 degrees, room temperature).
- Antibodies are a tough act to follow, especially with all of the activity in the broad antibody discovery and development ecosystem. But antibodies do leave much to be desired. They are ungainly, inflexible, large, single-target limited, manufactured in mammalian systems, overall poorly characterized and are central to many different in vivo biologies of which target binding, epithelial FcRn receptor recycling, antibody-dependent cell-mediated cytotoxicity (ADCC), complement dependent cytoxicity (CDC), avidity, higher order architectures, to name just a few.
- ADCC antibody-dependent cell-mediated cytotoxicity
- CDC complement dependent cytoxicity
- the challenge is to devise a technical solution that dramatically increases in vivo residence time for these soluble biopharmaceuticals (the performance issue), does so without forcing compromises in other key parameters such as drug solubility, stability, viscosity, characterizability (the related physical properties issues), and employs an approach that allows predictability across target classes and across the drug development path from early animal studies through to manufacturing scale-up and late-stage human clinical trials (the portfolio planning issue).
- the first attempted class of solutions is biology-based and depends on fusing the protein agents to transferrin, albumin, immunoglobulin gamma (IgG), IgG constant region (IgG-Fc) and/or other serum proteins. But fusing a biology-based serum extension moiety to a functional biologic moiety increases the number and complexity of concurrent biological interactions. These non-target-mediated interactions rarely promote the desired therapeutic action of the drug, but rather more often detract from the desired therapeutic action of the drug in complex and poorly understood ways. The net impact is to undermine predictability, performance, and safety.
- the second attempted class of solutions is based broadly on a set of approaches that make use of polymers of different types which are attached to the drug.
- This second class of solutions is subcategorized further in two ways: (1 ) by the water binding entity within the polymer, and (2) how the polymer is attached to the drug agent. Relating to (1 ), there are a number of different polymeric water binding moieties in use, such as sugars (carbohydrates), amino acids (hydrophilic protein domains), polyethylene oxide, polyoxazoline, polyvinyl alcohol, polyvinyl pyrrolidone, etc. Relating to (2), the distinction is largely whether the polymer is added to the drug agent by the cellular machinery or whether it is added in a semi-synthetic conjugation step.
- hydrophilic carbohydrate polymers to the surface of a translated protein through a cell-mediated glycosylation process by adding or modifying a glycosylation site at the level of the coding nucleotide sequence (e.g. Aranesp).
- a string of hydrophilic amino acids during protein translation by adding a series of repeating nucleotide units at the level of the open reading frame codons (i.e. Amunix's XTEN platform).
- PEGylation of a recombinant interferon alfa of approximately 19.5 kDa with a 40 kDa branched PEG results in a murine elimination half life after subcutaneous injection of approximately 50 hours and a human half life in the range of 80 hours. Pegasys is dosed weekly in humans.
- PEG 20 kDa linear to 105 hours with a PEG 40 kDa branched This can be correlated against the half-life of the approved product Cimzia which has a Fab' against TNFa conjugated with a 40 kDa branched polymer.
- Human half life after subcutaneous injection is 3 1 1 hours and is sufficient (as approved by the FDA for rheumatoid arthritis) for monthly subcutaneous dosing. But the properties driven by the PEG moiety (solubility, stability, viscosity) are not sufficient to enable the full dose amount (400mg) to be formulated in a single vial for subcutaneous injection (limit l mL, preferably 0.8mL or less).
- Cimzia is formulated preferably as a solid and in two vials for two separate injections each delivering 200mg of product.
- the PEG reagent is very expensive and constitutes up to twenty percent of the average wholesale price of the drug. Therefore, the Cimzia product is not very competitive in the marketplace versus Humira (anti-TNFa antibody, in a liquid formulation, in a single use syringe, administered by single subcutaneous injection, twice monthly) and even less so versus Simponi (anti-TNFa antibody, in a liquid formulation, in a single use syringe, administered by single subcutaneous injection, once monthly).
- Interferon beta (approximately 20 kDa) was PEGylated with a 40 kDa linear PEG polymer.
- Avonex. an unPEGylated form demonstrates a mean terminal half life in monkeys after intravenous injection of 5.5 hours and a half-life of 10 hours after intramuscular injection.
- Conjugation of a 40 kDa linear PEG polymer can demonstrate a half life of approximately fifteen hours after intravenous administration and thirty hours after subcutaneous administration.
- Conjugation of a 40 kDa branched PEG polymer can demonstrate a half life of thirty hours after intravenous administration and sixty hours after subcutaneous administration.
- the projected dose frequency is twice monthly, so the ability to dose twice monthly with this molecule is enabled by a biological or pharmacodynamic effect whose duration exceeds the physical half-life and residence time of the drug itself.
- a once a month dose frequency is required.
- a polymer conjugate that was dosed twice monthly but with very flat, potentially zero order, kinetics could be ideal. This is obtainable with a highly biocompatible conjugate and dosed at a lower overall dose.
- interferon beta is an unstable and overall 'difficult' protein to work with and further improvement in solubility and stability is desired.
- UnPEGylated FVIII demonstrates a twelve to fourteen hour circulating half-life in humans. It is used acutely in response to a bleeding crisis. It is also being used for prophylaxis via three times weekly intravenous infusions. The murine mean terminal half-life is six hours in the unPEGylated form and eleven hours with a site-directed PEGylated form . In rabbits, with a full-length FVIII protein, an unPEGylated form showed a mean terminal half life of 6.7 hours.
- the Amunix XTEN technology fuses approximately 850 hydrophilic amino acids (approximately 80kDa in size) to the GLP-1 peptide. This boosts the half-life to sixty hours in a cynomolgus monkey which is slightly inferior to a GLP-1 equivalent conjugated to a 40kDa branched PEG polymer. So a polymer of 2x increased size delivers essentially the same performance benefit. A similar level of benefit was seen with XTEN attached to human growth hormone. In terms of trying to extend further the level of half life benefit, there are a number of challenges. First and foremost, the hydrophilic amino acids used to bind and structure the water are non-optimal in terms of their water binding characteristics.
- the requisite use of the ribosomal translation machinery to add the polymer limits the architecture to single arm, linear structures which have been shown in many PEGylation examples to be inferior to branched architectures when holding molecular weight constant and increasing the level of branching.
- a peptide bond used as a polymer backbone is sufficiently unstable such that it will demonstrate a polydispersity, which heterogeneity becomes limiting in practical terms such that the length of the hydrophilic polymer cannot be easily increased to achieve half lives superior to the 40kDa branched PEG (this on top of other complexity related to the use of multiple long repeating units in the encoding plasmid vector which itself becomes limiting).
- This technology then becomes niche in its application, for example, to allow a peptide formerly made synthetically via chemical synthesis to be made in a cell-based system which has some perceived advantages (as well as new disadvantages) but overall with similar in vivo performance as possible with other technologies, especially in vivo elimination half life.
- rfiEPO is a 30.4 kDa protein with 165 amino acids and 3 N-linked plus 1 O-linked glycosylation site. 40% of the mass is carbohydrate.
- the carbohydrates are not necessary for activity in vitro, but absolutely necessary for activity in vivo.
- Aranesp is a form of human erythropoietin modified at the genetic level to contain 5 N-linked oligosaccharide chains versus the native form which contains 3 chains.
- the additional carbohydrates increase the approximate molecular weight of the glycoprotein from 30kDa to 37kDa. In humans, the change increases mean terminal half life after intravenous injection from 7 hours to 21 hours and after subcutaneous injection from 16 hours to 46 hours, which is an approximate threefold improvement in both cases.
- Mircera which is a PEGylated form of recombinant human erythropietin demonstrated in vivo half life after subcutaneous injection of approximately 140 hours but in chronic renal disease patients, where patients because of renal filtration of the drug show a more than 2x increase in half life as well as a decreased receptor affinity which decreases mechanistic clearance, meaning the actual physical half life is less than 70 hours and in line with Affymax's Hematide peptidomimetic (PEGylated with a 40kDa branched PEG).
- the HESylation technology employs a semi-synthetic conjugation of a maize derived starch polymer to a drug. Data shows that a 1 OOkDa HESylation polymer is equivalent to a 30kDa linear PEG polymer on erythropoietin in mice (Mircera product equivalent). It is possible to use a bigger polymer, but the approach is fundamentally limited by the nature of the starch water binding.
- biologically active agents for delivery must deal with a variety of variables including the route of administration, the biological stability of the active agent and the solubility of the active agents in physiologically compatible media. Choices made in formulating biologically active agents and the selected routes of administration can affect the bioavailability of the active agents. For example, the choice of parenteral administration into the systemic circulation for biologically active proteins and polypeptides avoids the proteolytic environment found in the gastrointestinal tract. However, even where direct administration, such as by injection, of biologically active agents is possible, formulations may be unsatisfactory for a variety of reasons including the generation of an immune response to the administered agent and responses to any excipients including burning and stinging. Even if the active agent is not immunogenic and satisfactory excipients can be employed, biologically active agents can have a limited solubility and short biological half life that can require repeated administration or continuous infusion, which can be painful and/or inconvenient.
- the polymer conjugates of biologically active agents require less frequent dosing and may permit the use of less of the active agent to achieve a therapeutic endpoint. Less frequent dosing reduces the overall number of injections, which can be painful and which require inconvenient visits to healthcare professionals.
- PEGylation of biologically active agents remains a challenge.
- drug developers progress beyond very potent agonistic proteins such as erythropoietin and the various interferons, the benefits of the PEG hydrophilic polymer are insufficient to drive (i) in vitro the increases in solubility, stability and the decreases in viscosity, and (ii) in vivo the increases in bioavailability, serum and/or tissue half-life and the decreases in immunogenicity that are necessary for a commercially successful product.
- Branched forms of PEG for use in conjugate preparation have been introduced to alleviate some of the difficulties and limitations encountered with the use of long straight PEG polymer chains.
- Experience to date demonstrates that branched forms of PEG deliver a "curve-shift" in performance benefit versus linear straight PEG polymers chains of same total molecular weight.
- branched polymers may overcome some of the limitations associated with conjugates formed with long linear PEG polymers, neither branched nor linear PEG polymer conjugates adequately resolve the issues associated with the use of conjugated functional agents, in particular, inhibitory agents.
- PEGylation does, though, represent the state of the art in conjugation of hydrophilic polymers to target agents.
- PEGylated compound products among them peginterferon alfa-2a (PEGASYS), pegfilgrastim (Neulasta), pegaptanib (Macugen), and certolizumab pegol (Cimzia), had over $6 billion in annual sales in 2009.
- Functional ized PEG (suitable for conjugation) is manufactured through a laborious process that involves polymerization of short linear polymers which are then multiply functionalized then attached as two conjugation reactions to a lysine residue which becomes a two-arm PEG reagent. Due to the number of synthetic steps and the need for high quality, multiple chromatography steps are required.
- Low polydispersity ( ⁇ 1.2) linear PEG polymers have a size restriction of approximately 20kDa, 30kDa or 40kDa with 20kDa being the economically feasible limit.
- the final reagent size is 40 kDa (2 x 20 kDa), 60 kDa (2 x 30 kDa), 80 kDa (2 x 40 kDa).
- the larger the size the more expensive to manufacture with low polydispersity.
- the larger the size the less optimal the solubility, stability, and viscosity of the polymer and the associated polymer-drug conjugate.
- PEG polymers work well with low-dose, high-potency agonistic molecules such as erythropoietin and interferon.
- PEGylated products have inadequate stability and solubility, the PEG reagent is expensive to manufacture and, most important, PEGylated products have limited further upside in terms of improving in vivo and in vitro performance.
- PEG works because of the polymer's hydrophilic characteristics which shield the conjugated biological agent from the myriad non-specific in vivo clearance mechanisms in the body. The importance of water is generally recognized, but the special insight in this technology is to dig deeper to appreciate that it is how the water is bound and the associated water structure that is critical to the performance enhancement. PEG works because of its hydrophilic nature, but the water is not tightly bound to the polymer and thus the conjugated agent. Water molecules are in free exchange between the PEGylated compound and the surrounding bulk water, enabling clearance systems to recognize the protein. The answer is to find a way to "glue" water so tightly to the polymer and thus conjugated moiety such as to tightly mask the complex entirely from non-specific interactions. To accomplish, it is necessary for the polymer to maintain both positive and negative charges, thus being net neutral, an essential zwitterion. Certain zwitterionic polymers hold and will not release water molecules bound to their structures.
- multi-armed architecture would be functionalized for high efficiency conj ugation to the drug moiety, would be manufactured inexpensively with a minimal number of production steps, and would demonstrate very high quality as judged analytically and very high performance judged in functional in vivo (terminal half-life, immunogenicity, bioactivity) and in vitro (solubility, stability, viscosity, bioactivity) systems.
- a technology that allowed for the maximization of these elements would take the field to new levels of in vivo and in vitro performance.
- One such technology uses as the water binding moiety the phosphorylcholine derived 2-methacryloyloxyethyl phosphorylcholine (HEMA-PC) or a related zwitterion, on a polymer of total size greater than 50 kDa peak molecular weight (Mp) as measured by multi- angle light scattering, with the possibility for highly branched architectures or pseudo architectures, functionalized for site-specific conjugation to a biopharmaceutical(s) of interest, manufactured with techniques enabling a well characterized therapeutic with high quality and low polydispersity, and when conjugated to a biopharmaceutical imparts a dramatic increase in mean terminal half-life versus an equivalent biopharmaceutical as modified with another half-life extension technology (for example, as conjugated with a PEG polymer) and which imparts solubility, stability, viscosity, and characterizability parameters to the conjugate that are a multiple of that seen with PEG or other technologies.
- HEMA-PC phosphorylcholine derived 2-
- the size of the polymer is particularly important as it speaks to the heterogeneity of the underlying statistical polymer which when conjugated to a
- the present invention describes very large polymers with very high quality and very low polydispersity index which are functionalized for chemical conjugation for example to a soluble drug.
- the polymers are not inert, nor are they destined for attachment to a surface or gelled as hydrogel. This is wholly new, surprising, very useful and has not been described previously. For their therapeutic intent, a well-defined drug substance is essential.
- Hadd!eton et al (2004, JACS 126, 13220- 13221 ) utilized controlled radical polymerization to construct small linear polymers of poly(methoxyPEG)methacrylates for use in conjugation with proteins and in a size range of 1 1 ,000 to 34,000 Daltons.
- the authors increased the reaction temperature and sought out catalysts that could drive a faster polymerization.
- Haddleton et al (2005, JACS 127, 2966-2973) again synthesized functionalized
- the present invention describes high molecular weight zwitterion-containing polymers (>50 kDa peak molecular weight measured using multi-angle light scattering) with concomitantly low PDIs. This is surprising in light of the foregoing summary of the current state of the art. - BRIEF SUMMARY OF THE INVENTION
- the present invention provides a polymer having at least two polymer arms each having a plurality of monomers each independently selected from acrylate, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine,
- the polymer also includes an initiator fragment linked to a proximal end of the polymer arm, wherein the initator moiety is suitable for radical polymerization.
- the polymer also includes an end group linked to a distal end of the polymer arm. At least one of the initiator fragment and the end group of the polymer includes a functional agent or a linking group.
- the present invention provides a conjugate including at least one polymer having at least two polymer arms each having a plurality of monomers each independently selected from the group consisting of acrylate, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone or vinyl-ester, wherein each monomer includes a hydrophilic group, an initiator fragment linked to a proximal end of the polymer arm, wherein the initator moiety is suitable for radical polymerization, and an end group linked to a distal end of the polymer arm.
- the conjugates of the present invention also include at least one functional agent having a bioactive agent or a diagnostic agent, linked to the initiator fragment or the end group.
- the present invention provides a polymer of the formula:
- R can be H, L -A , LG or L -LG .
- M and M ⁇ can be independently selected from acrylate, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone or vinyl-ester.
- G 1 and G 2 is each independently a hydrophilic group.
- Each group I is an initiator fragment and ⁇ a radical scavenger such that the combination of l- ⁇ is an initiator, I 1 , for the polymerization of the polymer via radical polymerization.
- each F can be independently selected from H, halogen or Ci_6 alkyl.
- Each L 1 , L 2 and L 3 can be a linker.
- Each A 1 can be a functional agent.
- Each LG 1 can be a linking group.
- Subscripts x and y' can each independently be an integer of from 1 to 1000.
- Each subscript z can be independently an integer of from 1 to 10.
- Subscript s can be an integer of from 2 to 1 00.
- the present invention provides an initiator of the formula:
- each ⁇ can independently be halogen, -SCN, or -NCS;
- L 4 and L 5 can each independently be a bond or a linker, such that one of L 4 and L 5 is a linker;
- C is a bond or a core group;
- LG 2 is a linking group; and
- subscript p is an integer from 2 to 1 00.
- Figure 1 shows a scheme for the preparation of the random copolymers of the present invention.
- the initiator ⁇ - ⁇ is cleaved into initiator fragment I and radical scavenger ⁇ .
- the initiator fragment I then reacts with comonomers M 1 and M 2 to initiate the polymerization process and generate species A.
- the radical scavenger ⁇ can then reversibly react with species A to form species B.
- species A can react with additional monomers to continue propagation of the polymer (species C).
- the growing polymer chain of species C reversibly reacts with radical scavenger F to form the random copolymer, species D.
- the present invention provides high MW polymers having hydrophilic groups or zwitterions, such as phosphorylcholine, and at least one functional agent (as defined herein).
- Phosphorylcholine as a highly biocompatible molecule drives fundamental biocompatibility. It also has chaperone type functions, in terms of protecting proteins under temperature or other stress. It also can allow other functions such as reversible cellular uptake.
- the functional agent can be a bioactive agent such as a drug, therapeutic protein or targeting agent, as well as a detection agent, imaging agent, labeling agent or diagnostic agent.
- the high MW polymers are useful for the treatment of a variety of conditions and disease states by selecting one or more appropriate functional agents.
- More than one bioactive agent can be linked to the high MW polymer, thus enabling treatment of notjust a single disease symptom or mechanism, but rather the whole disease.
- the high MW polymers are useful for diagnostic and imaging purposes by attachment of suitable targeting agents and imaging agents.
- the high MW polymers can include both therapeutic and diagnostic agents in a single polymer, providing theranostic agents that treat the disease as well as detect and diagnose.
- the polymers can be linked to the bioactive agent(s) via stable or unstable linkages.
- the polymers can be prepared via a conventional free-radical polymerization or controlled/living radical polymerization, such as atom transfer radical polymerization (ATRP), using monomers that contain zwitterions, such as phosphorylcholine.
- ATRP atom transfer radical polymerization
- the initiators used for preparation of the high MW polymers can have multiple initiating sites such that multi-arm polymers, such as stars, can be prepared.
- the initiator can also contain either the bioactive agent, or linking groups that are able to link to the bioactive agent.
- the invention also describes new ways to achieve branched polymer architectures on a bioactive surface.
- the concept is one of "branching points" or "proximal attachment points” on the target molecule such as to recreate an effective >2 arm polymer with >1 arm polymers attached to a localized site(s) on a target molecule.
- indiscriminate PEGylation of a protein with a non site-specific reagent would result in multiple PEG polymers conjugated to multiple amine groups scattered through the protein.
- the target agent is modified to locate two unique conjugation sites (for example, cysteine amino acids) such that once the tertiary structure of the protein or peptide or agent is formed, the two sites will be in proximity one to the other.
- this modified target agent is used in a conjugation reaction with a polymer containing the corresponding conjugation chemistry (for example, thiol reactive).
- a polymer containing the corresponding conjugation chemistry for example, thiol reactive
- the target agent would contain a single unique site, for example a free cysteine, and a tri(hetero)functional linking agent would be employed to attach >2 linear polymers to this single site, again creating a "pseudo" branch.
- the invention also describes new ways to achieve very high efficiency and site specific conjugation to peptides and proteins by way of inteins.
- Polymer refers to a series of monomer groups linked together.
- the high MW polymers are prepared from monomers that include, but are not limited to, acrylates, methacrylates, acrylamides, methacrylamides, styrenes, vinyl-pyridine, vinyl-pyrrolidone and vinyl esters such as vinyl acetate. Additional monomers are useful in the high MW polymers of the present invention. When two different monomers are used, the two monomers are called “comonomers,” meaning that the different monomers are copolymerized to form a single polymer.
- the polymer can be linear or branched.
- each polymer chain is referred to as a "polymer arm.”
- the end of the polymer arm linked to the initiator moiety is the proximal end, and the growing-chain end of the polymer arm is the distal end.
- the polymer arm end group can be the radical scavenger, or another group.
- Hydrophilic group refers to a compound or polymer that attracts water, and is typically water soluble.
- hydrophilic groups include hydrophilic polymers and zwitterionic moieties.
- Other hydrophilic groups include, but are not limited to, hydroxy, amine, carboxylic acid, amide, sulfonate and phosphonate.
- Hydrophilic polymers include, but are not limited to, polyethylene oxide, polyoxazoline, cellulose, starch and other polysaccharides.
- Zwitterionic moiety refers to a compound having both a positive and a negative charge.
- Zwitterionic moieties useful in the high MW polymers can include a quaternary nitrogen and a negatively charged phosphate, such as phosphorylcholine:
- Initiator refers to a compound capable of initiating a polymerization using the comonomers of the present invention.
- the polymerization can be a conventional free radical polymerization or a controlled/living radical polymerization, such as Atom Transfer Radical Polymerization (ATRP), Reversible Addition-Fragmentation-Termi nation (RAFT) polymerization or nitroxide mediated polymerization (NMP).
- ATRP Atom Transfer Radical Polymerization
- RAFT Reversible Addition-Fragmentation-Termi nation
- NMP nitroxide mediated polymerization
- the polymerization can be a "pseudo" controlled polymerization, such as degenerative transfer.
- the initiator When the initiator is suitable for ATRP, it contains a labile bond which can homolytically cleave to form an initiator fragment, I, being a radical capable of initiating a radical polymerization, and a radical scavenger, ⁇ , which reacts with the radical of the growing polymer chain to reversibly terminate the polymerization.
- the radical scavenger F is typically a halogen, but can also be an organic moiety, such as a nitrile.
- Linker refers to a chemical moiety that l inks two groups together.
- the linker can be cleavable or non-cleavable.
- Cleavable linkers can be hydrolyzable, enzymatically cleavable, pH sensitive, photolabile, or disulfide linkers, among others.
- Other linkers include homobifunctional and heterobifunctional linkers.
- a “linking group” is a functional group capable of forming a covalent linkage consisting of one or more bonds to a bioactive agent. Nonlimiting examples include those illustrated in Table 1 .
- Hydrolytically susceptible linker refers to a chemical linkage or bond, such as a covalent bond, that undergoes hydrolysis under physiological conditions. The tendency of a bond to hydrolyze may depend not only on the general type of linkage connecting two central atoms between which the bond is severed, but also on the substituents attached to these central atoms.
- hydrolytically susceptible linkages include esters of carboxylic acids, phosphate esters, acetals, ketals. acyloxyalkyl ether, imines, orthoesters, and some amide linkages.
- Enzymatically cleavable linker refers to a linkage that is subject to degradation by one or more enzymes. Some hydrolytically susceptible linkages may also be enzymatically degradable. For example esterases may act on esters of carboxylic acid or phosphate esters, and proteases may act on peptide bonds and some amide linkages.
- pH sensitive linker refers to a linkage that is stable at one pH and subject to degradation at another pH.
- the pH sensitive linker can be stable at neutral or basic conditions, but labile at mildly acidic conditions.
- Photolabile linker refers to a linkage, such as a covalent bond, that cleaves upon exposure to light.
- the photolabile linker includes an aromatic moiety in order to absorb the incoming light, which then triggers a rearrangement of the bonds in order to cleave the two groups linked by the photolabile linker.
- Self-immolative or double prodrug linker refers to a linkage in which the main function of the linker is to release a functional agent only after selective trigger activation (for example, a drop in pH or the presence of a tissue-specific enzyme) followed by spontaneous chemical breakdown to release the functional agent.
- “Functional agent” is defined to include a bioactive agent or a diagnostic agent.
- a “bioactive agent” is defined to include any agent, drug, compound, or mixture thereof that targets a specific biological location (targeting agent) and/or provides some local or systemic physiological or pharmacologic effect that can be demonstrated in vivo or in vitro.
- Non-limiting examples include drugs, vaccines, antibodies, antibody fragments, scFvs, diabodies, avimers, vitamins and cofactors, polysaccharides, carbohydrates, steroids, lipids, fats, proteins, peptides, polypeptides, nucleotides, oligonucleotides, polynucleotides, and nucleic acids (e.g., mR A, tRNA, snRNA, RNAi, D A, cDNA, antisense constructs, ribozymes, etc).
- a "diagnostic agent” is defined to include any agent that enables the detection or imaging of a tissue or disease. Examples of diagnostic agents include, but are not limited to, radiolabels, fluorophores and dyes.
- Therapeutic protein refers to peptides or proteins that include an amino acid sequence which in whole or in part makes up a drug and can be used in human or animal pharmaceutical applications. Numerous therapeutic proteins are known to practitioners of skill in the art including, without limitation, those disclosed herein.
- Phosphorylcholine also denoted as “PC,” refers to the following:
- the phosphorylcholine is a zwitterionic group and includes salts (such as inner salts), and protonated and deprotonated forms thereof.
- Phosphorylchol ine containing polymer is a polymer that contains
- phosphorylcholine containing polymer is specified in this application for a particular use, a single phosphorylcholine can also be employed in such use.
- Zwitterion containing polymer refers to a polymer that contains a zwitterion.
- Poly(acryIoyloxyethyl phosphorylcholine) containing polymer refers to a polymer of acrylic acid containing at least one acryloyloxyethyl phosphorylcholine monomer such as 2-methacryIoyloxyethyl phosphorylcholine (i. e. , 2-inethacryloyl-2'-trimethylammonium ethyl phosphate).
- Contacting refers to the process of bringing into contact at least two distinct species such that they can react. It should be appreciated, however, that the resulting reaction product can be produced directly from a reaction between the added reagents or from an intermediate from one or more of the added reagents which can be produced in the reaction mixture.
- Water-soluble polymer refers to a polymer that is soluble in water.
- a solution of a water-soluble polymer may transmit at least about 75%, more preferably at least about 95% of light, transmitted by the same solution after filtering.
- a water-soluble polymer or segment thereof may be at least about 35%, at least about 50%, about 70%, about 85%), about 95% or 100% (by weight of dry polymer) soluble in water.
- "Molecular weight" in the context of the polymer can be expressed as either a number average molecular weight, or a weight average molecular weight or a peak molecular weight. Unless otherwise indicated, all references to molecular weight herein refer to the peak molecular weight.
- molecular weight determinations can be measured using gel permeation chromatography or other liquid chromatography techniques.
- Other methods for measuring molecular weight values can also be used, such as the use of end-group analysis or the measurement of colligative properties (e.g. , freezing-point depression, boiling-point elevation, or osmotic pressure) to determine number average molecular weight, or the use of light scattering techniques,
- the polymeric reagents of the invention are typically polydisperse (i.e. , number average molecular weight and weight average molecular weight of the polymers are not equal), possessing low polydispersity values of preferably less than about 1 .5, as judged by gel permeation chromatography.
- the polydispersities may be in the range of about 1.4 to about 1 .2, more preferably less than about 1.15, still more preferably less than about 1.10, yet still more preferably less than about 1.05, and most preferably less than about 1.03.
- a or “an” entity refers to one or more of that entity ; for example, a compound refers to one or more compounds or at least one compound.
- a compound refers to one or more compounds or at least one compound.
- the terms “a” (or “an”), “one or more”, and “at least one” can be used interchangeably herein.
- Protecting group refers to the presence of a group (i. e., the protecting group) that prevents or blocks reaction of a particular chemically reactive functional group in a molecule under certain reaction conditions.
- Protecting group will vary depending upon the type of chemically reactive group being protected as well as the reaction conditions to be employed and the presence of additional reactive or protecting groups in the molecule, if any.
- protecting groups known in the art, such as those found in the treatise by Greene et al., "Protective Groups In Organic Synthesis," 3 rd Edition, John Wiley and Sons, Inc., New York, 1999.
- Spacer and “spacer group” are used interchangeably herein to refer to an atom or a collection of atoms optionally used to link interconnecting moieties such as a terminus of a water-soluble polymer and a reactive group of a functional agent and a reactive group.
- a spacer may be lrydrolytically stable or may include a hydrolytically susceptible or enzymatically degradable linkage.
- Alkyl refers to a straight or branched, saturated, aliphatic radical having the number of carbon atoms indicated.
- Cj-Ce alkyl includes, but is not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, hexyl, etc.
- Other alkyl groups include, but are not limited to heptyl, octyl, nonyl, decyl, etc.
- Alkyl can include any number of carbons, such as 1 -2, 1 -3, 1 -4, 1 -5, 1 -6, 1 -7, 1 -8, 1 -9, 1 - 10, 2-3, 2-4, 2-5, 2-6, 3-4, 3-5, 3-6, 4-5, 4-6 and 5-6.
- the alkyl group is typically monovalent, but can be divalent, such as when the alkyl group links two moieties together.
- lower referred to above and hereinafter in connection with organic radicals or compounds respectively defines a compound or radical which can be branched or unbranched with up to and including 7, preferably up to and including 4 and (as unbranched) one or two carbon atoms.
- Alkylene refers to an alkyl group, as defined above, linking at least two other groups, i.e., a divalent hydrocarbon radical.
- the two moieties linked to the alkylene can be linked to the same atom or different atoms of the alkylene.
- a straight chain alkylene can be the bivalent radical of -(CH2) n, where n is I , 2, 3, 4, 5 or 6.
- Alkylene groups include, but are not limited to, methylene, ethylene, propylene, isopropylene, butylene, isobutylene, sec-butylene, pentylene and hexylene.
- R', R" and R"' each independently refer to hydrogen, unsubstituted (Cj-Cg)alkyl and heteroalkyl, unsubstituted aryl, aryl substituted with 1 -3 halogens, unsubstituted alkyl, alkoxy or thioalkoxy groups, or aryl-(Ci -C 4 )alkyl groups.
- R' and R" are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6-, or 7-membered ring.
- -NR'R is meant to include 1 -pyrrolidinyl and 4-morpholinyl. From the above discussion of substituents, one of skill in the art will understand that the term "alkyl” is meant to include groups such as haloalkyl (e.g., -CF 3 and -CH 2 CF 3 ) and acyl
- the substituted alkyl and heteroalkyl groups have from 1 to 4 substituents, more preferably 1 , 2 or 3 substituents. Exceptions are those perhalo alkyl groups (e.g., pentafluoroethyl and the like) which are also preferred and contemplated by the present invention.
- R', R", R"' and R" each preferably independently refer to hydrogen, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, e.g., aryl substituted with 1 -3 halogens, substituted or unsubstituted alkyl, alkoxy or thioalkoxy groups, or arylalkyl groups.
- each of the R groups is independently selected as are each R', R", R"' and R"" groups when more than one of these groups is present.
- R' and R" When R' and R" are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6-, or 7-membered ring.
- -NR'R is meant to include, but not be limited to, 1 -pyrrolidinyl and 4-morpholinyl.
- alkyl is meant to include groups including carbon atoms bound to groups other than hydrogen groups, such as haloalkyl (e.g., -CF 3 and -CH 2 CF 3 ) and acyl
- Alkoxy refers to alkyl group having an oxygen atom that either connects the alkoxy group to the point of attachment or is linked to two carbons of the alkoxy group.
- Alkoxy groups include, for example, methoxy, ethoxy, propoxy, iso-propoxy, butoxy, 2-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, pentoxy, hexoxy, etc.
- the alkoxy groups can be further substituted with a variety of substituents described within. For example, the alkoxy groups can be substituted with halogens to form a "halo-alkoxy" group.
- Carboxyalkyl means an alkyl group (as defined herein) substituted with a carboxy group.
- carboxy cycloalkyl means an cycloalkyl group (as defined herein) substituted with a carboxy group.
- alkoxyalkyl means an alkyl group (as defined herein) substituted with an alkoxy group.
- carboxy employed herein refers to carboxylic acids and their esters.
- Haloalkyl refers to alkyl as defined above where some or all of the hydrogen atoms are substituted with halogen atoms.
- Halogen preferably represents chloro or fluoro, but may also be bromo or iodo.
- haloalkyl includes trifluoromethyl, fluoromethyl, 1 ,2,3,4,5-pentafluoro-phenyl, etc.
- perfluoro defines a compound or radical which has all available hydrogens that are replaced with fluorine. For example, perfluorophenyl refers to 1 ,2,3,4,5-pentafluorophen l, perfluoromethyl refers to
- perfluoromethoxy refers to 1 , 1 , 1 -trifluoromethoxy .
- Fluoro-substituted alkyl refers to an alkyl group where one, some, or al l hydrogen atoms have been replaced by fluorine.
- Cytokine in the context of this invention is a member of a group of protein signaling molecules that may participate in cell-cell communication in immune and inflammatory responses. Cytokines are typically small, water-soluble glycoproteins that have a mass of about 8-35 kDa.
- Cycloalkyl refers to a cyclic hydrocarbon group that contains from about 3 to 12, from 3 to 10, or from 3 to 7 endocyclic carbon atoms. Cycloalkyl groups include fused, bridged and spiro ring structures.
- Endocyclic refers to an atom or group of atoms which comprise part of a cyclic ring structure.
- Exocyclic refers to an atom or group of atoms which are attached but do not define the cyclic ring structure.
- Cyclic alkyl ether refers to a 4 or 5 member cyclic alkyl group having 3 or 4 endocyclic carbon atoms and 1 endocyclic oxygen or sulfur atom (e.g. , oxetane, thietane, tetrahydrofuran, tetrahydrothiophene); or a 6 to 7 member cyclic alkyl group having 1 or 2 endocyclic oxygen or sulfur atoms (e.g.
- alkenyl refers to either a straight chain or branched hydrocarbon of 2 to 6 carbon atoms, having at least one double bond.
- alkenyl groups include, but are not limited to, vinyl, propenyl, isopropenyl, 1 -butenyl, 2-butenyl, isobutenyl, butadienyl, 1 -pentenyl, 2-pentenyl, isopentenyl, 1 ,3-pentadienyl, 1 ,4-pentadienyl, 1 -hexenyl, 2-hexenyl, 3-hexenyl, 1,3-hexadienyl, 1 ,4-hexadienyl, 1 ,5-hexadienyl, 2,4-hexadienyl, or
- Alkenyl groups can also have from 2 to 3, 2 to 4, 2 to 5, 3 to 4, 3 to 5, 3 to 6, 4 to 5, 4 to 6 and 5 to 6 carbons.
- the alkenyl group is typically monovalent, but can be divalent, such as when the alkenyl group links two moieties together.
- Alkenylene refers to an alkenyl group, as defined above, linking at least two other groups, i.e., a divalent hydrocarbon radical.
- the two moieties linked to the alkenylene can be linked to the same atom or different atoms of the alkenylene.
- Alkenylene groups include, but are not limited to, ethenylene, propenylene, isopropenylene, butenylene, isobutenylene, sec-butenylene, pentenylene and hexenylene.
- Alkynyl refers to either a straight chain or branched hydrocarbon of 2 to 6 carbon atoms, having at least one triple bond.
- alkynyl groups include, but are not limited to, acetylenyl, propynyl, 1 -butynyl, 2-butynyl, isobutynyl, sec-butynyl, butadiynyl, 1 -pentynyl, 2-pentynyl, isopentynyl, 1 ,3-pentadiynyl, 1 ,4-pentadiynyl, 1 -hexynyl, 2-hexynyl, 3-hexynyl, 1 ,3-hexadiynyl, 1 ,4-hexadiynyl, 1 ,5-hexadiynyl, 2,4-hexadiynyl, or
- Alkynyl groups can also have from 2 to 3, 2 to 4, 2 to 5, 3 to 4, 3 to 5, 3 to 6, 4 to 5, 4 to 6 and 5 to 6 carbons.
- the alkynyl group is typically monovalent, but can be divalent, such as when the alkynyl group links two moieties together.
- Alkynylene refers to an alkynyl group, as defined above, linking at least two other groups, i.e., a divalent hydrocarbon radical.
- the two moieties linked to the alkynylene can be linked to the same atom or different atoms of the alkynylene.
- Alkynylene groups include, but are not limited to, ethynylene, propynylene, butynylene, sec-butynylene, pentynylene and hexynylene.
- Cycloalkyl refers to a saturated or partially unsaturated, monocyclic, fused bicyclic or bridged polycyclic ring assembly containing from 3 to 12 ring atoms, or the number of atoms indicated.
- Monocyclic rings include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cyclooctyl.
- Bicyclic and polycyclic rings include, for example, norbornane, decahydronaphthalene and adamantane.
- C;,.8cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, and norbornane.
- Cycloalkylene refers to a cycloalkyl group, as defined above, linking at least two other groups, i.e., a divalent hydrocarbon radical.
- the two moieties linked to the cycloalkylene can be linked to the same atom or different atoms of the cycloalkylene.
- Cycloalkylene groups include, but are not limited to, cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, and cyclooctylene.
- Heterocycloalkyl refers to a ring system having from 3 ring members to about 20 ring members and from 1 to about 5 heteroatoms such as N, O and S. Additional heteroatoms can also be useful, including, but not limited to, B, Al, Si and P. The heteroatoms can also be oxidized, such as, but not limited to, -S(O)- and -S(0)2-.
- heterocycle includes, but is not limited to, tetrahydrofuranyl, tetrahydrothiophenyl, morpholino, pyrrolidinyl, pyrrolinyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperazinyl, piperidinyl, indolinyl, quinuclidinyl and l ,4-dioxa-8-aza-spiro[4.5]dec-8-yl.
- Heterocycloalkylene refers to a heterocyclalkyl group, as defined above, linking at least two other groups.
- the two moieties linked to the heterocycloalkylene can be linked to the same atom or different atoms of the heterocycloalkylene.
- Aryl refers to a monocyclic or fused bicyclic, tricyclic or greater, aromatic ring assembly containing 6 to 16 ring carbon atoms.
- aryl may be phenyl, benzyl or naphthyi, preferably phenyl.
- Arylene means a divalent radical derived from an aryl group.
- Aryl groups can be mono-, di- or tri-substituted by one, two or three radicals selected from alkyl, alkoxy, aryl, hydroxy, halogen, cyano, amino, amino-alkyl, trifluoromethyl, alkylenedioxy and oxy-C2-C3-alkylene; all of which are optionally further substituted, for instance as hereinbefore defined; or 1 - or 2-naphthyl; or 1 - or 2-phenanthrenyl.
- Alkylenedioxy is a divalent substitute attached to two adjacent carbon atoms of phenyl, e.g. methylenedioxy or ethylenedioxy.
- Oxy-C2-C3-alkylene is also a divalent substituent attached to two adjacent carbon atoms of phenyl, e.g. oxyethylene or oxypropylene.
- An example for oxy- Ci-Cs-alkylene-phenyl is 2,3-dihydrobenzofuran-5-yI.
- aryl is naphthyi, phenyl or phenyl mono- or disubstituted by alkoxy, phenyl, halogen, alkyl or trifluoromethyl, especially phenyl or phenyl-mono- or disubstituted by alkoxy, halogen or trifluoromethyl, and in particular phenyl.
- substituted phenyl groups as R are, e.g. 4-chlorophen- 1 -yl,
- Arylene refers to an aryl group, as defined above, linking at least two other groups. The two moieties linked to the arylene are linked to different atoms of the arylene. Arylene groups include, but are not limited to, phenylene.
- Arylene-oxy refers to an arylene group, as defined above, where one of the moieties linked to the arylene is linked through an oxygen atom.
- Arylene-oxy groups include, but are not limited to, phenylene-oxy.
- substituents for the aryl and heteroaryl groups are varied and are selected from: -halogen, -OR', -OC(0)R', -NR'R", -SR', -R ⁇ -CN, -N0 2 , -C0 2 R ⁇ -CONR'R", -C(O) R ⁇ -OC(0)NR'R", -NR"C(0)R', -NR"C(0) 2 R ⁇
- Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -T-C(0)-(CH 2 ) q -U-, wherein T and U are independently -NH-, -0-, -CH 2 - or a single bond, and q is an integer of from 0 to 2.
- two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH 2 ) r -B-, wherein A and B are independently -CH 2 -, -0-, -NH-, -S-, -S(0 , -S(0) 2 -, -S(0) 2 NR'- or a single bond, and r is an integer of from 1 to 3.
- One of the single bonds of the new ring so formed may optionally be replaced with a double bond.
- two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the
- -NR'- and -S(0) 2 NR'- is selected from hydrogen or unsubstituted (Ci-C6)alkyl.
- Heteroaryl refers to a monocyclic or fused bicyclic or tricyclic aromatic ring assembly containing 5 to 16 ring atoms, where from 1 to 4 of the ring atoms are a heteroatom each N, O or S.
- heteroaryl includes pyridyl, indolyl, indazolyl, quinoxalinyl, quinolinyl, isoquinolinyl, benzothienyl, benzofuranyl, furanyl, pyrrolyl, thiazolyl, benzothiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, thienyl, or any other radicals substituted, especially mono- or di-substituted, by e.g. alkyl, nitro or halogen.
- Pyridyl represents 2-, 3- or 4-pyridyl, advantageously 2- or 3-pyridyl.
- Thienyl represents 2- or 3-thienyl.
- Quinolinyl represents preferably 2-, 3- or 4-quinolinyl.
- Isoquinolinyl represents preferably 1 -, 3- or 4-isoquinolinyl. Benzopyranyl,
- benzothiopyranyl represents preferably 3-benzopyranyl or 3-benzothiopyranyl, respectively.
- Thiazolyl represents preferably 2- or 4-thiazolyl, and most preferred, 4-thiazolyl.
- Triazolyl is preferably 1-, 2- or 5-(l ,2,4-triazolyl).
- Tetrazolyl is preferably 5-tetrazolyl.
- heteroaryl is pyridyl, indolyl, quinolinyl, pyrrolyl, thiazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, thienyl, furanyl, benzothiazolyl, benzofuranyl, isoquinolinyl, benzothienyl, oxazolyl, indazolyl, or any of the radicals substituted, especially mono- or di-substituted.
- heteroalkyl refers to an alkyl group having from 1 to 3 heteroatoms such as N, O and S. Additional heteroatoms can also be useful, including, but not limited to, B, Al, Si and P. The heteroatoms can also be oxidized, such as, but not limited to, -S(O)- and -S(0)2-.
- heteroalkyl can include ethers, thioethers, alkyl-amines and alkyl-thiols.
- heteroalkylene refers to a heteroalkyl group, as defined above, linking at least two other groups.
- the two moieties linked to the heteroalkylene can be linked to the same atom or different atoms of the heteroalkylene.
- Electrophile refers to an ion or atom or collection of atoms, which may be ionic, having an electrophilic center, i. e., a center that is electron seeking, capable of reacting with a nucleophile.
- An electrophile or electrophilic reagent is a reagent that forms a bond to its reaction partner (the nucleophile) by accepting both bonding electrons from that reaction partner.
- Nucleophile refers to an ion or atom or collection of atoms, which may be ionic, having a nucleophilic center, i.e., a center that is seeking an electrophilic center or capable of reacting with an electrophile.
- a nucleophile or nucleophilic reagent is a reagent that forms a bond to its reaction partner (the electrophile) by donating both bonding electrons.
- a “nucleophilic group” refers to a nucleophile after it has reacted with a reactive group. Non limiting examples include amino, hydroxyl, alkoxy, haloalkoxy and the like.
- aleimido refers to a pyrrole-2,5-dione- l -yl group having the structure:
- amino acids found in proteins and polypeptides are L-alanine, L-arginine, L-asparagine, L-aspartic acid,
- Non-naturally occurring amino acids found in proteins are any amino acid other than those recited as naturally occurring amino acids.
- Non-naturally occurring amino acids include, without limitation, the D isomers of the naturally occurring amino acids, and mixtures of D and L isomers of the naturally occurring amino acids.
- amino acids such as 4-hydroxyprol ine, desmosine, isodesmosine, 5-hydroxylysine, epsilon-N-methyllysine, 3-methylhistidine, although found in naturally occurring proteins, are considered to be non-naturally occurring amino acids found in proteins for the purpose of this disclosure as they are generally introduced by means other than ribosomal translation of mRNA.
- Linear in reference to the geometry, architecture or overall structure of a polymer, refers to polymer having a single polymer arm.
- Branched in reference to the geometry, architecture or overall structure of a polymer, refers to polymer having 2 or more polymer “arms” extending from a core structure, such as an L group, that may be derived from an initiator employed in an atom transfer radical polymerization reaction.
- a branched polymer may possess 2 polymer arms, 3 polymer arms, 4 polymer arms, 5 polymer arms, 6 polymer arms, 7 polymer arms, 8 polymer arms, 9 polymer arms or more.
- compounds having three or more polymer arms extending from a single linear group are denoted as having a "comb" structure or "comb” architecture. Branched can also be achieved through “statistical" structures to create broader dendrimer-like architectures.
- the group linking the polymer arms can be a small molecule having multiple attachment points, such as glycerol, or more complex structures having 4 or more polymer attachment points, such as dendrimers and hyperbranched structures.
- the group can also be a nanoparticle appropriately functionalized to allow attachment of multiple polymer arms.
- compositions refers to a composition comprising a compound of the invention and a pharmaceutically acceptable excipient or pharmaceutically acceptable excipients.
- “Pharmaceutically acceptable excipient” and “pharmaceutically acceptable carrier” refer to an excipient that can be included in the compositions of the invention and that causes no significant adverse toxicological effect on the patient.
- pharmaceutically acceptable excipients include water, NaCl, normal saline solutions, lactated Ringer's, normal sucrose, normal glucose and the like.
- Patient or “subject in need thereof refers to a living organism suffering from or prone to a condition that can be prevented or treated by administration of a pharmaceutical composition as provided herein.
- Non-limiting examples include humans, other mammals and other non-mammalian animals.
- “Therapeutically effective amount” refers to an amount of a conjugated functional agent or of a pharmaceutical composition useful for treating, ameliorating, or preventing an identified disease or condition, or for exhibiting a detectable therapeutic or inhibitory effect. The effect can be detected by any assay method known in the art.
- the "biological half-life" of a substance is a pharmacokinetic parameter which specifies the time required for one half of the substance to be removed from an organism following introduction of the substance into the organism.
- the present invention provides a high molecular weight polymer having hydrophilic groups and a functional group or linking group.
- the present invention provides a polymer having at least two polymer arms each having a plurality of monomers each independently selected from acrylate, methacrylate, acrylamidc, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone or a vinyl ester such as vinyl acetate, wherein each monomer includes a hydrophilic group.
- the polymer also includes an initiator fragment linked to a proximal end of the polymer arm, wherein the initiator moiety is suitable for radical polymerization.
- the polymer also includes an end group linked to a distal end of the polymer arm. At least one of the initiator fragment and the end group of the polymer includes a functional agent or a linking group.
- the present invention provides a polymer having a polymer arm having a plurality of monomers each independently selected from acrylate, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone or a vinyl ester such as vinyl acetate, wherein each monomer includes a hydrophilic group.
- the polymer also includes an initiator fragment linked to a proximal end of the polymer arm, wherein the initiator moiety is suitable for radical polymerization.
- the polymer also includes an end group linked to a distal end of the polymer arm. At least one of the initiator fragment and the end group of the polymer includes a functional agent or a linking group.
- the polymer has a peak molecular weight (Mp) of from about 50 kDa to about 1 ,500 kDa, as measured by multi-angle light scattering.
- the polymers of the present invention can have any suitable molecular weight.
- Exemplary molecular weights for the high W polymers of the present invention can be from about 50 to about 1 ,500 kilo-Daltons (kDa).
- the high MW polymers of the present invention can have a molecular weight of about 50 kDa, about 100 kDa, about 200 kDa, about 250 kDa, about 300 kDa, about 350 kDa, about 400 kDa, about 450 kDa, about 500 kDa, about 650 kDa, about 750 kDa, about 1 ,000 kDa or about 1 ,500 kDa.
- the present invention provides a polymer of the formula:
- R can be H, L -A , LG or L -LG .
- M and M can be independently selected from acrylate, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone or vinyl-ester.
- G 1 and G 2 is each independently a hydrophilic group.
- Each group I is an initiator fragment and ⁇ a radical scavenger such that the combination of ⁇ - ⁇ is an initiator, I 1 , for the polymerization of the polymer via radical polymerization.
- each ⁇ can be independently selected from H, halogen or C
- Each L 1 , L 2 and L 3 can be a linker.
- Each A 1 can be a functional agent.
- Each LG 1 can be a linking group.
- Subscripts x and y' can each independently be an integer of from 1 to 1000.
- Each subscript z can be independently an integer of from 1 to 10.
- Subscript s can be an integer of from 2 to 100.
- the present invention provides a polymer of Formula I:
- R 1 of formula I can be H, LAA 1 , LG 1 or L 3 -LG' .
- Each M 1 and M 2 of formula I can be independently selected from acrylate, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone or vinyl-ester.
- Each of ZW and ZW 1 of formula I can be independently a zwitterionic moiety.
- Each I is an initiator fragment and ⁇ a radical scavenger such that the combination of I-P is an initiator, I 1 , for the polymerization of the polymer of formula I via radical polymerization.
- each F can be independently selected from H, halogen or Ci.6 alkyl.
- Each L 1 , L 2 and L 3 of formula 1 can be a linker.
- Each A 1 of formula I can be a functional agent.
- Each LG 1 of formula I can be a linking group.
- Subscripts x and y' of formula I can each independently be an integer of from 1 to 1000.
- Each subscript z of formula I can be independently an integer of from 1 to 10.
- Subscript s of formula I can be an integer of from 2 to 100. The sum of s, x, y 1 and z can be such that the polymer of formula I has a peak molecular weight of from about 50kDa to about l ,500kDa, as measured by multi-angle light scattering.
- the polymer can have the formula:
- the polymer can have the formula
- the high MW polymers of the present invention can also have any suitable number of comonomers, M 2 .
- the number of comonomers, subscript z can be from 1 to 10, such as 1,2, 3, 4, 5, 6, 7, 8, 9 or 10.
- the number of comonomers, subscript z can also be from 1 to 5, 1 to 4, 1 to 3, or 1 to 2.
- the high MW polymer of the present invention can have two different monomers where subscript z is 1, such as in formula la:
- Additional comonomers M " can be present in the high MW polymers of the present invention, such as M 2a , M 2b , M c , M 2d , M 2e , M 2f , M 2 , M 2h , etc., and are defined as above for M 2 , where each comonomer is present in a same or different y' value, and each comonomer having a corresponding ZW 1 group attached.
- the different monomers of the high MW polymers can also be present in any suitable ratio.
- the M 2 monomers collectively or individually, can be present relative to the M 1 monomer in a ratio of 100: 1 , 50: 1 , 40: 1 , 30: 1 , 20: 1 , 10: 1 , 9: 1 , 8: 1 , 7: 1 , 6: 1 , 5:1, 4:1,3:1,2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10, 1:20, 1:30, 1:40, 1:50 and 1 : 100.
- each M 2 monomer can be present in any suitable ratio relative to the M 1 or any other M 2 monomer, such as 100:1, 50:1, 40:1, 30:1, 20:1, 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1,3:1,2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10, 1:20, 1:30, 1:40, 1:50 and 1:100.
- the high MW polymers of the present invention can have any suitable architecture.
- the high M W polymers can be linear or branched. When the high MW polymers are branched, they can have any suitable number of polymer arms, as defined by subscript s of formula I, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90 and up to 100 arms.
- subscript s can be from 2 to 32, 2 to 16, 2 to 10, 2 to 9, 2 to 8, 2 to 7, 2 to 6, 2 to 5, 2 to 4, or 2 to 3.
- subscript s can be 2, 3, 4, 5,6, 8, 9 or 12.
- subscript s can be 3, 6, or 9.
- subscript s can be 3.
- subscript s can be 6. In some other embodiments, subscript s can be 9.
- the high MW polymers of the present invention can adopt any suitable architecture.
- the high MW polymers can be linear, branched, stars, dendrimers, combs, etc.
- a functional agent of the high MW polymers can be linked to the initiator fragment I, or the radical scavenger ⁇ , or both.
- L 1 can be a branching linker such that two or more functional agents can be linked to the initiator fragment I.
- the high MW polymer has formula lb:
- functional agent A 1 can be a drug, therapeutic protein or a targeting agent.
- Linker L 1 can be a cleavable linker, such as when attached to a drug or therapeutic protein to facilitate release of the drug or therapeutic protein.
- linker L 1 can be a non-cleavable linker.
- each comonomer M 2 can have a different zwitterionic group attached.
- the high MW polymer can have formula Ic:
- each of ZW la and ZW lb are as defined above for ZW, and each of y , a and y l b are as defined above for y 1 .
- the high MW polymers have linking groups LG linked to the initiator fragment I, such as shown in the structures below:
- the high MW polymers of the present invention can be modified via a subsequent polymerization with one or more additional monomers.
- monomers M 1 and M 2a can be copolymerized in a first polymerization
- monomer M 2b can be polymerized in a second polymerization.
- a block copolymer would be formed having two blocks, the first block being a high MW polymer of ' and M , and the second block a homopolymer of M .
- monomer M 2b can be copolymerized with monomer M 2c , thus forming a block copolymer where the first block is a high MW polymer of M 1 and M 2a , and the second block is a high MW polymer of M 2b and M 2c .
- Additional polymer structures can be prepared by copolymerizing monomers M 1 , M 2a and M 2b in a first polymerization, followed by copolymerization of monomers M , M , and others, in a second copolymerization. Additional blocks can be prepared by yet a third polymerization using additional monomers. Such polymers provide blocks of copolymers that can have different properties, drugs and functional agents.
- the polymer can be any polymer
- R 1 is L 3 -A ', LG 1 or L J -LG' ;
- a 1 is a drug, an antibody, an antibody fragment, a single domain antibody, an avimer, an adnectin, diabodies.
- L J is -(CH 2 CH 2 0)i.io-; and LG 1 is maleimide, acetal, vinyl, allyl, aldehyde, -C(0)0-C] .6 alkyl, hydroxy, diol, ketal, azide, alkyne, carboxylic acid, or succinimide.
- each LG 1 can be hydroxy, carboxy, vinyl, vinyloxy, allyl, allyloxy, aldehyde, azide, ethyne, propyne, propargyl, -C(0)0-C] .6 alkyl,
- the high W polymers of the present invention are polymerized using any suitable initiator.
- Initiators useful in the present invention can be described by the formula: I-(F)m, where subscript m is an integer from 1 to 100.
- the initiator fragment I can be any group that initiates the polymerization.
- the radical scavenger F can be any group that will reversibly terminate the growing polymer chain.
- the radical scavenger F can be a halogen such as bromine, allowing the end of the polymer to be functional ized after polymerization.
- the radical scavenger F is referred to as an end group.
- the initiator fragment 1 can optionally be functionalized with an R 1 group that can include a variety of functional groups to tune the functionality of the high MW polymer.
- Initiators useful in the present invention can have a single radical scavenger F, or any suitable number of branches such that there are multiple radical scavengers F each capable of reversibly terminating a growing polymer chain.
- subscript m is greater than one such that there are as many radical scavengers F as there are growing polymer chains.
- the polymer of the present invention can have a plurality of polymer arms.
- the polymer can have from 2 to about 100 polymer arms, or from about 2 to about 50 polymer arms, or from about 2 to about 20 polymer arms, or from 2 to about 10 polymer arms, or from about 2 to about 8 polymer arms, or from about 2 to about 4 polymer arms.
- the polymer can also have any sutiable polydispersity index (PDI), as measured by the weight average molecular weight (M w ) divided by the number average molecular weight (M n ), where a PDI of 1 .0 indicates a perfectly monodisperse polymer.
- the PDI can be less than about 2.0, or less than about 1 .9, 1.8, 1.7, 1 .6, 1.5, 1 .4, 1 .3, 1 .2 or 1.1 .
- the initiator fragment is linked to the proximal end of from 2 to about 100 polymer arms. In some other embodiments, the polymer has a polydispersity index of less than about 2.0. In sti ll other embodiments, the initiator fragment is linked to the proximal end of 2 polymer arms. In yet other embodiments, the initiator fragment is linked to the proximal end of 4 polymer arms. In other embodiments, the initiator fragment can be linked to the proximal end of 2, 3, 4, 5, 6, 8, 9 or 12 polymer arms. In some embodiments, the initiator fragment can be linked to the proximal end of 9 polymer arms.
- Pseudo-branched polymers can also be obtained by linking multiple linear, unbranched, polymers of the present invention to a single functional agent such that the polymers are in close proximity.
- the proximity can be obtained by linking the polymers to nearby points on the functional agent, cysteines on a protein, for example.
- the proximity can be afforded by the structure of the functional agent, a protein for example, such that polymers attached to disparate regions of the protein are brought into close proximity due to the folding and secondary and tertiary structure of the protein.
- the close proximity of the two polymers of the present invention on a single functional agent regardless of how the proximity is achieved, can impart properties similar to that of a polymer of the present invention having a plurality of polymer arms.
- initiator fragment I and radical scavenger F are labile, such that during the polymerization process monomers M 1 and comonomers M 2 are inserted between initiator fragment I and radical scavenger ⁇ .
- initiator fragment I and radical scavenger F dissociate, as shown in Figure 1 , to form radicals of I and F.
- the radical of initiator fragment I then reacts with the monomers in solution to grow the polymer and forms a propagating polymer radical (species A and species C of Figure 1 ).
- the radical of the radical scavenger F will reversibly react with the propagating polymer radical to temporarily stop polymer growth.
- the bond between the monomer and the radical savenger F is also labile, such that the bond can cleave and allow the propagating polymer radical to react with additional monomer to grow the polymer.
- the end result of the polymerization process is that initiator fragment 1 is at one end of the polymer chain and radical scavenger F is at the opposite end of the polymer chain.
- the radical of initiator fragment I is typically on a secondary or tertiary carbon, and can be stabilized by an adjacent carbonyl carbon.
- the radical scavenger F is typically a halogen, such as bromine, chlorine or iodine. Together, initiator fragment I and radical scavenger F form the initiator I ' useful in the preparation of the high MW polymers of the present invention.
- initiators can be used to prepare the high MW polymers of the invention, including a number of initiators set forth in US 6,852,816 (incorporated herein by reference).
- the initiators employed for ATRP reactions to prepare high MW polymers of the invention are selected from alkanes, cycloalkanes, alkyl carboxylic acids or esters thereof, cycloalkylcarboxylic acids or esters thereof, ethers and cyclic alkyl ethers, alkyl aryl groups, alkyl amides, alkyl-aryl carboxylic acids and esters thereof, and also bearing one radical scavenger F where unbranched high MW polymers are prepared, and more than one radical scavenger F where branched molecules are prepared.
- the radical scavenger I ' is bromine.
- Initiators employed for ATRP reactions can be hydroxylated. In some
- the initiators employed for ATRP reactions to prepare high MW polymers of the invention are selected from alkanes, cycloalkanes, alkyl carboxylic acids or esters thereof, cycloalkylcarboxylic acids or esters thereof, ethers, cycl ic alkyl ethers, alkyl aryl groups, alkyl amides, alkyl-aryl carboxylic acids and esters thereof, bearing a hydroxyl group, and also bearing one radical scavenger F where unbranched high MW polymers are to be prepared, or alternatively, more than one radical scavenger F where branched molecules are to be prepared.
- Initiators employed for ATRP reactions can bear one or more amine groups.
- the initiators employed for ATRP reactions to prepare high MW polymers of the invention are alkanes, cycloalkanes, alkyl carboxylic acids or esters thereof, cycloalkylcarboxylic acids or esters thereof, ethers, cyclic alkyl ethers alkyl aryl groups, alkyl amides, alkyl-aryl carboxylic acids and esters thereof, bearing an amine group and also bearing one radical scavenger F where unbranched high MW polymers are to be prepared, or alternatively, more than one radical scavenger F where branched molecules are to be prepared.
- Alkylcarboxylic acids including alkyl dicarboxylic acids, having at least one radical scavenger F, and substituted with amino or hydroxy groups can also be employed as initiators.
- the initiators can be alkylcarboxylic acids bearing one or more halogens selected from chlorine and bromine.
- Alkanes substituted with two or more groups selected from -COOH, -OH and -NH , and at least one radical scavenger F can also be employed as initiators for the preparation of high MW polymers where ATRP is employed to prepare high MW polymers of the present invention.
- Initiators can also contain one or more groups including, but not limited to, -Oi l, amino, monoalkylamino, dialkylamino, -O-alkyl, -COOH, -COO-alkyl, or phosphate groups (or protected forms thereof).
- initiators are commercially available, for example bromoacetic acid N-hydroxysuccinimide ester available from Sigma-Aldrich (St. Louis, MO). Suitably protected forms of those initiators can be prepared using standard methods in the art as necessary.
- initiators include thermal, redox or photo initiators, including, for example, alkyl peroxide, substituted alkyl peroxides, aryl peroxides, substituted aryl peroxides, acyl peroxides, alkyl hydroperoxides, substituted aryl hydroperoxides, aryl hydroperoxides, substituted aryl hydroperoxides, heteroalkyl peroxides, substituted heteroalkyl peroxides, heteroalkyl hydroperoxides, substituted heteroalkyl hydroperoxides, heteroaryl peroxides, substituted heteroaryl peroxides, heteroaryl hydroperoxides, substituted heteroaryl hydroperoxides, alkyl peresters, substituted alkyl peresters, aryl peresters, substituted aryl peresters, substituted aryl peresters, azo compounds and halide compounds.
- Specific initiators include cumene hydroperoxide (CHP), tert-butyl hydroperoxide (TBHP), tert-butyl perbenzoate, (TBPB), sodium carbonateperoxide, benzoyl peroxide (BPO), lauroyl peroxide (LPO), methylethyl ketone 45%, potassium persulfate, ammonium persulfate,
- Redox pairs such as persulfate/sulfite and Fe (2+) peroxide or ammonium persulfate and ⁇ , ⁇ , ⁇ ' ⁇ '-tetramethyIethylenediamine (TEMED).
- initiators useful for preparing the high MW polymers of the present invention are branched. Suitable initiators having a single branch point include the following: where radical R can be any of the following:
- the initiator can
- Additional branched initiators include, but are not limited to, the following, where radical R is as defined above:
- the branched initiators include, but are not limited to, the following:
- Additional X groups can include the following:
- Still other initiators include, but are not limited to, the following:
- the initiator can have several branch points to afford a plurality of polymer arms, such as:
- the initiator can have the following structure:
- the initiator can have the following structures:
- the initiator can be added to the polymerization mixture separately, or can be incorporated into another molecule, such as a monomer (hyperbranched structure) or a polymer fragment (such as graft copolymers). Initiation of the polymerization can be accomplished by heat, UV light, or other methods known to one of skill in the art.
- the initiator I-] ' of the present invention has the formula:
- each radical F is a functional group for reaction with a functional agent or linking group of the present invention.
- Radical r is from 1 to 10. Radicals Sp 1 and Sp 2 are spacers and can be any suitable group for forming a covalent bond, such as Ci_ 6 alkyl, aryl or heteroaryl.
- Radical C can be any core providing one or a plurality of points for linking to one or more spacers, Sp 2 (which can be the same or different), and one or more radical scavengers, ⁇ , and providing one or a plurality of points for linking to one or more spacers, Sp' (which can be the same or different), and one or more functional groups, F (which can be the same or different).
- Core C can be any suitable structure, such as a branched structure, a crosslinked structure including heteroatoms, such as silsesquiloxanes, and a linear, short polymer with multiple pendant functional groups.
- core C can be attached to the one or more Sp 1 and Sp 2 spacers by any suitable group for forming a covalent bond including, but not limited to, esters, amides, ethers, and ketones.
- R 10 is an alkyl of from 1 to 20 carbon atoms or an alkyl of from 1 to 20 carbon atoms in which each of the hydrogen atoms may be replaced by a halide, alkenyl of from 2 to 20 carbon atoms, alkynyl of from 2 to 10 carbon atoms, phenyl, phenyl substituted with from 1 to 5 halogen atoms or alkyl groups with from 1 to 4 carbon atoms, aralkyl, aryl, aryl substituted alkyl, in which the aryl group is phenyl or substituted phenyl and the alkyl group is from 1 to 6 carbon atoms, and R 1 1 is aryl or a straight or branched C1-C20 alkyl group or where an N(R ] ')2 group is present, the two R 1 ' groups may be joined to form a 5-, 6- or 7-member heterocyclic ring.
- Spacer Sp 1 covalently links functional group F and core C while
- the initiator of the present invention has the formula:
- L 4 and L 3 are each independently a bond or a linker, such that one of L 4 and L 3 is a l inker.
- C is a bond or a core group.
- LG 2 is a linking group.
- subscript p is from 1 to 100, wherein when subscript p is 1 , C is a bond, and when subscript p is from 2 to 100, C is a core group. In some embodiments, subscript p is from 2 to 100. In other embodiments, subscript p is from 3 to 20. Subscript p can also be 3, 6, 9, or 12. In some embodiments, subscript p is 9.
- the initiator has the formula:
- each R J and R is independently selected H, CN or C
- the core group C has the formula:
- B, B' and B" are each independently a branching unit, L, L' and L" can each independently be a bond or a linker; subscript k is 0 or 1 ; and subscripts n, n' and n" are each independently an integer of 0, 2 or 3, wherein at least one of n, 11 ' and n" is other than 0, and subscript p is equal to the product of n, n' and n".
- subscript k is 0, and subscripts n and n' are both 3.
- subscript k is 0, subscript n is 3 and subscript n' is 2.
- subscript k is 0, subscript n is 2 and subscript n ' is 3.
- Branching units B, B' and B" can be any suitable branching unit, and can have 2, 3, 4 or more branches.
- the branching units can be any of the following:
- the branching units can be any of the following
- the initiator can have any of the following structures:
- Monomers useful for preparing the high MW polymers of the present invention include any monomer capable of radical polymerization. Typically, such monomers have a vinyl group. Suitable monomers include, but are not limited to, acrylate, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone and vinyl esters such as vinyl acetate monomers. Monomers useful in the present invention include a hydrophilic group.
- the hydrophilic group of the present invention can be any suitable hydrophilic group.
- the hydrophilic group can include z itterionic groups and hydrophilic polymers. In some embodiments, each hydrophilic group includes a zwitterionic group.
- Zwitterion groups of the present invention include any compound having both a negative charge and a positive charge.
- Groups having a negative charge and suitable for use in the zwitterions of the present invention include, but are not limited to, phosphate, sulfate, other oxoanions, etc.
- Groups having a positive charge and suitable for use in the zwitterions of the present invention include, but are not limited to, ammonium ions.
- the zwitterion can be phosphorylcholine.
- Other zwitterions useful in the present invention include those described in WO1994016748 and WGT 994016749 (incorporated herein by reference).
- Hydrophilic polymers useful in the present invention include polyethyleneoxide, polyoxazoline, cellulose, dextran, and other polysaccharide polymers. One of skill in the art will appreciate that other hydrophilic polymers are useful in the present invention.
- hydrophilic groups include, but are not limited to, hydroxy, amine, carboxylic acid, amide, sulfonate and phosphonate.
- Monomers useful in the present invention that include such hydrophilic groups include, but are not lim ited to, acrylamide, N- isopropylacrylamide (NiPAAM) and other substituted acrylamide, aciylic acid, and others.
- Monomers, M 1 , containing the zwitterionic moiety, ZW include, but are not limited to, the following:
- the hydrophilic group can be a zwitterionic group.
- the monomer can be 2-(methacryloyloxyethyl)-2'-(trimethylammoniumethyl) phosphate (HEMA-PC). In some other embodiments, the monomer can be 2- (acryloyloxyethyl)-2'-(trimethylammoniumethyl) phosphate.
- the high MW polymers of the present invention can also incorporate any suitable linker L.
- the linkers L 3 provide for attachment of the functional agents to the initiator fragment I and the linkers L 1 and L 2 provide for attachment of the zwitterionic groups to the comonomers M 1 and M 2 .
- the linkers can be cleavable or non-cleavable, homobifunctional or heterobifunctional. Other linkers can be both heterobifunctional and cleavable, or homobifunctional and cleavable.
- Cleavable linkers include those that are hydrolyzable linkers, enzymatically cleavable linkers, pH sensitive linkers, disulfide linkers and photolabile linkers, among others.
- Hydrolyzable linkers include those that have an ester, carbonate or carbamate functional group in the linker such that reaction with water cleaves the linker.
- Enzymatically cleavable linkers include those that are cleaved by enzymes and can include an ester, amide, or carbamate functional group in the linker.
- pH sensitive linkers include those that are stable at one pH but are labile at another pH.
- the change in pH can be from acidic to basic conditions, from basic to acidic conditions, from mildly acidic to strongly acidic conditions, or from mildly basic to strongly basic conditions.
- Suitable pH sensitive linkers are known to one of ski ll in the art and include, but are not limited to, ketals, acetals, imines or imminiums, siloxanes, silazanes, silanes, maleamates-amide bonds, ortho esters, hydrazones, activated carboxylic acid derivatives and vinyl ethers.
- Disulfide linkers are characterized by having a disulfide bond in the linker and are cleaved under reducing conditions.
- Photolabile linkers include those that are cleaved upon exposure to light, such as visible, infrared, ultraviolet, or electromagnetic radiation at other wavelengths.
- Other linkers useful in the present invention include those described in U.S. Patent Application Nos. 2008/0241 102 (assigned to Ascendis/Complex Biosystems) and
- Mirus linkers useful in the present invention include, but are not limited to, the following:
- linkers include those described in Bioconjugate Techniques, Greg T. Hermanson, Academic Press, 2d ed., 2008 (incorporated in its entirety herein), and those described in Angew. Chem. Int. Ed. 2009, 48, 6974-6998 (Bertozzi, C.R. and Sletten, E.M) (incorporated in its entirety herein).
- the linkers of the present invention can have a length of up to 30 atoms, each atom independently C, N, O, S, and P.
- the linkers L 1 , L 2 , L 3 , L 4 , or L 5 , or L, L' and L" can be any of the following: -C i 2 alkyl-, -C3-12 cycloalkyl-, -(C
- linkers L 1 , L 2 and L 3 can be any of the
- linkers L, L' and L" can be -C(0)-(CH 2 ),. 6 - HC(0)-(CH 2 ),. 6-, -C(0)-(CH 2 ),.6-OC(0)-(CH 2 ),. 6 -, or -C(0)-(CH 2 ),. 6 -.
- each of linkers L 1 , L 2 and L 3 is a cleavable linker independently selected from hydrolyzable linkers, enzymatically cleavable linkers, pH sensitive linkers, disulfide linkers and photolabile linkers.
- linkers useful in the present invention include self-immolative linkers.
- Useful self-immolative linkers are known to one of skill in the art, such as those useful for antibody drug conjugates. Exemplary self-immolative linkers are described in U.S. Patent No.
- the linkers and functional agents of the present invention can react with a linking group on the initiator fragment I to form a bond.
- the linking groups LG of the present invention can be any suitable functional group capable of forming a bond to another functional group, thereby linking the two groups together.
- linking groups LG useful in the present invention include those used in click chemistry, maleimide chemistry, and NHS-esters, among others.
- Linking groups involved in click chemistry include, but are not limited to, azides and alkynes that form a triazole ring via the Huisgen cycloaddition process (see U.S. Patent No. 7,375,234, incorporated herein in its entirety).
- the maleim ide chemistry involves reaction of the maleimide olefin with a nucleophile, such as -OH, -SH or -NH 2 , to form a stable bond.
- a nucleophile such as -OH, -SH or -NH 2
- Other linking groups include those described in Bioconjugate Techniques, Greg T. Hermanson, Academic Press, 2d ed., 2008 (incorporated in its entirety herein).
- Linking Groups Product Y-X a linking group (LG) (shown as appended to -X)
- R is Ci-6 alkyl, C 3 - 6 cycioalkyl, or an aryl group having 5-8 endocyclic atoms;
- R is H, C
- R " is a carbonyl derivative *- (CO)-, * - (CO)-(CH 2 )i. 8 -S-S-,
- R is carbonyl derivative of the form *- (C )-0-(CH 2 ),_ 8 -S-S-, *- (C0)-0-(CH 2 ), _8-(CO)-0- ,
- X and Y are each the active agent, linker, monomer or initiator fragment I. -C(0)NR la R lb , -NR la R l b ,
- Functional agents useful in the high MW polymers of the present invention include any biological agent or synthetic compound capable of targeting a particular ligand, receptor, complex, organelle, cell, tissue, epithelial sheet, or organ, or of treating a particular condition or disease state.
- the bioactive agent is a drug, a therapeutic protein, a small molecule, a peptide, a peptoid, an oligonucleotide (aptamer, siRNA, microRNA), a nanoparticle, a carbohydrate, a lipid, a glycolipid, a phospholipid, or a targeting agent.
- Other functional agents useful in the high MW polymers of the present invention include, but are not limited to, radiolabels, contrast agents, fluorophores and dyes.
- the functional agents can be linked to the initiator fragment I or the radical scavenger ⁇ , or both, of the high MW polymers.
- the functional agents can be linked to the initiator fragment I or the radical scavenger ⁇ either before or after polymerization via cleavable or non-cleavable linkers described above.
- the functional agent can also be physisorbed or ionically absorbed to the high MW polymer instead of covalently attached.
- the preparation of the high MW polymers of the present invention linked to a functional agent can be conducted by first linking the functional agent to a linking group attached to an initiator fragment and subjecting the coupled functional agent to conditions suitable for synthesis of the inventive high MW polymers.
- a suitable linking group can be an initiator (e.g., iodinated, brominated or chlorinated compound/group) for use in ATRP reactions.
- an initiator e.g., iodinated, brominated or chlorinated compound/group
- Such a reaction scheme is possible where the functional agent is compatible with the polymer polymerization reactions and any subsequent workup required.
- coupling of functional agents to preformed high MW polymers can be used where the functional agent is not compatible with conditions suitable for polymerization.
- coupling of functional agent to preformed high MW polymers of the present invention can be employed.
- Bioactive agents, A can be broadly selected.
- the bioactive agents can be selected from one or more drugs, vaccines, aptamers, avimer scaffolds based on human A domain scaffolds, diabodies, camelids, shark IgNAR antibodies, fibronectin type III scaffolds with modified specificities, antibodies, antibody fragments, vitamins and cofactors, polysaccharides, carbohydrates, steroids, lipids, fats, proteins, peptides, polypeptides, nucleotides, oligonucleotides, polynucleotides, and nucleic acids (e.g., mRNA, tRNA, snRNA, RNAi, microRNA, DNA, cDNA, antisense constructs, ribozymes, etc, and combinations thereof).
- the bioactive agents can be selected from proteins, peptides, polypeptides, soluble or cell-bound, extracellular or intracellular, kinesins, molecular motors, enzymes, extracellular matrix materials and combinations thereof.
- bioactive agents can be selected from nucleotides, oligonucleotides, polynucleotides, and nucleic acids (e.g. , mRNA, tRNA, snRNA, RNAi, DNA, cDNA, antisense constructs, ribozymes etc and combinations thereof).
- bioactive agents can be selected from steroids, lipids, fats and combinations thereof.
- the bioactive agent can bind to the extracellular matrix, such as when the extracellular matrix is hyaluronic acid or heparin sulfate proteoglycan and the bioactive agent is a positively charged moiety such as choline for non-specific, electrostatic, Velcro type binding interactions.
- the bioactive agent can be a peptide sequence that binds non-specifically or specifically.
- Bioactive agents can be designed and/or selected to have a full activity (such as a high level of agonism or antagonism).
- a multifunctional bioactive agent can be selected to modulate one target protein's activity while impacting fully another.
- mosaic proteins contain extracellular binding domains or sub-domains (example, VEGF and Heparin Binding Epidermal Growth Factor), sequences from these binding sites can be replicated as a bioactive agent for polymer attachment. More broadly, mosaic proteins represent strings of domains of many functions (target binding, extracellular matrix binding, spacers, avidity increases, enzymatic). The set of bioactives chosen for a particular application can be assembled in similar fashion to replicate a set of desired functional activities.
- Other functional agents, A include charged species such as choline, lysine, aspartic acid, glutamic acid, and hyaluronic acid, among others.
- the charged species are useful for facilitating ionic attachment, to vitreous for example.
- the functional agent is a therapeutic protein.
- therapeutic proteins are disclosed throughout the application such as, and without limitation, erythropoietin, granulocyte colony stimulating factor (G-CSF), GM-CSF, interferon alpha, interferon beta, human growth hormone, imiglucerase, and RANK ligand.
- the functional agents can be selected from specifically identified polysaccharide, protein or peptide bioactive agents, including, but not limited to: ⁇ , agalsidase, alefacept, alkaline phosphatase, aspariginase, amdoxovir (DAPD), antide, becaplermin, botulinum toxin including types A and B and lower molecular weight compounds with botulinum toxin activity, calcitonins, CDl d, cyanovirin, denileukin diftitox, erythropoietin (EPO), EPO agonists, dornase alpha, erythropoiesis stimulating protein (NESP), coagulation factors such as Factor V, Factor VII, Factor Vila, Factor VIII, B domain deleted Factor VIII, Factor IX, Factor X, Factor XII, Factor XIII, von Willebrand factor; ceredase, Fc gamm
- TPO thrombopoietin
- alpha-1 proteinase inhibitor alpha-1 proteinase inhibitor
- elcatonin granulocyte macrophage colony stimulating factor
- GM-CSF granulocyte macrophage colony stimulating factor
- fibrinogen filgrastim
- growth hormones human growth hormone (hGH) somatropin
- growth hormone releasing hormone (GHRH) GRO-beta
- GRO-beta GRO-beta antibody
- bone morphogenic proteins such as bone morphogenic protein-2, bone morphogenic protein-6, parathyroid hormone, parathyroid hormone related peptide, OP- 1 ; acidic fibroblast growth factor, basic fibroblast growth factor, Fibroblast Growth Factor 21 , CD40 ligand, 1COS, CD28, B7- 1 , B7-2, TLR and other innate immune receptors, heparin, human serum albumin, low molecular weight heparin (LMWH), interferon alpha, inter
- Exemplary monoclonal antibodies include etanercept (a dimeric fusion protein consisting of the extracellular ligand-binding portion of the human 75 kD TNF receptor linked to the Fc portion of IgG l ), abciximab, adalimumab, afelimomab, alemtuzumab, antibody to B- lymphocyte, atlizumab, basiliximab, bevacizumab, biciromab, bertilimumab, CDP-484, CDP-571 , CDP-791 , CDP-860, CDP-870, cetuximab, clenoliximab, daclizumab, eculizumab, edrccolomab, efalizumab, epratuzumab, fontolizumab, gavilimomab, gemtuzumab ozogamicin, ibritumomab ti
- the bioactive agent is a fusion protein.
- the bioactive component can be an immunoglobulin or portion of an immunoglobulin fused to one or more certain useful peptide sequences.
- the bioactive agent may contain an antibody Fc fragment.
- the bioactive agent is a CTLA4 fusion protein.
- the bioactive agent can be an Fc-CTLA4 fusion protein.
- the bioactive agent is a Factor VIII fusion protein.
- the bioactive agent can be an Fc-Factor VIII fusion protein.
- the bioactive agent is a human protein or human polypeptide, for example, a hetcrologously produced human protein or human polypeptide.
- a human protein or human polypeptide for example, a hetcrologously produced human protein or human polypeptide.
- Numerous proteins and polypeptides are disclosed herein for which there is a corresponding human form (i.e., the protein or peptide is normally produced in human cells in the human body). Therefore, in one embodiment, the bioactive agent is the human form of each of the proteins and polypeptides disclosed herein for which there is a human form.
- human proteins include, without limitation, human antibodies, human enzymes, human hormones and human cytokines such as granulocyte colony stimulation factor, granulocyte macrophage colony stimulation factor, interferons (e.g., alpha interferons and beta interferons), human growth hormone and erythropoietin.
- human antibodies include, without limitation, human antibodies, human enzymes, human hormones and human cytokines such as granulocyte colony stimulation factor, granulocyte macrophage colony stimulation factor, interferons (e.g., alpha interferons and beta interferons), human growth hormone and erythropoietin.
- human cytokines such as granulocyte colony stimulation factor, granulocyte macrophage colony stimulation factor, interferons (e.g., alpha interferons and beta interferons), human growth hormone and erythropoietin.
- therapeutic proteins which (themselves or as the target of an antibody or antibody fragment or non-antibody protein) may serve as bioactive agents include, without limitation, factor VIII, b-domain deleted factor VIII, factor Vila, factor IX, factor X, anticoagulants; hirudin, alteplase, tpa, reteplase, tpa, tpa - 3 of 5 domains deleted, insulin, insulin lispro, insulin aspart, insulin glargine, long-acting insulin analogs, complement C5, hgh, glucagons, tsh, follitropin-beta, fsh, gm-csf, pdgh, ifn alpha2, ifn alpha2a, ifn alpha2b, inf-aphal , consensus ifn, ifn-beta, ifn-beta l b, ifn-beta l a, ifn-
- any of these can be modified to have a site-specific conjugation point (a N-terminus, or C-terminus, or other location) using natural (for example, a serine to cysteine substitution) (for example, formylaldehyde per method of Redwood Biosciences) or non-natural amino acid.
- natural for example, a serine to cysteine substitution
- non-natural amino acid for example, formylaldehyde per method of Redwood Biosciences
- Non-natural amino acid residue(s) can be selected from the group consisting of: azidonorleucine, 3-(l-naphthyl)alanine, 3-(2-naphthyl)alanine, p-ethynyl-phenylalanine, p-propargly-oxy-phenylalanine, m-ethynyl-phenylalanine, 6- ethynyl-tryptophan, 5-ethynyl-tryptophan, (R)-2-amino-3-(4-ethynyl- l H-pyrol-3-yl)propanic acid, p-bromophenylalanine, p-iodophenylalanine, p-azidophenylalanine, p- acetylphenylalanine, 3-(6-chloroindolyl)alanine, 3-(6-bromoindolyl)alanine, 3-(
- therapeutic antibodies that may serve as bioactive agents (by themselves or fragments of such antibodies) include, but are not limited, to HERCEPTINTM (Trastuzumab) (Genentech, CA) which is a humanized anti-HER2 monoclonal antibody for the treatment of patients with metastatic breast cancer; REOPROTM (abciximab) (Centocor) which is an anti-glycoprotein Ilb/IIIa receptor on the platelets for the prevention of clot formation; ZENAPAXTM (daclizumab) (Roche Pharmaceuticals, Switzerland) which is an immunosuppressive, humanized anti-CD25 monoclonal antibody for the prevention of acute renal allograft rejection; PANOREXTM which is a murine anti-17-IA cell surface antigen IgG2a antibody (Glaxo Wellcome/Centocor); BEC2 which is a murine anti-idiotype (GD3 epitope) IgG antibody (ImClone System); IMC-C
- lDEC- 151 is a primatized anti-CD4 antibody (IDEC); IDEC- 152 is a primatized anti-CD23 antibody (IDEC/Seikagaku); SMART anti-CD3 is a humanized anti-CD3 IgG (Protein Design Lab); 5G 1.1 is a humanized anti-complement factor 5 (CS) antibody (Alexion Pharm); D2E7 is a humanized anti-TNF-a antibody (CATIBASF); CDP870 is a humanized anti-TNF-a Fab fragment (Celltech); IDEC- 151 is a primatized anti-CD4 IgG 1 antibody (IDEC Pharm/SmithKline Beecham); MDX-CD4 is a human anti-CD4 IgG antibody (Medarex/Eisai/Genmab); CDP571 is a humanized anti-TNF- ⁇ IgG4 antibody (Celltech); LDP-02 is a humanized anti-a4p7 antibody (Leuko
- a single domain antibody (sdAb, called Nanobody by Ablynx) is an antibody fragment consisting of a single monomeric variable antibody domain. Like a whole antibody, the sdAb is able to bind selectively to a specific antigen. With a molecular weight of only 12-15 kDa, single domain antibodies are much smaller than common antibodies ( 150-160 kDa).
- a single domain antibody is a peptide chain of about 1 1 0 amino acids in length, comprising one variable domain (VH) of a heavy chain antibody, or of a common IgG.
- sdAbs do not show complement system triggered cytotoxicity because they lack an Fc region.
- Camelid and fish derived sdAbs are able to bind to hidden antigens that are not accessible to whole antibodies, for example to the active sites of enzymes.
- a single domain antibody can be obtained by immunization of dromedaries, camels, llamas, alpacas or sharks with the desired antigen and subsequent isolation of the mRNA coding for heavy chain antibodies. Alternatively they can be made by screening synthetic libraries.
- Camelids are members of the biological family Camelidae, the only living family in the suborder Tylopoda. Camels, dromedaries, Bactrian Camels, llamas, alpacas, vicunas, and guanacos are in this group. Proteins, Peptides and Amino Acids
- Proteins and peptides for use as bioactive agents as disclosed herein can be produced by any useful method including production by in vitro synthesis and by production in biological systems. Typical examples of in vitro synthesis methods which are well known in the art include solid-phase synthesis (“SPPS”) and solid-phase fragment condensation
- SPFC Protein Synchrome Biological systems used for the production of proteins are also well known in the art. Bacteria (e.g., E coli and Bacillus sp. ) and yeast (e.g., Saccharomyces cerevisiae and Pichia pastoris) are widely used for the production of heterologous proteins.
- heterologous gene expression for the production of bioactive agents for use as disclosed herein can be accomplished using animal cell lines such as mammalian cell lines (e.g., CHO cells).
- the bioactive agents are produced in transgenic or cloned animals such as cows, sheep, goats and birds (e.g., chicken, quail, ducks and turkey), each as is understood in the art. See, for example, US Patent No. 6,781 ,030, issued August 24, 2004, the disclosure of which is incorporated in its entirety herein by reference.
- Bioactive agents such as proteins produced in domesticated birds such as chickens can be referred to as "avian derived” bioactive agents (e.g., avian derived therapeutic proteins).
- avian derived bioactive agents e.g., avian derived therapeutic proteins.
- Production of avian derived therapeutic proteins is known in the art and is described in, for example, US Patent No. 6,730,822, issued May 4, 2004, the disclosure of which is incorporated in its entirety herein by reference.
- bioactive agent is a protein or polypeptide
- functional groups present in the amino acids of the protein polypeptide sequence can be used to link the agent to the high MW polymer.
- Linkages to protein or polypeptide bioactive agents can be made to naturally occurring amino acids in their sequence or to naturally occurring amino acids that have either been added to the sequence or inserted in place of another amino acid, for example the replacement of a serine by a cysteine.
- Peptides useful in the present invention also include, but are not limited to, a macrocyclic peptide, a cyclotide, an aptamer, an LDL receptor A-domain, a protein scaffold (as discussed in US Patent Number 60/514,391 ), a soluble receptor, an enzyme, a peptide multimer, a domain multimer, an antibody fragment multimer, and a fusion protein.
- Protein or polypeptide bioactive agents may also comprise non-naturally occurring amino acids in addition to the common naturally occurring amino acids found in proteins and polypeptides.
- non-naturally occurring amino acids can be introduced to provide a functional group that can be used to link the protein or polypeptide directly to high MW polymer.
- naturally occurring amino acids e.g., cysteine, tyrosine, tryptophan can be used in this way.
- Non-naturally occurring amino acids can be introduced into proteins and peptides by a variety of means. Some of the techniques for the introduction of non-natural amino acids are discussed in US Patent No. 5, 162,218 and US Patent No. 20080214439, the disclosure of which is incorporated in its entirety herein by reference.
- non-naturally occurring amino acids can be introduced by chemical modification of a polypeptide or protein on the amino acid side chain or at either the amino terminus or the carboxyl terminus.
- Non-limiting examples of chemical modification of a protein or peptide might be methylation by agents such as diazomethane, or the introduction of acetylation at an amino group present in lysine's side chain or at the amino terminus of a peptide or protein.
- protein/polypeptide amino group modification to prepare a non-natural amino acid is the use of methyl 3-mercaptopropionimidate ester or 2-iminothiolane to introduce a thiol (sulfhydryl, -SH) bearing functionality linked to positions in a protein or polypeptide bearing a primary amine. Once introduced, such groups can be employed to form a covalent linkage to the protein or polypeptide.
- non-naturally occurring amino acids can be introduced into proteins and polypeptides during chemical synthesis.
- Synthetic methods are typically utilized for preparing polypeptides having fewer than about 200 amino acids, usually having fewer than about 150 amino acids, and more usually having 100 or fewer amino acids.
- Shorter proteins or polypeptides having less than about 75 or less than about 50 amino acids can be prepared by chemical synthesis.
- non-naturally occurring amino acids that can be introduced during chemical synthesis of polypeptides include, but are not limited to: D-amino acids and mixtures of D and L-forms of the 20 naturally occurring amino acids, N-formyl glycine, ornithine, norleucine, hydroxyproline, beta-alanine, hydroxyvaline, norvaline, phenylglycine, cyclohexylalanine, t-butylglycine (t-leucine, 2-amino-3,3-dimethylbutanoic acid), hydroxy-t-butylglycine, amino butyric acid, cycloleucine, 4-hydroxyproline, pyroglutamic acid (5-oxoproline), azetidine carboxylic acid, pipecolinic acid, indoline-2-carboxylic acid, tetrahydro-3-isoquinoline carboxylic acid, 2,4-diaminobutyricacid, 2,6
- non-naturally occurring amino acids can be introduced through biological synthesis in vivo or in vitro by insertion of a non-sense codon ⁇ e.g., an amber or ocher codon) in a DNA sequence (e.g., the gene) encoding the polypeptide at the codon corresponding to the position where the non-natural amino acid is to be inserted.
- a non-sense codon e.g., an amber or ocher codon
- a DNA sequence e.g., the gene
- the altered sequence is subsequently transcribed and translated, in vivo or in vitro in a system which provides a suppressor tRNA, directed against the nonsense codon that has been chemically or enzymatically acylated with the desired non-naturally occurring amino acid.
- the synthetic amino acid will be inserted at the location corresponding to the nonsense codon.
- recombinant preparation techniques of this type are usually preferred.
- amino acids that can be introduced in this fashion are: formyl glycine, fluoroalanine, 2-Amino-3-mercapto-3-methylbutanoic acid, homocysteine, homoarginine and the like.
- Other similar approaches to obtain non-natural amino acids in a protein include methionine substitution methods.
- non-naturally occurring amino acids have a functionality that is susceptible to selective modification, they are particularly useful for forming a covalent linkage to the protein or polypeptide.
- Circumstances where a functionality is susceptible to selective modification include those where the functionality is unique or where other functionalities that might react under the conditions of interest are hindered either stereochemically or otherwise.
- a single domain antibody (sdAb, called Nanobody by Ablynx) is an antibody fragment consisting of a single monomeric variable antibody domain. Like a whole antibody, the sdAb is able to bind selectively to a specific antigen. With a molecular weight of only 12-15 kDa, single domain antibodies are much smaller than common whole antibodies (150- 160 kDa).
- a single domain antibody is a peptide chain of about 1 10 amino acids in length, comprising one variable domain (VH) of a heavy chain antibody, or of a common IgG.
- sdAbs do not show complement system triggered cytotoxicity because they lack an Fc region.
- Camelid and fish derived sdAbs are able to bind to hidden antigens that are not accessible to whole antibodies, for example to the active sites of enzymes.
- a single domain antibody can be obtained by immunization of dromedaries, camels, llamas, alpacas or sharks with the desired antigen and subsequent isolation of the mRNA coding for heavy chain antibodies. Alternatively they can be made by screening synthetic libraries.
- Camelids are members of the biological family Camelidae, the only living family in the suborder Tylopoda. Camels, dromedaries, Bactrian Camels, llamas, alpacas, vicunas, and guanacos are in this group.
- Peptides useful in the present invention also include, but are not limited to, a macrocyclic peptide, a cyclotide, an LDL receptor A-domain, a protein scaffold (as discussed in US Patent Number 60/514,391 , incorporated in its entirety herein), a soluble receptor, an enzyme, a peptide multimer, a domain multimer, an antibody fragment multimer, and a fusion protein.
- the invention also describes new ways to achieve branched polymer architectures on a bioactive surface.
- the concept is one of "branching points" or "proximal attachment points” on the target molecule such as to recreate an effective >2 arm polymer with >1 arm polymers attached to a localized site(s) on a target molecule.
- indiscriminate PEGylation of a protein with a non site-specific reagent would result in multiple PEG polymers conjugated to multiple amine groups scattered through the protein.
- the target agent is modified to locate two unique conjugation sites (for example, cysteine amino acids) such that once the tertiary structure of the protein or peptide or agent is formed, the two sites will be in proximity one to the other.
- this modified target agent is used in a conjugation reaction with a polymer containing the corresponding conjugation chemistry (for example, thiol reactive).
- a polymer containing the corresponding conjugation chemistry for example, thiol reactive
- the target agent would contain a single unique site, for example a free cysteine, and a tri(hetero)functional linking agent would be employed to attach >2 linear polymers to this single site, again creating a "pseudo" branch.
- the bioactive agents can also be selected from specifically identified drug or therapeutic agents, including but not limited to: tacrine, memantine, rivastigmine, galantamine, donepezil, levetiracetam, repaglinide, atorvastatin, alefacept, tadalafil, vardenafil, sildenafil, fosamprenavir, oseltamivir, valacyclovir and valganciclovir, abarelix, adefovir, alfuzosin, alosetron, amifostine, amiodarone, aminocaproic acid, aminohippurate sodium, aminoglutethimide, aminolevulinic acid, aminosalicylic acid, amlodipine, amsacrine, anagrelide, anastrozole, aprepitant, aripiprazole, asparaginase, atazanavir, atomoxetine, anthracyclines
- Bioactive agents may also be selected from the group consisting of aminohippurate sodium, amphotericin B, doxorubicin, am inocaproic acid, aminolevulinic acid, aminosalicylic acid, metaraminol bitartrate, pamidronate disodium, daunorubicin, levothyroxine sodium, lisinopril, cilastatin sodium, mexiletine, cephalexin, deferoxamine, and amifostine in another embodiment.
- bioactive agents useful in the present invention include extracellular matrix targeting agents, functional transport moieties and labeling agents.
- Extracellular matrix targeting agents include, but are not limited to, heparin binding moieties, matrix metalloproteinase binding moieties, lysyl oxidase binding domains, negatively charged moieties or positively charged moieties and hyaluronic acid.
- Functional transport moieties include, but are not limited to, blood brain barrier transport moieties, intracellular transport moieties, organelle transport moieties, epithelial transport domains and tumor targeting moieties (folate, other).
- the targeting agents useful in the present invention target anti-TrkA, anti A-beta (peptide 1 -40, peptide 1 -42, monomeric form, oligomeric form), anti-IGFl -4, agonist RAN -L, anti-ApoE4 or anti-ApoAl , among others. Diagnostic agents
- Diagnostic agents useful in the high MW polymers of the present invention include imaging agents and detection agents such as radiolabels, fluorophores, dyes and contrast agents.
- Imaging agent refers to a label that is attached to the high MW polymer of the present invention for imaging a tumor, organ, or tissue in a subject.
- the imaging moiety can be covalently or non-covalently attached to the high M W polymer.
- imaging moieties suitable for use in the present invention include, without limitation, radionuclides, fluorophores such as fluorescein, rhodamine, Texas Red, Cy2, Cy3, Cy5, Cy5.5, Cy7 and the AlexaFluor (Invitrogen, Carlsbad, CA) range of fluorophores, antibodies, gadolinium, gold, nanomaterials, horseradish peroxidase, alkaline phosphatase, derivatives thereof, and mixtures thereof.
- Radiolabel refers to a nuclide that exhibits radioactivity.
- a “nuclide” refers to a type of atom specified by its atomic number, atomic mass, and energy state, such as carbon 14 ( 14 C).
- Radioactivity refers to the radiation, including alpha particles, beta particles, nucleons, electrons, positrons, neutrinos, and gamma rays, emitted by a radioactive substance.
- Radionuclides suitable for use in the present invention include, but are not limited to, fluorine 18 ( , 8 F), phosphorus 32 ( 32 P), scandium 47 ( 47 Sc), cobalt 55 ( 55 Co), copper 60 ( 60 Cu), copper 61 ( 61 Cu), copper 62 ( 62 Cu), copper 64 ( 64 Cu), gallium 66 ( 66 Ga), copper 67 ( 67 Cu), gallium 67 ( 67 Ga), gallium 68 ( 68 Ga), rubidium 82 ( 82 Rb), yttrium 86 ( 86 Y), yttrium 87 ( 87 Y), strontium 89 ( 89 Sr), yttrium 90 ( 90 Y), rhodium 105 ( I05 Rh), silver 1 1 1 ( n , Ag), indium 1 1 1 (“ ⁇ ), iodine 124 ( l24 I), iodine 125 ( 125 I), iodine 131 ( l3l I), tin 1 17m (" 7
- the "m" in 1 17m Sn and 99m Tc stands for meta state.
- naturally occurring radioactive elements such as uranium, radium, and thorium, which typically represent mixtures of radioisotopes, are suitable examples of radionuclides.
- 67 Cu, l 1 I, l77 Lu, and 186 Re are beta- and gamma-emitting radionuclides.
- 212 Bi is an alpha- and beta-emitting radionuclide.
- 21 'At is an alpha-emitting radionuclide.
- 32 P, 47 Sc, 89 Sr, 90 Y, 105 Rh, m Ag, , , 7m Sn, ,49 Pm, , 53 Sm, ,66 Ho, and 188 Re are examples of beta-emitting radionuclides.
- 67 Ga, u l In, 99m Tc, and 201 T1 are examples of gamma-emitting radionuclides.
- 55 Co, 60 Cu, 61 Cu, 62 Cu, 66 Ga, 68 Ga, 82 Rb, and 86 Y are examples of positron-emitting radionuclides.
- 64 Cu is a beta- and positron-emitting radionuclide.
- Imaging and detection agents can also be designed into the polymers of the invention through the addition of naturally occurring isotopes such as deuterium, 13 C, or 15 N during the synthesis of the initiator, linkers, linking groups, comonomers.
- Contrast agents useful in the present invention include, but are not limited to, gadolinium based contrast agents, iron based contrast agents, iodine based contrast agents, barium sulfate, among others.
- gadolinium based contrast agents iron based contrast agents
- iodine based contrast agents iron based contrast agents
- barium sulfate barium sulfate
- the functional agents can also include nanoparticles.
- Nanoparticles useful in the present invention include particles having a size ranging from 1 to 1000 nm. Nanoparticles can be beads, metallic particles or can in some cases be micelles and in some other be liposomes. Other nanoparticles include carbon nanotubes, quantum dots and colloidal gold. Nanoparticles can be packed with diagnostic and/or therapeutic agents.
- the invention can be used to enable coincident detection of more than one agent of the same or different type.
- the use of flexible linker chemistries can also be used to witness the loss of one fluorescent label, for example as the molecule is taken up into the cell and into a low pH environment.
- the polymers of the present invention can be linked to a variety of functional agents described above to form a conjugate.
- the present invention provides a conjugate including at least one polymer having a polymer arm having a plurality of monomers each independently selected from the group consisting of acrylate, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone and vinyl esters such as vinyl acetate, wherein each monomer includes a hydrophilic group, an initiator fragment linked to a proximal end of the polymer arm, wherein the initator moiety is suitable for radical polymerization, and an end group linked to a distal end of the polymer arm.
- the conjugate of the present invention also includes at least one functional agent having a bioactive agent or a diagnostic agent, linked to the initiator fragment or the end group.
- the bioactive agent of the conjugate of the present invention can include a drug, an antibody, an antibody fragment, a single domain antibody, an avimer, an adnectin, diabodies, a vitamin, a cofactor, a polysaccharide, a carbohydrate, a steroid, a lipid, a fat, a protein, a peptide, a polypeptide, a nucleotide, an oligonucleotide, a polynucleotide, or a nucleic acid.
- the diagnostic agent of the conjugate can be a radiolabel, a contrast agent, a fluorophore or a dye.
- at least two polymers are linked to the functional agent.
- at least two polymers are linked to the functional agent via proximal reactive groups on the functional agent to create a pseudo-branched structure.
- the conjugate includes at least two functional agents attached to the polymer.
- the high MW polymers of the present invention can be prepared by any means known in the art.
- the present invention provides a process for preparing a high MW polymer of the present invention, the process including the step of contacting a mixture of a first monomer and a second monomer with an initiator, I 1 , under conditions sufficient to prepare a high MW polymer via free radical polymerization, wherein the first monomer comprises a phosphorylcholine, and each of the second monomer and initiator independently comprise at least one of a functional agent or a linking group for linking to the functional agent.
- the mixture for preparing the high MW polymers of the present invention can include a variety of other components.
- the mixture can also include cataly st, ligand, solvent, and other additives.
- the mixture also includes a catalyst and a ligand. Suitable catalysts and ligands are described in more detail below.
- the high MW polymers of the present invention can be prepared by any suitable polymerization method, such as by living radical polymerization. Living radical polymerization, discussed by Odian, G. in Principles of Polymerization, 4 th ,
- ATRP Atom Transfer Radical Polymerization
- the preparation of polymers via ATRP involves the radical polymerization of monomers beginning with an initiator bearing one or more halogens.
- the halogenated initiator is activated by a catalyst (or a mixture of catalysts when CuBra is employed) such as a transition metal salt (CuBr) that can be solubilized by a ligand (e.g., bipyridine or
- RAFT polymerization uses thiocarbonylthio compounds, such as dithioesters, dithiocarbamates, trithiocarbonates, and xanthates, to mediate the polymerization process via a reversible chain-transfer process.
- thiocarbonylthio compounds such as dithioesters, dithiocarbamates, trithiocarbonates, and xanthates
- Other "living" or controlled radical processes useful in the preparation of the inventive random copolymers include NMP.
- Initiators useful for the preparation of the high MW polymers of the present invention include any initiator suitable for polymerization via radical polymerization.
- the initiators are suitable for atom transfer radical polymerization (ATRP), such as those described above.
- Other useful initiators include those for nitroxide mediated radical polymerization (NMP), or reversible addition-fragmentation-tennination (RAFT or MADIX) polymerization.
- NMP nitroxide mediated radical polymerization
- RAFT or MADIX reversible addition-fragmentation-tennination
- Still other techniques to control a free-radical polymerization process can be used, such as the use of iniferters, degenerative transfer or telomerization process.
- the initiators useful in the present invention include those having at least one branch point, such as those described above. In other embodiments, the initiators are useful for controlled radical polymerization.
- High MW polymers of the present invention having complex architectures including branched compounds having multiple polymer arms including, but not limited to, comb and star structures.
- Comb architectures can be achieved employing linear initiators bearing three or more halogen atoms, preferably the halogens are chlorine, bromine, or iodine atoms, more preferably the halogens are chlorine or bromine atoms.
- Star architectures can also be prepared employing compounds bearing multiple halogens on a single carbon atom or cyclic molecules bearing multiple halogens. In some embodiments compounds having star architecture have 3 polymer arms and in other embodiments they have 4 polymer arms. See initiators described above.
- Catalysts for use in ATRP or group radical transfer polymerizations may include suitable salts of Cu 1+ , Fe 2+ , Fe 3+ , Ru 2+ , Ru. 3+ , Cr 2+ , Cr 3 ' , Mo 2 ' , Mo. 3+ , W + , W 3+ , Mn 2 ⁇ Mn 2 ', Mn 4+ , Rh 3+ , Rh 4+ , Re 2+ , Re 3+ , Co 1+ , Co. 2 Co 3+ , V 2+ , V 3+ , Zn. 1+ , Zn 2+ , Ni 2+ , Ni + , Au ,+ , Au 2+ , Ag ,+ and Ag 2+ .
- Suitable salts include, but are not limited to: halogen, C] - Q -alkoxy, sulfates, phosphate, triflate, hexafluorophosphate, methanesulphonate, arylsulphonate salts.
- the catalyst is a chloride, bromide salts of the above-recited metal ions.
- the catalyst is CuBr, CuCl or RuCb.
- the use of one or more ligands to solubilize transition metal catalysts is desirable.
- Suitable ligands are usefully used in combination with a variety of transition metal catalysts including where copper chloride or bromide, or ruthenium chloride transition metal salts are part of the catalyst.
- the choice of a ligand affects the function of catalyst as ligands not only aid in solubilizing transition metal catalysts in organic reaction media, but also adjust their redox potential. Selection of a ligand is also based upon the solubility and separability of the catalyst from the product mixture. Where polymerization is to be carried out in a liquid phase soluble ligands/catalyst are generally desirable although immobilized catalysts can be employed.
- Suitable ligands include those pyridyl groups (including alkyl pyridines e.g., 4.4. dialkyl-2,2' bipyridines) and pyridyl groups bearing an alkyl substituted imino group, where present, longer alkyl groups provide solubility in less polar monomer mixtures and solvent media.
- Triphenyl phosphines and other phosphorus ligands, in addition to indanyl, or cyclopentadienyl ligands, can also be employed with transition metal catalysts (e.g., Ru +2 -halide or Fe +2 -halide complexes with transition metal catalysts (e.g., Ru +2 -halide or Fe +2 -halide complexes with transition metal catalysts (e.g., Ru +2 -halide or Fe +2 -halide complexes with
- triphenylphosphine indanyl or cyclopentadienyl ligands.
- metal compound and ligand in the catalyst is employed in some embodiments.
- the ratio between metal compound and ligand is in the range 1 :(0.5 to 2) or in the range 1 :(0.8 to 1 .25).
- the catalyst is copper
- bidentate or multidentate nitrogen ligands produce more active catalysts.
- bridged or cyclic ligands and branched aliphatic poiyamines provide more active catalysts than simple linear ligands.
- bromine is the counter ion
- bidentate or one-half tetradentate ligands are needed per Cu +1 .
- more complex counter ions such as triflate or hexafluorophosphate
- two bidentate or one tetradentate ligand can be employed.
- the addition of metallic copper can be advantageous in some embodiments particularly where faster polymerization is desired as metallic copper and Cu +2 may undergo redox reaction to form Cu +1 .
- the addition of some Cu +2 at the be ginning of some ATRP reactions can be employed to decrease the amount of normal termination.
- the amount of catalyst employed in the polymerization reactions is the molar equivalent of the initiator that is present. Since catalyst is not consumed in the reaction, however, it is not essential to include a quantity of catalyst as high as of initiator.
- the ratio of catalyst to each halogen contained in the initiator, based on transition metal compound in some embodiments is from about 1 :(1 to 50), in other embodiments from about 1 :(1 to 10), in other embodiments from about 1 :(1 to 5), and in other embodiments from 1 : 1.
- the living radical polymerization process of the invention is preferably carried out to achieve a degree of polymerization in the range of 3 to about 2000, and in other embodiments from about 5 to about 500.
- the degree of polymerization in other embodiments is in the range 1 0 to 100, or alternatively in the range of about 10 to about 50.
- the degree of polymerization in group or atom transfer radical polymerization technique is directly related to the initial ratio of initiator to monomer. Therefore, in some embodiments the initial ratios of initiator to monomer are in the range of 1 :(3 to about 2,000) or about 1 :(5 to 500), or about 1 :(10 to 100), or about 1 :( 10 to 50).
- Polymerization reactions are typically carried out in the liquid phase, employing a single homogeneous solution.
- the reaction may, however, be heterogeneous comprising a solid and a liquid phase ⁇ e.g., a suspension or aqueous emulsion).
- the solvent employed is selected taking into consideration the nature of the zwitterionic monomer, the initiator, the catalyst and its ligand; and in addition, any comonomer that can be employed.
- the solvent may comprise a single compound or a mixture of compounds.
- the solvent is water, and in other embodiments water is present in an amount from about 10% to about 1 00% by weight, based on the weight of the monomers present in the reaction.
- a water insoluble comonomer is to be polymerized with a zwitterionic monomer, it can be desirable to employ a solvent or co-solvent (in conjunction with water) that permits solubilization of all the monomers present.
- Suitable organic solvents include, without limitation, formamides (e.g., N,N'-dimethylformamide), ethers (e.g., tetrahydrofuran), esters (ethyl acetate) and, most preferably, alcohols.
- formamides e.g., N,N'-dimethylformamide
- ethers e.g., tetrahydrofuran
- esters ethyl acetate
- alcohols e.g., a mixture of water and organic solvent
- C1-C4 water miscible alkyl alcohols methanol, ethanol, propanol, isopropanol, butanol, isobutanol, and tertbutanol
- water and methanol combinations are suitable for conducting polymerization reactions. The reaction may also be conducted in supercritical solvents such as C ( 3 ⁇ 4.
- the total non-polymerizable solvent is from about 1 % to about 500% by weight, based on the weight of the monomers present in the reaction mixture. In other embodiments, the total non-polymerizable solvent is from about 10% to about 500% by weight or alternatively from 20% to 400%, based on the weight of the monomers present in the reaction mixture. It is also desirable in some cases to manipulate the solubility of an input reagent, such as initiator or monomer, for example by modifying temperature or solvent or other method so as to modify the reaction conditions in a dynamic fashion.
- contact time of the zwitterionic monomer and water prior to contact with the initiator and catalyst are minimized by forming a premix comprising all components other than the zwitterionic monomer and for the zwitterionic monomer to be added to the premix last.
- the polymerization reactions can be carried out at any suitable temperature.
- the temperature can be from about ambient (room temperature) to about 120° C.
- the polymerizations can be carried out at a temperature elevated from ambient temperature in the range of about 60 0 to 80° C.
- the reaction is carried out at ambient (room temperature).
- the compounds of the invention have a polydispersity (of molecular weight) of less than 1.5, as judged by gel permeation chromatography.
- the polydispersities can be in the range of 1.2 to 1.4. In still other embodiments, the polydispersities can be less than 1.2.
- a number of workup procedures can be used to purify the polymer of interest such as precipitation, fractionation, reprecipitation, membrane separation and freeze-drying of the polymers.
- the conversion of the aliphatic halogen can include reaction to prepare an alkyl, alkoxy, cycloalkyl, aryl, heteroaryl or hydroxy group.
- Halogens can also be subject to an elimination reaction to give rise to an alkene (double bond).
- Other methods of modifying the halogenated terminus are described in Matyjaszewski et al. Prog. Polym. Sci. 2001 , 26, 337, incorporated by reference in its entirety herein.
- the coupling of functional agents to the high MW polymers of the present invention can be conducted employing chemical conditions and reagents applicable to the reactions being conducted. Exemplary methods are described in Bioconjugate Techniques, Greg T. Hermanson, Academic Press, 2d ed., 2008 (incorporated in its entirety herein). Other bioconj ligation techniques are described in Bertozzi et al. Angewandte Chemie 2009, 48, 6974, and Gauthier et al. Chem. Commun. 2008, 2591 , each incorporated by reference in its entirety herein.
- dehydration reactions between a carboxylic acid and an alcohol or amine may employ a dehydrating agent (e.g., a carbodiimide such as dicyclohexylcarbodimide, DCC, or the water soluble agent l -ethyl-3-(3-dimethyllaminopropyl)carbodiimide hydrochloride, EDC).
- a dehydrating agent e.g., a carbodiimide such as dicyclohexylcarbodimide, DCC, or the water soluble agent l -ethyl-3-(3-dimethyllaminopropyl)carbodiimide hydrochloride, EDC.
- N-hydroxysuccinimide esters can be employed to prepare amides.
- Reaction to prepare amides employing NHS esters are typically conducted near neutral pH in phosphate, bicarbonate, borate, HEPES or other non-amine containing buffers at 4° to 25° C.
- reactions employing EDC as a dehydrating agent a pH of 4.5-7.5 can be employed; in other embodiments, a pH of 4.5 to 5 can be employed.
- Morpholinoethanesulfonic acid is an effective carbodiimide reaction buffer.
- Thiol groups can be reacted under a variety of conditions to prepare different products. Where a thiol is reacted with a maleimide to form a thioether bond, the reaction is typically carried out at a pH of 6.5-7.5. Excess maleimide groups can be quenched by adding free thiol reagents such as mercaptoethanol. Where disulfide bonds are present as a linkage, they can be prepared by thiol-disulfide interchange between a sulfhydryl present in the bioactive group and an X functionality which is a disulfide such as a pyridyl disulfide.
- Reactions involving pyridyl disulfides can be conducted at pH 4 - pH 5 and the reaction can be monitored at 343 nm to detect the released pyridine-2-thione.
- Thiol groups may also be reacted with epoxides in aqueous solution to yield hydroxy thioethers.
- a thiol may also be reacted at slightly alkaline pH with a haloacetate such as iodoacetae to form a thioether bond.
- guanido groups e.g., those of an arginine in a protein or polypeptide of interest
- a glyoxal can be carried out at pH 7.0-8.0.
- the reaction typically proceeds at 25° C.
- the derivative which contains two phenylglyoxal moieties per guanido group, is more stable under mildly acidic conditions (below pH 4) thaii at neutral or alkaline pHs, and permits isolation of the linked materials. At neutral or alkaline pH values, the linkage decomposes slowly.
- Imidoester reactions with amines are typically conducted at pH of 8-10, and preferably at about pH 10.
- the amidine linkage formed from the reaction of an imidoester with an amine is reversible, particularly at high pH.
- Haloacetals can be reacted with sulfhydryl groups over a broad pH range. To avoid side reactions between histidine residues that can be present, particularly where the sulfhydryl group is present on a protein or polypeptide, the reaction can be conducted at about pH 8.3.
- Aldehydes can be reacted with amines under a variety of conditions to form irnines. Where either the aldehyde or the amine is immediately adjacent to an aryl group the product is a Schiff base that tends to be more stable than where no aryl group is present.
- Conditions for the reaction of amines with aldehydes to form an imine bond include the use of a basic pH from about pH 9 to about pH 1 1 and a temperature from about 0° C to room temperature, over 1 to 24 hours. Alternatively, where preferential coupling to the N-terminal amine of a protein is desired, lower pHs from about 4-7 can be employed.
- Buffers including borohydride and tertiary amine containing buffers are often employed for the preparation of imines. Where it is desired imine conjugates, which are hydrolytically susceptible, can be reduced to form an amine bond which is not hydrolytically susceptible. Reduction can be conducted with a variety of suitable reducing agents including sodium borohydride or sodium cyanoborohydride.
- reaction conditions provided above are intended to provide general guidance to the artisan.
- the skilled artisan will recognize that reaction conditions can be varied as necessary to promote the attachment of the functional agent to the high MW polymers of the present invention and that guidance for modification of the reactions can be obtained from standard texts in organic chemistry. Additional guidance can be obtained from texts such as Wong, S.S., "Chemistry of Protein Conjugation and Cross-Linking," (CRC Press 1991 ), which discuss related chemical reactions.
- Different recombinant proteins have been shown to conjugate successfully to a wide variety of polymers of the present invention of different sizes and architectures via different conjugation chemistries. Many lessons have been learned during the course of process development efforts (conjugation, downstream processing, analytical development) and some unique features of the technology are described below.
- the conjugate refers exclusively to protein or other therapeutic agents conjugated covalently to the polymers of the present invention.
- protein concentration should be much higher than the normally acceptable concentration of 1 - 2 mg/ml.
- concentration that can be achieved for any one particular protein used will depend on the stability and biophysical properties of that protein. Exemplary ranges include 5 - 10 mg/ml, 10 - 15 mg/ml, 15 - 20 mg/ml, 20 - 25 mg/ml, 25 - 30 mg/ml, 30 - 50 mg/ml, 50 - 100 mg/mL, >100 mg/ml.
- this type of mixer has been successfully used to solubilize highly viscous polymers and fluids with viscosity over 1 ,000 cP.
- the polymers of this inv ention at the highest practical concentration are just a fraction of such a viscosity level and therefore render the resonant acoustic mixing technology particularly attractive. Additional advantages of such technology include noninvasive and fully concealable character as well as fast mixing time. These properties make it highly desirable for protein pharmaceutics generally and for combination with the technology of this invention specifically.
- the preferred polymers of this invention are net charge neutral due to their zwitterionic nature. Therefore, they do not interact with anion or cation ion exchange resins under any chromatographic conditions including wide ranges of pH and ionic strength. In other words, the free polymer will flow through any ion exchanger irrespective of pH and ionic strength.
- the chromatographic behavior of the conjugate is dictated by the protein. Due to the presence of the polymer shielding effect and altered charge of the protein during the conjugation chemistry, the interaction of the conjugate with the ion exchange resin is weakened as compared to the native protein.
- the contents of the conjugation reaction vessel can be applied directly over the anion exchanger resin (e.g. Q type 1EX resin) where the unreacted free polymer will flow through the resin, the column can then be chased and washed with low ionic strength buffer at the same pH similar to the conjugation reaction.
- the bound fraction can then by eluted stepwise with increasing salt concentrations.
- the first protein fraction is the pure conjugate as it binds more weakly to the ion exchange resin as compared to the native protein and other contaminants such as aggregates and endotoxin.
- a step gradient is highly desirable as this minimizes the potential risk that the native protein will leach out from the column.
- a cytokine polymer conjugate will elute around 30-60mM NaCl at pH 7 while the native cytokine will not elute until l OOmM or higher; under such conditions, the dimeric and aggregated form of the cytokine typically elutes at 200mM NaCl or higher; and finally the endotoxin elutes at an even higher salt concentration.
- the separation is accomplished using a cation exchanger (e.g. SP type IEX resin) at low ionic strength (e.g. 0-20mM NaCl) with buffer pH lower than the pi of the protein.
- a cation exchanger e.g. SP type IEX resin
- low ionic strength e.g. 0-20mM NaCl
- the unreacted free polymer will still be in the flow through fraction together with endotoxin and other negatively charged contaminants while the conjugate and free unreacted protein remain bound to the column.
- the first protein fraction eluted is the conjugate due to the weaker interaction with the IEX resin as compared to the native protein.
- a typical Fab' conjugate will elute at 30-60mM NaCl while the native Fab' will elute at 100-200mM NaCl.
- the sample technique can be used for both In Process Analytics (IPA) as well as scale up production;
- IPA In Process Analytics
- the polymers of this invention are not stainable by Coomassie Blue type stains, potentially due to their net charge neutral property which prevents the Coomassie Blue dye from interacting with the polymer.
- the conjugate becomes stainable.
- Another interesting property of the polymers of this invention is that they do not have UV 280nm absorbance due to the absence of an aromatic group. However, they do absorb at 220nm. There is at least 1 Ox lower absorbance for the polymer when compared with an equal mass concentration of protein solution. This is very useful when trying to identify the presence of conjugate in the conjugation reaction mixture using different chromatographic methods such as size exclusion or IEX analysis. By comparing the UV280/UV220 ratio, it is very easy to identify the presence of conjugate as the ratio increases dramatically. The same technique can be used for both analytical scale and production scale monitoring of product elution.
- Pharmaceutically acceptable carriers for use in formulating the high MW polymers of the present invention include, but are not limited to: solid carriers such as lactose, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, stearic acid and the like; and liquid carriers such as syrups, saline, phosphate buffered saline, water and the like.
- Carriers may include any time-delay material known in the art, such as glyceryl monostearate or glyceryl distearate, alone or with a wax, ethylcellulose, hydroxypropylmethylcellulose, methylmethacrylate or the like.
- compositions of the present invention may also be included in a pharmaceutical composition according to this invention.
- suitable fillers, excipients, flavorants, and other additives such as are known in the art may also be included in a pharmaceutical composition according to this invention.
- the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions of the invention is contemplated. Supplementary active compounds can also be incorporated into the compositions of the present invention.
- the pharmaceutical preparations encompass all types of formulations.
- they are parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intraperitoneal, intrathecal, intraventricular, intracranial, intraspinal, intracapsular, intraocular including intravitreal, and intraosseous) formulations suited for injection or infusion ⁇ e.g., powders or concentrated solutions that can be reconstituted or diluted as well as suspensions and solutions).
- any suitable liquid media may be employed.
- liquid media include, but are not limited to, water, saline, phosphate buffered saline, Ringer's solution, Hank's solution, dextrose solution, and 5% human serum albumin.
- a compound or pharmaceutical composition comprising a high MW polymer of the present invention is suitable for the treatment of cell proliferative disorders, including but not limited to cancers
- the compound or pharmaceutical composition can be administered to a subject through a variety of routes including injection directly into tumors, the blood stream, or body cavities.
- compositions may be liquid solutions, suspensions, or powders that can be reconstituted immediately prior to administration, they may also take other forms.
- the pharmaceutical compositions may be prepared as syrups, drenches, boluses, granules, pastes, suspensions, creams, ointments, tablets, capsules (hard or soft) sprays, emulsions, microemulsions, patches, suppositories, powders, and the like.
- the compositions may also be prepared for routes of administration other than parenteral administration including, but not limited to, topical (including buccal and sublingual), pulmonary, rectal, transdermal, transmucosal, oral, ocular, and so forth.
- Needle free injection devices can be used to achieve subdermal, subcutaneous and/or intramuscular administration . Such devices can be combined with the polymers and conjugates of this invention to administer low ( ⁇ 20 cP), medium (20 - 50 cP), and high (> 100 cP) viscosity formulations.
- the pharmaceutical compositions of the present invention comprise one or more high MW polymers of the present invention.
- compositions of the present invention may comprise one or more high MW polymers of the present invention that function as biological ligands that are specific to an antigen or target molecule.
- Such compositions may comprise a high MW polymer of the present invention, where the bioactive agent is a polypeptide that comprises the amino acid sequence of an antibody, or an antibody fragment such as a FAb2 or FAb' fragment or an antibody variable region.
- the compound may be a high MW polymer and the polypeptide may comprise the antigen binding sequence of a single chain antibody.
- a bioactive agent present in a high MW polymer of the present invention functions as a ligand specific to an antigen or target molecule, those compounds may also be employed as diagnostic and/or imaging reagents and/or in diagnostic assays.
- the amount of a compound in a pharmaceutical composition will vary depending on a number of factors. In one embodiment, it may be a therapeutically effective dose that is suitable for a single dose container (e.g., a vial). In one embodiment, the amount of the compound is an amount suitable for a single use syringe. In yet another embodiment, the amount is suitable for multi-use dispensers (e.g., containers suitable for delivery of drops of formulations when used to deliver topical formulations). A skilled artisan will be able to determine the amount a compound that produces a therapeutically effective dose experimentally by repeated administration of increasing amounts of a pharmaceutical composition to achieve a clinically desired endpoint.
- a pharmaceutically acceptable excipient will be present in the composition in an amount of about 0.01 % to about 99.999% by weight, or about 1 % to about 99% by weight.
- Pharmaceutical compositions may contain from about 5% to about 10%, or from about 10% to about 20%, or from about 20% to about 30%, or from about 30% to about 40%, or from about 40% to about 50%, or from about 50% to about 60%, or from about 60% to about 70%, or from about 70% to about 80%, or from about 80% to about 90% excipient by weight.
- Other suitable ranges of excipients include from about 5% to about 98%, from about from about 15 to about 95%, or from about 20% to about 80% by weight.
- the high MW polymers of the present invention are useful for treating any disease state or condition.
- the disease state or condition can be acute or chronic.
- Disease states and conditions that can be treated using the high MW polymers of the present invention include, but are not limited to, cancer, autoimmune disorders, genetic disorders, infections, inflammation, neurologic disorders, and metabolic disorders.
- Cancers that can be treated using the high MW polymers of the present invention include, but are not limited to, ovarian cancer, breast cancer, lung cancer, bladder cancer, thyroid cancer, liver cancer, pleural cancer, pancreatic cancer, cervical cancer, testicular cancer, colon cancer, anal cancer, bile duct cancer, gastrointestinal carcinoid tumors, esophageal cancer, gall bladder cancer, rectal cancer, appendix cancer, small intestine cancer, stomach (gastric) cancer, renal cancer, cancer of the central nervous system, skin cancer, choriocarcinomas; head and neck cancers, osteogenic sarcomas, fibrosarcoma,
- neuroblastoma neuroblastoma, glioma, melanoma, leukemia, and lymphoma.
- Autoimmune diseases that can be treated using the high MW polymers of the present invention include, but are not limited to, multiple sclerosis, myasthenia gravis, Crohn's disease, ulcerative colitis, primary biliary cirrhosis, type 1 diabetes mellitus (insulin dependent diabetes mellitus or IDDM), Grave's disease, autoimmune hemolytic anemia, pernicious anemia, autoimmune thrombocytopenia, vasculitides such as Wegener's granulomatosis, Behcet's disease, rheumatoid arthritis, systemic lupus erythematosus (lupus), scleroderma, systemic sclerosis, Guillain-Barre syndromes, Hashimoto's thyroiditis spondyloarthropathies such as ankylosing spondylitis, psoriasis, dermatitis herpetiformis, inflammatory bowel diseases, pemphigus vulgaris and vit
- Some metabolic disorders treatable by the high MW polymers of the present invention include lysosomal storage disorders, such as mucopolysaccharidosis IV or Morquio Syndrome, Activator Deficiency/GM2 Gangliosidosis, Alpha-mannosidosis,
- Aspartylglucosaminuria Cholesteryl ester storage disease, Chronic Hexosaminidase A Deficiency, Cystinosis, Danon disease, Fabry disease, Farber disease, Fucosidosis,
- Mucopolysaccharidoses disorders such as Pseudo-Hurler polydystrophy/Mucolipidosis IIIA, Hurler Syndrome, Scheie Syndrome, Hurler-Scheie Syndrome, Hunter syndrome, Sanfilippo syndrome, Morquio, Hyaluronidase Deficiency, Maroteaux-Lamy, Sly Syndrome,
- Conjugates of the invention and compositions (e.g., pharmaceutical compositions) containing conjugates of the invention can be used to treat a variety of conditions.
- the invention contemplates that the conjugates of the invention (e.g., pbosphorylcholine containing polymers conjugated to a variety of functional agents) and compositions containing the conjugates of the invention can be employed to treat such conditions and that such conjugates provide for an enhanced treatment therapy relative to the same functional agent not coupled to a phosphorylcholine containing polymer.
- the invention contemplates the treatment of a condition known to be treatable by a certain bioactive agent by treating the condition using the same certain bioactive agent conjugated to a phosphorylcholine containing polymer.
- Another aspect of the present invention relates to methods of treating a condition responsive to a biological agent comprising administering to a subject in need thereof a therapeutically effective amount of a compound of the invention or of a pharmaceutically acceptable composition of the invention as described above. Dosage and administration are adjusted to provide sufficient levels of the bioactive agent(s) to maintain the desired effect.
- the appropriate dosage and/or administration protocol for any given subject may vary depending on various factors including the seventy of the disease state, general health of the subject, age, weight, and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy.
- Therapeutically effective amounts for a given situation can be determined by routine experimentation that is within the skill and judgment of the clinician.
- compositions described herein may be administered singly. Alternatively, two or more pharmaceutical compositions may be administered sequentially, or in a cocktail or combination containing two high MW polymers of the present invention or one high MW polymer of the present invention and another bioactive agent.
- bioactive agents set forth herein may be found in standard reference texts such as the Merck Manual of Diagnosis and Therapy, Merck & Co., Inc., Whitehouse Station, NJ and Goodman and Oilman's The Pharmacological Basis of Therapeutics, Pergamon Press, Inc., Elmsford, N.Y., ( 1990).
- This invention describes the modification of hematology related proteins such as Factor VIII, Factor VII, Factor IX, Factor X and proteases such as serine proteases of native sequence or mutein sequence and of native function or altered (for example via phage display, reference Catalyst Biosciences of South San Francisco with technology to alter specificity of binding of an existing enzyme).
- US Patent 7,632,921 is included in its entirety herein. Modification of the enzyme to allow for site-specific conjugation of a functional ized polymer is disclosed. The use of flexible chemistries between the polymer and the enzyme is disclosed, such that the protein can be released in vivo in the proper setting, for example to enable close to a zero order release profile.
- a target product profile for a next generation Factor VIII could involve a covalent conjugate of recombinant FVIH or recombinant B- domain deleted FVIII to which an extended form, multi-ami zwitterion-containing polymer of greater than 50 kDa molecular weight is attached to a site-specific amino acid such as a cysteine.
- the clinical pharmacology of the conjugate would demonstrate unparalled water structuring to shield the conjugate from clearance and immune systems.
- the conjugate would demonstrate greater than a 50 hour elimination half life in humans (preferably greater than 80 hours).
- the conjugate would demonstrate a 2x (preferably 4x) increased half-life versus a 60 kDa PEG-BDD FVIII with the same bioactivity.
- the conjugate as used in patients would show clinically insignificant antibody formation.
- the biopharmaceutical conjugate would be used both prophylactically (once weekly or less frequent) and for on demand treatment of patients with Hemophilia. It would also be used as rescue therapy for patients with existing FVIII neutralizing antibodies, for example from prior FVIII biopharmaceutical therapy.
- the drug would enable a liquid formulation for IV and/or subcutaneous administration and with high stability, high concentration, and low viscosity. Active ingredient could be in the range of 250 to 2,000 IU composed of 30 to 250 microgram of polymer drug conjugate in a nom inal volume ideally of 0.4m l.
- the cost of the polymer would be low, and the conjugation efficiency of the polymer to the FVIII or BDD FVIII protein would be very high, for example upwards of 75%.
- Such a product and product profile would make use of the extreme biocompatibility of the polymer and as transferred onto the protein. Specifically, the extreme biocompatibility would manifest itself with very tight water binding, extreme solubility, very high concentration, very low viscosity, and extreme stability. Technically, this translates into a >2x (or ideally >4x) increased elimination half- life versus PEGylation or its equivalent technologies, extremely low or no immunogenicity, high concentration, and room temperature stable liquid fonnulations.
- Product profile benefits include less frequent dosing, lower dose for same Area Under the Curve, effective safe treatment for naive patients, rescue therapy for patients with neutralizing antibodies, at home subcutaneous administration, pre-filled syringe/autoinjector with room temperature storage, higher gauge (lower diameter) syringe needles, lower injection volumes, and longer shelf lives.
- single pot synthesis very high polymer molecular weights, complex architectures, and low cost to manufacture are achievable. Furthermore, high efficiency conjugation of polymer to drug is possible. These manufacturing benefits can translate into cheaper, more available medicines and higher gross margins.
- This invention describes attaching high MW zwitterion-containing polymers to multimers of recombinant modified LDL receptor class A domains or relevant consensus sequences as described in US patent application 60/514,391 assigned to Avidia.
- the avimers can be lysine depleted and then lysines and/or other amino acids added to the N- and/or C- termini for site-specific attachment of a functionalized polymer.
- An N-terminal lysine is preferably the second amino acid (after methionine) and can drive relative site specific conjugation of an amine-driven initiator such as a functionalized polymer containing an aldehyde or acetal group.
- avimer compositions with relatively hydrophilic amino acids and low pi and high stability such that pH can be driven very low in the conjugation reaction such as to preferentially conjugate to the amine of the lysine rather than multi-point attachments that also conjugate to N-terminal amine group or other amine groups present in the protein.
- the therapeutic can have one polymer conjugated to the N- terminus and another conjugated to the C- terminus via a C-terminal lysine (an effective branched structure).
- Such an avimer can also be made in mammalian systems with an extra N- or C- terminal cysteine added for site specific conjugation with a thiol-reacting functionalized polymer.
- the polymer's functional group can also contain tissue targeting elements.
- the chemistry attaching the polymer to the avimer can be flexible such that it breaks in vivo, for example in serum or in a pH responsive manner, etc.
- Monomers and multimers composed of other domains of interest used similarly include EGF domains, Notch/LNR domains, DSL domains, Anato domains, integrin beta domains or such other domains as described in the referenced patent family.
- This invention also describes the attachment of high MW zwitterion-containing polymers to peptides and synthetic peptides and especially longer synthetic peptides with multiple domains.
- a big problem with multiple domain peptides is that they are unstable and also have very rapid clearance.
- the attachment of a highly biocompatible zwitterion- containing polymer such as those described in this invention solves these problems.
- the polymer increases the stability and also increases the in vivo residence time. This enables simple linear (unstructured) peptides as drugs, for example modules of around twenty amino acids per functional module in series of two, three, four or more modules with the goal to achieve avidity benefit or multifunctionality benefit.
- Each module could also have a bit of structure ('constrained' peptide like) or each module could actually be a knotted peptide domain such as a cysteine knot or macrocyclic element.
- the key is they are made synthetically and can be strung together with a site specific moiety for polymer conjugation at N- terminal or C-terminal (or both) or with the polymer conjugation point in the middle, which attachment point can be a site specific amino acid that is a natural amino acid or a non- natural amino acid. In a sense, this is a synthetic avimer with preferential properties. All of the amino acids could be synthetic, as well.
- Such a peptide plus the polymers of this invention describe a novel and powerful drug format of the future.
- a partial list of therapeutic modalities that can benefit from conjugation of such polymers consists of: avimer (LDL receptor A-domain scaffold), adnectin (flbronectin type III scaffold), Ablynx (camelid, llama-ids), NAR's (shark), one-arm and/or single domain antibodies from all species (rat, rabbit, shark, llama, camel, other), diabodies, other multi-domain based proteins such as multimei s of modified flbronectin domains, antibody fragments (scFv monomer, scFv dimers as agonists or antagonists), Fab's, Fab'-2's, soluble extracellular domains (sTNFR l , for example, or soluble cMet receptor fragment), combination with Amunix XTEN which comprises a hydrophilic amino acid string of up to 1
- This invention describes conjugates for ophthalmic and preferentially intravitreal or subconjunctival administration that have an intravitreal mean terminal half live of greater than 10 days as measured by physical presence of active conjugate.
- the active conjugate can also contain two functional agents, covalently attached proximal ly at one end of the polymer.
- the two functional agents could be aptamers to VEGF and PDGF for the treatment of wet and dry age-related macular degeneration.
- This invention contemplates conjugation of the high MW polymers of the invention to GLP- 1 , soluble TACI receptor, BAFF as well as inhibitors of BAFF, insulin and its variants, IL- 12 mutein (functional anti-IL-23 equivalent), anti-IL- 17 equivalent, FGF21 and muteins, RANK ligand and its antagonists, factor H and fusion proteins for inhibiton of alternative complement (Taligen), inhibitors of the immune synapse, activators of the immune synapse, inhibitors of T- cell and/or B /cell costimulatory pathways, activators or inhibitors of neuronal cells and/or their supporting matrix cells, extracellular matrix enzymes such as lysyl oxidase or metalloproteinase/metalloproteases, activators or inhibitors of regulatory T cells or antibody producing cells, as protectors of cells from inflammatory or clearance processes such as binding to beta cells of the pancreas and thereby exerting a protective function for the cell to prolong
- This invention contemplates using the polymers of the invention for mediating cell- penetration. For example, conjugation of the polymers of this invention through their initiator structure or end termini to one or more protein-derived peptides and amphipathic peptides either secondary and primary (Current Opinion in Biotechnology, 2006, 17, 638- 642). Those skilled in the art will also recognize the possibility to combine with the stapled peptide technology which adds hydrocarbon moieties to peptides to facilitate cell penetration. [0284] This invention contemplates the combination of these inventions with other drug delivery technologies, such as PLGA. Just as PEG's hydrophilic nature improved a number of PLGA properties, the high MW polymer technology of the current invention should further improve this.
- increased drug loading as a percent of total mass (current biopharmaceutical state of the art ⁇ 20% but generally less than 10%), also generally burst % is >5%.
- Enhanced water binding of the polymers of the current invention drives the solubility and drives higher loading and better in vivo performance of PLGA loaded with biopharmaceutical-polymer conjugate.
- This invention contemplates conjugates that demonstrate lower immunogenicity for a particular drug-polymer conjugate (so lower new incidence of neutralizing antibodies). It also contemplates shielding, masking, or de-immunizing. Not that existing neutralizing antibodies are removed but that the drug-polymer conjugate can be given to patients who already have or have had an antibody response either natively or because the particular patient was previously treated with an immunogenic biopharmaceutical drug and developed antibodies. In this latter patient set, the present invention contemplates the ability to 'rescue' such patients and re-enable them to receive therapy. This is useful, for example, with Factor VIII because patients can be kept on Factor VIII therapy (rather than fail it and then they move to a Factor VII therapy, for example).
- immune system shielding aspects of the present technology also enable drugs to be formulated for subcutaneous or needle-free injection where local dendritic and other innate and adaptive immune cell populations increase the incidence of immunogenicity.
- drug-polymer conjugates of the present invention decrease de novo immunogenicity and hide existing neutralizing antibodies, then the technology enables subcutaneous dosing and avoids antibody interactions and therefore expands the eligible patient base and also will decrease incidence of injection related adverse events such as anaphylaxis.
- the present invention allows the possibility to include different populations of polymer conjugate to the same or different therapeutic moieties to be combined into a single formulation.
- the result is to carefully tailor the desired in vivo and in vitro properties. For example, take a single therapeutic moiety and conjugate to it either in a single pot or separate pots two polymers of different size, architecture.
- the two populations will behave differently in vivo. One population can be smaller or contain less branched polymers. The second population can be larger, more branched architectures. The conjugate with the smaller polymers will be cleared more quickly.
- Another example would be with insulin or other agonistic proteins where the goal is to have a single injection that has both bolus aspect (quick activity) and also a basal (prolonged) aspect.
- Factor VIII one population of conjugated Factor VIII can have hydrolyzable linker between the polymer and the enzyme and so the enzyme comes off quickly.
- the second population could have a stable linker and so provide for the longer duration (chronic, prophylaxis) aspect.
- the present invention can create conjugates such that after IV and/or SC injection, a zero order kinetics of release is achieved.
- the duration of release ( 1 month, 2 months, 3 months, 4 months, 6 months, 12 months) will depend on the size and architecture and linker chemistry of the polymer.
- This can be functionally equivalent to a medical device or pump that releases a constant amount of drug from a geographically localized reservoir.
- the drug will not be physically contained. Rather it will be in continuous circulation or by virtue of targeting be enriched in a particular tissue, but it is engineered such that onset is similar to or equivalent to zero order kinetics with linear release and minimal burst and equivalent of 100% loading.
- the present invention allows for the introduction of break points or weak points in the polymers and initiators such that larger polymer structures and/or conjugates will break down over time into smaller pieces that are readily and quickly cleared by the body.
- First order examples include a sensitive linker between initiator and drug, ester bonds anywhere (initiator, polymer backbone, monomers).
- Such weak points can break passively (for example by means of hydrolysis) or actively (by means of enzymes).
- Other approaches to drive breakdown or clearance can involve the use of protecting groups or prodrug chem istries such that over time, a change in exposed chemistry takes place which exposed chemistry drives destruction or targets the conjugate of released polymer to the kidney or liver or other site for destruction or clearance.
- Product 1 .1 (l -(3-tert-butoxycarbonylamino-propionylamino)-2,2-bis[(3-tert- butoxycarbonylamino-propionylamino)-methyl]-2,5,8,l l , 14-pentaoxaheptadec- 16-ene
- the reaction was stirred at room temperature for three hours, then concentrated.
- the residue was partitioned between 50 ml each of water and ethyl acetate.
- the aqueous layer was extracted with another 25 ml of ethyl acetate, then the combined organics were dried over anhydrous sodium sulfate, filtered, and concentrated.
- the residue was subjected to silica gel flash chromatography with 0-3% methanol in dichloromethane to yield the desired product.
- Product 1.4 Dihydroxy functionalized nine-arm 2-bromo-2-methyl-propionamide initiator: 2-( 1 1 -[ 1 ,2-dihydroxypropyloxy]-3,6,9-trioxaundecyloxy)-ethane- 1 , 1, 1 -trimethy 1-3- [2-(2,2,2-tri(2-bromo-2-methyl-propionylaminomethyl)-ethoxy)-acetylamino]-propionamide
- the reaction mixture was partitioned between 20 ml each of water and dichloromethane.
- the aqueous layer was extracted thrice more with 10 ml dichloromethane, and the organic layers were combined and concentrated.
- the residue was subjected to silica gel flash chromatography using 5- 10% methanol in dichloromethane.
- dichloromethane 500 ml
- triethylamine 130 g, 1 .28 mol, 4.99 equiv
- dichloromethane 400 ml
- the resulting solution was stirred for 5 h at 10-20 C.
- the reaction was then quenched by the addition of 1000 ml of water.
- the resulting solution was extracted with 3x300 ml of dichloromethane and the organic layers combined. The resulting mixture was washed with 1 300 ml of brine.
- the resulting solution was stirred for 1 8 h at 60 C in an oil bath. The reaction was then quenched by the addition of 2500 ml of water. The resulting solution was extracted with 3x500 ml of ethyl acetate and the organic layers combined. The resulting mixture was washed with 1 x500 ml of brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum.
- Trifluoroacetic acid 40 ml was added to the reaction mixture dropwise, and stirred for 3 h at 10-20 C. Upon completion, the solvent was removed under reduced pressure, and the resulting crude material was dissolved in 200 ml of water. The aqueous solution was washed with ethyl acetate (3x1 50 ml), then concentrated under vacuum to furnish 9.00 g (73%) of 3-Amino-N- ⁇ 2,2-bis-[(3-am ino-propionylamino)-methyl]-3-[ l 1 -(3,5- dioxo- 10-oxa-4-aza-tricycIo[5.2.1.0 2 ' 6 ]dec-8-en-4-yl)-3,6,9-trioxaundecyIoxy]-propyl ⁇ - propionamide as a red solid.
- Product 2.7 Protected maleimide functionalized nine-arm 2-bromo-2-methyl- propionamide initiator: 2-( l ] -(3,5-dioxo- 10-oxa-4-aza-tricyclo[5.2.1.0 2,6 ]dec-8-en-4-yl)- 3,6,9-trioxaundecyloxy)-ethane- 1 , 1 , 1 -tri(methyl-3-[2-(2,2,2-tri(2-bromo-2-methyl- propiony)aminomethyl)-ethoxy)-acetylamino])-propionamide
- the reaction was stirred overnight at room temperature. After completion of the reaction, the volatiles were removed under vacuum. The resulting solution was diluted with 50 ml of ice water, then extracted with 3x100 ml of ethyl acetate. The combined organic layers were washed with 2x100 ml of brine, dried over anhydrous sodium sulfate, and concentrated under vacuum.
- Product 3.3 Protected maleimide functionalized three-arm 2-bromo-2-methyl- propionic acid ester initiator: 4-[l l -(2,2,2-Tri- ⁇ [2-(2-bromo-2-methyl-propionyloxy)-2- methyl-propionylamino]-methyl ⁇ -ethoxy)-3,6,9-trioxaundecyl]- 10-oxa-4-aza- tricyclo[5.2.1.0 2,6 ]dec-8-ene-3,5-dione
- reaction mixture was stirred for 12 h at 10— 1 5 C in an ice water bath, then quenched with 500 ml of water.
- the resulting solution was extracted with 3x300 ml of ethyl acetate and the combined organic layers were washed with 1 x300 ml of brine, dried over anhydrous sodium sulfate, and concentrated under vacuum.
- N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (70.0 g, 365 mmol, 2.87 equiv) and N-hydroxysuccinimide (46.0 g, 400 mmol, 3.14 equiv) was added to the reaction mixture and stirred for 12 h at 20 C. The reaction was then quenched by the addition of 5000 ml of water. The resulting solution was extracted with 3x1 500 ml of ethyl acetate and the combined organic layers were washed with 1 x1 500 ml of brine, dried over anhydrous sodium sulfate, and concentrated under vacuum. The residue was purified by flash chromatography (S1O2, eluent; ethyl acetate/petroleum ether
- Product 4.7 Protected maleimide functionalized nine-arm 2-bromo-2-methyl- propionic acid ester initiator: 2-(l l -(3,5-dioxo-10-oxa-4-aza-tricyclo[5.2.1 .0 2 ' 6 ]dec-8-en-4- yl)-3,6,9-trioxaundecyloxy)-ethane- l , l ,l-tri-(methyl-3-[2-(2,2,2-tri(2-bromo-2-methyl- propionyloxymethyl)-ethoxy)-acetylamino])-propionamide
- Triethylamine (1 .50 g, 14.8 mmol, 4.28 equiv) was added to the reaction mixture. The reaction was stirred for 1 h at 10-20 C followed by the addition of (2,2,2-Tri(2-bromo-2-methyl-propionyloxymethyl)-ethoxy)-acetic acid n- hydroxysuccinimidyl ester (product 4.6) (8.00 g, 10.8 mmol, 3. 13 equiv). The resulting solution was stirred for 16 h at 10 ⁇ 20 C, then quenched with 200 ml of water.
- the solution was extracted with 3x200 ml of dichloromethane and the combined organic layers were washed with 1 x200 ml of brine, dried over anhydrous sodium sulfate, and concentrated under vacuum.
- the crude product (10 g) was purified by Prep-HPLC with the following conditions (Gilson Pre-HPLC( ax. pressure:8MPa)): Column, SunFire Prep C I 8, 5um, 19* 100mm; mobile phase, WATER WITH 0.05%TFA and CH3CN (95% CH 3 CN in 20 min, up to 100% in 20 min, hold 100% in 1 .4 min); Detector, Gilson UV Detector 254nm.
- Product 5.2 Dihydroxy functionalized nine-arm 2-bromo-2-methyl-propionic acid ester initiator: 2-(l l -[l ,2-dihydroxypropyloxy]-3,6,9-trioxaundecyloxy)-ethane- 1 , 1 , 1 - tri(methyl-3-[2-(2,2,2-tri(2-bromo-2-meth ⁇
- a round-bottom flask equipped with a stirbar was charged with 10 ml water, 10 ml t-butanol, 1 .63 mg of 2-( 1 1 -Allyloxy-3,6,9-trioxaundecy loxy)-ethane- 1 , 1 , 1 -tri(methyl-3-[2- (2,2,2-tri(2-bromo-2-methyl-propionyloxymethyl)-ethoxy)-acet lamino])-propionamide (product 5.1 ), 680 mg potassium ferricyanide, 290 mg potassium carbonate, 65.7 mg methanesulfonamide, 6.5 mg quinuclidine, and 3.0 mg potassium osmate dihydrate and stirred for two days at room temperature.
- OCH 2 C 0), 4.32 (s, 18H, C(CH 2 0) 3 ), 7.26 (broadened, 3H, NH), 7.46 (broadened, 3H, NH).
- the aqueous phase was extracted with 2 1000 mL of dichloromethane, and the combined organic layers were dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/hexane ( 1 :50) as eluent. The crude product was purified by re-crystallization from petroleum ether. This resulted in 100 g (48%) of 3- [(2-bromo-2-methy Ipropanoy 1 )oxy] -2- [ [(2-bromo-2-methylpropanoyl)oxy] methy 1] -2- methylpropanoic acid as a white solid.
- a representative protocol to produce high molecular weight, tailor-made hydrophilic polymers of the zwitterionic monomer, 2-methacryloyloxyethyl phosphorylcholine (HEMA-PC), using a "living" controlled free radical process, atom transfer radical polymerization (ATRP), is as follows.
- the initiator and ligand (2,2'-bipyridyl) were introduced into a Schlenk tube.
- Dimethyl formamide or dimethylsulfoxide was introduced drop wise so that the total weight percent of both initiator and ligand did not exceed 20%.
- the reagents were introduced as solutions in dimethyl formamide (100 mg/ml).
- the resultant solution was cooled to -78°C using a dry ice/acetone mixture, and was degassed under vacuum until no further bubbling was seen. The mixture remained homogeneous at this temperature.
- reaction ingredients such as initiator or ligand
- the tube was refilled with nitrogen, and the vacuum-nitrogen cycle was repeated twice.
- the tube was then refilled with nitrogen and warmed to room temperature (25°C).
- the solution became viscous.
- the reaction was quenched by direct exposure to air causing the mixture to become blue-green in color, and was passed through a silica column in order to remove the copper catalyst.
- the collected solution was concentrated by rotar evaporation and the resulting mixture was purified by careful precipitation into
- the ratio of halide/CuBr/CuBr 2 was 1 /0.9/0.1 for reaction times up to 24 hours and 1/0.75/0.25 for reaction times longer than 24 hours
- polydispersity were determined/derived by multi-angle light scattering.
- Example 11 Further preparations of high molecular weight zwitterionic polymers
- HEMA-PC HEMA-PC
- Acryloyloxyethyl-2'- (trimethylammonium)ethyl phosphate, inner salt HEMA-PC
- ATRP atom transfer radical polymerization
- PVSAME04M3 (from Example 8)
- PVSAME04M6 (from Example 7)
- the initiator and ligand (2,2'-bipyridyl unless otherwise indicated) were introduced into a Schlenk tube. Dimethyl formamide or dimethylsulfoxide was introduced drop wise so that the total weight percent of both initiator and ligand did not exceed 20%.
- the reagents were introduced as solutions in dimethyl formamide ( 100 mg/ml). The resultant solution was cooled to -78°C using a dry ice/acetone mixture, and was degassed under vacuum until no further bubbling was seen. The mixture remained homogeneous at this temperature.
- HEMA-PC (or HEA-PC from Example 9) was kept as a dry solid under inert conditions at all times until ready for use.
- the solution was first passed through an alumina column in order to remove stabilizer prior to introduction into the Schlenk tube.
- the monomer solution was added drop wise into the Schlenk tube and homogenized by light stirring. Unless otherwise indicated, the ratio of monomer (g)/ethanol (ml) was 0.3.
- the temperature was maintained at -78°C. A thorough vacuum was applied to the reaction mixture for at least 10 to 15 min until bubbling from the solution ceased. The mixture stayed homogeneous at this temperature, i.e. with no precipitation of any reaction ingredients (such as initiator or ligand) thus avoiding premature or unwanted polymerization.
- the tube was refilled with nitrogen or argon, and the vacuum-nitrogen/argon cycle was repeated twice.
- the tube was then refilled with nitrogen or argon and warmed to room temperature (25°C). As the polymerization proceeded, the solution became viscous. After some time (defined in the table below), the reaction was quenched by direct exposure to air causing the mixture to become blue-green in color, and was passed through a silica column in order to remove the copper catalyst. The collected solution was concentrated by rotary evaporation and the resulting mixture was purified by careful precipitation into
- polydispersity were determined/derived by multi-angle light scattering.
- Example 14 Conjugation of recombinant human cytokine to aldehyde functionalized polymers
- the conjugation efficiency was monitored using two methods: (i) a semiquantitative method using SDS-PAGE analysis and (ii) a quantitative method using analytical size exclusion chromatography (SEC) with a ProPac SEC-10 column, 4x300mm from Dionex Corporation.
- SEC analytical size exclusion chromatography
- Elution of conjugate was achieved by eluting the column with wash buffer containing 40- 50mM NaCI for at least 5 CV.
- the fractions collected were concentrated with an Amicon Ultrafree concentrator with a 1 0 kDa MW cutoff membrane, buffer exchanged into I xPBS pH 7.4 and further concentrated to a final protein concentration of at least l mg/ml.
- the final conjugates were sterile filtered with a 0.22 micron filter and stored at 4°C before use.
- the final protein concentration was determined using OD277nm with the cytokine extinction coefficient of 0.81 (l mg/ml solution in a 10mm pathlength cuvette).
- the conjugate concentration was then calculated by including the MW of the polymer in addition to the protein.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Preparation (AREA)
Abstract
The present invention provides multi-armed high MW polymers containing hydrophilic groups and one or more functional agents, and methods of preparing such polymers.
Description
HIGH MOLECULAR WEIGHT ZWITTERION-CONTAINING
POLYMERS
CROSS-REFERENCES TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Provisional Application No. 61/548,146, filed October 17, 201 1 , which is incorporated in its entirety herein for all purposes.
BACKGROUND OF THE INVENTION
[0002] An arms race of sorts is happening right now amongst the big phanna companies who are all trying to deliver 'medically differentiated products'. Biopharmaceuticals are seen as a key vehicle. The belief is that differentiation will come not necessarily through target novelty but through novel drug formats. These formats will be flexible such that resulting drugs can be biology centric rather than format centric. This next wave of
biopharmaceuticals will be modular, multifunctional, and targeted. These drugs wi ll be designed with a view towards understanding the broader disease biology being targeted and applying that knowledge in a multifaceted drug. Antibodies are fantastic drugs, but despite a significant amount of antibody protein engineering they are and will continue to be a rigid and inflexible format.
[0003] The pharma protein engineers are looking to smaller protein formats. There was a wave of progress in the 2006 timeframe with the likes of adnectins (developed by Adnexus and acquired by BMS), avimers (developed by Avidia and acquired by Amgen), diabodies (developed by Domantis and acquired by GSK), Haptogen (acquired by Wyeth), BiTES (developed by icromet), camelids (developed by Ablynx), peptides (developed by the likes of Gryphon Therapeutics and Compugen and many others). But the conversion of these platform technologies into multiple products in the pharma pipeline has been slow to materialize. Over the past two decades, the problems besetting these non-whole antibody formats related to suboptimal affinity, poor stability, low manufacturing yield, as well as tools development. To a large degree, these problems have been or are being solved. But the Achilles heel of these formats remains their inadequate in vivo residence time, an issue which is holding back a wave of important product opportunities.
[0004] Whole antibodies have an elimination half life in vivo upwards of 250 hours, corresponding to more than one month of physical residency in the body. This makes them an excellent product format from a dosing point of view. Often they can achieve monthly or less frequent injection. The trajectory is also towards subcutaneous injection in smaller volumes (l mL, 0.8mL, 0.4mL), more stable liquid formulations (versus lyophilized formulations requiring physician reconstitution), storage at higher concentrations (50mg/mL, l OOmg/mL, 200mg/mL) and at higher temperatures (-80 degrees, -20 degrees, 2 - 8 degrees, room temperature).
[0005] Antibodies are a tough act to follow, especially with all of the activity in the broad antibody discovery and development ecosystem. But antibodies do leave much to be desired. They are ungainly, inflexible, large, single-target limited, manufactured in mammalian systems, overall poorly characterized and are central to many different in vivo biologies of which target binding, epithelial FcRn receptor recycling, antibody-dependent cell-mediated cytotoxicity (ADCC), complement dependent cytoxicity (CDC), avidity, higher order architectures, to name just a few.
[0006] The smaller, modular formats can make a major contribution towards the development of safer, targeted, multifunctional, higher efficacy, wel l-characterized and cheaper therapeutics. In addition, there is a similar need to improve the serum residence time and associated physical properties of other types of drug agents such as recombinant proteins and peptides (either native or mutein) and oligonucleotides. The challenge is to devise a technical solution that dramatically increases in vivo residence time for these soluble biopharmaceuticals (the performance issue), does so without forcing compromises in other key parameters such as drug solubility, stability, viscosity, characterizability (the related physical properties issues), and employs an approach that allows predictability across target classes and across the drug development path from early animal studies through to manufacturing scale-up and late-stage human clinical trials (the portfolio planning issue).
[0007] The first attempted class of solutions is biology-based and depends on fusing the protein agents to transferrin, albumin, immunoglobulin gamma (IgG), IgG constant region (IgG-Fc) and/or other serum proteins. But fusing a biology-based serum extension moiety to a functional biologic moiety increases the number and complexity of concurrent biological interactions. These non-target-mediated interactions rarely promote the desired therapeutic action of the drug, but rather more often detract from the desired therapeutic action of the drug in complex and poorly understood ways. The net impact is to undermine predictability, performance, and safety.
[0008] The second attempted class of solutions is based broadly on a set of approaches that make use of polymers of different types which are attached to the drug. These polymers function largely on the basis of their ability to bind and structure water. The bound water decreases clearance by the myriad in vivo clearance mechanisms, both passive and active, while also improving physical properties of the polymer-drug conjugate such as solubility, stability, viscosity. This second class of solutions is subcategorized further in two ways: (1 ) by the water binding entity within the polymer, and (2) how the polymer is attached to the drug agent. Relating to (1 ), there are a number of different polymeric water binding moieties in use, such as sugars (carbohydrates), amino acids (hydrophilic protein domains), polyethylene oxide, polyoxazoline, polyvinyl alcohol, polyvinyl pyrrolidone, etc. Relating to (2), the distinction is largely whether the polymer is added to the drug agent by the cellular machinery or whether it is added in a semi-synthetic conjugation step.
[0009] Relating to polymers added to the drug agent by cellular machinery (i.e. not through a semi-synthetic step), one example is the addition of hydrophilic carbohydrate polymers to the surface of a translated protein through a cell-mediated glycosylation process by adding or modifying a glycosylation site at the level of the coding nucleotide sequence (e.g. Aranesp). Another example is the addition of a string of hydrophilic amino acids during protein translation by adding a series of repeating nucleotide units at the level of the open reading frame codons (i.e. Amunix's XTEN platform).
[0010] Relating to the semi-synthetics: The most experience exists with PEGylation in which polymers of polyethylene oxide are functionalized and then conjugated to the drug agent. Also, Fresenius employs a HESylation approach in which long-chain maize starches are functionalized and then conjugated to the drug agent. Also, Serina Therapeutics' employs a hydrophilic polyoxazoline backbone (as opposed to the polyethylene backbone of PEG). Another method termed po!yPEG as described by Haddleton et al employs a polymer backbone capable of radical polymerization and a water binding entity that is either a short string of PEG or a sugar.
[0011] How well do these different technology approaches work in practice? In general, despite significant time and money spent by biopharma and pharma, the general conclusion is that these technologies are not delivering the level of performance benefit needed (especially in vivo residence time) and furthermore are at the flat of the curve in terms of their ability to deliver further progress through additional engineering. The level of improvement required depends on the drug and its biology and the required product profile , but in many cases is as high as three to fourfold. Many companies are working to achieve this level of improvement
but in practice the technologies employed are falling short and delivering incremental improvements that are overall niche in their applicability.
[0012] For example:
[0013] PEGylation of an antibody fragment scFv (approximately 22 kDa in size) inhibitor of GM-CSF (Micromet data) with a 40 kDa branched PEG resulted in a murine elimination half life after intravenous injection of 59 hours which is inadequate. To be useful, the murine half-life should be over 150 hours (a 3x improvement) and preferably over 250 hours (a 4x improvement).
[0014] PEGylation of a recombinant interferon alfa of approximately 19.5 kDa with a 40 kDa branched PEG (Pegasys data) results in a murine elimination half life after subcutaneous injection of approximately 50 hours and a human half life in the range of 80 hours. Pegasys is dosed weekly in humans.
[0015] PEGylation of a Fab' antibody fragment of approximately 50 kDa against IL-8 (Genentech data, Leong et al, 2001 ) with a series of PEG polymers of increasing size and architecture. Half lives in rabbits after intravenous injection ranged from 44 hours with a
PEG 20 kDa linear to 105 hours with a PEG 40 kDa branched. This can be correlated against the half-life of the approved product Cimzia which has a Fab' against TNFa conjugated with a 40 kDa branched polymer. Human half life after subcutaneous injection is 3 1 1 hours and is sufficient (as approved by the FDA for rheumatoid arthritis) for monthly subcutaneous dosing. But the properties driven by the PEG moiety (solubility, stability, viscosity) are not sufficient to enable the full dose amount (400mg) to be formulated in a single vial for subcutaneous injection (limit l mL, preferably 0.8mL or less). Rather, Cimzia is formulated preferably as a solid and in two vials for two separate injections each delivering 200mg of product. Furthermore, the PEG reagent is very expensive and constitutes up to twenty percent of the average wholesale price of the drug. Therefore, the Cimzia product is not very competitive in the marketplace versus Humira (anti-TNFa antibody, in a liquid formulation, in a single use syringe, administered by single subcutaneous injection, twice monthly) and even less so versus Simponi (anti-TNFa antibody, in a liquid formulation, in a single use syringe, administered by single subcutaneous injection, once monthly).
[0016] PEGylation of a peptide mimetic (approximately 4kDa) of erythropoietin receptor (Hematide data) with a 40 kDa branched PEG polymer after subcutaneous injection showed between 23 and 3 1 hour half-life in rats (dose dependent). In monkeys the half-life ranged between 15 hours and 60 hours (Fan et al Experimental Hematology, 34, 2006). The
projected dose frequency for the molecule is monthly. In this case, the ability to dose monthly with this molecule is enabled by a pharmacodynamic effect whose duration far exceeds the physical half-life and residence time of the drug itself. This property holds for certain potent agonistic drugs but generally does not hold for inhibitors that need to maintain a minimal inhibitory concentration nor does it hold for enzymes nor for high dose agonistic proteins.
[0017] Interferon beta (approximately 20 kDa) was PEGylated with a 40 kDa linear PEG polymer. Avonex. an unPEGylated form, demonstrates a mean terminal half life in monkeys after intravenous injection of 5.5 hours and a half-life of 10 hours after intramuscular injection. Conjugation of a 40 kDa linear PEG polymer can demonstrate a half life of approximately fifteen hours after intravenous administration and thirty hours after subcutaneous administration. Conjugation of a 40 kDa branched PEG polymer can demonstrate a half life of thirty hours after intravenous administration and sixty hours after subcutaneous administration. The projected dose frequency is twice monthly, so the ability to dose twice monthly with this molecule is enabled by a biological or pharmacodynamic effect whose duration exceeds the physical half-life and residence time of the drug itself. For an attractive target product profile to challenge the existing interferon beta products, a once a month dose frequency is required. Alternatively, a polymer conjugate that was dosed twice monthly but with very flat, potentially zero order, kinetics could be ideal. This is obtainable with a highly biocompatible conjugate and dosed at a lower overall dose. Furthermore, interferon beta is an unstable and overall 'difficult' protein to work with and further improvement in solubility and stability is desired.
[0018] PEGylation of recombinant human Factor VIII (upwards of 300 kDa) with a 60 kDa branched PEG polymer has been performed. UnPEGylated FVIII demonstrates a twelve to fourteen hour circulating half-life in humans. It is used acutely in response to a bleeding crisis. It is also being used for prophylaxis via three times weekly intravenous infusions. The murine mean terminal half-life is six hours in the unPEGylated form and eleven hours with a site-directed PEGylated form . In rabbits, with a full-length FVIII protein, an unPEGylated form showed a mean terminal half life of 6.7 hours. With a form PEGylated with a 60kDa branched PEG, the half life increased to twelve hours. The magnitude of increase in half-life of PEG-FVIII correlates to the increase in PEG mass. A key goal, however, is to enable prophylaxis with a once weekly intravenous infusion. The benefit delivered even by the very large (and expensive 60kDa PEG reagent) is not thought to, nor is it likely to, enable the once weekly dose frequency. It needs an additional >2x preferably a 4x versus PEG to be a game
changer. Another in vivo performance metric to improve would be to substantially decrease the incidence of neutralizing antibodies generated against the administered FVIII drug. This goal is inadequately met via FVTII-PEG conjugates. Another in vitro performance metric to improve would be to achieve a stable, high concentration formulation sufficient to enable subcutaneous dosing rather than intravenous dosing - this would also require improvement of the in vivo immunogenicity properties as the subcutaneous areas are high in immune- stimulating antigen presenting cells. Recently, a Biogen-generated fusion of FVIII to immunoglobulin Fc fragment was tested and demonstrated to have similar level of in vivo half-life as the PEGylated FVIII but interestingly very poor bioavailability presumably due to FcRn-mediated endothelial cell clearance of the drug. These data have led FVIII drug developers to conclude the existing technologies have "hit a wall".
[0019] The Amunix XTEN technology fuses approximately 850 hydrophilic amino acids (approximately 80kDa in size) to the GLP-1 peptide. This boosts the half-life to sixty hours in a cynomolgus monkey which is slightly inferior to a GLP-1 equivalent conjugated to a 40kDa branched PEG polymer. So a polymer of 2x increased size delivers essentially the same performance benefit. A similar level of benefit was seen with XTEN attached to human growth hormone. In terms of trying to extend further the level of half life benefit, there are a number of challenges. First and foremost, the hydrophilic amino acids used to bind and structure the water are non-optimal in terms of their water binding characteristics. Second, the requisite use of the ribosomal translation machinery to add the polymer limits the architecture to single arm, linear structures which have been shown in many PEGylation examples to be inferior to branched architectures when holding molecular weight constant and increasing the level of branching. Third, a peptide bond used as a polymer backbone is sufficiently unstable such that it will demonstrate a polydispersity, which heterogeneity becomes limiting in practical terms such that the length of the hydrophilic polymer cannot be easily increased to achieve half lives superior to the 40kDa branched PEG (this on top of other complexity related to the use of multiple long repeating units in the encoding plasmid vector which itself becomes limiting). This technology then becomes niche in its application, for example, to allow a peptide formerly made synthetically via chemical synthesis to be made in a cell-based system which has some perceived advantages (as well as new disadvantages) but overall with similar in vivo performance as possible with other technologies, especially in vivo elimination half life.
[0020] rfiEPO is a 30.4 kDa protein with 165 amino acids and 3 N-linked plus 1 O-linked glycosylation site. 40% of the mass is carbohydrate. The carbohydrates are not necessary for
activity in vitro, but absolutely necessary for activity in vivo. Aranesp is a form of human erythropoietin modified at the genetic level to contain 5 N-linked oligosaccharide chains versus the native form which contains 3 chains. The additional carbohydrates increase the approximate molecular weight of the glycoprotein from 30kDa to 37kDa. In humans, the change increases mean terminal half life after intravenous injection from 7 hours to 21 hours and after subcutaneous injection from 16 hours to 46 hours, which is an approximate threefold improvement in both cases. Mircera which is a PEGylated form of recombinant human erythropietin demonstrated in vivo half life after subcutaneous injection of approximately 140 hours but in chronic renal disease patients, where patients because of renal filtration of the drug show a more than 2x increase in half life as well as a decreased receptor affinity which decreases mechanistic clearance, meaning the actual physical half life is less than 70 hours and in line with Affymax's Hematide peptidomimetic (PEGylated with a 40kDa branched PEG).
[0021] The HESylation technology employs a semi-synthetic conjugation of a maize derived starch polymer to a drug. Data shows that a 1 OOkDa HESylation polymer is equivalent to a 30kDa linear PEG polymer on erythropoietin in mice (Mircera product equivalent). It is possible to use a bigger polymer, but the approach is fundamentally limited by the nature of the starch water binding. Also, equivalence of a 1 OOkDa polymer to a 30kDa linear PEG (which is itself inferior to a 40kDa branched PEG) shows that there is a long way to go in terms of performance before this can equal a 40kDa branched PEG much less provide a requisite 4x benefit.
[0022] These examples are illustrative of several of the approaches being tried and the overall performance they achieve. In short, these approaches and technologies fall short. For non-antibody scaffolds, they converge and hit the wall at elimination half lives of around 60 to 80 hours in monkey. Although the line varies, it is generally desired to achieve at least 100 hour mean terminal half life in monkeys in order to enable once weekly dosing in humans. And when dose frequency is longer than the half life, this places additional demands on the formulation's solubility, stability, and viscosity. For other types of proteins, such as Factor VIII, the absolute value of the starting half life and thus the requisite target value is lower, but the performance multiple required to get to an attractive target product profile is similar and on the order of 3x to 4x. The question, then, is how to get here?
[0023] First, some more background. Efforts to formulate biologically active agents for delivery must deal with a variety of variables including the route of administration, the biological stability of the active agent and the solubility of the active agents in
physiologically compatible media. Choices made in formulating biologically active agents and the selected routes of administration can affect the bioavailability of the active agents. For example, the choice of parenteral administration into the systemic circulation for biologically active proteins and polypeptides avoids the proteolytic environment found in the gastrointestinal tract. However, even where direct administration, such as by injection, of biologically active agents is possible, formulations may be unsatisfactory for a variety of reasons including the generation of an immune response to the administered agent and responses to any excipients including burning and stinging. Even if the active agent is not immunogenic and satisfactory excipients can be employed, biologically active agents can have a limited solubility and short biological half life that can require repeated administration or continuous infusion, which can be painful and/or inconvenient.
[0024] For some biologically active agents, a degree of success has been achieved in developing suitable formulations of functional agents by conjugating the agents to water soluble polymers. The conjugation of biologically active agents to water soluble polymers is generally viewed as providing a variety of benefits for the delivery of biologically active agents, and in particular, proteins and peptides. Among the water soluble polymers employed, polyethylene glycol (PEG) has been most widely conjugated to a variety of biologically active agents including biologically active peptides. A reduction in
immunogenicity or antigenicity, increased half-life, increased solubility, decreased clearance by the kidney and decreased enzymatic degradation have been attributed to conjugates of a variety of water soluble polymers and functional agents, including PEG conjugates. As a result of these attributes, the polymer conjugates of biologically active agents require less frequent dosing and may permit the use of less of the active agent to achieve a therapeutic endpoint. Less frequent dosing reduces the overall number of injections, which can be painful and which require inconvenient visits to healthcare professionals.
[0025] Although some success has been achieved with PEG conjugation, "PEGylation" of biologically active agents remains a challenge. As drug developers progress beyond very potent agonistic proteins such as erythropoietin and the various interferons, the benefits of the PEG hydrophilic polymer are insufficient to drive (i) in vitro the increases in solubility, stability and the decreases in viscosity, and (ii) in vivo the increases in bioavailability, serum and/or tissue half-life and the decreases in immunogenicity that are necessary for a commercially successful product.
[0026] Branched forms of PEG for use in conjugate preparation have been introduced to alleviate some of the difficulties and limitations encountered with the use of long straight
PEG polymer chains. Experience to date demonstrates that branched forms of PEG deliver a "curve-shift" in performance benefit versus linear straight PEG polymers chains of same total molecular weight. While branched polymers may overcome some of the limitations associated with conjugates formed with long linear PEG polymers, neither branched nor linear PEG polymer conjugates adequately resolve the issues associated with the use of conjugated functional agents, in particular, inhibitory agents. PEGylation does, though, represent the state of the art in conjugation of hydrophilic polymers to target agents.
PEGylated compound products, among them peginterferon alfa-2a (PEGASYS), pegfilgrastim (Neulasta), pegaptanib (Macugen), and certolizumab pegol (Cimzia), had over $6 billion in annual sales in 2009. Functional ized PEG (suitable for conjugation) is manufactured through a laborious process that involves polymerization of short linear polymers which are then multiply functionalized then attached as two conjugation reactions to a lysine residue which becomes a two-arm PEG reagent. Due to the number of synthetic steps and the need for high quality, multiple chromatography steps are required. Low polydispersity (<1.2) linear PEG polymers have a size restriction of approximately 20kDa, 30kDa or 40kDa with 20kDa being the economically feasible limit. When formed into a branched reagent, then, the final reagent size is 40 kDa (2 x 20 kDa), 60 kDa (2 x 30 kDa), 80 kDa (2 x 40 kDa). The larger the size, the more expensive to manufacture with low polydispersity. Also, the larger the size, the less optimal the solubility, stability, and viscosity of the polymer and the associated polymer-drug conjugate.
[0027] In summary, PEG polymers work well with low-dose, high-potency agonistic molecules such as erythropoietin and interferon. However, despite its commercial success, PEGylated products have inadequate stability and solubility, the PEG reagent is expensive to manufacture and, most important, PEGylated products have limited further upside in terms of improving in vivo and in vitro performance.
[0028] In view of the recognized advantages of conjugating functional agents to water soluble polymers, and the limitations of water soluble polymers such as PEG in forming conjugates suitable for therapeutic purposes, additional water soluble polymers for forming conjugates with functional agents are desirable. Water soluble polymers, particularly those which have many of the advantages of PEG for use in conjugate formation, and which do not suffer from the disadvantages observed with PEG as a conjugating agent would be desirable for use in forming therapeutic and diagnostic agents.
[0029] PEGylation does nonetheless point the way to a solution to the entire
biocompatibility issue. PEG works because of the polymer's hydrophilic characteristics
which shield the conjugated biological agent from the myriad non-specific in vivo clearance mechanisms in the body. The importance of water is generally recognized, but the special insight in this technology is to dig deeper to appreciate that it is how the water is bound and the associated water structure that is critical to the performance enhancement. PEG works because of its hydrophilic nature, but the water is not tightly bound to the polymer and thus the conjugated agent. Water molecules are in free exchange between the PEGylated compound and the surrounding bulk water, enabling clearance systems to recognize the protein. The answer is to find a way to "glue" water so tightly to the polymer and thus conjugated moiety such as to tightly mask the complex entirely from non-specific interactions. To accomplish, it is necessary for the polymer to maintain both positive and negative charges, thus being net neutral, an essential zwitterion. Certain zwitterionic polymers hold and will not release water molecules bound to their structures.
[0030] To make further progress, then, it is necessary to take a closer look at: (i) other examples of hydrophilic moieties that bind water to a greater extent and with more favorable physical properties and therefore with improved fundamental biocompatibility in vivo and in vitro, and (ii) examples of much bigger, extended form polymers (size and architecture) which is the related key driver of the in vivo and in vitro performance.
[0031] What is important for these polymers is the extent to which they bind water molecules and the physical properties of those water binding interactions. This combination of properties drives the fundamental biocompatibility of the polymer and the extent to which such a polymer can impart biocompatibility to a functional agent to which it is conjugated. The ideal technology would use a water binding moiety which very tightly if not irreversibly binds a large amount of water, would format these water binding moieties into a polymer backbone of sufficient length and flexibility to shield a range of desired drugs and formats, may have an extended form (i.e. multi-armed) architecture, would be functionalized for high efficiency conj ugation to the drug moiety, would be manufactured inexpensively with a minimal number of production steps, and would demonstrate very high quality as judged analytically and very high performance judged in functional in vivo (terminal half-life, immunogenicity, bioactivity) and in vitro (solubility, stability, viscosity, bioactivity) systems. A technology that allowed for the maximization of these elements would take the field to new levels of in vivo and in vitro performance.
[0032] One such technology uses as the water binding moiety the phosphorylcholine derived 2-methacryloyloxyethyl phosphorylcholine (HEMA-PC) or a related zwitterion, on a polymer of total size greater than 50 kDa peak molecular weight (Mp) as measured by multi-
angle light scattering, with the possibility for highly branched architectures or pseudo architectures, functionalized for site-specific conjugation to a biopharmaceutical(s) of interest, manufactured with techniques enabling a well characterized therapeutic with high quality and low polydispersity, and when conjugated to a biopharmaceutical imparts a dramatic increase in mean terminal half-life versus an equivalent biopharmaceutical as modified with another half-life extension technology (for example, as conjugated with a PEG polymer) and which imparts solubility, stability, viscosity, and characterizability parameters to the conjugate that are a multiple of that seen with PEG or other technologies.
[0033] Of critical importance is the size of the polymer. When used for therapeutic purposes in the context of soluble polymer-drug conjugates, the prior art teaches that there is a well-defined and described trade-off between the size of the polymer and its quality. The polydispersity index (a key proxy for quality) is particularly important as it speaks to the heterogeneity of the underlying statistical polymer which when conjugated to a
pharmaceutical of interest imparts such heterogeneity to the drug itself which significantly complicates the reliable synthesis of the therapeutic protein required for consistent effectiveness. and which is undesirable from a manufacturing, regulatory, clinical, and patient point of view.
[0034] The present invention describes very large polymers with very high quality and very low polydispersity index which are functionalized for chemical conjugation for example to a soluble drug. Importantly, the polymers are not inert, nor are they destined for attachment to a surface or gelled as hydrogel. This is wholly new, surprising, very useful and has not been described previously. For their therapeutic intent, a well-defined drug substance is essential.
This manifests itself at the level of the polymer, the pharmaceutical, and the conjugate.
Notably, there is a body of work on polymers having been made using a variety of approaches and components with unfunctionalized polymers. That body of work is not directly relevant here where a required step is a specific conjugation.
[0035] The current state of the art as it relates to functionalized polymers, constructed from hydrophilic monomers by conventional, pseudo or controlled radical polymerization, is that only low molecular weight polymers (typically <50 kDa) have been described. In addition, as this molecular weight is approached, control of molecular weight, as evidenced by the polydispersity index (PDI), is lost.
[0036] For instance, Ishihara et al (2004, Biomaterials 25, 71-76) utilized controlled radical polymerization to construct linear polymers of 2-methacryloyloxyethyl
phosphorylcholine (HEMA-PC) up to a molecular weight of 37 kDa. The PD1 was 1.35, which is too high to be pharmaceutically relevant. In addition, these authors clearly stated, "In this method, it is hard to control the molecular weight distribution and increase the molecular weight." Lewis et al (US Patent 2004/0063881 ) also describe homopolymerization of this monomer using controlled radical polymerization, and reported molecular weights up to 1 1 kDa with a PD1 of 1.45. In a later publication, Lewis et al (2008, Bioconjugate Chem. 19, 2144-2155) again synthesized functionalized homopolymers of HEMA-PC this time to molecular weights up to 37 kDa. The PDI was 2.01. They stated that they achieved good control only at very limited (insufficient) molecular weights, with polydispersity increasing dramatically. They report loss of control at their high end molecular weight range (37 kDa) which they attribute to fast conversion at higher monomer concentrations which leads to the conclusion that it is not possible to create high molecular weight polymers of this type with tight control of polydispersity.
[0037] For instance, Hadd!eton et al (2004, JACS 126, 13220- 13221 ) utilized controlled radical polymerization to construct small linear polymers of poly(methoxyPEG)methacrylates for use in conjugation with proteins and in a size range of 1 1 ,000 to 34,000 Daltons. In an attempt to build the larger of these polymers, the authors increased the reaction temperature and sought out catalysts that could drive a faster polymerization. In a later publication, Haddleton et al (2005, JACS 127, 2966-2973) again synthesized functionalized
homopolymers of poly(methoxyPEG) methacrylates via controlled radical polymerization for protein conjugation in the size range of 4.1 to 35.4 kDa with PDI's ranging upwards of 1.25 even at this small and insufficient molecular weight distribution. In a subsequent publication, Haddleton et al (2007, JACS 129, 15156- 15163) again synthesized functionalized polymers via controlled radical polymerization for protein conjugation in the low size range of 8 to 30 kDA with PDI range of 1.20 - 1.28. Haddleton et al's mindset and approach teach away from the methods that need to be used to make high molecular weight, low polydispersity polymers relevant to this invention. Further, the focus on low molecular weight polymers for protein conjugation reflects a lack of understanding as to the size, architecture, and quality of polymers needed to carry the biopharmaceutical field to the next level.
[0038] The present invention describes high molecular weight zwitterion-containing polymers (>50 kDa peak molecular weight measured using multi-angle light scattering) with concomitantly low PDIs. This is surprising in light of the foregoing summary of the current state of the art.
- BRIEF SUMMARY OF THE INVENTION
[0039] In some embodiments, the present invention provides a polymer having at least two polymer arms each having a plurality of monomers each independently selected from acrylate, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine,
vinyl-pyrrolidone or vinyl-ester, wherein each monomer includes a hydrophilic group. The polymer also includes an initiator fragment linked to a proximal end of the polymer arm, wherein the initator moiety is suitable for radical polymerization. The polymer also includes an end group linked to a distal end of the polymer arm. At least one of the initiator fragment and the end group of the polymer includes a functional agent or a linking group.
[0040] In other embodiments, the present invention provides a conjugate including at least one polymer having at least two polymer arms each having a plurality of monomers each independently selected from the group consisting of acrylate, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone or vinyl-ester, wherein each monomer includes a hydrophilic group, an initiator fragment linked to a proximal end of the polymer arm, wherein the initator moiety is suitable for radical polymerization, and an end group linked to a distal end of the polymer arm. The conjugates of the present invention also include at least one functional agent having a bioactive agent or a diagnostic agent, linked to the initiator fragment or the end group.
[0041] In some other embodiments, the present invention provides a polymer of the formula:
wherein R can be H, L -A , LG or L -LG . Each M and M~ can be independently selected from acrylate, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone or vinyl-ester. Each of G1 and G2 is each independently a hydrophilic group. Each group I is an initiator fragment and Γ a radical scavenger such that the combination of l-Γ is an initiator, I 1, for the polymerization of the polymer via radical polymerization. Alternatively, each F can be independently selected from H, halogen or Ci_6 alkyl. Each L1, L2 and L3 can be a linker. Each A1 can be a functional agent. Each LG1 can be a linking group. Subscripts x and y' can each independently be an integer of from 1
to 1000. Each subscript z can be independently an integer of from 1 to 10. Subscript s can be an integer of from 2 to 1 00.
wherein each Γ can independently be halogen, -SCN, or -NCS; L4 and L5 can each independently be a bond or a linker, such that one of L4 and L5 is a linker; C is a bond or a core group; LG2 is a linking group; and subscript p is an integer from 2 to 1 00.
BRIEF DESCRIPTION OF THE DRAWINGS
[0043] Figure 1 shows a scheme for the preparation of the random copolymers of the present invention. The initiator Ι-Γ is cleaved into initiator fragment I and radical scavenger Γ. The initiator fragment I then reacts with comonomers M1 and M2 to initiate the polymerization process and generate species A. The radical scavenger Γ can then reversibly react with species A to form species B. Alternatively, species A can react with additional monomers to continue propagation of the polymer (species C). Concomitantly, the growing polymer chain of species C reversibly reacts with radical scavenger F to form the random copolymer, species D.
DETAILED DESCRIPTION OF THE INVENTION
I. General
[0044] The present invention provides high MW polymers having hydrophilic groups or zwitterions, such as phosphorylcholine, and at least one functional agent (as defined herein). Phosphorylcholine as a highly biocompatible molecule drives fundamental biocompatibility. It also has chaperone type functions, in terms of protecting proteins under temperature or other stress. It also can allow other functions such as reversible cellular uptake. The functional agent can be a bioactive agent such as a drug, therapeutic protein or targeting agent, as well as a detection agent, imaging agent, labeling agent or diagnostic agent. The high MW polymers are useful for the treatment of a variety of conditions and disease states by selecting one or more appropriate functional agents. More than one bioactive agent can be linked to the high MW polymer, thus enabling treatment of notjust a single disease symptom or mechanism, but rather the whole disease. In addition, the high MW polymers are useful for diagnostic and imaging purposes by attachment of suitable targeting agents and imaging
agents. The high MW polymers can include both therapeutic and diagnostic agents in a single polymer, providing theranostic agents that treat the disease as well as detect and diagnose. The polymers can be linked to the bioactive agent(s) via stable or unstable linkages.
[0045] The polymers can be prepared via a conventional free-radical polymerization or controlled/living radical polymerization, such as atom transfer radical polymerization (ATRP), using monomers that contain zwitterions, such as phosphorylcholine. The initiators used for preparation of the high MW polymers can have multiple initiating sites such that multi-arm polymers, such as stars, can be prepared. The initiator can also contain either the bioactive agent, or linking groups that are able to link to the bioactive agent.
[0046] The invention also describes new ways to achieve branched polymer architectures on a bioactive surface. The concept is one of "branching points" or "proximal attachment points" on the target molecule such as to recreate an effective >2 arm polymer with >1 arm polymers attached to a localized site(s) on a target molecule. In the prior art, indiscriminate PEGylation of a protein with a non site-specific reagent (for example an NHS functionalized PEG reagent) would result in multiple PEG polymers conjugated to multiple amine groups scattered through the protein. Here, what is described is preferably a one step approach in which the target agent is modified to locate two unique conjugation sites (for example, cysteine amino acids) such that once the tertiary structure of the protein or peptide or agent is formed, the two sites will be in proximity one to the other. Then, this modified target agent is used in a conjugation reaction with a polymer containing the corresponding conjugation chemistry (for example, thiol reactive). The result is a single target agent which is conjugated with two polymers in close proximity to one another, thereby creating a branching point or "pseudo" branch. In another embodiment, the target agent would contain a single unique site, for example a free cysteine, and a tri(hetero)functional linking agent would be employed to attach >2 linear polymers to this single site, again creating a "pseudo" branch.
[0047] The invention also describes new ways to achieve very high efficiency and site specific conjugation to peptides and proteins by way of inteins.
II. Definitions [0048] "Polymer" refers to a series of monomer groups linked together. The high MW polymers are prepared from monomers that include, but are not limited to, acrylates, methacrylates, acrylamides, methacrylamides, styrenes, vinyl-pyridine, vinyl-pyrrolidone and vinyl esters such as vinyl acetate. Additional monomers are useful in the high MW polymers
of the present invention. When two different monomers are used, the two monomers are called "comonomers," meaning that the different monomers are copolymerized to form a single polymer. The polymer can be linear or branched. When the polymer is branched, each polymer chain is referred to as a "polymer arm." The end of the polymer arm linked to the initiator moiety is the proximal end, and the growing-chain end of the polymer arm is the distal end. On the growing chain-end of the polymer arm, the polymer arm end group can be the radical scavenger, or another group.
[0049] "Hydrophilic group" refers to a compound or polymer that attracts water, and is typically water soluble. Examples of hydrophilic groups include hydrophilic polymers and zwitterionic moieties. Other hydrophilic groups include, but are not limited to, hydroxy, amine, carboxylic acid, amide, sulfonate and phosphonate. Hydrophilic polymers include, but are not limited to, polyethylene oxide, polyoxazoline, cellulose, starch and other polysaccharides. Zwitterionic moiety refers to a compound having both a positive and a negative charge. Zwitterionic moieties useful in the high MW polymers can include a quaternary nitrogen and a negatively charged phosphate, such as phosphorylcholine:
RO-P(=0)(0>0-CH2CH2-N+( e)3. Other zwitterionic moieties are useful in the high MW polymers of the present invention, and Patents WO 1994/016748 and WO 1994/016749 are incorporated in their entirety herein.
[0050] "Initiator" refers to a compound capable of initiating a polymerization using the comonomers of the present invention. The polymerization can be a conventional free radical polymerization or a controlled/living radical polymerization, such as Atom Transfer Radical Polymerization (ATRP), Reversible Addition-Fragmentation-Termi nation (RAFT) polymerization or nitroxide mediated polymerization (NMP). The polymerization can be a "pseudo" controlled polymerization, such as degenerative transfer. When the initiator is suitable for ATRP, it contains a labile bond which can homolytically cleave to form an initiator fragment, I, being a radical capable of initiating a radical polymerization, and a radical scavenger, Γ, which reacts with the radical of the growing polymer chain to reversibly terminate the polymerization. The radical scavenger F is typically a halogen, but can also be an organic moiety, such as a nitrile.
[0051] "Linker" refers to a chemical moiety that l inks two groups together. The linker can be cleavable or non-cleavable. Cleavable linkers can be hydrolyzable, enzymatically cleavable, pH sensitive, photolabile, or disulfide linkers, among others. Other linkers include homobifunctional and heterobifunctional linkers. A "linking group" is a functional group
capable of forming a covalent linkage consisting of one or more bonds to a bioactive agent. Nonlimiting examples include those illustrated in Table 1 .
[0052] "Hydrolyzable linker" refers to a chemical linkage or bond, such as a covalent bond, that undergoes hydrolysis under physiological conditions. The tendency of a bond to hydrolyze may depend not only on the general type of linkage connecting two central atoms between which the bond is severed, but also on the substituents attached to these central atoms. Non-limiting examples of hydrolytically susceptible linkages include esters of carboxylic acids, phosphate esters, acetals, ketals. acyloxyalkyl ether, imines, orthoesters, and some amide linkages.
[0053] "Enzymatically cleavable linker" refers to a linkage that is subject to degradation by one or more enzymes. Some hydrolytically susceptible linkages may also be enzymatically degradable. For example esterases may act on esters of carboxylic acid or phosphate esters, and proteases may act on peptide bonds and some amide linkages.
[0054] "pH sensitive linker" refers to a linkage that is stable at one pH and subject to degradation at another pH. For example, the pH sensitive linker can be stable at neutral or basic conditions, but labile at mildly acidic conditions.
[0055] "Photolabile linker" refers to a linkage, such as a covalent bond, that cleaves upon exposure to light. The photolabile linker includes an aromatic moiety in order to absorb the incoming light, which then triggers a rearrangement of the bonds in order to cleave the two groups linked by the photolabile linker.
[0056] "Self-immolative or double prodrug linker" refers to a linkage in which the main function of the linker is to release a functional agent only after selective trigger activation (for example, a drop in pH or the presence of a tissue-specific enzyme) followed by spontaneous chemical breakdown to release the functional agent.
[0057] "Functional agent" is defined to include a bioactive agent or a diagnostic agent. A "bioactive agent" is defined to include any agent, drug, compound, or mixture thereof that targets a specific biological location (targeting agent) and/or provides some local or systemic physiological or pharmacologic effect that can be demonstrated in vivo or in vitro.
Non-limiting examples include drugs, vaccines, antibodies, antibody fragments, scFvs, diabodies, avimers, vitamins and cofactors, polysaccharides, carbohydrates, steroids, lipids, fats, proteins, peptides, polypeptides, nucleotides, oligonucleotides, polynucleotides, and nucleic acids (e.g., mR A, tRNA, snRNA, RNAi, D A, cDNA, antisense constructs,
ribozymes, etc). A "diagnostic agent" is defined to include any agent that enables the detection or imaging of a tissue or disease. Examples of diagnostic agents include, but are not limited to, radiolabels, fluorophores and dyes.
[0058] "Therapeutic protein" refers to peptides or proteins that include an amino acid sequence which in whole or in part makes up a drug and can be used in human or animal pharmaceutical applications. Numerous therapeutic proteins are known to practitioners of skill in the art including, without limitation, those disclosed herein.
where * denotes the point of attachment. The phosphorylcholine is a zwitterionic group and includes salts (such as inner salts), and protonated and deprotonated forms thereof.
[0060] "Phosphorylchol ine containing polymer" is a polymer that contains
phosphorylcholine. It is specifically contemplated that in each instance where a
phosphorylcholine containing polymer is specified in this application for a particular use, a single phosphorylcholine can also be employed in such use. "Zwitterion containing polymer" refers to a polymer that contains a zwitterion.
[0061] "Poly(acryIoyloxyethyl phosphorylcholine) containing polymer" refers to a polymer of acrylic acid containing at least one acryloyloxyethyl phosphorylcholine monomer such as 2-methacryIoyloxyethyl phosphorylcholine (i. e. , 2-inethacryloyl-2'-trimethylammonium ethyl phosphate).
[0062] "Contacting" refers to the process of bringing into contact at least two distinct species such that they can react. It should be appreciated, however, that the resulting reaction product can be produced directly from a reaction between the added reagents or from an intermediate from one or more of the added reagents which can be produced in the reaction mixture.
[0063] "Water-soluble polymer" refers to a polymer that is soluble in water. A solution of a water-soluble polymer may transmit at least about 75%, more preferably at least about 95% of light, transmitted by the same solution after filtering. On a weight basis, a water-soluble polymer or segment thereof may be at least about 35%, at least about 50%, about 70%, about 85%), about 95% or 100% (by weight of dry polymer) soluble in water.
[0064] "Molecular weight" in the context of the polymer can be expressed as either a number average molecular weight, or a weight average molecular weight or a peak molecular weight. Unless otherwise indicated, all references to molecular weight herein refer to the peak molecular weight. These molecular weight determinations, number average, weight average and peak, can be measured using gel permeation chromatography or other liquid chromatography techniques. Other methods for measuring molecular weight values can also be used, such as the use of end-group analysis or the measurement of colligative properties (e.g. , freezing-point depression, boiling-point elevation, or osmotic pressure) to determine number average molecular weight, or the use of light scattering techniques,
ultracentrifugation or viscometry to determine weight average molecular weight. The polymeric reagents of the invention are typically polydisperse (i.e. , number average molecular weight and weight average molecular weight of the polymers are not equal), possessing low polydispersity values of preferably less than about 1 .5, as judged by gel permeation chromatography. In other embodiments the polydispersities may be in the range of about 1.4 to about 1 .2, more preferably less than about 1.15, still more preferably less than about 1.10, yet still more preferably less than about 1.05, and most preferably less than about 1.03.
[0065] The phrase "a" or "an" entity as used herein refers to one or more of that entity ; for example, a compound refers to one or more compounds or at least one compound. As such, the terms "a" (or "an"), "one or more", and "at least one" can be used interchangeably herein.
[0066] "About" as used herein means variation one might see in measurements taken among different instruments, samples, and sample preparations.
[0067] "Protected,", "protected form", "protecting group" and "protective group" refer to the presence of a group (i. e., the protecting group) that prevents or blocks reaction of a particular chemically reactive functional group in a molecule under certain reaction conditions. Protecting group will vary depending upon the type of chemically reactive group being protected as well as the reaction conditions to be employed and the presence of additional reactive or protecting groups in the molecule, if any. The skilled artisan will recognize protecting groups known in the art, such as those found in the treatise by Greene et al., "Protective Groups In Organic Synthesis," 3rd Edition, John Wiley and Sons, Inc., New York, 1999.
[0068] "Spacer," and "spacer group" are used interchangeably herein to refer to an atom or a collection of atoms optionally used to link interconnecting moieties such as a terminus of a
water-soluble polymer and a reactive group of a functional agent and a reactive group. A spacer may be lrydrolytically stable or may include a hydrolytically susceptible or enzymatically degradable linkage.
[0069] "Alkyl" refers to a straight or branched, saturated, aliphatic radical having the number of carbon atoms indicated. For example, Cj-Ce alkyl includes, but is not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, hexyl, etc. Other alkyl groups include, but are not limited to heptyl, octyl, nonyl, decyl, etc. Alkyl can include any number of carbons, such as 1 -2, 1 -3, 1 -4, 1 -5, 1 -6, 1 -7, 1 -8, 1 -9, 1 - 10, 2-3, 2-4, 2-5, 2-6, 3-4, 3-5, 3-6, 4-5, 4-6 and 5-6. The alkyl group is typically monovalent, but can be divalent, such as when the alkyl group links two moieties together.
[0070] The term "lower" referred to above and hereinafter in connection with organic radicals or compounds respectively defines a compound or radical which can be branched or unbranched with up to and including 7, preferably up to and including 4 and (as unbranched) one or two carbon atoms.
[0071] "Alkylene" refers to an alkyl group, as defined above, linking at least two other groups, i.e., a divalent hydrocarbon radical. The two moieties linked to the alkylene can be linked to the same atom or different atoms of the alkylene. For instance, a straight chain alkylene can be the bivalent radical of -(CH2)n, where n is I , 2, 3, 4, 5 or 6. Alkylene groups include, but are not limited to, methylene, ethylene, propylene, isopropylene, butylene, isobutylene, sec-butylene, pentylene and hexylene.
[0072] Substituents for the alkyl and heteroalkyl radicals (including those groups often referred to as alkylene, alkenyl, heteroalkylene, heteroalkenyl, alkynyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, and heterocycloalkenyl) can be a variety of groups selected from : -OR', =0, =NR',
=N-OR', -NR'R", -SR', -halogen, -SiR'R"R"', -OC(0)R\ -C(0)R\ -C02R', -CONR'R", -O C(0)NR'R", -NR"C(0)R', -NR'-C(0)NR"R'", -NR"C(0)2R', -NH-C(NH2)=NH, -NR'C(N H2)=NH, -NH-C(NH2)=NR\ -S(0)R', -S(0)2R', -S(0)2NR'R", -CN and -N02 in a number ranging from zero to (2m'+l ), where m' is the total number of carbon atoms in such radical. R', R" and R"' each independently refer to hydrogen, unsubstituted (Cj-Cg)alkyl and heteroalkyl, unsubstituted aryl, aryl substituted with 1 -3 halogens, unsubstituted alkyl, alkoxy or thioalkoxy groups, or aryl-(Ci -C4)alkyl groups. When R' and R" are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6-, or 7-membered ring. For example, -NR'R" is meant to include 1 -pyrrolidinyl and 4-morpholinyl. From the
above discussion of substituents, one of skill in the art will understand that the term "alkyl" is meant to include groups such as haloalkyl (e.g., -CF3 and -CH2CF3) and acyl
(e.g., -C(0)CH3, -C(0)CF3, -C(0)CH2OCH3, and the like). Preferably, the substituted alkyl and heteroalkyl groups have from 1 to 4 substituents, more preferably 1 , 2 or 3 substituents. Exceptions are those perhalo alkyl groups (e.g., pentafluoroethyl and the like) which are also preferred and contemplated by the present invention.
[0073] Substituents for the alkyl and heteroalkyl radicals (including those groups often referred to as alkylene, alkenyl, heteroalkylene, heteroalkenyl, alkynyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, and heterocycloalkenyl) can be one or more of a variety of groups selected from, but not limited to: -OR', =0, =NR\
=N-OR', -NR'R", -SR', -halogen, -SiR'R"R"', -OC(0)R', -C(0)R', -C02R', -CONR'R", -O C(0)NR'R", -NR"C(0)R', -NR'-C(0)NR"R'", -NR"C(0)2R', -NR-C(NR'R"R'")=NR"", -N R-C(NR'R")=NR"', -S(0)R', -S(0)2R', -S(0)2NR'R", -NRS02R', -CN and -N02 in a number ranging from zero to (2m'+l ), where m ' is the total number of carbon atoms in such radical. R', R", R"' and R"" each preferably independently refer to hydrogen, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, e.g., aryl substituted with 1 -3 halogens, substituted or unsubstituted alkyl, alkoxy or thioalkoxy groups, or arylalkyl groups. When a compound of the invention includes more than one R group, for example, each of the R groups is independently selected as are each R', R", R"' and R"" groups when more than one of these groups is present. When R' and R" are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6-, or 7-membered ring. For example, -NR'R" is meant to include, but not be limited to, 1 -pyrrolidinyl and 4-morpholinyl. From the above discussion of substituents, one of skill in the art will understand that the term "alkyl" is meant to include groups including carbon atoms bound to groups other than hydrogen groups, such as haloalkyl (e.g., -CF3 and -CH2CF3) and acyl
(e.g., -C(0)CH3, -C(0)CF3, -C(0)CH2OCH3, and the like).
[0074] "Alkoxy" refers to alkyl group having an oxygen atom that either connects the alkoxy group to the point of attachment or is linked to two carbons of the alkoxy group. Alkoxy groups include, for example, methoxy, ethoxy, propoxy, iso-propoxy, butoxy, 2-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, pentoxy, hexoxy, etc. The alkoxy groups can be further substituted with a variety of substituents described within. For example, the alkoxy groups can be substituted with halogens to form a "halo-alkoxy" group.
[0075] "Carboxyalkyl" means an alkyl group (as defined herein) substituted with a carboxy group. The term "carboxy cycloalkyl" means an cycloalkyl group (as defined herein)
substituted with a carboxy group. The term alkoxyalkyl means an alkyl group (as defined herein) substituted with an alkoxy group. The term "carboxy" employed herein refers to carboxylic acids and their esters.
[0076] "Haloalkyl" refers to alkyl as defined above where some or all of the hydrogen atoms are substituted with halogen atoms. Halogen (halo) preferably represents chloro or fluoro, but may also be bromo or iodo. For example, haloalkyl includes trifluoromethyl, fluoromethyl, 1 ,2,3,4,5-pentafluoro-phenyl, etc. The term "perfluoro" defines a compound or radical which has all available hydrogens that are replaced with fluorine. For example, perfluorophenyl refers to 1 ,2,3,4,5-pentafluorophen l, perfluoromethyl refers to
1 , 1 , 1 -trifluoromethyl, and perfluoromethoxy refers to 1 , 1 , 1 -trifluoromethoxy .
[0077] "Fluoro-substituted alkyl" refers to an alkyl group where one, some, or al l hydrogen atoms have been replaced by fluorine.
[0078] "Cytokine" in the context of this invention is a member of a group of protein signaling molecules that may participate in cell-cell communication in immune and inflammatory responses. Cytokines are typically small, water-soluble glycoproteins that have a mass of about 8-35 kDa.
[0079] "Cycloalkyl" refers to a cyclic hydrocarbon group that contains from about 3 to 12, from 3 to 10, or from 3 to 7 endocyclic carbon atoms. Cycloalkyl groups include fused, bridged and spiro ring structures.
[0080] "Endocyclic" refers to an atom or group of atoms which comprise part of a cyclic ring structure.
[0081] "Exocyclic" refers to an atom or group of atoms which are attached but do not define the cyclic ring structure.
[0082] "Cyclic alkyl ether" refers to a 4 or 5 member cyclic alkyl group having 3 or 4 endocyclic carbon atoms and 1 endocyclic oxygen or sulfur atom (e.g. , oxetane, thietane, tetrahydrofuran, tetrahydrothiophene); or a 6 to 7 member cyclic alkyl group having 1 or 2 endocyclic oxygen or sulfur atoms (e.g. , tetrahydropyran, 1 ,3-dioxane, 1 ,4-dioxane, tetrahydrothiopyran, 1 ,3-dithiane, 1 ,4-dithiane, 1 ,4-oxathiane).
[0083] "Alkenyl" refers to either a straight chain or branched hydrocarbon of 2 to 6 carbon atoms, having at least one double bond. Examples of alkenyl groups include, but are not limited to, vinyl, propenyl, isopropenyl, 1 -butenyl, 2-butenyl, isobutenyl, butadienyl, 1 -pentenyl, 2-pentenyl, isopentenyl, 1 ,3-pentadienyl, 1 ,4-pentadienyl, 1 -hexenyl, 2-hexenyl,
3-hexenyl, 1,3-hexadienyl, 1 ,4-hexadienyl, 1 ,5-hexadienyl, 2,4-hexadienyl, or
1 ,3,5-hexatrienyl. Alkenyl groups can also have from 2 to 3, 2 to 4, 2 to 5, 3 to 4, 3 to 5, 3 to 6, 4 to 5, 4 to 6 and 5 to 6 carbons. The alkenyl group is typically monovalent, but can be divalent, such as when the alkenyl group links two moieties together.
[0084] "Alkenylene" refers to an alkenyl group, as defined above, linking at least two other groups, i.e., a divalent hydrocarbon radical. The two moieties linked to the alkenylene can be linked to the same atom or different atoms of the alkenylene. Alkenylene groups include, but are not limited to, ethenylene, propenylene, isopropenylene, butenylene, isobutenylene, sec-butenylene, pentenylene and hexenylene.
[0085] "Alkynyl" refers to either a straight chain or branched hydrocarbon of 2 to 6 carbon atoms, having at least one triple bond. Examples of alkynyl groups include, but are not limited to, acetylenyl, propynyl, 1 -butynyl, 2-butynyl, isobutynyl, sec-butynyl, butadiynyl, 1 -pentynyl, 2-pentynyl, isopentynyl, 1 ,3-pentadiynyl, 1 ,4-pentadiynyl, 1 -hexynyl, 2-hexynyl, 3-hexynyl, 1 ,3-hexadiynyl, 1 ,4-hexadiynyl, 1 ,5-hexadiynyl, 2,4-hexadiynyl, or
1 ,3,5-hexatriynyl. Alkynyl groups can also have from 2 to 3, 2 to 4, 2 to 5, 3 to 4, 3 to 5, 3 to 6, 4 to 5, 4 to 6 and 5 to 6 carbons. The alkynyl group is typically monovalent, but can be divalent, such as when the alkynyl group links two moieties together.
[0086] "Alkynylene" refers to an alkynyl group, as defined above, linking at least two other groups, i.e., a divalent hydrocarbon radical. The two moieties linked to the alkynylene can be linked to the same atom or different atoms of the alkynylene. Alkynylene groups include, but are not limited to, ethynylene, propynylene, butynylene, sec-butynylene, pentynylene and hexynylene.
[0087] "Cycloalkyl" refers to a saturated or partially unsaturated, monocyclic, fused bicyclic or bridged polycyclic ring assembly containing from 3 to 12 ring atoms, or the number of atoms indicated. Monocyclic rings include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cyclooctyl. Bicyclic and polycyclic rings include, for example, norbornane, decahydronaphthalene and adamantane. For example, C;,.8cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, and norbornane.
[0088] "Cycloalkylene" refers to a cycloalkyl group, as defined above, linking at least two other groups, i.e., a divalent hydrocarbon radical. The two moieties linked to the cycloalkylene can be linked to the same atom or different atoms of the cycloalkylene.
Cycloalkylene groups include, but are not limited to, cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, and cyclooctylene.
[0089] "Heterocycloalkyl" refers to a ring system having from 3 ring members to about 20 ring members and from 1 to about 5 heteroatoms such as N, O and S. Additional heteroatoms can also be useful, including, but not limited to, B, Al, Si and P. The heteroatoms can also be oxidized, such as, but not limited to, -S(O)- and -S(0)2-. For example, heterocycle includes, but is not limited to, tetrahydrofuranyl, tetrahydrothiophenyl, morpholino, pyrrolidinyl, pyrrolinyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperazinyl, piperidinyl, indolinyl, quinuclidinyl and l ,4-dioxa-8-aza-spiro[4.5]dec-8-yl.
[0090] "Heterocycloalkylene" refers to a heterocyclalkyl group, as defined above, linking at least two other groups. The two moieties linked to the heterocycloalkylene can be linked to the same atom or different atoms of the heterocycloalkylene.
[0091] "Aryl" refers to a monocyclic or fused bicyclic, tricyclic or greater, aromatic ring assembly containing 6 to 16 ring carbon atoms. For example, aryl may be phenyl, benzyl or naphthyi, preferably phenyl. "Arylene" means a divalent radical derived from an aryl group. Aryl groups can be mono-, di- or tri-substituted by one, two or three radicals selected from alkyl, alkoxy, aryl, hydroxy, halogen, cyano, amino, amino-alkyl, trifluoromethyl, alkylenedioxy and oxy-C2-C3-alkylene; all of which are optionally further substituted, for instance as hereinbefore defined; or 1 - or 2-naphthyl; or 1 - or 2-phenanthrenyl.
Alkylenedioxy is a divalent substitute attached to two adjacent carbon atoms of phenyl, e.g. methylenedioxy or ethylenedioxy. Oxy-C2-C3-alkylene is also a divalent substituent attached to two adjacent carbon atoms of phenyl, e.g. oxyethylene or oxypropylene. An example for oxy- Ci-Cs-alkylene-phenyl is 2,3-dihydrobenzofuran-5-yI.
[0092] Preferred as aryl is naphthyi, phenyl or phenyl mono- or disubstituted by alkoxy, phenyl, halogen, alkyl or trifluoromethyl, especially phenyl or phenyl-mono- or disubstituted by alkoxy, halogen or trifluoromethyl, and in particular phenyl.
[0093] Examples of substituted phenyl groups as R are, e.g. 4-chlorophen- 1 -yl,
3,4-dichlorophen- l -yl, 4-mefhoxyphen-l -yl, 4-methylphen- l -yl, 4-aminomethylphen- l-yl, 4-methoxyethylaminomethylphen- l -yl, 4-hydroxyethylaminomethylphen- l -yl,
4-hydroxyethyl-(methyl)-aminomethylphen- l -yl, 3-aminomethylphen- l -yl,
4-N-acetylaminomethylphen-l -yl, 4-aminophen-l -yl, 3-aminophen- l -yl, 2-aminophen- l -yl, 4-phenyl-phen- l -yl, 4-(imidazol- l -yl)-phen- l, 4-(imidazol- l -ylmethyl)-phen- l -yl, 4-(morpholin- 1 -y l)-phen- 1 -yl, 4-(morpholin- 1 -y lmethyl)-phen- 1 -yl,
4-(2-methoxyethylaminomethyl)-phen-l -yl and 4-(pyrrolidin- l -ylmethyl)-phen-l -yl, 4-(thiophenyl)-phen- l -yl, 4-(3-thiophenyl)-phen-l -yl, 4-(4-methylpiperazin-l-yl)-phen- l -yl,
and 4-(piperidinyl)-phenyl and 4-(pyridinyl)-phenyl optionally substituted in the heterocyclic ring.
[0094] "Arylene" refers to an aryl group, as defined above, linking at least two other groups. The two moieties linked to the arylene are linked to different atoms of the arylene. Arylene groups include, but are not limited to, phenylene.
[0095] "Arylene-oxy" refers to an arylene group, as defined above, where one of the moieties linked to the arylene is linked through an oxygen atom. Arylene-oxy groups include, but are not limited to, phenylene-oxy.
[0096] Similarly, substituents for the aryl and heteroaryl groups are varied and are selected from: -halogen, -OR', -OC(0)R', -NR'R", -SR', -R\ -CN, -N02, -C02R\ -CONR'R", -C(O) R\ -OC(0)NR'R", -NR"C(0)R', -NR"C(0)2R\
,-NR'-C(0)NR"R"\ -NH-C( H2)=NH, -NR'C(NH2)=NH, -NH-C(NH2)=NR', -S(0)R', -S(0 )2R', -S(0)2NR'R", -N3, -CH(Ph)2, peril uoro(Ci-C )alkoxy, and peril uoro(C rC4)alkyl, in a number ranging from zero to the total number of open valences on the aromatic ring system; and where R', R" and R'" are independently selected from hydrogen, (Ci -Cs)alkyl and heteroalkyl, unsubstituted aryl and heteroaryl, (unsubstituted aryl)-(C i-C4)alkyl, and (unsubstituted aryl)oxy-(C i -Chalky 1.
[0097] Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -T-C(0)-(CH2)q-U-, wherein T and U are independently -NH-, -0-, -CH2- or a single bond, and q is an integer of from 0 to 2. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH2)r-B-, wherein A and B are independently -CH2-, -0-, -NH-, -S-, -S(0 , -S(0)2-, -S(0)2NR'- or a single bond, and r is an integer of from 1 to 3. One of the single bonds of the new ring so formed may optionally be replaced with a double bond. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the
formula -(CH2)s-X-(CH2)r, where s and t are independently integers of from 0 to 3, and X is -0-, -NR'-, -S-, -S(O)-, -S(0)2~, or -S(0)2NR'-. The substituent R'
in -NR'- and -S(0)2NR'- is selected from hydrogen or unsubstituted (Ci-C6)alkyl.
[0098] "Heteroaryl" refers to a monocyclic or fused bicyclic or tricyclic aromatic ring assembly containing 5 to 16 ring atoms, where from 1 to 4 of the ring atoms are a heteroatom each N, O or S. For example, heteroaryl includes pyridyl, indolyl, indazolyl, quinoxalinyl, quinolinyl, isoquinolinyl, benzothienyl, benzofuranyl, furanyl, pyrrolyl, thiazolyl,
benzothiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, thienyl, or any other radicals substituted, especially mono- or di-substituted, by e.g. alkyl, nitro or halogen. Pyridyl represents 2-, 3- or 4-pyridyl, advantageously 2- or 3-pyridyl. Thienyl represents 2- or 3-thienyl. Quinolinyl represents preferably 2-, 3- or 4-quinolinyl.
Isoquinolinyl represents preferably 1 -, 3- or 4-isoquinolinyl. Benzopyranyl,
benzothiopyranyl represents preferably 3-benzopyranyl or 3-benzothiopyranyl, respectively. Thiazolyl represents preferably 2- or 4-thiazolyl, and most preferred, 4-thiazolyl. Triazolyl is preferably 1-, 2- or 5-(l ,2,4-triazolyl). Tetrazolyl is preferably 5-tetrazolyl.
[0099] Preferably, heteroaryl is pyridyl, indolyl, quinolinyl, pyrrolyl, thiazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, thienyl, furanyl, benzothiazolyl, benzofuranyl, isoquinolinyl, benzothienyl, oxazolyl, indazolyl, or any of the radicals substituted, especially mono- or di-substituted.
[0100] As used herein, the term "heteroalkyl" refers to an alkyl group having from 1 to 3 heteroatoms such as N, O and S. Additional heteroatoms can also be useful, including, but not limited to, B, Al, Si and P. The heteroatoms can also be oxidized, such as, but not limited to, -S(O)- and -S(0)2-. For example, heteroalkyl can include ethers, thioethers, alkyl-amines and alkyl-thiols.
[0101] As used herein, the term "heteroalkylene" refers to a heteroalkyl group, as defined above, linking at least two other groups. The two moieties linked to the heteroalkylene can be linked to the same atom or different atoms of the heteroalkylene.
[0102] "Electrophile" refers to an ion or atom or collection of atoms, which may be ionic, having an electrophilic center, i. e., a center that is electron seeking, capable of reacting with a nucleophile. An electrophile (or electrophilic reagent) is a reagent that forms a bond to its reaction partner (the nucleophile) by accepting both bonding electrons from that reaction partner.
[0103] "Nucleophile" refers to an ion or atom or collection of atoms, which may be ionic, having a nucleophilic center, i.e., a center that is seeking an electrophilic center or capable of reacting with an electrophile. A nucleophile (or nucleophilic reagent) is a reagent that forms a bond to its reaction partner (the electrophile) by donating both bonding electrons. A "nucleophilic group" refers to a nucleophile after it has reacted with a reactive group. Non limiting examples include amino, hydroxyl, alkoxy, haloalkoxy and the like.
which upon reaction with a sulfliydryl {e.g., a thio alkyl) forms an -S-maleimido group having the structure
where "·" indicates the point of attachment for the maleimido group and "^''indicates the point of attachment of the sulfur atom the thiol to the remainder of the original sulfhydryl bearing group.
[0105] For the purpose of this disclosure, "naturally occurring amino acids" found in proteins and polypeptides are L-alanine, L-arginine, L-asparagine, L-aspartic acid,
L-cysteine, L-glutamine, L-glutamic acid, L-glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, and or L-valine. "Non-naturally occurring amino acids" found in proteins are any amino acid other than those recited as naturally occurring amino acids. Non-naturally occurring amino acids include, without limitation, the D isomers of the naturally occurring amino acids, and mixtures of D and L isomers of the naturally occurring amino acids. Other amino acids, such as 4-hydroxyprol ine, desmosine, isodesmosine, 5-hydroxylysine, epsilon-N-methyllysine, 3-methylhistidine, although found in naturally occurring proteins, are considered to be non-naturally occurring amino acids found in proteins for the purpose of this disclosure as they are generally introduced by means other than ribosomal translation of mRNA.
[0106] "Linear" in reference to the geometry, architecture or overall structure of a polymer, refers to polymer having a single polymer arm.
[0107] "Branched," in reference to the geometry, architecture or overall structure of a polymer, refers to polymer having 2 or more polymer "arms" extending from a core structure, such as an L group, that may be derived from an initiator employed in an atom transfer radical polymerization reaction. A branched polymer may possess 2 polymer arms, 3 polymer arms, 4 polymer arms, 5 polymer arms, 6 polymer arms, 7 polymer arms, 8 polymer arms, 9 polymer arms or more. For the purpose of this disclosure, compounds having three or more polymer arms extending from a single linear group are denoted as having a "comb" structure or "comb" architecture. Branched can also be achieved through "statistical"
structures to create broader dendrimer-like architectures. The group linking the polymer arms can be a small molecule having multiple attachment points, such as glycerol, or more complex structures having 4 or more polymer attachment points, such as dendrimers and hyperbranched structures. The group can also be a nanoparticle appropriately functionalized to allow attachment of multiple polymer arms.
[0108] "Pharmaceutically acceptable" composition or "pharmaceutical composition" refers to a composition comprising a compound of the invention and a pharmaceutically acceptable excipient or pharmaceutically acceptable excipients.
[0109] "Pharmaceutically acceptable excipient" and "pharmaceutically acceptable carrier" refer to an excipient that can be included in the compositions of the invention and that causes no significant adverse toxicological effect on the patient. Non-limiting examples of pharmaceutically acceptable excipients include water, NaCl, normal saline solutions, lactated Ringer's, normal sucrose, normal glucose and the like.
[0110] "Patient" or "subject in need thereof refers to a living organism suffering from or prone to a condition that can be prevented or treated by administration of a pharmaceutical composition as provided herein. Non-limiting examples include humans, other mammals and other non-mammalian animals.
[0111] "Therapeutically effective amount" refers to an amount of a conjugated functional agent or of a pharmaceutical composition useful for treating, ameliorating, or preventing an identified disease or condition, or for exhibiting a detectable therapeutic or inhibitory effect. The effect can be detected by any assay method known in the art.
[0112] The "biological half-life" of a substance is a pharmacokinetic parameter which specifies the time required for one half of the substance to be removed from an organism following introduction of the substance into the organism.
III. High Molecular Weight Polymers
[0113] The present invention provides a high molecular weight polymer having hydrophilic groups and a functional group or linking group. In some embodiments, the present invention provides a polymer having at least two polymer arms each having a plurality of monomers each independently selected from acrylate, methacrylate, acrylamidc, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone or a vinyl ester such as vinyl acetate, wherein each monomer includes a hydrophilic group. The polymer also includes an initiator fragment linked to a proximal end of the polymer arm, wherein the initiator moiety is suitable for
radical polymerization. The polymer also includes an end group linked to a distal end of the polymer arm. At least one of the initiator fragment and the end group of the polymer includes a functional agent or a linking group.
[0114] In other embodiments, the present invention provides a polymer having a polymer arm having a plurality of monomers each independently selected from acrylate, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone or a vinyl ester such as vinyl acetate, wherein each monomer includes a hydrophilic group. The polymer also includes an initiator fragment linked to a proximal end of the polymer arm, wherein the initiator moiety is suitable for radical polymerization. The polymer also includes an end group linked to a distal end of the polymer arm. At least one of the initiator fragment and the end group of the polymer includes a functional agent or a linking group. In addition, the polymer has a peak molecular weight (Mp) of from about 50 kDa to about 1 ,500 kDa, as measured by multi-angle light scattering.
[0115] The polymers of the present invention can have any suitable molecular weight. Exemplary molecular weights for the high W polymers of the present invention can be from about 50 to about 1 ,500 kilo-Daltons (kDa). In some embodiments, the high MW polymers of the present invention can have a molecular weight of about 50 kDa, about 100 kDa, about 200 kDa, about 250 kDa, about 300 kDa, about 350 kDa, about 400 kDa, about 450 kDa, about 500 kDa, about 650 kDa, about 750 kDa, about 1 ,000 kDa or about 1 ,500 kDa.
[0116] In some other embodiments, the present invention provides a polymer of the formula:
wherein R can be H, L -A , LG or L -LG . Each M and M can be independently selected from acrylate, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone or vinyl-ester. Each of G 1 and G2 is each independently a hydrophilic group. Each group I is an initiator fragment and Γ a radical scavenger such that the combination of Ι-Γ is an initiator, I1, for the polymerization of the polymer via radical polymerization. Alternatively, each Γ can be independently selected from H, halogen or C| _6 alkyl. Each L1 , L2 and L3 can be a linker. Each A1 can be a functional agent. Each LG1 can be a linking group. Subscripts x and y' can each independently be an integer of from 1
to 1000. Each subscript z can be independently an integer of from 1 to 10. Subscript s can be an integer of from 2 to 100.
[0117] In other embodiments, the present invention provides a polymer of Formula I:
wherein R1 of formula I can be H, LAA1, LG1 or L3-LG' . Each M1 and M2 of formula I can be independently selected from acrylate, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone or vinyl-ester. Each of ZW and ZW1 of formula I can be independently a zwitterionic moiety. Each I is an initiator fragment and Γ a radical scavenger such that the combination of I-P is an initiator, I1, for the polymerization of the polymer of formula I via radical polymerization. Alternatively, each F can be independently selected from H, halogen or Ci.6 alkyl. Each L1 , L2 and L3 of formula 1 can be a linker. Each A1 of formula I can be a functional agent. Each LG1 of formula I can be a linking group. Subscripts x and y' of formula I can each independently be an integer of from 1 to 1000. Each subscript z of formula I can be independently an integer of from 1 to 10. Subscript s of formula I can be an integer of from 2 to 100. The sum of s, x, y1 and z can be such that the polymer of formula I has a peak molecular weight of from about 50kDa to about l ,500kDa, as measured by multi-angle light scattering.
[0118] In other embodiments, the polymer can have the formula:
In some other embodiments, the polymer can have the formula
wherein R2 can be selected from H or Ci_6 alkyl, and PC can be phosphorylcholine.
[0119] The high MW polymers of the present invention can also have any suitable number of comonomers, M2. For example, the number of comonomers, subscript z, can be from 1 to 10, such as 1,2, 3, 4, 5, 6, 7, 8, 9 or 10. The number of comonomers, subscript z, can also be from 1 to 5, 1 to 4, 1 to 3, or 1 to 2. In some embodiments, the high MW polymer of the present invention can have two different monomers where subscript z is 1, such as in formula la:
Additional comonomers M" can be present in the high MW polymers of the present invention, such as M2a, M2b, Mc, M2d, M2e, M2f, M2 , M2h, etc., and are defined as above for M2, where each comonomer is present in a same or different y' value, and each comonomer having a corresponding ZW1 group attached.
[0120] The different monomers of the high MW polymers can also be present in any suitable ratio. For example, the M2 monomers, collectively or individually, can be present relative to the M1 monomer in a ratio of 100: 1 , 50: 1 , 40: 1 , 30: 1 , 20: 1 , 10: 1 , 9: 1 , 8: 1 , 7: 1 , 6: 1 , 5:1, 4:1,3:1,2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10, 1:20, 1:30, 1:40, 1:50 and 1 : 100. In addition, each M2 monomer can be present in any suitable ratio relative to the M1 or any other M2 monomer, such as 100:1, 50:1, 40:1, 30:1, 20:1, 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1,3:1,2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10, 1:20, 1:30, 1:40, 1:50 and 1:100.
[0121] The high MW polymers of the present invention can have any suitable architecture. For example, the high M W polymers can be linear or branched. When the high MW polymers are branched, they can have any suitable number of polymer arms, as defined by subscript s of formula I, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90 and up to 100 arms. In some embodiments, subscript s can be from 2 to 32, 2 to 16, 2 to 10, 2 to 9, 2 to 8, 2 to 7, 2 to 6, 2 to 5, 2 to 4, or 2 to 3. In some embodiments, subscript s can be 2, 3, 4, 5,6, 8, 9 or 12. In other embodiments, subscript s can be 3, 6, or 9. In some embodiments, subscript s can be 3. In still other embodiments, subscript s can be 6. In some other embodiments, subscript s can be 9. The high MW polymers of the present invention can adopt any suitable architecture. For example, the high MW polymers can be linear, branched, stars, dendrimers, combs, etc.
[0122] A functional agent of the high MW polymers can be linked to the initiator fragment I, or the radical scavenger Γ, or both. When multiple functional agents are present, L1 can be a branching linker such that two or more functional agents can be linked to the initiator fragment I. In some embodiments, the high MW polymer has formula lb:
In formula lb, functional agent A1 can be a drug, therapeutic protein or a targeting agent. Linker L1 can be a cleavable linker, such as when attached to a drug or therapeutic protein to facilitate release of the drug or therapeutic protein. Alternatively, linker L1 can be a non-cleavable linker.
[0123] When multiple comonomers M2 are present, each comonomer M2 can have a different zwitterionic group attached. For example, the high MW polymer can have formula Ic:
wherein each of ZWla and ZWlb are as defined above for ZW, and each of y, a and y l b are as defined above for y 1.
[0124] In some embodiments, the high MW polymers have linking groups LG linked to the initiator fragment I, such as shown in the structures below:
[0125] In some embodiments, the high MW polymers of the present invention can be modified via a subsequent polymerization with one or more additional monomers. For example, in formula Ic above, monomers M1 and M2a can be copolymerized in a first polymerization, and monomer M2b can be polymerized in a second polymerization. A block copolymer would be formed having two blocks, the first block being a high MW polymer of ' and M , and the second block a homopolymer of M . Alternatively, following
polymerization of monomers M1 and M2a, monomer M2b can be copolymerized with monomer M2c, thus forming a block copolymer where the first block is a high MW polymer of M1 and M2a, and the second block is a high MW polymer of M2b and M2c. Additional polymer structures can be prepared by copolymerizing monomers M1, M2a and M2b in a first polymerization, followed by copolymerization of monomers M , M , and others, in a second copolymerization. Additional blocks can be prepared by yet a third polymerization using additional monomers. Such polymers provide blocks of copolymers that can have different properties, drugs and functional agents.
[0126] In some embodiments, the polymer can be
[0129] In some embodiments, R1 is L3-A ', LG 1 or LJ-LG' ; A 1 is a drug, an antibody, an antibody fragment, a single domain antibody, an avimer, an adnectin, diabodies. a vitamin, a cofactor, a polysaccharide, a carbohydrate, a steroid, a lipid, a fat, a protein, a peptide, a polypeptide, a nucleotide, an oligonucleotide, a polynucleotide, a nucleic acid, a radiolabel, a contrast agent, a fluorophore or a dye; LJ is -(CH2CH20)i.io-; and LG1 is maleimide, acetal, vinyl, allyl, aldehyde, -C(0)0-C] .6 alkyl, hydroxy, diol, ketal, azide, alkyne, carboxylic acid, or succinimide. In other embodiments, each LG 1 can be hydroxy, carboxy, vinyl, vinyloxy, allyl, allyloxy, aldehyde, azide, ethyne, propyne, propargyl, -C(0)0-C] .6 alkyl,
A. Initiators
[0130] The high W polymers of the present invention are polymerized using any suitable initiator. Initiators useful in the present invention can be described by the formula: I-(F)m, where subscript m is an integer from 1 to 100. The initiator fragment I can be any group that initiates the polymerization. The radical scavenger F can be any group that will reversibly terminate the growing polymer chain. The radical scavenger F can be a halogen such as bromine, allowing the end of the polymer to be functional ized after polymerization. In some embodiments, the radical scavenger F is referred to as an end group. In addition, the initiator fragment 1 can optionally be functionalized with an R1 group that can include a variety of functional groups to tune the functionality of the high MW polymer.
[0131] Initiators useful in the present invention can have a single radical scavenger F, or any suitable number of branches such that there are multiple radical scavengers F each capable of reversibly terminating a growing polymer chain. When the initiator fragment I is branched and is capable of initiating multiple polymer chains, subscript m is greater than one such that there are as many radical scavengers F as there are growing polymer chains.
[0132] The polymer of the present invention can have a plurality of polymer arms. For example, the polymer can have from 2 to about 100 polymer arms, or from about 2 to about 50 polymer arms, or from about 2 to about 20 polymer arms, or from 2 to about 10 polymer arms, or from about 2 to about 8 polymer arms, or from about 2 to about 4 polymer arms. The polymer can also have any sutiable polydispersity index (PDI), as measured by the weight average molecular weight (Mw) divided by the number average molecular weight (Mn), where a PDI of 1 .0 indicates a perfectly monodisperse polymer. For example, the PDI can be less than about 2.0, or less than about 1 .9, 1.8, 1.7, 1 .6, 1.5, 1 .4, 1 .3, 1 .2 or 1.1 .
[0133] In some embodiments, the initiator fragment is linked to the proximal end of from 2 to about 100 polymer arms. In some other embodiments, the polymer has a polydispersity index of less than about 2.0. In sti ll other embodiments, the initiator fragment is linked to the proximal end of 2 polymer arms. In yet other embodiments, the initiator fragment is linked to
the proximal end of 4 polymer arms. In other embodiments, the initiator fragment can be linked to the proximal end of 2, 3, 4, 5, 6, 8, 9 or 12 polymer arms. In some embodiments, the initiator fragment can be linked to the proximal end of 9 polymer arms.
[0134] Pseudo-branched polymers can also be obtained by linking multiple linear, unbranched, polymers of the present invention to a single functional agent such that the polymers are in close proximity. The proximity can be obtained by linking the polymers to nearby points on the functional agent, cysteines on a protein, for example. Alternatively, the proximity can be afforded by the structure of the functional agent, a protein for example, such that polymers attached to disparate regions of the protein are brought into close proximity due to the folding and secondary and tertiary structure of the protein. The close proximity of the two polymers of the present invention on a single functional agent, regardless of how the proximity is achieved, can impart properties similar to that of a polymer of the present invention having a plurality of polymer arms.
[0135] The bond between initiator fragment I and radical scavenger F is labile, such that during the polymerization process monomers M1 and comonomers M2 are inserted between initiator fragment I and radical scavenger Γ. For example, during a free radical polymerization, such as ATRP, initiator fragment I and radical scavenger F dissociate, as shown in Figure 1 , to form radicals of I and F. The radical of initiator fragment I then reacts with the monomers in solution to grow the polymer and forms a propagating polymer radical (species A and species C of Figure 1 ). During the polymerization process, the radical of the radical scavenger F will reversibly react with the propagating polymer radical to temporarily stop polymer growth. The bond between the monomer and the radical savenger F is also labile, such that the bond can cleave and allow the propagating polymer radical to react with additional monomer to grow the polymer. The end result of the polymerization process is that initiator fragment 1 is at one end of the polymer chain and radical scavenger F is at the opposite end of the polymer chain.
[0136] The radical of initiator fragment I is typically on a secondary or tertiary carbon, and can be stabilized by an adjacent carbonyl carbon. The radical scavenger F is typically a halogen, such as bromine, chlorine or iodine. Together, initiator fragment I and radical scavenger F form the initiator I ' useful in the preparation of the high MW polymers of the present invention.
[0137] A broad variety of initiators can be used to prepare the high MW polymers of the invention, including a number of initiators set forth in US 6,852,816 (incorporated herein by
reference). In some embodiments, the initiators employed for ATRP reactions to prepare high MW polymers of the invention are selected from alkanes, cycloalkanes, alkyl carboxylic acids or esters thereof, cycloalkylcarboxylic acids or esters thereof, ethers and cyclic alkyl ethers, alkyl aryl groups, alkyl amides, alkyl-aryl carboxylic acids and esters thereof, and also bearing one radical scavenger F where unbranched high MW polymers are prepared, and more than one radical scavenger F where branched molecules are prepared.
[0138] Radical scavengers F useful in the present invention include, but are not limited to, halogens, such as Br, CI and I, thiocyanate (-SCN) and isothiocyanate (-N=C=S). Other groups are useful for the radical scavenger F of the present invention. In some embodiments, the radical scavenger I ' is bromine.
[0139] Initiators employed for ATRP reactions can be hydroxylated. In some
embodiments, the initiators employed for ATRP reactions to prepare high MW polymers of the invention are selected from alkanes, cycloalkanes, alkyl carboxylic acids or esters thereof, cycloalkylcarboxylic acids or esters thereof, ethers, cycl ic alkyl ethers, alkyl aryl groups, alkyl amides, alkyl-aryl carboxylic acids and esters thereof, bearing a hydroxyl group, and also bearing one radical scavenger F where unbranched high MW polymers are to be prepared, or alternatively, more than one radical scavenger F where branched molecules are to be prepared.
[0140] Initiators employed for ATRP reactions can bear one or more amine groups. In some embodiments, the initiators employed for ATRP reactions to prepare high MW polymers of the invention are alkanes, cycloalkanes, alkyl carboxylic acids or esters thereof, cycloalkylcarboxylic acids or esters thereof, ethers, cyclic alkyl ethers alkyl aryl groups, alkyl amides, alkyl-aryl carboxylic acids and esters thereof, bearing an amine group and also bearing one radical scavenger F where unbranched high MW polymers are to be prepared, or alternatively, more than one radical scavenger F where branched molecules are to be prepared.
[0141] Alkylcarboxylic acids, including alkyl dicarboxylic acids, having at least one radical scavenger F, and substituted with amino or hydroxy groups can also be employed as initiators. In some embodiments of the invention where ATRP is employed to prepare high MW polymers of the present invention, the initiators can be alkylcarboxylic acids bearing one or more halogens selected from chlorine and bromine.
[0142] Alkanes substituted with two or more groups selected from -COOH, -OH and -NH , and at least one radical scavenger F, can also be employed as initiators for the preparation of
high MW polymers where ATRP is employed to prepare high MW polymers of the present invention.
[0143] Initiators can also contain one or more groups including, but not limited to, -Oi l, amino, monoalkylamino, dialkylamino, -O-alkyl, -COOH, -COO-alkyl, or phosphate groups (or protected forms thereof).
[0144] A broad variety of initiators are commercially available, for example bromoacetic acid N-hydroxysuccinimide ester available from Sigma-Aldrich (St. Louis, MO). Suitably protected forms of those initiators can be prepared using standard methods in the art as necessary.
[0145] Other initiators include thermal, redox or photo initiators, including, for example, alkyl peroxide, substituted alkyl peroxides, aryl peroxides, substituted aryl peroxides, acyl peroxides, alkyl hydroperoxides, substituted aryl hydroperoxides, aryl hydroperoxides, substituted aryl hydroperoxides, heteroalkyl peroxides, substituted heteroalkyl peroxides, heteroalkyl hydroperoxides, substituted heteroalkyl hydroperoxides, heteroaryl peroxides, substituted heteroaryl peroxides, heteroaryl hydroperoxides, substituted heteroaryl hydroperoxides, alkyl peresters, substituted alkyl peresters, aryl peresters, substituted aryl peresters, azo compounds and halide compounds. Specific initiators include cumene hydroperoxide (CHP), tert-butyl hydroperoxide (TBHP), tert-butyl perbenzoate, (TBPB), sodium carbonateperoxide, benzoyl peroxide (BPO), lauroyl peroxide (LPO), methylethyl ketone 45%, potassium persulfate, ammonium persulfate,
2,2-azobis(2,4-dimethyl-valeronitrile), l , l -azobis(cyclo-hexanecarbonitrile),
2,2-azobis(N,N-dimethyleneisobut 'ramidine) dihydrochloride, and 2,2-azobis
(2-amido-propane) dihydrochloride. Redox pairs such as persulfate/sulfite and Fe (2+) peroxide or ammonium persulfate and Ν,Ν,Ν'Ν'-tetramethyIethylenediamine (TEMED).
[0146] Still other initiators useful for preparing the high MW polymers of the present invention, are branched. Suitable initiators having a single branch point include the following:
where radical R can be any of the following:
[0147] In some embodiments, the initiator can
which is a protected maleimide that can be deprotected after polymerization to form the maleimide for reaction with additional functional groups.
[0148] Additional branched initiators include, but are not limited to, the following, where radical R is as defined above:
[0149] In some embodiments, the branched initiators include, but are not limited to, the following:
[0150] Other branched initiators useful for preparing the high MW polymers of the present invention include the following:
where radical R is as defined above, and radical X can be CHO, SO2CI, S02CH=CH2, NHCOCH2I, N=C=0 and N=C=S, among others. Additional X groups can include the following:
Still other initiators include, but are not limited to, the following:
[0151] In other embodiments, the initiator can have several branch points to afford a plurality of polymer arms, such as:
where radical R is as defined above. In some other embodiments, the initiator can have the following structure:
[0152] In some other embodiments, the initiator can have the following structures:
As described above, the initiator can be added to the polymerization mixture separately, or can be incorporated into another molecule, such as a monomer (hyperbranched structure) or a polymer fragment (such as graft copolymers). Initiation of the polymerization can be accomplished by heat, UV light, or other methods known to one of skill in the art.
[0153] In some embodiments, the initiator I-] ' of the present invention has the formula:
(F)r-Sp'-C-Sp2-r
where the initiator fragment I corresponds to F-Sp'-C-Sp2. Each radical F is a functional group for reaction with a functional agent or linking group of the present invention. Radical r is from 1 to 10. Radicals Sp1 and Sp2 are spacers and can be any suitable group for forming a covalent bond, such as Ci_6 alkyl, aryl or heteroaryl. Radical C can be any core providing one or a plurality of points for linking to one or more spacers, Sp2 (which can be the same or different), and one or more radical scavengers, Γ, and providing one or a plurality of points for linking to one or more spacers, Sp' (which can be the same or different), and one or more functional groups, F (which can be the same or different). Core C can be any suitable structure, such as a branched structure, a crosslinked structure including heteroatoms, such as silsesquiloxanes, and a linear, short polymer with multiple pendant functional groups. In addition, core C can be attached to the one or more Sp1 and Sp2 spacers by any suitable group for forming a covalent bond including, but not limited to, esters, amides, ethers, and ketones. Radical scavenger Γ is a radically transferable atom or group such as, but not limited to, a halogen, CI, Br, I, OR10, SR1 1, SeR1 1, OC(=0)Rn, OP(=0)Rn, 0P(=0)(0R" )2, 0-(R" )2,
S-C(=S)N(R")2, CN, NC, SCN, CNS, OCN, CNO, N3, OH, O, C 1 -C6-alkoxy, (S0 ), P04, HPO4, H2 PO4, triflate, hexafluorophosphate, methanesulfonate, arylsulfonate, carboxylic acid halide. R10 is an alkyl of from 1 to 20 carbon atoms or an alkyl of from 1 to 20 carbon atoms in which each of the hydrogen atoms may be replaced by a halide, alkenyl of from 2 to 20 carbon atoms, alkynyl of from 2 to 10 carbon atoms, phenyl, phenyl substituted with from 1 to 5 halogen atoms or alkyl groups with from 1 to 4 carbon atoms, aralkyl, aryl, aryl substituted alkyl, in which the aryl group is phenyl or substituted phenyl and the alkyl group is from 1 to 6 carbon atoms, and R1 1 is aryl or a straight or branched C1-C20 alkyl group or where an N(R] ')2 group is present, the two R1 ' groups may be joined to form a 5-, 6- or 7-member heterocyclic ring. Spacer Sp1 covalently links functional group F and core C while spacer Sp2 covalently links core C and radical scavenger P.
[0154] In other embodiments, the initiator of the present invention has the formula:
LG2— L5-C- L4— I' wherein each P is independently selected from halogen, -SCN, or -NCS. L4 and L3 are each independently a bond or a linker, such that one of L4 and L3 is a l inker. C is a bond or a core group. LG2 is a linking group. And subscript p is from 1 to 100, wherein when subscript p is 1 , C is a bond, and when subscript p is from 2 to 100, C is a core group. In some embodiments, subscript p is from 2 to 100. In other embodiments, subscript p is from 3 to 20. Subscript p can also be 3, 6, 9, or 12. In some embodiments, subscript p is 9.
wherein each RJ and R is independently selected H, CN or C | _ alkyl, and X is O or NH.
[0156] In some embodiments, the core group C has the formula:
wherein B, B' and B" are each independently a branching unit, L, L' and L" can each independently be a bond or a linker; subscript k is 0 or 1 ; and subscripts n, n' and n" are each independently an integer of 0, 2 or 3, wherein at least one of n, 11 ' and n" is other than 0, and subscript p is equal to the product of n, n' and n".
[0157] In some embodiments, subscript k is 0, and subscripts n and n' are both 3. In some embodiments, subscript k is 0, subscript n is 3 and subscript n' is 2. In some embodiments, subscript k is 0, subscript n is 2 and subscript n ' is 3.
[0158] Branching units B, B' and B" can be any suitable branching unit, and can have 2, 3, 4 or more branches. In some embodiments, the branching units can be any of the following:
[0159] In still other embodiments, the initiator can have any of the following structures:
B. Monomers
[0160] Monomers useful for preparing the high MW polymers of the present invention include any monomer capable of radical polymerization. Typically, such monomers have a vinyl group. Suitable monomers include, but are not limited to, acrylate, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone and vinyl esters such as vinyl acetate monomers. Monomers useful in the present invention include a hydrophilic group. The hydrophilic group of the present invention can be any suitable hydrophilic group. For example, the hydrophilic group can include z itterionic groups and hydrophilic polymers. In some embodiments, each hydrophilic group includes a zwitterionic group. Zwitterion groups of the present invention include any compound having both a negative charge and a positive charge. Groups having a negative charge and suitable for use in the zwitterions of the present invention include, but are not limited to, phosphate, sulfate, other oxoanions, etc. Groups having a positive charge and suitable for use in the zwitterions of the present invention include, but are not limited to, ammonium ions. In some embodiments, the zwitterion can be phosphorylcholine. Other zwitterions useful in the present invention include those described in WO1994016748 and WGT 994016749 (incorporated herein by reference). Hydrophilic polymers useful in the present invention include polyethyleneoxide, polyoxazoline, cellulose, dextran, and other polysaccharide polymers. One of skill in the art will appreciate that other hydrophilic polymers are useful in the present invention.
[0161] Other hydrophilic groups include, but are not limited to, hydroxy, amine, carboxylic acid, amide, sulfonate and phosphonate. Monomers useful in the present invention that include such hydrophilic groups include, but are not lim ited to, acrylamide, N- isopropylacrylamide (NiPAAM) and other substituted acrylamide, aciylic acid, and others.
[0162] Monomers, M1 , containing the zwitterionic moiety, ZW, include, but are not limited to, the following:
Other monomers are well-known to one of skill in the art, and include vinyl acetate and derivatives thereof.
[0163] In some embodiments, the hydrophilic group can be a zwitterionic group. In some embodiments, the monomer can be 2-(methacryloyloxyethyl)-2'-(trimethylammoniumethyl) phosphate (HEMA-PC). In some other embodiments, the monomer can be 2- (acryloyloxyethyl)-2'-(trimethylammoniumethyl) phosphate.
C. Linkers
[0164] The high MW polymers of the present invention can also incorporate any suitable linker L. The linkers L3 provide for attachment of the functional agents to the initiator fragment I and the linkers L1 and L2 provide for attachment of the zwitterionic groups to the comonomers M1 and M2. The linkers can be cleavable or non-cleavable, homobifunctional or heterobifunctional. Other linkers can be both heterobifunctional and cleavable, or homobifunctional and cleavable.
[0165] Cleavable linkers include those that are hydrolyzable linkers, enzymatically cleavable linkers, pH sensitive linkers, disulfide linkers and photolabile linkers, among others. Hydrolyzable linkers include those that have an ester, carbonate or carbamate functional group in the linker such that reaction with water cleaves the linker. Enzymatically cleavable linkers include those that are cleaved by enzymes and can include an ester, amide, or carbamate functional group in the linker. pH sensitive linkers include those that are stable at one pH but are labile at another pH. For pH sensitive linkers, the change in pH can be from acidic to basic conditions, from basic to acidic conditions, from mildly acidic to strongly acidic conditions, or from mildly basic to strongly basic conditions. Suitable pH sensitive linkers are known to one of ski ll in the art and include, but are not limited to, ketals, acetals, imines or imminiums, siloxanes, silazanes, silanes, maleamates-amide bonds, ortho esters, hydrazones, activated carboxylic acid derivatives and vinyl ethers. Disulfide linkers are characterized by having a disulfide bond in the linker and are cleaved under reducing conditions. Photolabile linkers include those that are cleaved upon exposure to light, such as visible, infrared, ultraviolet, or electromagnetic radiation at other wavelengths.
[0166] Other linkers useful in the present invention include those described in U.S. Patent Application Nos. 2008/0241 102 (assigned to Ascendis/Complex Biosystems) and
2008/01 52661 (assigned to Minis), and International Patent Application Nos. WO
2004/010957 and 2009/1 1 753 1 (assigned to Seattle Genetics) and 01/24763, 2009/134977 and 2010/126552 (assigned to Immunogen) (incorporated in their entirety herein). Mirus linkers useful in the present invention include, but are not limited to, the following:
Other linkers include those described in Bioconjugate Techniques, Greg T. Hermanson, Academic Press, 2d ed., 2008 (incorporated in its entirety herein), and those described in Angew. Chem. Int. Ed. 2009, 48, 6974-6998 (Bertozzi, C.R. and Sletten, E.M) (incorporated in its entirety herein).
[0167] The linkers of the present invention can have a length of up to 30 atoms, each atom independently C, N, O, S, and P. In some embodiments, the linkers L1, L2, L3, L4, or L5, or L, L' and L"can be any of the following: -C i2 alkyl-, -C3-12 cycloalkyl-, -(C| .g alkyI)-(C3-|2 cycloalkylHCa.8 alkyl)-, -(CH2),_,20-, (-(CH2),.6-0-(CH2),.6-),.12-,
(-(CH2) I-4-N H-(CH2)M) M2-S (-(CH2),_4-0-(CH2),_4)i-i2-0-, -(CH2),-8-CONR-(CH2CH20)1. , 2-, -(CH2)i -8-CONR-(CH2CH20)1.8-NH-(CH2)1.6-, -(CH2)i-8-CONR-CH2CH2-(OCH2CH2)o-6- NHCO-(CH2) ,.3-, -C(0)-(CH2), .6-NHC(0)-(CH2)i.6-, -C(OHCH2)i-6-OC(0)-(CH2)i.6-, - C(0)-(CH2),.6-, -OC(0)-(C ,.6 alkyl), -NHC(0)-(C ,.6 alkyl),
(-(CH2)M-0-(CH2)I -4-)I-I 20-(CH2)M 2-5 -(CH2),-, 2-(C=0)-0-, -(CH2),.,2-0-(C=0)-, -(phenyl (CH2) , .3-(C=0)-0-, -(phenyl)-(CH2),-3-(C=0)-NH-, -(C, -6 alkyl)-(C=O)-O-(C0-6
alkyl)-, -(CH2)i_, 2-(C=0)-0-(CH2),.,2-, -C H(OH)-CH(OH)-(C=0)-0-, -CH(OH)-CH(OH)-( C=0)-NH-, -S-maleimido-(CH2)i_6-, -S-maleimido-(Ci_3
alkyl)-(C=0)-N H-, -S-maleimido-(Ci.3 alkyl)-(C5-6 cycloalkyl)-(C0-3 alkyl)-, -(C,-3 alkyl)-(C5-6 cycloalkyl)-(C0-3 alkyl)-(C=0)-0-, -(C|.3 alkyl)-(C5-6 cycloalkyl)-(C0-3
alkyl)-(C=0)-NH-, -S-maleimido-(C0.3alkyl)-phenyl-(Co-3alkyl)-, -(C0-3
=0)-0-(CH2)2-0-(C=0)-(CH2)2-(C=0)-NH-, -(C,-6 alkyl)-(C=0)-N-(Cr6 alkyl)-, acetal, ketal, acyloxyalkyl ether, -N=CH-, -(d-6 alkyl)-S-S-(C0-6 alkyl)- , -(C,-5 alkyl)-S-S-(C i-6 alkyl)-(C=0)-0-, -(C ,-6 alkyl)-S-S-(C,-6
alkyl)-(C=0)-NH-, -S-S-(CH2)u-(C=0)-NH-(CH2)i-4-NH-(C=0)- (CH2),.3-, -S-S-(C0-3 alkyl)-(phenyl)-, -S-S-(Ci-3-alkyl>(phenyl)-(O0)-NH-(CH2)i.s-, -(C1.3
alkyl)-(phenyl)-(C=0)-NH-(CH2)i-5-(C=0)-NH-, -S-S-(Ci-3-alkyl)-, -(C,.3-alkyl)-(phenyl)-( C=0)-NH-, -0-(C,-C6 alkyl)-S(02)-(C,-6
alkyl)-0-(O0)-NH-, -S-S-(CH2)U3-(C=0)-, -(CH2),.3-(C=0)-NH-N=C-S-S-(CH2),.3-(C=0) -NH-(CH2)|.5-, -(CH2),.3-(C=0)-NH-(CH2)i-5-(C=0)-NH-, -(CH2)0-3-(heteroatyl)-(CH2)o-3-, -(CH2)o.3-pheny]-(CH2)o-3-, -N=C(R)-, -(C,.6 alkyl)-C(R)= -(C,.6 alkyl)-, -(C, .6
alkyl)-(aryl)-C(R)=N-(C,_6 alkyl)-, -(C,„6 alkyl)-C(R)=N-(aryl)-(C,_6 alkyl)-, and -(d.5 alkyl)-O-P(O)(OH)-O-(C0-6 alkyl)-, wherein R is H, C,_6 alkyl, C3.6 cycloalkyl, or an aryl group.
[0168] In some other embodiments, linkers L1, L2 and L3 can be any of the
following: -C,-C,2 alkyl-, -C3-C,2 cycloalkyl-, (-(CH2)i.6-0-(CH2)i-6-)i-! 2-,
(-(CH2)I-4-NH-(CH2) ) I-12-, -(CH2), .,20-,
(-(CH2) I.4-0-(CH2)1.4) I -,2-0-, -(CH2) 2-(CO)-0-, -(CH2), . , 2-(CO)-N H-, -(CH2)M 2-0-(CO)-, -(CH2),., 2-NH-(CO)-,
(-(CH2)1.4-0-(CH2), .4)1.1 2-0-(CH2),.12-, -(CH2)M 2-(CO)-0-(CH2),_12-, -(CH2)M 2-(CO)-NH-( CH2)M2-, -(CH2), _|2-0-(CO)-(CH2),.l2-, -(CH2),., 2-NH-(COHCH2) 2-, -(C3-Cl 2 cycloalkyl)-, -(C ,-C8alkyl)-(C3-Ci2 cycloalkyl)-, -(C3-C,2
and -(CH2)0-3-aryl-(CH2)0-3-.
[0169J In some embodiments, linkers L, L' and L" can be -C(0)-(CH2),.6- HC(0)-(CH2),. 6-, -C(0)-(CH2),.6-OC(0)-(CH2),.6-, or -C(0)-(CH2),.6-.
[0170] In still other embodiments, each of linkers L1, L2 and L3 is a cleavable linker independently selected from hydrolyzable linkers, enzymatically cleavable linkers, pH sensitive linkers, disulfide linkers and photolabile linkers.
[0171] Other linkers useful in the present invention include self-immolative linkers. Useful self-immolative linkers are known to one of skill in the art, such as those useful for antibody drug conjugates. Exemplary self-immolative linkers are described in U.S. Patent No.
7,754,681 . D. Linking Groups LG
[0172] The linkers and functional agents of the present invention can react with a linking group on the initiator fragment I to form a bond. The linking groups LG of the present
invention can be any suitable functional group capable of forming a bond to another functional group, thereby linking the two groups together. For example, linking groups LG useful in the present invention include those used in click chemistry, maleimide chemistry, and NHS-esters, among others. Linking groups involved in click chemistry include, but are not limited to, azides and alkynes that form a triazole ring via the Huisgen cycloaddition process (see U.S. Patent No. 7,375,234, incorporated herein in its entirety). The maleim ide chemistry involves reaction of the maleimide olefin with a nucleophile, such as -OH, -SH or -NH2, to form a stable bond. Other linking groups include those described in Bioconjugate Techniques, Greg T. Hermanson, Academic Press, 2d ed., 2008 (incorporated in its entirety herein).
[0173] Some non-limiting examples of the reaction of the linking groups and some groups typically found or introduced into functional agents are set forth in Table 1.
Table I
that may react with Linking Groups Product Y-X a linking group (LG) (shown as appended to -X)
Y-NH2 R'OCH(OH)-X or Y-N=CH-X
hemiacetal or
Y-NH-CH-X following reduction
Y-NH2 R'(0=)C-X Y-N=CR'-X
ketone or
Y-NH-C(R')H-X following reduction
Y-NH2 (R'0)2C(R')-X or Y-N=C(R')-X
or
Y-NH-C(R')H-X following reduction ketal
Y-NH2 R'OC(R')(OH)-X Y-N=C(R')-X
hemiketal or
Y-NH-C(R')H-X following reduction
Y-NH2 R'(S=)C-X Y-N=C(R')-X
ketone or
thione (thioketone) Y-NH-C(R')H-X following reduction
Y-NH2 (R'0)(R'S)C(R')-X or Y-N=C(R')-X
or
Y-NH-C(R')H-X following reduction monothioketal
Y-NH2 R'SC(R'XSH)-X or Y-N=C(R')-X
dithiohemiketal or
Y-NH-C(R')H-X following reduction
Y-NH2 (R'S)2C(R')-X or Y-N=C(R')-X
or
Y-NH-C(R')H-X following r"""S \ '
reduction dithioketal
Y-SH Y-S-CH2-C(OH)(R")-X-
R" Y-OH epoxide (oxirane) Y-0-CH2-C(OH)(R")-X-
Y-COOH (anion) Y-C(=0)0-CH2-C(OH)(R")-X- Y-NHR" Y-NR"-CH2-C(OH)(R' ' )-X-
R is Ci-6 alkyl, C3-6 cycioalkyl, or an aryl group having 5-8 endocyclic atoms;
R is H, C| -6 alkyl, C3-e cycioalkyl, or an aryl group having 5-8 endocyclic atoms;
R " is a carbonyl derivative *- (CO)-, * - (CO)-(CH2)i.8-S-S-,
*- (CO)-(CH2)i .8-(CO)-0-, *- (CO)-(CH2),_8-0-(CO)-, * - (CO)-(CH2),.8-(CO)-NH- , or
*- (C )-(CH2)i.8-NH-(C )-, or alternatively, R is carbonyl derivative of the form *- (C )-0-(CH2),_8-S-S-, *- (C0)-0-(CH2), _8-(CO)-0- ,
*- (C )-0-(CH2)i_g-0-(CO)-, *- (C0)-0-(CH2)K8-(C )-NH- , or
*- (C )-0-(CH2)i.s-NH-(C )-, where "*" indicates the point of attachment to succinimidyl or benzotriazolyl groups;
X and Y are each the active agent, linker, monomer or initiator fragment I.
-C(0)NRlaRlb, -NRlaRl b,
Cj.6 alkyl-NRlaRIb, -N(Rla)C(0)Rlb, -N(R,a)C(0)ORl , -N(R,a)C(0)NRlaRl b, -OP(0)(ORu)2 , -S(0)2ORl a, -S(0)2NR, aRlb, -CN, -N02, cycloalkyl, heterocycloalkyl, aryl and heteroaryl
E. Functional agents [0174] Functional agents useful in the high MW polymers of the present invention include any biological agent or synthetic compound capable of targeting a particular ligand, receptor, complex, organelle, cell, tissue, epithelial sheet, or organ, or of treating a particular condition or disease state. In some embodiments, the bioactive agent is a drug, a therapeutic protein, a small molecule, a peptide, a peptoid, an oligonucleotide (aptamer, siRNA, microRNA), a nanoparticle, a carbohydrate, a lipid, a glycolipid, a phospholipid, or a targeting agent. Other functional agents useful in the high MW polymers of the present invention include, but are not limited to, radiolabels, contrast agents, fluorophores and dyes.
[0175] The functional agents can be linked to the initiator fragment I or the radical scavenger Γ, or both, of the high MW polymers. The functional agents can be linked to the initiator fragment I or the radical scavenger Γ either before or after polymerization via cleavable or non-cleavable linkers described above. The functional agent can also be physisorbed or ionically absorbed to the high MW polymer instead of covalently attached.
[0176] The preparation of the high MW polymers of the present invention linked to a functional agent can be conducted by first linking the functional agent to a linking group attached to an initiator fragment and subjecting the coupled functional agent to conditions suitable for synthesis of the inventive high MW polymers. In those cases, a suitable linking group can be an initiator (e.g., iodinated, brominated or chlorinated compound/group) for use in ATRP reactions. Such a reaction scheme is possible where the functional agent is compatible with the polymer polymerization reactions and any subsequent workup required. However, coupling of functional agents to preformed high MW polymers can be used where the functional agent is not compatible with conditions suitable for polymerization. In addition, where cost makes the loss of an agent to imperfect synthetic yields, oftentimes encountered particularly in multistep synthetic reactions, coupling of functional agent to preformed high MW polymers of the present invention can be employed.
[0177] Where a functional agent is not compatible with the conditions employed for polymerization reactions, it can be desirable to introduce the functional agent subsequent to the polymerization reaction.
[0178] Bioactive agents, A, can be broadly selected. In some embodiments the bioactive agents can be selected from one or more drugs, vaccines, aptamers, avimer scaffolds based on human A domain scaffolds, diabodies, camelids, shark IgNAR antibodies, fibronectin type III scaffolds with modified specificities, antibodies, antibody fragments, vitamins and cofactors, polysaccharides, carbohydrates, steroids, lipids, fats, proteins, peptides, polypeptides, nucleotides, oligonucleotides, polynucleotides, and nucleic acids (e.g., mRNA, tRNA, snRNA, RNAi, microRNA, DNA, cDNA, antisense constructs, ribozymes, etc, and combinations thereof). In one embodiment, the bioactive agents can be selected from proteins, peptides, polypeptides, soluble or cell-bound, extracellular or intracellular, kinesins, molecular motors, enzymes, extracellular matrix materials and combinations thereof. In another embodiment, bioactive agents can be selected from nucleotides, oligonucleotides, polynucleotides, and nucleic acids (e.g. , mRNA, tRNA, snRNA, RNAi, DNA, cDNA, antisense constructs, ribozymes etc and combinations thereof). In another embodiment, bioactive agents can be selected from steroids, lipids, fats and combinations thereof. For example, the bioactive agent can bind to the extracellular matrix, such as when the extracellular matrix is hyaluronic acid or heparin sulfate proteoglycan and the bioactive agent is a positively charged moiety such as choline for non-specific, electrostatic, Velcro type binding interactions. In another embodiment, the bioactive agent can be a peptide sequence that binds non-specifically or specifically.
[0179] Bioactive agents can be designed and/or selected to have a full activity (such as a high level of agonism or antagonism). Alternatively, a multifunctional bioactive agent can be selected to modulate one target protein's activity while impacting fully another.
[0180] Just as mosaic proteins contain extracellular binding domains or sub-domains (example, VEGF and Heparin Binding Epidermal Growth Factor), sequences from these binding sites can be replicated as a bioactive agent for polymer attachment. More broadly, mosaic proteins represent strings of domains of many functions (target binding, extracellular matrix binding, spacers, avidity increases, enzymatic). The set of bioactives chosen for a particular application can be assembled in similar fashion to replicate a set of desired functional activities.
[0181] Other functional agents, A, include charged species such as choline, lysine, aspartic acid, glutamic acid, and hyaluronic acid, among others. The charged species are useful for facilitating ionic attachment, to vitreous for example.
Therapeutic Proteins and Antibodies
[0182] In one particularly useful embodiment, the functional agent is a therapeutic protein. Numerous therapeutic proteins are disclosed throughout the application such as, and without limitation, erythropoietin, granulocyte colony stimulating factor (G-CSF), GM-CSF, interferon alpha, interferon beta, human growth hormone, imiglucerase, and RANK ligand.
[0183] In one embodiment, the functional agents can be selected from specifically identified polysaccharide, protein or peptide bioactive agents, including, but not limited to: Αβ, agalsidase, alefacept, alkaline phosphatase, aspariginase, amdoxovir (DAPD), antide, becaplermin, botulinum toxin including types A and B and lower molecular weight compounds with botulinum toxin activity, calcitonins, CDl d, cyanovirin, denileukin diftitox, erythropoietin (EPO), EPO agonists, dornase alpha, erythropoiesis stimulating protein (NESP), coagulation factors such as Factor V, Factor VII, Factor Vila, Factor VIII, B domain deleted Factor VIII, Factor IX, Factor X, Factor XII, Factor XIII, von Willebrand factor; ceredase, Fc gamma r2b, cerezyme, alpha-glucosidase, N-Acetylgalactosamine-6-sulfate sulfatase, collagen, cyclosporin, alpha defensins, beta defensins, desmopressin, exendin-4, cytokines, cytokine receptors, granulocyte colony stimulating factor (G-CSF),
thrombopoietin (TPO), alpha-1 proteinase inhibitor, elcatonin, granulocyte macrophage colony stimulating factor (GM-CSF), fibrinogen, filgrastim, growth hormones human growth hormone (hGH), somatropin, growth hormone releasing hormone (GHRH), GRO-beta, GRO-beta antibody, bone morphogenic proteins such as bone morphogenic protein-2, bone morphogenic protein-6, parathyroid hormone, parathyroid hormone related peptide, OP- 1 ; acidic fibroblast growth factor, basic fibroblast growth factor, Fibroblast Growth Factor 21 , CD40 ligand, 1COS, CD28, B7- 1 , B7-2, TLR and other innate immune receptors, heparin, human serum albumin, low molecular weight heparin (LMWH), interferon alpha, interferon beta, interferon gamma, interferon omega, interferon tau, consensus interferon; interleukins and interleukin receptors such as interleukin- 1 receptor, interleukin-2, interleukin-2 fusion proteins, interleukin- 1 receptor antagonist, interleukin-3, interleukin-4, interleukin-4 receptor, interleukin-6, interleukin-8, interleukin- 12, interleukin- 1 7, interleukin-21 , interleukin- 13 receptor, interleukin- 17 receptor; lactoferrin and lactoferrin fragments, luteinizing hormone releasing hormone (LHRH), insulin, pro-insulin, insulin analogues, amylin, C-peptide, somatostatin, somatostatin analogs including octreotide, vasopressin, follicle stimulating hormone (FSH), imiglucerase, influenza vaccine, insulin-like growth factor (IGF), insulintropin, macrophage colony stimulating factor (M-CSF), plasminogen activators such as alteplase, urokinase, reteplase, streptokinase, pamiteplase, lanoteplase, and teneteplase;
nerve growth factor (NGF), trk A, trk B, osteoprotegerin, platelet-derived growth factor, tissue growth factors, transforming growth factor- 1 , vascular endothelial growth factor, leukemia inhibiting factor, keratinocyte growth factor ( GF), glial growth factor (GGF), T Cell receptors, CD molecules/antigens, tumor necrosis factor (TNF) (e.g., TNF-a and TNF-β), TNF receptors (e.g., TNF-a receptor and TNF-β receptor), CTLA4, CTLA4 receptor, monocyte chemoattractant protein- 1 , endothelial growth factors, parathyroid hormone (PTH), PTHrP, glucagon-like peptide, somatotropin, thymosin alpha 1 , rasburicase, thymosin alpha 1 Ilb/IIIa inhibitor, thymosin beta 1 0, thymosin beta 9, thymosin beta 4, alpha- 1 antitrypsin, phosphodiesterase (PDE) compounds, VLA-4 (very late antigen-4), VLA-4 inhibitors, bisphosponates, respiratory syncytial virus antibody, cystic fibrosis transmembrane regulator (CFTR) gene, deoxyribonuclease (Dnase), bactericidal/permeability increasing protein (BPI), and anti-CMV antibody. Exemplary monoclonal antibodies include etanercept (a dimeric fusion protein consisting of the extracellular ligand-binding portion of the human 75 kD TNF receptor linked to the Fc portion of IgG l ), abciximab, adalimumab, afelimomab, alemtuzumab, antibody to B- lymphocyte, atlizumab, basiliximab, bevacizumab, biciromab, bertilimumab, CDP-484, CDP-571 , CDP-791 , CDP-860, CDP-870, cetuximab, clenoliximab, daclizumab, eculizumab, edrccolomab, efalizumab, epratuzumab, fontolizumab, gavilimomab, gemtuzumab ozogamicin, ibritumomab tiuxetan, infliximab, inolimomab, keliximab, labetuzumab, lerdelimumab, olizumab, radiolabeled lym- 1 , metelimumab, mepolizumab, mitumomab, muromonad-CD3, nebacumab, natalizumab, odulimomab, omalizumab, oregovomab, palivizumab, pemtumomab, pexelizumab, rhuMAb-VEGF, rituximab, satumomab pendetide, sevirumab, siplizumab, tositumomab, I 131tositumomab, trastuzumab, tuvirumab, visilizumab, and fragments and mimetics thereof.
[0184] In one embodiment, the bioactive agent is a fusion protein. For example, and without limitation, the bioactive component can be an immunoglobulin or portion of an immunoglobulin fused to one or more certain useful peptide sequences. For example, the bioactive agent may contain an antibody Fc fragment. In one embodiment, the bioactive agent is a CTLA4 fusion protein. For example, the bioactive agent can be an Fc-CTLA4 fusion protein. In another embodiment, the bioactive agent is a Factor VIII fusion protein. For example, the bioactive agent can be an Fc-Factor VIII fusion protein.
[0185] In one particularly useful embodiment, the bioactive agent is a human protein or human polypeptide, for example, a hetcrologously produced human protein or human polypeptide. Numerous proteins and polypeptides are disclosed herein for which there is a corresponding human form (i.e., the protein or peptide is normally produced in human cells
in the human body). Therefore, in one embodiment, the bioactive agent is the human form of each of the proteins and polypeptides disclosed herein for which there is a human form. Examples of such human proteins include, without limitation, human antibodies, human enzymes, human hormones and human cytokines such as granulocyte colony stimulation factor, granulocyte macrophage colony stimulation factor, interferons (e.g., alpha interferons and beta interferons), human growth hormone and erythropoietin.
[0186] Other examples of therapeutic proteins which (themselves or as the target of an antibody or antibody fragment or non-antibody protein) may serve as bioactive agents include, without limitation, factor VIII, b-domain deleted factor VIII, factor Vila, factor IX, factor X, anticoagulants; hirudin, alteplase, tpa, reteplase, tpa, tpa - 3 of 5 domains deleted, insulin, insulin lispro, insulin aspart, insulin glargine, long-acting insulin analogs, complement C5, hgh, glucagons, tsh, follitropin-beta, fsh, gm-csf, pdgh, ifn alpha2, ifn alpha2a, ifn alpha2b, inf-aphal , consensus ifn, ifn-beta, ifn-beta l b, ifn-beta l a, ifn-gamma (e.g., 1 and 2), ifn-lambda, ifn-delta, i 1-2, il- 1 1 , hbsag, ospa, murine mab directed against t- lymphocyte antigen, murine mab directed against tag-72, tumor-associated glycoprotein, fab fragments derived from chimeric mab directed against platelet surface receptor gpII(b)/III(a), murine mab fragment directed against tumor-associated antigen cal 25, lysyl oxidase, LOX2, murine mab fragment directed against human carcinoembryonic antigen, cea, murine mab fragment directed against human cardiac myosin, murine mab fragment directed against tumor surface antigen psma, murine mab fragments (fab/fab2 mix) directed against hmw-maa, murine mab fragment (fab) directed against carcinoma-associated antigen, mab fragments (fab) directed against nca 90, a surface granulocyte nonspecific cross reacting antigen, chimeric mab directed against cd20 antigen found on surface of b lymphocytes, humanized mab directed against the alpha chain of the il2 receptor, chimeric mab directed against the alpha chain of the il2 receptor, chimeric mab directed against tnf-alpha, humanized mab directed against an epitope on the surface of respirator synctial virus, humanized mab directed against her 2, human epidermal growth factor receptor 2, human mab directed against cytokeratin tumor-associated antigen anti-ctla4, chimeric mab directed against cd 20 surface antigen of b lymphocytes dornase-alpha dnase, beta glucocerebrosidase, tnf-alpha, il-2-diptheria toxin fusion protein, tnfr-lgg fragment fusion protein laronidase, dnaases, alefacept, darbepoetin alpha (colony stimulating factor), tositumomab, murine mab, alemtuzumab, rasburicase, agalsidase beta, teriparatide, parathyroid hormone derivatives, adalimumab (Iggl ), anakinra, biological modifier, nesiritide, human b-type natriuretic peptide (hbnp), colony stimulating factors, pegvisomant, human growth hormone receptor antagonist,
recombinant activated protein c, omalizumab, immunoglobulin e (lge) blocker, lbritumomab tiuxetan, ACTH, glucagon, somatostatin, somatotropin, thymosin, parathyroid hormone, pigmentary hormones, somatomedin, erythropoietin, luteinizing hormone, chorionic gonadotropin, hypothalmic releasing factors, etanercept, antidiuretic hormones, prolactin and thyroid stimulating hormone. And any of these can be modified to have a site-specific conjugation point (a N-terminus, or C-terminus, or other location) using natural (for example, a serine to cysteine substitution) (for example, formylaldehyde per method of Redwood Biosciences) or non-natural amino acid. Non-natural amino acid residue(s) can be selected from the group consisting of: azidonorleucine, 3-(l-naphthyl)alanine, 3-(2-naphthyl)alanine, p-ethynyl-phenylalanine, p-propargly-oxy-phenylalanine, m-ethynyl-phenylalanine, 6- ethynyl-tryptophan, 5-ethynyl-tryptophan, (R)-2-amino-3-(4-ethynyl- l H-pyrol-3-yl)propanic acid, p-bromophenylalanine, p-iodophenylalanine, p-azidophenylalanine, p- acetylphenylalanine, 3-(6-chloroindolyl)alanine, 3-(6-bromoindolyl)alanine, 3-(5- bromoindolyl)alanine, azidohomoalanine, homopropargylglycine, p-chlorophenylalanine, - aminocaprylic acid, O-methyl-L-tyrosine, N-acetylgalactosamine-a-threonine, and N- acetylgalactosamine-a-serine.
[0187] Examples of therapeutic antibodies that may serve as bioactive agents (by themselves or fragments of such antibodies) include, but are not limited, to HERCEPTIN™ (Trastuzumab) (Genentech, CA) which is a humanized anti-HER2 monoclonal antibody for the treatment of patients with metastatic breast cancer; REOPRO™ (abciximab) (Centocor) which is an anti-glycoprotein Ilb/IIIa receptor on the platelets for the prevention of clot formation; ZENAPAX™ (daclizumab) (Roche Pharmaceuticals, Switzerland) which is an immunosuppressive, humanized anti-CD25 monoclonal antibody for the prevention of acute renal allograft rejection; PANOREX™ which is a murine anti-17-IA cell surface antigen IgG2a antibody (Glaxo Wellcome/Centocor); BEC2 which is a murine anti-idiotype (GD3 epitope) IgG antibody (ImClone System); IMC-C225 which is a chimeric anti-EGFR IgG antibody (ImClone System); VITAXIN™ which is a humanized anti-aVp3 integrin antibody (Applied Molecular Evolution/Medlmmune); Campath; Campath 1 H/LDP-03 which is a humanized anti CD52 IgG 1 antibody (Leukosite); Smart M 195 which is a humanized anti-CD33 IgG antibody (Protein Design Lab/Kanebo); RITUXAN™ which is a chimeric anti-CD20 IgG 1 antibody (IDEC Pharm/Genentech, Roche/Zettyaku); LYMPHOCIDE™ which is a humanized anti-CD22 IgG antibody (Immunomedics); ICM3 is a humanized anti-ICAM3 antibody (ICOS Pharm); IDEC- 1 14 is a primate anti-CD80 antibody (IDEC Pharm/Mitsubishi); ZEVALIN™ is a radiolabelled murine anti-CD20 antibody
(IDEC/Schering AG); IDEC- 131 is a humanized anti-CD40L antibody (IDEC/Eisai);
lDEC- 151 is a primatized anti-CD4 antibody (IDEC); IDEC- 152 is a primatized anti-CD23 antibody (IDEC/Seikagaku); SMART anti-CD3 is a humanized anti-CD3 IgG (Protein Design Lab); 5G 1.1 is a humanized anti-complement factor 5 (CS) antibody (Alexion Pharm); D2E7 is a humanized anti-TNF-a antibody (CATIBASF); CDP870 is a humanized anti-TNF-a Fab fragment (Celltech); IDEC- 151 is a primatized anti-CD4 IgG 1 antibody (IDEC Pharm/SmithKline Beecham); MDX-CD4 is a human anti-CD4 IgG antibody (Medarex/Eisai/Genmab); CDP571 is a humanized anti-TNF-α IgG4 antibody (Celltech); LDP-02 is a humanized anti-a4p7 antibody (LeukoSite/Genentech); OrthoClone OKT4A is a humanized anti-CD4 IgG antibody (Ortho Biotech); ANTOV A™ is a humanized anti-CD40L IgG antibody (Biogen); ANTEGREN™ is a humanized anti-VLA-4 IgG antibody (Elan); CAT-152, a human anti-TGF-Pa antibody (Cambridge Ab Tech); Cetuximab (BMS) is a monoclonal anti-EGF receptor (EGFr) antibody; Bevacizuma (Genentech) is an anti-VEGF human monoclonal antibody; Infliximab (Centocore, JJ) is a chimeric (mouse and human) monoclonal antibody used to treat autoimmune disorders; Gemtuzumab ozogamicin (Wyeth) is a monoclonal antibody used for chemotherapy; and Ranibizumab (Genentech) is a chimeric (mouse and human) monoclonal antibody used to treat macular degeneration.
[0188] Other antibodies, such as single domain antibodies are useful in the present invention. A single domain antibody (sdAb, called Nanobody by Ablynx) is an antibody fragment consisting of a single monomeric variable antibody domain. Like a whole antibody, the sdAb is able to bind selectively to a specific antigen. With a molecular weight of only 12-15 kDa, single domain antibodies are much smaller than common antibodies ( 150-160 kDa). A single domain antibody is a peptide chain of about 1 1 0 amino acids in length, comprising one variable domain (VH) of a heavy chain antibody, or of a common IgG.
[0189] Unlike whole antibodies, sdAbs do not show complement system triggered cytotoxicity because they lack an Fc region. Camelid and fish derived sdAbs are able to bind to hidden antigens that are not accessible to whole antibodies, for example to the active sites of enzymes.
[0190] A single domain antibody (sdAb) can be obtained by immunization of dromedaries, camels, llamas, alpacas or sharks with the desired antigen and subsequent isolation of the mRNA coding for heavy chain antibodies. Alternatively they can be made by screening synthetic libraries. Camelids are members of the biological family Camelidae, the only living family in the suborder Tylopoda. Camels, dromedaries, Bactrian Camels, llamas, alpacas, vicunas, and guanacos are in this group.
Proteins, Peptides and Amino Acids
[0191] Proteins and peptides for use as bioactive agents as disclosed herein can be produced by any useful method including production by in vitro synthesis and by production in biological systems. Typical examples of in vitro synthesis methods which are well known in the art include solid-phase synthesis ("SPPS") and solid-phase fragment condensation
("SPFC"). Biological systems used for the production of proteins are also well known in the art. Bacteria (e.g., E coli and Bacillus sp. ) and yeast (e.g., Saccharomyces cerevisiae and Pichia pastoris) are widely used for the production of heterologous proteins. In addition, heterologous gene expression for the production of bioactive agents for use as disclosed herein can be accomplished using animal cell lines such as mammalian cell lines (e.g., CHO cells). In one particularly useful embodiment, the bioactive agents are produced in transgenic or cloned animals such as cows, sheep, goats and birds (e.g., chicken, quail, ducks and turkey), each as is understood in the art. See, for example, US Patent No. 6,781 ,030, issued August 24, 2004, the disclosure of which is incorporated in its entirety herein by reference.
[0192] Bioactive agents such as proteins produced in domesticated birds such as chickens can be referred to as "avian derived" bioactive agents (e.g., avian derived therapeutic proteins). Production of avian derived therapeutic proteins is known in the art and is described in, for example, US Patent No. 6,730,822, issued May 4, 2004, the disclosure of which is incorporated in its entirety herein by reference.
[0193] In embodiments where the bioactive agent is a protein or polypeptide, functional groups present in the amino acids of the protein polypeptide sequence can be used to link the agent to the high MW polymer. Linkages to protein or polypeptide bioactive agents can be made to naturally occurring amino acids in their sequence or to naturally occurring amino acids that have either been added to the sequence or inserted in place of another amino acid, for example the replacement of a serine by a cysteine.
[0194] Peptides useful in the present invention also include, but are not limited to, a macrocyclic peptide, a cyclotide, an aptamer, an LDL receptor A-domain, a protein scaffold (as discussed in US Patent Number 60/514,391 ), a soluble receptor, an enzyme, a peptide multimer, a domain multimer, an antibody fragment multimer, and a fusion protein.
[0195] Protein or polypeptide bioactive agents may also comprise non-naturally occurring amino acids in addition to the common naturally occurring amino acids found in proteins and polypeptides. In addition to being present for the purpose of altering the properties of a polypeptide or protein, non-naturally occurring amino acids can be introduced to provide a
functional group that can be used to link the protein or polypeptide directly to high MW polymer. Furthermore, naturally occurring amino acids, e.g., cysteine, tyrosine, tryptophan can be used in this way.
[0196] Non-naturally occurring amino acids can be introduced into proteins and peptides by a variety of means. Some of the techniques for the introduction of non-natural amino acids are discussed in US Patent No. 5, 162,218 and US Patent No. 20080214439, the disclosure of which is incorporated in its entirety herein by reference. First, non-naturally occurring amino acids can be introduced by chemical modification of a polypeptide or protein on the amino acid side chain or at either the amino terminus or the carboxyl terminus. Non-limiting examples of chemical modification of a protein or peptide might be methylation by agents such as diazomethane, or the introduction of acetylation at an amino group present in lysine's side chain or at the amino terminus of a peptide or protein. Another example of the protein/polypeptide amino group modification to prepare a non-natural amino acid is the use of methyl 3-mercaptopropionimidate ester or 2-iminothiolane to introduce a thiol (sulfhydryl, -SH) bearing functionality linked to positions in a protein or polypeptide bearing a primary amine. Once introduced, such groups can be employed to form a covalent linkage to the protein or polypeptide.
[0197] Second, non-naturally occurring amino acids can be introduced into proteins and polypeptides during chemical synthesis. Synthetic methods are typically utilized for preparing polypeptides having fewer than about 200 amino acids, usually having fewer than about 150 amino acids, and more usually having 100 or fewer amino acids. Shorter proteins or polypeptides having less than about 75 or less than about 50 amino acids can be prepared by chemical synthesis.
[0198] The synthetic preparation methods that are particularly convenient for allowing the insertion of non-natural amino acids at a desired location are known in the art. Suitable synthetic polypeptide preparation methods can be based on Merrifield solid-phase synthesis methods where amino acids are sequentially added to a growing chain (Merrifield (1963) J. Am. Chem. Soc. 85 :2149-21 56). Automated systems for synthesizing polypeptides by such techniques are now commercially available from suppl iers such as Applied Biosystems, Inc., Foster City, Calif. 94404; New Brunswick Scientific, Edison, N.J. 08818; and Pharmacia, Inc., Biotechnology Group, Piscataway, N.J. 08854.
[0199] Examples of non-naturally occurring amino acids that can be introduced during chemical synthesis of polypeptides include, but are not limited to: D-amino acids and
mixtures of D and L-forms of the 20 naturally occurring amino acids, N-formyl glycine, ornithine, norleucine, hydroxyproline, beta-alanine, hydroxyvaline, norvaline, phenylglycine, cyclohexylalanine, t-butylglycine (t-leucine, 2-amino-3,3-dimethylbutanoic acid), hydroxy-t-butylglycine, amino butyric acid, cycloleucine, 4-hydroxyproline, pyroglutamic acid (5-oxoproline), azetidine carboxylic acid, pipecolinic acid, indoline-2-carboxylic acid, tetrahydro-3-isoquinoline carboxylic acid, 2,4-diaminobutyricacid, 2,6-diaminopimelic acid, 2,4-diaminobutyricacid, 2,6-diaminopimelicacid, 2,3-diaminopropionicacid, 5-hydroxylysine, neuraminic acid, and 3,5-diiodotyrosine.
[0200] Third, non-naturally occurring amino acids can be introduced through biological synthesis in vivo or in vitro by insertion of a non-sense codon {e.g., an amber or ocher codon) in a DNA sequence (e.g., the gene) encoding the polypeptide at the codon corresponding to the position where the non-natural amino acid is to be inserted. Such techniques are discussed for example in US Patents No.: 5, 162,218 and 6,964,859, the disclosures of which are incorporated in their entirety herein by reference. A variety of methods can be used to insert the mutant codon including oligonucleotide-directed mutagenesis. The altered sequence is subsequently transcribed and translated, in vivo or in vitro in a system which provides a suppressor tRNA, directed against the nonsense codon that has been chemically or enzymatically acylated with the desired non-naturally occurring amino acid. The synthetic amino acid will be inserted at the location corresponding to the nonsense codon. For the preparation of larger and/or glycosylated polypeptides, recombinant preparation techniques of this type are usually preferred. Among the amino acids that can be introduced in this fashion are: formyl glycine, fluoroalanine, 2-Amino-3-mercapto-3-methylbutanoic acid, homocysteine, homoarginine and the like. Other similar approaches to obtain non-natural amino acids in a protein include methionine substitution methods.
[0201] Where non-naturally occurring amino acids have a functionality that is susceptible to selective modification, they are particularly useful for forming a covalent linkage to the protein or polypeptide. Circumstances where a functionality is susceptible to selective modification include those where the functionality is unique or where other functionalities that might react under the conditions of interest are hindered either stereochemically or otherwise.
[0202] Other antibodies, such as single domain antibodies are useful in the present invention. A single domain antibody (sdAb, called Nanobody by Ablynx) is an antibody fragment consisting of a single monomeric variable antibody domain. Like a whole antibody, the sdAb is able to bind selectively to a specific antigen. With a molecular weight of only
12-15 kDa, single domain antibodies are much smaller than common whole antibodies (150- 160 kDa). A single domain antibody is a peptide chain of about 1 10 amino acids in length, comprising one variable domain (VH) of a heavy chain antibody, or of a common IgG.
[0203] Unlike whole antibodies, sdAbs do not show complement system triggered cytotoxicity because they lack an Fc region. Camelid and fish derived sdAbs are able to bind to hidden antigens that are not accessible to whole antibodies, for example to the active sites of enzymes.
[0204] A single domain antibody (sdAb) can be obtained by immunization of dromedaries, camels, llamas, alpacas or sharks with the desired antigen and subsequent isolation of the mRNA coding for heavy chain antibodies. Alternatively they can be made by screening synthetic libraries. Camelids are members of the biological family Camelidae, the only living family in the suborder Tylopoda. Camels, dromedaries, Bactrian Camels, llamas, alpacas, vicunas, and guanacos are in this group.
[0205] Peptides useful in the present invention also include, but are not limited to, a macrocyclic peptide, a cyclotide, an LDL receptor A-domain, a protein scaffold (as discussed in US Patent Number 60/514,391 , incorporated in its entirety herein), a soluble receptor, an enzyme, a peptide multimer, a domain multimer, an antibody fragment multimer, and a fusion protein.
[0206] The invention also describes new ways to achieve branched polymer architectures on a bioactive surface. The concept is one of "branching points" or "proximal attachment points" on the target molecule such as to recreate an effective >2 arm polymer with >1 arm polymers attached to a localized site(s) on a target molecule. In the prior art, indiscriminate PEGylation of a protein with a non site-specific reagent (for example an NHS functional ized PEG reagent) would result in multiple PEG polymers conjugated to multiple amine groups scattered through the protein. Here, what is described is preferably a one step approach in which the target agent is modified to locate two unique conjugation sites (for example, cysteine amino acids) such that once the tertiary structure of the protein or peptide or agent is formed, the two sites will be in proximity one to the other. Then, this modified target agent is used in a conjugation reaction with a polymer containing the corresponding conjugation chemistry (for example, thiol reactive). The result is a single target agent which is conjugated with two polymers in close proximity to one another, thereby creating a branching point or "pseudo" branch. In another embodiment, the target agent would contain a single
unique site, for example a free cysteine, and a tri(hetero)functional linking agent would be employed to attach >2 linear polymers to this single site, again creating a "pseudo" branch.
Drugs
[0207] In another embodiment, the bioactive agents can also be selected from specifically identified drug or therapeutic agents, including but not limited to: tacrine, memantine, rivastigmine, galantamine, donepezil, levetiracetam, repaglinide, atorvastatin, alefacept, tadalafil, vardenafil, sildenafil, fosamprenavir, oseltamivir, valacyclovir and valganciclovir, abarelix, adefovir, alfuzosin, alosetron, amifostine, amiodarone, aminocaproic acid, aminohippurate sodium, aminoglutethimide, aminolevulinic acid, aminosalicylic acid, amlodipine, amsacrine, anagrelide, anastrozole, aprepitant, aripiprazole, asparaginase, atazanavir, atomoxetine, anthracyclines, bexarotene, bicalutamide, bleomycin, bortezomib, buserelin, busulfan, cabergoline, capecitabine, carboplatin, carmustine, chlorambucin, cilastatin sodium, cisplatin, cladribine, clodronate, cyclophosphamide, cyproterone, cytarabine, camptothecins, 13-cis retinoic acid, all trans retinoic acid; dacarbazine, dactinomycin, daptomycin, daunorubicin, deferoxamine, dexamethasone, diclofenac, diethylstilbestrol, docetaxel, doxorubicin, dutasteride, eletriptan, emtricitabine, enfuvirtide, eplerenone, epirubicin, estramustine, ethinyl estradiol, etoposide, exemestane, ezetimibe, fentanyl, fexofenadine, fludarabine, fludrocortisone, fluorouracil, fluoxymesterone, flutarnide, fluticazone, fondaparinux, fulvestrant, gamma-hydroxybutyrate, gefitinib, gemcitabine, epinephrine, L-Dopa, hydroxyurea, icodextrin, idarubicin, ifosfam ide, imatinib, irinotecan, itraconazole, goserelin, laronidase, lansoprazole, letrozole, leucovorin, levamisole, lisinopril, lovothyroxine sodium, lomustine, mechlore hamine, medroxyprogesterone, megestrol, melphalan, memantine, mercaptopurine, mequinol, metaraminol bitartrate, methotrexate, metoclopramide, mexiletine, miglustat, mitomycin, mitotane, mitoxantrone, modafinil, naloxone, naproxen, nevirapine, nicotine, nilutamide, nitazoxanide, nitisinone, norethindrone, octreotide, oxaliplatin, palonosetron, pamidronate, pemetrexed, pergolide, pentostatin, pilcamycin, porfimer, prednisone, procarbazine, prochlorperazine, ondansetron, palonosetron, oxaliplatin, raltitrexed, rosuvastatin, sirolimus, streptozocin, pimecrolimus, sertaconazole, tacrolimus, tamoxifen, tegaserod, temozolomide, teniposide, testosterone, tetrahydrocannabinol, thalidomide, thioguanine, thiotepa, tiotropium, topiramate, topotecan, treprostinil, tretinoin, valdecoxib, celecoxib, rofecoxib, valrubicin, vinblastine, vincristine, vindesine, vinorelbine, voriconazole, dolasetron, granisetron, formoterol, fluticasone, leuprolide, midazolam, alprazolam, amphotericin B, podophylotoxins, nucleoside antivirals, aroyl hydrazones, sumatriptan, eletriptan; macrolides such as erythromycin, oleandomycin,
troleandomycin, roxithromycin, clarithromycin, davercin, azithromycin, flurithromycin, dirithromycin, josamycin, spiramycin, midecamycin, loratadine, desloratadine, leucomycin, miocamycin, rokitamycin, andazithromycin, and swinolide A; fluoroquinolones such as ciprofloxacin, ofloxacin, levofloxacin, trovafloxacin, alatrofloxacin, moxifloxicin, norfloxacin, enoxacin, gatifloxacin, gemifloxacin, grepafloxacin, lomefloxacin, sparfloxacin, temafloxacin, pefloxacin, amifloxacin, fleroxacin, tosufloxacin, prulifloxacin, irloxacin, pazufloxacin, clinafloxacin, and sitafloxacin; aminoglycosides such as gentamicin, netilmicin, paramecin, tobramycin, amikacin, kanamycin, neomycin, and streptomycin, vancomycin, teicoplanin, rampolanin, mideplanin, colistin, daptomycin, gramicidin, cohstimethate; polymixins such as polymixin B, capreomycin, bacitracin, penems; penicillins including penicllinase-sensitive agents like penicillin G, penicillin V; penicillinase-resistant agents like methicillin, oxacillin, cloxacillin, dicloxacillin, floxacillin, nafcillin; gram negative microorganism active agents like ampicillin, amoxicillin, and hetacillin, cillin, and galampicillin; antipseudomonal penicillins like carbenicillin, ticarcillin, azlocillin, mezlocillin, and piperacillin; cephalosporins like cefpodoxime, cefprozil, ceftbuten, ceftizoxime, ceftriaxone, cephalothin, cephapirin, cephalexin, cephradrine, cefoxitin, cefamandole, cefazolin, cephaloridine, cefaclor, cefadroxil, cephaloglycin, cefuroxime, ceforanide, cefotaxime, cefatrizine, cephacetrile, cefepime, cefixime, cefonicid, cefoperazone, cefotetan, cefmetazole, ceftazidime, loracarbef, and moxalactam, monobactams like aztreonam; and carbapenems such as imipenem, meropenem, and ertapenem, pentamidine isetionate, albuterol sulfate, lidocaine, metaproterenol sulfate, beclomethasone diprepionate, triamcinolone acetamide, budesonide acetonide, salmeterol, ipratropium bromide, flunisolide, cromolyn sodium, and ergotamine tartrate; taxanes such as paclitaxel; SN-38, and tyrphostines. Bioactive agents may also be selected from the group consisting of aminohippurate sodium, amphotericin B, doxorubicin, am inocaproic acid, aminolevulinic acid, aminosalicylic acid, metaraminol bitartrate, pamidronate disodium, daunorubicin, levothyroxine sodium, lisinopril, cilastatin sodium, mexiletine, cephalexin, deferoxamine, and amifostine in another embodiment.
[0208J Other bioactive agents useful in the present invention include extracellular matrix targeting agents, functional transport moieties and labeling agents. Extracellular matrix targeting agents include, but are not limited to, heparin binding moieties, matrix metalloproteinase binding moieties, lysyl oxidase binding domains, negatively charged moieties or positively charged moieties and hyaluronic acid. Functional transport moieties include, but are not limited to, blood brain barrier transport moieties, intracellular transport
moieties, organelle transport moieties, epithelial transport domains and tumor targeting moieties (folate, other). In some embodiments, the targeting agents useful in the present invention target anti-TrkA, anti A-beta (peptide 1 -40, peptide 1 -42, monomeric form, oligomeric form), anti-IGFl -4, agonist RAN -L, anti-ApoE4 or anti-ApoAl , among others. Diagnostic agents
[0209] Diagnostic agents useful in the high MW polymers of the present invention include imaging agents and detection agents such as radiolabels, fluorophores, dyes and contrast agents.
[0210] Imaging agent refers to a label that is attached to the high MW polymer of the present invention for imaging a tumor, organ, or tissue in a subject. The imaging moiety can be covalently or non-covalently attached to the high M W polymer. Examples of imaging moieties suitable for use in the present invention include, without limitation, radionuclides, fluorophores such as fluorescein, rhodamine, Texas Red, Cy2, Cy3, Cy5, Cy5.5, Cy7 and the AlexaFluor (Invitrogen, Carlsbad, CA) range of fluorophores, antibodies, gadolinium, gold, nanomaterials, horseradish peroxidase, alkaline phosphatase, derivatives thereof, and mixtures thereof.
[0211] Radiolabel refers to a nuclide that exhibits radioactivity. A "nuclide" refers to a type of atom specified by its atomic number, atomic mass, and energy state, such as carbon 14 (14C). "Radioactivity" refers to the radiation, including alpha particles, beta particles, nucleons, electrons, positrons, neutrinos, and gamma rays, emitted by a radioactive substance. Radionuclides suitable for use in the present invention include, but are not limited to, fluorine 18 (, 8F), phosphorus 32 (32P), scandium 47 (47Sc), cobalt 55 (55Co), copper 60 (60Cu), copper 61 (61Cu), copper 62 (62Cu), copper 64 (64Cu), gallium 66 (66Ga), copper 67 (67Cu), gallium 67 (67Ga), gallium 68 (68Ga), rubidium 82 (82Rb), yttrium 86 (86Y), yttrium 87 (87Y), strontium 89 (89Sr), yttrium 90 (90Y), rhodium 105 (I05Rh), silver 1 1 1 (n ,Ag), indium 1 1 1 (" Ίη), iodine 124 (l24I), iodine 125 (125I), iodine 131 (l3lI), tin 1 17m ("7mSn), technetium 99m (99mTc), promethium 149 (149Pm), samarium 153 (I 53Sm), holmium 166 (166Ho), lutetium 177 (,77Lu), rhenium 186 (I S6Re), rhenium 188 (1 S8Re), thallium 201 (20,T1), astatine 21 1 (2l , At), and bismuth 212 (212Bi). As used herein, the "m" in 1 17mSn and 99mTc stands for meta state. Additionally, naturally occurring radioactive elements such as uranium, radium, and thorium, which typically represent mixtures of radioisotopes, are suitable examples of radionuclides. 67Cu, l 1I, l77Lu, and 186Re are beta- and gamma-emitting radionuclides. 212Bi is an alpha- and beta-emitting radionuclide. 21 'At is an alpha-emitting radionuclide. 32P, 47Sc, 89Sr, 90Y, 105Rh, mAg, , , 7mSn, ,49Pm, , 53Sm, ,66Ho, and 188Re are
examples of beta-emitting radionuclides. 67Ga, u lIn, 99mTc, and 201T1 are examples of gamma-emitting radionuclides. 55Co, 60Cu, 61Cu, 62Cu, 66Ga, 68Ga, 82Rb, and 86Y are examples of positron-emitting radionuclides. 64Cu is a beta- and positron-emitting radionuclide. Imaging and detection agents can also be designed into the polymers of the invention through the addition of naturally occurring isotopes such as deuterium, 13C, or 15N during the synthesis of the initiator, linkers, linking groups, comonomers.
[0212] Contrast agents useful in the present invention include, but are not limited to, gadolinium based contrast agents, iron based contrast agents, iodine based contrast agents, barium sulfate, among others. One of skill in the art will appreciate that other contrast agents are useful in the present invention.
Nanoparticles
[0213] The functional agents can also include nanoparticles. Nanoparticles useful in the present invention include particles having a size ranging from 1 to 1000 nm. Nanoparticles can be beads, metallic particles or can in some cases be micelles and in some other be liposomes. Other nanoparticles include carbon nanotubes, quantum dots and colloidal gold. Nanoparticles can be packed with diagnostic and/or therapeutic agents.
[0214] Those skilled in the art will also recognize that the invention can be used to enable coincident detection of more than one agent of the same or different type. Also, the use of flexible linker chemistries can also be used to witness the loss of one fluorescent label, for example as the molecule is taken up into the cell and into a low pH environment.
Conjugates
[0215] The polymers of the present invention can be linked to a variety of functional agents described above to form a conjugate. In some embodiments, the present invention provides a conjugate including at least one polymer having a polymer arm having a plurality of monomers each independently selected from the group consisting of acrylate, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone and vinyl esters such as vinyl acetate, wherein each monomer includes a hydrophilic group, an initiator fragment linked to a proximal end of the polymer arm, wherein the initator moiety is suitable for radical polymerization, and an end group linked to a distal end of the polymer arm. The conjugate of the present invention also includes at least one functional agent having a bioactive agent or a diagnostic agent, linked to the initiator fragment or the end group.
[0216] The bioactive agent of the conjugate of the present invention can include a drug, an antibody, an antibody fragment, a single domain antibody, an avimer, an adnectin, diabodies,
a vitamin, a cofactor, a polysaccharide, a carbohydrate, a steroid, a lipid, a fat, a protein, a peptide, a polypeptide, a nucleotide, an oligonucleotide, a polynucleotide, or a nucleic acid. The diagnostic agent of the conjugate can be a radiolabel, a contrast agent, a fluorophore or a dye. In some embodiments, at least two polymers are linked to the functional agent. In some embodiments, at least two polymers are linked to the functional agent via proximal reactive groups on the functional agent to create a pseudo-branched structure. In other embodiments, the conjugate includes at least two functional agents attached to the polymer.
IV. Preparation of Zwitterion/Phosphorylcholine-Containing High MW polymers
[0217] The high MW polymers of the present invention can be prepared by any means known in the art. In some embodiments, the present invention provides a process for preparing a high MW polymer of the present invention, the process including the step of contacting a mixture of a first monomer and a second monomer with an initiator, I 1, under conditions sufficient to prepare a high MW polymer via free radical polymerization, wherein the first monomer comprises a phosphorylcholine, and each of the second monomer and initiator independently comprise at least one of a functional agent or a linking group for linking to the functional agent.
[0218] The mixture for preparing the high MW polymers of the present invention can include a variety of other components. For example, the mixture can also include cataly st, ligand, solvent, and other additives. In some embodiments, the mixture also includes a catalyst and a ligand. Suitable catalysts and ligands are described in more detail below.
[0219] Any suitable monomer can be used in the process of the present invention, such as those described above.
[0220] The high MW polymers of the present invention can be prepared by any suitable polymerization method, such as by living radical polymerization. Living radical polymerization, discussed by Odian, G. in Principles of Polymerization, 4th ,
Wiley-Interscience John Wiley & Sons: New York, 2004, and applied to zwitterionic polymers for example in US 6,852,816. Several different living radical polymerization methodologies can be employed, including Stable Free Radical Polymerization (SFRP), Radical Addition-Fragmentation Transfer (RAFT), and Nitroxide-Mediated Polymerization (NMP). In addition, Atom Transfer Radical Polymerization (ATRP), provides a convenient method for the preparation of the high M W polymers of the invention.
[0221] The preparation of polymers via ATRP involves the radical polymerization of monomers beginning with an initiator bearing one or more halogens. The halogenated initiator is activated by a catalyst (or a mixture of catalysts when CuBra is employed) such as a transition metal salt (CuBr) that can be solubilized by a ligand (e.g., bipyridine or
P DETA). RAFT polymerization uses thiocarbonylthio compounds, such as dithioesters, dithiocarbamates, trithiocarbonates, and xanthates, to mediate the polymerization process via a reversible chain-transfer process. Other "living" or controlled radical processes useful in the preparation of the inventive random copolymers include NMP.
Initiators
[0222] Initiators useful for the preparation of the high MW polymers of the present invention include any initiator suitable for polymerization via radical polymerization. In some embodiments, the initiators are suitable for atom transfer radical polymerization (ATRP), such as those described above. Other useful initiators include those for nitroxide mediated radical polymerization (NMP), or reversible addition-fragmentation-tennination (RAFT or MADIX) polymerization. Still other techniques to control a free-radical polymerization process can be used, such as the use of iniferters, degenerative transfer or telomerization process. Moreover, the initiators useful in the present invention include those having at least one branch point, such as those described above. In other embodiments, the initiators are useful for controlled radical polymerization.
[0223] High MW polymers of the present invention having complex architectures including branched compounds having multiple polymer arms including, but not limited to, comb and star structures. Comb architectures can be achieved employing linear initiators bearing three or more halogen atoms, preferably the halogens are chlorine, bromine, or iodine atoms, more preferably the halogens are chlorine or bromine atoms. Star architectures can also be prepared employing compounds bearing multiple halogens on a single carbon atom or cyclic molecules bearing multiple halogens. In some embodiments compounds having star architecture have 3 polymer arms and in other embodiments they have 4 polymer arms. See initiators described above.
Catalysts and Ligands
[0224] Catalysts for use in ATRP or group radical transfer polymerizations may include suitable salts of Cu1+,
Fe2+, Fe3+, Ru2+, Ru. 3+, Cr2+, Cr3 ' , Mo2 ' , Mo. 3+, W +, W3+, Mn2\ Mn2 ', Mn4+, Rh3+, Rh4+, Re2+, Re3+, Co1+, Co.2 Co3+, V2+, V3+, Zn. 1+, Zn2+, Ni2+, Ni +, Au,+, Au2+, Ag,+ and Ag2+. Suitable salts include, but are not limited to: halogen, C] - Q -alkoxy, sulfates, phosphate, triflate, hexafluorophosphate, methanesulphonate,
arylsulphonate salts. In some embodiments the catalyst is a chloride, bromide salts of the above-recited metal ions. In other embodiments the catalyst is CuBr, CuCl or RuCb.
[0225] In some embodiments, the use of one or more ligands to solubilize transition metal catalysts is desirable. Suitable ligands are usefully used in combination with a variety of transition metal catalysts including where copper chloride or bromide, or ruthenium chloride transition metal salts are part of the catalyst. The choice of a ligand affects the function of catalyst as ligands not only aid in solubilizing transition metal catalysts in organic reaction media, but also adjust their redox potential. Selection of a ligand is also based upon the solubility and separability of the catalyst from the product mixture. Where polymerization is to be carried out in a liquid phase soluble ligands/catalyst are generally desirable although immobilized catalysts can be employed. Suitable ligands include those pyridyl groups (including alkyl pyridines e.g., 4.4. dialkyl-2,2' bipyridines) and pyridyl groups bearing an alkyl substituted imino group, where present, longer alkyl groups provide solubility in less polar monomer mixtures and solvent media. Triphenyl phosphines and other phosphorus ligands, in addition to indanyl, or cyclopentadienyl ligands, can also be employed with transition metal catalysts (e.g., Ru+2-halide or Fe+2-halide complexes with
triphenylphosphine, indanyl or cyclopentadienyl ligands).
[0226] An approximately stoichiometric amount of metal compound and ligand in the catalyst, based on the molar ratios of the components when the metal ion is fully complexed, is employed in some embodiments. In other embodiments the ratio between metal compound and ligand is in the range 1 :(0.5 to 2) or in the range 1 :(0.8 to 1 .25).
[0227] Generally, where the catalyst is copper, bidentate or multidentate nitrogen ligands produce more active catalysts. In addition, bridged or cyclic ligands and branched aliphatic poiyamines provide more active catalysts than simple linear ligands. Where bromine is the counter ion, bidentate or one-half tetradentate ligands are needed per Cu+1. Where more complex counter ions are employed, such as triflate or hexafluorophosphate, two bidentate or one tetradentate ligand can be employed. The addition of metallic copper can be advantageous in some embodiments particularly where faster polymerization is desired as metallic copper and Cu+2 may undergo redox reaction to form Cu+1. The addition of some Cu+2 at the be ginning of some ATRP reactions can be employed to decrease the amount of normal termination.
[0228] In some embodiments, the amount of catalyst employed in the polymerization reactions is the molar equivalent of the initiator that is present. Since catalyst is not
consumed in the reaction, however, it is not essential to include a quantity of catalyst as high as of initiator. The ratio of catalyst to each halogen contained in the initiator, based on transition metal compound in some embodiments is from about 1 :(1 to 50), in other embodiments from about 1 :(1 to 10), in other embodiments from about 1 :(1 to 5), and in other embodiments from 1 : 1.
Polymerization Conditions
[0229] In some embodiments, the living radical polymerization process of the invention is preferably carried out to achieve a degree of polymerization in the range of 3 to about 2000, and in other embodiments from about 5 to about 500. The degree of polymerization in other embodiments is in the range 1 0 to 100, or alternatively in the range of about 10 to about 50. The degree of polymerization in group or atom transfer radical polymerization technique, is directly related to the initial ratio of initiator to monomer. Therefore, in some embodiments the initial ratios of initiator to monomer are in the range of 1 :(3 to about 2,000) or about 1 :(5 to 500), or about 1 :(10 to 100), or about 1 :( 10 to 50).
[0230] Polymerization reactions are typically carried out in the liquid phase, employing a single homogeneous solution. The reaction may, however, be heterogeneous comprising a solid and a liquid phase {e.g., a suspension or aqueous emulsion). In those embodiments where a non-polymerizable solvent is employed, the solvent employed is selected taking into consideration the nature of the zwitterionic monomer, the initiator, the catalyst and its ligand; and in addition, any comonomer that can be employed.
[0231] The solvent may comprise a single compound or a mixture of compounds. In some embodiments the solvent is water, and in other embodiments water is present in an amount from about 10% to about 1 00% by weight, based on the weight of the monomers present in the reaction. In those embodiments where a water insoluble comonomer is to be polymerized with a zwitterionic monomer, it can be desirable to employ a solvent or co-solvent (in conjunction with water) that permits solubilization of all the monomers present. Suitable organic solvents include, without limitation, formamides (e.g., N,N'-dimethylformamide), ethers (e.g., tetrahydrofuran), esters (ethyl acetate) and, most preferably, alcohols. In some embodiments where a mixture of water and organic solvent is to be employed, C1-C4 water miscible alkyl alcohols (methanol, ethanol, propanol, isopropanol, butanol, isobutanol, and tertbutanol) are useful organic solvents. In other embodiments, water and methanol combinations are suitable for conducting polymerization reactions. The reaction may also be conducted in supercritical solvents such as C(¾.
[0232] As noted above, in some embodiments it is desirable to include water in the polymerization mixture in an amount from about 10% to about 100% by weight based on the weight of monomers to be polymerized. In other embodiments the total non-polymerizable solvent is from about 1 % to about 500% by weight, based on the weight of the monomers present in the reaction mixture. In other embodiments, the total non-polymerizable solvent is from about 10% to about 500% by weight or alternatively from 20% to 400%, based on the weight of the monomers present in the reaction mixture. It is also desirable in some cases to manipulate the solubility of an input reagent, such as initiator or monomer, for example by modifying temperature or solvent or other method so as to modify the reaction conditions in a dynamic fashion.
[0233] In some embodiments, contact time of the zwitterionic monomer and water prior to contact with the initiator and catalyst are minimized by forming a premix comprising all components other than the zwitterionic monomer and for the zwitterionic monomer to be added to the premix last.
[0234] The polymerization reactions can be carried out at any suitable temperature. In some embodiments the temperature can be from about ambient (room temperature) to about 120° C. In other embodiments the polymerizations can be carried out at a temperature elevated from ambient temperature in the range of about 60 0 to 80° C. In other embodiments the reaction is carried out at ambient (room temperature).
[0235] In some embodiments, the compounds of the invention have a polydispersity (of molecular weight) of less than 1.5, as judged by gel permeation chromatography. In other embodiments the polydispersities can be in the range of 1.2 to 1.4. In still other embodiments, the polydispersities can be less than 1.2.
[0236] A number of workup procedures can be used to purify the polymer of interest such as precipitation, fractionation, reprecipitation, membrane separation and freeze-drying of the polymers.
Non-Halogenated Polymer Terminus
[0237] In some embodiments, it can be desirable to replace the halogen, or other initiator fragment Γ, with another functionality. A variety of reactions can be employed for the conversion of the aliphatic halogen. In some embodiments, the conversion of the aliphatic halogen can include reaction to prepare an alkyl, alkoxy, cycloalkyl, aryl, heteroaryl or hydroxy group. Halogens can also be subject to an elimination reaction to give rise to an alkene (double bond). Other methods of modifying the halogenated terminus are described in
Matyjaszewski et al. Prog. Polym. Sci. 2001 , 26, 337, incorporated by reference in its entirety herein.
Attachment of Functional agents
[0238] The coupling of functional agents to the high MW polymers of the present invention can be conducted employing chemical conditions and reagents applicable to the reactions being conducted. Exemplary methods are described in Bioconjugate Techniques, Greg T. Hermanson, Academic Press, 2d ed., 2008 (incorporated in its entirety herein). Other bioconj ligation techniques are described in Bertozzi et al. Angewandte Chemie 2009, 48, 6974, and Gauthier et al. Chem. Commun. 2008, 2591 , each incorporated by reference in its entirety herein.
[0239] Where, for example, the coupling requires the formation of an ester or an amide, dehydration reactions between a carboxylic acid and an alcohol or amine may employ a dehydrating agent (e.g., a carbodiimide such as dicyclohexylcarbodimide, DCC, or the water soluble agent l -ethyl-3-(3-dimethyllaminopropyl)carbodiimide hydrochloride, EDC).
Alternatively, N-hydroxysuccinimide esters (NHS) can be employed to prepare amides.
Reaction to prepare amides employing NHS esters are typically conducted near neutral pH in phosphate, bicarbonate, borate, HEPES or other non-amine containing buffers at 4° to 25° C. In some embodiments, reactions employing EDC as a dehydrating agent, a pH of 4.5-7.5 can be employed; in other embodiments, a pH of 4.5 to 5 can be employed.
Morpholinoethanesulfonic acid, MES, is an effective carbodiimide reaction buffer.
[0240] Thiol groups can be reacted under a variety of conditions to prepare different products. Where a thiol is reacted with a maleimide to form a thioether bond, the reaction is typically carried out at a pH of 6.5-7.5. Excess maleimide groups can be quenched by adding free thiol reagents such as mercaptoethanol. Where disulfide bonds are present as a linkage, they can be prepared by thiol-disulfide interchange between a sulfhydryl present in the bioactive group and an X functionality which is a disulfide such as a pyridyl disulfide.
Reactions involving pyridyl disulfides can be conducted at pH 4 - pH 5 and the reaction can be monitored at 343 nm to detect the released pyridine-2-thione. Thiol groups may also be reacted with epoxides in aqueous solution to yield hydroxy thioethers. A thiol may also be reacted at slightly alkaline pH with a haloacetate such as iodoacetae to form a thioether bond.
[0241] The reaction of guanido groups (e.g., those of an arginine in a protein or polypeptide of interest) with a glyoxal can be carried out at pH 7.0-8.0. The reaction typically proceeds at 25° C. The derivative, which contains two phenylglyoxal moieties per guanido group, is
more stable under mildly acidic conditions (below pH 4) thaii at neutral or alkaline pHs, and permits isolation of the linked materials. At neutral or alkaline pH values, the linkage decomposes slowly. Where an arginine residue of a protein or polypeptide is reacted with a phenylglyoxal reagent, about 80% of the linkage will hydrolyze to regenerate the original arginine residue (in the absence of excess reagent) in approximately 48 hours at 37° at about pH 7.
[0242] Imidoester reactions with amines are typically conducted at pH of 8-10, and preferably at about pH 10. The amidine linkage formed from the reaction of an imidoester with an amine is reversible, particularly at high pH.
[0243] Haloacetals can be reacted with sulfhydryl groups over a broad pH range. To avoid side reactions between histidine residues that can be present, particularly where the sulfhydryl group is present on a protein or polypeptide, the reaction can be conducted at about pH 8.3.
[0244] Aldehydes can be reacted with amines under a variety of conditions to form irnines. Where either the aldehyde or the amine is immediately adjacent to an aryl group the product is a Schiff base that tends to be more stable than where no aryl group is present. Conditions for the reaction of amines with aldehydes to form an imine bond include the use of a basic pH from about pH 9 to about pH 1 1 and a temperature from about 0° C to room temperature, over 1 to 24 hours. Alternatively, where preferential coupling to the N-terminal amine of a protein is desired, lower pHs from about 4-7 can be employed. Buffers including borohydride and tertiary amine containing buffers are often employed for the preparation of imines. Where it is desired imine conjugates, which are hydrolytically susceptible, can be reduced to form an amine bond which is not hydrolytically susceptible. Reduction can be conducted with a variety of suitable reducing agents including sodium borohydride or sodium cyanoborohydride.
[0245] The reaction conditions provided above are intended to provide general guidance to the artisan. The skilled artisan will recognize that reaction conditions can be varied as necessary to promote the attachment of the functional agent to the high MW polymers of the present invention and that guidance for modification of the reactions can be obtained from standard texts in organic chemistry. Additional guidance can be obtained from texts such as Wong, S.S., "Chemistry of Protein Conjugation and Cross-Linking," (CRC Press 1991 ), which discuss related chemical reactions.
[0246] Different recombinant proteins have been shown to conjugate successfully to a wide variety of polymers of the present invention of different sizes and architectures via different conjugation chemistries. Many lessons have been learned during the course of process development efforts (conjugation, downstream processing, analytical development) and some unique features of the technology are described below. The conjugate refers exclusively to protein or other therapeutic agents conjugated covalently to the polymers of the present invention.
[0247] In the area of conjugation reactions, low polymer molar excess ratios of 1 - 2 fold are useful in order to obtain good conjugation efficiency. In order to achieve low polymer molar excess and yet maintain good conjugation efficiency (>20%), protein concentration should be much higher than the normally acceptable concentration of 1 - 2 mg/ml. The concentration that can be achieved for any one particular protein used will depend on the stability and biophysical properties of that protein. Exemplary ranges include 5 - 10 mg/ml, 10 - 15 mg/ml, 15 - 20 mg/ml, 20 - 25 mg/ml, 25 - 30 mg/ml, 30 - 50 mg/ml, 50 - 100 mg/mL, >100 mg/ml.
[0248] On the other side of the reaction, a major challenge is the concentration of polymer which is also required to be at a very high level for optimal conjugation efficiencies, a normal concentration being upwards of 100 mg ml. Interestingly, the polymers of this invention demonstrate extreme solubility with low viscosity even at concentrations in excess of 500 mg ml. This feature makes it possible to manipulate the conjugation reaction such as mixing very easily whereas with other polymers such as PEG at such a concentration the solution is too viscous to be handled. The use of a variety of devices to improve mixing further improves the process. For example, an ultrasonic bath with temperature control can be used for initial mixing in order to facilitate polymer solubilization and in turn improve conjugation efficiency. Alternative ultrasonic devices such as VialTweeter from HielscherUltrasonic GmbH improve the efficiency with which ultrasonic energy is delivered compared with an ultrasonic bath. From a theoretical point of view, the ultrasonic wave creates an oscillation wave that facilitates the interaction between polymer and protein. This translates into higher and better conjugation efficiency. The addition of a temperature controlled mechanism such as a cooling system protects heat labile proteins in this system. To scale up such a process to large industrial scale (e.g. kilogram or greater scale), other instrumentation such as the resonant acoustic mixing technology developed by Resodyn is useful. In fact, this type of mixer has been successfully used to solubilize highly viscous polymers and fluids with viscosity over 1 ,000 cP. The polymers of this inv ention at the highest practical concentration
are just a fraction of such a viscosity level and therefore render the resonant acoustic mixing technology particularly attractive. Additional advantages of such technology include noninvasive and fully concealable character as well as fast mixing time. These properties make it highly desirable for protein pharmaceutics generally and for combination with the technology of this invention specifically.
[0249] Undesirable poly-PEGylated conjugation byproducts have long been an issue in the industry which increases the cost of goods during manufacturing while also increasing regulatory complexity and product approval hurdles. Interestingly, many different purified conjugates derived from all the polymers of this invention and which have been tested always result in an equal molar ratio between protein and polymer. This is a unique and highly desirable feature as compared to other polymer and conjugation technologies.
[0250] In the area of downstream processing, as described previously, the preferred polymers of this invention are net charge neutral due to their zwitterionic nature. Therefore, they do not interact with anion or cation ion exchange resins under any chromatographic conditions including wide ranges of pH and ionic strength. In other words, the free polymer will flow through any ion exchanger irrespective of pH and ionic strength. However, upon conjugation to different proteins, the chromatographic behavior of the conjugate is dictated by the protein. Due to the presence of the polymer shielding effect and altered charge of the protein during the conjugation chemistry, the interaction of the conjugate with the ion exchange resin is weakened as compared to the native protein. This property is observed for basic and acidic proteins that interact with cation and anion exchanger resins, respectively. These are also highly desirable properties from a manufacturing point of view as they allow for the design of a highly efficient, simple, cost-effective, and orthogonal purification method for separation of conjugate from the product releated contaminants which include: unreactive free polymer, unreacted free proteins and aggregates; and process contaminants such as endotoxin, conjugation reactants and additives. A single ion exchange chromatographic step is sufficient.
[0251] For example, for an acidic protein conjugate where the conjugation reaction is carried out at low ionic strength (e.g. 0-20mM NaCl) with buffer pH higher than the pi of the protein, upon completion of the conjugation reaction, the contents of the conjugation reaction vessel can be applied directly over the anion exchanger resin (e.g. Q type 1EX resin) where the unreacted free polymer will flow through the resin, the column can then be chased and washed with low ionic strength buffer at the same pH similar to the conjugation reaction. The bound fraction can then by eluted stepwise with increasing salt concentrations. The first
protein fraction is the pure conjugate as it binds more weakly to the ion exchange resin as compared to the native protein and other contaminants such as aggregates and endotoxin. A step gradient is highly desirable as this minimizes the potential risk that the native protein will leach out from the column. For example, using a strong anion exchange resin, a cytokine polymer conjugate will elute around 30-60mM NaCl at pH 7 while the native cytokine will not elute until l OOmM or higher; under such conditions, the dimeric and aggregated form of the cytokine typically elutes at 200mM NaCl or higher; and finally the endotoxin elutes at an even higher salt concentration.
[0252] For a basic protein conjugate, the separation is accomplished using a cation exchanger (e.g. SP type IEX resin) at low ionic strength (e.g. 0-20mM NaCl) with buffer pH lower than the pi of the protein. In this process, the unreacted free polymer will still be in the flow through fraction together with endotoxin and other negatively charged contaminants while the conjugate and free unreacted protein remain bound to the column. By increasing the ionic strength of the elution buffer, the first protein fraction eluted is the conjugate due to the weaker interaction with the IEX resin as compared to the native protein. A typical Fab' conjugate will elute at 30-60mM NaCl while the native Fab' will elute at 100-200mM NaCl.
[0253] The experience with purifying many different protein conjugates including both acidic protein conjugates (such as cytokines and scaffold-based multi-domain based proteins) and basic protein conjugates (such as Fab') show that the ionic strength required for conjugate elution is largely independent of polymer size (even greater than one million daltons) and architecture (multi-armed architectures). This is a highly desirable feature of the platform technology that enables the design of a generic manufacturing process where major process development efforts are not required with changes in polymers and to some extent therapeutic agents.
[0254] From the manufacturing point of view, the above described downstream purification process has the following advantages:
1. Highly scalable;
2. Amenable to current commercial production processes as the resins are available commercially and the required instrumentation is already at industrial standard;
The sample technique can be used for both In Process Analytics (IPA) as well as scale up production;
4. Development of a generic process is feasible;
5. Cost effective due to its single step nature and orthogonal design;
6. Excellent recovery (current process yields are upwards of 80%). [0255] In the area of analytical development, the zwitterionic nature of the polymers of this invention has two impacts on development of SDS-PAGE analysis of conjugates. Firstly, SDS-PAGE analysis has long been a ubiquitous and convenient method for protein analysis, in that it provides a fast, high resolution, high throughput and low cost method for semiquantitative protein characterization. However, the net charge neutral property and also the large hydrodynamic radius of the polymer means that the polymer migrates poorly or (for very large size polymers) almost not at all into a polyacrylamide matrix even with as low as a 4% gel. Secondly, the polymers of this invention are not stainable by Coomassie Blue type stains, potentially due to their net charge neutral property which prevents the Coomassie Blue dye from interacting with the polymer. However, once the protein is conjugated to the polymer, the conjugate becomes stainable. These are two undesirable properties for most protein biochemists at first glance; however, the combination of these two properties allows for the design of a highly desirable and unique technique that enables quick and easy analysis of conjugation efficiency directly from the reaction mixture without further purification. In this technique, the conjugation reaction mixture is loaded onto the SDS-PAGE gel and separated as per standard protocol. Then the gel is stained with Coomassie Blue and then destained according to the standard protocol. The presence of the conjugate will display Coomassie blue stained bands close to the loading well while the smaller protein migrates at its molecular weight and will display concomitant reduction in band intensity as compared to a control reaction without polymer. It is therefore very easy to distinguish those reactions with inefficient conjugation as the polymer alone will not display any staining at the high molecular weight region of the gel. It should be noted that such a technique for conjugation
reaction analysis is impossible for PEGylation reaction as both the PEG polymer and PEGylated proteins stain by Coomassie Blue and migrate at a very similar position in the gel, especially the very large PEG polymers; in addition, PEG polymers display the highly undesirable property of distorting the migration pattern of SDS-PAGE gels. This latter problem is not observed for the polymers of this invention, as the net charge neutral property of the unreacted free polymer renders them unlikely to enter the gel matrix (whereas only the conjugate and unconjugated free protein will do so).
[0256] Another interesting property of the polymers of this invention is that they do not have UV 280nm absorbance due to the absence of an aromatic group. However, they do absorb at 220nm. There is at least 1 Ox lower absorbance for the polymer when compared with an equal mass concentration of protein solution. This is very useful when trying to identify the presence of conjugate in the conjugation reaction mixture using different chromatographic methods such as size exclusion or IEX analysis. By comparing the UV280/UV220 ratio, it is very easy to identify the presence of conjugate as the ratio increases dramatically. The same technique can be used for both analytical scale and production scale monitoring of product elution.
V. Compositions
[0257] The present invention includes and provides for pharmaceutical compositions comprising one or more compounds of the invention and one or more pharmaceutically acceptable excipients. The compounds of the invention may be present as a pharmaceutically acceptable salt, prodrug, metabolite, analog or derivative thereof, in the pharmaceutical compositions of the invention. As used herein, "pharmaceutically acceptable excipient" or "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration.
[0258] Pharmaceutically acceptable carriers for use in formulating the high MW polymers of the present invention include, but are not limited to: solid carriers such as lactose, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, stearic acid and the like; and liquid carriers such as syrups, saline, phosphate buffered saline, water and the like. Carriers may include any time-delay material known in the art, such as glyceryl monostearate or glyceryl distearate, alone or with a wax, ethylcellulose, hydroxypropylmethylcellulose, methylmethacrylate or the like.
[0259] Other fillers, excipients, flavorants, and other additives such as are known in the art may also be included in a pharmaceutical composition according to this invention. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions of the invention is contemplated. Supplementary active compounds can also be incorporated into the compositions of the present invention.
[0260] The pharmaceutical preparations encompass all types of formulations. In some embodiments they are parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intraperitoneal, intrathecal, intraventricular, intracranial, intraspinal, intracapsular, intraocular including intravitreal, and intraosseous) formulations suited for injection or infusion {e.g., powders or concentrated solutions that can be reconstituted or diluted as well as suspensions and solutions). Where the composition is a solid that requires reconstitution or a concentrate that requires dilution with liquid media, any suitable liquid media may be employed. Preferred examples of liquid media include, but are not limited to, water, saline, phosphate buffered saline, Ringer's solution, Hank's solution, dextrose solution, and 5% human serum albumin.
[0261] Where a compound or pharmaceutical composition comprising a high MW polymer of the present invention is suitable for the treatment of cell proliferative disorders, including but not limited to cancers, the compound or pharmaceutical composition can be administered to a subject through a variety of routes including injection directly into tumors, the blood stream, or body cavities.
[0262] While the pharmaceutical compositions may be liquid solutions, suspensions, or powders that can be reconstituted immediately prior to administration, they may also take other forms. In some embodiments, the pharmaceutical compositions may be prepared as syrups, drenches, boluses, granules, pastes, suspensions, creams, ointments, tablets, capsules (hard or soft) sprays, emulsions, microemulsions, patches, suppositories, powders, and the like. The compositions may also be prepared for routes of administration other than parenteral administration including, but not limited to, topical (including buccal and sublingual), pulmonary, rectal, transdermal, transmucosal, oral, ocular, and so forth. Needle free injection devices can be used to achieve subdermal, subcutaneous and/or intramuscular administration . Such devices can be combined with the polymers and conjugates of this invention to administer low (<20 cP), medium (20 - 50 cP), and high (> 100 cP) viscosity formulations.
[0263] In some embodiments, the pharmaceutical compositions of the present invention comprise one or more high MW polymers of the present invention.
[0264] Other pharmaceutical compositions of the present invention may comprise one or more high MW polymers of the present invention that function as biological ligands that are specific to an antigen or target molecule. Such compositions may comprise a high MW polymer of the present invention, where the bioactive agent is a polypeptide that comprises the amino acid sequence of an antibody, or an antibody fragment such as a FAb2 or FAb' fragment or an antibody variable region. Alternatively, the compound may be a high MW polymer and the polypeptide may comprise the antigen binding sequence of a single chain antibody. Where a bioactive agent present in a high MW polymer of the present invention functions as a ligand specific to an antigen or target molecule, those compounds may also be employed as diagnostic and/or imaging reagents and/or in diagnostic assays.
[0265] The amount of a compound in a pharmaceutical composition will vary depending on a number of factors. In one embodiment, it may be a therapeutically effective dose that is suitable for a single dose container (e.g., a vial). In one embodiment, the amount of the compound is an amount suitable for a single use syringe. In yet another embodiment, the amount is suitable for multi-use dispensers (e.g., containers suitable for delivery of drops of formulations when used to deliver topical formulations). A skilled artisan will be able to determine the amount a compound that produces a therapeutically effective dose experimentally by repeated administration of increasing amounts of a pharmaceutical composition to achieve a clinically desired endpoint.
[0266] Generally, a pharmaceutically acceptable excipient will be present in the composition in an amount of about 0.01 % to about 99.999% by weight, or about 1 % to about 99% by weight. Pharmaceutical compositions may contain from about 5% to about 10%, or from about 10% to about 20%, or from about 20% to about 30%, or from about 30% to about 40%, or from about 40% to about 50%, or from about 50% to about 60%, or from about 60% to about 70%, or from about 70% to about 80%, or from about 80% to about 90% excipient by weight. Other suitable ranges of excipients include from about 5% to about 98%, from about from about 15 to about 95%, or from about 20% to about 80% by weight.
[0267] Pharmaceutically acceptable excipients are described in a variety of well-known sources, including but not limited to "Remington: The Science & Practice of Pharmacy", 19th ed., Williams & Williams, (1995) and Kibbe, A. H., Handbook of Pharmaceutical Excipients, 3rd Edition, American Pharmaceutical Association, Washington, D.C., 2000.
VI. Methods
[0268] The high MW polymers of the present invention are useful for treating any disease state or condition. The disease state or condition can be acute or chronic.
[0269] Disease states and conditions that can be treated using the high MW polymers of the present invention include, but are not limited to, cancer, autoimmune disorders, genetic disorders, infections, inflammation, neurologic disorders, and metabolic disorders.
[0270] Cancers that can be treated using the high MW polymers of the present invention include, but are not limited to, ovarian cancer, breast cancer, lung cancer, bladder cancer, thyroid cancer, liver cancer, pleural cancer, pancreatic cancer, cervical cancer, testicular cancer, colon cancer, anal cancer, bile duct cancer, gastrointestinal carcinoid tumors, esophageal cancer, gall bladder cancer, rectal cancer, appendix cancer, small intestine cancer, stomach (gastric) cancer, renal cancer, cancer of the central nervous system, skin cancer, choriocarcinomas; head and neck cancers, osteogenic sarcomas, fibrosarcoma,
neuroblastoma, glioma, melanoma, leukemia, and lymphoma.
[0271] Autoimmune diseases that can be treated using the high MW polymers of the present invention include, but are not limited to, multiple sclerosis, myasthenia gravis, Crohn's disease, ulcerative colitis, primary biliary cirrhosis, type 1 diabetes mellitus (insulin dependent diabetes mellitus or IDDM), Grave's disease, autoimmune hemolytic anemia, pernicious anemia, autoimmune thrombocytopenia, vasculitides such as Wegener's granulomatosis, Behcet's disease, rheumatoid arthritis, systemic lupus erythematosus (lupus), scleroderma, systemic sclerosis, Guillain-Barre syndromes, Hashimoto's thyroiditis spondyloarthropathies such as ankylosing spondylitis, psoriasis, dermatitis herpetiformis, inflammatory bowel diseases, pemphigus vulgaris and vitiligo.
[0272] Some metabolic disorders treatable by the high MW polymers of the present invention include lysosomal storage disorders, such as mucopolysaccharidosis IV or Morquio Syndrome, Activator Deficiency/GM2 Gangliosidosis, Alpha-mannosidosis,
Aspartylglucosaminuria, Cholesteryl ester storage disease, Chronic Hexosaminidase A Deficiency, Cystinosis, Danon disease, Fabry disease, Farber disease, Fucosidosis,
Galactosialidosis, Gaucher Disease, GM 1 gangliosidosis, hypophosphatasia, I-Cell disease/Mucolipidosis II, Infantile Free Sialic Acid Storage Disease/ISSD, Juvenile Hexosaminidase A Deficiency, Krabbe disease, Metachromatic Leukodystrophy,
Mucopolysaccharidoses disorders such as Pseudo-Hurler polydystrophy/Mucolipidosis IIIA, Hurler Syndrome, Scheie Syndrome, Hurler-Scheie Syndrome, Hunter syndrome, Sanfilippo
syndrome, Morquio, Hyaluronidase Deficiency, Maroteaux-Lamy, Sly Syndrome,
Mucolipidosis I/Sialidosis, Mucolipidosis, and Mucolipidosis, Multiple sulfatase deficiency, Niemann-Pick Disease, Neuronal Ceroid Lipofuscinoses, Pompe disease/Glycogen storage disease type II, Pycnodysostosis, Sandhoff disease, Schindler disease, Sal la disease/Sialic Acid Storage Disease, Tay-Sachs/GM2 gangliosidosis and Wolman disease.
[0273] Conjugates of the invention and compositions (e.g., pharmaceutical compositions) containing conjugates of the invention can be used to treat a variety of conditions. For example, there are many conditions for which treatment therapies are known to practitioners of skill in the art in which functional agents, as disclosed herein, are employed. The invention contemplates that the conjugates of the invention (e.g., pbosphorylcholine containing polymers conjugated to a variety of functional agents) and compositions containing the conjugates of the invention can be employed to treat such conditions and that such conjugates provide for an enhanced treatment therapy relative to the same functional agent not coupled to a phosphorylcholine containing polymer.
[0274] Therefore, the invention contemplates the treatment of a condition known to be treatable by a certain bioactive agent by treating the condition using the same certain bioactive agent conjugated to a phosphorylcholine containing polymer.
[0275] Another aspect of the present invention relates to methods of treating a condition responsive to a biological agent comprising administering to a subject in need thereof a therapeutically effective amount of a compound of the invention or of a pharmaceutically acceptable composition of the invention as described above. Dosage and administration are adjusted to provide sufficient levels of the bioactive agent(s) to maintain the desired effect. The appropriate dosage and/or administration protocol for any given subject may vary depending on various factors including the seventy of the disease state, general health of the subject, age, weight, and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy.
Therapeutically effective amounts for a given situation can be determined by routine experimentation that is within the skill and judgment of the clinician.
[0276] The pharmaceutical compositions described herein may be administered singly. Alternatively, two or more pharmaceutical compositions may be administered sequentially, or in a cocktail or combination containing two high MW polymers of the present invention or one high MW polymer of the present invention and another bioactive agent. Other uses of bioactive agents set forth herein may be found in standard reference texts such as the Merck
Manual of Diagnosis and Therapy, Merck & Co., Inc., Whitehouse Station, NJ and Goodman and Oilman's The Pharmacological Basis of Therapeutics, Pergamon Press, Inc., Elmsford, N.Y., ( 1990).
[0277] This invention describes the modification of hematology related proteins such as Factor VIII, Factor VII, Factor IX, Factor X and proteases such as serine proteases of native sequence or mutein sequence and of native function or altered (for example via phage display, reference Catalyst Biosciences of South San Francisco with technology to alter specificity of binding of an existing enzyme). US Patent 7,632,921 is included in its entirety herein. Modification of the enzyme to allow for site-specific conjugation of a functional ized polymer is disclosed. The use of flexible chemistries between the polymer and the enzyme is disclosed, such that the protein can be released in vivo in the proper setting, for example to enable close to a zero order release profile. A target product profile for a next generation Factor VIII could involve a covalent conjugate of recombinant FVIH or recombinant B- domain deleted FVIII to which an extended form, multi-ami zwitterion-containing polymer of greater than 50 kDa molecular weight is attached to a site-specific amino acid such as a cysteine. The clinical pharmacology of the conjugate would demonstrate unparalled water structuring to shield the conjugate from clearance and immune systems. The conjugate would demonstrate greater than a 50 hour elimination half life in humans (preferably greater than 80 hours). The conjugate would demonstrate a 2x (preferably 4x) increased half-life versus a 60 kDa PEG-BDD FVIII with the same bioactivity. The conjugate as used in patients would show clinically insignificant antibody formation. The biopharmaceutical conjugate would be used both prophylactically (once weekly or less frequent) and for on demand treatment of patients with Hemophilia. It would also be used as rescue therapy for patients with existing FVIII neutralizing antibodies, for example from prior FVIII biopharmaceutical therapy. The drug would enable a liquid formulation for IV and/or subcutaneous administration and with high stability, high concentration, and low viscosity. Active ingredient could be in the range of 250 to 2,000 IU composed of 30 to 250 microgram of polymer drug conjugate in a nom inal volume ideally of 0.4m l. The cost of the polymer would be low, and the conjugation efficiency of the polymer to the FVIII or BDD FVIII protein would be very high, for example upwards of 75%. Such a product and product profile would make use of the extreme biocompatibility of the polymer and as transferred onto the protein. Specifically, the extreme biocompatibility would manifest itself with very tight water binding, extreme solubility, very high concentration, very low viscosity, and extreme stability. Technically, this translates into a >2x (or ideally >4x) increased elimination half-
life versus PEGylation or its equivalent technologies, extremely low or no immunogenicity, high concentration, and room temperature stable liquid fonnulations. Product profile benefits include less frequent dosing, lower dose for same Area Under the Curve, effective safe treatment for naive patients, rescue therapy for patients with neutralizing antibodies, at home subcutaneous administration, pre-filled syringe/autoinjector with room temperature storage, higher gauge (lower diameter) syringe needles, lower injection volumes, and longer shelf lives. On the manufacturing front, single pot synthesis, very high polymer molecular weights, complex architectures, and low cost to manufacture are achievable. Furthermore, high efficiency conjugation of polymer to drug is possible. These manufacturing benefits can translate into cheaper, more available medicines and higher gross margins.
[0278] This invention describes attaching high MW zwitterion-containing polymers to multimers of recombinant modified LDL receptor class A domains or relevant consensus sequences as described in US patent application 60/514,391 assigned to Avidia. Those skilled in the art will understand that the avimers can be lysine depleted and then lysines and/or other amino acids added to the N- and/or C- termini for site-specific attachment of a functionalized polymer. An N-terminal lysine is preferably the second amino acid (after methionine) and can drive relative site specific conjugation of an amine-driven initiator such as a functionalized polymer containing an aldehyde or acetal group. Those skilled in the art will also kno the benefit of avimer compositions with relatively hydrophilic amino acids and low pi and high stability, such that pH can be driven very low in the conjugation reaction such as to preferentially conjugate to the amine of the lysine rather than multi-point attachments that also conjugate to N-terminal amine group or other amine groups present in the protein. The therapeutic can have one polymer conjugated to the N- terminus and another conjugated to the C- terminus via a C-terminal lysine (an effective branched structure). Such an avimer can also be made in mammalian systems with an extra N- or C- terminal cysteine added for site specific conjugation with a thiol-reacting functionalized polymer. The polymer's functional group can also contain tissue targeting elements. The chemistry attaching the polymer to the avimer can be flexible such that it breaks in vivo, for example in serum or in a pH responsive manner, etc. Monomers and multimers composed of other domains of interest used similarly include EGF domains, Notch/LNR domains, DSL domains, Anato domains, integrin beta domains or such other domains as described in the referenced patent family.
[0279] This invention also describes the attachment of high MW zwitterion-containing polymers to peptides and synthetic peptides and especially longer synthetic peptides with
multiple domains. A big problem with multiple domain peptides is that they are unstable and also have very rapid clearance. The attachment of a highly biocompatible zwitterion- containing polymer such as those described in this invention solves these problems. The polymer increases the stability and also increases the in vivo residence time. This enables simple linear (unstructured) peptides as drugs, for example modules of around twenty amino acids per functional module in series of two, three, four or more modules with the goal to achieve avidity benefit or multifunctionality benefit. Each module could also have a bit of structure ('constrained' peptide like) or each module could actually be a knotted peptide domain such as a cysteine knot or macrocyclic element. The key is they are made synthetically and can be strung together with a site specific moiety for polymer conjugation at N- terminal or C-terminal (or both) or with the polymer conjugation point in the middle, which attachment point can be a site specific amino acid that is a natural amino acid or a non- natural amino acid. In a sense, this is a synthetic avimer with preferential properties. All of the amino acids could be synthetic, as well. Such a peptide plus the polymers of this invention describe a novel and powerful drug format of the future.
[0280] Those skilled in the art will understand that the breadth of application of the high molecular weight polymers of this invention is very broad. A partial list of therapeutic modalities that can benefit from conjugation of such polymers consists of: avimer (LDL receptor A-domain scaffold), adnectin (flbronectin type III scaffold), Ablynx (camelid, llama-ids), NAR's (shark), one-arm and/or single domain antibodies from all species (rat, rabbit, shark, llama, camel, other), diabodies, other multi-domain based proteins such as multimei s of modified flbronectin domains, antibody fragments (scFv monomer, scFv dimers as agonists or antagonists), Fab's, Fab'-2's, soluble extracellular domains (sTNFR l , for example, or soluble cMet receptor fragment), combination with Amunix XTEN which comprises a hydrophilic amino acid string of up to 1 ,500 amino acids made as part of the open reading frame, oligonucleotides such as aptamers, inicroRNA, siRNA, whole antibodies (conjugated to Fc- region ; conjugated to non-Fc regions), Fc-fusions (conjugated to Fc- region; conjugated to fused protein), the use of such polymers as a replacement for the CovX antibody backbone (where high molecular weight polymer is conjugated directly to the peptide itself), more broadly the attachment of the polymers of this invention even to a full- length natural or mutein antibody (CovX body, Peptibody, humanized or other antibody, the new Zyngenia platform from Carlos Barbas where peptides are conjugated to different locations on the antibody to create modular multifunctional drugs on top of an antibody backbone). Also the many domain structures as outlined in US Patent Application
60/514,391 are included in their entirety herein. Of particular interest are conjugates for binding to and inhibiting cell-surface targets, in which setting the large size, extended form architectures, and slow off rates of the polymer conjugates described in this invention can have a particularly advantageous biological effect.
[0281] This invention describes conjugates for ophthalmic and preferentially intravitreal or subconjunctival administration that have an intravitreal mean terminal half live of greater than 10 days as measured by physical presence of active conjugate. The active conjugate can also contain two functional agents, covalently attached proximal ly at one end of the polymer. In this case the two functional agents could be aptamers to VEGF and PDGF for the treatment of wet and dry age-related macular degeneration.
[0282] This invention contemplates conjugation of the high MW polymers of the invention to GLP- 1 , soluble TACI receptor, BAFF as well as inhibitors of BAFF, insulin and its variants, IL- 12 mutein (functional anti-IL-23 equivalent), anti-IL- 17 equivalent, FGF21 and muteins, RANK ligand and its antagonists, factor H and fusion proteins for inhibiton of alternative complement (Taligen), inhibitors of the immune synapse, activators of the immune synapse, inhibitors of T- cell and/or B /cell costimulatory pathways, activators or inhibitors of neuronal cells and/or their supporting matrix cells, extracellular matrix enzymes such as lysyl oxidase or metalloproteinase/metalloproteases, activators or inhibitors of regulatory T cells or antibody producing cells, as protectors of cells from inflammatory or clearance processes such as binding to beta cells of the pancreas and thereby exerting a protective function for the cell to prolong their lifespan in the body (that is, the repairing the biocompatibility by binding to them for cells or tissues or proteins in the body that can benefit from a biocompatibility boost to reduce clearance and/or their involvement in localized or generalized inflammatory processes either active or passive), for treating genetic diseases, to chaperone an existing but mis-folded protein, for stimulating the co-localization of two soluble or cell-surface entities such as bringing together a cell-surface inhibitor module (ITIM) to a cell-surface activating module (1TA ) to inhibit a cell type such as a mast cell.
[0283] This invention contemplates using the polymers of the invention for mediating cell- penetration. For example, conjugation of the polymers of this invention through their initiator structure or end termini to one or more protein-derived peptides and amphipathic peptides either secondary and primary (Current Opinion in Biotechnology, 2006, 17, 638- 642). Those skilled in the art will also recognize the possibility to combine with the stapled peptide technology which adds hydrocarbon moieties to peptides to facilitate cell penetration.
[0284] This invention contemplates the combination of these inventions with other drug delivery technologies, such as PLGA. Just as PEG's hydrophilic nature improved a number of PLGA properties, the high MW polymer technology of the current invention should further improve this. For example, increased drug loading as a percent of total mass (current biopharmaceutical state of the art <20% but generally less than 10%), also generally burst % is >5%. Enhanced water binding of the polymers of the current invention drives the solubility and drives higher loading and better in vivo performance of PLGA loaded with biopharmaceutical-polymer conjugate.
[0285] This invention contemplates conjugates that demonstrate lower immunogenicity for a particular drug-polymer conjugate (so lower new incidence of neutralizing antibodies). It also contemplates shielding, masking, or de-immunizing. Not that existing neutralizing antibodies are removed but that the drug-polymer conjugate can be given to patients who already have or have had an antibody response either natively or because the particular patient was previously treated with an immunogenic biopharmaceutical drug and developed antibodies. In this latter patient set, the present invention contemplates the ability to 'rescue' such patients and re-enable them to receive therapy. This is useful, for example, with Factor VIII because patients can be kept on Factor VIII therapy (rather than fail it and then they move to a Factor VII therapy, for example). These immune system shielding aspects of the present technology also enable drugs to be formulated for subcutaneous or needle-free injection where local dendritic and other innate and adaptive immune cell populations increase the incidence of immunogenicity. To the extent that drug-polymer conjugates of the present invention decrease de novo immunogenicity and hide existing neutralizing antibodies, then the technology enables subcutaneous dosing and avoids antibody interactions and therefore expands the eligible patient base and also will decrease incidence of injection related adverse events such as anaphylaxis.
[0286] The present invention allows the possibility to include different populations of polymer conjugate to the same or different therapeutic moieties to be combined into a single formulation. The result is to carefully tailor the desired in vivo and in vitro properties. For example, take a single therapeutic moiety and conjugate to it either in a single pot or separate pots two polymers of different size, architecture. The two populations will behave differently in vivo. One population can be smaller or contain less branched polymers. The second population can be larger, more branched architectures. The conjugate with the smaller polymers will be cleared more quickly. This is great as a loading dose or as a bolus specifically for example to clear existing cytokines (say with the conjugation of an anti-TNF
or an anti-IL-6 scFv as the drug moiety) from the serum. The conjugate with the larger polymers will be cleared more slowly and dear ie novo produced TNFa or IL-6, for example. This can be done with different ratios of the populations, for example 1 : 1 or 2: 1 or 10: 1 or 100: 1 , etc. The conjugated therapeutic moiety is the same, but there are different end properties as a result of the different polymers conjugated and is another way to impact biology. Another example would be with insulin or other agonistic proteins where the goal is to have a single injection that has both bolus aspect (quick activity) and also a basal (prolonged) aspect. For Factor VIII, one population of conjugated Factor VIII can have hydrolyzable linker between the polymer and the enzyme and so the enzyme comes off quickly. The second population could have a stable linker and so provide for the longer duration (chronic, prophylaxis) aspect.
[0287] The present invention can create conjugates such that after IV and/or SC injection, a zero order kinetics of release is achieved. The duration of release ( 1 month, 2 months, 3 months, 4 months, 6 months, 12 months) will depend on the size and architecture and linker chemistry of the polymer. This can be functionally equivalent to a medical device or pump that releases a constant amount of drug from a geographically localized reservoir. In the case of this invention, the drug will not be physically contained. Rather it will be in continuous circulation or by virtue of targeting be enriched in a particular tissue, but it is engineered such that onset is similar to or equivalent to zero order kinetics with linear release and minimal burst and equivalent of 100% loading.
[0288] Those skilled in the art will recognize that the present invention allows for the introduction of break points or weak points in the polymers and initiators such that larger polymer structures and/or conjugates will break down over time into smaller pieces that are readily and quickly cleared by the body. First order examples include a sensitive linker between initiator and drug, ester bonds anywhere (initiator, polymer backbone, monomers). Such weak points can break passively (for example by means of hydrolysis) or actively (by means of enzymes). Other approaches to drive breakdown or clearance can involve the use of protecting groups or prodrug chem istries such that over time, a change in exposed chemistry takes place which exposed chemistry drives destruction or targets the conjugate of released polymer to the kidney or liver or other site for destruction or clearance.
VII. Examples
Example 1. Preparation of a dihydroxy functionalized nine-arm 2-bromo-2-methyl- propionamide initiator
[0289] Product 1 .1 : (l -(3-tert-butoxycarbonylamino-propionylamino)-2,2-bis[(3-tert- butoxycarbonylamino-propionylamino)-methyl]-2,5,8,l l , 14-pentaoxaheptadec- 16-ene
[0290] A solution of 1 .0 g of the previously described 1 -amino-l 5-allyloxy-2,2- bis(aminomethyl)-4,7, 10,13-tetraoxapentadecane trihydrochloride (from
PCT/US2010/061358) in 40 ml dry acetonitrile was treated with 1 .8 ml (6 eq) triethylamine, followed by 2.06 g of the previously described N-Boc-P-alanine, N-hydroxysuccinimide ester (from PCT/US2010/34252), and the reaction stirred at room temperature for 90 minutes. The reaction was concentrated and the residue partitioned between 50 ml each dichloromethane and I N HCl. The organic layer was washed with 50 ml water, then dried over anhydrous sodium sulfate, filtered, and concentrated. The oily residue was subjected to flash chromatography on silica gel with 0-3% methanol in dichloromethane to give 1 .60 g (85%) of the desired product as a clear oil. Ή NMR (400 MHz, CDC13): δ = 1.43 (s, 27H, CH3), 2.45 (d, J= 6.1 Hz, 6H, CHjCHjNH), 3.05 (broadened d, J= about 6 Hz, 6H, CCH^NH), 3.23 (s, 2H, OCH2C), 3.41 (q, J= 5.7 Hz, 6H, CH2CH2NH), 3.55-3.65 (m, 16H, OCH2CH20), 4.01 (d of t, J= 5.7, 1.4 Hz, 2H, CHCH2O), 5.20 (apparent d of d of q, 2H, CH,=CH), 5.90 (m, 1 H, CH), 7.40 (t, J= 6.4 Hz, 6H, NH).
[0291] Product 1.2: l -(3-amino-propionylamino)-2,2-bis[(3-aminopropionyIamino)- methyl]-2,5,8, l 1 , 14-pentaoxaheptadec- 16-ene trihydrochloride
[0292] 1 .60 g of (l -(3-tert-butoxycarbonylamino-propionylamino)-2,2-bis[(3-tert- butoxycarbonylamino-propionylamino)-methyl]-2,5,8, l 1 , 14-pentaoxaheptadec- 16-ene
(product 1.1) was dissolved in 10 ml ethyl acetate and stirred with 10 ml of 3N HC1 for 45 minutes at room temperature, then concentrated. The residue was dissolved in 20 ml water and again concentrated. This residue was dissolved in 20 ml methanol and concentrated a third time, then placed under high vacuum for one hour, to give 1.19 g (95%) of the desired product as a white foam.
[0293] Product 1.3 : 2-( l l-Allyloxy-3,6,9-trioxaundecyloxy)-ethane- 1 , 1 , 1 -tri(methyl-3-[2- (2,2,2-tri(2-bromo-2-methyl-propionylaminomethyl)-ethoxy)-acetylamino])-propionamide
[0294] A solution of 1.97g of the previously described N-(2-Bromo-2-methylpropionyl)- 5,5-bis[N-(2-bromo-2-methylpropionyl)aminomethyl]-3-oxa-6-aminohexanoic acid, N- hydroxysuccinimidyl ester (from PCT/US2010/34252) and 1.9 ml (5 eq) of triethylamine in 25 ml dry acetonitrile was stirred as a solution of 600 mg of l -(3-amino-propionylamino)- 2,2-bis[(3-aminopropionylamino)-methyl]-2,5,8, l l , 14-pentaoxaheptadec-16-ene trihydrochloride (product 1.2), 1 ml triethylamine, and 5 ml dimethylformamide in 25 ml dry acetonitrile was added dropwise over about 15 minutes. The reaction was stirred at room temperature for three hours, then concentrated. The residue was partitioned between 50 ml each of water and ethyl acetate. The aqueous layer was extracted with another 25 ml of ethyl acetate, then the combined organics were dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was subjected to silica gel flash chromatography with 0-3% methanol in dichloromethane to yield the desired product. Ή NMR (400 MHz, CDC13): δ = 1 .99 (s, 54H, CH3), 2.52 (t, = 6.0 Hz, 6H, CH2CH2NH), 3.10 (d, J= 6.0 Hz, 6H, CCH?NH), 3.14 (d, J= 6.0 Hz, 18H, CCHjNH), 3.25 (s, 6H, OCH2C), 3.31 (s, 2H, OCH2C), 3.55-3.68 (m, 22H, CH2CH2NH and OCH2CH20), 4.02 (s, 6H, OCH2C=0), 4.13 (s, 2H, CHCH O),
5.22 (app d of d, 2H, CH2=CH), 5.90 (m, 1 H, CH), 7.39 (t, J= 6.0 Hz, 3H, CCH2NH), 7.82 (t, J= 6.0 Hz, 3H, CH2CH2NH), 8.16 (t, J= 6.0 Hz, 9H, CH2NH).
[0295] Product 1.4: Dihydroxy functionalized nine-arm 2-bromo-2-methyl-propionamide initiator: 2-( 1 1 -[ 1 ,2-dihydroxypropyloxy]-3,6,9-trioxaundecyloxy)-ethane- 1 , 1, 1 -trimethy 1-3- [2-(2,2,2-tri(2-bromo-2-methyl-propionylaminomethyl)-ethoxy)-acetylamino]-propionamide
[0296] A round-bottom flask equipped with a stirbar was charged with 5 ml water, 5 ml t- butanol, 870 mg of 2-(l l -Allyloxy-3,6,9-trioxaundecyloxy)-ethane- 1 , 1 , 1 -tri(methyl-3-[2- (2,2,2-tri(2-bromo-2-methyl-propionylaminomethyl)-ethoxy)-acetylamino])-propionamide (product 1.3), 360 mg potassium ferricyanide, 1 55 mg potassium carbonate, 50 mg methanesulfonamide, 4.7 mg quinuclidine, and 2.5 mg potassium osmate dihydrate and stirred overnight at room temperature. The reaction mixture was partitioned between 20 ml each of water and dichloromethane. The aqueous layer was extracted thrice more with 10 ml dichloromethane, and the organic layers were combined and concentrated. The residue was subjected to silica gel flash chromatography using 5- 10% methanol in dichloromethane.
Product containing fractions were combined, concentrated, and rechromatographed using 2- 10% methanol in dichloromethane to give 595 mg (67%) of the desired product as a tan, crushable foam. Ή NMR (400 MHz, CDC13): δ = 1.99 (s, 54H, CH3), 2.54 (broad t, J= 6.0 Hz, 6H, CHoCHzNH), 3.09 (d, J= 5.0 Hz, 6H, CCf NH), 3.14 (d, J= 6.5 Hz, 18H,
CCH2NH), 3.25 (s, 6H, OCH7C), 3.30 (s, 2H, OCH2C), 3.49 (s, 2H, CHjOH), 3.5-3.7 (n 24H, CH2CH2NH and OCH2CH2O and CHCH2O), 3.87 (broad s, 1 H, CH), 4.02 (s, 6H,
OCH2C=0), 7.52 (broad s, 3H, CCH2NH), 7.83 (t, J= 5.0 Hz, 3H, CH2CH2NH), 8. 16 (t, J= 6.5 Hz, 9H, CH2NH).
Example 2. Preparation of a protected maleimide functionalized nine-arm 2-bromo-2- methyl-propionamide initiator
[0298] Into a 2000 ml 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-[2-[2-(2- hydroxyethoxy)ethoxy]ethoxy]ethan- l -ol (50 g, 257.43 mmol, 1 .00 equiv) in
dichloromethane (500 ml), triethylamine ( 130 g, 1 .28 mol, 4.99 equiv).was at 0~10°C. This was followed by the addition of a solution of 4-methylbenzene- l -sulfonyl chloride (250 g, 1.31 mol, 5.09 equiv) in dichloromethane (400 ml) dropwise with stirring. The resulting solution was stirred for 5 h at 10-20 C. The reaction was then quenched by the addition of 1000 ml of water. The resulting solution was extracted with 3x300 ml of dichloromethane and the organic layers combined. The resulting mixture was washed with 1 300 ml of brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether ( 1 : 50—1 : 1 ). This resulted in 106 g (82%) of 1 , 1 l -tosyl-3,6,9-trioxaundecane as yellow oil.
[0299] Product 2.2: 1 -tosyl-l l -(3,5,7-triaza-4,6, 10-triphenyl-adamantan- l -yl methoxy)- 3,6,9-trioxaundecane
[0300] Into a 1000 ml round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of [2,4,9-tripheny 1- 1 ,3, 5-triazatricyclo[3.3.1 . l '7]decan-7- yl]methanol (30 g, 75.47 mmol, 1 .00 equiv) in THF (300 ml). To this was added sodium hydride (9 g, 225.00 mmol, 2.98 equiv, 60%) at 0-10°C. The mixture was stirred for 30 min at 0—10 C. This was followed by the addition of a solution of 1 , 1 l -tosyl-3,6,9- trioxaundecane (product 2.1 ) (106 g, 210.90 mmol, 2.79 equiv) in THF ( 100 ml) dropwise with stirring. The resulting solution was stirred for 4 h at 60 C in an oil bath. The reaction
was then quenched by the addition of 500 ml of water. The resulting mixture was concentrated under vacuum. The resulting solution was extracted with 3x200 ml of ethyl acetate and the organic layers combined. The resulting mixture was washed with 1 x200 ml of brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1 :50~1 :3). This resulted in 31 g (56%) of 1 -tosyl- l l -(3,5,7-triaza-4,6, 10-triphenyl- adamantan- l -yl methoxy)-3,6,9-trioxaundecane as yellow oil.
[0301] Product 2.3 : 4-[l l -(3,5,7-triaza-4,6,10-triphenyl-adamantan- l -yl methoxy)-3,6,9- trioxaundecyl]- ! 0-oxa-4-aza-tricyclo[5.2.1.02,6]dec-8-ene-3,5-dione
[0302] Into a 500 ml round-bottom flask, was placed a solution of 1 -tosyl-l l -(3,5,7-triaza- 4,6, 10-triphenyl-adamantan- l -yl methoxy)-3,6,9-trioxaundecane (product 2.2) (31 g, 42.59 mmol, 1.00 equiv) in N,N-dimethylformamide (350 ml), K2C03 (18 g, 129.30 mmol, 3.04 equiv), 10-oxa-4-azatricyclo[5.2.1 ,0A2,6]dec-8-ene-3,5-dione (14 g, 84.77 mmol, 1 .99 equiv), potassium iodide ( 1 g, 6.02 mmol, 0.14 equiv). The resulting solution was stirred for 1 8 h at 60 C in an oil bath. The reaction was then quenched by the addition of 2500 ml of water. The resulting solution was extracted with 3x500 ml of ethyl acetate and the organic layers combined. The resulting mixture was washed with 1 x500 ml of brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 28.5 g (93%) of 4-[l l -(3>5,7-triaza-4,6, 10-triphenyl-adamantan- l -yl methoxy)-3,6,9-trioxaundecyl]- 10-oxa-4-aza-tricyclo[5.2.1.02'6]dec-8-ene-3,5-dione as yellow oil.
[03031 Product 2.4: 4-[l l -(2,2,2-triaminomethyl-ethoxy)-3,6,9-trioxaundecyl]- 10-oxa-4- aza-tricyclo[5.2.1 .02'6]dec-8-ene-3,5-dione trihydrochloride
[0304] Into a 1000 ml round-bottom flask was placed a solution of 4-[l l -(3,5,7-triaza- 4,6, 10-tripheny 1-adamantan- 1 -y 1 methoxy)-3 ,6,9-trioxaundecyl]- 10-oxa-4-aza- tricyclo[5.2.1.02'6]dec-8-ene-3,5-dione (product 2.3) (28.5 g, 39.54 mmol, 1 .00 equiv) in
tetrahydrofuraii (300 ml), hydrogen chloride (1N) (125 ml). The resulting solution was stirred for 3 h at 10-20 C. The resulting mixture was concentrated under vacuum. The resulting mixture was washed with 1x200 ml of ethyl acetate. This resulted in 13.36 g (71 %) of 4-[l l -(2,2,2-triaminomethyl-ethoxy)-3,6,9-trioxaundecyl]- 10-oxa-4-aza- tricyclo[5.2.1.02-6]dec-8-ene-3,5-dione trihydrochloride as an off-white solid. LC-MS: (ES, m/z): [M-3HC1+H]+ 457. Ή NMR (400 MHz, CD3OD): δ = 3.00 (s, 2H, CHC=0), 3.40 (s, 8H, CCH2), 3.6-3.8 (m, 16H, OCH2CH2O), 5.23 (s, 2H, CHO), 6.58 (s, 2H, CH=CH).
[0305] Product 2.5 : (2-{2,2-Bis-[(3-tert-butoxycarbonylamino-propionylamino)-methyl]- 3-[ l l -(3,5-dioxo-10-oxa-4-aza-tricyclo[5.2.1 .02'6]dec-8-en-4-yl)-3,6,9-trioxaundecyloxy]- propylcarbamoyl}-ethyl)-carbamic acid tert-butyl ester
[0306] Into a 250 ml round-bottom flask, which was purged and maintained with a nitrogen atmosphere, was placed a solution of 4-[l l -(2,2,2-triaminomethyi-ethoxy)-3,6,9- trioxaundecyl]-10-oxa-4-aza-tricyclo[5.2.1.02'6]dec-8-ene-3,5-dionc trihydrochloride (product 2.4) ( 10.0 g, 17.7 mmol, 1 .00 equiv) in dichloromethane (100 ml). Triethylamine (5.40 g,
53.5 mmol, 3.02 equiv) was added to the reaction mixture, and stirred for 30 min at 15—20 C. N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (10.2 g, 53.2 mmol, 3.00 equiv), 1 -hydroxybenzotriazole (7.20 g, 53.3 mmol, 3.01 equiv), and 3-[(tert- butoxy)carbonyl]aminopropanoic acid ( 10.0 g, 52.9 mmol, 2.98 equiv) were added to the reaction mixture, and stirred for 16 h at 1 -20 C, before quenched with 1 50 ml of water. The organic materials were extracted with 3x100 ml of dichloromethane, and the combined extracts were washed with 2x100 ml of sodium carbonate (aq.) and 2x 1 00 ml of hydrochloric acid ( I N), then dried over anhydrous sodium sulfate. The solvents were removed under vacuum to yield 12.5 g (69%) of (2-{2,2-Bis-[(3-tert-butoxycarbonylamino-propionylamino)- methyl]-3-[ l l -(3,5-dioxo- 10-oxa-4-aza-tricyclo[5.2.1 .02-6]dec-8-en-4-yl)-3 ,6,9- trioxaundecyloxy]-propylcarbamoyl} -ethyl)-carbamic acid tert-butyl ester as a yellow solid.
[0307] Product 2.6: 3-Amino-N- {2,2-bis-[(3-amino-propionylamino)-methyl]-3-[l l -(3,5- dioxo- 10-oxa-4-aza-tricyclo[5.2.1.02 ]dec-8-en-4-yl)-3,6,9-trioxaundecyloxy]-propyl} - propionamide
[0308] Into a 250 ml round-bottom flask, was placed a solution of (2- {2,2-Bis-[(3-tert- butoxycarbonylamino-propionylamino)-methyl]-3-[ l l -(3,5-dioxo-10-oxa-4-aza- tricyclo[5.2.1 .02,6]dec-8-en-4-yl)-3,6,9-trioxaundecy]oxy]-propylcarbamoyl}-ethyl)-carbamic acid tert-butyl ester (product 2.5) (12.5 g, 12.2 mmol, 1 .00 equiv, 95%) in dichloromethane (150 ml). Trifluoroacetic acid (40 ml) was added to the reaction mixture dropwise, and stirred for 3 h at 10-20 C. Upon completion, the solvent was removed under reduced pressure, and the resulting crude material was dissolved in 200 ml of water. The aqueous solution was washed with ethyl acetate (3x1 50 ml), then concentrated under vacuum to furnish 9.00 g (73%) of 3-Amino-N- {2,2-bis-[(3-am ino-propionylamino)-methyl]-3-[ l 1 -(3,5- dioxo- 10-oxa-4-aza-tricycIo[5.2.1.02'6]dec-8-en-4-yl)-3,6,9-trioxaundecyIoxy]-propyl}- propionamide as a red solid. LC-MS (PH-OGS-006-0): (ES, m/z) 670 [M-3CF3COOH+l ] +. Ή NMR (400 MHz, CD3OD): δ = 6.57(s, 2H), 5.1 8(s, 2H), 3.61 -3.69(m, 14H), 3.59(s, 5H), 3.40(s, 2H), 3.21 -3.27(m, 14H), 2.96(s, 2H), 2.67-2.70(d, 7H).
[0309] Product 2.7: Protected maleimide functionalized nine-arm 2-bromo-2-methyl- propionamide initiator: 2-( l ] -(3,5-dioxo- 10-oxa-4-aza-tricyclo[5.2.1.02,6]dec-8-en-4-yl)- 3,6,9-trioxaundecyloxy)-ethane- 1 , 1 , 1 -tri(methyl-3-[2-(2,2,2-tri(2-bromo-2-methyl- propiony)aminomethyl)-ethoxy)-acetylamino])-propionamide
[0310] Into a 2000 ml three neck round-bottom flask, which was purged and maintained with a nitrogen atmosphere, was placed a solution of 2-[3-(2-bromo-2-methylpropanamido)- 2,2-bis[(2-bromo-2-methylpropanamido)methyl]propoxy]acetic acid (from
PCT/US2010/34252) (8.80 g, 13.8 mmol, 3.25 equiv) in a solvent mixture of
dichloromethane and DMF (7: 1 , 1 100 mL). HBTU (5.80 g, 15.3 mmol, 3.61 equiv) was added to the reaction mixture, and stirred for 1 .5 h at room temperature. A solution of 3- Amino-N-{2,2-bis-[(3-amino-propionylamino)-methyl]-3-[l l -(3,5-dioxo- 10-oxa-4-aza- tricyclo[5.2.1.02'6]dec-8-en-4-yl)-3,6,9-trioxaundecyloxy]-propyl}-propionamide (product 2.7) (5.50 g, 4.24 mmol, 1 .00 equiv) in a solvent mixture of dichloromethane and DMF (7: 1 , 50 ml) was added to the reaction solution dropwise. The reaction was stirred overnight at room temperature. After completion of the reaction, the volatiles were removed under vacuum. The resulting solution was diluted with 50 ml of ice water, then extracted with 3x100 ml of ethyl acetate. The combined organic layers were washed with 2x100 ml of brine, dried over anhydrous sodium sulfate, and concentrated under vacuum. The crude product was purified by Flash-Prep-HPLC to furnish 5.42 g (51 %) of 2-( l l -(3,5-dioxo- 10- oxa-4-aza-tricyclo[5.2.1 .02,6]dec-8-en-4-yl)-3,6,9-trioxaundecyloxy)-ethane- 1 , 1 , 1 -tri(methyl- 3-[2-(2,2,2-tri(2-bromo-2-methyl-propionylaminomethyl)-ethoxy)-acetylamino])- propionamide as an off-white solid. Ή NMR (400 MHz, CDC13): δ = 1.99 (s, 54H, CH3), 2.54 (t, J= 6 Hz, 6H, CH2CH2NH), 2.87 (s, 2H, CHC=0), 3. 13 (d, J= 6.3 Hz, 24H,
CCHjNH), 3.25 (s, 8H, OCH2C(CH2NH)3), 3.5-3.7 (m, 22H, OCH2CH2O and CH2CH2NH), 4.01 (s, 6H, OCH2C=0), 5.25 (s, 2H, CHO), 6.52 (s, 2H, CH=CH), 7.5 (broadened, 3H, NH), 7.88 (broadened, 3H, NH), 8.14 (t, J= 6.5 Hz, 9H, NHC(=0)C(CH3)2Br).
Example 3. Preparation of a protected maleimide functionalized three-arm 2-bromo-2- methyl-propionic acid ester initiator
[0312] A solution of 9 g 2-bromoisobutyryl bromide, 4.5 g a-hydroxyisobutyric acid, and 3.95 g triethylamine in 60 ml tetrahydrofuran and 60 ml dichloromethane was allowed to stir overnight at room temperature. The reaction mixture was partitioned between water and dichloromethane. The organics were dried over anhydrous magnesium sulfate, filtered, and concentrated, then subjected to silica gel flash chromatography with 5% methanol in dichloromethane to yield the desired product. lU NMR (400 MHz, CDC13): δ = 1.50 (s, 12H, C¾).
[0313] Product 3.2: 2-(2-Bromo-2-methyl-propionyloxy)-2-methyl-propionic acid, N- hydroxysuccinimidyl ester
[0314] A round-bottom flask equipped with stirbar was charged with 7 g of 2-(2-Bromo-2- methyl-propionyloxy)-2-methyl-propionic acid (product 3.2), 3.76 g of N- hydroxysuccinimide, 5.73 g of N,N-dicyclohexylcarbodiimide, 350 mg of 4- (dimethylamino)pyroidine, and 150 ml of dichloromethane, and allowed to stir for three hours. The mixture was filtered to remove dicyclohexylurea and concentrated. The residue was dissolved in dichloromethane, adsorbed onto silica gel, and reconcentrated. This powder was then subjected to silica gel flash chromatography with 30-70% ethyl acetate in hexane to yield 7.9 g of the desired product as a white powder. Ή NMR (400 MHz, CDC13): δ = 1 .78 (s, 6H, OC(CH3)2), 1.96 (s, 6H, BrC(CH3)2), 2.83 (s, 4H, CH2).
[0315] Product 3.3 : Protected maleimide functionalized three-arm 2-bromo-2-methyl- propionic acid ester initiator: 4-[l l -(2,2,2-Tri-{[2-(2-bromo-2-methyl-propionyloxy)-2- methyl-propionylamino]-methyl}-ethoxy)-3,6,9-trioxaundecyl]- 10-oxa-4-aza- tricyclo[5.2.1.02,6]dec-8-ene-3,5-dione
n o
[0316] A round-bottom flask equipped with stirbar was charged with 60 ml dry acetonitrile, 1 .13 g of 4-[ l l -(2,2,2-triaminomethyl-ethoxy)-3,6,9-trioxaundecyl]- 10-oxa-4-aza- tricyclo[5.2.1 .02'6]dec-8 -ene-3,5-dione trihydrochloride (product 2.4), 2.1 g of 2-(2-Bromo-2- methyl-propionyloxy)-2-methyl-propionic acid, N-hydroxysuccinimidyl ester (product 3.2), and 4 ml triethylam ine. The reaction was allowed to stir overnight at room temperature, then concentrated and partitioned between 50 ml each dichloromethane and 0.2N HC1. The aqueous layer was extracted twice with 50 ml dichloromethane. The combined organics were clarified with 1 0 ml brine, then concentrated and subjected to silica gel flash chromatography with 50- 100% ethyl acetate in hexane to yield the desired product as a yellow oil. Ή N R (400 MHz, CDC ): δ = 1 .59 (s, 1 8H, OC(CH3)2), 1.96 (s, 1 8H, BrC(CH3)2), 2.86 (s, 2H, CHC=0), 3.1 -3.4 (m, 8H, CH2NH and CCH20), 3.56-3.66 (m, 16H, OCHbCHjO), 5.26 (s, 2H, CHO), 6.52 (s, 2H, CH=€H), 7.37 (broadened, 2H, Nil), 7.79 (broadened, 1 H, NH).
Example 4. Preparation of a protected maleimide functionalized nine-arm 2-bromo-2- methYl-propionic acid ester initiator
[0317] Product 4.1 : 2,2,2-tribenzyloxymethyl-ethan- l -ol
[0318] Into a 10 L four neck round-bottom flask, which was purged and maintained with a nitrogen atmosphere, was placed a solution of 2,2-bis(hydroxymethyl)propane- l ,3-diol ( 1 10 g, 0.808 mol, 1.00 equiv) in N,N-dimethylformamide (6 L). Sodium hydride (97.0 g, 2.42 mol, 3.00 equiv, 60%) was added to the reaction mixture, and stirred for 40 min at 10-15 C in
an ice-water bath. Benzyl bromide (415 g, 2.43 mol, 3.00 equiv) was then added to the reaction solution dropwise, and stirred for another 3 h at 10-15 C. The reaction was quenched by the addition of 30 L of water. The resulting solution was extracted with 3x1500 ml of ethyl acetate. The combined organic layers were washed with 1 1500 ml of brine, dried over anhydrous sodium sulfate, and concentrated under vacuum. The residue was purified by silica gel chromatography with ethyl acetate/petroleum ether (1 : 100-1 :20) as eluent to furnish 148 g (45%) of 2,2,2-tribenzyloxymethyl-ethan- l-ol as a yellow oil.
[0319] Product 4.2: (2,2,2-tri-benzyloxymethyl-ethoxy)-acetic acid fer/-butyl ester
[0320] Into a 5 L three neck round-bottom flask, which was purged and maintained with a nitrogen atmosphere, was placed a solution of 2,2,2-tribenzyloxymethyl-ethan- l -ol (Product 4.1 ) (148 g, 364 mmol, 1.00 equiv) in N,N-dimethylformamide (3000 ml). Sodium hydride (29.0 g, 725 mmol, 1.99 equiv, 60%) was added to the reaction mixture and stirred for 1 h at
10-15 C in an ice-water bath. This was followed by the addition of /er/-butyl 2-bromoacetate (142 g, 728 mmol, 2.00 equiv) dropwise with stirring. The resulting solution was stirred for 7 h at 10-15 C in an ice-water bath, then quenched with 12000 ml of water. The resulting solution was extracted with 3x2000 ml of ethyl acetate. The combined organic layers were washed with l l 500 ml of brine, dried over anhydrous sodium sulfate, and concentrated under vacuum. The residue was purified by silica gel chromatography with ethyl acetate/petroleum ether (1 : 100-1 :30) as eluent to furnish 93 g (48%) of (2,2,2-tri- benzyloxymethyl-ethoxy)-acetic acid /er/-butyl ester as a yellow oil.
[0322] Into a 2000 ml round-bottom flask, which was purged and maintained with a nitrogen atmosphere, was placed a solution of (2,2,2-tri-benzyloxymethyl-ethoxy)-acetic acid tert-buty\ ester (product 4.2) (93.0 g, 162 mmol, 1 .00 equiv, 98%>) and palladium on carbon
(36 g) in methanol (1000 ml). The reaction solution was hydrogenated under atmosphere pressure for 3 days at 30 C. After removing the catalyst by filtration, the solution was concentrated under vacuum. This resulted in 34 g (83%) of (2,2,2-tri-hydroxymethyl- ethoxy)-acetic acid tert-butyl ester as a gray solid.
[0323] Product 4.4: (2,2,2-Tri(2-bromo-2-methyl-propionyloxymethyl)-ethoxy)-acetic acid tert-butyl ester
[0324] Into a 1000 ml three neck round-bottom flask, which was purged and maintained with a nitrogen atmosphere, was placed a solution of (2,2,2-tri-hydroxymethyl-ethoxy)-acetic acid tert-buty\ ester (Product 4.3) (34 g, 133 mmol, 1 .00 equiv, 98%) and triethylamine (1 10 g, 1.09 mol, 8.17 equiv) in tetrahydrofuran (350 ml). 2-Bromo-2-methylpropanoyl bromide (264 g, 1 .1 5 mol, 8.63 equiv) was added to the stirred reaction mixture dropwise. The reaction mixture was stirred for 12 h at 10— 1 5 C in an ice water bath, then quenched with 500 ml of water. The resulting solution was extracted with 3x300 ml of ethyl acetate and the combined organic layers were washed with 1 x300 ml of brine, dried over anhydrous sodium sulfate, and concentrated under vacuum. The residue was purified by flash column chromatography (S1O2, eluent: ethyl acetate/petroleum ether ( 1 :50-1 :20)) to afford 96 g (98%) of (2,2,2-Tri(2-bromo-2-methyl-propionyloxymethyl)-ethoxy)-acetic acid tert-butyl ester as a yellow oil.
[0325] Product 4.5: (2,2,2-Tri(2-bromo-2-methyl-propionyloxymethyl)-ethoxy)-acetic acid
[0326] Into a 2000 ml three neck round-bottom flask, was placed a solution of (2,2,2-Tri(2- bromo-2-methyl-propionyloxymethyl)-ethoxy)-acetic acid tert-butyl ester (product 4.4) (96.0 g, 131 mmol, 1.00 equiv, 95%) in dichloromethane ( 1000 ml). Trifluoroacetic acid (120 ml)
was then added to the reaction mixture dropwise. The resulting solution was stirred for 18 h at 20 C, then quenched with 1 000 ml of water. The resulting solution was extracted with 3x500 ml of dichloromethane and the combined organic layers were washed with 1 x500 ml of brine, dried over anhydrous sodium sulfate, and concentrated under vacuum to afford 86.0 g (97%) of (2,2,2-Tri(2-bromo-2-methyl-propionyloxymethyl)-ethoxy)-acetic acid as a yellow oi
[0327J Product 4.6: (2,2,2-Tri(2-bromo-2-methyl-propionyloxymethyl)-ethoxy)-acetic acid n-hydroxysuccinimidyl ester
[0328] Into a 2000 ml three neck round-bottom flask, which was purged and maintained with a nitrogen atmosphere, was placed a solution of (2,2,2-Tri(2-bromo-2-methyl- propionyloxymethyl)-ethoxy)-acetic acid (product 4.5) (86.0 g, 127 mmol, 1 .00 equiv, 95%) in N,N-dirnethylformamide (900 ml). N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (70.0 g, 365 mmol, 2.87 equiv) and N-hydroxysuccinimide (46.0 g, 400 mmol, 3.14 equiv) was added to the reaction mixture and stirred for 12 h at 20 C. The reaction was then quenched by the addition of 5000 ml of water. The resulting solution was extracted with 3x1 500 ml of ethyl acetate and the combined organic layers were washed with 1 x1 500 ml of brine, dried over anhydrous sodium sulfate, and concentrated under vacuum. The residue was purified by flash chromatography (S1O2, eluent; ethyl acetate/petroleum ether
(1 :30~1 :2)). The crude product was re-crystallized from a solvent mixture of ethyl acetate and petroleum ether ( 1 .4) to afford 57.0 g (55%) of (2,2,2-Tri(2-bromo-2-methyl- propionyloxymethyl)-ethoxy)-acetic acid n-hydroxysuccinimidyl ester as a white solid. LC- MS (PH-OGS-001 -0): (ES, m/∑): [M+Naf 757. Ή NMR (300 MHz, DMSO-d6): δ = 1 .90 (s, 1 8H, CH3), 2.83 (s, 4H, 0=CCH2CH200), 3.72 (s, 2H, CCH2OCH2C )), 4.21 (s, 6H, CH2OC=0), 4.66 (s, 2H, CCHzOCH CK)).
[0329] Product 4.7: Protected maleimide functionalized nine-arm 2-bromo-2-methyl- propionic acid ester initiator: 2-(l l -(3,5-dioxo-10-oxa-4-aza-tricyclo[5.2.1 .02'6]dec-8-en-4- yl)-3,6,9-trioxaundecyloxy)-ethane- l , l ,l-tri-(methyl-3-[2-(2,2,2-tri(2-bromo-2-methyl- propionyloxymethyl)-ethoxy)-acetylamino])-propionamide
[0330] Into a 250 ml three neck round-bottom flask, which was purged and maintained with a nitrogen atmosphere, was placed a solution of 3-Amino-N-{2,2-bis-[(3-amino- propionylamino)-methyl]-3-[l l -(3,5-dioxo- 10-oxa-4-aza-tricyclo[5.2.1.02'6]dec-8-en-4-yl)- 3,6,9-trioxaundecyloxy]-propyl}-propionamide (product 2.6) (3.50 g, 3.46 mmol, 1.00 equiv) in dichloromethane (100 ml). Triethylamine (1 .50 g, 14.8 mmol, 4.28 equiv) was added to the reaction mixture. The reaction was stirred for 1 h at 10-20 C followed by the addition of (2,2,2-Tri(2-bromo-2-methyl-propionyloxymethyl)-ethoxy)-acetic acid n- hydroxysuccinimidyl ester (product 4.6) (8.00 g, 10.8 mmol, 3. 13 equiv). The resulting solution was stirred for 16 h at 10~20 C, then quenched with 200 ml of water. The solution was extracted with 3x200 ml of dichloromethane and the combined organic layers were washed with 1 x200 ml of brine, dried over anhydrous sodium sulfate, and concentrated under vacuum. The crude product (10 g) was purified by Prep-HPLC with the following conditions (Gilson Pre-HPLC( ax. pressure:8MPa)): Column, SunFire Prep C I 8, 5um, 19* 100mm; mobile phase, WATER WITH 0.05%TFA and CH3CN (95% CH3CN in 20 min, up to 100% in 20 min, hold 100% in 1 .4 min); Detector, Gilson UV Detector 254nm. This led to 3.75 g (42%) of 2-(l l -(3,5-dioxo-10-oxa-4-aza-tricyclo[5.2.1.02'6]dec-8-en-4-yl)-3,6,9- trioxaundecyloxy)-ethane- 1 , 1 , 1 -tri-(methyl-3-[2-(2,2,2-tri(2-bromo-2-methyl- propionyloxymethyl)-ethoxy)-acetylamino])-propionamide as an off-white solid. ' H NMR (400 MHz, CDC ): 8 = 1.93 (s, 54H, CH3), 2.50 (t, ./= 6 Hz, 6H, CH2CH2NH), 2.86 (s, 211, CHC=0), 3.08 (d, J= 6 Hz, 6H, CCHjNH), 3.29 (s, 2H, OCH2C(CH2NH)3), 3.5-3.7 (m, 28H, OCH2CH2O and CH2CH2NH and OCH2C(CH20)3), 3.96 (s, 6H, OCH2C=0), 4.32 (s, 18H, C(CH20)3), 5.25 (s, 2H, CHO), 6.52 (s, 2H, CH=CH), 7.3 (broadened, 6H, NH).
Example 5. Preparation of a dihydroxy functionalized nine-arm 2-bromo-2-methyl- propionic acid ester initiator
[03311 Product 5.1 : 2-(l l -Allyloxy-3,6,9-trioxaundecyloxy)-ethane- 1 , 1 , 1 -tri(methyl-3-[2- (2,2,2-tri(2-bromo-2-methyl-propionyloxymetliyl)-ethoxy)-acetylamino])-propionamide
[0332] A round-bottom flask equipped with stirbar was charged with 2.95 g of (2,2,2-Tri(2- bromo-2-methyl-propionyloxymethyl)-ethoxy)-acetic acid n-hydroxysuccinimidyl ester (product 4.6) and 30 ml dry acetonitrile, followed by 1 ml triethylamine. A solution of l -(3- amino-propionylamino)-2,2-bis[(3-aminopropionylamino)-methyl]-2,5,8, l 1 , 14- pentaoxaheptadec- 16-ene trihydrochloride (Product 1 .2) in 20 ml dry acetonitrile was added dropwise and the reaction stirred overnight, then concentrated. The residue was suspended in dichloromethane and filtered, then washed with 10 ml each water and I N HCl. The aqueous layers were then extracted with 20 ml dichloromethane and the combined organics were concentrated. The residue was dissolved in a small amount of 50% ethyl acetate/hexane and subjected to silica gel flash chromatography with 10- 1 00% acetone in hexane, to yield 1.63 g of the desired product as a yellow oil. Ή NMR (400 MHz, CDCI3): δ = 1.93 (s, 54H, CH3), 2.51 (t, J= 6 Hz, 6H, CH2CH2NH), 3.07 (d, J= 5.1 Hz, 6H, CCH^NH), 3.26 (s, 2H,
OCH2C(CH2NH)3), 3.5-3.7 (m, 28H, OCHJCHJO and
and OCHjC CI I20)3), 3.97 (s, 6H, OCH2C=0), 4.01 (d, J= 5.5 Hz, 2H, CHCH7O), 4.32 (s, 18H, C(CH20)3), 5.20 (d of d, .7=10.6, 1.2 Hz, 1 H, CH2=CH), 5.29 (d of q, J= 1 7.3, 1 .5 Hz, 1 H, CH2=CH), 5.90 (m, 1 H, CH), 7.30 (broadened, 3H, NH), 7.47 (broadened, 3H, NH).
[0333] Product 5.2: Dihydroxy functionalized nine-arm 2-bromo-2-methyl-propionic acid ester initiator: 2-(l l -[l ,2-dihydroxypropyloxy]-3,6,9-trioxaundecyloxy)-ethane- 1 , 1 , 1 -
tri(methyl-3-[2-(2,2,2-tri(2-bromo-2-meth^
propionamide
[0334] A round-bottom flask equipped with a stirbar was charged with 10 ml water, 10 ml t-butanol, 1 .63 mg of 2-( 1 1 -Allyloxy-3,6,9-trioxaundecy loxy)-ethane- 1 , 1 , 1 -tri(methyl-3-[2- (2,2,2-tri(2-bromo-2-methyl-propionyloxymethyl)-ethoxy)-acet lamino])-propionamide (product 5.1 ), 680 mg potassium ferricyanide, 290 mg potassium carbonate, 65.7 mg methanesulfonamide, 6.5 mg quinuclidine, and 3.0 mg potassium osmate dihydrate and stirred for two days at room temperature. The reaction mixture was concentrated, then partitioned between 50 ml each of water and dichloromethane. The aqueous layer was extracted five times more with 50 ml dichloromethane. The organic layers were combined, clarified by washing with 5 ml saturated sodium chloride, and concentrated, then passed over a silica gel plug with acetone and concentrated. The residue was subjected to silica gel flash chromatography using 3.5-5% methanol in dichloromethane. The column was then flushed with 100 ml each 10% methanol in dichloromethane, then pure methanol. Product containing fractions were combined to give the desired product as a clear oil. Ή NMR (400 MHz, CDC13): δ = 1 .93 (s, 54H, CH3), 2.53 (s, 6H, CH2CH7NH), 3.07 (d, J= 5.1 Hz, 6H,
CCH2NH), 3.26 (s, 2H, OCH2C(CH2NH)3), 3.5-3.7 (m, 32H,
and CH2CH2NH and OCHj,C(CH20)3 and CHCH2O and CH2OH), 3.94 (s, 1 H.CHOH), 3.96 (s, 6H,
OCH2C=0), 4.32 (s, 18H, C(CH20)3), 7.26 (broadened, 3H, NH), 7.46 (broadened, 3H, NH).
Example 6. Preparation of a protected maleimide functionalized six-arm 2-bromo-2- methyl-propionic acid ester initiator
[0335] Step 1
[0336] Into a 3000 mL three neck round-bottom flask, which was purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-hydroxy-2-(hydroxymethyl)- 2-methylpropanoic acid (65.0 g, 485 mmol, 1.00 equiv) and pyridine (100 g, 1.26 mol, 2.61 equiv) in dichloromethane ( 1000 mL). 2-Bromo-2-methylpropanoyl bromide (227 g, 987 mmol, 2.04 equiv) was added drop wise at 0 C in 30 min. The resulting solution was stirred overnight at room temperature, then quenched with 1000 mL of ice water. The aqueous phase was extracted with 2 1000 mL of dichloromethane, and the combined organic layers were dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/hexane ( 1 :50) as eluent. The crude product was purified by re-crystallization from petroleum ether. This resulted in 100 g (48%) of 3- [(2-bromo-2-methy Ipropanoy 1 )oxy] -2- [ [(2-bromo-2-methylpropanoyl)oxy] methy 1] -2- methylpropanoic acid as a white solid.
[0337] Step 2
[0338] Into a 1000 mL round-bottom flask, which was purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-[(2-bromo-2-methylpropanoyl)oxy]-2- [[(2-bromo-2-methylpropanoyl)oxy]methyl]-2-methylpropanoic acid (1 1.1 g, 25.7 mmol, 1.00 equiv) in chloroform (250 mL). Thionyl chloride ( 1 1.0 g, 92.5 mmol, 3.60 equiv) and N,N-dimethylformamide (4 drops) were added to the reaction mixture. The resulting solution was stirred overnight at 36°C in an oil bath, then concentrated under vacuum to yield 12.1 g (crude) of 2-[[(2-bromo-2-methylpropanoyl)oxy]methyl]-3-chloro-2-methyl-3-oxopropyl 2- bromo-2-methylpropanoate as a colorless oil. This material was used in the next step reaction directly without isolation.
[0339] Ste 3
[0340] Into a 1000 mL three neck round-bottom flask, which was purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-[15-amino- 14,14- bis(aminomethyl)-3,6,9, 12-tetraoxapentadecan- l -yl]-10-oxa-4-azatricyclo[5.2.1.0A[2,6]]dec- 8-ene-3,5-dione (3.55 g, 7.78 mmol, 1.00 equiv) in dichloromethane (450 mL). A solution of 2-[(2-bromo-2-methylpropanoyl)oxy]methyl-3-chloro-2-methyl-3-oxopropyl 2-bromo-2- methylpropanoate ( 1 1.5 g, 25.4 mmol, 3.27 equiv) in dichloromethane (1 50 mL) was added dropwise at 0 C. To this was added triethylamine (8.50 g, 84.0 mmol, 10.8 equiv). The resulting solution was stirred for 1.5 h at 0°C in an ice bath, then quenched with 30 mL of methanol. The resulting mixture was concentrated under vacuum. The crude product (28 g) was purified by Combiflash with the following conditions (IntelFlash- 1 ): Column, C I 8; mobile phase, CH3CN/H2O=50:50 increased to CH3CN/H2O=100:0 within 50 min; Detector, UV 220 nm. This resulted in 8.00 g (61 %) of the six arm protected maleimide initiator as an light yellow solid. LC-MS: (ES, m/z): [M+H]+ 1699; Ή-NMR: (400MHz, CDC13, ppm): δ 7.75(3H, s), 6.52 (2H, s), 5.62(2H, s), 4.39( 12H, m), 3.66(16H, m), 3.31 (2H, d), 2.87(2H, s), 1.92(36H, s), 1.41 (9H, s).
Example 7. Preparation of a protected vinyl sulfonamide functionalized six-arm 2- bromo-2-methyl-propioiiic acid ester initiator
[0341] Step 1
[0342] Into a 250 mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of methyl 3-aminopropanoate hydrochloride (5.0 g, 35.82 mmol, 1 .00 equiv) in dichloromethane (80 mL), triethylamine ( 10.9 g, 1 07.72 mmol, 3.01 equiv). This was followed by the addition of a solution of 7- oxabicyclo[2.2.1]hept-5-ene-2-sulfonyl chloride (8.7 g, 44.70 mmol, 1 .25 equiv) in dichloromethane (20 mL) dropwise with stirring at 0 C. The resulting solution was stirred for 30 min at room temperature. The resulting mixture was washed with 1 x50 mL of brine. The mixture was dried over anhydrous magnesium sulfate and concentrated under vacuum. This resulted in 9.0 g (crude) of methyl 3-[7-oxabicyclo[2.2.1 ]hept-5-ene-2- sulfonamidojpropanoate as red oil.
OMe
[0344] Into a 1 50 mL sealed tube, was placed a solution of methyl 3-[7- oxabicyclo[2.2.1 ]hept-5-ene-2-sulfonamido]propanoate (9 g, 34.44 mmol, 1.00 equiv) in
CH3CN ( 100 mL), potassium carbonate (1 1 .9 g, 86.10 mmol, 2.50 equiv), iodomethane (14.6 g, 102.86 mmol, 2.99 equiv). The resulting solution was stirred overnight at 50 C in an oil bath. The solids were filtered out. The organic layer was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1 :3~1 : 1.5). This resulted in 6.02 g (63%) of methyl 3-[N-methyl7-oxabicyclo[2.2. l ]hept-5-ene-2- sulfonamido]propanoate as yellow oil.
[0345] Step 3
Into a 250 mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of LiAlHL (1 .24 g, 32.67 mmol, 3.35 equiv) in tetrahydrofuran (35 mL). A solution of methyl 3-[N-methyl7-oxabicyclo [2.2.1 ] hept-5-ene- 2-sulfonamido]propanoate (3.0 g, 10.90 mmol, 1.00 equiv) in tetrahydrofuran ( 1 5 mL) was added drop wise with stirring at 0 C. The resulting solution was stirred for 30 min at 0 C in a water/ice bath. The reaction was quenched by the addition of 2 mL of water. The resulting solution was diluted with 3.5 mL of 15%NaOH(aq). The solids were filtered out. The organic layer was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 2.54 g (94%) of 3-hydroxy-N-methyl-S-[7-oxabicyclo[2.2.1 ]hept-5-en-2- yl]propane-l -sulfonamido as yellow oil.
[0346] Step 4
[0347] Into a 250 mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-hydroxy-N-methyl-S-[7- oxabicyclo[2.2.1 ]hept-5-en-2-yl]propane- l -sulfonamido (2.54 g, 10.27 mmol, 1.00 equiv) in tetrahydrofuran (50 mL). Sodium hydride (700 mg, 17.50 mmol, 1 .70 equiv) was added to reaction mixture at room temperature in 30 min. To this was added a solution of 1 -2,4,9- triphenyl- l ,3,5-triazatricyclo[3.3.1 . l A3,7]decan-7-yl-2,5,8, l l -tetraoxatridecan- 13-yl 4- methylbenzene-l-sulfonate (7.2 g, 9.89 mmol, 0.96 equiv) in tetrahydrofuran (20 mL) drop
wise with stirring . The resulting solution was stirred for 1 overnight at 48 C in an oil bath. The reaction was quenched by the addition of 20 mL of water/ice. The resulting solution was extracted with 3x40 mL of ethyl acetate. The combined organic layers were washed with 1 x30 mL of brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether ( 1 : 1 ). This resulted in 3.0 g (36%) of N-methyl-N-( l -[2,4,9-triphenyl-l ,3,5- triazatricyclo[3.3.1.1 A[3,7]]decan-7-yl]-2,5,8, l l , 14-pentaoxaheptadecan- 17-yl)-7- oxabicyclo[2.2. ] ]hept-5-ene-2-sulfonamide as yellow oil.
[0348] Step 5
Into a 250 mL round-bottom flask, was placed a solution of N-methyl-N-(l -[2,4,9-triphenyl- 1 ,3,5-triazatricyclo[3.3.1 .1 A[3,7]]decan-7-yl]-2,5,8, 1 1 , 14-pentaoxaheptadecan- 17-yl)-7- oxabicyclo[2.2.1 ]hept-5-ene-2-sulfonamide (3.1 5 g, 3.92 mmol, 1.00 equiv) in
tetrahydrofuran ( 100 mL), IN hydrogen chloride (37 mL). The resulting solution was stirred for 2 h at room temperature. The resulting mixture was concentrated under vacuum. The resulting solution was extracted with 2x20 mL of ethyl acetate. The combined aqueous layers were lyophilized. This resulted in 2.42 g (95%) of N-[ 19-amino- 18, 1 8- bis(aminomethy l)-4,7, 10, 13 , 16-pentaoxanonadecan- 1 -y l]-N-methyl-7-oxabicyclo[2.2.1 ]hept- 5-ene-2-sulfonamide trihydrochloride as a yellow syrup.
[0349] Step 6
[0350] Into a 100 mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-[19-amino-18, 18-bis(aminomethyl)-
4,7, 10, 13, 16-pentaoxanonadecan- 1 -yl]-N-methyl-7-oxabicyclo[2.2.1 ]hept-5-ene-2- sulfonamide trihydrochloride ( 1 .23 g, 1.90 mmol, 1.00 equiv) in dichloromethane (30 mL), triethylamine (4 g, 39.6 mmol, 20.83 equiv). A solution of 3-(2-bromo-l -hydroxy-2- methy]propoxy)-2-[(2-bromo-l -hydroxy-2-methylpropoxy)methyl]- l -chloro-2- methylpropan- l-ol (2.67 g, 5.85 mmol, 3.08 equiv) in dichloromethane (20 mL) was added drop wise with stirring at 0 C to reaction mixture. The resulting solution was stirred for 30 min at 0 C in a water/ice bath. The reaction was quenched by the addition of 10 mL of methanol. The resulting mixture was concentrated under vacuum. The crude product was purified by Flash-Prep-HPLC. This resulted in 0.8 g (24%) of PH-OGS-023-0 as a yellow syrup. LC-MS: (ES, rn/z): [M+H]+ = 1981 ; ' H-NMR:(300MHz,CDCl3, fltw?): 7.687(3H,s), 6.397(l H,m), 5.321 (l H,m), 4.391 ( 1 l H,m), 3.655( 1 8H,m), 3.342(4H,m), 3.164(6H,m), 2.923(3H,m), 1.921 (36H,m), 1.834( l H,m), 1.380(9H,m).
Example 8. Preparation of a protected vinyl sulfonamide functionalized three-arm 2- bromo-2-methyl-propionic acid ester initiator
[0351] Into a 250 mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution ofN-[ 19-amino-18, 18-bis(aminomethyl)- 4,7, 10, 13, 16-pentaoxanonadecan- 1 -yl]-N-methyl-7-oxabicyclo[2.2.1 ]hept-5-ene-2- sulfonamide trihydrochloride ( 1 .6 g, 2.47 mmol, 1.00 equiv) in dichloromethane (100 mL), triethylamine (8.0 g, 79.06 mmol, 32.02 equiv), 4-bromo-2,2,4-trimethyl-3-oxopentanoyl chloride ( 1.82 g, 7.12 mmol, 2.88 equiv). The resulting solution was stirred for 30 min at 0 C in a water/ice bath. The reaction was quenched by the addition of 10 mL of methanol. The resulting mixture was concentrated under vacuum. The crude product ( 1 6 g) was purified by Combiflash with the following conditions (IntelFlash- 1 ): Column, C18; mobile phase,
CH3CN/H2O=50:50 increased to CH3CN/H20= 100:0 within 50 min; Detector, UV 220 nm. This resulted in 1.8878 g (61 %) of the title initiator as yellow oil. LC-MS: (ES, m/z): [M+ l ]+
= 1245; Ή-NMR: (COC\3, ppm) 7.368(3H,m), 6.381 (2H,m) , 5.308(1H,
s)5.132( l H,d,J=4.2), 3.607(17H,m), 3.227(4H,s), 3.108(7H,d,J=6), 2.840(3H,m),
2. 132( l H,m), 2.002(19H,m), 1.678( 18H,m), 1.370(2H,m).
Example 9. Preparation of 2-(Acryloyloxyethyl-2 trimethylammonium ethyl phosphate, inner salt (HEA-PC)
[0353] A solution of 1 1 .6 grams of 2-hydroxyethylacrylate and 14.0 ml of triethylamine in 100 ml of dry acetonitrile, under a nitrogen atmosphere, was cooled to -20°C, and a solution of 14. 2 grams of 2-chloro-2-oxo- l ,3,2-dioxaphospholane in 10 ml of dry acetonitrile was added dropwise over about 30 minutes. The reaction was stirred in the cold for 30 minutes, then filtered under a nitrogen atmosphere. The precipitate was washed with 10 ml of cold acetonitrile, and the filtrate was used directly in the next reaction.
[0355] To the solution from the previous procedure was added 14.0 ml of trimethylamine (condensed using a dry ice-acetone condenser under nitrogen), the reaction mixture was sealed into a pressure vessel, and stirred at 65°C for 4 hours. The reaction mixture was allowed to stir while cooling to room temperature, and as it reached about 30°C, a solid began to form. The vessel was then placed in a 4°C refrigerator overnight. Strictly under a nitrogen atmosphere, the solid was recovered by filtration, washed with 20 ml of cold dry acetonitrile, then dried under a stream of nitrogen for 1 5 minutes. The solid was then dried under high vacuum overnight to give 12.4 grams of product as a white solid. N R (CDCI3): δ 6.41 (dd, 1 H, .7= 1 .6, 17.2 Hz, vinyl CH), 6.18 (dd, 1 H, J=10.6, 17.2 Hz, vinyl CH), 5.90 (dd, 1 H, J=1.6, 10.4 Hz, vinyl CH), 4.35 (m, 2H), 4.27 (m, 2H), 4.1 1 (m, 2H), 3.63 (m, 2H), 3.22 (s, 9H, N(CH3)3).
Example 10. Preparation of high molecular weight zwitterionic polymers
[0356] A representative protocol to produce high molecular weight, tailor-made hydrophilic polymers of the zwitterionic monomer, 2-methacryloyloxyethyl
phosphorylcholine (HEMA-PC), using a "living" controlled free radical process, atom transfer radical polymerization (ATRP), is as follows.
[0357] The following initiator was used:
[0358] The initiator and ligand (2,2'-bipyridyl) were introduced into a Schlenk tube. Dimethyl formamide or dimethylsulfoxide was introduced drop wise so that the total weight percent of both initiator and ligand did not exceed 20%. In the event that initiators or ligands were oils, or the quantities involved were below the accuracy limit of the balance, the reagents were introduced as solutions in dimethyl formamide (100 mg/ml). The resultant solution was cooled to -78°C using a dry ice/acetone mixture, and was degassed under vacuum until no further bubbling was seen. The mixture remained homogeneous at this temperature. The tube was refilled under nitrogen and the catalyst (CuBr unless otherwise indicated), kept under nitrogen, was introduced into the Schlenck tube. The solution became dark brown immediately. The Schlenk tube was sealed and kept at -78°C and the solution was purged immediately by applying a vacuum. Care was taken to ensure that the monomer, HEMA-PC, was kept as a dry solid under inert conditions at all times until ready for use. A solution of HEMA-PC was freshly prepared by mixing a defined quantity of monomer, kept under nitrogen, with 200proof degassed ethanol. A degassed solution of CuBr? in dimethyl formamide (100 mg/ml) was added to the solution of HEMA-PC under nitrogen in the ratio of halide/CuBr/CuBr2 of 1 /0.9/0.1 for reaction times up to 24 hours and 1 /0.75/0.25 for reaction times longer than 24 hours. The resulting solution was added drop wise into the
Schlenk tube and homogenized by light stirring. Unless otherwise indicated, the ratio of monomer (g)/ethanol (ml) was 0.50. The temperature was maintained at -78°C. A thorough vacuum was applied to the reaction mixture for at least 10 to 15 min until bubbling from the solution ceased. The mixture stayed homogeneous at this temperature, i.e. with no precipitation of any reaction ingredients (such as initiator or ligand) thus avoiding premature or unwanted polymerization. The tube was refilled with nitrogen, and the vacuum-nitrogen cycle was repeated twice. The tube was then refilled with nitrogen and warmed to room temperature (25°C). As the polymerization proceeded, the solution became viscous. After some time (defined in the table below), the reaction was quenched by direct exposure to air causing the mixture to become blue-green in color, and was passed through a silica column in order to remove the copper catalyst. The collected solution was concentrated by rotar evaporation and the resulting mixture was purified by careful precipitation into
tetrahydrofuran followed by thorough washing with diethyl ether, or by dialysis against water. Polymer was collected as a white fluffy powder (following freeze drying if dialyzed against water) and placed under vacuum at room temperature.
[0359] Data from several polymerization reactions are shown in the following table.
The ratio of halide/CuBr/CuBr2 was 1 /0.9/0.1 for reaction times up to 24 hours and 1/0.75/0.25 for reaction times longer than 24 hours
Monomer (g)/solvent (ml) 0.5
'Monomer (g)/solvent (ml) 0.6
[0360] The peak molecular weight (Mp), number molecular weight (Mn) and
polydispersity (PDI) were determined/derived by multi-angle light scattering.
Example 11. Further preparations of high molecular weight zwitterionic polymers
[0361] A representative protocol to produce high molecular weight, tailor-made hydrophilic polymers of the zwitterionic monomer, 2-methacryloyloxyethyl
phosphorylcholine (HEMA-PC) or the monomer 2-(Acryloyloxyethyl-2'-
(trimethylammonium)ethyl phosphate, inner salt (HEA-PC), using a "living" controlled free radical process, atom transfer radical polymerization (ATRP), is as follows.
[0362] The following initiators were used:
PME04M9 (from Example 4)
PME04M3 (from Example 3)
PME04M6 (from Example 6)
PVSAME04M3 (from Example 8)
PVSAME04M6 (from Example 7)
[0363] The initiator and ligand (2,2'-bipyridyl unless otherwise indicated) were introduced into a Schlenk tube. Dimethyl formamide or dimethylsulfoxide was introduced drop wise so that the total weight percent of both initiator and ligand did not exceed 20%. In the event that initiators or ligands were oils, or the quantities involved were below the accuracy limit of the balance, the reagents were introduced as solutions in dimethyl formamide ( 100 mg/ml). The resultant solution was cooled to -78°C using a dry ice/acetone mixture, and was degassed under vacuum until no further bubbling was seen. The mixture remained homogeneous at
this temperature. The tube was refilled under nitrogen or argon and the catalyst (CuBr unless otherwise indicated), kept under nitrogen or argon, was introduced into the Schlenck tube. The solution became dark brown immediately. The Schlenk tube was sealed and kept at -78°C and the solution was purged immediately by applying a vacuum. Care was taken to ensure that the monomer, HEMA-PC (or HEA-PC from Example 9), was kept as a dry solid under inert conditions at all times until ready for use. A solution of HEMA-PC (or HEA-PC) was freshly prepared by mixing a defined quantity of monomer, under nitrogen or argon, with 200proof degassed ethanol. In the event HEA-PC was used as monomer, the solution was first passed through an alumina column in order to remove stabilizer prior to introduction into the Schlenk tube. The monomer solution was added drop wise into the Schlenk tube and homogenized by light stirring. Unless otherwise indicated, the ratio of monomer (g)/ethanol (ml) was 0.3. The temperature was maintained at -78°C. A thorough vacuum was applied to the reaction mixture for at least 10 to 15 min until bubbling from the solution ceased. The mixture stayed homogeneous at this temperature, i.e. with no precipitation of any reaction ingredients (such as initiator or ligand) thus avoiding premature or unwanted polymerization. The tube was refilled with nitrogen or argon, and the vacuum-nitrogen/argon cycle was repeated twice. The tube was then refilled with nitrogen or argon and warmed to room temperature (25°C). As the polymerization proceeded, the solution became viscous. After some time (defined in the table below), the reaction was quenched by direct exposure to air causing the mixture to become blue-green in color, and was passed through a silica column in order to remove the copper catalyst. The collected solution was concentrated by rotary evaporation and the resulting mixture was purified by careful precipitation into
tetrahydrofuran followed by thorough washing with diethyl ether, or by cross-flow filtration against ethanol followed by careful precipitation and washing with diethyl ether. Polymer was collected as a white fluffy powder and placed under vacuum at room temperature.
[0364] Data from several polymerization reactions are shown in the following table.
Initiator Catalyst Ligand MALS MALS
Monomer Time MALS Conversion
Sample Initiator (10 s (10~5 (10"s (Mn (Mp
(PD1) ('HNMR mol) (g) mol) (h)
mol) kDa) kDa)
%)
6 PME04M9 4.44 7.100 40.0 79.9 19 214 215 1.1 1 100
7 PME04 9 1.86 1 1.2 16.8 33.6 21 720 736 1.13 98
8 PME04M9 6.95 1 1.1 62.6 25.3 19 228 237 1.14 99
9 PME04M9 2.25 1 1.25 20.2 40.5 21 640 672 1.17 98
10 PME04M9 2.93 10.8 26.4 52.8 19 370 406 1.09 95
1 1 PME04 9 1.89 13.25 17.0 35.8 17 683 747 1.07 96
12 P E04M9 5.00 35.2 45.3 35.8 17 700 766 1.08 99
13 PME04M9 1.97 14.45 17.9 35.8 21 932 988 1.17 93
14 PME04M9 2.40 14.45 17.9 35.8 21 818 829 1.17 98
15 PME04M9 2.70 14.60 17.9 35.8 22 762 789 1.19 98
16 PME04M9 0.62 1.000 5.58 1 1.2 16 214 221 1.09 98
17 PME04M9 0.62 1.000 5.58 1 1.2 16 226 230 1.1 1 99
18 PME04M9 0.62 1.000 5.58 1 1.2 16 165 1 3 1.10 99
19 PME04M9 7.26 1 1.6 65.4 131 16 21 1 223 1.14 100
20 PME04 3 0.55 0.656 1.65 3.30 21 1 10 145 1.06 95
21 PME04M3 2.54 5.097 7.64 15.2 21 215 250 1.13 97
PME04 3 0.22 0.873 0.67 1.33 21 365 410 1.17 95
23 PME04M3 3.41 14.65 10.2 20.4 22 394 452 1.12 93
24 PMEC M3 4.20 13.00 9.79 19.6 22 275 320 1.08 91
25 PME04M3 3.90 14.00 1 1.1 22.3 21 320 382 1.09 93
26 PME04 6 2.51 5.040 15.1 30.2 21 251 261 1 .04 99
27 PME04M6 5.88 7.000 35.3 70.5 13 150 158 1.02 99
28 PME04M6 1.86 7.180 1 1.2 22.4 21 422 443 1 .04 98
29 PME04M6 1.85 7.150 1 1.1 22.3 21 398 441 1.06 98
30 PME04M6 5.00 10.00 30.0 60.0 21 167 187 1 .02 85
31 PME04 6 5.19 1 1.44 31.2 62.4 21 190 236 1.14 97
32 PME04M6 5.21 1 1.48 31.3 62.6 21 268 285 1 .05 99
33 PME04M6 6.21 1 1.50 37.3 74.5 21 227 240 1.05 99
34 PME04M6 6.02 1 1.14 36.1 72.2 21 228 245 1.06 99
35 PME04M6 9.41 7.100 56.8 1 13 6 91 95 1.04 99
36 PME04M6 10.9 7.120 65.7 131 4 77 81 1.03 97
37 PME04 6 3.00 10.95 18.0 36.0 21 397 428 1 .08 98
38 PME04M6 6.87 13.55 41.3 82.5 20 224 248 1.10 98
39 PME04M6 2.14 15.65 12.9 25.7 19 659 738 1.10 91
40 PME04M6 4.83 35.28 29.0 58.0 19 658 748 1.1 1 87
41 PME04M6 1.96 14.33 1 1.8 23.6 19 623 741 1.13 94
42 PME04M6 6.77 13.34 40.6 81.2 20 218 237 1.08 99
Monomer
Initiator Catalyst Ligand MALS MALS
Monomer Time MALS Conversion
Sample Initiator (10"s (10"s (10"5 (Mn (Mp
(h) (PDI) ('HNMR mol) (g) mol) mol) kDa) kDa)
%)
43 PME04M6 3.82 14.72 22.9 45.9 21 375 419 1.10 96
44 PME04M6 2.26 14.08 13.6 27.2 24 539 642 1.13 93
45 PME04M6 I 0. I 12.00 60.7 122 19 148 158 1.07 99
46 PME04M6 10.9 1 1.55 65.8 132 19 134 141 1.06 99
47 PME04M6 13.3 26.25 80.0 160 20 205 230 1.07 99
48 PME04M6 3.00 10.95 18.0 36.0 19 379 409 1.07 97
49 PME04 6 10.9 12.25 69.8 140 19 120 132 1.05 99
50 PME04M6 3.65 13.38 21.9 43.8 19 375 420 1.10 95
51 PME04M6 5.77 1 1.84 34.7 69.3 20 237 255 1.09 99
52 PME04M6 6.07 1 1.96 36.4 72.8 20 225 241 1.05 99
53 PME04M6 10.2 12.08 61.2 122 20 143 151 1.04 99
54 PME04M6 5.80 1 1.44 34.8 69.7 20 238 250 1.08 99
554 PME04M6 2.87 0.508 1.74 1.72 1 79 105 1.18 85
564 PME04M6 2.76 0.489 1.67 1.65 4 64 83 1.12 70
57 VSAME04M3 2.51 5.050 7.53 15.1 22 202 232 1.06 95
58 VSAME04M3 6.97 1.100 20.9 38.4 1 ½ 28 29 1.06 96
59 VSAME04M6 2.55 5.104 15.3 30.6 21 268 287 1 .13 99
60 VSAME04M6 2.98 5.076 17.9 35.8 21 245 252 1.10 99
Monomer (g)/solvent (ml) 0.3
'Monomer (g)/solvent (ml) 0.5
2Monomer (g)/solvent (ml) 0.6
HEA-PC monomer (g)/solvent (ml) 0.5
[0365] The peak molecular weight (Mp), number molecular weight (Mn) and
polydispersity (PDI) were determined/derived by multi-angle light scattering.
Example 12. Deprotcction of furan-protected maleimide functionalized polymers using retro Diels-Alder reaction
[0366] Polymers from Example 1 1 were dissolved in ethanol (20 to 50 % w/w) in a round bottom flask. Ethanol was slowly removed by rotary evaporation to make a thin film on the wal l of the flask. The reaction vessel was placed in an oil bath at a temperature of at least 1 10°C for 90 min under vacuum and then cooled to room temperature.
[0367] Deprotection of the maleimide (or phenyl vinyl sulfone) functional group was monitored by 'HNMR (400MHz, d-methanol):
Before deprotection: 5(ppm):5.2 (2H, -CH-0-CH-) and 6.6 (2H, -CH=CH-).
After deprotection: 5(ppm): 6.95 (2H, -CO-CH=CH-CO).
Example 13. Generation of aldehyde functional groups from diol precursors following polymerization of diol functionalized initiators
[0368] A large excess of sodium periodate dissolved in distilled water was added to a solution of diol functionalized polymer (from Example 10) in distilled water (l Owt. %). The reaction was allowed to proceed at room temperature for 90 min in the dark.
water, 90mn RT The reaction was quenched with an aqueous solution of glycerol (1.5X vs. NalC^) to remove any unreacted sodium periodate. The mixture was stirred at room temperature for 15 min and placed in a dialysis bag (MWCO 14 to 25 kDa) and purified by dialysis at room temperature for one day. Water was then removed by lyophilization and the polymer collected as a dry powder. Quantification of aldehyde functionality was by binding of Cy5.5 hydrazide fluorescent dye (GE Healthcare).
Example 14. Conjugation of recombinant human cytokine to aldehyde functionalized polymers
[0369] The following aldehyde functionalized polymers (from Example 10 following oxidation according to Example 13) were used:
[0370] Conjugation of a 22 kDa recombinant human cytokine with a pi of 5.02 was performed in l OmM Hepes buffer at pH 7 containing 40mM sodium cyanoborohydride. The final protein concentration was l - 1.5mg/ml in the presence of 6-7 fold molar excess of
polymer dissolved in the conjugation buffer. The reaction was carried out at room temperature or 4°C overnight in the dark with gentle mixing using a rocking table.
[0371] The conjugation efficiency was monitored using two methods: (i) a semiquantitative method using SDS-PAGE analysis and (ii) a quantitative method using analytical size exclusion chromatography (SEC) with a ProPac SEC-10 column, 4x300mm from Dionex Corporation.
[0372] Purification of the resulting cytokine-polymer conjugates was carried out using an anion exchange Q Sepharose HP (QHP) column from GE Healthcare. In general, the conjugation reaction (containing approx. 1 mg protein) was diluted at least 4 fold with QHP wash buffer containing 20 mM Tris pl l 7.5 and loaded onto a 2ml QHP column by gravity flow. The column was washed with at least 10 column volumes (CV) of wash buffer.
Elution of conjugate was achieved by eluting the column with wash buffer containing 40- 50mM NaCI for at least 5 CV. The fractions collected were concentrated with an Amicon Ultrafree concentrator with a 1 0 kDa MW cutoff membrane, buffer exchanged into I xPBS pH 7.4 and further concentrated to a final protein concentration of at least l mg/ml. The final conjugates were sterile filtered with a 0.22 micron filter and stored at 4°C before use. The final protein concentration was determined using OD277nm with the cytokine extinction coefficient of 0.81 (l mg/ml solution in a 10mm pathlength cuvette). The conjugate concentration was then calculated by including the MW of the polymer in addition to the protein.
[0373] Characterization of the cytokine-polymer conjugates was performed with the following assays: (i) MW of the conjugate was analyzed using a Shodex 806MHQ column with a Waters 2695 HPLC system equipped with a 2996 Photodiode Array Detector and a Wyatt miniDAWN Treos multi angle light scattering detector. The PDI and Mp were calculated using the ASTRA Software that was associated with the Wyatt MALS detector and the data are presented in the table above. In addition, in all cases the stoichiometry of the conjugates was shown to be 1 to 1 between protein and polymer; (ii) SDS-PAGE analysis using Coomassie Blue stain. The presence of the high MW conjugate and the lack of free protein under both non-reducing and reducing conditions provided a good indication that the protein was covalently conjugated to the polymers. In addition, there was no sign of non- covalent association between the protein and the polymers nor the presence of inter- molecular disulfide bond mediated protein aggregation in the purified protein-polymer conjugate preparations.
Example 15. Conjugation of recombinant human multi-domain protein to maleimide functionalized polymers
[0374] The following maleimide functionalized polymers (from Example 1 1 using HEMA- PC monomer following deprotection according to Example 12) were used:
[0375] Conjugation of maleimide functionalized polymers to recombinant human multi- domain protein was accomplished at polymer to protein molar excess ratio of 3-5x at pH 6. To prepare the conjugation reaction, a polymer stock solution was first prepared in MES buffer pH 6 with 2mM EDTA. The stock solution was degassed and chilled to 4°C, and then mixed with a cold protein stock solution at pH 6. The final protein concentration was at least 2mg/ml. The reaction was allowed to proceed at 4°C in the dark overnight. A conjugation efficiency of over 90% was routinely observed by analytical cation exchange
chromatography. Purification of the conjugate was accomplished with a cation exchange resin at pH 5. The conjugation reaction was first diluted at least 7x in sodium acetate buffer pH 5 and then applied to the cation exchange column. The free polymer remained in the unbound fraction, the conjugate eluted at low salt concentration (50- 100mM NaCl), and the free protein and aggregated protein cluted at a much higher salt concentration (≥150mM NaCl). The conjugate fractions were pooled and buffer exchanged for final analysis. The overall yield was >45%.
[0376] Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, one of skill in the art will appreciate that certain changes and modifications can be practiced within the scope of the appended claims. In addition, each reference provided herein is incorporated by reference in its entirety to the same extent as if each reference was individually incorporated by reference.
Claims
WHAT IS CLAIMED IS: 1. A polymer comprising
at least two polymer arms each comprising a plurality of monomers each
independently selected from the group consisting of acrylate, methacrylate, acrylamide, methacryl amide, styrene, vinyl-pyridine, vinyl-pyrrol idone and vinyl-ester, wherein each monomer comprises a hydrophilic group;
an initiator fragment linked to a proximal end of the polymer arm, wherein the initator moiety is suitable for radical polymerization; and
an end group linked to a distal end of the polymer arm,
wherein at least one of the initiator fragment and the end group comprises a functional agent or a linking group. 2. The polymer of claim 1 , wherein each hydrophilic group comprises a zwitterionic group. 3. The polymer of claim 2, wherein each zwitterionic group comprises phosphorylcholine. 4. The polymer of any of claims 1 to 3, wherein the monomer comprises 2-(acryloyloxyethyI)-2'-(trimethylammoniumethyl) phosphate. 5. The polymer of any of claims 1 to 3, wherein the monomer comprises 2-(methacryloyloxyethyl)-2'-(trimethylammoniumethyl) phosphate (HEMA-PC). 6. The polymer of any of claims 1 to 5, wherein the initiator fragment is linked to the proximal end of from 2 to about 100 polymer arms. 7. The polymer of any of claims 1 to 6, wherein the polymer has a polydispersity index of less than about 2.0. 8. The polymer of any of claims 1 to 6, wherein the initiator fragment is linked to the proximal end of 2, 3, 4, 5, 6, 8, 9 or 12 polymer arms. 9. The polymer of any of claims 1 to 6, wherein the initiator fragment is linked to the proximal end of 9 polymer arms.
10. A conjugate comprising:
at least one polymer comprising:
at least two polymer arms each comprising a plurality of monomers each independently selected from the group consisting of aery late, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone and vinyl-ester, wherein each monomer comprises a hydrophilic group,
an initiator fragment linked to a proximal end of the polymer arm, wherein the initator moiety is suitable for radical polymerization, and
an end group linked to a distal end of the polymer arm; and
at least one functional agent comprising a bioactive agent or a diagnostic agent, linked to the initiator fragment or the end group.
1 1. The conjugate of claim 10, wherein the bioactive agent is selected from the group consisting of a drug, an antibody, an antibody fragment, a single domain antibody, an avimer, an adnectin, diabodies, a vitamin, a cofactor, a polysaccharide, a carbohydrate, a steroid, a lipid, a fat, a protein, a peptide, a polypeptide, a nucleotide, an oligonucleotide, a polynucleotide, and a nucleic acid.
12. The conjugate of claim 10, wherein the diagnostic agent is selected from the group consisting of a radioiabel, a contrast agent, a fluorophore and a dye.
13. The conjugate of any of claims 10 to 12, wherein at least two polymers are linked to the functional agent. 14. The conjugate of any of claims 10 to 13, wherein at least two polymers are linked to the functional agent via proximal reactive groups on the functional agent to create a pseudo-branched structure. 15. The conjugate of any of claims 10 to 14, wherein the conjugate comprises at least two functional agents attached to the polymer.
16. A polymer of the formula:
wherein
R1 is selected from the group consisting of H, L3-A], LG 1 and L/-LG ' ;
each M1 and M2 is independently selected from the group consisting of acrylate, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone and vinyl-ester;
each of G 1 and G2 is each independently a hydrophilic group;
each I and P is independently an initiator fragment, such that the combination of I-P is an initiator, I1, for the polymerization of the polymer of Formula I via radical polymerization;
alternatively, each P is independently selected from the group consisting of H, halogen and Ci_6 alkyl;
each of L1, L2 and L3 is independently a bond or a linker;
each A1 is a functional agent;
each LG 1 is a linking group;
subscripts x and y' are each independently an integer of from 1 to 1000;
each subscript z is independently an integer of from 0 to 10; and
subscript s is an integer of from 2 to 100.
1 7. The olymer of claim 1 6, wherein the polymer has the formula:
wherein
R1 is selected from the group consisting of H, L3-A', LG' and L3-LG' ;
each M1 and M2 is independently selected from the group consisting of acrylate, methacrylate, acrylamide, methaciylamide, styrene, vinyl-pyridine, vinyl-pynolidone and vinyl-ester;
each of ZW and ZW 1 is independently a zwitterionic moiety;
each I and Γ is independently an initiator fragment, such that the combination of I-F is an initiator, i', for the polymerization of the polymer of Formula I via radical polymerization;
alternatively, each F is independently selected from the group consisting of H,
halogen and C] -6 alkyl;
each of L1 , L2 and LJ is a linker;
each A1 is a functional agent;
each LG1 is a linking group;
subscripts x and y1 are each independently an integer of from 1 to 1000;
each subscript z is independently an integer of from 0 to 10; and
subscript s is an integer of from 2 to 100. 18. The polymer of any of claims 16 to 17, wherein each hydrophilic group comprises a zwitterionic group. 19. The polymer of any of claims 16 to 18, wherein each hydrophilic group comprises phosphorylcholine. 20. The polymer of any of claims 16 to 19, wherein subscript s is 2, 3, 4, 5, 6, 8, 9 or 12. 21 . The polymer of any of claims 16 to 1 , wherein subscript s is 6. 22. The polymer of any of claims 16 to 19, wherein subscript s is 9. 23. The polymer of any of claims 16 to 20, wherein the polymer has the formula:
24. The polymer of any of claims 1 6 to 23, wherein the polymer has the formula:
wherein
R2 is selected from the group consisting of H and Ci„6 alkyl; and
PC is phosphorylcholine. 25. The polymer of any of claims 16 to 24, wherein the initiator I has the formula:
LG2— L5-C L4— Γ wherein
each 1' is independently selected from the group consisting of halogen, -SCN, and -NCS;
L4 and V are each independently a bond or a linker, such that one of L4 and L5 is a linker;
C is a bond or a core group;
LG2 is a linking group; and
subscript p is from 1 to 20, wherein when subscript p is 1 , C is a bond, and when subscript p is from 2 to 20, C is a core group. 26. The polymer of any of claims 1 6 to 25, wherein each of the initiators is of the formula:
wherein
each R3 and R4 is independently selected from the group consisting of H, CN and
C] .6 alkyl; and
X is O or H.
ı42
143
wherein PC is phosphorylcholine. 29. The polymer of claim 28, wherein
R1 is selected from the group consisting of LJ-A' , LG 1 and L3-LG ! ;
A1 is selected from the group consisting of a drug, an antibody, an antibody fragment, a single domain antibody, an avimer, an adnectin, diabodies, a vitamin, a cofactor, a polysaccharide, a carbohydrate, a steroid, a lipid, a fat, a protein, a peptide, a polypeptide, a nucleotide, an oligonucleotide, a polynucleotide, a nucleic acid, a radiolabel, a contrast agent, a fluorophore and a dye;
L3 is -(CH2CH2O)M 0-; and
LG 1 is selected from the group consisting of maleimide, acetal, vinyl, allyl, aldehyde, -C(0)0-Ci.6 alkyl, hydroxy, diol, ketal, azide, alkyne, carboxylic acid, and succinimide. 30. The polymer of claim 29, wherein each LG1 is independently selected from the group consisting of:
hydroxy, carboxy, vinyl, vinyloxy, allyl, allyloxy, aldehyde, azide, ethyne, propyne, propargyl, -C(0)OCi_6 alkyl,
31 . An initiator of the formula:
LG— L— C+L— I
1 p
3 wherein
each Γ is independently selected from the group consisting of halogen, -SCN,
5 and -NCS;
6 L4 and L5 are each independently a bond or a linker, such that one of L4 and L5 is a
7 linker;
8 C is a bond or a core group;
9 LG2 is a linking group; and
0 subscript p is an integer from 2 to 100.
-> wherein
4 each R3 and R4 is independently selected from the group consisting of H, CN and 5 Ci_6 alkyl; and
6 X is O or NH.
1 33. The initiator of any of claims 3 1 to 32, wherein C is a core group
2 having the formula:
B, B' and B" are each independently a branching unit;
L, L' and L" are each independently selected from the group consisting of a bond and a linker;
subscript k is 0 or 1 ; and
subscripts n, n' and n" are each independently an integer of 0, 2 or 3, wherein at least one of n, n' and n" is other than 0, and subscript p is equal to the product of n, n' and n". 34. The initiator of claim 33, wherein branching groups B, B' and B" are each inde endently selected from the group consisting of:
35. The initiator of any of claims 33 to 34, wherein linkers L. L' and L" are each independently selected from the group consisting of -Ci-jo alkyl-, -C3- 12
cycloalkyl-, -(C,-8 alkyl)-(C3-,2 cycloalkyl)-(C0-8 alkyl)-, -(CH2)]-i20-,
(-(CH2),-6-0-(CI l2)l-6-)l-!2-, (-(CH2) M-NH-(CH2) ) | ., 2-, (-(CH2)M-0-(CH2)l-4)l-l2-0-5 - (CH2)i-g-CONR-(CH2CH20),.i2-, -(CH2)i-8-CONR-(CH2CH20),.8-NH-(CH2)i.6-, -(CH2),.8- CONR-CH2CH2-(OCH2CH2)o-6-NHCO-(CH2),.3-, -C(0)-(CH2),.6-NHC(0)-(CH2),_6-, -C(O)- (CH2),.6-OC(0)-(CH2),_6-) -C(0)-(CH2),_6-, -OC(0)-(C,.6 alkyl), -NHC(0)-(C,_6 alkyl), (-(CH2),.4-0-(CH2),.4.),.,20-(CH2)M2-, -(CH2),.,2-(C=0)-0-s -(CH2),.,2-0-(C=0)-, -(phenyl
-(C,-6 alkyl)-(C=O)-O-(C0-6 alkyl)-, -(CH2)M 2-(C=0)-0-(CH2)1.12-, -CH(OH)-CH(OH)-(C=0)-0-, -CH(OH)-CH(OH)-( C=0)-NH-, -S-maleimido-(CH2)i-6-, -S-maleimido-(Ci.3
alkyl)-(C=0)-NH-, -S-maleimido-Cdo alky l)-(C5-fi cycloalkyl)-(C0-3 alkyl)-, -(C,.3 alkyl)-(C5-6 cycloalkyl)-(C0-3 alkyl)-(C=0)-0-, -(C,_3 alkyl)-(C5-6 cycloalkyl)-(C0.3 alkyl)-(C=0)-NH-, -S-maleimido-(C0.3alkyl)-phenyl-(Co-3alkyl)-, -(C0.3
alkyl)-phenyl-(C=0)-NH-, -(CH2),.,2-NH-(C=0)-, -(CH2),.,2-(C=0)-NH-, -(phenyl)-(CH2)i
-(CH2)2-(C =0)-0-(CH2)2-0-(C=0)-(CH2)2-(C=0)-NH-, -(C,-6 alkyl)-(C=0)-N-(C,-6 alkyl)-, acetal, ketal, acyloxyalkyl ether, -N=CH-, -(C,-6 alkyl)-S-S-(C0-6 alkyl)- , -(C,-6 alkyl)-S-S-(C,-6 alkyl)-(C=0)-0-, -(C,-6 alkyl)-S-S-(C ,-6
alkyl)-(C=0)-NH-, -S-S-(CH2)i-3-(C=0)-NH-(CH2)i.4-NH-(C=0)- (CH2),.3-, -S-S-(C0-3
alkyl)-(phenyl)-, -S-S-(Ci.3-alkyl)-(phenyl)-(C=0)-NH-(CH2),.5-, -(C,.3
alkyl)-(phenyl)-(C=0)-NH-(CH2),-5-(C=0)-NH-, -S-S-(C,.3-alkyl)-, -(C,_3-alkyl)-(phenyl)-( C=0)-NH-, -0-(C,-C6 alkyl)-S(02)-(C, -6
-NH-(CH2)i-5-, -(CH2),.3-(C=0)-NH-(CH2)1.5-(C=0)-NH-, -(CH2)o-3-(heteroaryl)-(CH2)0-3-, -(CH2)o-3-phenyl-(CH2)0-3-, -N=C(R)-, -(C,_6 alkyl)-C(R)=N-(C ,_6 alkyl)-, -(C,.6 alkyl)-(aryl)-C(R)=N-(C,.6 alkyl)-, -(C,.6 alkyl)-C(R)=N-(aryl)-(C,.6 alkyl)-, and -(Ci.6 alkyl)-O-P(O)(OH)-O-(C0-6 alkyl)-, wherein each R is selected from the group consisting of H, Ci-6 alkyl, C3.6 cycloalkyl, and aryl. 36. The initiator of any of claims 31 to 35, selected from the group consisting of:
a polymer arm independently comprising a plurality of monomers each independently selected from the group consisting of acrylate, methacrylate, acrylamide, methacrylamide, styrene, vinyl-pyridine, vinyl-pyrrolidone and vinyl-ester, wherein each monomer comprises a hydrophilic group;
an initiator fragment linked to a proximal end of the polymer arm, wherein the initator moiety is suitable for radical polymerization; and
an end group linked to a distal end of the polymer arm,
wherein at least one of the initiator fragment and the end group comprises a functional agent or a linking group,
and wherein the polymer has a peak average molecular weight of from about 50kD to about l ,500kD, as measured by light scattering.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201161548146P | 2011-10-17 | 2011-10-17 | |
| US61/548,146 | 2011-10-17 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2013059137A1 true WO2013059137A1 (en) | 2013-04-25 |
Family
ID=48141269
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2012/060301 WO2013059137A1 (en) | 2011-10-17 | 2012-10-15 | High molecular weight zwitterion-containing polymers |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2013059137A1 (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8765432B2 (en) | 2009-12-18 | 2014-07-01 | Oligasis, Llc | Targeted drug phosphorylcholine polymer conjugates |
| US8846021B2 (en) | 2006-02-28 | 2014-09-30 | Oligasis, Llc | Acryloyloxyethylphosphorylcholine containing polymer conjugates and their preparation |
| WO2015035342A2 (en) | 2013-09-08 | 2015-03-12 | Oligasis Llc | Factor viii zwitterionic polymer conjugates |
| CN107428824A (en) * | 2014-06-28 | 2017-12-01 | 科达制药 | PDGF/VEGF dual antagonists |
| US9840553B2 (en) | 2014-06-28 | 2017-12-12 | Kodiak Sciences Inc. | Dual PDGF/VEGF antagonists |
| CN107496978A (en) * | 2017-10-01 | 2017-12-22 | 刘云晖 | A kind of two-component solubility aerogel dressing and preparation method thereof |
| CN109666108A (en) * | 2017-10-13 | 2019-04-23 | 天津大学 | Star polymer pharmaceutical carrier and preparation method thereof |
| US10363290B2 (en) | 2014-10-17 | 2019-07-30 | Kodiak Sciences Inc. | Butyrylcholinesterase zwitterionic polymer conjugates |
| EP3397276A4 (en) * | 2015-12-30 | 2019-12-18 | Kodiak Sciences Inc. | ANTIBODIES AND CONJUGATES THEREOF |
| US11584790B2 (en) | 2017-04-14 | 2023-02-21 | Kodiak Sciences Inc. | Complement factor D antagonist antibodies and conjugates thereof |
| US11912784B2 (en) | 2019-10-10 | 2024-02-27 | Kodiak Sciences Inc. | Methods of treating an eye disorder |
| US12071476B2 (en) | 2018-03-02 | 2024-08-27 | Kodiak Sciences Inc. | IL-6 antibodies and fusion constructs and conjugates thereof |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6852816B2 (en) * | 2000-10-06 | 2005-02-08 | Biocompatibles Uk Limited | Zwitterionic polymers |
| WO2011075736A1 (en) * | 2009-12-18 | 2011-06-23 | Oligasis | Multifunctional zwitterionic polymer conjugates |
-
2012
- 2012-10-15 WO PCT/US2012/060301 patent/WO2013059137A1/en active Application Filing
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6852816B2 (en) * | 2000-10-06 | 2005-02-08 | Biocompatibles Uk Limited | Zwitterionic polymers |
| WO2011075736A1 (en) * | 2009-12-18 | 2011-06-23 | Oligasis | Multifunctional zwitterionic polymer conjugates |
Cited By (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8846021B2 (en) | 2006-02-28 | 2014-09-30 | Oligasis, Llc | Acryloyloxyethylphosphorylcholine containing polymer conjugates and their preparation |
| US11819531B2 (en) | 2009-12-18 | 2023-11-21 | Kodiak Sciences Inc. | Multifunctional zwitterionic polymer conjugates |
| US8765432B2 (en) | 2009-12-18 | 2014-07-01 | Oligasis, Llc | Targeted drug phosphorylcholine polymer conjugates |
| US12214044B2 (en) | 2013-09-08 | 2025-02-04 | Kodiak Sciences Inc. | Factor VIII zwitterionic polymer conjugates |
| US20160199501A1 (en) * | 2013-09-08 | 2016-07-14 | Kodiak Sciences Inc. | Factor viii zwitterionic polymer conjugates |
| JP2016530302A (en) * | 2013-09-08 | 2016-09-29 | コディアック サイエンシーズ インコーポレイテッドKodiak Sciences Inc. | Factor VIII zwitterionic polymer conjugate |
| US10702608B2 (en) * | 2013-09-08 | 2020-07-07 | Kodiak Sciences Inc. | Factor VIII zwitterionic polymer conjugates |
| WO2015035342A3 (en) * | 2013-09-08 | 2015-04-30 | Oligasis Llc | Factor viii zwitterionic polymer conjugates |
| JP2023029851A (en) * | 2013-09-08 | 2023-03-07 | コディアック サイエンシーズ インコーポレイテッド | Factor VIII Zwitterionic Polymer Conjugates |
| JP7232796B2 (en) | 2013-09-08 | 2023-03-03 | コディアック サイエンシーズ インコーポレイテッド | Factor VIII Zwitterionic Polymer Conjugates |
| US11590235B2 (en) | 2013-09-08 | 2023-02-28 | Kodiak Sciences Inc. | Factor VIII zwitterionic polymer conjugates |
| JP2019081765A (en) * | 2013-09-08 | 2019-05-30 | コディアック サイエンシーズ インコーポレイテッドKodiak Sciences Inc. | Factor viii zwitterionic polymer conjugates |
| WO2015035342A2 (en) | 2013-09-08 | 2015-03-12 | Oligasis Llc | Factor viii zwitterionic polymer conjugates |
| EP3760639A1 (en) * | 2013-09-08 | 2021-01-06 | Kodiak Sciences Inc. | Zwitterionic polymer conjugates |
| JP2020183404A (en) * | 2013-09-08 | 2020-11-12 | コディアック サイエンシーズ インコーポレイテッドKodiak Sciences Inc. | Factor VIII zwitterionic polymer conjugate |
| US11155610B2 (en) | 2014-06-28 | 2021-10-26 | Kodiak Sciences Inc. | Dual PDGF/VEGF antagonists |
| EP3161000A4 (en) * | 2014-06-28 | 2018-05-02 | Kodiak Sciences Inc. | Dual pdgf/vegf antagonists |
| CN107428824A (en) * | 2014-06-28 | 2017-12-01 | 科达制药 | PDGF/VEGF dual antagonists |
| US9840553B2 (en) | 2014-06-28 | 2017-12-12 | Kodiak Sciences Inc. | Dual PDGF/VEGF antagonists |
| US11071771B2 (en) | 2014-10-17 | 2021-07-27 | Kodiak Sciences Inc. | Butyrylcholinesterase zwitterionic polymer conjugates |
| US10363290B2 (en) | 2014-10-17 | 2019-07-30 | Kodiak Sciences Inc. | Butyrylcholinesterase zwitterionic polymer conjugates |
| EP3397276A4 (en) * | 2015-12-30 | 2019-12-18 | Kodiak Sciences Inc. | ANTIBODIES AND CONJUGATES THEREOF |
| US11066465B2 (en) | 2015-12-30 | 2021-07-20 | Kodiak Sciences Inc. | Antibodies and conjugates thereof |
| US11584790B2 (en) | 2017-04-14 | 2023-02-21 | Kodiak Sciences Inc. | Complement factor D antagonist antibodies and conjugates thereof |
| CN107496978A (en) * | 2017-10-01 | 2017-12-22 | 刘云晖 | A kind of two-component solubility aerogel dressing and preparation method thereof |
| CN107496978B (en) * | 2017-10-01 | 2020-04-17 | 山东朱氏药业集团有限公司 | Double-component soluble hydrogel dressing and preparation method thereof |
| CN109666108A (en) * | 2017-10-13 | 2019-04-23 | 天津大学 | Star polymer pharmaceutical carrier and preparation method thereof |
| CN109666108B (en) * | 2017-10-13 | 2021-04-06 | 天津大学 | Star polymer drug carrier and preparation method thereof |
| US12071476B2 (en) | 2018-03-02 | 2024-08-27 | Kodiak Sciences Inc. | IL-6 antibodies and fusion constructs and conjugates thereof |
| US11912784B2 (en) | 2019-10-10 | 2024-02-27 | Kodiak Sciences Inc. | Methods of treating an eye disorder |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20240293585A1 (en) | High molecular weight zwitterion-containing polymers | |
| US11819531B2 (en) | Multifunctional zwitterionic polymer conjugates | |
| WO2013059137A1 (en) | High molecular weight zwitterion-containing polymers | |
| HK40077471A (en) | High molecular weight zwitterion-containing polymers | |
| HK40015590A (en) | High molecular weight zwitterion-containing polymers | |
| HK40015590B (en) | High molecular weight zwitterion-containing polymers | |
| HK40030916A (en) | Multifunctional zwitterionic polymer conjugates | |
| HK40030916B (en) | Multifunctional zwitterionic polymer conjugates | |
| HK1247828B (en) | Multifunctional zwitterionic polymer conjugates |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12842153 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 12842153 Country of ref document: EP Kind code of ref document: A1 |