[go: up one dir, main page]

WO2013017753A1 - Dispositif de mesure, dans un plan prédéfini, du positionnement d'un matériel déposé au fond de l'eau et procédé associé - Google Patents

Dispositif de mesure, dans un plan prédéfini, du positionnement d'un matériel déposé au fond de l'eau et procédé associé Download PDF

Info

Publication number
WO2013017753A1
WO2013017753A1 PCT/FR2012/000329 FR2012000329W WO2013017753A1 WO 2013017753 A1 WO2013017753 A1 WO 2013017753A1 FR 2012000329 W FR2012000329 W FR 2012000329W WO 2013017753 A1 WO2013017753 A1 WO 2013017753A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
water
measuring
positioning
matrix
Prior art date
Application number
PCT/FR2012/000329
Other languages
English (en)
Inventor
Thierry VAILLANT
Hubert LÉON
Original Assignee
Etat Français Represente Par Le Delegue General Pour L'armement
Actris
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/824,629 priority Critical patent/US20130208263A1/en
Application filed by Etat Français Represente Par Le Delegue General Pour L'armement, Actris filed Critical Etat Français Represente Par Le Delegue General Pour L'armement
Publication of WO2013017753A1 publication Critical patent/WO2013017753A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G9/00Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines
    • B63G9/06Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines for degaussing vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/783Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems
    • G01S3/784Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems using a mosaic of detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • G01S5/163Determination of attitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys

Definitions

  • Device for measuring, in a predefined plane, the positioning of a material deposited at the bottom of the water and associated process.
  • the present invention relates to the field of apparatus for measuring magnetic quantities and more particularly to a device for measuring, in a predefined plane, the positioning of a material deposited at the bottom of the water.
  • Vessels and underwater vehicles are regularly monitored on measurement polygons in order to measure their levels of acoustic, magnetic and electromagnetic indiscretion, which make them potentially detectable by opposing forces and mines.
  • These polygons are commonly composed of a set of sensors respectively acoustic, magnetic and electromagnetic placed on the bottom or suspended in the water column, connected to a system of recording and analysis of signals by means of a set cables and transmission systems.
  • the boat to be studied moves in the vicinity of the sensors of the polygon.
  • the relative position of the boat is measured and recorded relative to those of the polygon sensors at the same time as the signals coming from the sensors of the polygon.
  • the positions and signals are analyzed using calculators and processing software that characterize the sounds radiated by the boat and measure its level of indiscretion. These analyzes are the object of reports which are exploited by the various actors concerned.
  • the measurement polygons are usually fixed and consist of sensors placed on bases at the bottom of the water or attached by cables to the seabed.
  • the measurements are therefore carried out in an often unfavorable environment due in particular to the Shallow depth, proximity to sources of acoustic, electromagnetic and magnetic noise or parasitic crossings from other vessels.
  • ONFIRMATION The immobility of the measurement polygons creates a functional and geographical dependence between the ship and the control polygon. This dependence may extend over time depending on the weather and technical hazards (equipment failures), which lead to a reduction in the operational availability of the vessel during the control period.
  • the polygons are a heavy infrastructure, expensive and difficult to implement and maintain requiring the presence of divers, many sensors, many submarine cables, shore facilities, bans navigation in the zone, a temporary armament by personnel to move on site. They also require a large area of facilities, military sites protected in front of the sea with underwater facilities and therefore a zone of the reserved coastline.
  • the measurement results for the same boat can vary according to the chosen polygon, due in particular to the operating modes and local environmental conditions like the thickness of the water slide , the form and nature of funds, ambient noise levels, disparities in equipment and procedures used.
  • polygons can not be transported and deployed in an operational theater. Following a damage, damage, or after a long journey to join a battle theater, a boat can not know its new level of indiscretion for not being able to return to its measurement range: it must make assumptions about the threat that he incurs.
  • patent application FR2679514 describes a portable station for measuring and adjusting the magnetic signature of a naval vessel comprising a plurality of magnetic sensors interconnected so as to form a deformable string intended to be deposited at the bottom of the sea. and to whom are associated data transmission means that it provides having an antenna disposed on a buoy weighted outside the water.
  • the positioning of the magnetic sensors with respect to the boat is determined by means of pressure sensors associated with the magnetic sensors, the calculation of the second derivative of the magnetic field and by a tracking method using optical, acoustic or magnetic sighting means.
  • This portable station also has a number of disadvantages. It requires on the one hand the presence of a shallow bottom, therefore the presence of the coastline and therefore an often unfavorable environment, and on the other hand the presence of divers to deposit the string of magnetic sensors. It also requires the determination of the relative positioning of each of the magnetic sensors, which may lead to the evaluation of an erroneous magnetic signature if the positioning is not precisely determined. However, if on the surface an absolute positioning is centimeter, it is of the order of one meter as soon as the depth exceeds 10 meters and for the evaluation of the magnetic signature of a naval vessel, such an error on the positioning of sensors leads to obtaining an erroneous measured magnetic signature.
  • This device comprises a submerged laser transmitter and an underwater buoy electrically powered and controlled via a cable by a ground station.
  • the transmitter is positioned at the bottom of the water and able to emit a vertical radiation while the buoy has a first lower portion intended at least partly to be immersed and having a lower face disposed facing the bottom of the water when the buoy floats, this lower face being at least partly covered by a matrix of photoreceptor sensors capable of detecting the laser radiation emitted by said emitter.
  • the buoy further comprises propulsion means and buoy position control means able to maintain said array of photodetectors vertically above said laser radiation from the measurement of the intensity of the radiation received by the matrix of photodetectors. and by action on the propulsion means.
  • Such a device does not make it possible to determine the geographical position of the submerged laser transmitter or the underwater buoy.
  • the object of the invention is to propose a device and an associated method for measuring the positioning of a material deposited at the bottom of the water, preferably at a depth of less than 30 m, making it possible to position it with an uncertainty of measurement of the order of that obtained on the surface.
  • the solution provided is a device for measuring the positioning of a material deposited at the bottom of the water, characterized in that it comprises a submergible laser transmitter and a floating craft, such as for example a buoy or a boat, with a first part lower portion intended at least partly to be immersed and having a lower face disposed facing the bottom of the water when the craft floats on the water, this lower face being at least partially covered by a matrix of photoreceptor sensors capable of detecting the laser radiation emitted by said transmitter, this machine further comprising satellite positioning means, in latitude and longitude.
  • a submergible laser transmitter and a floating craft, such as for example a buoy or a boat, with a first part lower portion intended at least partly to be immersed and having a lower face disposed facing the bottom of the water when the craft floats on the water, this lower face being at least partially covered by a matrix of photoreceptor sensors capable of detecting the laser radiation emitted by said transmitter, this machine further comprising satellite positioning means, in latitude
  • a device comprises means for calculating the position of the laser transmitter from the signals from the photoreceptors and the satellite positioning means.
  • Equipment positioning is defined as latitude and longitude relative to the equator and the Greenwich meridian, or relative positioning relative to a land or sea reference station, such as a boat or vessel.
  • the machine comprises means for processing the signals emitted by the photoreceptor matrix, means for processing the signals emitted by the satellite positioning means, these processing means each comprising a clock, these clocks being synchronized between them.
  • the machine comprises, on the one hand, means for measuring its inclination and of its orientation constituted for example by a compass and a 2-axis inclinometer and, secondly, means for calculating the position of the laser transmitter from the signals from the photoreceptors, those from the satellite positioning means and those from the measuring means of the tilt and orientation of the craft.
  • the apparatus comprises means for processing the signals emitted by the photoreceptor matrix, means for processing the signals emitted by the satellite positioning means and means for processing the signals emitted by the measurement means of the photoreceptor matrix. inclination and orientation of the machine, these processing means each having a clock, these clocks being synchronized with each other.
  • the machine comprises means for visualizing the detection by said photoreceptor matrix of the radiation emitted by the laser emitter, for example constituted by a bulb whose ignition is controlled by said processing means.
  • the immersible laser transmitter is secured to a support able to hold it in a fixed position, this support being able for example to comprise a pendulum and to be able to hold it so that the laser emission is emitted along a vertical axis.
  • a depth sensor is associated with the transmitter or its support.
  • the invention also relates to a method for measuring, in a predefined plane, the positioning of a material deposited at the bottom of the water capable of being implemented by a device comprising a submergible laser transmitter and a floating craft, such as a buoy. or a boat, with a first lower part intended at least partly to be immersed and having a lower face disposed opposite the bottom of the water when the craft floats on the water, this lower face being at least partly covered by a matrix of photoreceptor sensors able to detect the laser radiation emitted by said emitter, this apparatus further comprising means for positioning, in latitute and longitude, by satellite, and means for calculating the position of the laser emitter from the signals from photoreceptors and satellite positioning means, characterized in that it comprises the following steps:
  • This method can be used more particularly in calm water such as on a lake in the absence of wind.
  • the invention also relates to a method for measuring, in a predefined plane, the positioning of a material deposited at the bottom of the water capable of being implemented by a device comprising a submergible laser transmitter and a floating apparatus, such as a buoy. or a boat, that floating craft possessing
  • a first lower part intended at least partly to be immersed and comprising a lower face arranged opposite the bottom of the water when the machine floats on the water, this lower face being at least partially covered by a matrix of photoreceptor sensors capable of detecting the laser radiation emitted by said emitter,
  • This process can be used both in calm water and in rough water as in the sea or in the lake with wind generating waves.
  • FIG. 1 shows a general diagram of a device according to an alternative embodiment of the invention
  • FIG. 2 shows a diagram of a first assembly implemented in the context of an alternative embodiment of the invention
  • FIG. 3a represents a second assembly implemented in the context of this variant embodiment of the invention
  • FIG. 3b shows a second set implemented in the context of a second embodiment of the invention.
  • FIG. 4 shows an example of a method for implementing the invention that makes it possible to obtain absolute positioning of an immersed material.
  • Figure 1 shows a general diagram of a device 1 according to an alternative embodiment of the invention.
  • This device 1 comprises a first assembly 19 comprising a laser transmitter and a second assembly 20 comprising a buoy. These sets are independent, that is to say unrelated to each other by material means.
  • Figure 2 shows a diagram of the first set 19 implemented in the context of an alternative embodiment of the invention.
  • This first set 19 comprises a submersible laser transmitter 2 and mounted on a support 3.
  • This support 3 comprises a tubular element 4 comprising adjustable stabilizing feet 5, and a pendulum 12 on which the laser transmitter 2 is fixed.
  • the laser emitter is able to emit radiation in a vertical direction, even if the X axis of the tubular support is not arranged perfectly vertically.
  • Figure 3a shows a second set implemented in the context of a first embodiment of the invention.
  • This second assembly 20 comprises a buoy 6 having a first lower portion 7 intended at least partly to be submerged and an upper portion 8 intended at least partly to be emerged when the buoy 6 floats on the water, said first portion 7 comprising a lower face 9 disposed opposite the bottom of the water when the buoy floats, this lower face being at least partly covered by a matrix 10 of photoreceptor sensors able to detect the laser radiation emitted by said immersible emitter 2.
  • This matrix 10 of photoreceptor sensors is connected by a wired link 17 to processing means 11 of the signals emitted by each of these sensors.
  • This second set also comprises means 13, 14 for measuring the inclination and the orientation of the buoy 6 constituted by a compass 13 and a 2-axis inclinometer 14 respectively connected by wire links 18 and 21 to said processing means. 11.
  • This second set further comprises satellite positioning means of the differential GPS type connected by wire connection to said processing means 11.
  • the processing means 11 comprise a clock and means for synchronizing this clock with that of the satellite positioning means 15. They furthermore comprise means for calculating the position of the laser transmitter from the signals coming from the photoreceptors, from those coming from the means of measuring the inclination and orientation of the buoy and those from the satellite positioning means.
  • the upper portion 8 of the buoy 6 has two handles 26 to facilitate its launching and hoisting aboard a ship. It further comprises a green colored bulb 27 connected on the one hand to a battery 28 for its power supply and on the other hand to said processing means 11, the latter being able to control the ignition of said bulb 27 when the matrix photoreceptor sensors detects the presence of said laser radiation.
  • the battery 28 also supplies the processing means 11 as well as the photoreceptor matrix 10, the means 13, 14 for measuring the inclination and the orientation of the buoy 6 as well as the satellite positioning means 15.
  • the buoy also comprises floats 32 further ensuring protection of the array of photodetector sensors.
  • FIG. 3b represents a second set implemented in the context of a second variant embodiment of the invention.
  • This second assembly 20 comprises a buoy 6 having a first lower portion 7 intended at least partly to be submerged and an upper portion 8 intended at least partly to be emerged when the buoy 6 floats on the water, said first portion 7 comprising a lower face 9 disposed opposite the bottom of the water when the buoy floats, this lower face being at least partly covered by a matrix 10 of photoreceptor sensors able to detect the laser radiation emitted by said immersible emitter 2.
  • This matrix 10 of photoreceptor sensors is connected by a wired link 17 to processing means 10 'of the signals emitted by each of these photoreceptor sensors.
  • This second set also comprises means 13, 14 for measuring the inclination and the orientation of the buoy 6 as well as the respective processing means 13 'and 14' of the signals from these measuring means.
  • These can for example be constituted by a compass 13 and a 2-axis inclinometer 14.
  • This second set furthermore comprises satellite positioning means of the differential GPS type as well as processing means 15 for the signals coming from these positioning means.
  • the processing means 10 ', 13', 14 '15' of the signals coming respectively from the matrix of photodetectors 10, means 13, 14 for measuring the inclination and the orientation of the buoy 6 and positioning means by satellite 15 are connected, respectively by wire links 17, 18, 21 and 22 to means 16 for calculating the position of the laser transmitter from the signals from the photoreceptors, those from the satellite positioning means and those from the means for measuring the inclination and orientation of the machine.
  • each of said processing means comprises a clock and these clocks are synchronized with each other.
  • the upper portion 8 of the buoy 6 has two handles 26 to facilitate its launching and hoisting aboard a ship. It further comprises a green colored bulb 27 connected on the one hand to a battery 28 for its power supply and on the other hand to said processing means 10 'of signals from the photoreceptor sensors, the latter being able to control the ignition of said bulb 27 when the array of photoreceptor sensors detects the presence of said laser radiation.
  • the battery 28 also supplies the various processing means as well as the photoreceptor matrix 10, the means 13, 14 for measuring the inclination and the orientation of the buoy 6 as well as the satellite positioning means 15.
  • the buoy also comprises floats 32 further ensuring protection of the array of photodetector sensors.
  • FIG. 4 shows an example of a method of implementing the invention for obtaining an absolute positioning of a submerged material.
  • a material 21 is deposited at the bottom of the water.
  • the first set 19 is positioned on the material so that the X axis of the support is directed substantially vertically upwardly.
  • Line 24 represents the surface of the water while line 25 represents the bottom of the water.
  • the second set 20 comprising the buoy 6 floats on the water, a first portion located below the waterline being immersed and a second portion being emerged.
  • the satellite positioning means of the differential GPS type comprise, in known manner, the means 15, satellites 30 of which only two are represented and a station on the ground 31 but which is not necessary in the case where the phase corrections of the satellites coming from a station on land are sent by GSM telephone network.
  • the first set 19 is immersed and the support of the transmitter is positioned on said material whose position in the reference plane, namely the surface of the water, is sought and, if possible at its center and so that the transmitter is able to emit laser radiation vertically towards the surface of the water. The emission of the laser radiation is then triggered.
  • the second set 20 is then put in the water and moved until the photoreceptor sensors detect the laser radiation.
  • the processing means 11 calculate the position of said equipment according to:
  • the units of the positioning of the material can for example be in latitude and longitude.
  • the method for determining the position of the laser transmitter can be as follows:
  • this photoreceptor located by its position on the photoreceptor matrix, is associated with a synchronized DGPS point on the instant T calculated by the processing means on the basis of the data taken. account, namely the position of the illuminated photoreceptor, the orientation and inclination of the buoy, the GPS position of the second set.
  • the processing means implement the least squares method to determine the TRUE point, best estimate of the position calculated from this population.
  • said method further calculates the measurement uncertainty. For this, assuming that the TRUE point is the reference and using only the data cited above at successive times t, t + n, t + n + 1 ..., the processing means calculate the THEORICAL lighting of the matrix at each moment, so the position of the photoreceptor to be illuminated at each of these moments.
  • the processing means calculated two results: the actual lighting (lighting of the photoreceptors during the measurement) and theoretical lighting that must be linked by the relation
  • the uncertainty of the complete device is the uncertainty of the device's performance, deliberately enlarged uncertainty which corresponds to a most unfavorable situation and makes it possible to guarantee a general measurement result.
  • the accuracy of the positioning by differential GPS is of the order of 5 to 10 cm and, with a device according to the invention, the positioning of the transmitter Laser is therefore of this order whereas the precision is metric for the positioning of the buoy with an autonomous GPS device.
  • the processing means 11 control the ignition of the bulb 28.
  • the laser transmitter is associated with a depth sensor and submarine emission means of this signal towards the buoy 6 and / or a ship.
  • These emission means may be acoustic means. These means may furthermore emit a signal at a certain frequency.
  • Means for detecting this signal and determining its direction at least in heading are associated with the buoy and / or said vessel.
  • the buoy may be equipped with propulsion means capable of directing it along said course while in the second case, the ship may be directed in this direction and the buoy deposited at the detection point of the emission said signal.
  • these acoustic detection means have a precision, at best, metric while the invention, with the use of DGPS means makes it possible to obtain a decimetric precision on the position of the laser transmitter, thus 10 times better .
  • the means for measuring the inclination and the orientation of the second assembly 20 may for example consist of gyroscopes.
  • the processing means can be deported to a ship.
  • the shape of the carrier of the transmitter may be any, provided that the position of the transmitter is stable.
  • transmission means and an antenna may for example be associated with the processing means to allow the transmission of the calculated position of said equipment to mobile or fixed receiving means may for example be on board a boat.
  • the buoy can be replaced for example by a boat propelled or not.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

La présente invention concerne le domaine des appareils pour la mesure des grandeurs magnétiques et a plus particulièrement pour objet un dispositif de mesure, dans un plan prédéfini, du positionnement d'un matériel déposé au fond de l'eau caractérisé en ce qu'il comporte : un émetteur laser immergeable; une bouée (6) comportant une première partie inférieure (7) destinée au moins en partie à être immergée et une partie supérieure (8) destinée au moins en partie à être émergée lorsque la bouée (6) flotte sur l'eau, ladite première partie (7) comportant une face inférieure (9) disposée en regard du fond de l'eau lorsque la bouée flotte, cette face inférieure (9) étant au moins en partie recouverte par une matrice de capteurs photorécepteurs (10) aptes à détecter le rayonnement laser émis par ledit émetteur.

Description

Dispositif de mesure, dans un plan prédéfini, du positionnement d'un matériel déposé au fond de l'eau et procédé associé.
La présente invention concerne le domaine des appareils pour la mesure des grandeurs magnétiques et a plus particulièrement pour objet un dispositif de mesure, dans un plan prédéfini, du positionnement d'un matériel déposé au fond de l'eau.
La discrétion des bâtiments de surface et sous-marins est une contrainte opérationnelle forte contre une menace d'interception adverse et contre la menace des mines. La mesure des indiscrétions commises est généralisée dans toutes les marines et standardisée au sein de l'OTAN par les STANAGS.
Les navires et les engins sous-marins, tous désignés dans ce qui suit par le terme générique de bateau, sont régulièrement contrôlés sur des polygones de mesure dans le but de mesurer leurs niveaux d'indiscrétion acoustique, magnétique et électromagnétique, qui les rendent potentiellement détectables par les forces adverses et les mines.
Ces polygones sont communément composés d'un ensemble de capteurs respectivement acoustiques, magnétiques et électromagnétiques posés sur le fond ou en suspension dans la colonne d'eau, reliés à un système d'enregistrement et d'analyse des signaux au moyen d'un ensemble de câbles et de systèmes de transmission.
Selon l'état de l'art, lors d'une opération de contrôle, le bateau à étudier se déplace au voisinage des capteurs du polygone. Pendant son déplacement, on mesure et on enregistre la position relative du bateau par rapport à celles des capteurs du polygone en même temps que les signaux issus des capteurs du polygone. Les positions et les signaux sont analysés au moyen de calculateurs et de logiciels de traitement qui caractérisent les bruits rayonnés par le bateau et mesurent son niveau d'indiscrétion. Ces analyses font l'objet de rapports qui sont exploités par les différents acteurs concernés.
Cependant, de telles installations présentent de nombreux inconvénients. Ainsi, les polygones de mesure sont le plus souvent fixes et constitués de capteurs posés sur des socles au fond de l'eau ou attachés par des câbles au fond de la mer. Les mesures sont donc réalisées dans un environnement souvent défavorable dû notamment à la faible profondeur, à la proximité de sources de bruit acoustique, électromagnétique et magnétique ou aux passages parasites d'autres bateaux.
Figure imgf000003_0001
ONFIRMÂTION L'immobilité des polygones de mesure crée une dépendance fonctionnelle et géographique entre le navire et le polygone de contrôle. Cette dépendance peut s'étendre dans le temps en fonction des aléas météorologiques et techniques (pannes de matériels), qui entraînent une réduction de la disponibilité opérationnelle du bateau pendant la durée du contrôle.
De plus, les polygones constituent une infrastructure lourde, coûteuse et difficile à mettre en œuvre et à maintenir nécessitant la présence de plongeurs, de nombreux capteurs, de nombreux câbles sous-marins, d'installations à terre, d'interdictions de navigation dans la zone, un armement temporaire par du personnel à déplacer sur site. Ils nécessitent aussi une surface d'installations importante, des sites militaires protégés devant la mer avec des installations sous-marines et donc une zone du littoral réservée.
De surcroît, chaque polygone étant installé sur un site géographique spécifique, les résultats de mesure pour un même bateau peuvent varier selon le polygone choisi, en raison notamment des modes opératoires et conditions d'environnement locales comme l'épaisseur de la lame d'eau, la forme et la nature des fonds, les niveaux des bruits ambiants, les disparités des matériels et des procédures employées.
Par ailleurs les polygones ne peuvent être transportés et déployés dans un théâtre opérationnel. Suite à une avarie, à un endommagement, ou après un long trajet pour rejoindre un théâtre de bataille, un bateau ne peut connaître son nouveau niveau d'indiscrétion faute de pouvoir repasser sur son polygone de mesure : il doit faire des hypothèses sur la menace qu'il encoure.
En outre, certains polygones ne peuvent pas physiquement réaliser des mesures en champ lointain, en raison de l'environnement local (relief et proximité des fonds, espacement insuffisant des capteurs, réverbération). L'indiscrétion en champ lointain doit dans ce cas être calculée à partir de mesures incertaines réalisées en champ proche et de modèles introduisant des incertitudes supplémentaires mal maîtrisées.
On connaît toutefois la demande de brevet FR2679514 qui décrit une station portable de mesure et de réglage de la signature magnétique d'un bâtiment naval comportant plusieurs capteurs magnétiques reliés entre eux de façon à former un chapelet déformable destiné à être déposé au fond de la mer et auxquels sont associés des moyens de transmission des données qu'il fournissent comportant une antenne disposée sur une bouée lestée à l'extérieur de l'eau. Le positionnement des capteurs magnétiques par rapport au bateau est déterminé à l'aide de capteurs de pression associés aux capteurs magnétiques, au calcul de la dérivée seconde du champ magnétique et par une méthode de tracking utilisant des moyens de visée optiques, acoustiques ou magnétiques.
Cette station portable, comporte aussi un certain nombre d'inconvénients. Elle nécessite d'une part la présence d'un fond peu profond, donc la présence du littoral et donc d'un environnement souvent défavorable, et d'autre part la présence de plongeurs pour déposer le chapelet de capteurs magnétiques. Elle nécessite aussi la détermination du positionnement relatif de chacun des capteurs magnétiques ce qui peut conduire à l'évaluation d'une signature magnétique erronée si le positionnement n'est pas déterminé précisément. Or, si en surface un positionnement en absolu est centimétrique, il est de l'ordre du mètre dès que la profondeur dépasse les 10 mètres et pour l'évaluation de la signature magnétique d'un bâtiment naval, une telle erreur sur le positionnement des capteurs conduit à l'obtention d'une signature magnétique mesurée erronée.
Par ailleurs, on connaît l'abrégé du brevet JP63284418 qui décrit un dispositif d'analyse de données marines et, plus particulièrement, un dispositif d'asservissement de la position d'une bouée sous-marine par rapport à celle d'un émetteur laser immergé.
Ce dispositif comporte un émetteur laser immergeable et une bouée sous- marine alimentés électriquement et commandés, via un câble, par une station terrestre. L'émetteur est positionné au fond de l'eau et apte à émettre un rayonnement vertical tandis que la bouée comporte une première partie inférieure destinée au moins en partie à être immergée et possédant une face inférieure disposée en regard du fond de l'eau lorsque la bouée flotte, cette face inférieure étant au moins en partie recouverte par une matrice de capteurs photorécepteurs aptes à détecter le rayonnement laser émis par ledit émetteur. La bouée comporte en outre des moyens de propulsion et des moyens de commande de la position de la bouée aptes à maintenir ladite matrice de photodétecteurs à la verticale dudit rayonnement laser à partir de la mesure de l'intensité du rayonnement reçu par la matrice de photodétecteurs et par action sur les moyens de propulsion. Un tel dispositif ne permet pas de déterminer la position géographique ni de l'émetteur laser immergé ni de la bouée sous-marine.
Le but de l'invention est de proposer un dispositif et un procédé associé de mesure du positionnement d'un matériel déposé au fond de l'eau, préférentiellement à une profondeur inférieure à 30m, permettant de le positionner avec une incertitude de mesure de l'ordre de celle obtenue en surface.
La solution apportée est un dispositif de mesure du positionnement d'un matériel déposé au fond de l'eau caractérisé en ce qu'il comporte un émetteur laser immergeable et un engin flottant, tel par exemple une bouée ou une embarcation, avec une première partie inférieure destinée au moins en partie à être immergée et comportant une face inférieure disposée en regard du fond de l'eau lorsque l'engin flotte sur l'eau, cette face inférieure étant au moins en partie recouverte par une matrice de capteurs photorécepteurs aptes à détecter le rayonnement laser émis par ledit émetteur, cet engin comprenant, en outre, des moyens de positionnement par satellite, en latitude et longitude.
Selon une caractéristique particulière, un dispositif selon l'invention comporte des moyens de calcul de la position de l'émetteur laser à partir des signaux issus des photorécepteurs et des moyens de positionnement par satellite.
Par positionnement du matériel, il faut entendre un positionnement en latitude et longitude par rapport à l'équateur et au méridien de Greenwich ou un positionnement relatif par rapport à une station de référence terrestre ou maritime, telle une embarcation ou un navire.
Selon une caractéristique particulière, l'engin comporte des moyens de traitement des signaux émis par la matrice de photorécepteurs, des moyens de traitement des signaux émis par les moyens de positionnement par satellite, ces moyens de traitement comportant chacun une horloge, ces horloges étant synchronisées entre elles.
Selon une autre caractéristique permettant d'améliorer la précision du positionnement lorsque la surface de l'eau est agitée, ce qui est le cas généralement en mer avec les vagues, l'engin comporte d'une part des moyens de mesure de son inclinaison et de son orientation constitués par exemple par un compas et un inclinomètre 2 axes et, d'autre part, des moyens de calcul de la position de l'émetteur laser à partir des signaux issus des photorécepteurs, de ceux issus des moyens de positionnement par satellite et de ceux issus des moyens de mesure de l'inclinaison et de l'orientation de l'engin.
Selon une caractéristique, l'engin comporte des moyens de traitement des signaux émis par la matrice de photorécepteurs, des moyens de traitement des signaux émis par les moyens de positionnement par satellite et des moyens de traitement des signaux émis par les moyens de mesure de l'inclinaison et de l'orientation de l'engin, ces moyens de traitement comportant chacun une horloge, ces horloges étant synchronisées entre elles.
Selon une autre caractéristique permettant à une personne à terre ou à bord d'une embarcation de savoir lorsque l'engin a détecté le rayonnement laser, l'engin comporte des moyens de visualisation de la détection par ladite matrice de photorécepteurs du rayonnement émis par l'émetteur laser, par exemple constitués par une ampoule dont l'allumage est commandé par lesdits moyens de traitement.
Selon une autre caractéristique permettant d'améliorer la précision du positionnement, l'émetteur laser immergeable est solidaire d'un support apte à le maintenir dans une position fixe, ce support pouvant par exemple comporter un pendule et être apte à le maintenir de sorte que l'émission laser soit émise selon un axe vertical.
Selon une caractéristique additionnelle, un capteur de profondeur est associé à l'émetteur ou à son support.
L'invention concerne aussi un procédé de mesure, dans un plan prédéfini, du positionnement d'un matériel déposé au fond de l'eau apte à être mis en œuvre par un dispositif comportant un émetteur laser immergeable et un engin flottant, tel une bouée ou une embarcation, avec une première partie inférieure destinée au moins en partie à être immergée et comportant une face inférieure disposée en regard du fond de l'eau lorsque l'engin flotte sur l'eau, cette face inférieure étant au moins en partie recouverte par une matrice de capteurs photorécepteurs aptes à détecter le rayonnement laser émis par ledit émetteur, cet engin comprenant, en outre, des moyens de positionnement, en latitute et longitude, par satellite, et des moyens de calcul de la position de l'émetteur laser à partir des signaux issus des photorécepteurs et des moyens de positionnement par satellite, procédé caractérisé en ce qu'il comporte les étapes suivantes :
- immerger et positionner un support d'un émetteur laser et/ou ce dernier sur ledit matériel de sorte qu'il soit apte à émettre un rayonnement laser verticalement,
- déclencher l'émission laser,
- déplacer l'engin jusqu'à ce que la matrice de photodéctecteurs détecte ledit rayonnement laser,
- calculer la position de l'émetteur laser à partir des signaux issus des photorécepteurs et des moyens de positionnement par satellite
Ce procédé est utilisable plus particulièrement en eau calme comme par exemple sur un lac en l'absence de vent.
L'invention concerne aussi un procédé de mesure, dans un plan prédéfini, du positionnement d'un matériel déposé au fond de l'eau apte à être mis en oeuvre par un dispositif comportant un émetteur laser immergeable et un engin flottant, tel une bouée ou une embarcation, cet engin flottant possédant :
- une première partie inférieure destinée au moins en partie à être immergée et comportant une face inférieure disposée en regard du fond de l'eau lorsque l'engin flotte sur l'eau, cette face inférieure étant au moins en partie recouverte par une matrice de capteurs photorécepteurs aptes à détecter le rayonnement laser émis par ledit émetteur,
- des moyens de positionnement, par satellite, en latitude et longitude,
- des moyens de mesure de son inclinaison et de son orientation constitués par exemple par un compas et un inclinomètre 2 axes et, d'autre part,
- des moyens de calcul de la position de l'émetteur laser à partir des signaux issus des photorécepteurs, de ceux issus des moyens de positionnement par satellite et de ceux issus des moyens de mesure de l'inclinaison et de l'orientation de l'engin,
procédé caractérisé en ce qu'il comporte les étapes suivantes : - immerger et positionner un support d'un émetteur laser et/ou ce dernier sur ledit matériel de sorte qu'il soit apte à émettre un rayonnement laser verticalement,
- déclencher l'émission laser,
- déplacer l'engin jusqu'à ce que la matrice de photodéctecteurs détecte ledit rayonnement laser,
- calculer la position de l'émetteur laser à partir des signaux issus des photorécepteurs, de ceux issus des moyens de positionnement par satellite et de ceux issus des moyens de mesure de l'inclinaison et de l'orientation de l'engin,
Ce procédé est utilisable aussi bien en eau calme qu'en eau agitée comme en mer ou en lac avec du vent générant des vagues.
D'autres avantages et caractéristiques apparaîtront dans la description d'un mode particulier de réalisation de l'invention au regard des figures annexées parmi lesquelles :
- La figure 1 présente un schéma général d'un dispositif selon une variante de réalisation de l'invention,
- La figure 2 montre un schéma d'un premier ensemble mis en œuvre dans le cadre d'une variante de réalisation de l'invention
- La figure 3a représente un second ensemble mis en œuvre dans le cadre de cette variante de réalisation de l'invention,
- La figure 3b représente un second ensemble mis en œuvre dans le cadre d'une seconde variante de réalisation de l'invention.
- La figure 4 montre un exemple de procédé de mise en œuvre de l'invention permettant l'obtention d'un positionnement absolu d'un matériel immergé.
La figure 1 présente un schéma général d'un dispositif 1 selon une variante de réalisation de l'invention.
Ce dispositif 1 comprend un premier ensemble 19 comportant un émetteur laser et un second ensemble 20 comportant une bouée. Ces ensembles sont indépendants, c'est-à-dire non reliés entre eux par des moyens matériels. La figure 2 montre un schéma du premier ensemble 19 mis en œuvre dans le cadre d'une variante de réalisation de l'invention.
Ce premier ensemble 19 comporte un émetteur laser 2 immergeable et monté sur un support 3. Ce support 3 comporte un élément tubulaire 4 comportant des pieds de stabilisation réglables 5, et un pendule 12 sur lequel est fixé l'émetteur laser 2. Ainsi, l'émetteur laser est apte à émettre un rayonnement selon une direction verticale, même si l'axe X du support tubulaire n'est pas disposé parfaitement verticalement.
La figure 3a représente un second ensemble mis en œuvre dans le cadre d'une première variante de réalisation de l'invention.
Ce second ensemble 20 comporte une bouée 6 comportant une première partie inférieure 7 destinée au moins en partie à être immergée et une partie supérieure 8 destinée au moins en partie à être émergée lorsque la bouée 6 flotte sur l'eau, ladite première partie 7 comportant une face inférieure 9 disposée en regard du fond de l'eau lorsque la bouée flotte, cette face inférieure étant au moins en partie recouverte par une matrice 10 de capteurs photorécepteurs aptes à détecter le rayonnement laser émis par ledit émetteur immergeable 2.
Cette matrice 10 de capteurs photorécepteurs est connectée par une liaison filaire 17 à des moyens de traitement 11 des signaux émis par chacun de ces capteurs.
Ce second ensemble comporte aussi, des moyens 13, 14 de mesure de l'inclinaison et de l'orientation de la bouée 6 constitués par un compas 13 et un inclinomètre 2 axes 14 connectés respectivement par des liaisons filaires 18 et 21 auxdits moyens de traitement 11.
Ce second ensemble comporte, en outre, des moyens 15 de positionnement par satellite de type GPS différentiel reliés par liaison filaire auxdits moyens de traitement 11.
Les moyens de traitement 11 comportent une horloge et des moyens de synchronisation de cette horloge à celle des moyens 15 de positionnement par satellite. Ils comportent, en outre, des moyens de calcul de la position de l'émetteur laser à partir des signaux issus des photorécepteurs, de ceux issus des moyens de mesure de l'inclinaison et de l'orientation de la bouée et de ceux issus des moyens de positionnement par satellite.
La partie supérieure 8 de la bouée 6 comporte deux poignées 26 pour faciliter sa mise à l'eau et son hissage à bord d'un navire. Elle comporte en outre une ampoule 27 colorée en vert connectée d'une part à une batterie 28 pour son alimentation électrique et d'autre part auxdits moyens de traitement 11 , ces derniers étant aptes à commander l'allumage de ladite ampoule 27 lorsque la matrice de capteurs photorécepteurs détecte la présence dudit rayonnement laser. La batterie 28 alimente aussi les moyens de traitement 11 ainsi que la matrice 10 de photorécepteurs, les moyens 13, 14 de mesure de l'inclinaison et de l'orientation de la bouée 6 ainsi que les moyens 15 de positionnement par satellite.
La bouée comporte aussi des flotteurs 32 assurant en outre une protection de la matrice de capteurs photodéctecteurs.
La figure 3b représente un second ensemble mis en œuvre dans le cadre d'une seconde variante de réalisation de l'invention.
Ce second ensemble 20 comporte une bouée 6 comportant une première partie inférieure 7 destinée au moins en partie à être immergée et une partie supérieure 8 destinée au moins en partie à être émergée lorsque la bouée 6 flotte sur l'eau, ladite première partie 7 comportant une face inférieure 9 disposée en regard du fond de l'eau lorsque la bouée flotte, cette face inférieure étant au moins en partie recouverte par une matrice 10 de capteurs photorécepteurs aptes à détecter le rayonnement laser émis par ledit émetteur immergeable 2.
Cette matrice 10 de capteurs photorécepteurs est connectée par une liaison filaire 17 à des moyens de traitement 10' des signaux émis par chacun de ces capteurs photorécepteurs.
Ce second ensemble comporte aussi, des moyens 13, 14 de mesure de l'inclinaison et de l'orientation de la bouée 6 ainsi que des moyens de traitement respectifs 13' et 14' des signaux issus de ces moyens de mesure. Ces derniers peuvent par exemple être constitués par un compas 13 et un inclinomètre 2 axes 14.
Ce second ensemble comporte, en outre, des moyens 15 de positionnement par satellite de type GPS différentiel ainsi que des moyens de traitement 15' des signaux issus de ces moyens 15 de positionnement. Les moyens de traitement 10', 13', 14' 15' des signaux issus respectivement de la matrice de photodétecteurs 10, des moyens 13, 14 de mesure de l'inclinaison et de l'orientation de la bouée 6 et des moyens de positionnement par satellite 15 sont connectés, respectivement par des liaisons filaires 17, 18, 21 et 22 à des moyens de calcul 16 de la position de l'émetteur laser à partir des signaux issus des photorécepteurs, de ceux issus des moyens de positionnement par satellite et de ceux issus des moyens de mesure de l'inclinaison et de l'orientation de l'engin.
En outre, chacun desdits moyens de traitement comporte une horloge et ces horloges sont synchronisées entre elles.
La partie supérieure 8 de la bouée 6 comporte deux poignées 26 pour faciliter sa mise à l'eau et son hissage à bord d'un navire. Elle comporte en outre une ampoule 27 colorée en vert connectée d'une part à une batterie 28 pour son alimentation électrique et d'autre part auxdits moyens de traitement 10' des signaux issus des capteurs photorécepteurs, ces derniers étant aptes à commander l'allumage de ladite ampoule 27 lorsque la matrice de capteurs photorécepteurs détecte la présence dudit rayonnement laser. La batterie 28 alimente aussi les différents moyens de traitement ainsi que la matrice 10 de photorécepteurs, les moyens 13, 14 de mesure de l'inclinaison et de l'orientation de la bouée 6 ainsi que les moyens 15 de positionnement par satellite.
La bouée comporte aussi des flotteurs 32 assurant en outre une protection de la matrice de capteurs photodéctecteurs.
La figure 4 montre un exemple de procédé de mise en œuvre de l'invention permettant l'obtention d'un positionnement absolu d'un matériel immergé.
Un matériel 21 est déposé au fond de l'eau. Le premier ensemble 19 est positionné sur le matériel de sorte que l'axe X du support soit dirigé sensiblement verticalement vers le haut.
La ligne 24 représente la surface de l'eau tandis que la ligne 25 représente le fond de l'eau.
Le second ensemble 20 comportant la bouée 6 flotte sur l'eau, une première partie située sous la ligne de flottaison étant immergée et une seconde partie étant émergée.
Les moyens de positionnement par satellite de type GPS différentiel comportent, de façon connue, les moyens 15, des satellites 30 dont seulement deux sont représentés et une station au sol 31 mais qui n'est pas nécessaire dans le cas ou les corrections de phase des satellites issus d'une station à terre sont envoyées par réseau téléphonique type GSM.
Le fonctionnement de ce dispositif est le suivant :
Le premier ensemble 19 est immergé et le support de l'émetteur est positionné sur ledit matériel dont la position dans le plan de référence, à savoir la surface de l'eau, est recherchée et, si possible en son centre et de sorte que l'émetteur soit apte à émettre un rayonnement laser verticalement en direction de la surface de l'eau. L'émission du rayonnement laser est ensuite déclenchée.
Le second ensemble 20 est ensuite mis à l'eau et déplacé jusqu'à ce que les capteurs photorécepteurs détectent le rayonnement laser.
Dès que le rayonnement laser a été détecté par un ou plusieurs capteurs, les moyens de traitement 11 calculent la position dudit matériel en fonction :
- de la position dans la matrice du ou des capteurs ayant détecté le rayonnement
- de l'inclinaison du second ensemble par rapport au plan de référence déterminée par l'inclinomètre 14 et de son orientation déterminée par le compas 13,
- de la position GPS du second ensemble par rapport à celle de la station fixe 31 ( ou celle d'une station de référence quelconque dont les corrections sont envoyées via téléphone type GSM).
Les unités du positionnement du matériel peuvent par exemple être en lattitude et longitude.
En particulier, le procédé de détermination de la position de l'émetteur laser peut être le suivant :
Dés que l'un des photorécepteurs de la matrice est éclairé, ce photorécepteur, localisé par sa position sur la matrice de photorécepteurs, est associé avec un point DGPS synchronisé sur l'instant T calculé par les moyens de traitement à partir des données prises en compte, à savoir la position du photorécepteur éclairé, l'orientation et l'inclinaison de la bouée, la position GPS du second ensemble.
Par la suite le déplacement de la bouée va entraîner l'éclairage d'autres photorécepteurs auxquels seront associés d'autres points DGPS synchronisés sur des instants successifs t+n, t+n+1 , etc.. Ces récepteurs vont donc donner des informations de position GPS qui toutes correspondent à la position GPS du Spot LASER de l'objet posé au fond de l'eau.
Disposant d'une population d'échantillons (points) correspondant à la mesure GPS à différents instants, positions entachées d'incertitudes liées au mouvement, performance du système, éclairage insuffisant (voire multiple) selon la dimension de la tache lumineuse qui frappe la bouée, les moyens de traitement mettent en oeuvre la méthode des moindres carrés pour déterminer le point VRAI, meilleure estimation de la position calculée à partir de cette population.
Dans cet exemple de réalisation, ledit procédé calcule en outre l'incertitude de mesure. Pour cela, partant du principe que le point VRAI est la référence et utilisant uniquement les données citées précédemment aux temps successifs t, t+n, t+n+1..., les moyens de traitement calculent l'éclairage THEORIQUE de la matrice à chaque instant, donc la position du photorécepteur devant être éclairé à chacun de ces instants.
Au final, les moyens de traitement ont calculé deux résultats : l'éclairage réel (allumage des photorécepteurs au cours de la mesure) et éclairage théorique qui doivent être liés par la relation
Allumage Réel = Allumage théorique ± Incertitude affichée du dispositif complet
L'incertitude du dispositif complet est l'incertitude de performance du dispositif, incertitude délibérément élargie qui correspond à une situation la plus défavorable et permet de garantir un résultat de mesure général. Lorsque la distance entre la bouée et la station fixe 31 est inférieure à 10 km, la précision du positionnement par GPS différentiel est de l'ordre de 5 à 10 cm et, avec un dispositif selon l'invention, le positionnement de l'émetteur laser est donc de cet ordre là alors que la précision est métrique pour le positionnement de la bouée avec un dispositif GPS autonome.
Par ailleurs, lorsque le rayonnement laser a été détecté par un ou plusieurs capteurs, les moyens de traitement 11 commandent l'allumage de l'ampoule 28.
Dans un mode de réalisation particulier, l'émetteur laser est associé à un capteur de profondeur et à des moyens d'émission sous-marin de ce signal en direction de la bouée 6 et/ou d'un navire. Ces moyens d'émission peuvent être des moyens acoustiques. Ces moyens peuvent en outre émettre à une certaine fréquence un signal. Des moyens de détection de ce signal et de détermination de sa direction au moins en cap sont associés à la bouée et/ou audit navire. Dans le premier cas, la bouée peut être équipée de moyens de propulsion apte à la diriger suivant ledit cap tandis que dans le second cas, le navire peut être dirigé dans cette direction et la bouée déposée à l'endroit de détection de l'émission dudit signal. Il faut noter que ces moyens de détection acoustique ont une précision, au mieux, métrique tandis que l'invention, avec l'utilisation de moyens DGPS permet d'obtenir une précision décimétrique sur la position de l'émetteur laser, donc 10 fois meilleure.
Une précision moindre sur la profondeur peut être obtenue à partir de la valeur de l'intensité du rayonnement laser détectée par la matrice de photodétecteurs et de celle émise par l'émetteur laser.
De nombreuses modifications peuvent être apportées à l'exemple de réalisation décrit précédemment sans sortir du cadre de l'invention. Ainsi, les moyens de mesure de l'inclinaison et de l'orientation du second ensemble 20 peuvent par exemple consister en des gyroscopes. En outre, les moyens de traitement peuvent être déportés sur un navire. Par ailleurs la forme du support de l'émetteur peut-être quelconque, pourvu que la position de l'émetteur soit stable. De plus des moyens d'émission et une antenne peuvent par exemple être associés au moyens de traitement pour permettre la transmission de la position calculée dudit matériel à des moyens de réception mobiles ou fixes pouvant par exemple se trouver à bord d'une embarcation. Par ailleurs, la bouée peut être remplacée par exemple par une embarcation propulsée ou pas.

Claims

REVENDICATIONS
1. Dispositif (1) de mesure du positionnement, en latitute et longitude, d'un matériel déposé au fond de l'eau caractérisé en ce qu'il comporte :
- un émetteur laser (2) immergeable
- un engin flottant, tel une bouée (6) ou une embarcation, avec une première partie inférieure (7) destinée au moins en partie à être immergée et comportant une face inférieure (9) disposée en regard du fond de l'eau lorsque l'engin flotte sur l'eau, cette face inférieure (9) étant au moins en partie recouverte par une matrice de capteurs photorécepteurs (10) aptes à détecter le rayonnement laser émis par ledit émetteur, cet engin (6) comprenant, en outre, des moyens (15) de positionnement, en latitute et longitude, par satellite.
2. Dispositif selon la revendication 1 , caractérisé en ce que l'engin (6) comporte des moyens de calcul de la position de l'émetteur laser à partir des signaux issus des photorécepteurs et des moyens de positionnement par satellite.
3. Dispositif selon l'une quelconque des revendications 1 et 2, caractérisé en ce que l'engin comporte des moyens de traitement des signaux émis par la matrice de photorécepteurs, des moyens de traitement des signaux émis par les moyens de positionnement par satellite, ces moyens de traitement comportant chacun une horloge, ces horloges étant synchronisées entre elles.
4. Dispositif selon la revendication 1 , caractérisé en ce que l'engin (6) comporte d'une part des moyens de mesure de son inclinaison et de son orientation constitués par exemple par un compas (13) et un inclinomètre 2 axes (14) et, d'autre part, des moyens de calcul de la position de l'émetteur laser à partir des signaux issus des photorécepteurs, de ceux issus des moyens de positionnement par satellite et de ceux issus des moyens de mesure de l'inclinaison et de l'orientation de l'engin.
5. Dispositif selon la revendication 4, caractérisé en ce que l'engin comporte des moyens de traitement des signaux émis par la matrice de photorécepteurs, des moyens de traitement des signaux émis par les moyens de positionnement par satellite et des moyens de traitement des signaux émis par les moyens de mesure de l'inclinaison et de l'orientation de l'engin, ces moyens de traitement comportant chacun une horloge, ces horloges étant synchronisées entre elles.
6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la bouée comporte des moyens de visualisation de la détection par ladite matrice de photorécepteurs du rayonnement émis par l'émetteur laser, par exemple constitués par une ampoule (26) dont l'allumage est commandé par lesdits moyens (11) de traitement.
7. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'émetteur laser immergeable (2) est solidaire d'un support (3) apte à le maintenir dans une position fixe, ce support (3) pouvant par exemple comporter un pendule (12) et être apte à le maintenir de sorte que l'émission laser soit émise selon un axe vertical.
8. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'un capteur de profondeur est associé à l'émetteur ou à son support.
9. Procédé de mesure, dans un plan prédéfini, du positionnement d'un matériel déposé au fond de l'eau apte à être mis en œuvre par un dispositif comportant un émetteur laser (2) immergeable et un engin flottant, tel une bouée (6) ou une embarcation, avec une première partie inférieure (7) destinée au moins en partie à être immergée et comportant une face inférieure (9) disposée en regard du fond de l'eau lorsque l'engin flotte sur l'eau, cette face inférieure (9) étant au moins en partie recouverte par une matrice de capteurs photorécepteurs (10) aptes à détecter le rayonnement laser émis par ledit émetteur, cet engin (6) comprenant, en outre, des moyens (15) de positionnement, en latitute et longitude, par satellite, et des moyens de calcul de la position de l'émetteur laser à partir des signaux issus des photorécepteurs et des moyens de positionnement par satellite, procédé caractérisé en ce qu'il comporte les étapes suivantes :
- immerger et positionner un support d'un émetteur laser et/ou ce dernier sur ledit matériel de sorte qu'il soit apte à émettre un rayonnement laser verticalement,
- déclencher l'émission laser, - déplacer l'engin jusqu'à ce que la matrice de photodéctecteurs détecte ledit rayonnement laser,
- calculer la position de l'émetteur laser à partir des signaux issus des photorécepteurs (10) et des moyens (15) de positionnement par satellite
10. Procédé de mesure, dans un plan prédéfini, du positionnement d'un matériel déposé au fond de l'eau apte à être mis en oeuvre par un dispositif comportant un émetteur laser (2) immergeable et un engin flottant, tel une bouée (6) ou une embarcation, cet engin flottant possédant :
- une première partie inférieure (7) destinée au moins en partie à être immergée et comportant une face inférieure (9) disposée en regard du fond de l'eau lorsque l'engin flotte sur l'eau, cette face inférieure (9) étant au moins en partie recouverte par une matrice de capteurs photorécepteurs (10) aptes à détecter le rayonnement laser émis par ledit émetteur,
- des moyens (15) de positionnement, en latitute et longitude, par satellite,
- des moyens de mesure de son inclinaison et de son orientation constitués par exemple par un compas et un inclinomètre 2 axes et, d'autre part,
- des moyens de calcul de la position de l'émetteur laser à partir des signaux issus des photorécepteurs, de ceux issus des moyens de positionnement par satellite et de ceux issus des moyens de mesure de l'inclinaison et de l'orientation de l'engin,
procédé caractérisé en ce qu'il comporte les étapes suivantes :
- immerger et positionner un support d'un émetteur laser et/ou ce dernier sur ledit matériel de sorte qu'il soit apte à émettre un rayonnement laser verticalement,
- déclencher l'émission laser,
- déplacer l'engin jusqu'à ce que la matrice de photodéctecteurs détecte ledit rayonnement laser,
..■ '. " ■■ .■ ■ '.-' · 17
- calculer la position de l'émetteur laser à partir des signaux issus des photorécepteurs, de ceux issus des moyens de positionnement par satellite et de ceux issus des moyens de mesure de l'inclinaison et de l'orientation de l'engin,
PCT/FR2012/000329 2011-08-04 2012-08-03 Dispositif de mesure, dans un plan prédéfini, du positionnement d'un matériel déposé au fond de l'eau et procédé associé WO2013017753A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/824,629 US20130208263A1 (en) 2011-08-04 2010-08-03 Device for measuring, in a predefined plane, the positioning of a materiel deposited at the bottom of the water and associated method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1102453 2011-08-04
FR1102453A FR2978832A1 (fr) 2011-08-04 2011-08-04 Dispositif de mesure, dans un plan predefini, du positionnement d'un materiel depose au fond de l'eau et procede associe

Publications (1)

Publication Number Publication Date
WO2013017753A1 true WO2013017753A1 (fr) 2013-02-07

Family

ID=46880742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/000329 WO2013017753A1 (fr) 2011-08-04 2012-08-03 Dispositif de mesure, dans un plan prédéfini, du positionnement d'un matériel déposé au fond de l'eau et procédé associé

Country Status (3)

Country Link
US (1) US20130208263A1 (fr)
FR (1) FR2978832A1 (fr)
WO (1) WO2013017753A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2551412C1 (ru) * 2013-12-30 2015-05-20 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" (ФГУП "Крыловский государственный научный центр") Маневренный стенд для измерения и настройки магнитного поля надводного или подводного объекта

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3369516A (en) * 1966-03-17 1968-02-20 Roger J. Pierce Stable oceanic station
GB2177511A (en) * 1983-10-18 1987-01-21 Secr Defence Measuring ship's magnetic signature
JPS63170189A (ja) * 1986-12-29 1988-07-14 Nec Corp 定点保持用ブイシステム
JPS63263413A (ja) * 1987-04-21 1988-10-31 Nec Corp レ−ザ−光を使用した水中ブイ位置検出装置
JPS63284418A (ja) 1987-05-15 1988-11-21 Nec Corp 定点保持水中ブイシステム
FR2679514A1 (fr) 1991-07-23 1993-01-29 Thomson Csf Station portable de mesure et de reglage de la signature magnetique d'un batiment naval.
EP1868004A2 (fr) * 2006-06-09 2007-12-19 ETAT-FRANCAIS représenté par le Délégué Général pour l' Armement Dispositif et procédé associés de mesure de la signature magnétique d'un bateau

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4443795A (en) * 1979-11-21 1984-04-17 The Laitram Corporation Remote indicator for displaying transmitted data by angular displacement
US5042942A (en) * 1990-07-25 1991-08-27 Westinghouse Electric Corp. Laser location apparatus for underwater bodies
US5859693A (en) * 1997-08-26 1999-01-12 Laser Technology, Inc. Modularized laser-based survey system
US6419186B1 (en) * 2000-03-31 2002-07-16 Rosemount Aerospace Inc. Standoff mounting for air data sensing probes on a helicopter
DE10151597C1 (de) * 2001-10-18 2003-05-15 Howaldtswerke Deutsche Werft System und Verfahren zur Erkennung und Abwehr von Laserbedrohungen und Unterwasserobjekten für Unterwasserfahrzeuge
US20060013278A1 (en) * 2002-10-22 2006-01-19 Raskin James R Laser level
US6813218B1 (en) * 2003-10-06 2004-11-02 The United States Of America As Represented By The Secretary Of The Navy Buoyant device for bi-directional acousto-optic signal transfer across the air-water interface
US7360703B2 (en) * 2004-09-23 2008-04-22 Ut-Battelle, Llc Laser scanning system for object monitoring
WO2008004175A2 (fr) * 2006-07-03 2008-01-10 International Maritime Information Systems Sa (Pty) Ltd Sécurité nautique

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3369516A (en) * 1966-03-17 1968-02-20 Roger J. Pierce Stable oceanic station
GB2177511A (en) * 1983-10-18 1987-01-21 Secr Defence Measuring ship's magnetic signature
JPS63170189A (ja) * 1986-12-29 1988-07-14 Nec Corp 定点保持用ブイシステム
JPS63263413A (ja) * 1987-04-21 1988-10-31 Nec Corp レ−ザ−光を使用した水中ブイ位置検出装置
JPS63284418A (ja) 1987-05-15 1988-11-21 Nec Corp 定点保持水中ブイシステム
FR2679514A1 (fr) 1991-07-23 1993-01-29 Thomson Csf Station portable de mesure et de reglage de la signature magnetique d'un batiment naval.
EP1868004A2 (fr) * 2006-06-09 2007-12-19 ETAT-FRANCAIS représenté par le Délégué Général pour l' Armement Dispositif et procédé associés de mesure de la signature magnétique d'un bateau

Also Published As

Publication number Publication date
FR2978832A1 (fr) 2013-02-08
US20130208263A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
EP2279430B1 (fr) Systeme de positionnement acoustique sous-marin
FR2545226A1 (fr) Procede de determination de la position d'un cable immerge recepteur d'impulsions sismiques, qui est remorque par un batiment creant ces impulsions
FR3000225A1 (fr) Acoustic modem-based guiding method for autonomous underwater vehicle for marine seismic surveys
EP2515140B1 (fr) Procédé de positionnement acoustique global d'une cible marine ou sous-marine
EP3049762B1 (fr) Procédé de calcul de la vitesse surface d'au moins un navire et procédé de déduction de chaque vecteur dérive en tout point de la trajectoire dudit navire
CN116105685B (zh) 基于声光遥感和滚轮的潮间带地形无缝一体化测量方法
EP0685387B1 (fr) Engin nautique pour effectuer des missions de reconnaissance d'un site, notamment des levés bathymétriques
WO2018219975A1 (fr) Système collaboratif de véhicules subaquatiques de suivi d'éléments linéaires immergés et procédé mettant en œuvre ce système
EP1613979A2 (fr) Dispositif et systeme de positionnement acoustique global
EP1971882B1 (fr) Dispositif de mesure géophysique pour l'exploration des ressources naturelles du sol en domaine aquatique.
EP1828802B1 (fr) Dispositif de determination autonome des coordonnees geographiques absolues d'un mobile evoluant en immersion
EP0597014B1 (fr) Station portable de mesure et de reglage de la signature magnetique d'un batiment naval
EP3577494B1 (fr) Balise, système et procédé d'aide à la navigation de précision
EP0133408A1 (fr) Système de trajectographie d'un bâtiment naval
WO2012032251A1 (fr) Procede d'aide a la localisation d'objets immerges emettant un signal acoustique
EP1691214B1 (fr) Système de détérmination de la position absolue d'un engin sous-marin remorqué ou autopropulsé
FR3015052A1 (fr)
WO2013017753A1 (fr) Dispositif de mesure, dans un plan prédéfini, du positionnement d'un matériel déposé au fond de l'eau et procédé associé
FR3080194A1 (fr) Procede de guidage d'un vehicule sous-marin autonome et systeme associe d'acquisition de donnees d'analyse sous-marine
CA2575880A1 (fr) Procede de calibration angulaire d'une antenne par mesure de la distance relative
KR102157300B1 (ko) 크라우드 소싱 기반의 고밀도 수심정보 제공 시스템
FR2902194A1 (fr) Dispositif et procedes associes de mesure de la signature magnetique d'un bateau
RU2773497C1 (ru) Способ и система для навигационного обеспечения судовождения и определения координат
FR3003649A1 (fr) Procede et equipement de localisation a posteriori d'au moins une source sonore tierce dans un environnement aquatique
FR3149686A1 (fr) Procédé de calcul d’une hauteur d’eau et dispositif associé.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761641

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13824629

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12761641

Country of ref document: EP

Kind code of ref document: A1