[go: up one dir, main page]

WO2013018799A1 - 照明装置 - Google Patents

照明装置 Download PDF

Info

Publication number
WO2013018799A1
WO2013018799A1 PCT/JP2012/069465 JP2012069465W WO2013018799A1 WO 2013018799 A1 WO2013018799 A1 WO 2013018799A1 JP 2012069465 W JP2012069465 W JP 2012069465W WO 2013018799 A1 WO2013018799 A1 WO 2013018799A1
Authority
WO
WIPO (PCT)
Prior art keywords
deflecting
deflection
illuminance distribution
illumination
predetermined
Prior art date
Application number
PCT/JP2012/069465
Other languages
English (en)
French (fr)
Inventor
小松田 秀基
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to KR1020147002790A priority Critical patent/KR102040341B1/ko
Priority to US14/236,742 priority patent/US9760012B2/en
Publication of WO2013018799A1 publication Critical patent/WO2013018799A1/ja
Priority to US15/675,257 priority patent/US10162269B2/en
Priority to US16/192,208 priority patent/US10459343B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]

Definitions

  • This embodiment relates to an illumination device that illuminates an object.
  • the present invention relates to an illumination apparatus that is applied to an exposure apparatus used in a lithography process for manufacturing a device such as a semiconductor element or a liquid crystal display element to illuminate a projection original.
  • an illumination device applied to a projection exposure apparatus using a fly-eye lens as an optical integrator is known.
  • the projection original plate is illuminated in a state where light from the secondary light source formed by each wavefront dividing surface of the fly-eye lens is superimposed.
  • an illumination device provided with a correction optical system for correcting the illuminance distribution of a light beam incident on a fly-eye lens for example, Patent Document 1). reference).
  • the illuminance distribution of the light illuminating the projection original is different in the central part or the peripheral part of the projection original, and the intensity distribution in the angular direction of the condensed light flux depends on the position on the projection original. If there is a difference, the correction optical system is arranged between the light source and the fly-eye lens, and the illuminance distribution of the light beam incident on each wavefront splitting surface of the fly-eye lens is changed, and the light is condensed on the projection original plate. A uniform illuminance distribution is obtained by correcting the non-uniform angular distribution generated in the aperture of each light beam.
  • the illumination device described in Patent Document 1 has a problem in that illumination light is absorbed and a light amount is lost by arranging a correction optical system such as a filter.
  • the present embodiment has been made in view of the above problems, and an object thereof is to provide an illumination device that reduces illumination loss and obtains illumination having a uniform light intensity distribution or illumination having a desired light intensity distribution.
  • the illumination device is an illumination device that illuminates a surface to be illuminated, and is disposed in the optical path of the illumination device and crosses the optical path.
  • a secondary light source including a deflecting member that forms an illuminance distribution having a periodic pattern along a predetermined direction on the surface of the surface, and a plurality of wavefront dividing surfaces arranged on the predetermined surface, and using light beams from the deflecting member And the deflecting member forms an illuminance distribution having a periodic pattern that is an integral multiple or a unit fraction multiple of an array period of the plurality of wavefront dividing surfaces.
  • the illuminating device concerning the 2nd aspect of this embodiment is an illuminating device which illuminates the to-be-illuminated surface, Comprising: It is arrange
  • An optical integrator system that includes a deflection member that forms an illuminance distribution having a periodic pattern along a plurality of wavefront division surfaces and a plurality of wavefront dividing surfaces arranged on the predetermined surface, and that forms a secondary light source using a light beam from the deflection member
  • the deflection member is configured to be position-adjustable in order to change the periodic pattern.
  • a projection exposure apparatus includes the illumination apparatus according to the first or second aspect and a projection optical system that projects light from the illuminated surface onto the projected surface. It is characterized by that.
  • the illumination method according to the fourth aspect of the present embodiment is configured to deflect an incident light beam to form an illuminance distribution having a periodic pattern on a predetermined surface, and to apply the deflected light beam to the predetermined surface.
  • the illumination method according to the fifth aspect of the present embodiment is configured to deflect an incident light beam to form an illuminance distribution having a periodic pattern on a predetermined surface, and to apply the deflected light beam to the predetermined surface. Guiding a plurality of wavefront splitting surfaces arranged above to form a secondary light source, changing a periodic pattern of an illuminance distribution formed on the predetermined surface, and a light beam from the secondary light source And illuminating the surface to be illuminated.
  • An exposure method illuminates a predetermined pattern located on the irradiated surface with light from a light source, and exposes the photosensitive substrate with light via the predetermined pattern.
  • the illuminating includes illuminating the predetermined pattern located on the irradiated surface using the illumination method according to the fourth or fifth aspect.
  • the device manufacturing method according to the seventh aspect of the present embodiment uses the exposure method according to the sixth aspect to expose an exposure pattern to the photosensitive substrate, and to transfer the exposure pattern. Developing the photosensitive substrate, forming a mask layer having a shape corresponding to the exposure pattern on the surface of the photosensitive substrate, and processing the surface of the photosensitive substrate through the mask layer. A device manufacturing method.
  • an illumination device that reduces light loss and obtains illumination having a uniform light intensity distribution or illumination having a desired light intensity distribution.
  • FIG. 5 is a diagram showing an arrangement of first and second deflection elements.
  • FIG. 1 shows a projection exposure apparatus provided with an illumination apparatus according to the first embodiment.
  • the Z-axis is along the normal direction of the projection surface 9 on which the wafer, which is a photosensitive substrate, is arranged, and the X-axis is projected in the direction parallel to the paper surface of FIG.
  • the Y axis is set in the direction perpendicular to the paper surface of FIG.
  • exposure light (illumination light) is supplied from a light source 1.
  • the light emitted from the light source 1 is converted into a substantially parallel light beam by the collimator lens 2 and enters the deflecting member 3.
  • the configuration and function of the deflection member 3 will be described later.
  • the light beam from the deflecting member 3 enters a fly eye lens system 54 composed of the first fly eye lens 4 and the second fly eye lens 5.
  • the first fly-eye lens 4 of the fly-eye lens system 54 includes a plurality of lens surfaces arranged in a two-dimensional array in a plane (XY plane in the present embodiment) crossing the traveling direction of the incident light beam.
  • the light beam incident on the incident surface 41 of the first fly-eye lens 4 is two-dimensionally wavefront divided into minute units by the plurality of lens surfaces.
  • the light beams divided into minute units are condensed near the exit surface 51 of the second fly-eye lens 5 to form a plurality of secondary light sources.
  • a surface necessary for forming one secondary light source is referred to as a wavefront dividing surface.
  • a fly's eye lens has a large number of divided wavefront dividing surfaces. However, in FIG. 1 and FIG. 2, a fly's eye lens having five wavefront dividing surfaces is shown for simplicity.
  • the luminous flux from the secondary light source is collected by the condenser lens 6 and the surface to be illuminated 10 is Koehler illuminated.
  • a reticle as a projection master having a pattern to be projected onto the projection surface 9 is arranged.
  • the luminous flux from the illuminated surface 10 is condensed by the projection optical system 7 and projected onto the projected surface 9.
  • the aperture stop 8 of the projection optical system 7 is disposed at a position conjugate with the position where the secondary light source is formed.
  • the deflecting member 3 shown in FIG. 1 is a plate made of a material transparent to exposure light having a flat entrance surface and a sinusoidal exit surface in one direction.
  • FIG. 2B is a diagram showing an arrangement relationship between the deflecting member 3 and the fly-eye lens system 54. As shown in FIG. 2B, the deflecting member 3 is viewed from the light traveling direction side. It has a size that covers the effective area of the first fly-eye lens 4 of the fly-eye lens system 54 (as viewed from the Z direction side).
  • FIG. 3A is an optical path diagram for explaining the function of the deflection member 3.
  • the deflection member 3 for example, when a parallel light beam that can be expressed by a large number of light rays enters the deflection member 3 from the left side in the drawing, the refraction action (light deflection action) on the exit surface of the deflection member 3 ), The density of the light beam emitted from the deflecting member 3 varies. Since the density of this light beam corresponds to the light energy density, the virtual surface P on the exit side of the deflecting member 3 has a high intensity at the position corresponding to the sine wave-like peak of the deflecting member 3 and the position corresponding to the valley. An illuminance distribution (light intensity distribution) having a period in the X direction that reduces the intensity is formed.
  • the illuminance distribution 35i on the virtual plane P is shown in FIG.
  • the illuminance distribution 35i has a cycle substantially equal to the unit cycle of the deflection member 3 when the distance between the virtual plane P and the deflection member 3 is close.
  • An illuminance distribution whose intensity changes in the X direction is formed on the virtual plane P.
  • FIG. 3C shows the relationship between the illuminance distribution having a periodic pattern formed by the deflecting member 3 and the illuminance distribution on the irradiated surface 10 when the position of the deflecting member 3 in the XY plane is in the initial state.
  • FIG. 3C shows the relationship between the illuminance distribution having a periodic pattern formed by the deflecting member 3 and the illuminance distribution on the irradiated surface 10 when the position of the deflecting member 3 in the XY plane is in the initial state.
  • FIG. 3C shows that the incident surface of the first fly's eye lens 4 is located at the position of the virtual plane P.
  • the period of the illuminance distribution 35 i formed by the deflecting member 3 is equal to the arrangement period of the wavefront dividing surfaces of the first fly-eye lens 4, the irradiated surface 10 is passed through the condenser lens 6.
  • the illuminance distribution 36i Since the illuminance distribution having the same property is superimposed on the illuminance distribution 36i, the illuminance distribution 36i having the same property as the illuminance distribution within one period of the light intensity distribution 35i is formed on the irradiated surface 10.
  • the periodic pattern of the illuminance distribution formed by the deflecting member 3 is adjusted, typically the difference between the maximum value and the minimum value of the illuminance distribution.
  • the uneven component of the illuminance distribution on the irradiated surface 10 can be controlled.
  • the illuminance distribution on the irradiated surface 10 may be controlled by moving the deflecting member 3 along the pitch direction (X direction) of the deflecting member 3 in the direction perpendicular to the optical axis AX.
  • the deflection member 3 generates an illuminance distribution having a tendency opposite to the non-uniform illuminance distribution on the irradiated surface 10, the non-uniform illuminance distribution on the irradiated surface 10 is uniformed. Can be approached.
  • an illuminance distribution having the same period as the arrangement period of the wavefront dividing surfaces of the first fly-eye lens 4, that is, a period that is one time the arrangement period is formed on the incident surface 41 of the first fly-eye lens 4.
  • an illuminance distribution having a periodic pattern that is an integral multiple or a unit fraction multiple of the arrangement period of the wavefront dividing surfaces of the first fly-eye lens 4 may be formed on the incident surface of the first fly-eye lens 4.
  • an illuminance distribution that is an integral multiple (including 1 times) or unit fraction multiple of the arrangement period of the plurality of wavefront dividing surfaces is formed on the wavefront dividing surface by the deflecting member.
  • the light intensity distribution in the angular direction of the light beam condensed at an arbitrary position on the irradiation surface can be made a desired distribution.
  • one deflection member 3 is provided as the correction optical system.
  • the number of deflection members is not limited to one, and a plurality of deflection members may be provided.
  • a second embodiment including a plurality of deflecting members will be described with reference to FIGS.
  • FIG. 4 the structure of the illuminating device which concerns on 2nd Embodiment is shown.
  • members having the same functions as those shown in FIGS. 1 to 3 are given the same reference numerals.
  • the configuration different from the configuration shown in FIG. 1 is that the first deflection element 30 and the second deflection arranged along the traveling direction of the illumination light, instead of the deflection member 3 that can be regarded as a correction optical system.
  • the element 31 is provided.
  • FIG. 4A the light beam incident on the first deflection element 30 and the second deflection element 31 is converted into an illuminance distribution having a periodic pattern and is incident on the incident surface 41 of the first fly-eye lens 4.
  • FIG. 4B shows an arrangement relationship between the first and second deflection elements 30 and 31 and the incident surface 41 of the first fly-eye lens 4.
  • the first and second deflecting elements 30 and 31 are in an initial state in which their exit surfaces have the same shape and their phases are the same.
  • FIG. 5A is a diagram showing the illuminance distribution formed on the exit side by the deflection member 3 described above
  • FIG. 5B shows the first and second deflection elements 30 and 31 formed on the exit side thereof. It is a figure which shows the illumination intensity distribution to do. 5A and 5B, arrows indicate the traveling directions of light incident on the deflecting member 3 or the first deflecting element 30 and the second deflecting element 31.
  • the graph shown on the right side of the deflecting member 3 or the first and second deflecting elements 30 and 31 is an illuminance having a periodic pattern generated as a result of light being deflected by the deflecting member 3 or the first and second deflecting elements 30 and 31. Represents the distribution.
  • the vertical axis represents the relative position with respect to the deflection member 3 or the second deflection element 31, and the horizontal axis represents the light intensity.
  • first deflection element 30 and the second deflection element 31 shown in FIG. 5B have the same shape in which their exit surfaces are sin waves in one direction (X direction).
  • the number of the deflecting members 3 shown in FIG. 5A is one.
  • the illuminance distribution has a periodic pattern including higher peaks and deep valleys.
  • the integral multiple or unit of the arrangement period of the wavefront dividing surfaces of the first fly-eye lens 4 is used.
  • An illuminance distribution having a fractional periodic pattern is formed on the incident surface 41 of the first fly-eye lens 4.
  • At least one of the first and second deflecting elements 30 and 31 may be rotatable around the optical axis of the illumination device or an axis parallel to the optical axis. This will be described below with reference to FIGS.
  • FIG. 6 is a diagram showing a state of arrangement of the first deflection element 30 and the second deflection element 31 and the incident surface 41 of the first fly-eye lens 4.
  • the first and second deflecting elements 30 and 31 are second deflected from the initial state shown in FIG. 4B by turning the first deflecting element 30 clockwise around the optical axis AX of the illumination device. It arrange
  • the first deflection element 30 and the second deflection element 31 have the same period in the direction along each exit surface.
  • the periodic pattern of the illuminance distribution having the periodic pattern formed by the first deflecting element 30 and the second deflecting element 31 on the incident surface 41 of the first fly-eye lens 4 is an arrangement of the wavefront dividing surfaces of the first fly-eye lens 4. It is the same as the period.
  • FIG. 7A shows a state of a light beam illuminated on the surface to be illuminated 10 when the first deflection element 30 and the second deflection element 31 are not arranged.
  • the central portion 10c of the illuminated surface 10 and the peripheral portion 10p in the X direction are separated by a dotted line along the Y direction.
  • FIG. 7B shows the light intensity distribution along the axis 11a passing through the origin 11c and extending in the Y direction, with the center in the opening of the light beam 11 condensed on the peripheral portion 10p of the illuminated surface 10 as the origin 11c.
  • FIG. 7C shows the light intensity distribution along the axis 12a extending in the Y direction through the origin 12c with the center 12c in the opening of the light beam 12 condensed on the central portion 10c as the origin.
  • the vertical axis indicates the light intensity
  • the horizontal axis indicates the coordinates along the axes 11a and 12a.
  • the light intensity distributions shown in FIGS. 7B and 7C are the angular directions of the light beam 11 condensed on the peripheral portion 10p of the illuminated surface 10 with respect to the reference axis connecting the origin 11c and the condensing point. And the light intensity distribution in the angular direction with respect to the reference axis connecting the origin 12c and the condensing point of the light beam 12 condensed on the central portion 10c of the illuminated surface 10 respectively.
  • the state of the first and second deflection elements 30 and 31 shown in FIG. 6 is such that the first deflection element 30 and the second deflection element 31 are at the ends of the first deflection element 30 and the second deflection element 31 in the Y direction. It is in a state where valleys and valleys that have different one cycle overlap for the first time. As described above, when the first deflection element 30 and the second deflection element 31 are rotated, the first deflection element 30 and the second deflection element 31 are located in the vicinity of the centers of the first deflection element 30 and the second deflection element 31 in the Y direction. Mountains with the same period overlap, and valleys and valleys overlap. Then, peaks and peaks that differ by one cycle overlap at the ends of the first deflection element 30 and the second deflection element 31, and valleys and valleys overlap.
  • a periodic pattern of illuminance distribution incident on the incident surface 41 is formed.
  • the illuminance distribution having the highest intensity at the position where the peaks of the first deflecting element 30 and the second deflecting element 31 overlap with each other and the intensity with the lowest intensity at the position where the valleys overlap with each other is the incident surface of the first fly-eye lens 4.
  • 41. 8A to 8D show the illuminance distribution when a light flux having a uniform illuminance distribution is incident on the first and second deflecting elements 30 and 31, and in particular, FIG. The state of the light beam illuminated on the surface to be illuminated 10 is shown.
  • the fly-eye lens system has a function of superimposing the illuminance distribution on the plurality of lens surfaces (wavefront dividing surfaces) on the incident surface 41 of the first fly-eye lens 4 on the irradiated surface 10.
  • the light intensity distribution in the angular direction of the light beam condensed on the peripheral portion 10p of the illumination surface 10 reflects the illuminance distribution formed on the peripheral portion of each wavefront dividing surface arranged on the incident surface 41 of the first fly-eye lens 4.
  • the light intensity distribution in the angular direction of the light beam condensed on the central portion 10 c of the illuminated surface 10 is the illuminance distribution at the central portion of each wavefront dividing surface arranged on the incident surface 41 of the first fly-eye lens 4. It will be reflected.
  • the light that has passed through the peripheral portion 41cp of the wavefront dividing surface 41c arranged at the center of the incident surface 41 in the Y direction is the opening angle in the direction along the axis 11a in the opening 11, that is, the optical axis AX or the optical axis. Corresponds to light with a small angle with respect to an axis parallel to.
  • the light that has passed through the peripheral portion 41pp of the wavefront dividing surface arranged in the peripheral portion 41p in the Y direction of the incident surface 41 corresponds to light having a large opening angle in the direction along the axis 11a in the opening 11.
  • the intensity of the light passing through the peripheral portion 41cp of the wavefront dividing surface 41c is low, and the intensity of the light passing through the peripheral portion 41pp of the wavefront dividing surface 41p is high. Therefore, as shown in FIG. 8C, in the opening 11 in the peripheral portion of the illuminated surface 10, the light intensity distribution becomes lower in intensity near the origin 11c of the shaft 11a and higher as the distance from the origin 11c increases.
  • light that has passed through the central portion 41cc of the wavefront dividing surface arranged in the central portion 41c in the Y direction of the incident surface 41 corresponds to light having a small opening angle in the direction along the axis 12a in the opening 12.
  • the light that has passed through the central portion 41 pc of the wavefront dividing surface 41 p arranged in the peripheral portion of the incident surface 41 corresponds to a light beam having a large opening angle in the direction along the axis 12 a in the opening 12.
  • the intensity of light passing through the central portion 41cc of the wavefront dividing surface 41c is high, and the intensity of light passing through the central portion 41pc of the wavefront dividing surface 41p is low. Therefore, as shown in FIG. 8D, in the opening 12 of the central portion 10c of the illuminated surface 10, the light intensity distribution becomes higher near the origin 12c of the shaft 12a and lower as the distance from the origin 12c increases.
  • the characteristic that can cancel the characteristic is deflected. It can be generated by the elements 30 and 31, and the difference due to the position of the angular distribution characteristic of the light intensity distribution on the irradiated surface can be reduced.
  • first deflection element 30 and the second deflection element 31 may be moved independently or in conjunction with each other in the direction (Z direction) along the optical axis AX of the illumination device.
  • the periodic pattern of the illuminance distribution formed by the first and second deflection elements 30 and 31 can be adjusted by moving at least one of the first and second deflection elements 30 and 31.
  • FIG. 9 shows the positional relationship between the deflection elements 30 and 31 and the illuminance distribution formed on the exit side when the first deflection element 30 or the second deflection element 31 is moved in the X direction.
  • FIG. 9 arrows indicate the traveling directions of light incident on the first and second deflection elements 30 and 31.
  • the period peak or valley of the first deflection element 30 and the period valley or valley of the second deflection element 31 The range in which the mountains overlap is increased, and an illuminance distribution having a periodic pattern with a small difference in intensity between the peaks and valleys is formed.
  • the first and second deflecting elements 30 and 31 are provided with sin wave-like exit surfaces having the same period, but the period of the exit surfaces of the first and second deflecting elements 30 and 31 is as follows. They may be different from each other.
  • FIG. 10 shows the positional relationship between the deflection elements 30 and 31 when the cycle of the first deflection element 30 and the cycle of the second deflection element 31 are different from each other, and the deflection elements 30 and 31 are formed on the exit side. It is a figure which shows the illumination intensity distribution to do. In FIG. 10 as well, the arrows indicate the traveling directions of light incident on the first and second deflection elements 30 and 31.
  • the first deflection element 30 has a slightly larger period than the second deflection element 31, and the peaks and the peaks overlap at the center of the first deflection element 30 and the second deflection element 31 in the X direction. It is configured. In this case, the intensity of the position where the mountain overlaps in the vicinity of the center of the first deflecting element 30 and the second deflecting element 31 in the X direction is the highest, As you go to the hill, the range of mountains and mountains decreases and the strength decreases.
  • the intensity at the position where the valleys overlap in the vicinity of the centers of the first deflecting element 30 and the second deflecting element 31 in the X direction is the lowest, and the distance from the center of the first deflecting element 30 and the second deflecting element 31 goes to the peripheral part.
  • the periodic pattern of the illuminance distribution formed by the first deflection element 30 and the second deflection element 31 shown in FIG. 10 includes a plurality of peaks and valleys in one period in the X direction.
  • FIG. 11 shows the state of the light beam illuminated on the illuminated surface 10 when the positional relationship between the first and second deflection elements 30 and 31 is the state shown in FIG.
  • FIG. 11A shows the state of the light beam illuminated on the illuminated surface 10 when light having a uniform illuminance distribution is incident on the first and second deflecting elements 30 and 31.
  • the central portion 10c of the illuminated surface 10 and the peripheral portion 10p in the X direction are separated by a dotted line along the Y direction.
  • FIG. 11B shows the light intensity distribution along the axis 11b passing through the origin 11c and extending in the X direction, with the center in the opening of the light beam 11 condensed on the peripheral portion 10p of the illuminated surface 10 as the origin 11c.
  • FIG. 11C shows the light intensity distribution along the axis 12b extending in the X direction through the origin 12c with the center 12c in the opening of the light beam 12 condensed on the central portion 10c as the origin.
  • the vertical axis indicates the light intensity
  • the horizontal axis indicates the coordinates along the respective axes 11b and 12b.
  • the light intensity distributions shown in FIG. 11B and FIG. 11C are the angular directions with respect to the reference axis connecting the origin 11c and the condensing point of the light beam 11 condensed on the peripheral portion 10p of the illuminated surface 10. And the light intensity distribution in the angular direction with respect to the reference axis connecting the origin 12c and the condensing point of the light beam 12 condensed on the central portion 10c of the illuminated surface 10 respectively.
  • the first and second deflecting elements 30 and 31 form the illuminance distribution shown in FIG. 10 on the exit side, as shown in FIG. 11B, in the opening 11 of the peripheral portion 10p of the illuminated surface 10.
  • the light intensity distribution becomes lower as the intensity is lower and the distance from the origin 11c is higher.
  • the difference can be reduced.
  • the deflection member 3 may be rotated about an axis having a predetermined angle.
  • the predetermined angle is an angle formed by the optical axis AX of the illumination device and the rotation axis of the deflecting member 3.
  • the predetermined angle includes 0 °, and the optical axis AX of the illumination device and the rotation axis of the deflecting member 3 may be parallel as shown in FIG.
  • the deflecting member 3 may be rotated around an axis that does not intersect with the optical axis AX of the illumination device.
  • the axis that does not intersect with the optical axis AX of the illumination device may be parallel to the optical axis AX or may form a predetermined angle.
  • the deflection member 3 can be tilted with respect to the fly-eye lens system 45.
  • Modification 1 and Modification 2 may be applied to the first and second deflection elements 30 and 31.
  • the deflecting member 3 has a deflection element having the same period in the direction along the incident surface or exit surface of the deflection element and a different period in the direction along the entrance surface or exit surface of the deflection element.
  • a plurality of deflection elements may be included.
  • the deflecting member 3 includes four deflecting elements (first to fourth deflecting elements)
  • the first and second deflecting elements have the same period
  • the third deflecting element is the same as the first and second deflecting elements.
  • the fourth deflection element may have a different period from that of the first to third deflection elements.
  • the deflecting member 3 may simultaneously include a deflecting element that forms an illuminance distribution having the same periodic pattern and a deflecting element that forms an illuminance distribution having a different periodic pattern.
  • the first and second deflecting elements are deflecting elements that form an illuminance distribution having the same periodic pattern, and the third deflecting element.
  • the deflection member 3 includes four deflection elements (first to fourth deflection elements)
  • the first and second deflection elements are deflection elements that form an illuminance distribution having a periodic pattern along the X direction.
  • the third and fourth deflection elements may be deflection elements that form an illuminance distribution having a periodic pattern along the Y direction.
  • a scanning type projection exposure apparatus that performs exposure while moving the reticle and wafer in synchronization with each other along the scanning direction (Y direction).
  • the difference due to the position in the non-scanning direction of the illuminance distribution in the non-scanning direction (X direction) or the light intensity distribution in the angular direction of the light beam reaching the irradiated surface is corrected.
  • the fifth modification is useful because the averaging effect in the scanning direction cannot be used.
  • each deflection element can be adjusted, and each deflection element may be operated in conjunction or independently.
  • the light intensity distribution in the angular direction of the light beam condensed at an arbitrary position on the irradiated surface can be changed to an arbitrary distribution.
  • the optical system using refraction has been described.
  • the amount of light used may be lost by the deflecting member in the ultraviolet wavelength range.
  • a deflecting member using reflection or diffraction may be applied.
  • the measurement device 102 that measures the illuminance distribution on the illuminated surface 10 or the angular distribution characteristics of the light intensity distribution on the illuminated surface 10, and the illuminance distribution or projected image on the projected surface 9.
  • a measuring device 103 that measures the angular distribution characteristics of the light intensity distribution on the surface 9 may be provided, and the periodic pattern of the illuminance distribution formed by the deflecting member 3 may be changed based on the measurement results of these measuring devices.
  • members having the same functions as the members shown in FIGS. 1 to 3 are given the same reference numerals.
  • the measuring device 102 is provided so as to be movable along the extended surface 110 of the illuminated surface 10, and the angular distribution characteristics of the illuminance distribution on the illuminated surface 10 or the light intensity distribution on the illuminated surface 10. When measuring, it is inserted into the illumination optical path.
  • the measuring device 103 is provided so as to be movable along the extended surface 109 of the projection surface 9 and measures the angular distribution characteristics of the illuminance distribution on the projection surface 9 or the light intensity distribution on the projection surface 9.
  • the projection optical system 7 is inserted into a position in the image field.
  • the outputs of these measuring devices 102 and 103 are output to the control unit 101.
  • the control unit 101 changes the illuminance distribution on the illuminated surface 10 or the angular distribution characteristic of the light intensity distribution on the illuminated surface 10 to a desired distribution, and the illuminance distribution on the projected surface 9 or the light on the projected surface 9.
  • a position of the deflecting member 3 for obtaining the desired angular distribution characteristic of the intensity distribution is obtained, and a control signal is output to the drive unit 104 so as to be the position.
  • the driving unit 104 changes the position of the deflection member 3 based on a control signal from the control unit 101.
  • the illuminance distribution on the irradiated surface 10 the light intensity distribution in the angular direction of the light beam condensed at an arbitrary position on the irradiated surface 10, the illuminance distribution on the projected surface 9, or the projected surface 9 It is possible to change the light intensity distribution in the angular direction of the light beam condensed at an arbitrary position above to an arbitrary distribution.
  • the configuration in which one deflection member 3 is provided as in the first embodiment and the first and second modifications described above is described as an example.
  • the control unit 101 desires an angular distribution characteristic of the illuminance distribution on the illuminated surface 10 or the light intensity distribution on the illuminated surface 10.
  • the position of each deflection element for obtaining a desired distribution of the illuminance distribution on the projection surface 9 or the angular distribution characteristic of the light intensity distribution on the projection surface 9 may be obtained.
  • the drive unit 104 changes the position of each deflection element based on the output control signal.
  • the deflecting member has a sin-wave-shaped refracting surface.
  • a refracting surface having an uneven surface in one direction may be applied. good.
  • a refracting surface in which concave cylindrical surfaces and convex cylindrical surfaces are alternately arranged in one direction, or a refracting surface in which these cylindrical surfaces are replaced with a surface having a conical cross section in one direction is applied. You may do it.
  • the deflecting member has a flat incident surface and an exit surface having a concave / convex curved shape, but the incident surface has a concave / convex curved shape and the exit surface has a flat shape.
  • both the exit surface and the exit surface may be in the form of an uneven curved surface.
  • the incident surface or the exit surface does not need to be a flat surface, and may be an aspherical surface such as a spherical surface or a cylindrical surface.
  • the uneven curved surface shape of the deflecting member is not limited to the case where the surface connecting the inflection points is a flat surface, and the surface connecting the inflection points of the uneven curved surface shape is an aspheric surface such as a spherical surface or a cylindrical surface. May be.
  • a laser light source such as an ArF excimer laser light source that supplies light with a wavelength of 193 nm or a KrF excimer laser light source that supplies light with a wavelength of 248 nm is used as the light source. It can.
  • the collimator lens 2 may be omitted.
  • a beam expander system or an afocal system may be used instead of the collimator lens 2, a beam expander system or an afocal system may be used.
  • a solid light source such as an LD or LED that supplies light in the near ultraviolet wavelength region or ultraviolet wavelength region, or an ultrahigh pressure discharge lamp such as a mercury lamp may be used.
  • a rod lens an internal reflection type integrator
  • a condensing optical system having a front focal point at a position where the deflecting member 3 is disposed and having a rear focal point at or near the entrance surface of the rod lens is disposed between the rod lens and the deflecting member. It ’s fine.
  • the general illumination using a secondary light source having a circular global luminance distribution has been described as an example.
  • a secondary light source having a ring-shaped or multipolar luminance distribution is described.
  • the present invention can also be applied to modified illumination using
  • a spatial light modulator such as a diffractive optical element or an active mirror array that generates an annular or multipolar light intensity distribution in the far field in the optical path on the light source side of the deflecting member 3
  • an optical system Frier transform optical system
  • the exposure apparatus of the above-described embodiment is manufactured by assembling various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Is done.
  • various optical systems are adjusted to achieve optical accuracy
  • various mechanical systems are adjusted to achieve mechanical accuracy
  • various electrical systems are Adjustments are made to achieve electrical accuracy.
  • the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus.
  • the exposure apparatus may be manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
  • FIG. 13 is a flowchart showing a semiconductor device manufacturing process.
  • a metal film is vapor-deposited on a wafer W to be a semiconductor device substrate (step S40), and a photoresist, which is a photosensitive material, is applied on the vapor-deposited metal film.
  • Step S42 the pattern formed on the mask (reticle) M is transferred to each shot area on the wafer W (step S44: exposure process), and the wafer W after the transfer is completed.
  • Development that is, development of the photoresist to which the pattern has been transferred (step S46: development process).
  • step S48 processing step.
  • the resist pattern is a photoresist layer in which unevenness having a shape corresponding to the pattern transferred by the projection exposure apparatus of the above-described embodiment is generated, and the recess penetrates the photoresist layer. It is.
  • the surface of the wafer W is processed through this resist pattern.
  • the processing performed in step S48 includes, for example, at least one of etching of the surface of the wafer W or film formation of a metal film or the like.
  • the projection exposure apparatus of the above-described embodiment performs pattern transfer using the wafer W coated with the photoresist as the photosensitive substrate, that is, the plate P.
  • FIG. 14 is a flowchart showing a manufacturing process of a liquid crystal device such as a liquid crystal display element.
  • a pattern formation process step S50
  • a color filter formation process step S52
  • a cell assembly process step S54
  • a module assembly process step S56
  • step S50 a predetermined pattern such as a circuit pattern and an electrode pattern is formed on the glass substrate coated with a photoresist as the plate P using the projection exposure apparatus of the above-described embodiment.
  • the pattern forming step includes an exposure step of transferring the pattern to the photoresist layer using the projection exposure apparatus of the above-described embodiment, and development of the plate P on which the pattern is transferred, that is, development of the photoresist layer on the glass substrate. And a developing step for generating a photoresist layer having a shape corresponding to the pattern, and a processing step for processing the surface of the glass substrate through the developed photoresist layer.
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix or three R, G, and B
  • a color filter is formed by arranging a plurality of stripe filter sets in the horizontal scanning direction.
  • a liquid crystal panel liquid crystal cell
  • a liquid crystal panel is assembled using the glass substrate on which the predetermined pattern is formed in step S50 and the color filter formed in step S52.
  • a liquid crystal panel is formed by injecting liquid crystal between a glass substrate and a color filter.
  • various components such as an electric circuit and a backlight for performing the display operation of the liquid crystal panel are attached to the liquid crystal panel assembled in step S54.
  • the present embodiment is not limited to application to an exposure apparatus for manufacturing a semiconductor device.
  • an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display. It can also be widely applied to an exposure apparatus for manufacturing various devices such as an image sensor (CCD or the like), a micromachine, a thin film magnetic head, and a DNA chip.
  • this embodiment can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed using a photolithography process.
  • the present embodiment is applied to the illumination optical system that illuminates the mask in the exposure apparatus.
  • the present invention is not limited to this, and the irradiated surface other than the mask is illuminated.
  • the present embodiment can also be applied to a general illumination optical system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

 光量ロスを低減させ、一様な照度分布を持つ照明を得る照明装置の提供を目的とする。被照明面を照明する照明装置において、光路を横切る所定の面上の所定方向に沿って周期パターンを持つ照度分布を形成する偏向部材と、所定の面に配列された複数の波面分割面を備え、偏向部材からの光束を用いて二次光源を形成するオプティカルインテグレータ系とを有し、偏向部材は、複数の波面分割面の配列周期の整数倍または単位分数倍の周期パターンを持つ照度分布を形成する。

Description

照明装置
 本実施形態は、物体を照明する照明装置に関する。特に半導体素子や液晶表示素子などのデバイスを製造するリソグラフィ工程で用いられる露光装置に適用されて、投影原版を照明する照明装置に関する。
 従来、投影露光装置に適用される照明装置において、オプティカルインテグレータとしてフライアイレンズを用いたものが知られている。フライアイレンズを配置した照明装置では、フライアイレンズの各波面分割面で形成された二次光源からの光が重畳した状態で投影原版に照明される。一様な照度分布の光を投影原版に照明するために、フライアイレンズに入射する光束の照度分布を補正するための補正光学系を設けた照明装置が知られている(例えば、特許文献1参照)。
 特許文献1の照明装置では、投影原版に照明された光の照度分布が投影原版の中心部または周辺部でそれぞれ異なり、さらに集光する光束の角度方向の強度分布が投影原版上の位置に応じてそれぞれ異なる場合に、光源とフライアイレンズとの間に補正光学系を配置して、フライアイレンズの各波面分割面へ入射する光束の照度分布をそれぞれ変化させ、投影原版上に集光する各光束の開口内に生じた不均一な角度分布を補正して均一な照度分布を得ている。
米国特許第6,049,374号
 しかしながら、特許文献1に記載の照明装置では、フィルタなどの補正光学系を配置することで照明光が吸収され、光量を損失してしまう問題があった。
 本実施形態は上記問題に鑑みてなされたものであり、光量ロスを低減させ、一様な光強度分布を持つ照明または所望の光強度分布を持つ照明を得る照明装置の提供を目的とする。
 上記課題を解決するために、本実施形態の第1の態様にかかる照明装置は、被照明面を照明する照明装置であって、前記照明装置の光路中に配置されて、前記光路を横切る所定の面上の所定方向に沿って周期パターンを持つ照度分布を形成する偏向部材と、前記所定の面に配列された複数の波面分割面を備えるとともに前記偏向部材からの光束を用いて二次光源を形成するオプティカルインテグレータ系とを有し、前記偏向部材は、前記複数の波面分割面の配列周期の整数倍または単位分数倍の周期パターンを持つ照度分布を形成することを特徴とする。
 また、本実施形態の第2の態様にかかる照明装置は、被照明面を照明する照明装置であって、前記照明装置の光路中に配置されて、前記光路を横切る所定の面上の所定方向に沿って周期パターンを持つ照度分布を形成する偏向部材と、前記所定の面に配列された複数の波面分割面を備えるとともに前記偏向部材からの光束を用いて二次光源を形成するオプティカルインテグレータ系とを有し、前記偏向部材は、前記周期パターンを変更するために、位置調整可能に構成されていることを特徴とする。
 また、本実施形態の第3の態様にかかる投影露光装置は、第1または第2の態様にかかる照明装置と、前記被照明面からの光を被投影面に投影する投影光学系とを備ることを特徴とする。
 また、本実施形態の第4の態様にかかる照明方法は、入射する光束を偏向して周期パターンを持つ照度分布を所定の面上に形成することと、前記偏向された光束を前記所定の面上に配列された複数の波面分割面に導いて二次光源を形成することと、前記二次光源からの光束を用いて被照明面を照明することとを含み、前記周期パターンは、前記波面分割面に沿った方向に前記波面分割面の配列周期の整数倍または単位分数倍であることを特徴とする。
 また、本実施形態の第5の態様にかかる照明方法は、入射する光束を偏向して周期パターンを持つ照度分布を所定の面上に形成することと、前記偏向された光束を前記所定の面上に配列された複数の波面分割面に導いて二次光源を形成することと、前記所定の面上に形成される照度分布の周期パターンを変更することと、前記二次光源からの光束を用いて被照明面を照明することと、を含むことを特徴とする。
 また、本実施形態の第6の態様にかかる露光方法は、光源からの光により被照射面に位置する所定のパターンを照明することと、前記所定のパターンを介した光で感光性基板を露光することと、を含み、前記照明することでは、第4または第5の態様にかかる照明方法を用いて前記被照射面に位置する前記所定のパターンを照明することを特徴とする。
 また、本実施形態の第7の態様にかかるデバイス製造方法は、第6の態様にかかる露光方法を用いて、露光パターンを前記感光性基板に露光することと、前記露光パターンが転写された前記感光性基板を現像し、前記露光パターンに対応する形状のマスク層を前記感光性基板の表面に形成することと、前記マスク層を介して前記感光性基板の表面を加工することと、を含むことを特徴とするデバイス製造方法。
 本実施形態によれば、光量ロスを低減させ、一様な光強度分布を持つ照明、または所望の光強度分布を持つ照明を得る照明装置を実現し得る。
は、第1実施形態に係る照明装置を備えた投影露光装置を示す図である。 は、第1実施形態に係る偏向部材の配置を示す図である。 は、第1実施形態に係る偏向部材の機能を示す図である。 は、第2実施形態に係る照明装置を示す図である。 は、第1及び第2偏向素子の機能を示す図である。 は、第1及び第2偏向素子の配置を示す図である。 は、第1及び第2偏向素子を配置しない場合に被照明面に照明される光束の照度分布を示す図である。 は、第1及び第2偏向素子によって被照明面に照明される光束の照度分布を示す図である。 は、第1及び第2偏向素子をずらした場合の機能を示す図である。 は、第1及び第2偏向素子が持つ周期が互いに異なる場合の機能を示す図である。 は、図10の場合に被照明面に照明される光束の照度分布を示す図である。 は、変形例に係る照明装置を備えた投影露光装置を示す図である。 は、半導体デバイスの製造工程を示すフローチャートである。 は、液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。
 以下、図面に基づいて実施形態を説明する。
 図1に、第1実施形態に係る照明装置を備えた投影露光装置を示す。図1において、感光性基板であるウェハが配置される被投影面9の法線方向に沿ってZ軸を、被投影面9内において図1の紙面に平行な方向にX軸を、被投影面9内において図1の紙面に垂直な方向にY軸をそれぞれ設定している。図1を参照すると、本実施形態の投影露光装置では、光源1から露光光(照明光)が供給される。
 図1において、光源1から射出した光はコリメータレンズ2でほぼ平行な光束に変換され、偏向部材3に入射する。偏向部材3の構成及び機能の説明は後述する。偏向部材3からの光束は第1フライアイレンズ4及び第2フライアイレンズ5から構成されるフライアイレンズ系54に入射する。
 フライアイレンズ系54の第1フライアイレンズ4は、入射光束の進行方向を横切る面内(本実施形態ではXY平面)に二次元アレイ状に配列された複数のレンズ面を備える。第1フライアイレンズ4の入射面41に入射した光束はこの複数のレンズ面によって、微小単位に二次元的に波面分割される。微小単位に分割された光束は、第2フライアイレンズ5の射出面51近傍にそれぞれ集光されて複数の二次光源を形成する。本明細書では、この二次光源を1つ形成するために必要な面を波面分割面と呼ぶ。通常、フライアイレンズは多くの波面分割面を配列しているが、図1及び図2では簡単のため5つの波面分割面を持つフライアイレンズを示した。
 二次光源からの光束は、コンデンサーレンズ6で集光され、被照明面10をケーラー照明する。被照明面10には、被投影面9に投影するパターンを持った投影原版としてのレチクルなどが配置される。
 被照明面10からの光束は、投影光学系7で集光され被投影面9に投影される。なお、投影光学系7の開口絞り8は二次光源が形成される位置と共役な位置に配置される。
 次に、図2及び図3を参照して、図1に示した偏向部材3の詳細な説明を行う。図2(a)において、偏向部材3は、入射面が平面で射出面が一方向にsin波状の形状を持つ、露光光に透明な材質で形成された板である。
 図2(b)は、偏向部材3とフライアイレンズ系54との配置関係を示す図であり、この図2(b)に示すように、偏向部材3は、光の進行方向側から見て(Z方向側から見て)、フライアイレンズ系54の第1フライアイレンズ4の有効領域を包含する大きさを持つ。
 図3(a)は、偏向部材3の機能を説明するための光路図である。図3(a)に示すように、例えば多数の光線で表すことのできる平行光束が図中左側から偏向部材3に入射した場合には、偏向部材3の射出面での屈折作用(光偏向作用)によって、偏向部材3から射出される光線の密度に濃淡が生じる。この光線の密度が光エネルギー密度に対応しているため、偏向部材3の射出側の仮想面Pには偏向部材3のsin波状の山に対応する位置の強度が高く、谷に対応する位置の強度が低くなるようなX方向に周期を持つ照度分布(光強度分布)が形成される。
 この仮想面Pにおける照度分布35iを図3(b)に示す。偏向部材3の単位周期をsin波の一周期とする場合、仮想面Pと偏向部材3との距離が近接している際には、照度分布35iは偏向部材3の単位周期とほぼ等しい周期でX方向に強弱が変化する照度分布が仮想面P上に形成される。
 図3(c)は、偏向部材3のXY平面内の位置が初期状態である場合の、偏向部材3により形成される周期パターンを持つ照度分布と被照射面10上での照度分布との関係を示す図である。以下の説明では、上記仮想面Pの位置に第1フライアイレンズ4の入射面が位置しているものとして説明する。この図3(c)に示すように、偏向部材3が形成する照度分布35iの周期が第1フライアイレンズ4の波面分割面の配列周期と等しい場合、コンデンサーレンズ6を介して被照射面10上に同じ性状の照度分布が重畳されるため、被照射面10上には光強度分布35iの1つの周期内の照度分布と同じ性状の照度分布36iが形成される。
 ここで、偏向部材3を照明装置の光軸AXに沿って移動させることで、偏向部材3が形成する照度分布の周期パターンを調節、典型的には照度分布の最大値と最小値との差を制御することができ、ひいては被照射面10上の照度分布の凹凸成分を制御できる。また、偏向部材3を光軸AXと垂直な方向のうち偏向部材3のピッチ方向(X方向)に沿って移動させて被照射面10上の照度分布を制御しても良い。
 ここで、偏向部材3によって、被照射面10上での不均一な照度分布とは逆傾向の照度分布を発生させれば、被照射面10上での不均一な照度分布を均一な照度分布に近づけることができる。
 なお、上述の説明では、第1フライアイレンズ4の波面分割面の配列周期と同じ周期、すなわち配列周期の1倍の周期を持つ照度分布を第1フライアイレンズ4の入射面41に形成したが、第1フライアイレンズ4の入射面上に、第1フライアイレンズ4の波面分割面の配列周期の整数倍または単位分数倍の周期パターンを持つ照度分布を形成しても良い。
 このように第1実施形態では、偏向部材によって複数の波面分割面の配列周期の整数倍(1倍を含む)または単位分数倍の照度分布を波面分割面上に形成しているため、被照射面上の任意の位置に集光する光束の角度方向の光強度分布を所望の分布にすることができる。
 上述の第1実施形態では、補正光学系として1つの偏向部材3を設ける構成であったが、偏向部材の数は1つには限定されず、複数であっても良い。以下、図4~図11を参照して、複数の偏向部材を備える第2実施形態について説明する。
図4に、第2実施形態に係る照明装置の構成を示す。なお、以下の説明において、上述の図1~図3に示した部材と同様の機能を有する部材には同じ符号を付してある。
 図4において、図1に示した構成と異なる構成は、補正光学系と見なすことのできる偏向部材3に代えて、照明光の進行方向に沿って配列された第1偏向素子30及び第2偏向素子31を備える点である。図4(a)において、第1偏向素子30及び第2偏向素子31に入射した光束は、周期パターンを持つ照度分布に変換されて第1フライアイレンズ4の入射面41に入射する。ここで、図4(b)は、第1及び第2偏向素子30,31と第1フライアイレンズ4の入射面41との配置関係を示す。この図4(b)に示す通り、第1及び第2偏向素子30,31は、それらの射出面が同じ形状であって、それらの位相が互いに同位相となる初期状態となっている。
 以下、図5を参照して、第1及び第2偏向素子30,31の機能を説明する。図5(a)は上述した偏向部材3がその射出側に形成する照度分布を示す図であり、図5(b)は、第1及び第2偏向素子30,31がそれらの射出側に形成する照度分布を示す図である。図5(a),(b)において、矢印は、偏向部材3または第1偏向素子30及び第2偏向素子31に入射する光の進行方向を示す。偏向部材3または第1及び第2偏向素子30,31の右側に示したグラフは、偏向部材3または第1偏向素子30及び第2偏向素子31で光が偏向された結果生じる周期パターンを持つ照度分布を表す。これらのグラフにおいては、縦軸が偏向部材3または第2偏向素子31に対する相対位置、横軸が光の強度を示している。
 なお、図5(b)に示した第1偏向素子30及び第2偏向素子31は、それらの射出面が一方向(X方向)にsin波状の互いに同じ形状を持つ。ここで、第1及び第2偏向素子30,31の射出面の位相が互いに同位相となるように配置されているため、図5(a)に示した偏向部材3が1枚である場合よりも、より高い山と深い谷とを含む周期パターンを持った照度分布となっている。なお、第1及び第2偏向素子30,31の射出面の位相が互いに同位相となるように配置された初期状態では、第1フライアイレンズ4の波面分割面の配列周期の整数倍または単位分数倍の周期パターンを持つ照度分布が、第1フライアイレンズ4の入射面41に形成される。
 また、第1及び第2偏向素子30,31のうちの少なくとも1つは、照明装置の光軸又は光軸と平行な軸線周りに回転可能であっても良い。以下、図6~図8を参照して説明する。
 図6は、第1偏向素子30及び第2偏向素子31と第1フライアイレンズ4の入射面41の配置の状態を示した図である。図6において、第1及び第2偏向素子30,31は、図4(b)に示した初期状態から、照明装置の光軸AXを中心に第1偏向素子30を右回りに、第2偏向素子31を左回りに回転した状態で配置されている。ここで、上述の図4~図5の例と同様に、第1偏向素子30及び第2偏向素子31が各射出面に沿った方向にそれぞれ持つ周期は同一である。また、第1偏向素子30及び第2偏向素子31が第1フライアイレンズ4の入射面41に形成する周期パターンを持つ照度分布の周期パターンは、第1フライアイレンズ4の波面分割面の配列周期と同一である。
 図7(a)は、第1偏向素子30及び第2偏向素子31を配置しない場合における被照明面10に照明される光束の状態を示している。図7(a)においては、被照明面10の中心部10cと、X方向における周辺部10pとをY方向に沿った点線で区切ってある。被照明面10の周辺部10pに集光する光束11の開口内の中心を原点11cとし、この原点11cを通りY方向に延びた軸11aに沿った光強度分布を図7(b)に、中心部10cに集光する光束12の開口内の中心12cを原点とし、この原点12cを通りY方向に延びた軸12aに沿った光強度分布を図7(c)に示した。
 図7(b)及び図7(c)に示した光強度分布において、縦軸は光強度、横軸は各軸11a,12aに沿った座標を示している。これら図7(b)及び図7(c)に示した光強度分布は、被照明面10の周辺部10pに集光する光束11の、原点11cと集光点とを結ぶ基準軸に対する角度方向の光強度分布、及び被照明面10の中心部10cに集光する光束12の、原点12cと集光点とを結ぶ基準軸に対する角度方向の光強度分布にそれぞれ対応している。
 さて、図6に示した第1及び第2偏向素子30,31の状態は、Y方向における第1偏向素子30及び第2偏向素子31の端で第1偏向素子30及び第2偏向素子31が持つ一周期異なる谷と谷が初めて重なる状態である。このように、第1偏向素子30及び第2偏向素子31を回転させると、Y方向における第1偏向素子30及び第2偏向素子31の中心付近で、第1偏向素子30及び第2偏向素子31の同一周期の山と山が重なると共に、谷と谷が重なる。そして、第1偏向素子30及び第2偏向素子31の端で一周期異なる山と山が重なると共に、谷と谷が重なる。
 この第1偏向素子30が形成する照度分布と第2偏向素子31が形成する照度分布によって新たに生じた照度分布の周期によって、図8(a)に示すように、第1フライアイレンズ4の入射面41に入射する照度分布の周期パターンが形成される。ここでは、第1偏向素子30及び第2偏向素子31の山と山が重なる位置が最も強度が高く、谷と谷が重なる位置が最も強度が低い照度分布が第1フライアイレンズ4の入射面41に形成される。なお、図8(a)~(d)では、第1及び第2偏向素子30,31に均一な照度分布を持つ光束が入射した場合における照度分布を示し、特に、図8(b)は、被照明面10に照明される光束の状態を示す。
 フライアイレンズ系は、第1フライアイレンズ4の入射面41における複数のレンズ面(波面分割面)での照度分布を被照射面10に重畳して形成する機能を有しているため、被照明面10の周辺部10pに集光する光束の角度方向の光強度分布は第1フライアイレンズ4の入射面41に配列された各波面分割面の周辺部に形成された照度分布が反映されたものとなり、被照明面10の中心部10cに集光する光束の角度方向の光強度分布は第1フライアイレンズ4の入射面41に配列された各波面分割面の中心部の照度分布が反映されたものとなる。
 そして、入射面41のY方向における中心部に配列された波面分割面41cの周辺部41cpを通過した光は、開口11内の軸11aに沿った方向で開口角度、すなわち光軸AX又は光軸と平行な軸に対する角度が小さい光に対応する。また、入射面41のY方向における周辺部41pに配列された波面分割面の周辺部41ppを通過した光は、開口11内の軸11aに沿った方向で開口角度の大きい光に対応する。ここで、波面分割面41cの周辺部41cpを通過する光の強度は低く波面分割面41pの周辺部41ppを通過する光の強度は高い。従って図8(c)に示すように、被照明面10の周辺部の開口11内では、軸11aの原点11c付近で強度が低く原点11cから遠くなるほど強度が高い光強度分布となる。
 一方、入射面41のY方向における中心部41cに配列された波面分割面の中心部41ccを通過した光は、開口12内の軸12aに沿った方向で開口角度の小さい光に対応する。また、入射面41の周辺部に配列された波面分割面41pの中心部41pcを通過した光は、開口12内の軸12aに沿った方向で開口角度の大きい光束に対応する。ここで、波面分割面41cの中心部41ccを通過する光の強度は高く、波面分割面41pの中心部41pcを通過する光の強度は低い。従って、図8(d)に示すように、被照明面10の中心部10cの開口12内では、軸12aの原点12c付近で強度が高く原点12cから遠くなるほど強度が低い光強度分布となる。
 従って、照明装置が図8(b)~(d)に示した光強度分布の角度分布特性の被照射面上での位置による差異を有している場合に、その特性を相殺できる特性を偏向素子30,31で発生させることができ、被照射面上の光強度分布の角度分布特性の位置による差異を低減することが可能である。
 また、これらの第1偏向素子30及び第2偏向素子31は、照明装置の光軸AXに沿った方向(Z方向)にそれぞれ独立または連動させて移動させても良い。第1及び第2偏向素子30,31のうちの少なくとも1つの移動によって、第1及び第2偏向素子30,31が形成する照度分布の周期パターンを調節することができる。
 図9は、第1偏向素子30または第2偏向素子31をX方向に移動した場合における、各偏向素子30,31の位置関係と、これらの偏向素子30,31が射出側に形成する照度分布を示す図である。なお、図9において、矢印は、第1及び第2偏向素子30,31に入射する光の進行方向を示す。図9に示すように、第1偏向素子30または第2偏向素子31をX方向に移動したことで、第1偏向素子30の周期の山または谷と、第2偏向素子31の周期の谷または山が重なる範囲が多くなり、山と谷の強度の差が少ない周期パターンを持つ照度分布が形成される。
 また、上述の説明では、第1及び第2偏向素子30,31が互いに同じ周期を持つsin波状の射出面を備えていたが、第1及び第2偏向素子30,31の射出面の周期は互いに異なっていても良い。
 図10は、第1偏向素子30が持つ周期と第2偏向素子31が持つ周期が互いに異なる場合における、各偏向素子30,31の位置関係と、これらの偏向素子30,31が射出側に形成する照度分布を示す図である。なお、図10においても、矢印は、第1及び第2偏向素子30,31に入射する光の進行方向を示す。
 図10の例では、第1偏向素子30が第2偏向素子31に比べてやや大きい周期を持ち、X方向において第1偏向素子30及び第2偏向素子31の中心部で山と山が重なるように構成されている。この場合、X方向において第1偏向素子30及び第2偏向素子31の中心付近で山と山が重なる位置の強度が最も高く、第1偏向素子30及び第2偏向素子31の中心部から周辺部に向かうほど山と山が重なる範囲が減少して強度が低くなる。
 また、X方向において第1偏向素子30及び第2偏向素子31の中心付近で谷と谷が重なる位置の強度が最も低く、第1偏向素子30及び第2偏向素子31の中心部から周辺部いくほど谷と谷が重なる範囲が減少して強度が高くなる。そのため、図10に示した第1偏向素子30及び第2偏向素子31によって形成される照度分布の周期パターンは、X方向において一周期に複数の山と谷を含む。
 図11に、第1及び第2偏向素子30,31の位置関係が図10に示した状態である場合における、被照明面10上に照明される光束の状態を示した。ここで、図11(a)は、第1及び第2偏向素子30,31に均一な照度分布の光が入射した場合における、被照明面10に照明される光束の状態を示す。図11(a)においては、被照明面10の中心部10cと、X方向における周辺部10pとをY方向に沿った点線で区切ってある。被照明面10の周辺部10pに集光する光束11の開口内の中心を原点11cとし、この原点11cを通りX方向に延びた軸11bに沿った光強度分布を図11(b)に、中心部10cに集光する光束12の開口内の中心12cを原点とし、この原点12cを通りX方向に延びた軸12bに沿った光強度分布を図11(c)に示した。
 図11(b)及び図11(c)に示した照度分布において、縦軸は光強度、横軸は各軸11b、12bに沿った座標を示している。これら図11(b)及び図11(c)に示した光強度分布は、被照明面10の周辺部10pに集光する光束11の、原点11cと集光点とを結ぶ基準軸に対する角度方向の光強度分布、及び被照明面10の中心部10cに集光する光束12の、原点12cと集光点とを結ぶ基準軸に対する角度方向の光強度分布にそれぞれ対応している。
 第1及び第2偏向素子30,31は、図10に示した照度分布を射出側に形成するので、図11(b)に示すように、被照明面10の周辺部10pの開口11内では、軸11bの原点11c付近で強度が低く原点11cから遠くなるほど強度が高い光強度分布となる。
 一方、図11(c)に示すように、被照明面10の中心部10cの開口12内では、軸12bの原点12c付近で強度が高く原点12cから遠くなるほど強度が低い光強度分布となる。
 従って、照明装置が被照射面上の光強度分布の角度分布特性のX方向の位置による差異がある場合についても、その差異を低減することが可能である。
 以下に、他の偏向部材3の変形例について説明する。
 第1変形例として、偏向部材3を所定の角度を持つ軸を中心として回転させても良い。
 ここで、所定の角度とは照明装置の光軸AXと偏向部材3の回転軸とがなす角度である。ただし、所定の角度には0°が含まれ、図6の様に照明装置の光軸AXと偏向部材3の回転軸とが平行であっても良い。
 第2変形例として、偏向部材3を照明装置の光軸AXと交わらない軸を中心として回転させても良い。ここで、その照明装置の光軸AXと交わらない軸は、光軸AXと平行であってもよく、所定の角度をなしていても良い。変形例2では、偏向部材3をフライアイレンズ系45に対して斜めに傾けることができる。
 また、変形例1および変形例2を第1及び第2偏向素子30,31に適応しても良い。
 第3変形例として、偏向部材3が、偏向素子の入射面または射出面に沿った方向に同一の周期を持つ偏向素子と、偏向素子の入射面または射出面に沿った方向に異なる周期を持つ偏向素子とを複数含んでも良い。例えば、偏向部材3が4つの偏向素子(第1~第4偏向素子)を含む場合、第1及び第2偏向素子が同一の周期を持ち、第3偏向素子が第1及び第2偏向素子と異なる周期を持ち、第4偏向素子が第1~第3偏向素子と異なる周期を持っていても良い。
 第4変形例として、偏向部材3が、同一の周期パターンを持つ照度分布を形成する偏向素子と、異なる周期パターンを持つ照度分布を形成する偏向素子とを同時に含んでも良い。例えば、偏向部材3が4つの偏向素子(第1~第4偏向素子)を含む場合、第1及び第2偏向素子が同一の周期パターンを持つ照度分布を形成する偏向素子であり、第3偏向素子が第1及び第2偏向素子と異なる周期パターンを持つ照度分布を形成する偏向素子であり、第4偏向素子が第1~第3偏向素子と異なる周期パターンを持つ照度分布を形成する偏向素子であっても良い。
 第5変形例として、被照射面上の二方向(XY方向)における照度分布および被照射面に達する光束の角度方向の光強度分布の被照射面上の位置(XY座標位置)による差異のうちの少なくとも一方を補正しても良い。例えば、偏向部材3が4つの偏向素子(第1~第4偏向素子)を含む場合、第1及び第2偏向素子がX方向に沿った周期パターンを持つ照度分布を形成する偏向素子であり、第3及び第4偏向素子がY方向に沿った周期パターンを持つ照度分布を形成する偏向素子であっても良い。これらの偏向素子が照明光学系の光軸周り、またはこの光軸に平行な軸回りに回転可能であっても良い。
 上述の第1及び第2実施形態、並びに第1~第4変形例では、走査方向(Y方向)に沿ってレチクルとウェハとを同期させて移動しながら露光を行う走査型の投影露光装置に適用することを念頭において、非走査方向(X方向)における照度分布または被照射面に達する光束の角度方向の光強度分布の非走査方向の位置による差異を補正している。
 しかしながら、レチクルとウェハとを静止した状態で露光を行う一括露光型の投影露光装置に適用する場合には、走査方向における平均化効果を利用できないため、第5変形例が有用である。
 以上の第1及び第2実施形態、第1~第5変形例の組合せは、任意の組合せとすることができる。
 また、各偏向素子は位置調整可能であり、それぞれを連動させても独立に動作させてもよい。
 各偏向素子の位置を変更することによって、被照射面上の任意の位置に集光する光束の角度方向の光強度分布を任意の分布に変更することができる。
 また、以上の第1及び第2実施形態、第1~第5変形例では屈折を利用した光学系について記載したが、用いる光の波長が紫外領域で偏向部材によって光量を損失する可能性がある場合などは、反射や回折を利用した偏向部材を適用させてもよい。
 また、図12に示すように、被照明面10での照度分布または被照明面10上の光強度分布の角度分布特性を計測する計測装置102や、被投影面9での照度分布または被投影面9上の光強度分布の角度分布特性を計測する計測装置103を設け、これらの計測装置の計測結果に基づいて、偏向部材3が形成する照度分布の周期パターンを変更しても良い。なお、図12の例では、上述の図1~図3に示した部材と同様の機能を有する部材には同じ符号を付してある。
 ここで、計測装置102は、被照明面10の延長面110に沿って移動可能に設けられており、被照明面10での照度分布または被照明面10上の光強度分布の角度分布特性を計測する場合に、照明光路内に挿入される。
 また、計測装置103は、被投影面9の延長面109に沿って移動可能に設けられており、被投影面9での照度分布または被投影面9上の光強度分布の角度分布特性を計測する場合に、投影光学系7の像野内の位置に挿入される。
 これらの計測装置102,103の出力は、制御部101に出力される。制御部101は、被照明面10での照度分布または被照明面10上の光強度分布の角度分布特性を所望の分布にし、且つ被投影面9での照度分布または被投影面9上の光強度分布の角度分布特性を所望の分布にするための偏向部材3の位置を求め、その位置となるように駆動部104へ制御信号を出力する。
 駆動部104は、制御部101からの制御信号に基づいて偏向部材3の位置を変更する。
 これにより、被照射面10上での照度分布、被照射面10上の任意の位置に集光する光束の角度方向の光強度分布、被投影面9上での照度分布、または被投影面9上の任意の位置に集光する光束の角度方向の光強度分布を任意の分布に変更することができる。
 なお、図12の例では、上述の第1実施形態並びに第1および第2変形例のように、1つの偏向部材3を設ける構成を例にとって説明したが、上述の第2実施形態並びに第3乃至第5変形例のように、複数の偏向素子を設ける構成の場合には、制御部101は、被照明面10での照度分布または被照明面10上の光強度分布の角度分布特性を所望の分布にし、且つ被投影面9での照度分布または被投影面9上の光強度分布の角度分布特性を所望の分布にするための各偏向素子の位置を求めれば良い。このとき、駆動部104は出力された制御信号に基づいて、各偏向素子の位置を変更する。
 上述の各実施形態並びに各変形例では、偏向部材はsin波状の屈折面を持っていたが、sin波状の屈折面に代えて、一方向に凹凸の曲面形状である屈折面を適用しても良い。例えば、凹円筒面と凸円筒面とを一方向に互い違いに配列した形態の屈折面や、これらの円筒面を上記一方向の断面が円錐状となる面に置き換えた形態の屈折面などを適用しても良い。
 上述の各実施形態並びに各変形例では、偏向部材は入射面が平面で射出面が凹凸曲面形状の形態であったが、入射面が凹凸曲面形状で射出面が平面状の形態や、入射面及び射出面の双方が凹凸曲面形状の形態であっても良い。また、入射面または射出面は平面である必要はなく、球面や円筒面などの非球面であっても良い。また、偏向部材の凹凸曲面形状は、その変曲点を結んだ面が平面である場合には限られず、凹凸曲面形状の変曲点を結んだ面が球面や円筒面などの非球面であっても良い。
 また、上述の各実施形態並びに各変形例において、光源として、例えば193nmの波長の光を供給するArFエキシマレーザ光源や248nmの波長の光を供給するKrFエキシマレーザ光源などのレーザ光源を用いることができる。このようなほぼ平行光束を供給するレーザ光源を用いる場合には、コリメータレンズ2を省いても良い。また、コリメータレンズ2の代わりに、ビームエキスパンダ系やアフォーカル系を用いても良い。
 また、光源としては、近紫外波長域や紫外波長域の光を供給するLDやLEDなどの固体光源や、水銀ランプ等の超高圧放電ランプなどを用いても良い。
 また、上述の各実施形態並びに各変形例において、オプティカルインテグレータとしてのフライアイレンズの代わりに、ロッドレンズ(内面反射型インテグレータ)を用いても良い。この場合、偏向部材3が配置される位置に前側焦点を有し、且つロッドレンズの入射面またはその近傍に後側焦点を有する集光光学系を、ロッドレンズと偏向部材との間に配置すれば良い。
 また、上述の各実施形態並びに各変形例では、大局的な輝度分布が円形状の二次光源を用いた通常照明を例にとって説明したが、輝度分布が輪帯状や複数極状の二次光源を用いた変形照明の場合にも適用可能である。
 このような変形照明を行う場合、偏向部材3の光源側の光路に、そのファーフィールドに輪帯状や複数極状の光強度分布を生成する回折光学素子や能動的ミラーアレイなどの空間光変調器を配置し、その空間光変調器の偏向部材側の光路に、空間光変調器がそのファーフィールドに生成する光強度分布を偏向部材の近傍に結像する光学系(フーリエ変換光学系)を配置しても良い。
 また、上述の実施形態並びに変形例において、米国特許第7,423,731号公報、米国公開公報第2006/0170901号及び第2007/0146676号に開示されるいわゆる偏光照明方法を適用することもできる。
 また、上述の実施形態並びに変形例において、投影光学系と感光性基板との間の光路中を1.1よりも大きな屈折率を有する媒体(典型的には液体)で満たす手法、所謂液浸法を適用しても良い。
 上述の実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行っても良い。
 次に、上述の実施形態にかかる露光装置を用いたデバイス製造方法について説明する。図13は、半導体デバイスの製造工程を示すフローチャートである。図13に示すように、半導体デバイスの製造工程では、半導体デバイスの基板となるウェハWに金属膜を蒸着し(ステップS40)、この蒸着した金属膜上に感光性材料であるフォトレジストを塗布する(ステップS42)。つづいて、上述の実施形態の投影露光装置を用い、マスク(レチクル)Mに形成されたパターンをウェハW上の各ショット領域に転写し(ステップS44:露光工程)、この転写が終了したウェハWの現像、つまりパターンが転写されたフォトレジストの現像を行う(ステップS46:現像工程)。
 その後、ステップS46によってウェハWの表面に生成されたレジストパターンをマスクとし、ウェハWの表面に対してエッチング等の加工を行う(ステップS48:加工工程)。ここで、レジストパターンとは、上述の実施形態の投影露光装置によって転写されたパターンに対応する形状の凹凸が生成されたフォトレジスト層であって、その凹部がフォトレジスト層を貫通しているものである。ステップS48では、このレジストパターンを介してウェハWの表面の加工を行う。ステップS48で行われる加工には、例えばウェハWの表面のエッチングまたは金属膜等の成膜の少なくとも一方が含まれる。なお、ステップS44では、上述の実施形態の投影露光装置は、フォトレジストが塗布されたウェハWを、感光性基板つまりプレートPとしてパターンの転写を行う。
 図14は、液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。図14に示すように、液晶デバイスの製造工程では、パターン形成工程(ステップS50)、カラーフィルタ形成工程(ステップS52)、セル組立工程(ステップS54)およびモジュール組立工程(ステップS56)を順次行う。ステップS50のパターン形成工程では、プレートPとしてフォトレジストが塗布されたガラス基板上に、上述の実施形態の投影露光装置を用いて回路パターンおよび電極パターン等の所定のパターンを形成する。このパターン形成工程には、上述の実施形態の投影露光装置を用いてフォトレジスト層にパターンを転写する露光工程と、パターンが転写されたプレートPの現像、つまりガラス基板上のフォトレジスト層の現像を行い、パターンに対応する形状のフォトレジスト層を生成する現像工程と、この現像されたフォトレジスト層を介してガラス基板の表面を加工する加工工程とが含まれている。
 ステップS52のカラーフィルタ形成工程では、R(Red)、G(Green)、B(Blue)に対応する3つのドットの組をマトリックス状に多数配列するか、またはR、G、Bの3本のストライプのフィルタの組を水平走査方向に複数配列したカラーフィルタを形成する。ステップS54のセル組立工程では、ステップS50によって所定パターンが形成されたガラス基板と、ステップS52によって形成されたカラーフィルタとを用いて液晶パネル(液晶セル)を組み立てる。具体的には、例えばガラス基板とカラーフィルタとの間に液晶を注入することで液晶パネルを形成する。ステップS56のモジュール組立工程では、ステップS54によって組み立てられた液晶パネルに対し、この液晶パネルの表示動作を行わせる電気回路およびバックライト等の各種部品を取り付ける。
 また、本実施形態は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本実施形態は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグラフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。
 また、上述の実施形態並びに変形例では、露光装置においてマスクを照明する照明光学系に対して本実施形態を適用しているが、これに限定されることなく、マスク以外の被照射面を照明する一般的な照明光学系に対して本実施形態を適用することもできる。
 上述した実施形態は、各特許請求の範囲を限定するものではない。従って、上記実施形態における構成の多くの変更及び修正を行うことができる。また、特許請求の範囲に記載された実施形態は、上記実施形態に開示した態様だけではなく、当業者にとって自明な均等物及び他の修正や変更を含むことを想定している。
 1 光源
 2 コリメータレンズ
 3、30、31 偏向部材
 4,5 フライアイレンズ
 6 コンデンサーレンズ
 7 投影レンズ
 8 開口絞り
 9 被投影面
 10 被照明面
 41 入射面
 51 出射面
 54 フライアイレンズ系

Claims (17)

  1.  被照明面を照明する照明装置において、
     前記照明装置の光路中に配置されて、前記光路を横切る所定の面上の所定方向に沿って周期パターンを持つ照度分布を形成する偏向部材と、
     前記所定の面に配列された複数の波面分割面を備え、前記偏向部材からの光束を用いて二次光源を形成するオプティカルインテグレータ系とを有し、
     前記偏向部材は、前記複数の波面分割面の配列周期の整数倍または単位分数倍の周期パターンを持つ照度分布を形成することを特徴とする照明装置。
  2.  前記偏向部材は、第1偏向素子と第2偏向素子とを有し、
     前記第1および第2偏向素子は、前記偏向素子の入射面または射出面に沿った方向に周期を持つ構造をそれぞれ備え、
     前記第1および第2偏向素子の前記周期は互いに同一であることを特徴とする請求項1に記載の照明装置。
  3.  前記偏向部材は、第1偏向素子と第2偏向素子とを有し、
     前記第1および第2偏向素子は、前記偏向素子の入射面または射出面に沿った方向に周期を持つ構造をそれぞれ備え、
     前記第1および第2偏向素子の前記周期は互いに異なることを特徴とする請求項1または2に記載の照明装置。
  4.  前記偏向部材は、第1偏向素子と第2偏向素子とを有し、
     前記第1および第2偏向素子が前記波面分割面上に形成する前記照度分布の前記周期パターンは、互いに同一であることを特徴とする請求項1~3のいずれか一項に記載の照明装置。
  5.  前記偏向部材は、第1偏向素子と第2偏向素子とを有し、
     前記第1および第2偏向素子が前記波面分割面上に形成する前記照度分布の前記周期パターンは、互いに異なることを特徴とする請求項1~4のいずれか一項に記載の照明装置。
  6.  前記偏向部材が前記波面分割面上に形成する前記照度分布の前記周期パターンは、前記波面分割面の配列方向に沿っていることを特徴とする請求項1~5のいずれか一項に記載の照明装置。
  7.  被照明面を照明する照明装置において、
     前記照明装置の光路中に配置されて、前記光路を横切る所定の面上の所定方向に沿って周期パターンを持つ照度分布を形成する偏向部材と、
     前記所定の面に配列された複数の波面分割面を備え、前記偏向部材からの光束を用いて二次光源を形成するオプティカルインテグレータ系とを有し、
     前記偏向部材は、前記周期パターンを変更するために、位置調整可能に構成されていることを特徴とする照明装置。
  8.  前記偏向部材は、前記複数の波面分割面の配列周期の整数倍または単位分数倍の周期パターンを持つ照度分布を形成することを特徴とする請求項7に記載の照明装置。
  9.  前記偏向部材は、独立に位置調整可能に構成された偏向素子を少なくとも1つ有することを特徴とする請求項1~8のいずれか一項に記載の照明装置。
  10.  前記偏向部材は、互いに連動して位置調整可能に構成された第1偏向素子と第2偏向素子とを有していることを特徴とする請求項1~9のいずれか一項に記載の照明装置。
  11.  前記偏向部材は、
     前記照明装置が持つ光軸に対して所定の角度を持つ軸を中心として回転可能に構成された偏向素子を少なくとも1つ有することを特徴とする請求項1~10のいずれか一項に記載の照明装置。
  12.  前記オプティカルインテグレータ系は、前記所定の面に配列された複数のレンズ面を備えるフライアイレンズを有することを特徴とする請求項1~11のいずれか一項に記載の照明装置。
  13.  請求項1~12のいずれか一項に記載の照明装置と、前記被照明面からの光を被投影面に投影する投影光学系とを備えた投影露光装置。
  14.  入射する光束を偏向して周期パターンを持つ照度分布を所定の面上に形成することと、
     前記偏向された光束を前記所定の面上に配列された複数の波面分割面に導いて二次光源を形成することと、
     前記二次光源からの光束を用いて被照明面を照明することとを含み、
     前記周期パターンは、前記波面分割面に沿った方向に前記波面分割面の配列周期の整数倍または単位分数倍であることを特徴とする照明方法。
  15.  入射する光束を偏向して周期パターンを持つ照度分布を所定の面上に形成することと、
     前記偏向された光束を前記所定の面上に配列された複数の波面分割面に導いて二次光源を形成することと、
     前記所定の面上に形成される照度分布の周期パターンを変更することと、
     前記二次光源からの光束を用いて被照明面を照明することと、
    を含むことを特徴とする照明方法。
  16.  光源からの光により被照射面に位置する所定のパターンを照明することと、
     前記所定のパターンを介した光で感光性基板を露光することと、
    を含み、
     前記照明することでは、請求項14または15に記載の照明方法を用いて前記被照射面に位置する前記所定のパターンを照明することを特徴とする露光方法。
  17.  請求項16に記載の露光方法を用いて、露光パターンを前記感光性基板に露光することと、
     前記露光パターンが転写された前記感光性基板を現像し、前記露光パターンに対応する形状のマスク層を前記感光性基板の表面に形成することと、
     前記マスク層を介して前記感光性基板の表面を加工することと、を含むことを特徴とするデバイス製造方法。
PCT/JP2012/069465 2011-08-04 2012-07-31 照明装置 WO2013018799A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147002790A KR102040341B1 (ko) 2011-08-04 2012-07-31 조명 장치
US14/236,742 US9760012B2 (en) 2011-08-04 2012-07-31 Illumination device
US15/675,257 US10162269B2 (en) 2011-08-04 2017-08-11 Illumination device
US16/192,208 US10459343B2 (en) 2011-08-04 2018-11-15 Illumination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011170626 2011-08-04
JP2011-170626 2011-08-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/236,742 A-371-Of-International US9760012B2 (en) 2011-08-04 2012-07-31 Illumination device
US15/675,257 Continuation US10162269B2 (en) 2011-08-04 2017-08-11 Illumination device

Publications (1)

Publication Number Publication Date
WO2013018799A1 true WO2013018799A1 (ja) 2013-02-07

Family

ID=47629320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069465 WO2013018799A1 (ja) 2011-08-04 2012-07-31 照明装置

Country Status (4)

Country Link
US (3) US9760012B2 (ja)
JP (1) JPWO2013018799A1 (ja)
KR (1) KR102040341B1 (ja)
WO (1) WO2013018799A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018512611A (ja) * 2015-03-12 2018-05-17 フィリップス ライティング ホールディング ビー ヴィ 光ビーム成形装置、及び前記光ビーム成形装置を用いるスポットライト

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09223661A (ja) * 1996-02-15 1997-08-26 Nikon Corp 露光装置
WO2000011706A1 (fr) * 1998-08-18 2000-03-02 Nikon Corporation Illuminateur et appareil d'exposition a la projection
JP2008072057A (ja) * 2006-09-15 2008-03-27 Nec Lcd Technologies Ltd 投影露光装置及び投影露光方法
JP2008227497A (ja) * 2007-03-13 2008-09-25 Nikon Corp オプティカルインテグレータ系、照明光学装置、露光装置、およびデバイス製造方法
JP2009527113A (ja) * 2006-02-17 2009-07-23 カール・ツァイス・エスエムティー・アーゲー マイクロリソグラフィ照明システム、及びこの種の照明システムを含む投影露光装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2946950B2 (ja) 1992-06-25 1999-09-13 キヤノン株式会社 照明装置及びそれを用いた露光装置
JP3275575B2 (ja) * 1993-10-27 2002-04-15 キヤノン株式会社 投影露光装置及び該投影露光装置を用いたデバイスの製造方法
JP4310816B2 (ja) 1997-03-14 2009-08-12 株式会社ニコン 照明装置、投影露光装置、デバイスの製造方法、及び投影露光装置の調整方法
IL126771A0 (en) * 1998-10-26 1999-08-17 Yanowitz Shimon Improved optical systems
JP4324957B2 (ja) * 2002-05-27 2009-09-02 株式会社ニコン 照明光学装置、露光装置および露光方法
TW200412617A (en) 2002-12-03 2004-07-16 Nikon Corp Optical illumination device, method for adjusting optical illumination device, exposure device and exposure method
TW201809727A (zh) 2004-02-06 2018-03-16 日商尼康股份有限公司 偏光變換元件
US6967711B2 (en) * 2004-03-09 2005-11-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TW200923418A (en) 2005-01-21 2009-06-01 Nikon Corp Exposure device, exposure method, fabricating method of device, exposure system, information collecting device, and measuring device
JP2007242775A (ja) * 2006-03-07 2007-09-20 Canon Inc 露光装置及びデバイス製造方法
US20080225257A1 (en) 2007-03-13 2008-09-18 Nikon Corporation Optical integrator system, illumination optical apparatus, exposure apparatus, and device manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09223661A (ja) * 1996-02-15 1997-08-26 Nikon Corp 露光装置
WO2000011706A1 (fr) * 1998-08-18 2000-03-02 Nikon Corporation Illuminateur et appareil d'exposition a la projection
JP2009527113A (ja) * 2006-02-17 2009-07-23 カール・ツァイス・エスエムティー・アーゲー マイクロリソグラフィ照明システム、及びこの種の照明システムを含む投影露光装置
JP2008072057A (ja) * 2006-09-15 2008-03-27 Nec Lcd Technologies Ltd 投影露光装置及び投影露光方法
JP2008227497A (ja) * 2007-03-13 2008-09-25 Nikon Corp オプティカルインテグレータ系、照明光学装置、露光装置、およびデバイス製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018512611A (ja) * 2015-03-12 2018-05-17 フィリップス ライティング ホールディング ビー ヴィ 光ビーム成形装置、及び前記光ビーム成形装置を用いるスポットライト

Also Published As

Publication number Publication date
US20170343902A1 (en) 2017-11-30
JPWO2013018799A1 (ja) 2015-03-05
KR102040341B1 (ko) 2019-11-04
US20140218705A1 (en) 2014-08-07
US20190086812A1 (en) 2019-03-21
US9760012B2 (en) 2017-09-12
US10162269B2 (en) 2018-12-25
US10459343B2 (en) 2019-10-29
KR20140053160A (ko) 2014-05-07

Similar Documents

Publication Publication Date Title
KR101624140B1 (ko) 조명 광학 장치, 노광 장치, 조명 방법, 노광 방법 및 디바이스 제조 방법
KR100827874B1 (ko) 노광 장치, 노광 장치의 제조 방법, 노광 방법, 마이크로 장치의 제조 방법, 및 디바이스의 제조 방법
US9678332B2 (en) Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
EP2253997A2 (en) Illumination system for a microlithographic contact and proximity exposure apparatus
JP2013502703A (ja) 偏光変換ユニット、照明光学系、露光装置、およびデバイス製造方法
JP6651124B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
WO2011158912A1 (ja) 照明光学系、露光装置、およびデバイス製造方法
US10459343B2 (en) Illumination device
JP2014146660A (ja) 照明光学装置、露光装置、およびデバイス製造方法
JP5338863B2 (ja) 照明光学系、露光装置、露光方法およびデバイス製造方法
JP5531518B2 (ja) 偏光変換ユニット、照明光学系、露光装置、およびデバイス製造方法
JP4106701B2 (ja) 回折光学装置、屈折光学装置、照明光学装置、露光装置および露光方法
WO2009128293A1 (ja) 空間光変調ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5839076B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP7340167B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP5327715B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2012074694A (ja) 偏光変換ユニット、照明光学系、露光装置、偏光変換方法、露光方法、およびデバイス製造方法
JP2013008788A (ja) 偏光変換ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2013165196A (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2012059848A (ja) 偏光変換ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2012256742A (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2011171563A (ja) 調整ユニット、照明光学系、露光装置、およびデバイス製造方法
WO2014073548A1 (ja) 空間光変調光学系、照明光学系、露光装置、およびデバイス製造方法
JP2010283100A (ja) 偏光変換ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2013098208A (ja) 照明光学系、露光装置、デバイス製造方法、および照明方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013526931

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147002790

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14236742

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12819730

Country of ref document: EP

Kind code of ref document: A1