WO2013031111A1 - シリコンウェーハの研磨方法及び研磨剤 - Google Patents
シリコンウェーハの研磨方法及び研磨剤 Download PDFInfo
- Publication number
- WO2013031111A1 WO2013031111A1 PCT/JP2012/005135 JP2012005135W WO2013031111A1 WO 2013031111 A1 WO2013031111 A1 WO 2013031111A1 JP 2012005135 W JP2012005135 W JP 2012005135W WO 2013031111 A1 WO2013031111 A1 WO 2013031111A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polishing
- silicon wafer
- abrasive
- concentration
- tank
- Prior art date
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 230
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 91
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 91
- 239000010703 silicon Substances 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims abstract description 42
- -1 silicate ions Chemical class 0.000 claims abstract description 61
- 239000004744 fabric Substances 0.000 claims abstract description 18
- 239000003513 alkali Substances 0.000 claims description 37
- 239000003795 chemical substances by application Substances 0.000 claims description 35
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 27
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- 239000000377 silicon dioxide Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 10
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 10
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 10
- 235000011118 potassium hydroxide Nutrition 0.000 claims description 9
- 235000011121 sodium hydroxide Nutrition 0.000 claims description 6
- 239000011736 potassium bicarbonate Substances 0.000 claims description 5
- 235000015497 potassium bicarbonate Nutrition 0.000 claims description 5
- 229910000028 potassium bicarbonate Inorganic materials 0.000 claims description 5
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 5
- 235000011181 potassium carbonates Nutrition 0.000 claims description 5
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 claims description 5
- 229940086066 potassium hydrogencarbonate Drugs 0.000 claims description 5
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 5
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 5
- 235000017550 sodium carbonate Nutrition 0.000 claims description 5
- 238000007517 polishing process Methods 0.000 claims description 3
- 238000012423 maintenance Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 80
- 239000003082 abrasive agent Substances 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 5
- 238000000227 grinding Methods 0.000 description 5
- 239000008119 colloidal silica Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003002 pH adjusting agent Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
- H01L21/02005—Preparing bulk and homogeneous wafers
- H01L21/02008—Multistep processes
- H01L21/0201—Specific process step
- H01L21/02024—Mirror polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/005—Control means for lapping machines or devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
- B24B37/042—Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
- B24B37/044—Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
- B24B37/07—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
- B24B37/08—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/02—Polishing compositions containing abrasives or grinding agents
Definitions
- the present invention relates to a polishing method in which a silicon wafer is slidably contacted with a polishing cloth while supplying an abrasive, and the abrasive.
- a silicon wafer manufacturing method includes a slicing step of slicing a silicon ingot to obtain a thin disk-shaped wafer, and a chamfering process for chamfering the outer periphery of the wafer obtained by the slicing step to prevent cracking and chipping.
- a process a lapping process for flattening the chamfered wafer, an etching process for removing processing distortion remaining on the chamfered and lapped wafer, and a polishing process for polishing the surface of the etched wafer. It has a cleaning step of cleaning the polished wafer and removing the abrasive and foreign matter adhering to the wafer.
- the above shows only the main processes, and other processes such as a heat treatment process and a surface grinding process are added, and the order of the processes is changed. Moreover, the same process may be implemented in multiple times. Thereafter, an inspection or the like is performed, and the device is sent to a device manufacturing process. An insulating film or a metal wiring is formed on the surface of the silicon wafer, and a device such as a memory is manufactured.
- the polishing step is a step of mirror-finishing the surface by sliding the silicon wafer against the polishing cloth while supplying an abrasive, and polishing the silicon wafer with high flatness and improving the polishing rate are desired. It is.
- the abrasive used in this polishing step many abrasives mainly containing alumina or colloidal silica (SiO 2 ) are used.
- a suspension (slurry) -like abrasive in which alumina or colloidal silica is diluted with water and further added with alkali is used.
- a polishing agent used for polishing may be devised.
- the silica-based abrasive having a particle size of about 10 to 150 nm is used.
- the particle size of the silica contained in the abrasive is increased, the polishing ability is improved.
- polishing damage or the like is likely to occur on the wafer surface as the particle size increases.
- a pH adjusting agent is added to the abrasive to keep the pH constant (for example, see Patent Document 1).
- sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate or the like is used as an additive.
- polishing of a silicon wafer contains water, a silica, and an alkali, and raise
- the polishing rate k has been considered as follows based on this formula. Usually, Si is solid and H 2 O is surplus. The polishing agent contains silica and is considered to be a polymer of SiO 3 2 ⁇ . If this is also excessive, the polishing rate k can be expressed as follows. k ⁇ C ⁇ [H 2 O] [OH ⁇ ] 2 / [SiO 3 2 ⁇ ] ⁇ k ⁇ C ′ ⁇ [OH ⁇ ] 2
- the present invention has been made in view of the above-described problems.
- An abrasive capable of keeping a high polishing rate constant between batches, and a target polishing allowance or finished thickness using the abrasive.
- Another object of the present invention is to provide a silicon wafer polishing method that can be controlled with high accuracy.
- a silicon wafer is slid in contact with the polishing cloth while being supplied to the polishing cloth affixed on the surface plate.
- a method of polishing a silicon wafer in which the supplied abrasive is recovered and circulated in the tank so that the concentration of silicate ions contained in the abrasive in the tank is within a predetermined range.
- a method for polishing a silicon wafer comprising the step of polishing the silicon wafer while adjusting the thickness.
- the polishing rate can be kept high, and the polishing rate can be kept constant between batches.
- the polishing time can be set accurately, the target polishing allowance or finished thickness can be controlled with high accuracy.
- the concentration of the silicate ions which is reduced by being not recovered, is added to the polishing agent in the tank during polishing of the silicon wafer, and the silicate ions are generated by the reaction between the alkali and the silicon wafer. Accordingly, it is preferable to adjust the concentration to be within the predetermined range.
- the concentration of silicate ions which decreases when a part of the abrasive is not collected in the tank, to a concentration within a predetermined range. Further, since silicate ions are generated by a reaction between an alkali and a silicon wafer, an increase in cost can be suppressed. Further, the polishing rate can be adjusted by adjusting the amount of a part of the abrasive not recovered in the tank and the amount of alkali added to the abrasive in the tank.
- the concentration of silicate ions within the predetermined range to a range of 1.0 to 4.6 g / L. This ensures that a high polishing rate can be kept constant between batches.
- the amount of alkali added to the polishing agent in the tank during polishing of the silicon wafer is adjusted to a constant amount per predetermined time. In this way, the addition of alkali does not temporarily lower the silicate ion concentration and the polishing rate becomes unstable, so that the silicate ion concentration falls within a predetermined range more simply and reliably.
- the concentration can be adjusted.
- the alkali added during polishing of the silicon wafer may be at least one of sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydroxide, and potassium hydroxide.
- various alkalis can be applied to the method for polishing a silicon wafer of the present invention.
- an abrasive that is supplied to the polishing cloth when the silicon wafer is polished by being brought into sliding contact with the polishing cloth affixed on the surface plate, and includes water, silica, alkali, and silica.
- an abrasive comprising acid ions, wherein the concentration of the silicate ions is adjusted within a range of 1.0 to 4.6 g / L.
- the polishing rate can be kept high, and the polishing rate can be kept constant between batches.
- the polishing time can be set accurately, so that the polishing agent can be precisely controlled to the target polishing allowance or finished thickness.
- the silicon wafer is polished while adjusting the concentration of silicate ions contained in the abrasive in the tank to be within a predetermined range. And the polishing rate can be kept constant between batches. As a result, since the polishing time can be set accurately, the target polishing allowance or finished thickness can be controlled with high accuracy. Further, since the polishing rate is difficult to change over a long period of time, the life of the abrasive can be set long.
- the present invention is not limited to this.
- the pH value of the polishing agent is controlled and, for example, polishing is performed while adjusting the pH value so as to keep it at about 10.5.
- the polishing rate is improved as described above, but the polishing rate is not constant between batches, and variation occurs. It has also been found that the polishing rate is difficult to improve for a while immediately after a new dilution of the abrasive.
- the present inventors have conducted intensive studies to solve such problems.
- the concentration of silicate ions which has not been conventionally considered, becomes a factor for changing the polishing rate.
- the polishing rate is difficult to improve for a while after a new dilution of the abrasive is prepared because the silicate ion concentration is not sufficiently high even if the pH is sufficiently high. It was.
- the inventors have conceived that the high polishing rate can be kept stable and constant by adjusting the concentration of the silicate ions to be within a predetermined range, and the present invention has been completed.
- polishing agent of this invention is an abrasive
- the silicon wafer polishing method of the present invention comprises polishing the silicon wafer by sliding it against the polishing cloth while supplying the polishing agent of the present invention stored in the tank to the polishing cloth affixed on the surface plate. This is a method for polishing a silicon wafer in which the supplied abrasive is recovered and circulated in a tank.
- the present invention can be applied to both double-side polishing in which both sides of a silicon wafer are simultaneously polished and single-side polishing in which one side is polished.
- polishing agent of this invention contains water, a silica, an alkali, and a silicate ion.
- it is a suspension-like abrasive containing silica particles in which colloidal silica having abrasive grains of about 10 to 150 nm is diluted with water, alkali is added.
- the alkali to be added is at least one of, for example, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydroxide, and potassium hydroxide. Further, it may contain a chelating agent for preventing metal impurity contamination.
- the abrasive of the present invention is one in which the concentration of silicate ions is adjusted within the range of 1.0 to 4.6 g / L.
- the silicate ions include silicate ions introduced from outside the system and silicate ions generated by the reaction between the silicon wafer and the alkali during polishing of the silicon wafer. That is, this is a state in which the concentration of silicate ions is adjusted within the above range during polishing of the silicon wafer.
- the polishing rate can be kept high, and the polishing rate can be kept constant between batches. As a result, since the polishing time can be set accurately, the target polishing allowance or finished thickness can be controlled with high accuracy.
- a method for polishing a silicon wafer according to the present invention will be described.
- a double-side polishing apparatus of the type that simultaneously polishes both surfaces of a plurality of silicon wafers as shown in FIG. 1 is used, but the present invention is not limited to this. It can also be carried out using a single-sided double-side polishing apparatus that simultaneously polishes both sides of a single silicon wafer or a single-side polishing apparatus that polishes one side of a silicon wafer.
- the double-side polishing apparatus 1 includes an upper surface plate 2 and a lower surface plate 3 provided opposite to each other in the vertical direction.
- a polishing cloth 4 is affixed.
- a sun gear 9 is provided at the center between the upper and lower surface plates 2 and 3, and an internal gear 10 is provided at the periphery.
- the carrier 5 is provided with a holding hole 6 for holding the silicon wafer W, and a plurality of carriers 5 are sandwiched between the upper and lower surface plates 2 and 3.
- the teeth of the sun gear 9 and the internal gear 10 are engaged with the outer peripheral teeth of the carrier 5, and the upper and lower surface plates 2 and 3 are respectively rotated at a predetermined rotational speed by the upper rotating shaft 7 and the lower rotating shaft 8.
- each carrier 5 revolves around the sun gear 9 while rotating.
- the silicon wafer W held in the holding hole 6 of the carrier 5 is brought into sliding contact with the upper and lower polishing cloths 4 and both surfaces thereof are polished simultaneously.
- the abrasive 13 in the tank 12 is supplied from the nozzle 11 to the polishing pad 4.
- the composition of the abrasive 13 supplied here is the above-described abrasive of the present invention.
- the supplied polishing agent 13 is collected by flowing down to the surface plate receiver 14 except for a part that cannot be recovered due to, for example, a part scattered during polishing or exhausted as mist, and then recovered in the tank 12. , Used for subsequent polishing. In this way, the abrasive 13 circulates between the tank 12 and the double-side polishing apparatus 1.
- the silicon wafer W is polished while adjusting the concentration of silicate ions contained in the abrasive 13 in the tank 12 to be within a predetermined range.
- the present invention aims to stabilize the polishing rate by adjusting the concentration of silicate ions in the polishing agent, which has not been considered in the past.
- the method of adjusting the concentration of silicate ions is not particularly limited, but can be performed, for example, as follows. In the case of decreasing the concentration, a part of the supplied abrasive is drained and a new abrasive containing no silicate ions or containing silicate ions at a concentration lower than the concentration to be adjusted is added. In the case of increasing the concentration, in addition to the method of directly adding silicate ions, a method of adding silicate ions and generating silicate ions by reaction with a silicon wafer during polishing as described later can be applied.
- the polishing rate can be kept high, and the polishing rate can be kept constant between batches.
- the polishing time can be set accurately, the target polishing allowance or finished thickness can be controlled with high accuracy.
- the polishing rate is difficult to change over a long period of time, the life of the abrasive can be set long.
- the polishing rate can be predicted in advance when polishing silicon wafers having different resistivity.
- the surface of the silicon wafer after polishing is in a state where the metal silicon is exposed, and if the surface is exposed to air with the abrasive attached, the surface of the silicon wafer and the alkali may react unevenly, which may cause surface roughness. Therefore, in order to remove alkali from the surface of the silicon wafer immediately after the polishing, pure water or a surfactant is generally flowed to the surface of the silicon wafer. In addition, after the polishing is finished and before the next polishing (next batch) is performed, the foreign matter adhering to the polishing cloth and by-products are usually rubbed with a brush or the like while flowing cleaning water. And agglomerates of abrasives are removed.
- the cleaning water and surfactant used in this way are mixed with some unrecovered abrasive and remain in the section from the surface plate receiver to the pipe, but the cleaning water and surfactant remain in the tank abrasive.
- the abrasive in this liquid mixture cannot be recovered and is drained.
- Abrasive recovery and drainage switching are performed by providing a separator between the pipe and the tank.
- the new abrasive is added so that the ratio of silica, water, etc. of the abrasive 13 in the tank does not change.
- an alkali is added to the polishing agent in the tank during polishing of the silicon wafer to reduce the concentration of silicate ions, which decreases when a part of the polishing agent is not collected in the tank, and the reaction between the alkali and the silicon wafer causes the silica to react.
- the concentration is adjusted to be within a predetermined range by generating acid ions.
- the amount of abrasive discharged can be adjusted. Also, the amount of abrasive that cannot be recovered due to splattering or the like is almost constant in each batch. That is, since the amount of abrasive that cannot be collected in the tank is constant in each batch, the concentration of silicate ions can be easily adjusted by adjusting the amount of alkali added to the abrasive in the tank. Further, since silicate ions are generated by a reaction between an alkali and a silicon wafer, an increase in cost can be suppressed.
- the silicate ion concentration is finely adjusted within a predetermined range.
- the polishing rate can be adjusted.
- the amount of alkali added to adjust the concentration of silicate ions within a predetermined range and the amount of abrasive to be drained can be determined by performing a simulation or the like. An example of simulation is shown below.
- the polishing weight is 13.18 g (volume of the portion to be polished ⁇ Si density ⁇ number of sheets)
- the amount of SiO 3 2- produced by the reaction is 28.23 g (molecular weight ⁇ polishing weight).
- the replacement rate indicates the proportion of the abrasive recovered in the tank.
- the residual rate indicates the proportion of silicate ions generated by the reaction of the silicon wafer with the alkali remaining in the polishing agent, and the remaining amount is the amount discharged outside the system contained in the polishing agent that cannot be recovered. . That is, the residual rate is determined based on the amount of draining abrasive and the amount of alkali added during polishing. Using this residual rate as a parameter, the concentration of silicate ions after any batch can be simulated.
- the post-polishing concentration can be calculated by adding the increment obtained by the amount of generated SiO 3 2 ⁇ the residual ratio to the initial concentration.
- Table 2 shows the results of the simulation performed under the conditions in Table 1. As shown in Table 2, it can be seen that the concentration of silicate ions is increased by repeating the polishing batch, and a substantially constant concentration is maintained from 20 batches onward. By simulating that the concentration result falls within a predetermined range, it is possible to determine the amount of abrasive drained and the amount of alkali added in each batch.
- the concentration of silicate ions within the predetermined range is preferably adjusted within the range of 1.0 to 4.6 g / L. In this way, the polishing rate can be increased and can be reliably maintained between batches.
- the amount of alkali added to the polishing agent in the tank during polishing of the silicon wafer is adjusted to a constant amount per predetermined time.
- the fixed amount of alkali to be added per predetermined time is appropriately determined depending on the polishing apparatus to be used, the capacity of the tank, and the like. In this way, the concentration of silicate ions can be more reliably set to a concentration within a predetermined range without adding an alkali to temporarily lower the silicate ion concentration and causing the polishing rate to become unstable. Can be adjusted.
- the alkali added during the polishing of the silicon wafer can be at least one of sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydroxide, and potassium hydroxide, and various alkalis can be applied. .
- a dummy silicon wafer is polished while adding silicate ions or adding alkali.
- the concentration of silicate ions is controlled within a predetermined range using the silicon wafer polishing method of the present invention. By repeatedly polishing the silicon wafer while adjusting inward, the polishing rate can be kept constant over a long period of time.
- the concentration of silicate ions in the abrasive for example, the specific gravity of the abrasive, electrical conductivity, turbidity and the like can be mentioned. When these are constant, it can be considered that the concentration of silicate ions is also constant.
- the concentration of silicate ions dissolved in the circulating abrasive depends on the polishing allowance when the tank capacity and the number of charged silicon wafers (the number of silicon wafers to be polished simultaneously) are constant. Increasing the concentration increases the silicate ion concentration. In polishing with a large machining allowance such as double-side polishing, it is preferable to set the upper limit to 4.6 g / L as shown in the figure. Further, in polishing with a very small polishing allowance such as finish polishing, an increase in the concentration of dissolved silicate ions cannot be expected so much. In this case, although it depends on the silicate ion concentration contained in the slurry stock solution, it is preferably contained in an amount of 1.0 g / L or more in order to expect a high polishing rate.
- the concentration of silicate ions in the abrasive is adjusted to 4.6 g / L according to the silicon wafer polishing method of the present invention.
- polishing of a silicon wafer having a diameter of 300 mm was repeated batchwise.
- the number of polished sheets per batch was five.
- the polishing time of the etched silicon wafer is set so that the thickness before polishing is about 793 ⁇ 2 ⁇ m to 777 ⁇ m, that is, the polishing allowance is about 16 ⁇ m, and the polishing pressure is 200 g / cm 2 . Polished.
- the thickness of the polished silicon wafer was measured to examine the polishing allowance, and the polishing rate was calculated from the polishing allowance and the polishing time for evaluation.
- polishing agent of this invention was produced as follows. About 70% by weight of colloidal silica having a primary particle size of 35 nm and about 0.075% by weight of KOH as an alkali were placed in a 70 L tank and stirred to obtain a base abrasive. Thereafter, the dummy silicon wafer was polished while supplying the base polishing agent, and 5% KOH was added during polishing to adjust the concentration of silicate ions in the polishing agent to 4.6 g / L. .
- the polishing of the silicon wafer was repeated using the polishing agent of the present invention thus prepared, and the polishing rate of each batch was evaluated.
- the concentration of silicate ions in the polishing agent is such that 9 L of the polishing agent supplied after polishing is drained and replenished with that amount of new polishing agent.
- the abrasive was adjusted to 4.6 g / L by adding 5% KOH to 3 ml per 2 minutes.
- polishing was measured by the molybdenum yellow method.
- the result is shown in FIG.
- the polishing rate in the figure is shown as a relative value when the polishing rate is 1 when a dummy wafer is polished to produce an abrasive.
- the polishing rate is kept high while maintaining the same high polishing rate as compared with the result of the comparative example shown in FIG. 3. It was found that it was constant between each batch. It was also found that the target polishing allowance was stably achieved.
- the silicon wafer polishing method and the polishing agent of the present invention enable a high polishing rate to be kept constant between batches. As a result, the target polishing allowance or the finished thickness can be controlled with high accuracy.
- the silicon wafer was polished under the same conditions as in the Examples, except for using the conventional polishing method in which the polishing agent was kept at a constant pH without considering the silicate ion concentration, and evaluated in the same manner as in the Examples. .
- the result is shown in FIG.
- the polishing rate in the figure is shown as a relative value to the polishing rate of the example. As shown in FIG. 3, it was found that the dispersion of the polishing rate was larger than that of the example, although the pH of the abrasive was constant. Due to the variation in the polishing rate, the polishing allowance also varies.
- the present invention is not limited to the above embodiment.
- the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
Abstract
Description
ここで、シリコンウェーハの研磨において用いられるシリカ系の研磨剤は、水、シリカ、アルカリを含み、研磨中に以下の式で示す反応を起こす。
Si+2OH―+H2O→SiO3 2-+2H2↑
k∝C×[H2O][OH―]2/[SiO3 2-]→k∝C’×[OH―]2
しかし、このような従来のpHを所定値に保つ方法で調整した研磨剤を用いてシリコンウェーハを研磨すると、研磨速度を向上できるものの、研磨バッチ間で研磨速度のばらつきが発生してしまい、毎バッチ同じ研磨時間で研磨しても目標厚さに対し1~数μm程度の誤差が発生するという問題を生じる。
近年、研磨後のシリコンウェーハに対してより高平坦度が要求されるのに伴い、取代の許容範囲が0.1μm程度以下となってきており、従来の方法ではこの要件を満たすことができない。また、従来の方法では、研磨バッチ処理の進行とともに、研磨速度が大きく低下し、使用できるバッチ処理数が短いという問題もある。
このようにすれば、確実に、高い研磨速度を各バッチ間で一定に保つことができる。
このようにすれば、アルカリを加えることによって一時的にケイ酸イオンの濃度が低下して研磨速度が不安定になることもなく、より簡潔かつ確実にケイ酸イオンの濃度を所定の範囲内の濃度となるように調整できる。
このように、本発明のシリコンウェーハの研磨方法では、様々なアルカリを適用できる。
シリコンウェーハの研磨において、従来、研磨速度を向上するために研磨剤のpHの値を管理し、例えば10.5程度に保つように調整しながら研磨を行っている。しかし、このようにしてシリコンウェーハを研磨した場合、上記したように研磨速度は向上されるものの、研磨速度が各バッチ間で一定とならず、ばらつきが発生してしまう。また、特に研磨剤を新規に希釈調製した直後からしばらくの間は、研磨速度が向上しにくいことも分かってきた。
また、本発明のシリコンウェーハの研磨方法は、タンク内に貯蔵された本発明の研磨剤を定盤上に貼り付けられた研磨布に供給しながらシリコンウェーハを研磨布に摺接させて研磨し、供給した研磨剤をタンク内に回収して循環させるシリコンウェーハの研磨方法である。
以下、本発明の研磨剤について説明する。
本発明の研磨剤は、水、シリカ、アルカリ、及びケイ酸イオンを含むものである。例えば、砥粒が10~150nm程度のコロイダルシリカを水で希釈し、アルカリを添加し、ケイ酸イオンを含む懸濁液状の研磨剤である。ここで、添加するアルカリは、例えば、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウムのうち少なくとも1つである。また、金属不純物汚染を防ぐためのキレート剤を含むものであっても良い。
ここで、ケイ酸イオンの濃度の調整方法は特に限定されないが、例えば以下のようにして行うことができる。濃度を減少させる場合には、供給した研磨剤の一部を排液し、ケイ酸イオンが含まれない、又はその調整する濃度より低い濃度のケイ酸イオンが含まれた新研磨剤を加える。濃度を増加させる場合には、ケイ酸イオンを直接加える方法の他に、後述するような、アルカリを加えて研磨中にシリコンウェーハとの反応によってケイ酸イオンを生成させる方法も適用できる。
供給した研磨剤のうち、このように排液される研磨剤と、上記したような研磨中に飛び散る研磨剤などのような、タンク内に回収できない一部の研磨剤による減少分を補うため、それと同量の新研磨剤をタンク内に加える。
そして、研磨剤の一部がタンク内に回収されないことによって減少するケイ酸イオンの濃度を、シリコンウェーハの研磨中にタンク内の研磨剤にアルカリを加え、該アルカリとシリコンウェーハとの反応でケイ酸イオンを生成することによって所定の範囲内の濃度となるように調整する。
ここで、ケイ酸イオンの濃度を所定の範囲内に調整するために加えるアルカリ量及び排液する研磨剤量を、シミュレーションを行うなどして決定することができる。
以下にシミュレーションの一例を示す。
表1の条件でシミュレーションを行った結果を表2に示す。表2に示すように、研磨バッチを繰り返すことによってケイ酸イオンの濃度が増加し、20バッチ以降からはほぼ一定の濃度が保たれていることが分かる。この濃度の結果が所定の範囲内に入るようにシミュレーションすることによって、各バッチで排液する研磨剤の量及び加えるアルカリの量を決定することができる。
このようにすれば、研磨速度を高く、かつ、各バッチ間で一定に確実に保つことができる。
またこのとき、シリコンウェーハの研磨中にタンク内の研磨剤に加えるアルカリの量を所定時間当たり一定量となるように調整することが好ましい。ここで、加えるアルカリの所定時間当たり一定量は、使用する研磨装置やタンクの容量などによって適宜決定される。
このようにすれば、アルカリを加えることによって一時的にケイ酸イオンの濃度が低下して研磨速度が不安定になることもなく、より確実にケイ酸イオンの濃度を所定の範囲内の濃度となるように調整することができる。
ここで、シリコンウェーハの研磨中に加えるアルカリは、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウムのうち少なくとも1つとすることができ、様々なアルカリを適用できる。
また、仕上研磨のような研磨取代が極僅かな研磨では、溶解するケイ酸イオン濃度の増加があまり期待できない。この場合、スラリー原液に含まれるケイ酸イオン濃度に依存することになるが、高い研磨レートを期待するためには、1.0g/L以上含まれることが好ましい。
図1に示すような5枚のシリコンウェーハを同時に研磨可能な両面研磨装置を用い、本発明のシリコンウェーハの研磨方法に従って、研磨剤中のケイ酸イオンの濃度を4.6g/Lに調整しながら、直径300mmのシリコンウェーハの研磨をバッチ式に繰り返した。ここで、1バッチ当たりの研磨枚数を5枚とした。また、エッチング済みのシリコンウェーハを、研磨前の厚さが793±2μm程度から777μmとなるように、すなわち、研磨取代が16μm程度となるように研磨時間を設定し、研磨圧200g/cm2で研磨した。研磨後のシリコンウェーハの厚さを測定して研磨代を調べ、この研磨代と研磨時間とから研磨速度を算出して評価した。
70Lの容量のタンク内に一次粒子径が35nmのコロイダルシリカを約0.6重量%、アルカリとしてKOHを約0.075重量%入れて攪拌し、ベース研磨剤とした。その後、このベース研磨剤を供給しながらダミーのシリコンウェーハを研磨し、研磨中に5%KOHを加えることによって、研磨剤中のケイ酸イオンの濃度が4.6g/Lになるように調整した。
その結果を図2に示す。図中の研磨速度は、研磨剤を作製するためにダミーウェーハを研磨した際の研磨速度を1としたときの相対値で示されている。図2に示すように、ケイ酸イオンの濃度を4.6g/Lに調整しながら研磨することによって、図3に示す比較例の結果と比べ、同等の高い研磨速度を保ちつつ、研磨速度が各バッチ間で一定になっていることが分かった。また、目的の研磨取代も安定して達成できていることが分かった。
ケイ酸イオンの濃度を考慮せず、研磨剤のpHを一定に保ちながら研磨する従来の研磨方法を用いた以外、実施例と同様な条件でシリコンウェーハを研磨し、実施例と同様に評価した。
その結果を図3に示す。図中の研磨速度は、実施例の研磨速度に対する相対値で示されている。図3に示すように、研磨剤のpHが一定になっているにも関わらず、研磨速度のばらつきが実施例と比べ大きくなっていることが分かった。この研磨速度のばらつきによって、研磨取代にもばらつきが発生してしまった。
Claims (6)
- タンク内に貯蔵された研磨剤を定盤上に貼り付けられた研磨布に供給しながらシリコンウェーハを前記研磨布に摺接させて研磨し、前記供給した研磨剤を前記タンク内に回収して循環させるシリコンウェーハの研磨方法であって、
前記タンク内の研磨剤中に含まれるケイ酸イオンの濃度を所定の範囲内の濃度となるように調整しながら前記シリコンウェーハを研磨する工程を有することを特徴とするシリコンウェーハの研磨方法。 - 前記供給した研磨剤のうち前記タンク内に回収できない一部の前記研磨剤と同量の新研磨剤を前記タンク内に加える工程を有し、前記研磨剤の一部が前記タンク内に回収されないことによって減少する前記ケイ酸イオンの濃度を、前記シリコンウェーハの研磨中に前記タンク内の研磨剤にアルカリを加え、該アルカリと前記シリコンウェーハとの反応で前記ケイ酸イオンを生成することによって前記所定の範囲内の濃度となるように調整することを特徴とする請求項1に記載のシリコンウェーハの研磨方法。
- 前記所定の範囲内のケイ酸イオンの濃度を、1.0~4.6g/Lの範囲内に調整することを特徴とする請求項1又は請求項2に記載のシリコンウェーハの研磨方法。
- 前記シリコンウェーハの研磨中に前記タンク内の研磨剤に加えるアルカリの量を所定時間当たり一定量となるように調整することを特徴とする請求項2又は請求項3に記載のシリコンウェーハの研磨方法。
- 前記シリコンウェーハの研磨中に加えるアルカリを、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウムのうち少なくとも1つとすることを特徴とする請求項2乃至請求項4のいずれか1項に記載のシリコンウェーハの研磨方法。
- シリコンウェーハを定盤上に貼り付けられた研磨布に摺接させて研磨する際に前記研磨布に供給する研磨剤であって、
水、シリカ、アルカリ、及びケイ酸イオンを含み、前記ケイ酸イオンの濃度が1.0~4.6g/Lの範囲内に調整されたものであることを特徴とする研磨剤。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147005149A KR101875880B1 (ko) | 2011-09-01 | 2012-08-13 | 실리콘 웨이퍼의 연마방법 및 연마제 |
JP2013531045A JP5598607B2 (ja) | 2011-09-01 | 2012-08-13 | シリコンウェーハの研磨方法及び研磨剤 |
SG2014009229A SG2014009229A (en) | 2011-09-01 | 2012-08-13 | Method for polishing silicon wafer and polishing agent |
CN201280039229.5A CN103733314B (zh) | 2011-09-01 | 2012-08-13 | 硅晶片的研磨方法及研磨剂 |
DE112012003180.6T DE112012003180T5 (de) | 2011-09-01 | 2012-08-13 | Verfahren zum Polieren von Silizium-Wafern und Poliermittel |
US14/236,858 US20140162456A1 (en) | 2011-09-01 | 2012-08-13 | Method for polishing silicon wafer and polishing agent |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-190916 | 2011-09-01 | ||
JP2011190916 | 2011-09-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013031111A1 true WO2013031111A1 (ja) | 2013-03-07 |
Family
ID=47755643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/005135 WO2013031111A1 (ja) | 2011-09-01 | 2012-08-13 | シリコンウェーハの研磨方法及び研磨剤 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20140162456A1 (ja) |
JP (1) | JP5598607B2 (ja) |
KR (1) | KR101875880B1 (ja) |
CN (1) | CN103733314B (ja) |
DE (1) | DE112012003180T5 (ja) |
SG (1) | SG2014009229A (ja) |
TW (1) | TWI515782B (ja) |
WO (1) | WO2013031111A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6146213B2 (ja) * | 2013-08-30 | 2017-06-14 | 株式会社Sumco | ワークの両面研磨装置及び両面研磨方法 |
KR101660900B1 (ko) * | 2015-01-16 | 2016-10-10 | 주식회사 엘지실트론 | 웨이퍼 연마 장치 및 이를 이용한 웨이퍼 연마 방법 |
US10600634B2 (en) * | 2015-12-21 | 2020-03-24 | Globalwafers Co., Ltd. | Semiconductor substrate polishing methods with dynamic control |
US11081359B2 (en) | 2018-09-10 | 2021-08-03 | Globalwafers Co., Ltd. | Methods for polishing semiconductor substrates that adjust for pad-to-pad variance |
CN115890478B (zh) * | 2022-12-29 | 2024-11-22 | 西安奕斯伟材料科技股份有限公司 | 抛光头和抛光设备 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1110540A (ja) * | 1997-06-23 | 1999-01-19 | Speedfam Co Ltd | Cmp装置のスラリリサイクルシステム及びその方法 |
JP2004186350A (ja) * | 2002-12-03 | 2004-07-02 | Sanyo Chem Ind Ltd | Cmpプロセス用研磨組成物 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101037585B (zh) * | 2002-04-30 | 2010-05-26 | 日立化成工业株式会社 | 研磨液及研磨方法 |
KR100641348B1 (ko) * | 2005-06-03 | 2006-11-03 | 주식회사 케이씨텍 | Cmp용 슬러리와 이의 제조 방법 및 기판의 연마 방법 |
CN102079962B (zh) * | 2009-11-28 | 2014-03-19 | 比亚迪股份有限公司 | 一种研磨材料及其制备方法和研磨液组合物 |
-
2012
- 2012-08-13 WO PCT/JP2012/005135 patent/WO2013031111A1/ja active Application Filing
- 2012-08-13 CN CN201280039229.5A patent/CN103733314B/zh active Active
- 2012-08-13 DE DE112012003180.6T patent/DE112012003180T5/de not_active Withdrawn
- 2012-08-13 US US14/236,858 patent/US20140162456A1/en not_active Abandoned
- 2012-08-13 JP JP2013531045A patent/JP5598607B2/ja active Active
- 2012-08-13 KR KR1020147005149A patent/KR101875880B1/ko active Active
- 2012-08-13 SG SG2014009229A patent/SG2014009229A/en unknown
- 2012-08-17 TW TW101129993A patent/TWI515782B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1110540A (ja) * | 1997-06-23 | 1999-01-19 | Speedfam Co Ltd | Cmp装置のスラリリサイクルシステム及びその方法 |
JP2004186350A (ja) * | 2002-12-03 | 2004-07-02 | Sanyo Chem Ind Ltd | Cmpプロセス用研磨組成物 |
Also Published As
Publication number | Publication date |
---|---|
US20140162456A1 (en) | 2014-06-12 |
DE112012003180T5 (de) | 2014-04-10 |
KR20140068899A (ko) | 2014-06-09 |
TWI515782B (zh) | 2016-01-01 |
CN103733314A (zh) | 2014-04-16 |
CN103733314B (zh) | 2016-05-04 |
KR101875880B1 (ko) | 2018-07-06 |
JPWO2013031111A1 (ja) | 2015-03-23 |
TW201322320A (zh) | 2013-06-01 |
SG2014009229A (en) | 2014-04-28 |
JP5598607B2 (ja) | 2014-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102346305B1 (ko) | 실리콘 웨이퍼의 연마방법 | |
US8932952B2 (en) | Method for polishing silicon wafer and polishing liquid therefor | |
KR101092884B1 (ko) | 웨이퍼 연마방법 | |
JP5598607B2 (ja) | シリコンウェーハの研磨方法及び研磨剤 | |
JP2005268667A (ja) | 研磨用組成物 | |
KR20230096088A (ko) | 웨이퍼의 연마 방법 및 웨이퍼의 제조 방법 | |
JP5516594B2 (ja) | Cmp研磨液、並びに、これを用いた研磨方法及び半導体基板の製造方法 | |
JP4852302B2 (ja) | 研磨剤の製造方法及びそれにより製造された研磨剤並びにシリコンウエーハの製造方法 | |
WO2013031090A1 (ja) | シリコンウェーハの研磨方法及び研磨装置 | |
JP2012134357A (ja) | Cmp研磨液用洗浄液、これを用いた洗浄方法、並びにこれを用いた半導体基板の製造方法 | |
JP4455833B2 (ja) | ウエーハの研磨方法 | |
JP4532149B2 (ja) | シリコンウエハ研磨用組成物およびシリコンウエハの研磨方法 | |
JP2011181948A (ja) | 研磨用組成物及びそれを用いた研磨パッドの目詰まり低減方法 | |
JP4918223B2 (ja) | シリコンウエハ研磨用組成物およびシリコンウエハの研磨方法 | |
JP4409863B2 (ja) | 研磨用組成物の製造方法 | |
WO2012176377A1 (ja) | シリコンウェーハの研磨方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280039229.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12828443 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013531045 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14236858 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120120031806 Country of ref document: DE Ref document number: 112012003180 Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147005149 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12828443 Country of ref document: EP Kind code of ref document: A1 |