[go: up one dir, main page]

WO2013037865A1 - Procédé et dispositif de surveillance de système de lubrification - Google Patents

Procédé et dispositif de surveillance de système de lubrification Download PDF

Info

Publication number
WO2013037865A1
WO2013037865A1 PCT/EP2012/067903 EP2012067903W WO2013037865A1 WO 2013037865 A1 WO2013037865 A1 WO 2013037865A1 EP 2012067903 W EP2012067903 W EP 2012067903W WO 2013037865 A1 WO2013037865 A1 WO 2013037865A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubrication system
oil
residual
data
model
Prior art date
Application number
PCT/EP2012/067903
Other languages
English (en)
Inventor
Michel KINNAERT
Laurent RAKOTO
Original Assignee
Universite Libre De Bruxelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Libre De Bruxelles filed Critical Universite Libre De Bruxelles
Publication of WO2013037865A1 publication Critical patent/WO2013037865A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • F01M11/12Indicating devices; Other safety devices concerning lubricant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/80Arrangements for signal processing
    • G01F23/802Particular electronic circuits for digital processing equipment
    • G01F23/804Particular electronic circuits for digital processing equipment containing circuits handling parameters other than liquid level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/025Details with respect to the testing of engines or engine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/06Means for keeping lubricant level constant or for accommodating movement or position of machines or engines
    • F01M11/062Accommodating movement or position of machines or engines, e.g. dry sumps
    • F01M11/065Position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2210/00Applications
    • F16N2210/02Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2230/00Signal processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2250/00Measuring
    • F16N2250/08Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2250/00Measuring
    • F16N2250/16Number of revolutions, RPM
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2250/00Measuring
    • F16N2250/18Level

Definitions

  • the invention relates to a method for monitoring a lubrication system.
  • the invention relates to a device for monitoring a lubrication system.
  • US2009/107771 A1 has different drawbacks. This method uses a nominal oil consumption but does not perform any adjustment of it because of the engine ageing. However, it is known by the one skilled in the art that such a nominal oil consumption generally increases with engine ageing. Moreover, the method of US2009/107771 A1 does not take into account any gulping phenomenon. Gulping represents an oil quantity that is not contained in the oil tank when an aircraft engine associated with the lubrication system is running. This oil quantity is typically retained in the gearboxes, bearings and gears. As gulping phenomenon is not taken into account, the method of US2009/107771 A1 lacks in precision.
  • the robustness is still increased. Indeed, the use of accumulated input data allows one to work with averaged signals or statistics that are less dependent on noise. As the robustness is increased, one can reduce the levels of faults detections and so increase the sensitivity of the method. As a consequence, the method of the invention presents both a higher sensitivity and a stronger robustness with respect to the method of EP2072762A1 .
  • the decision method for generating the diagnostic output data accounts for the temporal history of the residual, the method of the invention allows one to minimize the delay for detecting a fault: by knowing a temporal evolution of the residual, the decision method has more information than only considering instantaneous values of the residual and the delay of fault detection can then be reduced. Last, the steps of the method of the invention allow a person skilled in the art to perform a systematic on-line monitoring of a lubrication system.
  • T is an oil temperature in an oil tank
  • P and R are pitch and roll angles of said aircraft
  • v(k) 1 ⁇ 1 ⁇ - 0.6
  • a and B are two constant parameters.
  • Outliers can include faulty measurements as an example but also measurements recorded during operating conditions that do not meet hypotheses associated with the model. Extracting outliers before adjusting the parameters of the model allows avoiding deviations of the estimated parameters from their "true" value.
  • a subset of calibration data is selected in order to get maximum information from the calibration data. This selection allows one to balance the number of calibration data corresponding to different operating phases of an aircraft engine associated with the lubrication system.
  • the term "balance" means that the subset of calibration data comprises a number of calibration data for each phase of the aircraft that is nearly the same.
  • a change in mean of the residual is detected when one of two decision functions, g f ° and gj, crosses a user defined threshold, h f .
  • the method of the invention further comprises the following steps for determining parameters of said CUSUM algorithm:
  • o r x is the residual computed with the fault free conditions set of data
  • o ⁇ is an estimated standard deviation of r 1 ;
  • the use of a Kalman filter for generating the temporal evolution of the residual and the use of a CUSUM algorithm for the decision method allow one to easily perform an on-line monitoring of the lubrication system as recursive equations are then used (see the detailed description of preferred embodiments).
  • the method of the invention is preferably used on-line; on-line monitoring means that the method of the invention is able to monitor the lubrication system of an aircraft engine during flight.
  • the use of a CUSUM algorithm (or a set of CUSUM algorithms) allows one to minimize the delay for detection of the fault by accumulating the effects of the fault on the residual.
  • Fig.7 shows a device according to the invention.
  • a residual r is an indicator of health that takes predetermined values in absence of faults and deviates from these predetermined values on average in presence of faults. Preferably, these predetermined values correspond to small values in absence of faults (or in normal working conditions).
  • h m (k) (respectively h sim (k)) represents a measured (respectively simulated) oil level 50 in the tank at time index k.
  • the simulated oil level h sim (k) is typically obtained from the model 310 into which some of the input data 210 (such as temperature) have been introduced.
  • This preferred method for generating a residual uses a Kalman filter.
  • the proposed Kalman filter is implemented in two steps: measurement update and time update. Such a filter is notably described in the book entitled “Diagnostic and Fault-Tolerant Control", Springer 2006 by M.
  • ⁇ ⁇ is determined by evaluating a change in mean that the residual r undergoes when a leak with a fixed magnitude (depending of the chosen value of /) is simulated.
  • h f is set in order to avoid false detection in processing experimental data and can be determined in a heuristic way.
  • h f is determined by taking a value that is 10 % larger than the maximum value of the decision function corresponding to a healthy state.
  • c is an adjustable parameter of the model 310.
  • Equation (Eq. 19) takes into account thermal effects.
  • the preferred model 310 uses equation (Eq. 20) to link the oil level 50 that is measured, (input data h m of the set S1 of input data 210) and the oil level 50 h entering equation (Eq. 19):
  • hm(k) - ⁇ m c (k) - a ⁇ - a 2 ⁇ + ⁇ m 0 + a P (l - cos P(fc)) + a R (1 - cos R (k)) (Eq. 23) and a R are adjustable parameters of the model 310 and m 0 can be measured before the aircraft engine 1 10 start up.
  • the time abscissa is in second.
  • the curve 400 corresponds to normal conditions whereas the curve 410 relates to the evolution of oil level when oil and kerosene leaks occur.
  • Curve 400 has been simulated for a typical flight profile whereas curve 410 has been simulated from curve 400 by adding the effect of an oil leak of 2 L/h in the time interval 1000 s to 5000 s (appearance at arrow 420), and the joint effect of an oil and kerosene leak (appearance at arrow 430) both with magnitude 2 L/h after 5000 s.
  • the corresponding data have been processed by the method of the invention.
  • the second graph shows the time evolution of the corresponding residual r
  • the third (respectively fourth) graph shows the corresponding time evolution of the function g_° 2 (respectively gi 2 )-
  • the parameters entering the model 310 of the lubrication system 1 such as and m 0 are adjusted by the following procedure.
  • the procedure that is now detailed is particularly efficient when dealing with a lubrication system 1 of an aircraft engine 1 10.
  • Such a procedure can be of primary importance as the performance of a monitoring method to provide valuable diagnostic output data 220 strongly depends on the model 310 used for the lubrication system 1 and on its parameters.
  • the parameters a 1 ; a 2 , c, a P , a R vary with the aging or with the replacement of components of the lubrication system 1 or of the device associated with it (such as an aircraft engine 1 10).
  • m 0 typically varies because of oil consumption or because of refilling of an oil tank 40.
  • An aging of components typically results in an increase of oil consumption ; a replacement of components leads to a modification of the oil quantity hidden due to the gulping effect.
  • the proposed procedure for adjusting the parameters allows a modification of the parameters between two flights of an aircraft. Parameters and m 0 are first adjusted from calibration data acquired during a previous flight. After, m 0 is corrected when the aircraft engine 1 10 is started up, ie between two flights.
  • Equation (Eq. 26) can be rewritten:
  • Outliers extraction from the set of calibration data 300 is preferably performed with an Iterative Reweighted Least Squares (I RLS) method in which, for each time index k, a weight w of ⁇ is calculated from an estimation error e.
  • I RLS method is notably described in "Robust Estimation of a Location Parameter", by Huber, P. J. (1 964), Annals of Mathematical Statistics 35:73— 1 01 .
  • step 3 a next estimation of the parameters given by (Eq. 30) is then given by the following equation :
  • the N elements of matrix ⁇ ⁇ are chosen such that the condition number of matrix ⁇ ⁇ ⁇ ⁇ ⁇ is non zero.
  • the procedure is stopped if the increase in the determinant det(0 N 0 N T ) is less than 10 ⁇ 3 after an exchange between an element of ⁇ ⁇ and an element of 0 NC .
  • the invention may also be described as follows.
  • the invention relates to a method for monitoring a lubrication system 1 .
  • the method comprises the steps of: providing at least one temporal evolution of at least one input data 210; providing a model 310 of said lubrication system 1 comprising parameters; generating diagnostic output data 220 of said lubrication system 1 .
  • the step of generating diagnostic output data 220 of the lubrication system 1 comprises the following steps: generating a temporal evolution of a residual 200 from said at least one temporal evolution of said at least one input data 210 and from said model 310; generating said diagnostic output data 220 by using a decision method 140 applied to said residual 200 and accounting for said temporal evolution of said residual.
  • the method is characterized in that the model 310 includes a unique or single gulping effect for any flight conditions of the aircraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

Selon un premier aspect, l'invention a pour objet un procédé de surveillance d'un système de lubrification (1). Le procédé consiste à fournir au moins une évolution dans le temps d'au moins une donnée d'entrée (210) ; à utiliser un modèle (310) dudit système de lubrification (1) comportant des paramètres ; à générer des données de sortie de diagnostic (220) dudit système de lubrification (1). L'étape de génération de données de sortie de diagnostic (220) du système de lubrification (1) comporte les étapes suivantes : la génération d'une évolution dans le temps d'un résidu (200) de ladite ou desdites évolutions dans le temps de ladite ou desdites données d'entrée (210) et dudit modèle (310) ; la génération desdites données de sortie de diagnostic (220) en utilisant un procédé de décision (140) appliqué audit résidu (200) et en prenant en compte ladite évolution dans le temps dudit résidu. Le procédé est caractérisé en ce que le modèle (310) inclut un effet d'avalement unique quelles que soient les conditions de vol de l'avion.
PCT/EP2012/067903 2011-09-15 2012-09-13 Procédé et dispositif de surveillance de système de lubrification WO2013037865A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11181370 2011-09-15
EP11181370.5 2011-09-15

Publications (1)

Publication Number Publication Date
WO2013037865A1 true WO2013037865A1 (fr) 2013-03-21

Family

ID=46880697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/067903 WO2013037865A1 (fr) 2011-09-15 2012-09-13 Procédé et dispositif de surveillance de système de lubrification

Country Status (1)

Country Link
WO (1) WO2013037865A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3173882A1 (fr) * 2015-11-30 2017-05-31 United Technologies Corporation Procédé de détection de consommation d'huile en temps réel
FR3044404A1 (fr) * 2015-11-27 2017-06-02 Turbomeca Systeme de surveillance d'une quantite d'huile d'un reservoir d'un moteur d'aeronef.
EP3369895A3 (fr) * 2017-03-02 2018-11-14 General Electric Company Système et procédé de surveillance d'un système de lubrification d'une turbomachine utilisant un modèle
CN109506940A (zh) * 2018-12-04 2019-03-22 中国航发贵阳发动机设计研究所 民用航空发动机滑油系统叶轮式径向收油环试验方法
US10378692B2 (en) 2016-02-11 2019-08-13 Honeywell International Inc. Method and system for APU oil level indication
FR3082938A1 (fr) * 2018-06-25 2019-12-27 Elichens Procede d'etablissement d'une cartographie d'une quantite d'un analyte dans l'environnement
CN111272243A (zh) * 2020-03-19 2020-06-12 上海陆根智能传感技术有限公司 一种高精度油耗仪
FR3093806A1 (fr) * 2019-03-15 2020-09-18 Safran Aircraft Engines Procédé de détection d’une fuite éventuelle de carburant dans un circuit d’huile d’un moteur d’aéronef
EP3736547A1 (fr) * 2019-05-10 2020-11-11 Pratt & Whitney Canada Corp. Système et procédé de détection de défaut pour dispositif de détection de niveau de liquide
US11192660B2 (en) 2016-02-11 2021-12-07 Honeywell International Inc. Method and system for APU oil level indication
EP3974623A1 (fr) * 2020-09-23 2022-03-30 Rolls-Royce plc Système et procédé de détermination de grande consommation d'huile dans un moteur à turbine à gaz

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063498A2 (fr) * 1999-06-25 2000-12-27 Volkswagen Aktiengesellschaft Procédé et dispositif pour la détermination d'une quantité de liquide dans un récipient en mouvement
US6502042B1 (en) * 2000-10-26 2002-12-31 Bfgoodrich Aerospace Fuel And Utility Systems Fault tolerant liquid measurement system using multiple-model state estimators
US20090107771A1 (en) 2007-10-25 2009-04-30 United Technologies Corporation Oil consumption monitoring for aircraft engine
EP2072762A1 (fr) 2007-12-21 2009-06-24 Techspace Aero SA Méthode de contrôle de la consommation et de détection de fuites dans un système de lubrification de turbomachine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063498A2 (fr) * 1999-06-25 2000-12-27 Volkswagen Aktiengesellschaft Procédé et dispositif pour la détermination d'une quantité de liquide dans un récipient en mouvement
US6502042B1 (en) * 2000-10-26 2002-12-31 Bfgoodrich Aerospace Fuel And Utility Systems Fault tolerant liquid measurement system using multiple-model state estimators
US20090107771A1 (en) 2007-10-25 2009-04-30 United Technologies Corporation Oil consumption monitoring for aircraft engine
EP2072762A1 (fr) 2007-12-21 2009-06-24 Techspace Aero SA Méthode de contrôle de la consommation et de détection de fuites dans un système de lubrification de turbomachine

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Engineering Tribology", 2001, pages: 16
BASSEVILLE, M.; NIKIFOROV: "Detection of abrupt changes: theory and application", 1993, PRENTICE-HALL
DIEZ, E.: "Diagnostic et prognostic de defaillances dans des composants d'un moteur d'avion", 2008
FEDOROV, V.V.: "Theory of optimal experiments", 1972, ACADEMIC PRESS
HUBER, P. J.: "Annals of Mathematical Statistics", vol. 35, 1964, article "Robust Estimation of a Location Parameter", pages: 73 - 101
J. DENIS ET AL.: "Physico-chimie des lubrifiants: analyses et essays, 1997", 1997, pages: 113
M. BLANKE; M. KINNAERT; J. LUNZE; M. STAROSWIECKI: "Diagnostic and Fault-Tolerant Control", 2006, SPRINGER

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3044404A1 (fr) * 2015-11-27 2017-06-02 Turbomeca Systeme de surveillance d'une quantite d'huile d'un reservoir d'un moteur d'aeronef.
EP3173882A1 (fr) * 2015-11-30 2017-05-31 United Technologies Corporation Procédé de détection de consommation d'huile en temps réel
US10378692B2 (en) 2016-02-11 2019-08-13 Honeywell International Inc. Method and system for APU oil level indication
US11192660B2 (en) 2016-02-11 2021-12-07 Honeywell International Inc. Method and system for APU oil level indication
EP3369895A3 (fr) * 2017-03-02 2018-11-14 General Electric Company Système et procédé de surveillance d'un système de lubrification d'une turbomachine utilisant un modèle
FR3082938A1 (fr) * 2018-06-25 2019-12-27 Elichens Procede d'etablissement d'une cartographie d'une quantite d'un analyte dans l'environnement
WO2020002814A1 (fr) * 2018-06-25 2020-01-02 Elichens Procédé d'établissement d'une cartographie d'une quantité d'un analyte dans l'environnement
CN109506940A (zh) * 2018-12-04 2019-03-22 中国航发贵阳发动机设计研究所 民用航空发动机滑油系统叶轮式径向收油环试验方法
FR3093806A1 (fr) * 2019-03-15 2020-09-18 Safran Aircraft Engines Procédé de détection d’une fuite éventuelle de carburant dans un circuit d’huile d’un moteur d’aéronef
WO2020188179A1 (fr) * 2019-03-15 2020-09-24 Safran Aircraft Engines Procede de detection d'une fuite eventuelle de carburant dans un circuit d'huile d'un moteur d'aeronef
CN113518851A (zh) * 2019-03-15 2021-10-19 赛峰航空器发动机 飞行器发动机油路中可能燃料泄漏的检测方法
US12180850B2 (en) 2019-03-15 2024-12-31 Safran Aircraft Engines Method for detecting a possible fuel leak in an oil circuit of an aircraft engine
EP3736547A1 (fr) * 2019-05-10 2020-11-11 Pratt & Whitney Canada Corp. Système et procédé de détection de défaut pour dispositif de détection de niveau de liquide
US11125603B2 (en) 2019-05-10 2021-09-21 Pratt & Whitney Canada Corp. Fault detection system and method for liquid level sensing device
CN111272243B (zh) * 2020-03-19 2021-10-12 上海陆根智能传感技术有限公司 一种高精度油耗仪
CN111272243A (zh) * 2020-03-19 2020-06-12 上海陆根智能传感技术有限公司 一种高精度油耗仪
EP3974623A1 (fr) * 2020-09-23 2022-03-30 Rolls-Royce plc Système et procédé de détermination de grande consommation d'huile dans un moteur à turbine à gaz
US11988143B2 (en) 2020-09-23 2024-05-21 Rolls-Royce Plc System and method for determining high oil consumption in gas turbine engine

Similar Documents

Publication Publication Date Title
WO2013037865A1 (fr) Procédé et dispositif de surveillance de système de lubrification
EP2221699B1 (fr) Système et procédé d'analyse de performance continue
EP2287449B1 (fr) Système et procédé de surveillance de la consommation en huile d'un moteur à turbine à gaz
US7734400B2 (en) Fault detection system and method using augmented data and fuzzy logic
US9465387B2 (en) Anomaly diagnosis system and anomaly diagnosis method
CA2646685C (fr) Methode de controle de la consommation et de detection des fuites dans le systeme de lubrification d'un moteur a turbine
US7702447B2 (en) Method and system for identifying gas turbine engine faults
US20080140352A1 (en) System and method for equipment life estimation
JP6344158B2 (ja) 故障検出装置
WO2012172369A2 (fr) Surveillance des vibrations
KR20100074028A (ko) 회전자 블레이드 상태를 모니터하는 시스템 및 방법
EP1656597B1 (fr) Procédé et système de gestion de vol pour la modélisation mathématique de la performance d'un aéronef
NO348980B1 (en) System and method for identifying and recovering from a temporary sensor failure
JP2005299646A (ja) 複数の冗長的信号に基づいてパラメータを推定する装置及びその方法
EP2642362A2 (fr) Système de surveillance
KR102603020B1 (ko) 플랜트 감시 장치, 플랜트 감시 방법, 및 프로그램
Armstrong et al. Implementation of an integrated on-board aircraft engine diagnostic architecture
EP2906796B1 (fr) Dispositif de contrôle de moteur pour un système à moteurs multiples
JP7450238B2 (ja) エンジンの異常診断方法、エンジンの異常診断プログラム、及びエンジンの異常診断システム
CN107667281B (zh) 用于对飞行期间工作的飞行器发动机进行监测的方法
US7254491B2 (en) Clustering system and method for blade erosion detection
Alozie et al. An adaptive model-based framework for prognostics of gas path faults in aircraft gas turbine engines
US12174623B2 (en) Plant monitoring device, method and program using a corrected Mahalanobis distance to determine plant abnormality
Lou Aircraft APU starter health monitoring and failure prognostics
CA2580408C (fr) Methode de dectection de fuite de reservoir de carburant d'avion et son circuit de detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12761587

Country of ref document: EP

Kind code of ref document: A1