[go: up one dir, main page]

WO2015054878A1 - 基于变化率控制储能电站平滑风光发电波动的方法及系统 - Google Patents

基于变化率控制储能电站平滑风光发电波动的方法及系统 Download PDF

Info

Publication number
WO2015054878A1
WO2015054878A1 PCT/CN2013/085436 CN2013085436W WO2015054878A1 WO 2015054878 A1 WO2015054878 A1 WO 2015054878A1 CN 2013085436 W CN2013085436 W CN 2013085436W WO 2015054878 A1 WO2015054878 A1 WO 2015054878A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
wind
total
value
photovoltaic
Prior art date
Application number
PCT/CN2013/085436
Other languages
English (en)
French (fr)
Inventor
李相俊
惠东
来小康
Original Assignee
中国电力科学研究院
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院, 国家电网公司 filed Critical 中国电力科学研究院
Priority to US14/123,516 priority Critical patent/US20160233679A1/en
Priority to PCT/CN2013/085436 priority patent/WO2015054878A1/zh
Publication of WO2015054878A1 publication Critical patent/WO2015054878A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/007Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with means for converting solar radiation into useful energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/11Combinations of wind motors with apparatus storing energy storing electrical energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/708Photoelectric means, i.e. photovoltaic or solar cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1033Power (if explicitly mentioned)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the invention belongs to the field of smart grid and energy storage and conversion technology, and particularly relates to a wind power generation output smoothing control method based on a high-power large-capacity energy storage system, which is suitable for smoothing and mega-output of wind power generation in a large-scale wind and light storage combined power generation system.
  • the wind and light storage combined power generation system is essentially a multi-energy system. How to coordinate the work of each power system is a key issue in the development of multi-energy hybrid power generation systems.
  • the battery energy storage power station can smoothly smooth the wind power generation power according to the smoothing requirements of the wind power and photovoltaic power generation output and the remaining capacity SOC of the energy storage battery. Therefore, it is necessary to carry out research on wind and light storage combined power generation system and propose related control methods. At present, there are very few patents, literatures, and technical reports on the smooth control of wind power generation based on megawatt-class high-power large-capacity battery energy storage power stations, which require in-depth research and exploration. Summary of the invention
  • one of the objects of the present invention is to provide a method capable of suppressing fluctuations in wind power generation output, effective b by her energy storage by the 3 ⁇ 4 of the Wo Tian 3 ⁇ 4. 5 positive ⁇ by her energy storage by 3 ⁇ 4 your Tian Hao's system Smoothed by her energy storage by 3 ⁇ 4 Power generation fluctuation method and system.
  • a method for controlling fluctuations in smooth wind power generation of an energy storage power station based on a rate of change includes the following steps:
  • the wind power generation electric field comprising a wind power generator set and a photovoltaic generator set connected to the grid;
  • the related data read includes: a wind power generation fluctuation rate limit value, a total wind power generation power value, a total photovoltaic power generation value, an operation state value and a rated power of each wind power generation unit in the wind power generation field. Value, the operating state value and rated power value of each photovoltaic generating unit in the photovoltaic power plant, and the maximum allowable charging power and maximum allowable discharging power of the battery energy storage power station.
  • step B includes:
  • step C Calculate the rate limit value of the total power of wind power generation in real time through the total rated power of wind power generation. Further, the specific steps of the step C include:
  • P ( ⁇ , 7) is the total power value of the wind power generation at the current sampling time t and the previous sampling time t-1, respectively, and the total power value of the wind power generation is equal to the wind power generation.
  • step D includes:
  • step D1 taking the difference between the output power ( ) obtained in step C and the total power generation value (t) of the wind power generation at the current sampling time as the real-time demand value of the total power of the battery energy storage power station at the current sampling time ⁇ ( );
  • step E the real-time demand value of the total energy of the energy storage power station calculated in step D and the smoothing target value of the total wind power generation power calculated in step C are sent to the communication module, and then output to the external monitoring platform by the communication module. In order to perform power control on the battery energy storage power station, and at the same time achieve a smooth function of the wind power generation output.
  • Another object of the present invention is to provide a system for controlling fluctuations in smooth wind power generation of an energy storage power station based on a rate of change, the system comprising:
  • a communication module configured to receive data related to the wind power generation field and the battery energy storage power station, and perform data transmission and communication with the external monitoring platform;
  • a data storage and management module for storing and managing data related to the wind power generation field and the battery energy storage power station; and outputting the calculated total wind power generation target value and the real-time demand value of the battery energy storage power station to the external monitoring platform ;
  • a change rate limit calculation module configured to determine a change rate limit value of the total power of the wind power generation in real time, and transmit the value to the dynamic slope limit module;
  • a dynamic slope limiter module for real-time calculation of the total power smoothing target value of the wind power generation
  • the power distribution controller module is used for real-time calculation of the real-time demand value of the total power of the battery energy storage power station.
  • the invention provides a method and a system for controlling fluctuations of a smooth wind power generation based on a change rate, the method and the system are mainly based on a wind power generation fluctuation rate limit value and a dynamic slope limiter module, and calculate a total power smoothing target value of the wind power generation and The total power demand value of the energy storage power station; the wind power generation grid-connected demand is stabilized, and the fluctuation of the wind power generation is stabilized. Only when the wind power generation fluctuation rate violates the grid connection restriction condition, the wind energy generation fluctuation is smoothed through the energy storage system, thereby realizing the suppression of wind power generation. At the same time of fluctuation in output, effectively reduce the utilization rate of battery energy storage power stations and extend the battery The benefits of the service life of the energy storage station.
  • FIG. 1 is a schematic structural view of a wind and light storage combined power generation system of the present invention
  • FIG. 2 is a block diagram showing an implementation of a smooth wind power generation output fluctuation of a battery energy storage power station based on a dynamic slope limiter according to the present invention
  • FIG. 3 is a schematic view showing the control effect of the smooth wind power generation fluctuation of the energy storage power station according to the present invention
  • FIG. 4 is a schematic diagram of the effect of suppressing the fluctuation rate of the smooth wind power generation fluctuation of the energy storage power station according to the present invention
  • FIG. 5 is a schematic diagram of the control effect of the photovoltaic power generation fluctuation of the energy storage power station according to the present invention
  • FIG. 6 is a storage energy storage station according to the present invention
  • the wind and light storage combined power generation system includes a wind farm (short for wind farms and photovoltaic farms), a battery energy storage power station and a power grid; wind farms, photovoltaic power plants and battery energy storage power stations respectively pass through transformers Connected to the grid.
  • a wind farm short for wind farms and photovoltaic farms
  • wind farms, photovoltaic power plants and battery energy storage power stations respectively pass through transformers Connected to the grid.
  • Each of the lithium ion battery energy storage subunits in the battery energy storage power station is connected to the bidirectional converter.
  • FIG. 2 is a block diagram of the output fluctuation of the smooth wind power generation of the battery energy storage power station based on the dynamic slope limiter module.
  • the present invention is implemented by a communication module 10, a data storage and management module 20, a rate-of-change limit calculation module 30, a dynamic slope limiter module 40, and a power distribution controller module 50 disposed in an industrial computer.
  • the communication module 10 is responsible for receiving relevant operational data of the wind power, the photovoltaic power generation and the battery energy storage power station, and transmitting the wind power generation total power smoothing target value and the battery energy storage subunit power command value to the external monitoring platform, and the monitoring platform is disposed on the left side of the communication module. Connected with the communication module to realize the function of monitoring and controlling the communication module;
  • the data storage and management module 20 is configured to store and manage wind farm related data, photovoltaic farm related data, and real-time data and historical data of the battery energy storage power station; and is responsible for smoothing the calculated total wind power generation power H ⁇ Knowing that the energy can be saved by 3 ⁇ 4 ⁇ , ⁇ 3 ⁇ 4 ⁇ * ⁇ H * is called ⁇ 1 ⁇ 2# ⁇ . 1 ⁇ 4m
  • the control platform makes a call;
  • the change rate limit calculation module 30 is configured to calculate a change rate limit value of the total power of the wind power generation in real time (that is, a limit signal rise/fall change rate limit value required by the dynamic slope limiter module), and transmit it to the dynamic slope limit module;
  • the slope limiter module 40 is configured to calculate a total power smoothing target value of the wind power generation in real time;
  • the power distribution controller module 50 is used to calculate the real-time demand value of the total power of the battery energy storage power station in real time.
  • the method and system for smoothing wind power generation fluctuation of energy storage power station based on rate of change control provided by the invention comprises the following steps:
  • Step A Read the relevant data of the operation of the wind farm, the photovoltaic farm and the battery energy storage power station through the communication module 10, which mainly includes: the total power value of the wind power generation, the total power value of the photovoltaic power generation, the operating state values of each wind power generator, and each The rated power value of the wind turbine, the operating state value of each photovoltaic generating unit, the rated power value of each photovoltaic generating unit, the limit value of the wind power generation fluctuation rate, the maximum allowable discharge power value of the battery energy storage power station, and the maximum allowable charging power value, etc., and then The above related data is passed to the data storage and management module 20 for storage and management.
  • Step B Calculate the rate of change of the total power of the wind power generation in real time based on the total rated power of the wind turbine generators and the wind power generation fluctuation rate limit value (ie, the rise of the limit signal required in the dynamic slope limiter/ Decline rate of change limit).
  • Step C First, calculate the rate of change of the total power of the wind power generation; then determine the output power after the rate limit is changed according to the rate limit condition; secondly, set the output power after the rate limit is set to the current power of the total power of the wind power generation. Target value.
  • Step D Calculate the real-time demand value of the total power of the energy storage power station based on the power distribution controller module. That is, the difference between the output value of the dynamic slope limiter and the total power of the wind power generation is taken as the real-time demand of the total power of the energy storage power station.
  • Step E transmitting the real-time demand value of the total energy of the energy storage power station calculated in step D and the smoothing target value of the total wind power generation power calculated in step C to the communication module, and then outputting the communication module to the external monitoring platform to perform battery storage It can control the power of the power station and realize the smoothing function of the wind power generation.
  • step B The specific steps of step B are as follows:
  • the current grid-connected wind power generation is calculated based on the following formula (1) Total rated power of the unit:
  • the slope is the rising rate limit value of the dynamic slope limiter input signal; the slope is the falling rate change limit value of the dynamic slope limiter input signal; For the wind power generation volatility limit value; the time scale is the rate of change 1 ⁇ 2 inspection.
  • the wind power generation fluctuation limit value is 7%/15 points, and the change rate is the inspection time interval ⁇
  • step C includes:
  • the dynamic slope limiter module calculates a rate of change of the total power of the wind power generation at the time of t sampling based on the following formula:
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • step A communication module
  • the total power of the wind power generation at the current sampling time t is 10050 kW
  • the total power of the wind power generation at the previous sampling time (t-1) is 10000 kW
  • the limited signal the total power value signal of the wind power generation
  • sampling time is a sampling time (that is, the sampling period) li, which can be 5s in this example.
  • the specific steps of step D include:
  • step D1 based on the output power limited by the rate of change at the current sampling time ( ⁇ t sampling time) obtained in step C (with the current sampling time (ie, t sampling time) total power of the wind power generation:), the current formula is used to calculate the current Sampling time (ie t sampling time) Real-time demand value of total energy of battery energy storage power station:
  • P total energy storage P total scenery ( f ) - P total scenery ( f ) (14) D2) Based on the current sampling time (ie t sampling time) The maximum allowable discharge power of the battery energy storage station p maximum allowable discharge (, p Maximum allowable charging /,
  • FIG. 3 shows the smoothing based on energy storage power station Schematic diagram of the control effect of wind power generation fluctuations;
  • Figure 4 shows the effect of suppressing the fluctuation rate based on the smooth wind power generation fluctuation of energy storage power station.
  • the results shown in Figures 3 and 4 are the rated power of the turbine and the rated power of the photovoltaic generator is 200kW.
  • Figure 5 shows the control effect of smoothing a full-day photovoltaic power generation fluctuation based on the energy storage power station
  • Figure 6 shows the effect of suppressing the volatility when the energy storage power station smoothes the whole day's photovoltaic power generation fluctuation.
  • the results shown in Figures 5 and 6 are the output power fluctuations of photovoltaic power generation systems with a rated power of 2000 kW.
  • the method and system for controlling the smooth wind power generation fluctuation of the energy storage power station based on the rate of change can effectively suppress the volatility of the wind power generation below the volatility limit value, and has a power generation based on the wind power generation.
  • the volatility limit condition effectively smoothes the function of wind power generation output, thereby achieving smooth wind power generation output, effectively reducing the use burden of the energy storage battery, and conveniently and flexibly controlling the battery energy storage power station system.
  • Bu II is isolated.
  • BT W ⁇ I is M ⁇ m ⁇ i ⁇ by 3 ⁇ 4 ⁇ , , ⁇ , smoothing » ⁇ a * a female 3 ⁇ 4 Real-time calculation requirements for the demand for megawatt-scale battery energy storage power stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

基于变化率控制储能电站平滑风光发电波动的方法,包括步骤A读取数据并对数据进行存储和管理;B基于风力发电机和光伏发电机的运行状态及额定功率,确定动态斜率限制器限制信号的变化速率;C计算风光发电总功率平滑目标值;D基于风光发电总功率平滑目标值计算电池储能电站总功率需求;E数据输出。相应系统包括:通讯模块、数据存储与管理模块、变化率界限计算模块、动态斜率限制器模块以及功率分配控制器模块等。

Description

基于变化率控制储能电站平滑风光发电波动的方法及系统 技术领域
本发明属于智能电网以及能量存储与转换技术领域,具体涉及一种基于大功率大容 量储能系统的风光发电出力平滑控制方法,其适用于大规模风光储联合发电系统中风光 发电出力平滑及兆瓦级储能电站的电池实时功率计算方法。 背景技术
由于风能和光伏发电等的不确定性和不稳定性等特点, 风光发电产生功率的瞬时上 升或跌落将造成输出功率不平稳, 使得风电和光伏发电并网功率随之不断波动。 而且, 随着风能和光伏发电在电网中所占比例不断增加,风电及太阳能发电输出功率的平滑控 制越来越受到关注。
随着电池及其集成技术的不断发展,应用电池储能电站去平滑风电及太阳能发电输 出逐渐成为了一种可行方案。 通过合理控制连接在储能设备上的变流器, 高效实现储 能系统的充放电, 能在很大程度上解决由于风电及光伏发电随机性、 间歇性及波动性等 带来的风光发电输出功率不稳定问题, 以满足风力及太阳能发电的平滑输出要求, 并有 效解决由于风电及光伏发电波动给电网频率波动带来的电能质量等问题。风光储联合发 电系统本质上是一种多能源系统, 如何协调各个电源系统的工作, 是多能源混合发电系 统研发上一个关键问题。 从电池的角度来说, 过度的充电和过度的放电都会对电池的寿 命造成影响。 因此, 监控好电池荷电状态(State of Charge: SOC), 并将电池的荷电状态 控制在一定范围内是必要的。 而且, 在风光储联合发电系统中, 如果没有合理有效的控 制策略去监控储能电池的剩余电量, 则会增加不必要的电池容量和使用成本。
电池储能电站可根据风电及光伏发电出力的平滑要求和储能电池剩余容量 SOC,对 风光发电功率进行波动平滑。 因此, 有必要开展风光储联合发电系统的研究并提出相关 控制方法。 目前有关基于兆瓦级大功率大容量电池储能电站的风光发电出力平滑控制 方面的专利、 文献、 技术报告等非常少, 需要深入研究和探索。 发明内容
针对上述问题, 本发明的目的之一在于提供一种能够抑制风光发电出力波动, 有效 b由她储能由 ¾的禾 II田¾ . 5正 ^由她储能由 ¾你田毐 的 »制由她储能由 ¾平滑 发电波动方法及系统。
本发明的控制方法是通过下述技术方案实现的:
一种基于变化率控制储能电站平滑风光发电波动的方法, 包括以下步骤:
A、 读取风光发电场及电池储能电站的相关数据, 并对数据进行存储, 所述风光发 电场包括并网运行的风力发电机组和光伏发电机组;
B、 实时确定出风光发电总功率的变化速率限制值;
C、 实时计算出风光发电总功率平滑目标值;
D、 实时计算出电池储能电站总功率实时需求值;
E、将步骤 D计算出的电池储能电站总功率实时需求值以及步骤 C计算出的风光发 电总功率平滑目标值输出至外部监控平台。
进一步地, 所述步骤 A中, 读取的相关数据包括: 风光发电波动率限制值, 风力发 电总功率值, 光伏发电总功率值, 风光发电场中各风力发电机组的运行状态值和额定功 率值,光伏发电场中各光伏发电机组的运行状态值和额定功率值以及电池储能电站的最 大允许充电功率和最大允许放电功率等等。
进一步地, 所述步骤 B的具体步骤包括:
B1 )计算当前并网运行的风力发电机组和光伏发电机组的总额定功率, 即风光发电 总额定功率;
B2) 通过风光发电总额定功率, 实时计算风光发电总功率的变化速率限制值。 进一步地, 所述步骤 C的具体步骤包括:
C1 )将第一个被采样、并输入到动态斜率限制器模块的风光发电总功率值设置为初 始时刻经过变化速率限制后的输出功率 ^^. (i);
C2) 基于下式计算当前采样时刻风光发电总功率的变化速率: „风光总 _ P风光总 ― P风光总 _ )
r速率 W = - t ~) 上式中, P議 (ή、 7)分别为当前采样时刻 t、前一采样时刻 t-1的风光发电 总功率值,所述风光发电总功率值等于风力发电总功率值与光伏发电总功率值之和; 为风光发电总功率值的采样周期;
C3)基于变化速率限制条件进行判断, 直至求得当前采样时刻经过变化速率限制后 的输出功率 (^为止; 对每一次经过变化速率限制后的输出功率进行存储, 供下一 采样时间基于变化速率限制条件进行判断时调用;
C4)将当前时刻经过变化速率限制后的输出功率/^ 设为当前时刻的风光发电 总功率平滑目标值 目标 w, 即 平 目标 W = (0。
进一步地, 所述步骤 D的具体步骤包括:
D1 )将步骤 C所得输出功率 ( )与当前采样时刻的风光发电总功率值 (t) 之差作为当前采样时刻 的电池储能电站总功率实时需求值 § ( );
D2)基于当前采样 t时刻的电池储能电站最大允许充、 放电功率, 对当前时刻的电 池储能电站总功率实时需求值 ( 进行修正。
进一步地, 所述步骤 E中, 将步骤 D计算出的储能电站总功率实时需求值以及步 骤 C计算出的风光发电总功率平滑目标值发送给通讯模块,再由通讯模块输出至外部监 控平台, 以执行对电池储能电站的功率控制, 同时实现对风光发电出力的平滑功能。
本发明的另一目的在于提出一种基于变化率控制储能电站平滑风光发电波动的系 统, 该系统包括:
通讯模块, 用于接收风光发电场和电池储能电站的相关数据, 并与外部监控平台进 行数据传输和通信;
数据存储与管理模块, 用于存储和管理风光发电场和电池储能电站的相关数据; 并 将计算出的风光发电总功率平滑目标值和电池储能电站总功率实时需求值输出至外部 监控平台;
变化率界限计算模块, 用于实时确定出风光发电总功率的变化速率限制值, 并传至 动态斜率限制模块;
动态斜率限制器模块, 用于实时计算出风光发电总功率平滑目标值; 和
功率分配控制器模块, 用于实时计算电池储能电站总功率实时需求值。
与现有技术相比, 本发明达到的有益效果是:
本发明提供一种基于变化率控制储能电站平滑风光发电波动的方法及系统,该方法 和系统主要是基于风光发电波动率限制值以及动态斜率限制器模块,计算风光发电总功 率平滑目标值以及储能电站总功率需求值; 实现了根据风光发电并网需求平抑风光发电 波动,只有当风光发电波动率违反并网限制条件时,才通过储能系统平滑风光发电波动, 从而实现了抑制风光发电出力波动的同时, 有效减少电池储能电站的利用率, 延长电池 储能电站使用寿命等益处。 附图说明
图 1是本发明风光储联合发电系统的结构示意图;
图 2是本发明基于动态斜率限制器的电池储能电站平滑风光发电出力波动的实施框 图;
图 3是本发明基于储能电站平滑风光发电波动的控制效果示意图;
图 4 是本发明基于储能电站平滑风光发电波动时抑制波动率效果示意图; 图 5 是本发明基于储能电站平滑一整天光伏发电波动的控制效果示意图; 图 6 是本发明基于储能电站平滑一整天光伏发电波动时抑制波动率效果示意图。 具体实施方式
下面结合附图和具体实施例对本发明作进一步的详细说明。本例中以锂离子电池储 能电站为例进行说明。
如图 1所示, 风光储联合发电系统包括风光发电场(为风力发电场和光伏发电场的 简称)、 电池储能电站和电网; 风力发电场、 光伏发电场及电池储能电站分别通过变压 器与电网连接。风力发电场中设有多台风力发电机组, 每台风力发电机组分别通过一变 流器与变压器相连; 光伏发电场中设有多台光伏发电机组, 每台光伏发电机组分别通过 一变流器与变压器相连; 风力发电机组和光伏发电机组采用并网运行方式, 风力发电场 和光伏发电场的内部连接示意图在此省略。 电池储能电站中的各锂离子电池储能子单元 与双向变流器连接。
图 2 是基于动态斜率限制器模块的电池储能电站平滑风光发电出力波动的实施框 图。 如图 2所示, 本发明是通过设置在工控机中的通讯模块 10、 数据存储与管理模块 20、变化率界限计算模块 30、动态斜率限制器模块 40及功率分配控制器模块 50实现的。
通讯模块 10负责接收风电、 光伏发电及电池储能电站相关运行数据, 以及向外部 监控平台发送风光发电总功率平滑目标值和电池储能子单元功率命令值,监控平台设置 在通讯模块左侧, 与通讯模块连接, 实现监测和控制通讯模块的作用;
数据存储与管理模块 20用于存储和管理风力发电场相关数据、 光伏发电场相关数 据及电池储能电站运行时的实时数据和历史数据; 而且负责将计算出的风光发电总功率 平滑 H ^佰知储能由 ¾ ^、^¾霊*佰桉重 ^H *的协 喊佰 ½#日 ^榇口亦眚. ¼m 控平台进行调用;
变化率界限计算模块 30用于实时计算出风光发电总功率的变化速率限制值 (即动 态斜率限制器模块所需的限制信号上升 /下降变化率限制值),并传至动态斜率限制模块; 动态斜率限制器模块 40用于实时计算风光发电总功率平滑目标值;
功率分配控制器模块 50用于实时计算电池储能电站总功率实时需求值。 本发明提供的基于变化率控制的储能电站平滑风光发电波动方法及系统,包括下述 步骤:
步骤 A: 通过通讯模块 10读取风力发电场、 光伏发电场及电池储能电站运行的相 关数据, 主要包括: 风力发电总功率值、 光伏发电总功率值、 各风力发电机组运行状态 值、 各风力发电机组额定功率值、 各光伏发电机组运行状态值、 各光伏发电机组额定功 率值、风光发电波动率限制值以及电池储能电站的最大允许放电功率值和最大允许充电 功率值等, 然后将上述相关数据传至数据存储与管理模块 20进行存储和管理。
步骤 B: 基于当前并网运行的风光发电机组总额定功率和风光发电波动率限制值, 实时计算风光发电总功率的变化速率限制值(即: 动态斜率限制器中所需的限制信号的 上升 /下降变化率限制值)。
步骤 C: 首先计算风光发电总功率的变化速率; 然后根据变化速率限制条件确定出 经过变化速率限制后的输出功率;其次将经过变化速率限制后的输出功率设为当前时刻 的风光发电总功率平滑目标值。
步骤 D: 基于功率分配控制器模块计算储能电站总功率实时需求值。 即, 将动态斜 率限制器的输出值与风光发电总功率的差值作为储能电站总功率实时需求。
步骤 E:将步骤 D计算出的储能电站总功率实时需求值以及步骤 C计算出的风光发 电总功率平滑目标值发送给通讯模块, 再由通讯模块输出至外部监控平台, 以执行对电 池储能电站的功率控制, 同时实现对风光发电出力的平滑功能。
步骤 B的具体步骤如下:
B1 )基于各风力发电机组运行状态信号、各风力发电机组额定功率值、各光伏发电 机组运行状态信号以及各光伏发电机组额定功率值, 基于下式 (1 ) 计算出当前并网运 行的风光发电机组总额定功率:
W V
p额定 P额定 P额定 ίΊ、 风光总 一 风电 风电 十 光伏 光伏 、^ 上述式(1)中, 为风机机组 的额定功率; 为风机机组 的运行状态, 当该风机机组 运行可控时, 此状态值为 1, 其他值为 0; 为光伏机组 的额定功 率; Μ 为光伏机组 的运行状态, 当该光伏机组 运行可控时, 此状态值为 1, 其 他值为 0; 上述各数值均通过步骤 A直接读取。 W为风机机组个数; V为光伏机组个
B2)基于当前并网运行的风光发电机组总额定功率和风光发电波动率限制值, 实时 计算动态斜率限制器中所需的限制信号的变化速度, 即,上升 /下降变化率限制值分别下 式 (2) - (3) 计算:
p额定 γ 限制值
^上升 _ 风光总 x 波动率 n\ κ速率 _ γ z->
1时间尺度
p额定 限制值
下降 ― r风光总 ¾动率
κ速率 ― ^ ) 时间尺度 式(2)-(3)中, 斜率为动态斜率限制器输入信号的上升变化率限制值; 斜率 为动态斜率限制器输入信号的下降变化率限制值;
Figure imgf000008_0001
为风光发电波动率限制值; 时间尺度为变化率½考察 l司 I司隔。
下面对本步骤进行举例说明: 例如、 当前并网运行的风光发电机组总额定功率为 100MW( 1 OOx 1000= 1 OOOOOkW) 风光发电波动率限制值为 7%/15分、变化率的考察时间 间隔 Γ时间尺度设置为 15分钟, 即 15x60=900秒 (s), 上升 /下降变化率限制值分别计算如 下:
ki! = ^ ^SS = 扁 中 = 7.腿 (4) 时间尺度 、15 x00)s · = _PSkxrSS = _(l00,1000,0.07)kW =― 腿 (5) 时间尺度 ■ ,
步骤 C的具体方法包括:
C1)将第一个被采样、 并输入到动态斜率限制器模块的风光发电总功率值设置为初 始时刻 (t=l)经过变化速率限制后的输出功率 Ρ^. (ή; ^风光总 1 ^风光总 1 (6)
,风光总
ί1) = 0 (7)
C2) 所述动态斜率限制器模块基于下式计算 t采样时刻的风光发电总功率的变化速 率:
„风光总 _ P风光总 ― P风光总 _ ) .. - ,e
r速率 W = -t ( ) ( ) 式 (8) 中, 为当前采样时刻 t的风光发电总功率值 (单位 kW), 该风光发 电总功率值等于 t采样时刻风力发电总功率值与光伏发电总功率值之和, 风力发电总功 率值和光伏发电总功率值通过步骤 A (通讯模块)进行读取; P¾ g.(i-1)为前一个采样时 刻的风光发电总功率值 (单位 kW); li为被限制信号 (即风光发电总功率值信号) 采 样周期。
下面对本步骤进行举例说明: 例如、 当前采样时刻 t 的风光发电总功率值为 10050kW、 前一个采样时刻(t-1) 的风光发电总功率值为 10000kW、 被限制信号 (风光 发电总功率值信号) 采样周期为 5秒时, 风光发电总功率的变化速率计算结果如下:
H 光总 (0-:画 (")=(腿。 画)气 5 /5s (9)
C3)基于变化速率限制条件进行判断, 直至求得当前采样时刻经过变化速率限制后 的动态斜率限制器模块输出功率 ()为止; 对每一次经过变化速率限制后的输出功 率进行存储, 作为基础数据供下一采样时刻基于变化速率限制条件进行判断时调用。 所 述基于变化速率限制条件进行判断的具体方法如下:
如果 < (t) < kS, 则 (0 = P画 (0 (10) 如果 Γϊ' )> ί, 则
Figure imgf000009_0001
(I 如果 rm) , 则 光总 ( = 光总 (卜 + (12) 中,
Figure imgf000009_0002
mtsiaw
(即 t采样时刻的动态斜率限制器模块输出功率); 为前一采样时刻经过变化 速率限制后的输出功率(即 t-1采样时刻的动态斜率限制器模块输出功率)。每两个相邻 采样时刻之间为一个采样时间 (即采样周期) li, 本例中可以取值为 5s。
C4)将当前采样时刻 (即 t采样时刻) 经过变化速率限制后的输出功率设为当前采 样时刻 (即 t采样时刻) 的风光发电总功率平滑目标值/ g^e § ( ), 即 标 ( ) = p风光总 (13) 步骤 D的具体步骤包括:
D1 )基于步骤 C所得当前采样时刻(δΡ t采样时刻)经过变化速率限制后的输出功 率¾^( 与当前采样时刻 (即 t采样时刻)风光发电总功率值 :), 通过下式计算 出当前采样时刻 (即 t采样时刻) 电池储能电站总功率实时需求值:
P储能总 ) = P风光总 (f ) - P风光总 (f ) (14) D2 ) 基于当前采样时刻 (即 t 采样时刻) 电池储能电站的最大允许放电功率 p最大允许放电(、 p最大允许充电 /、
尸储能总 ^和最大允许充电功率 ^«β^ l J ,对式 (14)所得 t采样时刻电池储能电站 总功率实时需求值进行修正:
>最大允许放电
如果满足: Ρ储能总 ) > 0ρ储能总 (f ) > ρ储能总 (f
p p最大允许放电 Q5 贝 ij P ^储储能能总总 ( J = _ ^储¾能¾总 V J . vi J p最大允许充电
如果满足: p储能总 (f)< 0 且1 储能总 ^诸能总 (t 贝 ij P储能总 ( = ¾^午充电 ( 。 (16) 图 3所示为基于储能电站平滑风光发电波动的控制效果示意图; 图 4所示为基于储 能电站平滑风光发电波动时抑制波动率效果示意图。图 3和 4所示结果为风机额定功率 为 3MW、光伏发电机额定功率为 200kW的风光联合发电系统的输出功率波动平滑效果。
图 5 所示为基于储能电站平滑一整天光伏发电波动的控制效果示意图; 图 6 所示 为基于储能电站平滑一整天光伏发电波动时抑制波动率效果示意图。图 5和 6所示结果 为光伏发电场额定功率为 2000kW的光伏发电系统的输出功率波动平抑效果。
从图 3~图 6可以看出,本例中基于变化率控制储能电站平滑风光发电波动方法及其 系统, 能够将风光发电波动率有效抑制在波动率限制值以下, 并且具有基于风光发电出 力波动率限制条件,有效平滑风光发电出力的功能,从而实现平滑风光发电出力的同时, 有效减少储能电池的使用负担, 便捷、 灵活的控制电池储能电站系统。 在实际工程应用 卜 II干 孤¾堂握 . BT W ^I时 M^ m^i^由 ¾络的 Μ, ,Ψ, 平滑 »制霊 * a女¾ 量兆瓦级电池储能电站需求的实时计算要求。
最后应该说明的是: 以上实施例仅用以说明本发明的技术方案而非对其限制, 结合 上述实施例对本发明进行了详细说明, 所属领域的普通技术人员应当理解到: 本领域技 术人员依然可以对本发明的具体实施方式进行修改或者等同替换,但这些修改或变更均 在申请待批的权利要求保护范围之中。

Claims

权 利 要 求
1、 一种基于变化率控制储能电站平滑风光发电波动的方法及系统, 其特征在于, 包括以下步骤:
A、 读取风光发电场及电池储能电站的相关数据, 并对数据进行存储, 所述风光发 电场包括并网运行的风力发电机组和光伏发电机组;
B、 实时确定出风光发电总功率的变化速率限制值;
C、 实时计算出风光发电总功率平滑目标值;
D、 实时计算出电池储能电站总功率实时需求值;
E、将步骤 D计算出的电池储能电站总功率实时需求值以及步骤 C计算出的风光发 电总功率平滑目标值输出。
2、 如权利要求 1所述的控制方法, 其特征在于, 步骤 A中, 所读取的相关数据包 括: 风光发电波动率限制值, 风力发电总功率值, 光伏发电总功率值, 风光发电场中各 风力发电机组的运行状态值和额定功率值,光伏发电场中各光伏发电机组的运行状态值 和额定功率值以及电池储能电站的最大允许充电功率和最大允许放电功率。
3、 如权利要求 2所述的方法, 其特征在于, 所述步骤 B的具体步骤包括:
B1 )计算当前并网运行的风力发电机组和光伏发电机组的总额定功率, 即风光发电 总额定功率;
B2) 通过风光发电总额定功率, 实时计算风光发电总功率的变化速率限制值。
4、 如权利要求 3所述的方法, 其特征在于, 所述步骤 B1中, 通过下式求取所述风 光发电总额定功率 p额定 一 ^„ p额定 „ p额定
厂风光总 ― J M风电 风电 λ ZJ M光伏 ^厂光伏^
k=l k=l
式中, 为风力发电机组 的额定功率值; ¾ 为风力发电机组 的运行状态值, 当该风力发电机组 运行可控时, 此状态值为 1, 否则值为 0; 为光伏发电机组 的额定功率值; 为光伏发电机组 的运行状态值, 当该光伏发电机组 运行可控 时, 此状态值为 1, 否则值为 0; 上述各数值均通过步骤 A读取; W为风力发电机组个 数; V为光伏发电机组个数。
5、 如权利要求 3所述的方法, 其特征在于, 所述步骤 B2中, 通过下式求取所述风 ^ "由 lii ¾的亦仆谏 ¾ m制佰. p额定 γ }J艮制值
f风光总 x ,波动率
^速率 _ τ
1时间尺度
P额定 γ 限制值
风光总 χ ¾动率
k下降
速率
间尺度
式中, ^ ^为风光发电总功率的上升变化速率限制值; 为风光发电总功率的下 降变化速率限制值; 为风光发电波动率限制值, 该值通过步骤 A读取; 为变 化速率的考察时间间隔。
6、 如权利要求 1或 2所述的方法, 其特征在于, 所述步骤 C的具体步骤包括: C1 )将第一个被采样、并输入到动态斜率限制器模块的风光发电总功率值设置为初 始时刻经过变化速率限制后的输出功率
C2) 基于下式计算当前采样时刻风光发电总功率的变化速率:
Figure imgf000013_0001
上式中, P誦 ( 、 )分别为当前采样时刻 t、前一采样时刻 t-1的风光发电 总功率值,所述风光发电总功率值等于风力发电总功率值与光伏发电总功率值之和; 为风光发电总功率值的采样周期;
C3 )基于变化速率限制条件进行判断, 直至求得当前采样时刻经过变化速率限制后 的输出功率 (;)为止; 对每一次经过变化速率限制后的输出功率进行存储, 供下一 采样时刻进行判断时调用;
C4)将当前时刻经过变化速率限制后的输出功率/¾^ (^设为当前时刻的风光发电 总功率平滑目标值 /¾¾目标 w, 即 目标 W = (0。
7、如权利要求 6所述的方法, 其特征在于, 所述步骤 C3中基于变化速率限制条件 进行判断的具体方法为:
如果 fc^* < ¾光总 W≤ , 则输出功率 总 ( = Ρ风光总 ( ; 如果 r 'W>^S,
Figure imgf000013_0002
下降 如果 r速风 总 W < kS, 则输出功率 总 W = 总 (卜 1) + 速率 巾, 舰樹亥 'J t 赫闘翩云力練輔継纖车俞 ¾ 功率; Ρ^ ")为前一采样时刻 ί!变化速率限制后的动态斜率限制器模块输出功 率。
8、 如权利要求 1或 2所述的方法, 其特征在于, 所述步骤 D的具体步骤包括: D1)将步骤 C所得输出功率 与当前采样时刻的风光发电总功率值 之差作为当前采样时刻 的电池储能电站总功率实时需求值 §^( );
D2)基于当前采样 t时刻的电池储能电站最大允许充、 放电功率, 对当前时刻的电 池储能电站总功率实时需求值 进行修正。
9、 如权利要求 8所述的方法, 其特征在于, 对所述 ^»进行修正的具体方法包 括:
如果 p (A^n p ^、、 p最大允许放电 ^、 ( s! _ p最大允许放电 ( ) 储能总 V J ^ 且 诸能总 V ) ^ 储能总 V ), 贝 ij 储能总 V ) - 储能总 V ) . 如; p (A^ n \p
¾ 储能总 _gj/i 电
诸能总 (Vll、 ί pΐ最大允许充
诸能总 iVll, 贝 p
ij1!诸能总 ( s! _ p最大允许充电
能总 ( )。
10、 一种基于变化率控制储能电站平滑风光发电波动的方法及系统, 其特征在于, 该系统包括:
通讯模块, 用于接收风光发电场和电池储能电站的相关数据, 并与外部监控平台进 行数据传输和通信;
数据存储与管理模块, 用于存储和管理风光发电场和电池储能电站的相关数据; 并 将计算出的风光发电总功率平滑目标值和电池储能电站总功率实时需求值输出至外部 监控平台;
变化率界限计算模块, 用于实时确定出风光发电总功率的变化速率限制值, 并传至 动态斜率限制模块;
动态斜率限制器模块, 用于实时计算出风光发电总功率平滑目标值; 和
功率分配控制器模块, 用于实时计算电池储能电站总功率实时需求值。
PCT/CN2013/085436 2013-10-18 2013-10-18 基于变化率控制储能电站平滑风光发电波动的方法及系统 WO2015054878A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/123,516 US20160233679A1 (en) 2013-10-18 2013-10-18 A method and system for control of smoothing the energy storage in wind phtovolatic power fluctuation based on changing rate
PCT/CN2013/085436 WO2015054878A1 (zh) 2013-10-18 2013-10-18 基于变化率控制储能电站平滑风光发电波动的方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/085436 WO2015054878A1 (zh) 2013-10-18 2013-10-18 基于变化率控制储能电站平滑风光发电波动的方法及系统

Publications (1)

Publication Number Publication Date
WO2015054878A1 true WO2015054878A1 (zh) 2015-04-23

Family

ID=52827580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085436 WO2015054878A1 (zh) 2013-10-18 2013-10-18 基于变化率控制储能电站平滑风光发电波动的方法及系统

Country Status (2)

Country Link
US (1) US20160233679A1 (zh)
WO (1) WO2015054878A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017186178A1 (zh) * 2016-04-28 2017-11-02 中国电力科学研究院 储能电站自适应动态规划的控制方法、系统和存储介质
FR3052607A1 (fr) * 2016-06-14 2017-12-15 Electricite De France Procede de modification de la consommation energetique d'un equipement
CN108377004A (zh) * 2018-04-23 2018-08-07 华北电力科学研究院有限责任公司 基于虚拟同步机的风储协调调频方法及系统
CN108376991A (zh) * 2018-02-09 2018-08-07 中国电力科学研究院有限公司 一种新能源电站储能系统的综合能量管理方法及系统
CN112564188A (zh) * 2020-12-04 2021-03-26 南理工泰兴智能制造研究院有限公司 一种新能源电站的调频控制系统
CN113690905A (zh) * 2021-08-25 2021-11-23 远景能源有限公司 新能源储能系统的出力平滑系统及方法
CN114024325A (zh) * 2021-11-02 2022-02-08 国网内蒙古东部电力有限公司供电服务监管与支持中心 电能替代下基于大数据分析的储能容量配置方法
CN114336743A (zh) * 2021-12-24 2022-04-12 国网江苏省电力有限公司盐城供电分公司 一种包含多个光伏发电的区域电网能量控制方法
CN114465260A (zh) * 2022-04-08 2022-05-10 中国长江三峡集团有限公司 一种光伏储能电池均衡的控制方法
CN115355944A (zh) * 2022-08-19 2022-11-18 国网福建省电力有限公司经济技术研究院 一种采用风光互补供电的输电铁塔监测装置
CN115940281A (zh) * 2022-05-16 2023-04-07 中国电建集团华东勘测设计研究院有限公司 一种海上风电波动实时平抑目标功率确定方法、系统及介质
CN118037480A (zh) * 2024-01-26 2024-05-14 中国长江电力股份有限公司 一种制氢系统的电解槽功率分配方法
CN118674243A (zh) * 2024-08-23 2024-09-20 厦门闽投科技服务有限公司 一种微电网关键节点生产管理方法及系统
CN118920563A (zh) * 2024-07-04 2024-11-08 中能建储能科技(武汉)有限公司 一种工商业储能系统的控制方法及控制装置
US12410774B2 (en) 2019-10-16 2025-09-09 Siemens Gamesa Renewable Energy A/S Wind turbine control architecture

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106649962B (zh) * 2016-10-13 2019-11-05 哈尔滨工业大学 一种考虑电池寿命的电动汽车动力电池参与电力系统调频建模方法
CN106451508B (zh) * 2016-10-13 2020-02-04 深圳职业技术学院 分布式混合储能系统配置、充放电方法及装置
CN107482614B (zh) * 2017-08-16 2019-09-10 南京国电南自电网自动化有限公司 适用于离网型直流微电网电压控制的混合储能控制方法
US10581249B2 (en) 2017-11-14 2020-03-03 Inventus Holdings, Llc Battery energy storage system integrated with electrical generation site
US11431174B2 (en) 2017-12-21 2022-08-30 Vestas Wind Systems A/S Power control for hybrid power plant
CN108988372B (zh) * 2018-07-30 2021-11-30 内蒙古工业大学 直驱风电机组的混合储能系统的功率控制方法与装置
CN109462252A (zh) * 2018-10-19 2019-03-12 国网湖南省电力有限公司 直驱风电超导储能多机系统的协调功率控制方法及系统
CN109861273A (zh) * 2018-12-25 2019-06-07 南京工程学院 一种基于蓄电池组的风电场并网功率平滑方法
CN109921416A (zh) * 2019-03-15 2019-06-21 国网冀北电力有限公司 混合储能系统功率及容量的确定方法及装置
CN110994653A (zh) * 2019-10-16 2020-04-10 国网浙江省电力有限公司嘉兴供电公司 一种平滑光伏功率波动的储能系统充放电控制方法
CN110797884B (zh) * 2019-11-06 2023-02-17 国网河南省电力公司电力科学研究院 模拟agc调频确定储能容量方法和装置
WO2021126571A1 (en) * 2019-12-16 2021-06-24 General Electric Company System and method for maintaining electrical power continuity in a steam-based power plant
CN111563235B (zh) * 2020-05-12 2023-06-23 中国科学院电工研究所 一种智能配用电系统运行场景辨识与生成方法
CN112019157A (zh) * 2020-07-06 2020-12-01 安徽天尚清洁能源科技有限公司 一种基于多站模式的光伏电站功率监控系统
CN112467760B (zh) * 2020-10-27 2025-08-29 国家电网有限公司 自动发电控制方法和系统
CN112398143A (zh) * 2020-10-28 2021-02-23 许继集团有限公司 一种含储能的新能源电站调频控制方法及系统
CN112835326B (zh) * 2020-12-30 2022-06-17 天津重型装备工程研究有限公司 一种大型铸锻件加工智能化方法及系统
CN112928755B (zh) * 2021-03-19 2022-10-28 深圳市欣旺达综合能源服务有限公司 光伏储能系统的控制方法、装置及存储介质
US11824363B2 (en) * 2021-06-17 2023-11-21 Solargik Ltd Methods and systems for smoothing output of a solar energy system
US11817816B2 (en) 2021-08-09 2023-11-14 Solargik Ltd Solar energy system and geared drive system
CN113690904B (zh) * 2021-08-25 2025-06-10 远景能源有限公司 光伏储能系统的出力平滑系统及方法
CN114865676B (zh) * 2022-07-07 2022-09-20 中国长江三峡集团有限公司 一种混合储能系统控制方法、装置和电子设备
CN115473278A (zh) * 2022-10-19 2022-12-13 中国船舶重工集团海装风电股份有限公司 一种风电场升降功率平滑调节控制方法
WO2024110775A1 (en) * 2022-11-22 2024-05-30 Solargik Ltd Methods and systems for smoothing output of a solar energy system
CN118017605B (zh) * 2024-04-10 2024-06-18 万帮数字能源股份有限公司 光伏组件功率波动的平滑控制装置和方法、光伏储能系统
CN118199183B (zh) * 2024-05-20 2024-07-26 北京圆声能源科技有限公司 一种虚拟电厂运行控制系统
CN119010192B (zh) * 2024-09-04 2025-04-15 广州华跃电力工程设计有限公司 一种分布式光伏储能系统及其功率控制方法
CN119134408B (zh) * 2024-09-14 2025-09-30 中国电力工程顾问集团中南电力设计院有限公司 一种风光联合电站有功实时控制方法、设备、介质及产品
CN119298179A (zh) * 2024-12-10 2025-01-10 甘肃自然能源研究所 一种光伏储能系统的能量管理方法
CN120278849B (zh) * 2025-06-11 2025-08-26 中国电建集团贵阳勘测设计研究院有限公司 用于平抑新能源功率波动的锂电池动态生热功率计算方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306669A (ja) * 2006-05-09 2007-11-22 Fuji Electric Systems Co Ltd 電力貯蔵装置を用いた電力安定化システム
CN102214934A (zh) * 2011-06-03 2011-10-12 中国电力科学研究院 基于兆瓦级电池储能电站的风光发电出力平滑控制方法
CN102361327A (zh) * 2011-10-17 2012-02-22 张家港智电可再生能源与储能技术研究所有限公司 一种考虑电池寿命的电池储能系统削峰填谷方法
US20120091968A1 (en) * 2010-10-18 2012-04-19 Electronics And Telecommunications Research Institute Method and apparatus for tracking maximum power point
CN202651806U (zh) * 2012-04-18 2013-01-02 中国电力科学研究院 一种电池储能电站平滑风光发电控制系统
CN103560533A (zh) * 2012-04-18 2014-02-05 中国电力科学研究院 基于变化率控制储能电站平滑风光发电波动的方法及系统

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3970083B2 (ja) * 2002-04-23 2007-09-05 住友電気工業株式会社 レドックスフロー電池システムの運転方法
WO2003092110A1 (en) * 2002-04-23 2003-11-06 Sumitomo Electric Industries,Ltd. Method for designing redox flow battery system
JP3825020B2 (ja) * 2002-08-01 2006-09-20 株式会社アイ・ヒッツ研究所 分散給電システム
US7000395B2 (en) * 2004-03-11 2006-02-21 Yuan Ze University Hybrid clean-energy power-supply framework
US7199482B2 (en) * 2005-06-30 2007-04-03 General Electric Company System and method for controlling effective wind farm power output
WO2007086472A1 (ja) * 2006-01-27 2007-08-02 Sharp Kabushiki Kaisha 電力供給システム
AR064292A1 (es) * 2006-12-12 2009-03-25 Commw Scient Ind Res Org Dispositivo mejorado para almacenamiento de energia
ES2570553T3 (es) * 2008-04-11 2016-05-19 Christopher M Mcwhinney Procedimiento electroquímico
AU2008365735B2 (en) * 2008-12-26 2014-08-14 Japan Wind Development Co., Ltd. Wind-driven electricity generation system of type having storage battery, and device for controlling charge and discharge of storage battery
US7936078B2 (en) * 2009-03-11 2011-05-03 Pavlak Alexander J Variable speed wind turbine having a constant speed generator
US8457821B2 (en) * 2009-04-07 2013-06-04 Cisco Technology, Inc. System and method for managing electric vehicle travel
JP4976466B2 (ja) * 2009-08-18 2012-07-18 株式会社日立製作所 ウィンドファーム制御システム、ウィンドファーム制御装置および制御方法
US9422922B2 (en) * 2009-08-28 2016-08-23 Robert Sant'Anselmo Systems, methods, and devices including modular, fixed and transportable structures incorporating solar and wind generation technologies for production of electricity
US8185250B2 (en) * 2009-09-23 2012-05-22 Peoplewave, Inc. Power load control system for utility power system
WO2011078151A1 (ja) * 2009-12-24 2011-06-30 三洋電機株式会社 電力供給方法、コンピュータ読み取り可能な記録媒体および発電システム
US20110175444A1 (en) * 2010-01-19 2011-07-21 Yuki Yunes Portable Power System
JP5204797B2 (ja) * 2010-02-25 2013-06-05 株式会社日立製作所 二次電池モジュールおよび二次電池モジュール装置
CN102341946B (zh) * 2010-03-12 2013-05-01 住友电气工业株式会社 氧化还原液流电池
ES2429359T3 (es) * 2010-04-27 2013-11-14 Sumitomo Electric Industries, Ltd. Batería de flujo redox
US8554386B2 (en) * 2010-06-02 2013-10-08 Serge Rutman System and method for self-powered communications networks
US9276294B2 (en) * 2010-10-07 2016-03-01 Battelle Memorial Institute Planar high density sodium battery
JP5674412B2 (ja) * 2010-10-19 2015-02-25 パナソニックIpマネジメント株式会社 機器制御装置及び機器制御方法
US9063525B2 (en) * 2011-01-28 2015-06-23 Sunverge Energy, Inc. Distributed energy services management system
JP5007849B1 (ja) * 2011-03-25 2012-08-22 住友電気工業株式会社 レドックスフロー電池、及びその運転方法
JP5526073B2 (ja) * 2011-04-12 2014-06-18 株式会社日立製作所 リチウムイオン二次電池用モジュール、これを搭載した乗り物および発電システム
US8710350B2 (en) * 2011-04-21 2014-04-29 Paul Shufflebotham Combination photovoltaic and wind power generation installation
JP5557793B2 (ja) * 2011-04-27 2014-07-23 株式会社日立製作所 非水電解質二次電池
WO2013002137A1 (ja) * 2011-06-27 2013-01-03 住友電気工業株式会社 レドックスフロー電池
JP6019411B2 (ja) * 2011-07-05 2016-11-02 パナソニックIpマネジメント株式会社 家電機器
US20130221676A1 (en) * 2011-07-06 2013-08-29 Mitsubishi Heavy Industries, Ltd. Energy extraction device, group of energy extraction devices and operating methods
US9444275B2 (en) * 2011-08-31 2016-09-13 North Carolina State University Intelligent integrated battery module
CN102520675B (zh) * 2011-10-23 2014-03-12 西安交通大学 燃气联合循环与太阳能发电联合制热系统及其调度方法
JP5809044B2 (ja) * 2011-12-21 2015-11-10 川崎重工業株式会社 二次電池
US9185646B2 (en) * 2012-07-03 2015-11-10 Samsung Electronics Co., Ltd. Apparatus and method for wireless communication networks with energy harvesting
EP2899789B1 (en) * 2012-09-18 2017-04-19 Sumitomo Electric Industries, Ltd. Redox flow battery
US20150303719A1 (en) * 2013-01-30 2015-10-22 Hitachi, Ltd. Battery Combined System
US20140373547A1 (en) * 2013-06-21 2014-12-25 Marius Angelo Paul Total synergetic integration of all eternal energies solar, atmosferic, wind, geo thermal, and universal fuel capability with maximum efficiency systems
WO2014203409A1 (ja) * 2013-06-21 2014-12-24 住友電気工業株式会社 レドックスフロー電池用電解液、およびレドックスフロー電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306669A (ja) * 2006-05-09 2007-11-22 Fuji Electric Systems Co Ltd 電力貯蔵装置を用いた電力安定化システム
US20120091968A1 (en) * 2010-10-18 2012-04-19 Electronics And Telecommunications Research Institute Method and apparatus for tracking maximum power point
CN102214934A (zh) * 2011-06-03 2011-10-12 中国电力科学研究院 基于兆瓦级电池储能电站的风光发电出力平滑控制方法
CN102361327A (zh) * 2011-10-17 2012-02-22 张家港智电可再生能源与储能技术研究所有限公司 一种考虑电池寿命的电池储能系统削峰填谷方法
CN202651806U (zh) * 2012-04-18 2013-01-02 中国电力科学研究院 一种电池储能电站平滑风光发电控制系统
CN103560533A (zh) * 2012-04-18 2014-02-05 中国电力科学研究院 基于变化率控制储能电站平滑风光发电波动的方法及系统

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11326579B2 (en) 2016-04-28 2022-05-10 China Electric Power Research Institute Company Limited Adaptive dynamic planning control method and system for energy storage station, and storage medium
WO2017186178A1 (zh) * 2016-04-28 2017-11-02 中国电力科学研究院 储能电站自适应动态规划的控制方法、系统和存储介质
FR3052607A1 (fr) * 2016-06-14 2017-12-15 Electricite De France Procede de modification de la consommation energetique d'un equipement
EP3258187A1 (fr) * 2016-06-14 2017-12-20 Electricité de France Procédé de modification de la consommation énergétique d'un équipement
CN108376991A (zh) * 2018-02-09 2018-08-07 中国电力科学研究院有限公司 一种新能源电站储能系统的综合能量管理方法及系统
CN108376991B (zh) * 2018-02-09 2022-07-22 中国电力科学研究院有限公司 一种新能源电站储能系统的综合能量管理方法及系统
CN108377004B (zh) * 2018-04-23 2024-03-15 华北电力科学研究院有限责任公司 基于虚拟同步机的风储协调调频方法及系统
CN108377004A (zh) * 2018-04-23 2018-08-07 华北电力科学研究院有限责任公司 基于虚拟同步机的风储协调调频方法及系统
US12410774B2 (en) 2019-10-16 2025-09-09 Siemens Gamesa Renewable Energy A/S Wind turbine control architecture
CN112564188A (zh) * 2020-12-04 2021-03-26 南理工泰兴智能制造研究院有限公司 一种新能源电站的调频控制系统
CN113690905A (zh) * 2021-08-25 2021-11-23 远景能源有限公司 新能源储能系统的出力平滑系统及方法
CN114024325A (zh) * 2021-11-02 2022-02-08 国网内蒙古东部电力有限公司供电服务监管与支持中心 电能替代下基于大数据分析的储能容量配置方法
CN114024325B (zh) * 2021-11-02 2023-05-23 国网内蒙古东部电力有限公司供电服务监管与支持中心 电能替代下基于大数据分析的储能容量配置方法
CN114336743A (zh) * 2021-12-24 2022-04-12 国网江苏省电力有限公司盐城供电分公司 一种包含多个光伏发电的区域电网能量控制方法
CN114465260A (zh) * 2022-04-08 2022-05-10 中国长江三峡集团有限公司 一种光伏储能电池均衡的控制方法
CN115940281A (zh) * 2022-05-16 2023-04-07 中国电建集团华东勘测设计研究院有限公司 一种海上风电波动实时平抑目标功率确定方法、系统及介质
CN115355944A (zh) * 2022-08-19 2022-11-18 国网福建省电力有限公司经济技术研究院 一种采用风光互补供电的输电铁塔监测装置
CN118037480A (zh) * 2024-01-26 2024-05-14 中国长江电力股份有限公司 一种制氢系统的电解槽功率分配方法
CN118920563A (zh) * 2024-07-04 2024-11-08 中能建储能科技(武汉)有限公司 一种工商业储能系统的控制方法及控制装置
CN118674243A (zh) * 2024-08-23 2024-09-20 厦门闽投科技服务有限公司 一种微电网关键节点生产管理方法及系统

Also Published As

Publication number Publication date
US20160233679A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
WO2015054878A1 (zh) 基于变化率控制储能电站平滑风光发电波动的方法及系统
CN107947231B (zh) 一种面向配电网优化运行的混合储能系统控制方法
CN104638772B (zh) 基于风功率预测的电池储能电站能量管理方法
CN102780236B (zh) 一种风光储联合发电系统的有功优化控制系统及方法
CN102354992B (zh) 风电场无功功率控制方法
CN107528341B (zh) 一种用于高风电渗透率的大电网储能调度的方法
CN107769236B (zh) 一种风力发电机组储能发电系统及其能量调度方法
WO2013097489A1 (zh) 兆瓦级电池储能电站实时功率控制方法及其系统
CN107104462B (zh) 一种用于风电场储能调度的方法
CN105244920B (zh) 考虑电池健康状态的储能系统多目标控制方法及其系统
CN103187733A (zh) 兆瓦级液流电池储能电站实时功率控制方法及其系统
CN103560533B (zh) 基于变化率控制储能电站平滑风光发电波动的方法及系统
CN202651806U (zh) 一种电池储能电站平滑风光发电控制系统
JP2015192566A (ja) 電力システム及び直流送電方法
CN204905882U (zh) 基于混合储能的双馈风力发电机励磁装置
CN103545848A (zh) 光伏电站群有功功率协调控制方法
CN114938005A (zh) 一种风储电站参与电网一次调频的双层控制方法和装置
WO2020107542A1 (zh) 一种储能机组的梯次利用储能电池能量控制方法和系统
CN116231764A (zh) 一种源网荷储协调控制方法及系统
CN114725955A (zh) 用于新能源场站的电力调频系统及方法
CN111525597B (zh) 一种风储联合系统中双电池不平衡状态优化方法
CN117526459A (zh) 一种新能源场站无功-调压优化控制策略系统和方法
CN118263885A (zh) 一种海上风电-svg-储能系统电压协同控制方法、系统
CN108631324A (zh) 一种电网多无功电压装置无功分配协调控制系统及方法
CN104377717B (zh) 一种用于平抑风电功率的储能控制系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14123516

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895571

Country of ref document: EP

Kind code of ref document: A1