[go: up one dir, main page]

WO2015068209A1 - Dust collection device and dust collection method - Google Patents

Dust collection device and dust collection method Download PDF

Info

Publication number
WO2015068209A1
WO2015068209A1 PCT/JP2013/079932 JP2013079932W WO2015068209A1 WO 2015068209 A1 WO2015068209 A1 WO 2015068209A1 JP 2013079932 W JP2013079932 W JP 2013079932W WO 2015068209 A1 WO2015068209 A1 WO 2015068209A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust collection
discharge
gas
collection area
filter
Prior art date
Application number
PCT/JP2013/079932
Other languages
French (fr)
Japanese (ja)
Inventor
一隆 富松
雅也 加藤
崇雄 田中
泰稔 上田
勝久 小嶋
Original Assignee
三菱重工メカトロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工メカトロシステムズ株式会社 filed Critical 三菱重工メカトロシステムズ株式会社
Priority to PCT/JP2013/079932 priority Critical patent/WO2015068209A1/en
Publication of WO2015068209A1 publication Critical patent/WO2015068209A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode with two or more serrated ends or sides

Definitions

  • the present invention relates to a dust collector and a dust collection method for removing particulate matter from gas.
  • exhaust gas containing dust (for example, particulate matter) and SOx is generated by combustion.
  • an exhaust gas treatment facility is installed in the flue downstream of the combustion facility.
  • the exhaust gas treatment facility is provided with a desulfurizer, a dust collector, and the like.
  • a desulfurization apparatus using a wet method for example, alkali such as magnesium hydroxide (Mg (OH) 2 ) is used as an absorbent, and a liquid containing the absorbent is sprayed toward exhaust gas. SOx is surrounded by the liquid and reacts with the absorbent to remove SOx from the exhaust gas.
  • the dust collector includes a discharge electrode for charging the particulate matter and a ground electrode disposed opposite to the discharge electrode in order to remove the particulate matter and mist.
  • a discharge electrode for charging the particulate matter
  • a ground electrode disposed opposite to the discharge electrode in order to remove the particulate matter and mist.
  • Patent Document 1 in order to reliably collect particulate matter while gas flows in the casing, the particulate matter is accelerated in a direction crossing the gas flow in the casing by ion wind, and the conductive mesh is overlapped.
  • a technique for collecting particulate matter by passing through a ground electrode is disclosed.
  • Patent Document 2 in a dust collector equipped with a wet electrostatic filter that removes mist (SOx mist) in which dust and SOx have been taken in, a ground electrode is disposed around the discharge electrode, and the discharge electrode and the ground are disposed. It is disclosed that a filter layer for collecting dust is provided between the electrodes.
  • a low-pressure loss filter (about 10 to 30 mmAQ at an initial pressure loss) is employed to operate the dust collector with low power.
  • a sufficient filter length is ensured in the depth direction of the wet electrostatic filter to reduce the gas flow rate in the filter.
  • the gas is contracted and the pressure loss of the filter is low, so that the inflow speed is greatly reduced compared to other parts.
  • the flow velocity of the collecting portion tends to gradually increase as it goes to the back side of the filter due to the influence of dynamic pressure. That is, there is a problem that the gas flow velocity is distributed in the wet electrostatic filter and the dust collection efficiency of the entire filter is lowered.
  • the present invention has been made in view of the above problems, and provides a dust collector capable of improving dust collection efficiency and further reducing the size of the device, and a dust collection method using the dust collector.
  • the purpose is to do.
  • a dust collection area having an inlet portion into which a gas is introduced, a mounting shaft installed in the dust collection area, and a plurality of thorn-shaped discharge spikes protruding from the mounting shaft.
  • a power source for applying a voltage to the discharge electrode, and the mounting shaft of each of the discharge electrodes extends in a direction substantially perpendicular to a direction in which the gas flows into the dust collection area, and a plurality of the discharge electrodes The electrode is in the dust collection area.
  • the length of the discharge barb of the discharge electrode arranged in the depth direction from the entry port and located at the inlet part of the dust collection area is equal to the length of the discharge barb of the discharge electrode located at the back side of the dust collection area.
  • the gas flow rate distribution is said to be significantly lower than the inlet side, compared with the gas flow rate distribution.
  • an ion wind is generated by generating a corona discharge between the discharge thorn of the discharge electrode and the ground electrode.
  • this ion wind is used, and the ion flow is superimposed on the gas flow rate to increase the gas flow rate.
  • the strength of the ion wind is stronger as the distance between the discharge splinter and the ground electrode is closer.
  • the dust collector of the first aspect the gas flow rate passing through the filter can be made substantially uniform, and the collection efficiency (dust collection efficiency) of the particulate matter contained in the gas can be increased. .
  • a dust collection area having an inlet portion into which gas is introduced, a mounting shaft installed in the dust collection area, and a plurality of thorn-shaped discharge spikes protruding from the mounting shaft.
  • a power source for applying a voltage to the discharge electrode, and the mounting shaft of each of the discharge electrodes extends in a direction substantially perpendicular to a direction in which the gas flows into the dust collection area, and a plurality of the discharge electrodes
  • the electrode is in the dust collection area.
  • the filter arranged in the depth direction from the entry port and located on the back side of the dust collection area is thicker than the filter located on the entrance of the dust collection area, and the discharge thorn and the ground electrode It is a dust collector that generates corona discharge.
  • a gas flow velocity distribution is generated in which the flow velocity of the gas passing through the filter is significantly lower than that at the back of the inlet portion.
  • the filter located on the far side of the dust collection area is made thicker than the filter located on the entrance side, thereby increasing the pressure loss of the far side filter and reducing the gas flow rate.
  • the gas passing through the filter can be accelerated and the uncharged particulate matter contained in the gas flowing into the dust collection area can be charged by corona discharge in the dust collection area.
  • the gas flow rate passing through the filter can be made substantially uniform, and the collection efficiency of the particulate matter contained in the gas can be increased.
  • the conductive material is surrounded by a conductive enclosure protruding from the end of the earth electrode on the inlet side toward the outside of the dust collection area, and the side opposite to the inlet side is open.
  • the gas can flow inward
  • the discharge electrode of the discharge electrode has a precharge portion provided to face the enclosure.
  • a plurality of the dust collection areas are arranged in a direction substantially orthogonal to the gas inflow direction, the clean gas passage is disposed between the adjacent dust collection areas, and the dust collection area It is preferable that the width of the clean gas passage in the direction in which the dust collection is arranged is equal to or less than the width in the dust collection area in the direction in which the dust collection area is arranged.
  • the filter can be washed as appropriate, so that a reduction in the collection efficiency of the particulate matter by the filter can be suppressed.
  • a third aspect of the present invention is a dust collection method for collecting particulate matter from a gas containing particulate matter and water mist using the dust collector of the first aspect or the second aspect, The step of applying a voltage to the discharge electrode by the power source to generate an ion wind from the discharge electrode to the ground electrode, and charging the particulate matter contained in the gas in the dust collection area; And collecting the charged particulate matter with the filter by passing the gas through the filter.
  • the gas to be treated in the present invention includes particulate substances of various sizes. Particulate matter larger than the pores of the filter is collected by the filter as the gas passes through the filter. On the other hand, particulate matter having a particle size equal to or smaller than the pores of the filter can be collected by the filter by being mainly charged in the dust collection area. If the dust collector of the 1st aspect or the 2nd aspect is utilized, the gas flow rate which passes a filter can be made substantially uniform. As a result, the collection efficiency of the particulate matter contained in the gas increases.
  • the gas flow velocity distribution in the dust collection area can be made uniform, the collection efficiency in one dust collection area can be improved. As a result, the volume of the apparatus can be reduced, and the size can be reduced.
  • the dust collector according to the first embodiment is installed in an exhaust gas treatment facility provided in a flue on the downstream side of an industrial combustion facility such as a coal-fired or heavy oil-fired power plant or an incinerator, for example.
  • an industrial combustion facility such as a coal-fired or heavy oil-fired power plant or an incinerator, for example.
  • the dust collector can be used for air purification equipment filters (for example, clean room air conditioning filters, virus removal filters, etc.).
  • a water mist spraying device and a collection unit are installed in order from the upstream side of the gas.
  • the water mist spraying device can be omitted.
  • the water mist spraying device sprays water mist into the gas from the nozzle.
  • the diameter of the water mist is about 10 ⁇ m to 100 ⁇ m, preferably 30 ⁇ m or less.
  • the liquid sprayed from the water mist spraying device may be an aqueous solution containing a dissolved salt capable of absorbing an acidic gas such as SOx contained in the gas in addition to water.
  • a caustic soda (NaOH) aqueous solution and a magnesium hydroxide (Mg (OH) 2 ) aqueous solution are used.
  • the water mist spraying device can also spray water containing ethanol or ozone water as a liquid having a disinfecting action.
  • fungi and viruses may exist in the air. These are inactivated to some extent by corona discharge in the precharged part, but can be more reliably inactivated in the downstream collecting part by spraying a liquid having a disinfecting action.
  • FIG. 1A is a perspective view of the collection unit 1 as viewed from below
  • FIG. 1B is a front sectional view of the collection unit 1
  • FIG. 1C is a side sectional view of the collection unit 1.
  • the dust collector of the present embodiment is configured such that gas rises in the vertical direction from below the collection unit 1 and flows into the collection unit 1.
  • the collection unit 1 has a plurality (three in FIG. 1A) of dust collection areas 2.
  • the dust collection area 2 is arranged in parallel with the gas flow.
  • Each dust collection area 2 has an inlet 3 through which gas can flow.
  • the surface located on the opposite side to the inlet portion 3 is a wall surface 4 through which gas cannot pass.
  • the inlet portion 3 and the wall surface 4 have the same shape. That is, the cross-sectional shape facing the direction in which the gas flows in the dust collection area 2 has the same area from the inlet 3 toward the depth direction.
  • the inlet 3 is oval, but is not limited thereto.
  • a wall surface in a direction substantially orthogonal to the inlet 3 of the dust collection area 2 is a ground electrode 5.
  • the ground electrode 5 is a conductive member having an opening through which gas can flow, and is, for example, a wire mesh or a punching metal.
  • a filter 6 is installed around the outside of the ground electrode 5.
  • the filter 6 is a dielectric material having a dielectric constant exceeding that of air (desirably having a dielectric constant of 2 or more).
  • a porous material having water repellency and allowing gas to flow is selected. Examples thereof include a porous material made of polypropylene or polytetrafluoroethylene.
  • the filter 6 preferably has a low pressure loss (initial pressure loss of 10 to 20 mmAq, at least about 30 mmAq or less).
  • the pores of the filter 6 have a passing particle diameter of several ⁇ m to several tens of ⁇ m, and the porosity is 90% or more, preferably 95% or more.
  • a wall surface 8 (however, omitted in FIG. 1A) is installed between adjacent dust collection areas 2.
  • the space upstream of the gas in the dust collection area 2 and the clean gas passage 17 that is located on the gas downstream side of the dust collection area 2 with the ground electrode 5 and the filter 6 interposed therebetween are isolated by the wall surface 8. .
  • the collection unit 1 includes a pipe (cleaning unit) 7 for supplying a liquid for cleaning the filter 6 on the upper side of the filter 6.
  • a pipe (cleaning unit) 7 for supplying a liquid for cleaning the filter 6 on the upper side of the filter 6.
  • the cleaning liquid is mainly water, but when collecting viruses and fungi, ethanol, ozone water, etc. are used to inactivate the collected viruses and fungi and disinfect the filter. Substances having a disinfecting effect may be included.
  • the cleaning unit is a pipe, but a configuration in which a plurality of spraying devices are arranged may be employed.
  • a drain (not shown) for receiving the liquid flowing from the filter is installed below the filter 6.
  • a water mist spraying device is provided on the gas upstream side of the collecting unit 1 and a sufficient amount of water mist for washing can be made to fly from the water mist spraying device to the collecting unit 1, the piping 7 may be omitted. good.
  • a plurality of discharge electrodes 10 are accommodated in each dust collection area 2.
  • Each discharge electrode 10 has an attachment shaft 11 and a plurality of discharge spikes 12 protruding from the attachment shaft 11 in a direction substantially perpendicular to the extending direction of the attachment shaft 11.
  • the attachment shaft 11 extends in a direction substantially perpendicular to the gas inflow direction to the dust collection area 2.
  • the discharge thorn 12 extends from the mounting shaft 11 in a direction substantially orthogonal to the ground electrode 5 so that the tip thereof faces the ground electrode 5.
  • the mounting shaft In the dust collection area 2 having an oval cross section shown in FIG. 1A, the mounting shaft extends in the major axis direction of the oval so that the number of discharge thorns 12 facing the ground electrode 5 increases.
  • the discharge thorn 12 extends in the gas inflow direction to the dust collection area 2.
  • the discharge electrodes 10 are arranged in the depth direction of the dust collection area 2 from the inlet 3.
  • the discharge electrode 10 and the ground electrode 5 are connected by a power source (not shown).
  • the mounting shafts 11 of the discharge electrodes 10 constitute a group electrically connected in parallel by a discharge electrode support member 13.
  • the group of discharge electrodes 10 is further connected in parallel by a discharge electrode support member 13.
  • the discharge electrode support 13 is connected to a power source via an insulator 14.
  • the discharge electrode support 13 is taken out of the dust collection area 2 through the opening 15.
  • the discharge electrode support 13 is covered with a pipe 16 and is isolated from the external space.
  • the length of the discharge barb of the discharge electrode 10 located on the inlet part 3 side is longer than the discharge barb of the discharge electrode located on the far side of the dust collection area 2 (the side opposite to the inlet part 3).
  • the length of the discharge thorn 12 is changed step by step from the inlet 3 toward the back side of the dust collection area 2.
  • FIG. 2 is a view for explaining a modification of the collection unit of the present embodiment, and is a front sectional view of the collection unit.
  • the length of the discharge barb 32 protruding from the mounting shaft 31 of the discharge electrode 30 is changed in two steps from the inlet 3 of the dust collection area toward the back side.
  • the configuration of the collection unit 21 of the modification is the same as that of FIGS. 1A to 1C except for the discharge thorn 32.
  • the piping for cleaning is omitted.
  • a dust collection method for removing particulate matter contained in gas using the dust collector of this embodiment will be described. Below, the case where a water mist spraying apparatus is provided is mentioned as an example.
  • the particulate matter contained in the gas varies depending on the device to which the dust collector is connected. For example, when connected to a combustion facility such as a boiler, suspended dust is contained in the gas as particulate matter.
  • a wet type flue gas desulfurization device is installed in the flow path (flue) upstream of the dust collector, an aqueous solution containing an SOx absorbent at the absorption tower inlet of the flue gas desulfurization device and inside the absorption tower Is sprayed.
  • the absorbent is, for example, magnesium hydroxide or sodium hydroxide (caustic soda).
  • the absorbent and SOx react with each other, sulfate is generated, and if it is in a high-temperature gas that does not reach the saturated water concentration, the water is evaporated from the droplets of the aqueous solution and a part of the dissolved salt is precipitated. Accordingly, the gas contains dissolved salt fine particles as particulate matter. Moreover, some of the sprayed droplets flow into the dust collector without being evaporated. SOx (SO 2 , SO 3 ) is taken in the non-evaporated droplet (mist). Hereinafter, the mist that incorporates SOx is referred to as “SOx mist”. In addition, when the dust collector of 1st Embodiment is applied to environmental dust collection, the floating dust containing a virus and fungi is contained as a particulate matter.
  • the water mist spraying device sprays the water mist into the gas before the gas containing the particulate matter flows into the collecting unit 1.
  • the diameter of the sprayed water mist in this embodiment is about 10 ⁇ m to 100 ⁇ m, preferably 30 ⁇ m or less.
  • the liquid sprayed from the water mist spraying device may be an aqueous solution containing a dissolved salt capable of absorbing an acidic gas such as SOx contained in the gas in addition to water.
  • a caustic soda (NaOH) aqueous solution and a magnesium hydroxide (Mg (OH) 2 ) aqueous solution are used.
  • the water mist spraying device can also spray water containing ethanol or ozone water as a liquid having a disinfecting action.
  • fungi and viruses may exist in the air. By spraying a liquid having a disinfecting action, it is possible to reliably inactivate the downstream collecting unit 1.
  • a power source applies a voltage to the discharge electrode 10.
  • a voltage difference is generated between the discharge electrode 10 and the ground electrode 5, and a corona discharge is generated between the discharge barb 12 of the discharge electrode 10 and the ground electrode 5.
  • the gas containing particulate matter flows into the dust collection area 2 of the collection unit 1.
  • the gas passes through the opening of the ground electrode 5 and the filter 6 and flows into the clean gas passage 17.
  • the gas that has passed through the filter 6 is discharged to the outside of the dust collector through the clean gas passage 17. While the gas is flowing through the dust collection area 2, the particulate matter is charged by corona discharge.
  • the particulate matter contained in the gas has various particle sizes.
  • particulate matter that is about the same as or larger than the pore diameter of the filter 6 described above cannot be passed through the pores and is collected by the filter 6.
  • fine particulate matter of, for example, a submicron size is smaller than the pore diameter of the filter 6 and therefore passes through the filter 6 unless charged. Therefore, by charging the particulate matter with the discharge electrode 10 in the dust collection area 2, when the gas passes through the filter 6, the fine particulate matter is collected on the surface of the filter 6 and removed from the gas.
  • ion wind is generated from the tip of the discharge thorn 12 toward the ground electrode 5 by corona discharge.
  • the gas passing through the filter 6 has a flow velocity of about 0.5 to 1 m / s, but the ion wind is about 2.5 m / s.
  • FIG. 3 shows the result of simulating the flow rate of the gas passing through the filter 6 when the gas is allowed to flow into the dust collection area 2 without discharging.
  • the horizontal axis represents the length ratio of the filter 6 (based on the length of the dust collection area 2 in the depth direction from the inlet 3), and the vertical axis represents the flow rate ratio of the gas passing through the filter 6 (gas passing through the filter 6).
  • the average flow rate of The profile of FIG. 3 shows the results when the resistance coefficient (ie, pressure loss) of the filter 6 is changed between 30 and 160 mmAq.
  • the filter 6 Since the gas becomes a contracted flow at the inlet 3, the amount of gas passing through the filter 6 is small, and the passage flow velocity is greatly reduced as compared with other positions.
  • the flow velocity of the gas passing through the filter 6 increases as it goes to the back side of the dust collection area 2.
  • the difference in the passage flow velocity between the inlet 3 side and the back side increases as the filter 6 has a low pressure loss as in this embodiment.
  • the flow velocity of the ion wind is proportional to the square root of the corona current.
  • V voltage applied between the discharge electrode 10 and the earth electrode 5
  • E electric field strength
  • l the distance between the tip of the discharge thorn 12 and the ground electrode 5. From equation (1), the longer the discharge thorn 12, the greater the electric field strength. For this reason, the corona current increases and the ion wind speed increases.
  • the gas flowing into the dust collection area 2 has a flow velocity of about 0.5 to 1 m / s, but the ion wind is about 2.5 m / s.
  • the influence of the ion wind is superimposed on the gas flow caused by the shape of the dust collection area 2 as shown in FIG.
  • the flow velocity of the gas passing through the filter 6 can be made substantially uniform in the depth direction of the dust collection area 2. Specifically, the discharge spike is lengthened in the region where the gas flows slowly without discharging, and the discharge spike is shortened in the region where the gas flows early.
  • an inflection point (filter length ratio is about 0.1) appears in the vicinity of the inlet 3 in the flow velocity ratio.
  • the discharge electrode 30 in FIG. 2 sets the length of the discharge thorn 72 in two stages with the position corresponding to the inflection point of the passage flow velocity of the filter as a boundary.
  • the length of the discharge thorn is set according to the formula (1) or the like in consideration of the size of the ion wind necessary for making the flow velocity of the gas passing through the filter substantially uniform. However, it is not preferable that the tips of the discharge spikes 12 and 32 are too close to the ground electrode 5 because a problem such as generation of a spark occurs.
  • L 1 the width of the dust collecting area 2 arrangement direction, the distance between adjacent dust-collecting area When L 2, L 1 ⁇ L 2
  • L 1 needs to be about 100 mm in order to secure a space necessary for collecting dust and a space for accommodating the discharge electrode to obtain sufficient dust collection efficiency, and about 200 mm in the case of a large dust collector.
  • L 1 is difficult to change due to the device design. Therefore, the smaller the L 2, can be made compact device.
  • the dust collection area can be expanded, improving the dust collection efficiency. For example, if L 2 is 1 ⁇ 2 of L 1 with the same device volume, it will lead to the installation of a 4 / 3-fold filter.
  • L 2 with respect to L 1 is preferably 1 ⁇ 2 or more and less than 1.
  • the SOx mist contained in the gas is removed from the gas by adhering to the filter 6 when the gas passes through the filter 6 or by being collected by water mist.
  • the water mist that has collected the SOx mist is collected by the filter 6 when the gas passes through the filter 6.
  • the spray amount and spray time of the water mist are preferably set as appropriate so that the SOx mist can be collected efficiently.
  • the water mist spraying need not be performed continuously, and the water mist spraying and stopping may be repeated every predetermined time.
  • the water mist spray amount and the spray amount may be controlled by monitoring the water mist and SOx mist amount in the exhaust gas flowing into the filter 6.
  • spraying of water mist is not essential in this embodiment. Even when the water mist is not sprayed, the SOx mist can be sufficiently removed by being collected by the filter 6.
  • the mists aggregate to form large droplets.
  • the droplet becomes large to some extent, the droplet flows down to the lower part of the filter 6 due to gravity while capturing the particulate matter. In this way, the filter 6 is cleaned by spraying water mist.
  • the dropped liquid droplets are discharged out of the dust collector through the drain. In this process, particulate matter and SOx collected by the filter 6 are also discharged.
  • water mist is sprayed, the water mist adheres to the surface of the discharge electrode 10.
  • the discharge electrode 10 is also cleaned by spraying water mist.
  • the filter 6 is washed after a predetermined time has elapsed or when the dust collection efficiency of the filter 6 has decreased.
  • cleaning of all the dust collection areas 2 may be performed, or cleaning may be performed for each predetermined number of dust collection areas 2.
  • the corona discharge from the discharge thorn 12 may be stopped.
  • a cleaning liquid is directly supplied from the pipe 7 to the filter 6. It is removed from the filter 6 and discharged from the drain.
  • the filter 6 is periodically cleaned.
  • the liquid supply method at the time of washing may be continuous or intermittent.
  • the gas flow rate to the dust collection area 2 corresponding to the filter 6 to be cleaned is reduced or the gas flow is interrupted. Further, corona discharge in the dust collection area 2 corresponding to the filter 6 to be cleaned is stopped.
  • the gas flow rate is changed and shut off by installing a flow rate control mechanism such as a damper at the inlet 3.
  • a cleaning liquid is supplied from the pipe 7 to form a liquid film on the surface of the filter 6, and the filter 6 is cleaned while blocking the gas flow.
  • FIG. 4A is a diagram illustrating a modification of the collection unit of the present embodiment, and is a front cross-sectional view of the collection unit 41.
  • the precharge part 42 is installed in the entrance part 3 outer side of the dust collection area 2.
  • FIG. The precharge portion 42 is surrounded by an enclosure 43 that protrudes from the end of the ground electrode 5 on the inlet portion 3 side toward the outside of the dust collection area 2.
  • the enclosure 43 is the one in which the ground electrode 5 protrudes from the dust collection area 2 toward the gas upstream side (toward the outside of the dust collection area 2). Therefore, the enclosure 43 is a conductive member having an opening through which gas can flow, like the ground electrode 5.
  • the precharge part 42 has an opening on the side opposite to the inlet part 3, and gas can flow into the dust collection area 2 through the precharge part 42.
  • the opening on the gas upstream side of the precharge portion 42 has the same shape as the inlet portion 3 of the dust collection area 2.
  • the enclosure 43 may be formed of a conductive plate (that is, a plate that does not have an opening through which gas can flow).
  • the discharge electrode 50 has a discharge thorn 52.
  • a corona discharge occurs between the discharge thorn 12 and the ground electrode 5 in the dust collection area 2, and between the discharge thorn 52 and the enclosure 43 in the precharge portion 42. Corona discharge occurs.
  • FIG. 4A the charging time of the particulate matter is increased by the amount of the precharge portion 42. As a result, the particulate matter can be charged before the particulate matter reaches the filter 6.
  • the precharge part 42 is not installed, there is a possibility that the particulate matter is insufficiently charged in the vicinity of the inlet part 3.
  • the precharge unit 42 has a function of performing preliminary charging before the gas flows into the dust collection area 2 in order to compensate for the shortage of the charged amount of the particulate matter in the vicinity of the inlet 3.
  • FIG. 4B is a diagram illustrating a modification of the collection unit of the present embodiment, and is a front sectional view of the collection unit 44.
  • 4B is provided with a precharge portion 45 having a shape different from that in FIG. 4A.
  • the enclosure 46 of the precharge unit 45 is integrated with the enclosure of the precharge unit of the adjacent dust collection area 2.
  • the enclosure 46 is curved so that the opening on the gas upstream side of the precharge portion 45 is wider than the inlet portion 3 of the dust collection area 2. By setting it as such a shape, a rectification effect can be improved.
  • FIG. 5 is a simulation result of the charge amount when submicron particles are charged in the precharge portion.
  • the horizontal axis represents the residence time of the particulate matter in the precharge section
  • the vertical axis represents the charge amount at the dust collection area inlet section 3.
  • FIG. 5 shows the results when the concentration of particulate matter in the gas is 130 mg / m 3 N.
  • the charge amount tends to increase until the residence time is 10 msec, regardless of the size of the particles. However, if it exceeds 10 msec, the charge amount is saturated even if the residence time is extended, and therefore it can be said that an increase in charge amount that can contribute to performance improvement cannot be expected.
  • the residence time in the precharge section is preferably 5 to 10 msec.
  • the concentration of the particulate matter in the gas is lower than the condition of FIG. 5 (130 mg / m 3 N), since the charged current easily flows, the particulate matter is easily charged. For this reason, the charge amount tends to increase as the residence time becomes longer, but an inflection point of the charge amount appears around the residence time of 10 msec.
  • the concentration of the particulate matter in the gas is higher than the condition of FIG. 5, it becomes difficult for the charging current to flow between the discharge electrode 10 and the ground electrode 5 due to the effect of the space charge effect, and in a shorter time.
  • the charge amount is saturated (in a time shorter than 10 msec).
  • the precharge unit compensates for the charge of the particulate matter in the gas passing through the filter 6 in the vicinity of the inlet 3, but if the particulate matter is charged to some extent, the filter 6 in the vicinity of the inlet 3 is fine. Efficient particulate matter can be collected efficiently. Therefore, when the density is lower than the above-described condition of FIG. 5, even if a charging time longer than the inflection point of the charge amount is secured, it does not contribute to a significant improvement in dust collection performance. Similarly, even when the concentration is higher than the condition of FIG. 5, even if a residence time exceeding 10 msec is secured, it does not contribute to performance improvement. From this, regardless of the concentration of the particulate matter in the gas, if a residence time of 5 to 10 msec is secured in the precharge portion, a predetermined performance can be obtained.
  • the length of the precharge section enclosure in the gas flow direction may be designed in consideration of the residence time and gas flow rate described above.
  • FIG. 6 is a schematic diagram illustrating the collection unit of the dust collector according to the second embodiment, and is a front cross-sectional view of the collection unit 61.
  • a perspective view and a side sectional view of the collection part 61 are substantially the same as those in FIGS. 1A and 1C.
  • the filter 66 is thicker on the inner side in the gas inflow direction of the dust collection area 62 than on the inlet 63 side. Further, the discharge barbs 72 of the discharge electrode 70 have substantially the same length. Other configurations are the same as those in the first embodiment.
  • a dust collection method for removing particulate matter contained in gas using the collection unit of the second embodiment will be described.
  • a power source (not shown) applies a voltage to the discharge electrode 70. Thereby, a corona discharge is generated between the discharge barb 72 of the discharge electrode 70 and the ground electrode 65. In addition, a voltage difference is generated between the discharge electrode 70 and the ground electrode 65.
  • Gas containing particulate matter flows into the dust collection area 62 of the collection unit 61. Particulate matter is charged by corona discharge. The gas passes from the dust collection area 62 through the filter 66 and flows into the clean gas passage 17 and is discharged to the outside of the dust collector. In this process, the charged particulate matter is collected by the filter 66 as in the first embodiment.
  • ion wind is generated by corona discharge to accelerate the gas flow rate.
  • the length of the discharge thorn 72 of the discharge electrode 70 is substantially the same, the size of the ion wind is substantially the same within the dust collection area 62.
  • the flow rate of gas passing through the filter 66 is made uniform by changing the thickness of the filter 66. That is, as shown in FIG. 3, the gas flow rate increases as it goes in the depth direction when viewed from the inlet 63 of the dust collection area 62.
  • the filter 66 is thickened, the flow rate of the gas passing through the filter 66 is reduced due to pressure loss. As a result, the flow velocity of the gas passing through the filter 66 can be made substantially uniform in the depth direction of the dust collection area 62.
  • the thickness of the filter 66 and the number of steps for changing the thickness are not particularly limited. As shown in FIG. 3, the thickness of the filter 66 and the number of stages for changing the thickness are set in consideration of the flow velocity profile when the filter having a uniform thickness is provided, the gas flow velocity necessary for collection, and the like. The For example, the thickness of the filter 66 is set in two stages with the position corresponding to the inflection point of the passage flow rate ratio found in the vicinity of the inlet portion 63 in the profile of FIG.
  • a dust collector according to a third embodiment will be described with reference to the drawings.
  • the dust collector according to the third embodiment can be used for an exhaust gas treatment facility, an air purification facility filter, and the like.
  • the dust collector of this embodiment may also be provided with a water mist spraying device as necessary.
  • FIG. 7A is a perspective view of the collection unit 81 of the dust collector of the third embodiment
  • FIG. 7B is a cross-sectional view of the collection unit 81 viewed from the upper surface side
  • FIG. 7C is a side view of the collection unit 81. It is sectional drawing.
  • the same components as those in FIGS. 1A to 1C are denoted by the same reference numerals.
  • the gas flows into the collecting unit 81 from a substantially horizontal direction.
  • a precharge unit 82 is provided in the collection unit 81 shown in FIGS. 7A to 7C.
  • the precharge unit 82 is the same as that described in the first embodiment.
  • one pipe 83 is installed as a cleaning unit above the filter 6, and a cover 84 is installed between the filter 6 and the pipe 83.
  • the cover 84 is not particularly limited as long as the cleaning liquid can be supplied substantially uniformly to the filters 6 on both sides of the pipe 83.
  • the cover 84 is a plate material having an arc-shaped cross section.
  • the piping is illustrated as the cleaning unit, but a configuration in which a plurality of spraying devices are arranged may be employed.
  • a drain 85 that receives liquid flowing from the filter is installed below the filter 6.
  • the drain 85 is connected to a seal pot 86 outside the dust collector through a drain pipe.
  • the seal pot 86 and the pipe 83 are connected through a pump (not shown).
  • the particulate matter is charged and collected as in the first embodiment. 7A to 7C, the liquid droplets that have flowed down from the filter 6 during operation are stored in the seal pot 86 through the drain 85.
  • FIG. 7A to 7C show an example in which the length of the discharge thorn 12 of the discharge electrode 10 is changed step by step in the depth direction of the dust collection area 2 one by one.
  • the present embodiment is not limited to this, but the configuration in which the length of the discharge thorn is changed stepwise as shown in FIG. 2 or the thickness of the filter without changing the length of the discharge thorn as shown in FIG. It is possible to adopt a configuration in which is changed.
  • a dust collector according to a fourth embodiment will be described with reference to the drawings.
  • the dust collector according to the fourth embodiment can be used for an exhaust gas treatment facility, an air purification facility filter, and the like.
  • the dust collector of 4th Embodiment may also be provided with the water mist spraying apparatus as needed.
  • FIG. 8A is a perspective view of the collection unit 91 of the dust collector of the fourth embodiment
  • FIG. 8B is a cross-sectional view of the collection unit 91 viewed from the upper surface side
  • FIG. 8C is a side view of the collection unit 91. It is sectional drawing.
  • the gas flows into the collection unit 91 from a substantially horizontal direction.
  • 8A to 8C the same components as those in FIGS. 7A to 7C are denoted by the same reference numerals.
  • the collection part 91 of the dust collector of the fourth embodiment is also provided with a ground electrode 95 and a filter 96 on the side opposite to the inlet part 93 of the dust collection area 92.
  • the ground electrode 95 and the filter 96 on the side facing the inlet 3 have a curved shape.
  • the filter 96 on the side opposite to the inlet 3 has a higher pressure loss than the filter 66 in the other part.
  • the filter 96 is thicker than other parts of the filter.
  • the length of the discharge barb 102 of the discharge electrode 100 is changed step by step in the depth direction of the dust collection area 2 as described in the first embodiment.
  • the discharge electrode 100 includes a discharge bar 102 a that protrudes from the tip of the mounting shaft 101 toward the ground electrode 95.
  • FIG. 8A two pipes 97 for cleaning the filter 96 are arranged in the upper part of the filter 96 along the depth direction of the dust collection area 2.
  • the arrangement and shape of the pipe 97 are not limited to those shown in FIG. 8A.
  • the pipe 97 can be replaced with a configuration in which spraying devices such as sprays are arranged.
  • the upper side of the filter 96 is shown as being open. Since it is actually necessary to pass the gas through the filter 96, a wall through which no gas can flow is installed above the filter 96.
  • the particulate matter is charged and collected as in the first embodiment.
  • corona discharge also occurs between the ground electrode 95 located on the side opposite to the inlet 3 and the discharge thorn 102a. If the ground electrode 95 has a curved shape as shown in FIG. 8A, it is possible to design a constant distance from the discharge thorn 102a, and stable corona discharge can be generated.
  • the thickness of the filter is uniform in the configuration of the present embodiment, the amount of gas permeation through the filter 96 facing the dust collection area 2 increases. Therefore, if the pressure loss of the filter 96 facing the dust collection area 2 is increased as in the present embodiment, the gas flow rate in the filter 96 is reduced. As a result, the gas passage amount can be made substantially uniform throughout the filter.
  • FIG. 8A to 8C show an example in which the length of the discharge thorn 102 is changed step by step in the depth direction of the dust collection area 2.
  • the present embodiment is not limited to this, and it is possible to adopt a configuration in which the length of the discharge thorn is changed stepwise as shown in FIG. Moreover, the structure by which the thickness of the filter is changed like FIG. 6 is employable. In this case, for example, for the filter 6 parallel to the gas inflow direction, the filter 6 is made thicker as it goes in the depth direction of the dust collection area 2, and the filter 96 is installed thicker than the innermost filter 6.

Landscapes

  • Electrostatic Separation (AREA)

Abstract

Provided are: a dust collection device that has high dust collection efficiency and is capable of being made more compact; and a dust collection method using this dust collection device. A collection unit (1) in the dust collection device has: a dust collection area (2); a plurality of discharge electrodes (10) arranged in the depth direction from an inlet (3) in the dust collection area (2); an earth electrode (5) having an opening through which gas can flow and facing the tips of discharge needles (12) in the discharge electrodes (10); a filter (6) arranged on the outside of the earth electrode (5); and a purified-gas passage (17) positioned on the downstream gas side of the dust collection area (2), via the earth electrode (5) and the filter (6). In the collection unit (1), the flow rate of the gas that passes through the filter (6) is made substantially uniform as a result of making the length of the discharge needles (12) longer on the inlet (3) side than on the depth side of the dust collection area (2) or making the filter (6) on the depth side thicker than on the inlet (3) side of the dust collection area (2).

Description

集塵装置及び集塵方法Dust collector and dust collection method
 本発明は、粒子状物質をガス中から除去する集塵装置及び集塵方法に関する。 The present invention relates to a dust collector and a dust collection method for removing particulate matter from gas.
 石炭焚きや重油焚きの発電プラントや焼却炉等の産業用燃焼設備では、燃焼によってダスト(例えば粒子状物質)やSOxを含む排ガスが生成される。これらのダストやSOxを除去してから排ガスを大気に排出するため、燃焼設備の下流側の煙道に排ガス処理設備が設置される。 In an industrial combustion facility such as a coal-fired or heavy oil-fired power plant or an incinerator, exhaust gas containing dust (for example, particulate matter) and SOx is generated by combustion. In order to exhaust the exhaust gas to the atmosphere after removing these dusts and SOx, an exhaust gas treatment facility is installed in the flue downstream of the combustion facility.
 排ガス処理設備には、脱硫装置や集塵装置などが設けられる。湿式法による脱硫装置では、例えば水酸化マグネシウム(Mg(OH))等のアルカリを吸収剤として使用し、吸収剤を含んだ液を排ガスに向けて噴霧接触させる。SOxが液に取り囲まれ、吸収剤と反応することによって、排ガスからSOxが除去される。 The exhaust gas treatment facility is provided with a desulfurizer, a dust collector, and the like. In a desulfurization apparatus using a wet method, for example, alkali such as magnesium hydroxide (Mg (OH) 2 ) is used as an absorbent, and a liquid containing the absorbent is sprayed toward exhaust gas. SOx is surrounded by the liquid and reacts with the absorbent to remove SOx from the exhaust gas.
 集塵装置は、粒子状物質やミストを除去するため、粒子状物質を帯電させる放電電極と、放電電極に対向して配置されるアース電極などを備える。放電電極でコロナ放電が生じることによって、排ガス中に含まれる粒子状物質は、帯電する。そして、帯電した粒子状物質は、アース電極に捕集される。 The dust collector includes a discharge electrode for charging the particulate matter and a ground electrode disposed opposite to the discharge electrode in order to remove the particulate matter and mist. When the corona discharge is generated at the discharge electrode, the particulate matter contained in the exhaust gas is charged. The charged particulate matter is collected by the ground electrode.
 特許文献1には、ケーシング内をガスが流通する間に粒子状物質を確実に捕集するため、イオン風によってケーシング中のガス流れを横切る方向へ粒子状物質を加速させ、導電性メッシュを重ねたアース電極を通過させることにより粒子状物質を捕集する技術が開示されている。 In Patent Document 1, in order to reliably collect particulate matter while gas flows in the casing, the particulate matter is accelerated in a direction crossing the gas flow in the casing by ion wind, and the conductive mesh is overlapped. A technique for collecting particulate matter by passing through a ground electrode is disclosed.
 特許文献2には、ダスト及びSOxが取り込まれたミスト(SOxミスト)を除去する湿式静電フィルタを備える集塵装置において、アース極が放電電極の周囲に離間して配置され、放電極とアース極との間にダストを捕集するフィルタ層が設けられることが開示されている。 In Patent Document 2, in a dust collector equipped with a wet electrostatic filter that removes mist (SOx mist) in which dust and SOx have been taken in, a ground electrode is disposed around the discharge electrode, and the discharge electrode and the ground are disposed. It is disclosed that a filter layer for collecting dust is provided between the electrodes.
特開2007-117968号公報JP 2007-117968 A 特開2013-123692号公報JP 2013-123692 A
 特許文献1に記載される方式では、主たるガスの流れがイオン風により発生する流れ(主たるガスの流れを横切る方向の流れ)よりも早い場合、主たるガスが装置内を通過する時間内にアース電極に到達することができない粒子状物質存在する。このため、粒子状物質の除去効率が悪いことが問題となっていた。特許文献1の方式で除去効率を向上させるためには、装置内のガス流通路を長くする必要があり、集塵装置自体が大型化してしまう。 In the method described in Patent Document 1, when the main gas flow is faster than the flow generated by the ionic wind (the flow in the direction crossing the main gas flow), the ground electrode is within the time that the main gas passes through the apparatus. There are particulate matter that can not reach. For this reason, it has been a problem that the removal efficiency of the particulate matter is poor. In order to improve the removal efficiency by the method of Patent Document 1, it is necessary to lengthen the gas flow path in the apparatus, and the dust collecting apparatus itself becomes large.
 特許文献2に記載されるようにフィルタを用いた集塵装置では、低動力で集塵装置を運転するために低圧損のフィルタ(初期圧損で10~30mmAQ程度)が採用される。特許文献2の装置では湿式静電フィルタの奥行方向に十分なフィルタ長さを確保してフィルタ内でのガス流通速度を減速させている。しかしながら、捕集部の入口付近ではガスが縮流となる上、フィルタの圧力損失が低いために流入速度が他の部位に比べて大きく低下する。一方で、動圧の影響によりフィルタの奥側に行くに従い捕集部の流速は漸次早くなる傾向がある。すなわち、湿式静電フィルタ内でガス流速に分布が生じてしまい、フィルタ全体の集塵効率が低くなることが問題となっていた。 In a dust collector using a filter as described in Patent Document 2, a low-pressure loss filter (about 10 to 30 mmAQ at an initial pressure loss) is employed to operate the dust collector with low power. In the apparatus of Patent Document 2, a sufficient filter length is ensured in the depth direction of the wet electrostatic filter to reduce the gas flow rate in the filter. However, in the vicinity of the inlet of the collection part, the gas is contracted and the pressure loss of the filter is low, so that the inflow speed is greatly reduced compared to other parts. On the other hand, the flow velocity of the collecting portion tends to gradually increase as it goes to the back side of the filter due to the influence of dynamic pressure. That is, there is a problem that the gas flow velocity is distributed in the wet electrostatic filter and the dust collection efficiency of the entire filter is lowered.
 本発明は上記課題に鑑みなされたものであって、集塵効率を向上させることができ、更に装置のコンパクト化が可能である集塵装置、及びその集塵装置を用いた集塵方法を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a dust collector capable of improving dust collection efficiency and further reducing the size of the device, and a dust collection method using the dust collector. The purpose is to do.
 本発明の第1の態様は、ガスが導入される入口部を有する集塵エリアと、前記集塵エリア内に設置され、取付軸と、該取付軸から突出する複数のトゲ状の放電トゲとを有する複数の放電電極と、前記ガスが流通可能である開口を有し、前記放電トゲの延在方向に略直交し、前記放電トゲの先端が対向する前記集塵エリアの壁面を構成するアース電極と、前記アース電極の外側に設置され、前記集塵エリア内の前記ガスが透過するフィルタと、前記アース電極及び前記フィルタを介して前記集塵エリアのガス下流側に位置する清浄ガス通路と、前記放電電極に電圧を印加する電源とを備え、前記放電電極の各々の前記取付軸は、前記ガスが前記集塵エリアに流入する方向と略直交する方向に延在し、複数の前記放電電極は、前記集塵エリアの前記入口部から奥行方向に配列され、前記集塵エリアの前記入口部に位置する前記放電電極の前記放電トゲの長さは、前記集塵エリアの奥側に位置する前記放電電極の前記放電トゲの長さよりも長く、前記放電トゲと前記アース電極との間でコロナ放電を発生させる集塵装置である。 According to a first aspect of the present invention, there is provided a dust collection area having an inlet portion into which a gas is introduced, a mounting shaft installed in the dust collection area, and a plurality of thorn-shaped discharge spikes protruding from the mounting shaft. A plurality of discharge electrodes, and an opening through which the gas can flow, an earth that is substantially perpendicular to the direction in which the discharge spike extends, and that constitutes the wall surface of the dust collection area facing the tip of the discharge spike An electrode, a filter installed outside the ground electrode, through which the gas in the dust collection area passes, and a clean gas passage located on the gas downstream side of the dust collection area through the ground electrode and the filter; A power source for applying a voltage to the discharge electrode, and the mounting shaft of each of the discharge electrodes extends in a direction substantially perpendicular to a direction in which the gas flows into the dust collection area, and a plurality of the discharge electrodes The electrode is in the dust collection area. The length of the discharge barb of the discharge electrode arranged in the depth direction from the entry port and located at the inlet part of the dust collection area is equal to the length of the discharge barb of the discharge electrode located at the back side of the dust collection area. A dust collector that generates a corona discharge between the discharge barb and the ground electrode.
 第1の態様において、前記放電トゲの長さは、前記集塵エリアの前記入口部から奥行方向に向かって段階的に変えられていることが好ましい。 1st aspect WHEREIN: It is preferable that the length of the said discharge thorn is changed in steps toward the depth direction from the said entrance part of the said dust collection area.
 放電が無い場合、集塵エリア入口で縮流の影響があり、圧力損失が低い条件では、フィルタを通過するガスの流速は入口部より奥側に比べると大幅に低いと言う、ガス流速分布が生じる。本発明の集塵装置では、放電電極の放電トゲとアース電極との間にコロナ放電を発生させることにより、イオン風を発生させている。第1の態様ではこのイオン風を利用し、上記ガス流速にイオン風を重畳させて、ガス流速を増大させる。イオン風の強さは放電トゲとアース電極との距離が近い程強い。このことから、ガス流速が低い入口部側の放電トゲを長くすることによって、放電が無い場合のガス流速分布と逆のイオン風の流速分布を発生させる。
 また、集塵エリア内のコロナ放電により、集塵エリアに流入するガスに含まれる未帯電の粒子状物質を帯電させることができる。
 この結果、第1の態様の集塵装置ではフィルタを通過するガス流速を略均一化させることができ、ガス中に含まれる粒子状物質の捕集効率(集塵効率)を増大させることができる。
When there is no discharge, there is an effect of contraction at the inlet of the dust collection area, and under conditions where the pressure loss is low, the gas flow rate distribution is said to be significantly lower than the inlet side, compared with the gas flow rate distribution. Arise. In the dust collector of the present invention, an ion wind is generated by generating a corona discharge between the discharge thorn of the discharge electrode and the ground electrode. In the first aspect, this ion wind is used, and the ion flow is superimposed on the gas flow rate to increase the gas flow rate. The strength of the ion wind is stronger as the distance between the discharge splinter and the ground electrode is closer. For this reason, by increasing the discharge spike on the inlet side where the gas flow rate is low, a flow rate distribution of the ion wind opposite to the gas flow rate distribution when there is no discharge is generated.
Moreover, the uncharged particulate matter contained in the gas flowing into the dust collection area can be charged by corona discharge in the dust collection area.
As a result, in the dust collector of the first aspect, the gas flow rate passing through the filter can be made substantially uniform, and the collection efficiency (dust collection efficiency) of the particulate matter contained in the gas can be increased. .
 本発明の第2の態様は、ガスが導入される入口部を有する集塵エリアと、前記集塵エリア内に設置され、取付軸と、該取付軸から突出する複数のトゲ状の放電トゲとを有する複数の放電電極と、前記ガスが流通可能である開口を有し、前記放電トゲの延在方向に略直交し、前記放電トゲの先端が対向する前記集塵エリアの壁面を構成するアース電極と、前記アース電極の外側に設置され、前記集塵エリア内の前記ガスが透過するフィルタと、前記アース電極及び前記フィルタを介して前記集塵エリアのガス下流側に位置する清浄ガス通路と、前記放電電極に電圧を印加する電源とを備え、前記放電電極の各々の前記取付軸は、前記ガスが前記集塵エリアに流入する方向と略直交する方向に延在し、複数の前記放電電極は、前記集塵エリアの前記入口部から奥行方向に配列され、前記集塵エリアの奥側に位置する前記フィルタは、前記集塵エリアの前記入口部に位置する前記フィルタよりも厚く、前記放電トゲと前記アース電極との間でコロナ放電を発生させる集塵装置である。 According to a second aspect of the present invention, there is provided a dust collection area having an inlet portion into which gas is introduced, a mounting shaft installed in the dust collection area, and a plurality of thorn-shaped discharge spikes protruding from the mounting shaft. A plurality of discharge electrodes, and an opening through which the gas can flow, an earth that is substantially perpendicular to the direction in which the discharge spike extends, and that constitutes the wall surface of the dust collection area facing the tip of the discharge spike An electrode, a filter installed outside the ground electrode, through which the gas in the dust collection area passes, and a clean gas passage located on the gas downstream side of the dust collection area through the ground electrode and the filter; A power source for applying a voltage to the discharge electrode, and the mounting shaft of each of the discharge electrodes extends in a direction substantially perpendicular to a direction in which the gas flows into the dust collection area, and a plurality of the discharge electrodes The electrode is in the dust collection area. The filter arranged in the depth direction from the entry port and located on the back side of the dust collection area is thicker than the filter located on the entrance of the dust collection area, and the discharge thorn and the ground electrode It is a dust collector that generates corona discharge.
 上述のようにフィルタを通過するガスの流速は入口部より奥側に比べると大幅に低いと言う、ガス流速分布が生じる。第2の態様では、集塵エリア奥側に位置するフィルタを入口部側に位置するフィルタよりも厚くすることによって、奥側のフィルタの圧力損失を高めてガス流速を低減させている。
 また、第2の態様でも集塵エリア内のコロナ放電により、フィルタを透過するガスを加速させるとともに、集塵エリアに流入するガスに含まれる未帯電の粒子状物質を帯電させることができる。
 この結果、第2の態様の集塵装置ではフィルタを通過するガス流速を略均一化させることができ、ガス中に含まれる粒子状物質の捕集効率を増大させることができる。
As described above, a gas flow velocity distribution is generated in which the flow velocity of the gas passing through the filter is significantly lower than that at the back of the inlet portion. In the second aspect, the filter located on the far side of the dust collection area is made thicker than the filter located on the entrance side, thereby increasing the pressure loss of the far side filter and reducing the gas flow rate.
In the second aspect, the gas passing through the filter can be accelerated and the uncharged particulate matter contained in the gas flowing into the dust collection area can be charged by corona discharge in the dust collection area.
As a result, in the dust collector of the second aspect, the gas flow rate passing through the filter can be made substantially uniform, and the collection efficiency of the particulate matter contained in the gas can be increased.
 第1及び第2の態様において、前記入口部側の前記アース電極の端部から前記集塵エリアの外側方向に向かって突出する導電性の囲いで囲まれ、前記入口部側と反対側が開口して前記ガスが内側に流入可能であり、前記放電電極の前記放電トゲが前記囲いに対向して設けられるプレチャージ部を有することが好ましい。
 粒子状物質が集塵エリアに流入する前に、プレチャージ部が予め粒子状物質を帯電させる。プレチャージ部を設置すると、集塵エリアのみの場合よりも粒子状物質の帯電時間が長くなり、未帯電の状態でフィルタに到達する粒子状物質が低減する。この結果、集塵効率が増大する。
In the first and second aspects, the conductive material is surrounded by a conductive enclosure protruding from the end of the earth electrode on the inlet side toward the outside of the dust collection area, and the side opposite to the inlet side is open. Preferably, the gas can flow inward, and the discharge electrode of the discharge electrode has a precharge portion provided to face the enclosure.
Before the particulate matter flows into the dust collection area, the precharge unit charges the particulate matter in advance. When the precharge unit is installed, the charging time of the particulate matter becomes longer than in the case of only the dust collection area, and the particulate matter that reaches the filter in an uncharged state is reduced. As a result, dust collection efficiency increases.
 第1及び第2の態様において、前記集塵エリアが前記ガスの流入方向と略直交する方向に複数配列され、隣接する前記集塵エリアの間に前記清浄ガス通路が配置され、前記集塵エリアが配列する方向の前記清浄ガス通路の幅が、前記集塵エリアが配列する方向の前記集塵エリア内の幅以下であることが好ましい。 In the first and second aspects, a plurality of the dust collection areas are arranged in a direction substantially orthogonal to the gas inflow direction, the clean gas passage is disposed between the adjacent dust collection areas, and the dust collection area It is preferable that the width of the clean gas passage in the direction in which the dust collection is arranged is equal to or less than the width in the dust collection area in the direction in which the dust collection area is arranged.
 複数の集塵エリアを設けると集塵効率を向上させることができるため好ましい。一方で、集塵装置の大型化の懸念がある。複数の集塵エリアを設ける場合には、集塵エリア内の幅と清浄ガス通路の幅とを上記関係とすれば、高い集塵効率を有しつつ、装置のコンパクト化を達成することができる。 It is preferable to provide a plurality of dust collection areas because dust collection efficiency can be improved. On the other hand, there is a concern about increasing the size of the dust collector. In the case of providing a plurality of dust collection areas, if the width in the dust collection area and the width of the clean gas passage are set as described above, the apparatus can be made compact while having high dust collection efficiency. .
 第1及び第2の態様において、前記フィルタの上側に、前記フィルタを洗浄するための液体を供給する洗浄部が設置されることが好ましい。 1st and 2nd aspect WHEREIN: It is preferable that the washing | cleaning part which supplies the liquid for wash | cleaning the said filter is installed above the said filter.
 このような構成とすることにより、フィルタを適宜洗浄することができるため、フィルタでの粒子状物質の捕集効率の低下を抑制することができる。 By adopting such a configuration, the filter can be washed as appropriate, so that a reduction in the collection efficiency of the particulate matter by the filter can be suppressed.
 本発明の第3の態様は、第1の態様または第2の態様の集塵装置を用いて、粒子状物質及び水ミストを含むガスから粒子状物質を捕集する集塵方法であって、前記電源が前記放電電極に電圧を印加して、前記放電電極から前記アース電極に向かうイオン風を発生させるとともに、前記集塵エリア内で前記ガス中に含まれる前記粒子状物質を帯電させる工程と、前記ガスを前記フィルタに通過させて、前記帯電した粒子状物質を前記フィルタで捕集する工程とを含む集塵方法である。 A third aspect of the present invention is a dust collection method for collecting particulate matter from a gas containing particulate matter and water mist using the dust collector of the first aspect or the second aspect, The step of applying a voltage to the discharge electrode by the power source to generate an ion wind from the discharge electrode to the ground electrode, and charging the particulate matter contained in the gas in the dust collection area; And collecting the charged particulate matter with the filter by passing the gas through the filter.
 本発明で処理対象とするガスには、種々の大きさの粒子状物質が含まれる。フィルタの孔より大きい粒子状物質は、ガスがフィルタを通過する際にフィルタに捕集される。一方、フィルタの孔以下の粒径を有する粒子状物質は、主として集塵エリア内で帯電させることにより、フィルタで捕集することが可能となる。
 第1の態様または第2の態様の集塵装置を利用すれば、フィルタを通過するガス流速を略均一化させることができる。この結果、ガス中に含まれる粒子状物質の捕集効率が増大する。
The gas to be treated in the present invention includes particulate substances of various sizes. Particulate matter larger than the pores of the filter is collected by the filter as the gas passes through the filter. On the other hand, particulate matter having a particle size equal to or smaller than the pores of the filter can be collected by the filter by being mainly charged in the dust collection area.
If the dust collector of the 1st aspect or the 2nd aspect is utilized, the gas flow rate which passes a filter can be made substantially uniform. As a result, the collection efficiency of the particulate matter contained in the gas increases.
 本発明に依れば、集塵エリア内でのガス流速分布を均一化させることができるため、1つの集塵エリアでの捕集効率を向上させることができる。この結果、装置容積を小さくすることができ、コンパクト化を図ることが可能となる。 According to the present invention, since the gas flow velocity distribution in the dust collection area can be made uniform, the collection efficiency in one dust collection area can be improved. As a result, the volume of the apparatus can be reduced, and the size can be reduced.
第1実施形態に係る集塵装置の捕集部の斜視図である。It is a perspective view of the collection part of the dust collector which concerns on 1st Embodiment. 第1実施形態に係る集塵装置の捕集部の正面断面図である。It is front sectional drawing of the collection part of the dust collector which concerns on 1st Embodiment. 第1実施形態に係る集塵装置の捕集部の側面断面図である。It is side surface sectional drawing of the collection part of the dust collector which concerns on 1st Embodiment. 第1実施形態の変形例の捕集部の正面断面図である。It is front sectional drawing of the collection part of the modification of 1st Embodiment. 放電が行われない状態で集塵エリアにガスを流入させた場合に、フィルタを通過するガス流速のプロファイルである。It is the profile of the gas flow rate which passes a filter, when gas is made to flow into a dust collection area in the state where discharge is not performed. 第1実施形態の別の変形例の捕集部の正面断面図である。It is front sectional drawing of the collection part of another modification of 1st Embodiment. 第1実施形態の別の変形例の捕集部の正面断面図である。It is front sectional drawing of the collection part of another modification of 1st Embodiment. プレチャージ部による粒子状物質の帯電量を説明するグラフである。It is a graph explaining the charge amount of the particulate matter by a precharge part. 第2実施形態に係る集塵装置の捕集部の正面断面図である。It is front sectional drawing of the collection part of the dust collector which concerns on 2nd Embodiment. 第3実施形態に係る集塵装置の捕集部の斜視図である。It is a perspective view of the collection part of the dust collector which concerns on 3rd Embodiment. 第3実施形態に係る集塵装置の捕集部の正面断面図である。It is front sectional drawing of the collection part of the dust collector which concerns on 3rd Embodiment. 第3実施形態に係る集塵装置の捕集部の側面断面図である。It is side surface sectional drawing of the collection part of the dust collector which concerns on 3rd Embodiment. 第4実施形態に係る集塵装置の捕集部の斜視図である。It is a perspective view of the collection part of the dust collector which concerns on 4th Embodiment. 第4実施形態に係る集塵装置の捕集部の正面断面図である。It is front sectional drawing of the collection part of the dust collector which concerns on 4th Embodiment. 第4実施形態に係る集塵装置の捕集部の側面断面図である。It is side surface sectional drawing of the collection part of the dust collector which concerns on 4th Embodiment.
<第1実施形態>
 第1実施形態に係る集塵装置は、例えば、石炭焚きや重油焚きの発電プラントや焼却炉等の産業用燃焼設備の下流側の煙道内に設けられる排ガス処理設備に設置される。また、集塵装置は、産業用燃焼設備以外に、空気浄化設備用フィルタ(例えば、クリーンルーム用空調フィルタ、ウィルス除去用フィルタ等)等にも使用できる。
<First Embodiment>
The dust collector according to the first embodiment is installed in an exhaust gas treatment facility provided in a flue on the downstream side of an industrial combustion facility such as a coal-fired or heavy oil-fired power plant or an incinerator, for example. In addition to industrial combustion equipment, the dust collector can be used for air purification equipment filters (for example, clean room air conditioning filters, virus removal filters, etc.).
 第1実施形態に係る集塵装置は、ガスの上流側から順に、水ミスト噴霧装置及び捕集部が設置される。ガス中に十分な量の水ミストが含まれて集塵装置に流入する場合等は、水ミスト噴霧装置は省略可能である。 In the dust collector according to the first embodiment, a water mist spraying device and a collection unit are installed in order from the upstream side of the gas. When a sufficient amount of water mist is contained in the gas and flows into the dust collector, the water mist spraying device can be omitted.
 水ミスト噴霧装置は、ノズルからガス中に水ミストを噴霧する。水ミストの直径は、10μm~100μm程度、好ましくは30μm以下である。水ミスト噴霧装置から噴霧される液体は、水の他、ガス中に含まれているSOxなど酸性ガスを吸収可能な溶解塩を含む水溶液であっても良い。例えば、苛性ソーダ(NaOH)水溶液、水酸化マグネシウム(Mg(OH))水溶液である。 The water mist spraying device sprays water mist into the gas from the nozzle. The diameter of the water mist is about 10 μm to 100 μm, preferably 30 μm or less. The liquid sprayed from the water mist spraying device may be an aqueous solution containing a dissolved salt capable of absorbing an acidic gas such as SOx contained in the gas in addition to water. For example, a caustic soda (NaOH) aqueous solution and a magnesium hydroxide (Mg (OH) 2 ) aqueous solution are used.
 なお、本実施形態の集塵装置が環境集塵を実施する集塵機に適用される場合は、水ミスト噴霧装置は、消毒作用のある液体として、エタノールを含む水やオゾン水を噴霧することもできる。環境集塵を行う場合、空気中に菌類やウィルスが存在する場合がある。これらは予備荷電部でのコロナ放電によりある程度不活性化されるが、消毒作用を有する液体を噴霧することで、後流の捕集部でより確実に不活性化させることが可能である。 In addition, when the dust collector of this embodiment is applied to the dust collector which implements environmental dust collection, the water mist spraying device can also spray water containing ethanol or ozone water as a liquid having a disinfecting action. . When environmental dust collection is performed, fungi and viruses may exist in the air. These are inactivated to some extent by corona discharge in the precharged part, but can be more reliably inactivated in the downstream collecting part by spraying a liquid having a disinfecting action.
 図1Aは捕集部1の下方向からみた斜視図であり、図1Bは捕集部1の正面断面図であり、図1Cは捕集部1の側面断面図である。本実施形態の集塵装置は、捕集部1の下方からガスが鉛直方向に上昇して捕集部1内に流入する構成となっている。 FIG. 1A is a perspective view of the collection unit 1 as viewed from below, FIG. 1B is a front sectional view of the collection unit 1, and FIG. 1C is a side sectional view of the collection unit 1. The dust collector of the present embodiment is configured such that gas rises in the vertical direction from below the collection unit 1 and flows into the collection unit 1.
 捕集部1は複数(図1Aでは3つ)の集塵エリア2を有する。集塵エリア2はガスの流れに対して並列に配列されている。 The collection unit 1 has a plurality (three in FIG. 1A) of dust collection areas 2. The dust collection area 2 is arranged in parallel with the gas flow.
 各集塵エリア2は、ガスが内部に流入可能な入口部3を有する。入口部3と反対側に位置する面は、ガスが通過できない壁面4となっている。入口部3と壁面4とが同じ形状である。すなわち、集塵エリア2のガスが流入する方向に対向する断面の形状は、入口部3から奥行方向に向かって面積が同じである。図1Aでは入口部3は長円形であるが、これに限定されない。 Each dust collection area 2 has an inlet 3 through which gas can flow. The surface located on the opposite side to the inlet portion 3 is a wall surface 4 through which gas cannot pass. The inlet portion 3 and the wall surface 4 have the same shape. That is, the cross-sectional shape facing the direction in which the gas flows in the dust collection area 2 has the same area from the inlet 3 toward the depth direction. In FIG. 1A, the inlet 3 is oval, but is not limited thereto.
 集塵エリア2の入口部3に略直交する方向の壁面は、アース電極5である。アース電極5は、ガスが流通可能な開口部を有する導電性の部材であり、例えば金網、パンチングメタル等である。 A wall surface in a direction substantially orthogonal to the inlet 3 of the dust collection area 2 is a ground electrode 5. The ground electrode 5 is a conductive member having an opening through which gas can flow, and is, for example, a wire mesh or a punching metal.
 アース電極5の外側周囲には、フィルタ6が設置される。フィルタ6は空気の誘電率を超える誘電率を有する(望ましくは誘電率2以上の)誘電体材料である。フィルタ6としては、撥水性を有し、ガスが流通可能な多孔質材料が選択される。例えば、ポリプロピレン、ポリテトラフルオロエチレン製の多孔質材料などが挙げられる。フィルタ6は低圧損(初期圧損で10~20mmAq、少なくとも30mmAq程度以下)であることが好ましい。フィルタ6の孔は、通過粒径が数μm~数十μmであり、空隙率は90%以上、好ましくは95%以上である。 A filter 6 is installed around the outside of the ground electrode 5. The filter 6 is a dielectric material having a dielectric constant exceeding that of air (desirably having a dielectric constant of 2 or more). As the filter 6, a porous material having water repellency and allowing gas to flow is selected. Examples thereof include a porous material made of polypropylene or polytetrafluoroethylene. The filter 6 preferably has a low pressure loss (initial pressure loss of 10 to 20 mmAq, at least about 30 mmAq or less). The pores of the filter 6 have a passing particle diameter of several μm to several tens of μm, and the porosity is 90% or more, preferably 95% or more.
 集塵エリア2の入口部3において、隣接する集塵エリア2間に壁面8(但し、図1Aでは省略)が設置されている。集塵エリア2のガス上流側の空間と、アース電極5及びフィルタ6を挟んで集塵エリア2のガス下流側に位置する空間である清浄ガス通路17とは、この壁面8により隔離されている。 In the entrance 3 of the dust collection area 2, a wall surface 8 (however, omitted in FIG. 1A) is installed between adjacent dust collection areas 2. The space upstream of the gas in the dust collection area 2 and the clean gas passage 17 that is located on the gas downstream side of the dust collection area 2 with the ground electrode 5 and the filter 6 interposed therebetween are isolated by the wall surface 8. .
 捕集部1は、フィルタ6の上側に、フィルタ6を洗浄するための液体を供給するための配管(洗浄部)7を備える。図1A及び図1Bに示す例では、配管7は長円形に形成されたフィルタ6の長軸方向に沿って2本設置されている。フィルタ6の上方からフィルタ6に液体を供給することができれば、配管7の設置位置及び設置本数は特に制限されない。
 洗浄用の液体は、主として水とされるが、ウィルスや菌類の捕集をする場合には、捕集されたウィルスや菌類の不活性化、及びフィルタの消毒の目的で、エタノール、オゾン水等の消毒効果のある物質が含まれていても良い。
 図1A~1Cでは洗浄部は配管としたが、複数の噴霧装置を配列させた構成とすることができる。
The collection unit 1 includes a pipe (cleaning unit) 7 for supplying a liquid for cleaning the filter 6 on the upper side of the filter 6. In the example shown in FIGS. 1A and 1B, two pipes 7 are installed along the long axis direction of the filter 6 formed in an oval shape. If the liquid can be supplied to the filter 6 from above the filter 6, the installation position and the number of the pipes 7 are not particularly limited.
The cleaning liquid is mainly water, but when collecting viruses and fungi, ethanol, ozone water, etc. are used to inactivate the collected viruses and fungi and disinfect the filter. Substances having a disinfecting effect may be included.
In FIGS. 1A to 1C, the cleaning unit is a pipe, but a configuration in which a plurality of spraying devices are arranged may be employed.
 フィルタ6の下方に、フィルタから流れる液体を受けるドレイン(不図示)が設置されている。 A drain (not shown) for receiving the liquid flowing from the filter is installed below the filter 6.
 捕集部1のガス上流側に水ミスト噴霧装置を設け、水ミスト噴霧装置から洗浄に十分な量の水ミストを捕集部1に飛来させることができる場合は、配管7は省略しても良い。 If a water mist spraying device is provided on the gas upstream side of the collecting unit 1 and a sufficient amount of water mist for washing can be made to fly from the water mist spraying device to the collecting unit 1, the piping 7 may be omitted. good.
 各集塵エリア2内には複数の放電電極10が収容されている。各放電電極10は、取付軸11と、取付軸11の延在方向に略直交する方向に取付軸11から突出する複数の放電トゲ12を有する。取付軸11は、集塵エリア2へのガスの流入方向に略直交する方向に延在する。放電トゲ12は、先端がアース電極5に対向するように、取付軸11からアース電極5に略直交する方向に向かって延在する。アース電極5に対向する放電トゲ12の数が多くなるように、図1Aに示す長円形の断面を有する集塵エリア2において、取付軸が長円形の長軸方向に延在している。放電トゲ12は、集塵エリア2へのガスの流入方向に延在する。
 図1B及び図1Cに示されるように、集塵エリア2内において、放電電極10は入口部3から集塵エリア2の奥行方向に配列されている。
A plurality of discharge electrodes 10 are accommodated in each dust collection area 2. Each discharge electrode 10 has an attachment shaft 11 and a plurality of discharge spikes 12 protruding from the attachment shaft 11 in a direction substantially perpendicular to the extending direction of the attachment shaft 11. The attachment shaft 11 extends in a direction substantially perpendicular to the gas inflow direction to the dust collection area 2. The discharge thorn 12 extends from the mounting shaft 11 in a direction substantially orthogonal to the ground electrode 5 so that the tip thereof faces the ground electrode 5. In the dust collection area 2 having an oval cross section shown in FIG. 1A, the mounting shaft extends in the major axis direction of the oval so that the number of discharge thorns 12 facing the ground electrode 5 increases. The discharge thorn 12 extends in the gas inflow direction to the dust collection area 2.
As shown in FIGS. 1B and 1C, in the dust collection area 2, the discharge electrodes 10 are arranged in the depth direction of the dust collection area 2 from the inlet 3.
 放電電極10及びアース電極5は電源(不図示)で接続される。
 1つの集塵エリア2内で、放電電極10の取付軸11同士は放電極支持材13により電気的に並列に接続された群を構成している。複数の集塵エリア2間で、放電電極10の群はさらに放電極支持材13により並列に接続されている。集塵エリア2の外側で、放電極支持材13は碍子14を介して電源に接続される。入口部3と反対側に位置する壁面4では、放電極支持材13が開口部15を通って集塵エリア2の外側に取り出される。開口部15と碍子14との間で放電極支持材13はパイプ16で覆われ、外部空間と遮断されている。
The discharge electrode 10 and the ground electrode 5 are connected by a power source (not shown).
Within one dust collection area 2, the mounting shafts 11 of the discharge electrodes 10 constitute a group electrically connected in parallel by a discharge electrode support member 13. Between the plurality of dust collection areas 2, the group of discharge electrodes 10 is further connected in parallel by a discharge electrode support member 13. Outside the dust collection area 2, the discharge electrode support 13 is connected to a power source via an insulator 14. On the wall surface 4 located on the side opposite to the inlet 3, the discharge electrode support 13 is taken out of the dust collection area 2 through the opening 15. Between the opening 15 and the insulator 14, the discharge electrode support 13 is covered with a pipe 16 and is isolated from the external space.
 入口部3側に位置する放電電極10の放電トゲの長さは、集塵エリア2の奥側(入口部3と反対側)に位置する放電電極の放電トゲよりも長い。図1Bでは、入口部3から集塵エリア2奥側に向かって、放電トゲ12の長さが一つずつ段階的に変えられている。 The length of the discharge barb of the discharge electrode 10 located on the inlet part 3 side is longer than the discharge barb of the discharge electrode located on the far side of the dust collection area 2 (the side opposite to the inlet part 3). In FIG. 1B, the length of the discharge thorn 12 is changed step by step from the inlet 3 toward the back side of the dust collection area 2.
 図2は、本実施形態の捕集部の変形例を説明する図であり、捕集部の正面断面図である。図2の変形例において、放電電極30の取付軸31から突出する放電トゲ32の長さは、集塵エリアの入口部3から奥側に向かって2段階に分けて変えられている。変形例の捕集部21は、放電トゲ32以外の構成は図1A~図1Cと同じである。なお、図2では洗浄用の配管は省略されている。 FIG. 2 is a view for explaining a modification of the collection unit of the present embodiment, and is a front sectional view of the collection unit. In the modification of FIG. 2, the length of the discharge barb 32 protruding from the mounting shaft 31 of the discharge electrode 30 is changed in two steps from the inlet 3 of the dust collection area toward the back side. The configuration of the collection unit 21 of the modification is the same as that of FIGS. 1A to 1C except for the discharge thorn 32. In FIG. 2, the piping for cleaning is omitted.
 本実施形態の集塵装置を用いてガス中に含まれる粒子状物質を除去する集塵方法を説明する。以下では、水ミスト噴霧装置が設けられる場合を例に挙げる。 A dust collection method for removing particulate matter contained in gas using the dust collector of this embodiment will be described. Below, the case where a water mist spraying apparatus is provided is mentioned as an example.
 ガス中に含まれる粒子状物質は、集塵装置が接続される装置により異なる。例えば、ボイラなどの燃焼設備に接続された場合、ガス中には粒子状物質として浮遊煤塵が含まれる。集塵装置の上流側の流通路(煙道)に湿式の排煙脱硫装置が設置されている場合は、排煙脱硫装置の吸収塔入口、及び吸収塔内部で、SOxの吸収剤を含む水溶液が噴霧される。吸収剤は、例えば水酸化マグネシウムや水酸化ナトリウム(苛性ソーダ)とされる。吸収剤とSOxが反応することにより硫酸塩が生成し、更に飽和水分濃度に達していない高温のガス中であれば、水溶液の液滴から水分が蒸発して、一部溶解塩が析出する。従って、ガス中には粒子状物質として溶解塩の微粒子も含まれる。また、噴霧された液滴の一部は未蒸発のままで集塵装置に流入する。未蒸発の液滴(ミスト)にはSOx(SO、SO)が取り込まれている。以下では、SOxを取り込んだミストを「SOxミスト」と称する。
 なお、第1実施形態の集塵装置が環境集塵に適用される場合は、粒子状物質としてウィルスや菌類を含む浮遊煤塵が含まれる。
The particulate matter contained in the gas varies depending on the device to which the dust collector is connected. For example, when connected to a combustion facility such as a boiler, suspended dust is contained in the gas as particulate matter. When a wet type flue gas desulfurization device is installed in the flow path (flue) upstream of the dust collector, an aqueous solution containing an SOx absorbent at the absorption tower inlet of the flue gas desulfurization device and inside the absorption tower Is sprayed. The absorbent is, for example, magnesium hydroxide or sodium hydroxide (caustic soda). When the absorbent and SOx react with each other, sulfate is generated, and if it is in a high-temperature gas that does not reach the saturated water concentration, the water is evaporated from the droplets of the aqueous solution and a part of the dissolved salt is precipitated. Accordingly, the gas contains dissolved salt fine particles as particulate matter. Moreover, some of the sprayed droplets flow into the dust collector without being evaporated. SOx (SO 2 , SO 3 ) is taken in the non-evaporated droplet (mist). Hereinafter, the mist that incorporates SOx is referred to as “SOx mist”.
In addition, when the dust collector of 1st Embodiment is applied to environmental dust collection, the floating dust containing a virus and fungi is contained as a particulate matter.
 粒子状物質を含むガスが集塵装置内に流入する。水ミスト噴霧装置を設置する場合、粒子状物質を含むガスが捕集部1に流入する前に、水ミスト噴霧装置はガス中に水ミストを噴霧する。 ¡Gas containing particulate matter flows into the dust collector. When installing the water mist spraying device, the water mist spraying device sprays the water mist into the gas before the gas containing the particulate matter flows into the collecting unit 1.
 本実施形態における噴霧された水ミストの直径は、10μm~100μm程度、好ましくは30μm以下とされる。水ミスト噴霧装置から噴霧される液体は、水の他、ガス中に含まれているSOxなど酸性ガスを吸収可能な溶解塩を含む水溶液であっても良い。例えば、苛性ソーダ(NaOH)水溶液、水酸化マグネシウム(Mg(OH))水溶液とされる。 The diameter of the sprayed water mist in this embodiment is about 10 μm to 100 μm, preferably 30 μm or less. The liquid sprayed from the water mist spraying device may be an aqueous solution containing a dissolved salt capable of absorbing an acidic gas such as SOx contained in the gas in addition to water. For example, a caustic soda (NaOH) aqueous solution and a magnesium hydroxide (Mg (OH) 2 ) aqueous solution are used.
 なお、本実施形態の集塵装置が環境集塵に適用される場合は、水ミスト噴霧装置は、消毒作用のある液体として、エタノールを含む水やオゾン水を噴霧することもできる。環境集塵を行う場合、空気中に菌類やウィルスが存在する場合がある。消毒作用を有する液体を噴霧することで、後流の捕集部1より確実に不活性化させることが可能である。 In addition, when the dust collector of this embodiment is applied to environmental dust collection, the water mist spraying device can also spray water containing ethanol or ozone water as a liquid having a disinfecting action. When environmental dust collection is performed, fungi and viruses may exist in the air. By spraying a liquid having a disinfecting action, it is possible to reliably inactivate the downstream collecting unit 1.
 電源(不図示)は放電電極10に電圧を印加している。これにより、放電電極10とアース電極5との間に電圧差が発生し、放電電極10の放電トゲ12とアース電極5との間にコロナ放電が発生する。
 粒子状物質を含むガスは、捕集部1の集塵エリア2に流入する。ガスは、アース電極5の開口部及びフィルタ6を通過し、清浄ガス通路17に流入する。フィルタ6を通過したガスは、清浄ガス通路17を通じて集塵装置の外部に排出される。ガスが集塵エリア2を流通している間、粒子状物質がコロナ放電により帯電される。
 ガスに含まれる粒子状物質は種々の粒径を有する。ガスがフィルタ6を通過する際に、上述したフィルタ6の孔径と同程度や孔径よりも大きい粒子状物質は、孔を通過することができずにフィルタ6に捕集される。一方、例えばサブミクロン程度の微細な粒子状物質は、フィルタ6の孔径よりも小さいために、帯電させないとフィルタ6を通過してしまう。そこで、集塵エリア2において放電電極10により粒子状物質を帯電させることにより、ガスがフィルタ6を通過する際に微細な粒子状物質をフィルタ6の表面に捕集させて、ガスから除去する。
A power source (not shown) applies a voltage to the discharge electrode 10. As a result, a voltage difference is generated between the discharge electrode 10 and the ground electrode 5, and a corona discharge is generated between the discharge barb 12 of the discharge electrode 10 and the ground electrode 5.
The gas containing particulate matter flows into the dust collection area 2 of the collection unit 1. The gas passes through the opening of the ground electrode 5 and the filter 6 and flows into the clean gas passage 17. The gas that has passed through the filter 6 is discharged to the outside of the dust collector through the clean gas passage 17. While the gas is flowing through the dust collection area 2, the particulate matter is charged by corona discharge.
The particulate matter contained in the gas has various particle sizes. When the gas passes through the filter 6, particulate matter that is about the same as or larger than the pore diameter of the filter 6 described above cannot be passed through the pores and is collected by the filter 6. On the other hand, fine particulate matter of, for example, a submicron size is smaller than the pore diameter of the filter 6 and therefore passes through the filter 6 unless charged. Therefore, by charging the particulate matter with the discharge electrode 10 in the dust collection area 2, when the gas passes through the filter 6, the fine particulate matter is collected on the surface of the filter 6 and removed from the gas.
 ここで、コロナ放電により、放電トゲ12の先端からアース電極5に向かってイオン風が発生する。本実施形態の捕集部1では、フィルタ6を通過するガスは0.5~1m/s程度の流速であるが、イオン風は2.5m/s程度である。放電が行われた状態でガスを流入させることにより、図3に示すように集塵エリアの形状に起因したガスの流れに対してイオン風の影響が重畳されて、ガス流速が増大する。 Here, ion wind is generated from the tip of the discharge thorn 12 toward the ground electrode 5 by corona discharge. In the collection unit 1 of the present embodiment, the gas passing through the filter 6 has a flow velocity of about 0.5 to 1 m / s, but the ion wind is about 2.5 m / s. By injecting the gas in a discharged state, as shown in FIG. 3, the influence of the ion wind is superimposed on the gas flow caused by the shape of the dust collection area, and the gas flow rate is increased.
 図3は、放電が行われない状態で集塵エリア2にガスを流入させた場合に、フィルタ6を通過するガスの流速をシミュレーションした結果である。同図において横軸はフィルタ6の長さ比(入口部3から奥行方向の集塵エリア2の長さを基準)、縦軸はフィルタ6を通過するガスの流速比(フィルタ6を通過するガスの平均流速を基準)である。図3のプロファイルは、フィルタ6の抵抗係数(すなわち、圧力損失)を30~160mmAqの間で変えた場合の結果を示している。 FIG. 3 shows the result of simulating the flow rate of the gas passing through the filter 6 when the gas is allowed to flow into the dust collection area 2 without discharging. In the figure, the horizontal axis represents the length ratio of the filter 6 (based on the length of the dust collection area 2 in the depth direction from the inlet 3), and the vertical axis represents the flow rate ratio of the gas passing through the filter 6 (gas passing through the filter 6). The average flow rate of The profile of FIG. 3 shows the results when the resistance coefficient (ie, pressure loss) of the filter 6 is changed between 30 and 160 mmAq.
 ガスは入口部3では縮流となるためにフィルタ6を通過するガス量が少なく、通過流速が他の位置に比べると大幅に低下している。フィルタ6を通過するガスの流速は集塵エリア2奥側に行くほど大きくなる。入口部3側と奥側の通過流速の差は、本実施形態のようにフィルタ6が低圧損であるほど大きくなっている。 Since the gas becomes a contracted flow at the inlet 3, the amount of gas passing through the filter 6 is small, and the passage flow velocity is greatly reduced as compared with other positions. The flow velocity of the gas passing through the filter 6 increases as it goes to the back side of the dust collection area 2. The difference in the passage flow velocity between the inlet 3 side and the back side increases as the filter 6 has a low pressure loss as in this embodiment.
 イオン風の流速は、コロナ電流の平方根に比例する。放電電極10とアース電極5との間に電圧Vが印加された場合、放電トゲ12先端とアース電極5との間の電界強度Eは次式で表される。
   E=V/l  …(1)
 式(1)中のlは、放電トゲ12先端とアース電極5との距離である。式(1)から、放電トゲ12が長い方が、電界強度が大きくなる。このため、コロナ電流が大きくなり、イオン風速度が大きくなる。
The flow velocity of the ion wind is proportional to the square root of the corona current. When the voltage V is applied between the discharge electrode 10 and the earth electrode 5, the electric field strength E between the tip of the discharge barb 12 and the earth electrode 5 is expressed by the following equation.
E = V / l (1)
In the formula (1), l is the distance between the tip of the discharge thorn 12 and the ground electrode 5. From equation (1), the longer the discharge thorn 12, the greater the electric field strength. For this reason, the corona current increases and the ion wind speed increases.
 本実施形態の捕集部1では、集塵エリア2内に流入するガスは0.5~1m/s程度の流速であるが、イオン風は2.5m/s程度である。放電が行われた状態でガスを流入させることにより、図3に示すように集塵エリア2の形状に起因したガスの流れに対してイオン風の影響が重畳されて、ガス流速が増大する。放電トゲの長さ及び段数が適切に設定されれば、フィルタ6を通過するガスの流速を集塵エリア2奥行方向で略均一化することができる。具体的に、放電しない状態でガスが遅く流れる領域で放電トゲを長くし、ガスが早く流れる領域で放電トゲを短くする。 In the collection unit 1 of the present embodiment, the gas flowing into the dust collection area 2 has a flow velocity of about 0.5 to 1 m / s, but the ion wind is about 2.5 m / s. By injecting the gas in a discharged state, the influence of the ion wind is superimposed on the gas flow caused by the shape of the dust collection area 2 as shown in FIG. If the length and the number of steps of the discharge thorn are appropriately set, the flow velocity of the gas passing through the filter 6 can be made substantially uniform in the depth direction of the dust collection area 2. Specifically, the discharge spike is lengthened in the region where the gas flows slowly without discharging, and the discharge spike is shortened in the region where the gas flows early.
 例えば、図3では入口部3近傍で通過流速比の変曲点(フィルタ長さ比が約0.1付近)が現れる。この知見に基づき、図2の放電電極30では、フィルタの通過流速の変曲点に相当する位置を境界として、放電トゲ72の長さを2段階に設定する。 For example, in FIG. 3, an inflection point (filter length ratio is about 0.1) appears in the vicinity of the inlet 3 in the flow velocity ratio. Based on this knowledge, the discharge electrode 30 in FIG. 2 sets the length of the discharge thorn 72 in two stages with the position corresponding to the inflection point of the passage flow velocity of the filter as a boundary.
 放電トゲの長さは、フィルタを通過するガスの流速を略均一にするために必要なイオン風の大きさを考慮して、式(1)などにより設定される。但し、放電トゲ12,32の先端がアース電極5に近接しすぎると、火花が発生する等の問題が生じるので好ましくない。 The length of the discharge thorn is set according to the formula (1) or the like in consideration of the size of the ion wind necessary for making the flow velocity of the gas passing through the filter substantially uniform. However, it is not preferable that the tips of the discharge spikes 12 and 32 are too close to the ground electrode 5 because a problem such as generation of a spark occurs.
 図1A及び図1Bに示すように複数の集塵エリアを配列する場合、集塵エリア2配列方向の幅をL、隣接する集塵エリア間の距離をLとすると、L≧Lとすることが好ましい。Lは集塵に必要な空間及び放電電極を収容する空間を確保し十分な集塵効率を得るためには100mm程度、大型の集塵装置の場合は200mm程度必要である。しかし、Lは装置設計上変更することが困難である。このため、Lを小さくするほど、装置をコンパクト化できる。あるいは、集塵エリアを増設でき、集塵効率が向上する。例えば同じ装置容積でLをLの1/2とすると、4/3倍のフィルタを設置することに繋がる。但し、Lが小さくなると入口部3での圧力損失が大きくなり、入口部3付近のフィルタ6を通過するガス量が減少する。上述の事項を考慮すると、Lに対するLは1/2以上1未満であることが好ましい。 When arranging a plurality of the dust collecting area as shown in FIGS. 1A and 1B, L 1 the width of the dust collecting area 2 arrangement direction, the distance between adjacent dust-collecting area When L 2, L 1 ≧ L 2 It is preferable that L 1 needs to be about 100 mm in order to secure a space necessary for collecting dust and a space for accommodating the discharge electrode to obtain sufficient dust collection efficiency, and about 200 mm in the case of a large dust collector. However, L 1 is difficult to change due to the device design. Therefore, the smaller the L 2, can be made compact device. Alternatively, the dust collection area can be expanded, improving the dust collection efficiency. For example, if L 2 is ½ of L 1 with the same device volume, it will lead to the installation of a 4 / 3-fold filter. However, the pressure loss at the inlet portion 3 when L 2 is decreased is increased, the amount of gas passing through the filter 6 in the vicinity of the inlet portion 3 is reduced. Considering the above matters, L 2 with respect to L 1 is preferably ½ or more and less than 1.
 ガス中に含まれるSOxミストは、ガスがフィルタ6を通過する際にフィルタ6に付着されるか、水ミストに捕集されることによってガスから除去される。SOxミストを捕集した水ミストは、ガスがフィルタ6を通過する際にフィルタ6に捕集される。水ミストの噴霧量及び噴霧時間は、SOxミストを効率良く捕集できるように、適宜設定されると良い。例えば、水ミストの噴霧は連続的に実施する必要はなく、所定時間毎に水ミストの噴霧と停止を繰り返しても良い。あるいは、フィルタ6に流入する排ガス中の水ミスト及びSOxミスト量を監視して、水ミスト噴霧のタイミング及び噴霧量を制御しても良い。
 なお、上述のように本実施形態では水ミストの噴霧は必須ではない。水ミストが噴霧されない場合でも、SOxミストはフィルタ6に捕集されることにより、十分に除去可能である。
The SOx mist contained in the gas is removed from the gas by adhering to the filter 6 when the gas passes through the filter 6 or by being collected by water mist. The water mist that has collected the SOx mist is collected by the filter 6 when the gas passes through the filter 6. The spray amount and spray time of the water mist are preferably set as appropriate so that the SOx mist can be collected efficiently. For example, the water mist spraying need not be performed continuously, and the water mist spraying and stopping may be repeated every predetermined time. Alternatively, the water mist spray amount and the spray amount may be controlled by monitoring the water mist and SOx mist amount in the exhaust gas flowing into the filter 6.
In addition, as above-mentioned, spraying of water mist is not essential in this embodiment. Even when the water mist is not sprayed, the SOx mist can be sufficiently removed by being collected by the filter 6.
 フィルタ6に付着する水ミスト及びSOxミストの量が多くなると、ミスト同士が凝集し、大きな液滴となる。ある程度大きな液滴となると、液滴は粒子状物質を捕獲したまま、重力によりフィルタ6下部へと流れ落ちる。このように、水ミストを噴霧することにより、フィルタ6の洗浄が行われる。流れ落ちた液滴は、ドレインを通じて集塵装置外部に排出される。この過程で、フィルタ6に捕集された粒子状物質やSOxも排出される。
 また、水ミストを噴霧した場合は、水ミストが放電電極10の表面に付着する。付着量が多くなるとミスト同士が凝集して大きな液滴となり、放電電極10から流れ落ちる。このように、水ミストを噴霧することにより、放電電極10も洗浄される。
When the amount of water mist and SOx mist adhering to the filter 6 increases, the mists aggregate to form large droplets. When the droplet becomes large to some extent, the droplet flows down to the lower part of the filter 6 due to gravity while capturing the particulate matter. In this way, the filter 6 is cleaned by spraying water mist. The dropped liquid droplets are discharged out of the dust collector through the drain. In this process, particulate matter and SOx collected by the filter 6 are also discharged.
Further, when water mist is sprayed, the water mist adheres to the surface of the discharge electrode 10. When the amount of adhesion increases, the mists aggregate to form large droplets that flow down from the discharge electrode 10. Thus, the discharge electrode 10 is also cleaned by spraying water mist.
 所定時間経過後、または、フィルタ6の集塵効率が低下した場合に、フィルタ6の洗浄が行われる。複数の集塵エリア2が設置される場合、全ての集塵エリア2の洗浄が実施されても良く、所定数の集塵エリア2毎に洗浄が実施されても良い。洗浄が行われるフィルタ6に対応する集塵エリアでは、放電トゲ12からのコロナ放電が停止されても良い。 The filter 6 is washed after a predetermined time has elapsed or when the dust collection efficiency of the filter 6 has decreased. When a plurality of dust collection areas 2 are installed, cleaning of all the dust collection areas 2 may be performed, or cleaning may be performed for each predetermined number of dust collection areas 2. In the dust collection area corresponding to the filter 6 to be cleaned, the corona discharge from the discharge thorn 12 may be stopped.
 フィルタ6の洗浄時には、配管7から洗浄用の液体がフィルタ6に直接供給される。フィルタ6から取り除かれ、ドレインから排出される。フィルタ6の洗浄は定期的に行われる。洗浄時の液体の供給方法は連続的でも良いし、間欠的でも良い。 When cleaning the filter 6, a cleaning liquid is directly supplied from the pipe 7 to the filter 6. It is removed from the filter 6 and discharged from the drain. The filter 6 is periodically cleaned. The liquid supply method at the time of washing may be continuous or intermittent.
 複数の集塵エリア2が設置される場合は、洗浄するフィルタ6に対応する集塵エリア2へのガス流量が低減されるか、ガスの流通が遮断される。また、洗浄するフィルタ6に対応する集塵エリア2内でのコロナ放電が停止される。
 ガス流量の変更及び遮断は、入口部3にダンパ等の流量制御機構を設置することにより実行する。または、配管7から洗浄用の液体を供給してフィルタ6の表面に液膜を形成させて、ガスの流通を遮断しつつフィルタ6の洗浄を実行する。
When a plurality of dust collection areas 2 are installed, the gas flow rate to the dust collection area 2 corresponding to the filter 6 to be cleaned is reduced or the gas flow is interrupted. Further, corona discharge in the dust collection area 2 corresponding to the filter 6 to be cleaned is stopped.
The gas flow rate is changed and shut off by installing a flow rate control mechanism such as a damper at the inlet 3. Alternatively, a cleaning liquid is supplied from the pipe 7 to form a liquid film on the surface of the filter 6, and the filter 6 is cleaned while blocking the gas flow.
 水ミストを噴霧する場合は、上述のように水ミストによるフィルタ6の洗浄が行われるため、上述の洗浄は実施しなくても良い。すなわち、水ミスト噴霧装置が設置される場合は、配管7は設置されなくても良い。 When spraying water mist, since the filter 6 is cleaned with water mist as described above, the above-described cleaning need not be performed. That is, when the water mist spraying device is installed, the pipe 7 may not be installed.
 図4Aは、本実施形態の捕集部の変形例を説明する図であり、捕集部41の正面断面図である。図4Aでは、集塵エリア2の入口部3外側にプレチャージ部42が設置される。プレチャージ部42は、入口部3側のアース電極5の端部から集塵エリア2外側に向かって突出する囲い43で囲まれている。図4では、囲い43はアース電極5が集塵エリア2からガス上流側に向かって(集塵エリア2の外側に向かって)突出したものである。従って、囲い43はアース電極5と同様に、ガスが流通可能な開口を有する導電性の部材である。入口部3と反対側においてプレチャージ部42は開口を有しており、ガスがプレチャージ部42を通過して集塵エリア2内に流入可能となっている。プレチャージ部42のガス上流側の開口は、集塵エリア2の入口部3と同じ形状である。 FIG. 4A is a diagram illustrating a modification of the collection unit of the present embodiment, and is a front cross-sectional view of the collection unit 41. In FIG. 4A, the precharge part 42 is installed in the entrance part 3 outer side of the dust collection area 2. FIG. The precharge portion 42 is surrounded by an enclosure 43 that protrudes from the end of the ground electrode 5 on the inlet portion 3 side toward the outside of the dust collection area 2. In FIG. 4, the enclosure 43 is the one in which the ground electrode 5 protrudes from the dust collection area 2 toward the gas upstream side (toward the outside of the dust collection area 2). Therefore, the enclosure 43 is a conductive member having an opening through which gas can flow, like the ground electrode 5. The precharge part 42 has an opening on the side opposite to the inlet part 3, and gas can flow into the dust collection area 2 through the precharge part 42. The opening on the gas upstream side of the precharge portion 42 has the same shape as the inlet portion 3 of the dust collection area 2.
 囲い43は導電性を有する板(すなわち、ガスが流通可能な開口を有さない板)で構成されていても良い。 The enclosure 43 may be formed of a conductive plate (that is, a plate that does not have an opening through which gas can flow).
 プレチャージ部42内において、放電電極50は放電トゲ52を有する。放電電極50に電圧が印加されると、集塵エリア2内で放電トゲ12とアース電極5との間でコロナ放電が発生するとともに、プレチャージ部42内で放電トゲ52と囲い43との間でコロナ放電が発生する。図4Aでは、プレチャージ部42の分だけ粒子状物質の帯電時間が長くなる。この結果、粒子状物質がフィルタ6に到達するまでの間に粒子状物質が帯電することができる。
 プレチャージ部42が設置されない場合、入口部3近傍では粒子状物質の帯電が不十分となる可能性がある。このため、入口部3近傍のフィルタ6において、サブミクロン程度の微細な粒子状物質が捕集されずにフィルタ6を通過してしまう。この結果として集塵効率が低下してしまう。プレチャージ部42は、入口部3近傍での粒子状物質の帯電量の不足を補うために、ガスが集塵エリア2に流入する前に予備荷電を実施する機能を有する。プレチャージ部42を設置することにより、入口部3近傍のフィルタ6での集塵効率が向上するので、集塵装置全体の集塵効率が向上する。
In the precharge portion 42, the discharge electrode 50 has a discharge thorn 52. When a voltage is applied to the discharge electrode 50, a corona discharge occurs between the discharge thorn 12 and the ground electrode 5 in the dust collection area 2, and between the discharge thorn 52 and the enclosure 43 in the precharge portion 42. Corona discharge occurs. In FIG. 4A, the charging time of the particulate matter is increased by the amount of the precharge portion 42. As a result, the particulate matter can be charged before the particulate matter reaches the filter 6.
When the precharge part 42 is not installed, there is a possibility that the particulate matter is insufficiently charged in the vicinity of the inlet part 3. For this reason, in the filter 6 near the inlet 3, fine particulate matter of about submicron passes through the filter 6 without being collected. As a result, the dust collection efficiency is lowered. The precharge unit 42 has a function of performing preliminary charging before the gas flows into the dust collection area 2 in order to compensate for the shortage of the charged amount of the particulate matter in the vicinity of the inlet 3. By installing the precharge portion 42, the dust collection efficiency of the filter 6 near the inlet portion 3 is improved, so that the dust collection efficiency of the entire dust collector is improved.
 図4Bは、本実施形態の捕集部の変形例を説明する図であり、捕集部44の正面断面図である。図4Bは、図4Aと異なる形状のプレチャージ部45が設けられている。
 プレチャージ部45の囲い46は、隣の集塵エリア2のプレチャージ部の囲いと一体になっている。囲い46は、プレチャージ部45のガス上流側の開口が集塵エリア2の入口部3よりも広がるように湾曲している。このような形状とすることにより、整流効果を向上させることができる。
FIG. 4B is a diagram illustrating a modification of the collection unit of the present embodiment, and is a front sectional view of the collection unit 44. 4B is provided with a precharge portion 45 having a shape different from that in FIG. 4A.
The enclosure 46 of the precharge unit 45 is integrated with the enclosure of the precharge unit of the adjacent dust collection area 2. The enclosure 46 is curved so that the opening on the gas upstream side of the precharge portion 45 is wider than the inlet portion 3 of the dust collection area 2. By setting it as such a shape, a rectification effect can be improved.
 図5は、サブミクロン粒子をプレチャージ部で帯電させた場合の帯電量のシミュレーション結果である。同図において、横軸はプレチャージ部内の粒子状物質の滞留時間、縦軸は集塵エリア入口部3での帯電量である。なお、図5は、ガス中の粒子状物質濃度が130mg/mNの時の結果である。
 図5によると、粒子の大きさに依らず、滞留時間が10msecまでは帯電量が増加傾向にある。しかし、10msecを超えると、滞留時間を長くしても帯電量が飽和していることから、性能向上に寄与できる帯電量増加は期待できないと言える。図5の条件では、プレチャージ部内での滞留時間は5~10msecにすることが好ましい。
FIG. 5 is a simulation result of the charge amount when submicron particles are charged in the precharge portion. In the figure, the horizontal axis represents the residence time of the particulate matter in the precharge section, and the vertical axis represents the charge amount at the dust collection area inlet section 3. FIG. 5 shows the results when the concentration of particulate matter in the gas is 130 mg / m 3 N.
According to FIG. 5, the charge amount tends to increase until the residence time is 10 msec, regardless of the size of the particles. However, if it exceeds 10 msec, the charge amount is saturated even if the residence time is extended, and therefore it can be said that an increase in charge amount that can contribute to performance improvement cannot be expected. Under the conditions shown in FIG. 5, the residence time in the precharge section is preferably 5 to 10 msec.
 図5の条件(130mg/mN)よりもガス中の粒子状物質の濃度が低い場合には、荷電電流が流れやすいため、粒子状物質は帯電しやすい。このため滞留時間が長くなる程帯電量が増加する傾向があるが、滞留時間10msec付近に帯電量の変曲点が現れる。
 また、図5の条件よりもガス中の粒子状物質の濃度が高い場合には、空間電荷効果の影響により放電電極10とアース電極5との間に荷電電流が流れにくくなり、より短時間で(10msecよりも短い時間で)帯電量が飽和する。
When the concentration of the particulate matter in the gas is lower than the condition of FIG. 5 (130 mg / m 3 N), since the charged current easily flows, the particulate matter is easily charged. For this reason, the charge amount tends to increase as the residence time becomes longer, but an inflection point of the charge amount appears around the residence time of 10 msec.
In addition, when the concentration of the particulate matter in the gas is higher than the condition of FIG. 5, it becomes difficult for the charging current to flow between the discharge electrode 10 and the ground electrode 5 due to the effect of the space charge effect, and in a shorter time. The charge amount is saturated (in a time shorter than 10 msec).
 プレチャージ部は、入口部3近傍のフィルタ6を通過するガス中の粒子状物質の帯電を補償するものであるが、粒子状物質がある程度帯電していれば入口部3近傍のフィルタ6でも微細な粒子状物質を効率的に捕集可能である。従って、上述の図5の条件よりも濃度が低い場合は、帯電量の変曲点よりも長い帯電時間を確保したとしても集塵性能の大幅な向上には寄与しない。同様に、図5の条件よりも濃度が高い場合も、10msecを超える滞留時間を確保しても、性能向上には寄与しない。このことから、ガス中の粒子状物質の濃度に関係なく、プレチャージ部において5~10msecの滞留時間を確保しておけば、所定の性能が得られる。 The precharge unit compensates for the charge of the particulate matter in the gas passing through the filter 6 in the vicinity of the inlet 3, but if the particulate matter is charged to some extent, the filter 6 in the vicinity of the inlet 3 is fine. Efficient particulate matter can be collected efficiently. Therefore, when the density is lower than the above-described condition of FIG. 5, even if a charging time longer than the inflection point of the charge amount is secured, it does not contribute to a significant improvement in dust collection performance. Similarly, even when the concentration is higher than the condition of FIG. 5, even if a residence time exceeding 10 msec is secured, it does not contribute to performance improvement. From this, regardless of the concentration of the particulate matter in the gas, if a residence time of 5 to 10 msec is secured in the precharge portion, a predetermined performance can be obtained.
 プレチャージ部の囲いのガス流通方向の長さは、上述の滞留時間とガス流速とを考慮して設計すれば良い。 The length of the precharge section enclosure in the gas flow direction may be designed in consideration of the residence time and gas flow rate described above.
<第2実施形態>
 第2実施形態に係る集塵装置も、排ガス処理設備や空気浄化設備用フィルタ等に使用できる。
 図6は、第2実施形態に係る集塵装置の捕集部を説明する概略図であり、捕集部61の正面断面図である。捕集部61の斜視図及び側面断面図は図1A及び図1Cと略同一である。
Second Embodiment
The dust collector according to the second embodiment can also be used for exhaust gas treatment equipment, filters for air purification equipment, and the like.
FIG. 6 is a schematic diagram illustrating the collection unit of the dust collector according to the second embodiment, and is a front cross-sectional view of the collection unit 61. A perspective view and a side sectional view of the collection part 61 are substantially the same as those in FIGS. 1A and 1C.
 第2実施形態では、入口部63側に比べて集塵エリア62のガス流入方向奥側の方が、フィルタ66が厚くなっている。また、放電電極70の放電トゲ72は略同一の長さとなっている。それ以外の構成は、第1実施形態と同じである。 In the second embodiment, the filter 66 is thicker on the inner side in the gas inflow direction of the dust collection area 62 than on the inlet 63 side. Further, the discharge barbs 72 of the discharge electrode 70 have substantially the same length. Other configurations are the same as those in the first embodiment.
 第2実施形態の捕集部を用いてガス中に含まれる粒子状物質を除去する集塵方法を説明する。
 電源(不図示)は放電電極70に電圧を印加している。これにより、放電電極70の放電トゲ72とアース電極65との間にコロナ放電が発生している。また、放電電極70とアース電極65との間に電圧差が発生している。
A dust collection method for removing particulate matter contained in gas using the collection unit of the second embodiment will be described.
A power source (not shown) applies a voltage to the discharge electrode 70. Thereby, a corona discharge is generated between the discharge barb 72 of the discharge electrode 70 and the ground electrode 65. In addition, a voltage difference is generated between the discharge electrode 70 and the ground electrode 65.
 粒子状物質を含むガスが、捕集部61の集塵エリア62に流入する。コロナ放電により粒子状物質が帯電される。ガスは集塵エリア62からフィルタ66を通過して清浄ガス通路17に流入し、集塵装置の外部に排出される。この過程で、第1実施形態と同様に、帯電した粒子状物質がフィルタ66に捕集される。 Gas containing particulate matter flows into the dust collection area 62 of the collection unit 61. Particulate matter is charged by corona discharge. The gas passes from the dust collection area 62 through the filter 66 and flows into the clean gas passage 17 and is discharged to the outside of the dust collector. In this process, the charged particulate matter is collected by the filter 66 as in the first embodiment.
 本実施形態においても、コロナ放電によりイオン風を発生させ、ガス流速を加速させている。ただし、放電電極70の放電トゲ72の長さは略同一であるため、集塵エリア62内部でイオン風の大きさは略同一である。しかし、第2実施形態ではフィルタ66の厚さを変えることにより、フィルタ66を通過するガス流速の均一化を図っている。すなわち、図3に示すように集塵エリア62の入口部63からみて奥行方向に行くほどガス流速が大きくなる。フィルタ66を厚くすると圧力損失によりフィルタ66を通過するガスの流速が低下する。この結果、フィルタ66を通過するガスの流速を集塵エリア62奥行方向で略均一化することができる。 Also in the present embodiment, ion wind is generated by corona discharge to accelerate the gas flow rate. However, since the length of the discharge thorn 72 of the discharge electrode 70 is substantially the same, the size of the ion wind is substantially the same within the dust collection area 62. However, in the second embodiment, the flow rate of gas passing through the filter 66 is made uniform by changing the thickness of the filter 66. That is, as shown in FIG. 3, the gas flow rate increases as it goes in the depth direction when viewed from the inlet 63 of the dust collection area 62. When the filter 66 is thickened, the flow rate of the gas passing through the filter 66 is reduced due to pressure loss. As a result, the flow velocity of the gas passing through the filter 66 can be made substantially uniform in the depth direction of the dust collection area 62.
 本実施形態ではフィルタ66の厚さ及び厚さの変更段数は特に限定されない。図3に例示するように均一な厚さのフィルタを設けたときの通過流速プロファイル、捕集に必要なガス流速等を考慮して、フィルタ66の厚さ及び厚さの変更段数などは設定される。例えば、図3のプロファイルで入口部63近傍に見られる通過流速比の変曲点に相当する位置を境界として、フィルタ66の厚さを2段階に設定する。 In the present embodiment, the thickness of the filter 66 and the number of steps for changing the thickness are not particularly limited. As shown in FIG. 3, the thickness of the filter 66 and the number of stages for changing the thickness are set in consideration of the flow velocity profile when the filter having a uniform thickness is provided, the gas flow velocity necessary for collection, and the like. The For example, the thickness of the filter 66 is set in two stages with the position corresponding to the inflection point of the passage flow rate ratio found in the vicinity of the inlet portion 63 in the profile of FIG.
<第3実施形態>
 第3実施形態に係る集塵装置を、図面を用いて説明する。
 第3実施形態に係る集塵装置は、排ガス処理設備や空気浄化設備用フィルタ等に使用できる。本実施形態の集塵装置も必要に応じ水ミスト噴霧装置を備えていても良い。
<Third Embodiment>
A dust collector according to a third embodiment will be described with reference to the drawings.
The dust collector according to the third embodiment can be used for an exhaust gas treatment facility, an air purification facility filter, and the like. The dust collector of this embodiment may also be provided with a water mist spraying device as necessary.
 図7Aは、第3実施形態の集塵装置の捕集部81の斜視図であり、図7Bは捕集部81を上面側から見た断面図であり、図7Cは捕集部81の側面断面図である。図1A~図1Cと同じ構成には同じ符号を付す。 FIG. 7A is a perspective view of the collection unit 81 of the dust collector of the third embodiment, FIG. 7B is a cross-sectional view of the collection unit 81 viewed from the upper surface side, and FIG. 7C is a side view of the collection unit 81. It is sectional drawing. The same components as those in FIGS. 1A to 1C are denoted by the same reference numerals.
 第3実施形態は、捕集部81にガスが略水平方向から流入する構成となっている。図7A~図7Cの捕集部81にはプレチャージ部82が設けられている。プレチャージ部82は第1実施形態で説明したものと同じである。 In the third embodiment, the gas flows into the collecting unit 81 from a substantially horizontal direction. A precharge unit 82 is provided in the collection unit 81 shown in FIGS. 7A to 7C. The precharge unit 82 is the same as that described in the first embodiment.
 第3実施形態では、フィルタ6の上方に洗浄部として配管83が1本設置され、フィルタ6と配管83との間にカバー84が設置される。カバー84は、配管83を挟んで両側のフィルタ6に略均一に洗浄用の液体を供給できるのであれば特に限定されない。例えば、図7Aではカバー84は円弧状の断面を有する板材である。
 図7A~図7Cでは洗浄部として配管を図示したが、複数の噴霧装置を配列させた構成とすることができる。
In the third embodiment, one pipe 83 is installed as a cleaning unit above the filter 6, and a cover 84 is installed between the filter 6 and the pipe 83. The cover 84 is not particularly limited as long as the cleaning liquid can be supplied substantially uniformly to the filters 6 on both sides of the pipe 83. For example, in FIG. 7A, the cover 84 is a plate material having an arc-shaped cross section.
In FIGS. 7A to 7C, the piping is illustrated as the cleaning unit, but a configuration in which a plurality of spraying devices are arranged may be employed.
 フィルタ6の下方に、フィルタから流れる液体を受けるドレイン85が設置されている。ドレイン85は排水管を通じて集塵装置外部のシールポット86に連結する。シールポット86と配管83とはポンプ(不図示)を通じて連結されている。 A drain 85 that receives liquid flowing from the filter is installed below the filter 6. The drain 85 is connected to a seal pot 86 outside the dust collector through a drain pipe. The seal pot 86 and the pipe 83 are connected through a pump (not shown).
 第3実施形態の集塵装置を用いた場合も、第1実施形態と同様に粒子状物質の帯電及び捕集が行われる。図7A~図7Cの構成では、運転中にフィルタ6から流れ落ちた液滴は、ドレイン85を通じてシールポット86に貯留される。 When the dust collector of the third embodiment is used, the particulate matter is charged and collected as in the first embodiment. 7A to 7C, the liquid droplets that have flowed down from the filter 6 during operation are stored in the seal pot 86 through the drain 85.
 フィルタ6洗浄時は、ポンプ(不図示)が作動して、シールポット86内の液体が配管83に供給される。配管83から排出された洗浄用の液体は、カバー84を伝ってフィルタ6上部からフィルタ6に向かって落下する。フィルタ6を通過した洗浄用の液体は、ドレイン85を通じてシールポット86に再度貯留される。 When cleaning the filter 6, a pump (not shown) is operated, and the liquid in the seal pot 86 is supplied to the pipe 83. The cleaning liquid discharged from the pipe 83 falls along the cover 84 from the upper part of the filter 6 toward the filter 6. The cleaning liquid that has passed through the filter 6 is stored again in the seal pot 86 through the drain 85.
 図7A~図7Cで放電電極10の放電トゲ12の長さが集塵エリア2の奥行方向で一つずつ段階的に変えられている例を示した。本実施形態はこれに限定されず、図2のように放電トゲの長さが段階的に変えられている構成や、図6のように放電トゲの長さは変えられずにフィルタの厚さが変えられている構成を採用することができる。 7A to 7C show an example in which the length of the discharge thorn 12 of the discharge electrode 10 is changed step by step in the depth direction of the dust collection area 2 one by one. The present embodiment is not limited to this, but the configuration in which the length of the discharge thorn is changed stepwise as shown in FIG. 2 or the thickness of the filter without changing the length of the discharge thorn as shown in FIG. It is possible to adopt a configuration in which is changed.
<第4実施形態>
 第4実施形態に係る集塵装置を、図面を用いて説明する。
 第4実施形態に係る集塵装置は、排ガス処理設備や空気浄化設備用フィルタ等に使用できる。第4実施形態の集塵装置も必要に応じ水ミスト噴霧装置を備えていても良い。
<Fourth embodiment>
A dust collector according to a fourth embodiment will be described with reference to the drawings.
The dust collector according to the fourth embodiment can be used for an exhaust gas treatment facility, an air purification facility filter, and the like. The dust collector of 4th Embodiment may also be provided with the water mist spraying apparatus as needed.
 図8Aは、第4実施形態の集塵装置の捕集部91の斜視図であり、図8Bは捕集部91を上面側から見た断面図であり、図8Cは捕集部91の側面断面図である。第4実施形態は、捕集部91にガスが略水平方向から流入する構成となっている。図8A~図8Cにおいて、図7A~図7Cと同じ構成には同じ符号を付す。 FIG. 8A is a perspective view of the collection unit 91 of the dust collector of the fourth embodiment, FIG. 8B is a cross-sectional view of the collection unit 91 viewed from the upper surface side, and FIG. 8C is a side view of the collection unit 91. It is sectional drawing. In the fourth embodiment, the gas flows into the collection unit 91 from a substantially horizontal direction. 8A to 8C, the same components as those in FIGS. 7A to 7C are denoted by the same reference numerals.
 第4実施形態の集塵装置の捕集部91は、集塵エリア92の入口部93と反対側にもアース電極95及びフィルタ96が設けられている。図8Aにおいて、入口部3と対向する側のアース電極95及びフィルタ96は、湾曲した形状である。入口部3と反対側のフィルタ96は他の部分のフィルタ66に比べて圧力損失が高い。例えば、フィルタ96は他の部分のフィルタに比べて厚くされている。 The collection part 91 of the dust collector of the fourth embodiment is also provided with a ground electrode 95 and a filter 96 on the side opposite to the inlet part 93 of the dust collection area 92. In FIG. 8A, the ground electrode 95 and the filter 96 on the side facing the inlet 3 have a curved shape. The filter 96 on the side opposite to the inlet 3 has a higher pressure loss than the filter 66 in the other part. For example, the filter 96 is thicker than other parts of the filter.
 図8Bの放電電極100は、第1実施形態で説明したように放電電極100の放電トゲ102の長さが集塵エリア2の奥行方向で一つずつ段階的に変えられている。第4実施形態では、放電電極100は、取付軸101の先端からアース電極95に向かって突出する放電トゲ102aを有する。 In the discharge electrode 100 of FIG. 8B, the length of the discharge barb 102 of the discharge electrode 100 is changed step by step in the depth direction of the dust collection area 2 as described in the first embodiment. In the fourth embodiment, the discharge electrode 100 includes a discharge bar 102 a that protrudes from the tip of the mounting shaft 101 toward the ground electrode 95.
 図8Aでは、フィルタ96を洗浄するための配管97を、集塵エリア2の奥行方向に沿ってフィルタ96の上部に2本配置している。但し、フィルタ96が洗浄できれば、配管97の配置及び形状は図8Aに限定されない。また、配管97はスプレー等の噴霧装置を配列させた構成に置換することも可能である。
 なお、図8Aでは説明の便宜のためにフィルタ96の上側は開放されているように図示されている。実際にはガスをフィルタ96に通過させる必要があるため、フィルタ96上部にガスが流通できない壁が設置されている。
In FIG. 8A, two pipes 97 for cleaning the filter 96 are arranged in the upper part of the filter 96 along the depth direction of the dust collection area 2. However, if the filter 96 can be cleaned, the arrangement and shape of the pipe 97 are not limited to those shown in FIG. 8A. The pipe 97 can be replaced with a configuration in which spraying devices such as sprays are arranged.
In FIG. 8A, for convenience of explanation, the upper side of the filter 96 is shown as being open. Since it is actually necessary to pass the gas through the filter 96, a wall through which no gas can flow is installed above the filter 96.
 第4実施形態の集塵装置を用いた場合も、第1実施形態と同様に粒子状物質の帯電及び捕集が行われる。
 本実施形態では、入口部3と反対側に位置するアース電極95と放電トゲ102aとの間でもコロナ放電が発生する。図8Aに示すようにアース電極95を湾曲した形状にすると、放電トゲ102aとの距離を一定に保つ設計が可能となり、安定したコロナ放電を発生させることができる。
 本実施形態の構成でフィルタの厚さが均一である場合、集塵エリア2に対向するフィルタ96でのガス透過量が大きくなる。そこで、本実施形態のように集塵エリア2に対向するフィルタ96の圧力損失を高くすれば、フィルタ96でのガス流速が低減される。この結果、フィルタ全体でガス通過量を略均一化することができる。
When the dust collector of the fourth embodiment is used, the particulate matter is charged and collected as in the first embodiment.
In the present embodiment, corona discharge also occurs between the ground electrode 95 located on the side opposite to the inlet 3 and the discharge thorn 102a. If the ground electrode 95 has a curved shape as shown in FIG. 8A, it is possible to design a constant distance from the discharge thorn 102a, and stable corona discharge can be generated.
When the thickness of the filter is uniform in the configuration of the present embodiment, the amount of gas permeation through the filter 96 facing the dust collection area 2 increases. Therefore, if the pressure loss of the filter 96 facing the dust collection area 2 is increased as in the present embodiment, the gas flow rate in the filter 96 is reduced. As a result, the gas passage amount can be made substantially uniform throughout the filter.
 図8A~図8Cでは放電トゲ102の長さが集塵エリア2の奥行方向で一つずつ段階的に変えられている例を示した。本実施形態はこれに限定されず、図2のように放電トゲの長さが段階的に変えられている構成を採用することができる。また、図6のようにフィルタの厚さが変えられている構成を採用することができる。この場合、例えばガスの流入方向に平行なフィルタ6について、集塵エリア2奥行方向に向かうに従ってフィルタ6を厚くしていき、フィルタ96は最奥のフィルタ6よりも厚く設置する。 8A to 8C show an example in which the length of the discharge thorn 102 is changed step by step in the depth direction of the dust collection area 2. The present embodiment is not limited to this, and it is possible to adopt a configuration in which the length of the discharge thorn is changed stepwise as shown in FIG. Moreover, the structure by which the thickness of the filter is changed like FIG. 6 is employable. In this case, for example, for the filter 6 parallel to the gas inflow direction, the filter 6 is made thicker as it goes in the depth direction of the dust collection area 2, and the filter 96 is installed thicker than the innermost filter 6.
1,21,41,44,61,81,91 捕集部
2,62,92 集塵エリア
3,63,93 入口部
4,8 壁面
5,65,95 アース電極
6,66,96 フィルタ
7,83,97 配管
10,30,50,70,100 放電電極
11,31,101 取付軸
12,32,52,72,102 放電トゲ
13 放電極支持材
14 碍子
15 開口部
16 パイプ
17 清浄ガス通路
42,45,82 プレチャージ部
43,46 囲い
84 カバー
85 ドレイン
86 シールポット
1, 2, 41, 44, 61, 81, 91 Collection part 2, 62, 92 Dust collection area 3, 63, 93 Entrance part 4, 8 Wall surface 5, 65, 95 Ground electrode 6, 66, 96 Filter 7, 83, 97 Piping 10, 30, 50, 70, 100 Discharge electrode 11, 31, 101 Mounting shaft 12, 32, 52, 72, 102 Discharge bar 13 Discharge electrode support 14 Insulator 15 Opening 16 Pipe 17 Clean gas passage 42 , 45, 82 Precharge unit 43, 46 Enclosure 84 Cover 85 Drain 86 Seal pot

Claims (7)

  1.  ガスが導入される入口部を有する集塵エリアと、
     前記集塵エリア内に設置され、取付軸と、該取付軸から突出する複数のトゲ状の放電トゲとを有する複数の放電電極と、
     前記ガスが流通可能である開口を有し、前記放電トゲの延在方向に略直交し、前記放電トゲの先端が対向する前記集塵エリアの壁面を構成するアース電極と、
     前記アース電極の外側に設置され、前記集塵エリア内の前記ガスが透過するフィルタと、
     前記アース電極及び前記フィルタを介して前記集塵エリアのガス下流側に位置する清浄ガス通路と、
     前記放電電極に電圧を印加する電源とを備え、
     前記放電電極の各々の前記取付軸は、前記ガスが前記集塵エリアに流入する方向と略直交する方向に延在し、
     複数の前記放電電極は、前記集塵エリアの前記入口部から奥行方向に配列され、
     前記集塵エリアの前記入口部に位置する前記放電電極の前記放電トゲの長さは、前記集塵エリアの奥側に位置する前記放電電極の前記放電トゲの長さよりも長く、
     前記放電トゲと前記アース電極との間でコロナ放電を発生させる集塵装置。
    A dust collection area having an inlet for introducing gas;
    A plurality of discharge electrodes installed in the dust collection area and having a mounting shaft and a plurality of thorn-shaped discharge spikes protruding from the mounting shaft;
    An earth electrode having an opening through which the gas can flow, substantially perpendicular to an extending direction of the discharge thorn, and constituting a wall surface of the dust collection area facing a tip of the discharge thorn;
    A filter installed outside the ground electrode, through which the gas in the dust collection area passes,
    A clean gas passage located on the gas downstream side of the dust collection area through the ground electrode and the filter;
    A power source for applying a voltage to the discharge electrode,
    The mounting shaft of each of the discharge electrodes extends in a direction substantially orthogonal to the direction in which the gas flows into the dust collection area,
    The plurality of discharge electrodes are arranged in a depth direction from the entrance of the dust collection area,
    The length of the discharge thorn of the discharge electrode located at the entrance of the dust collection area is longer than the length of the discharge thorn of the discharge electrode located on the back side of the dust collection area,
    A dust collector that generates a corona discharge between the discharge thorn and the ground electrode.
  2.  前記放電トゲの長さは、前記集塵エリアの前記入口部から奥行方向に向かって段階的に変えられている請求項1に記載の集塵装置。 The dust collector according to claim 1, wherein the length of the discharge thorn is changed stepwise from the entrance of the dust collection area toward the depth direction.
  3.  ガスが導入される入口部を有する集塵エリアと、
     前記集塵エリア内に設置され、取付軸と、該取付軸から突出する複数のトゲ状の放電トゲとを有する複数の放電電極と、
     前記ガスが流通可能である開口を有し、前記放電トゲの延在方向に略直交し、前記放電トゲの先端が対向する前記集塵エリアの壁面を構成するアース電極と、
     前記アース電極の外側に設置され、前記集塵エリア内の前記ガスが透過するフィルタと、
     前記アース電極及び前記フィルタを介して前記集塵エリアのガス下流側に位置する清浄ガス通路と、
     前記放電電極に電圧を印加する電源とを備え、
     前記放電電極の各々の前記取付軸は、前記ガスが前記集塵エリアに流入する方向と略直交する方向に延在し、
     複数の前記放電電極は、前記集塵エリアの前記入口部から奥行方向に配列され、
     前記集塵エリアの奥側に位置する前記フィルタは、前記集塵エリアの前記入口部に位置する前記フィルタよりも厚く、
     前記放電トゲと前記アース電極との間でコロナ放電を発生させる集塵装置。
    A dust collection area having an inlet for introducing gas;
    A plurality of discharge electrodes installed in the dust collection area and having a mounting shaft and a plurality of thorn-shaped discharge spikes protruding from the mounting shaft;
    An earth electrode having an opening through which the gas can flow, substantially perpendicular to an extending direction of the discharge thorn, and constituting a wall surface of the dust collection area facing a tip of the discharge thorn;
    A filter installed outside the ground electrode, through which the gas in the dust collection area passes,
    A clean gas passage located on the gas downstream side of the dust collection area through the ground electrode and the filter;
    A power source for applying a voltage to the discharge electrode,
    The mounting shaft of each of the discharge electrodes extends in a direction substantially orthogonal to the direction in which the gas flows into the dust collection area,
    The plurality of discharge electrodes are arranged in a depth direction from the entrance of the dust collection area,
    The filter located on the back side of the dust collection area is thicker than the filter located at the inlet of the dust collection area,
    A dust collector that generates a corona discharge between the discharge thorn and the ground electrode.
  4.  前記入口部側の前記アース電極の端部から前記集塵エリアの外側方向に向かって突出する導電性の囲いで囲まれ、前記入口部側と反対側が開口して前記ガスが内側に流入可能であり、前記放電電極の前記放電トゲが前記囲いに対向して設けられるプレチャージ部を有する請求項1乃至請求項3のいずれかに記載の集塵装置。 Surrounded by a conductive enclosure projecting from the end of the ground electrode on the inlet side toward the outside of the dust collection area, the side opposite to the inlet side opens and the gas can flow inward. 4. The dust collector according to claim 1, further comprising a precharge portion provided with the discharge thorn of the discharge electrode facing the enclosure. 5.
  5.  前記集塵エリアが前記ガスの流入方向と略直交する方向に複数配列され、
     隣接する前記集塵エリアの間に前記清浄ガス通路が配置され、
     前記集塵エリアが配列する方向の前記清浄ガス通路の幅が、前記集塵エリアが配列する方向の前記集塵エリア内の幅以下である請求項1乃至請求項4のいずれかに記載の集塵装置。
    A plurality of the dust collection areas are arranged in a direction substantially orthogonal to the inflow direction of the gas,
    The clean gas passage is disposed between adjacent dust collection areas;
    5. The collection according to claim 1, wherein a width of the clean gas passage in a direction in which the dust collection area is arranged is equal to or less than a width in the dust collection area in a direction in which the dust collection area is arranged. Dust equipment.
  6.  前記フィルタの上側に、前記フィルタを洗浄するための液体を供給する洗浄部が設置される請求項1乃至請求項5のいずれかに記載の集塵装置。 The dust collector according to any one of claims 1 to 5, wherein a cleaning unit that supplies a liquid for cleaning the filter is installed above the filter.
  7.  請求項1乃至請求項6のいずれかに記載される集塵装置を用いて、粒子状物質及び水ミストを含むガスから粒子状物質を捕集する集塵方法であって、
     前記電源が前記放電電極に電圧を印加して、前記放電電極から前記アース電極に向かうイオン風を発生させるとともに、前記集塵エリア内で前記ガス中に含まれる前記粒子状物質を帯電させる工程と、
     前記ガスを前記フィルタに通過させて、前記帯電した粒子状物質を前記フィルタで捕集する工程とを含む集塵方法。
    A dust collection method for collecting particulate matter from a gas containing particulate matter and water mist using the dust collector according to any one of claims 1 to 6,
    The step of applying a voltage to the discharge electrode by the power source to generate an ion wind from the discharge electrode to the ground electrode, and charging the particulate matter contained in the gas in the dust collection area; ,
    Passing the gas through the filter and collecting the charged particulate matter with the filter.
PCT/JP2013/079932 2013-11-05 2013-11-05 Dust collection device and dust collection method WO2015068209A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/079932 WO2015068209A1 (en) 2013-11-05 2013-11-05 Dust collection device and dust collection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/079932 WO2015068209A1 (en) 2013-11-05 2013-11-05 Dust collection device and dust collection method

Publications (1)

Publication Number Publication Date
WO2015068209A1 true WO2015068209A1 (en) 2015-05-14

Family

ID=53041017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079932 WO2015068209A1 (en) 2013-11-05 2013-11-05 Dust collection device and dust collection method

Country Status (1)

Country Link
WO (1) WO2015068209A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109099476A (en) * 2018-08-03 2018-12-28 山东建筑大学 A kind of electrostatic oil-fume exhauster for integrated kitchen range

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115750A (en) * 1984-06-30 1986-01-23 Corona Giken Kogyo Kk Apparatus for purifying exhaust gas
JPH08500521A (en) * 1992-07-15 1996-01-23 リンデ アクチェンゲゼルシャフト Method and apparatus for removing particles from the exhaust gas of an internal combustion engine
JP2001017885A (en) * 1999-07-09 2001-01-23 Hitachi Plant Eng & Constr Co Ltd Wet electric dust collector
JP2002166195A (en) * 2000-11-30 2002-06-11 Mitsubishi Heavy Ind Ltd Filter apparatus and dust collector
JP2004089980A (en) * 2002-08-29 2004-03-25 Korea Inst Of Energ Res Union type dust collector
JP2004293417A (en) * 2003-03-27 2004-10-21 Isuzu Motors Ltd Exhaust emission control method of internal combustion engine and its device
JP2006035194A (en) * 2004-07-30 2006-02-09 Mitsubishi Heavy Ind Ltd Smoke dispersion apparatus
JP2011240292A (en) * 2010-05-20 2011-12-01 Furukawa Industrial Machinery Systems Co Ltd Electric dust collector
WO2013179381A1 (en) * 2012-05-29 2013-12-05 トヨタ自動車株式会社 Particulate matter treating device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115750A (en) * 1984-06-30 1986-01-23 Corona Giken Kogyo Kk Apparatus for purifying exhaust gas
JPH08500521A (en) * 1992-07-15 1996-01-23 リンデ アクチェンゲゼルシャフト Method and apparatus for removing particles from the exhaust gas of an internal combustion engine
JP2001017885A (en) * 1999-07-09 2001-01-23 Hitachi Plant Eng & Constr Co Ltd Wet electric dust collector
JP2002166195A (en) * 2000-11-30 2002-06-11 Mitsubishi Heavy Ind Ltd Filter apparatus and dust collector
JP2004089980A (en) * 2002-08-29 2004-03-25 Korea Inst Of Energ Res Union type dust collector
JP2004293417A (en) * 2003-03-27 2004-10-21 Isuzu Motors Ltd Exhaust emission control method of internal combustion engine and its device
JP2006035194A (en) * 2004-07-30 2006-02-09 Mitsubishi Heavy Ind Ltd Smoke dispersion apparatus
JP2011240292A (en) * 2010-05-20 2011-12-01 Furukawa Industrial Machinery Systems Co Ltd Electric dust collector
WO2013179381A1 (en) * 2012-05-29 2013-12-05 トヨタ自動車株式会社 Particulate matter treating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109099476A (en) * 2018-08-03 2018-12-28 山东建筑大学 A kind of electrostatic oil-fume exhauster for integrated kitchen range

Similar Documents

Publication Publication Date Title
US8465575B2 (en) Dust collector
US7318857B2 (en) Dual flow wet electrostatic precipitator
JP6367123B2 (en) Dust collector, dust collection system and dust collection method
JP5056499B2 (en) Air treatment equipment
JP5040612B2 (en) Air purification device
JP2016507274A5 (en)
KR102095316B1 (en) Plasma Dust Collector with Cleaning Device
JP2011131132A (en) Welding fume collector
KR101852163B1 (en) An apparatus combined electrostatic spraying with electrostatic precipitator for removing fine particulate matter
CN103920589B (en) A kind of rotation demister
KR101864480B1 (en) Electrostatic precipitation device for particle removal in explosive gases
JP2013123692A (en) Dust collector and method for collecting dust
JP2008006371A (en) Dust collector
JP2009136816A (en) Dust collector
KR20200068867A (en) Wet Type Dust Collector having Multiple Nozzles with Electrospraying using Water Level Difference
WO2015068209A1 (en) Dust collection device and dust collection method
JP2012192361A (en) Electrostatic dust catcher
CN110404682A (en) Drop liquid dust collection electrostatic precipitator
CN105797526A (en) High-efficiency coupling dust remover applicable to desulfurization dust-removing absorption tower and dust removing method thereof
KR102389530B1 (en) Hybrid Dust Collector
JP2002195618A (en) Kitchen exhaust system
KR101092910B1 (en) Gas Purification System and Duct System Using Porous Cylinder
JP2005349272A (en) Deduster
JP5800717B2 (en) Mist-like substance removal device
KR100812716B1 (en) Gas impurity removal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 13897049

Country of ref document: EP

Kind code of ref document: A1