[go: up one dir, main page]

WO2016066947A1 - Ensemble support/peptide/bicouche lipidique, procedes de preparation et procedes de detection associes - Google Patents

Ensemble support/peptide/bicouche lipidique, procedes de preparation et procedes de detection associes Download PDF

Info

Publication number
WO2016066947A1
WO2016066947A1 PCT/FR2015/052890 FR2015052890W WO2016066947A1 WO 2016066947 A1 WO2016066947 A1 WO 2016066947A1 FR 2015052890 W FR2015052890 W FR 2015052890W WO 2016066947 A1 WO2016066947 A1 WO 2016066947A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
lipid
support
lipid bilayer
metal cation
Prior art date
Application number
PCT/FR2015/052890
Other languages
English (en)
Inventor
Agnès GIRARD-EGROT
Ofelia MANITI
Samuel REBAUD
Original Assignee
Universite Claude Bernard Lyon I
Centre National De La Recherche Scientifique
Institut National Des Sciences Appliquees De Lyon
Ecole Superieure De Chimie Physique Electronique De Lyon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Claude Bernard Lyon I, Centre National De La Recherche Scientifique, Institut National Des Sciences Appliquees De Lyon, Ecole Superieure De Chimie Physique Electronique De Lyon filed Critical Universite Claude Bernard Lyon I
Priority to EP15798506.0A priority Critical patent/EP3213074A1/fr
Priority to JP2017522905A priority patent/JP2017534053A/ja
Priority to US15/520,896 priority patent/US20180024125A1/en
Publication of WO2016066947A1 publication Critical patent/WO2016066947A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/5432Liposomes or microcapsules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to the technical field of lipid membranes attached to an analysis support.
  • the invention relates to a carrier medium of a lipid bicouciie, the bond between the carrier and the lipid bicoucbe being established by the intermediary of a particular peptide, a process for preparing such a carrier and its use as a biochip and: in different analytical techniques.
  • Membrane proteins play a major role in every living cell. These proteins are the pivots of cellular metabolism and the transduction of biological signals. Because of their important functions, they are preferred therapeutic targets. However, the reconstitution of membrane proteins remains a challenge because it requires a memorandum environment to be functional. To overcome this problem, biomimetic membranes corresponding to lipid biocides attached to a support are considered a latest model for the study of biological membranes in various branches of basic research. Recently, the integration of biomimetic membranes incorporating transmembrane proteins into the biochip concept remains an important challenge for the high-throughput screening of drugs and the development of rapid diagnostic tests.
  • Membrane biochips therefore have an interesting analytical potential, especially for two main applications. After reinsertion of membrane proteins of interest (in particular a transmembrane receptor) in the membranes present on the analysis zones (also called “plots") of a biochip, it is possible:
  • the major obstacle to overcome for the reconstitution of transmembrane proteins and for the development of membrane biochips lies in the in vitro formation of a robust lipid bilayer provides the ability to insert integral transmembrane proteins, without altering the intrinsic properties of such proteins, the piupart reconstituted lipid bilayers in vitro to the surface media, or type in particular, are in direct contact with the support, that is to say that only a thin layer of water two to three nanometers thick separates the lipid bilayer from the support. Also, even if these so-called supported lipid bilayers are easy to handle because they are deposited on a solid support, the presence of the latter in the vicinity, with insufficient distance, prevents reconstitution functional function of transmembrane proteins, because of the presence of extramembranous ectodomalnes often voluminous encountered in these pretéic structures, In addition, the insufficient distance between the lipid bilayer and the support more often causes a loss
  • Pyridyldithiopropionate allows the formation of an S-Au bond on the gold surface.
  • the POPC is used in addition to the functionalized lipid.
  • the DSPE has saturated hydrophobic chains which can influence the fluidity of the lipid membrane obtained. PEG also appears to have an impact on the re-insertion of the membrane protein.
  • polar peptides as spacer arms is considered the most promising, to then facilitate the functional reincorporation of membrane proteins. They offer the advantage of constituting a biocompatible medium of the same nature as the protein to be inserted and can play the role of cytoskeleton.
  • the peptide fasteners or spacers used heretofore consist of: i) a functional group such as a thiol group, a disulfide or a silane, which can bind covalently to a suitable substrate such as or 2) a peptide part which acts as a hydrophilic spacer arm and 3) a hydrophobic lipid part which allows anchoring of the bilayer by forming the proximal layer of the reconstituted lipid membrane.
  • This first proximal membrane sheet is obtained by self-assembly on the support of a dilute solution of spacer peptides comprising a lipid component.
  • the covalent bond to the support allows a stable attachment of the proximal layer and therefore its bilayer.
  • the distal sheet of the membrane is then formed, either by deposition of a Langmuir monolayer by Langmuir-Blodgett transfer, or by liposome fusion, directly to the hydrophobic lipid surface of the proximal sheet previously formed on the support by self-assembly. . Fusion in particular, liposomes are selected to obtain the direct fusion of proteollomans and then promote the reconstitution of membrane proteins in the attached suspended layer.
  • the spacer peptides used as molecular attachments are prepared from natural or synthetic thiopeptides or thlolipopeptides.
  • the peptides are attached to a gold substrate by means of a lipoic acid, or a sulfhydryl group of a cysteine in a methyl position and their C-terminal end is then activated to chemically couple a phospholipid, which corresponds to a molecule of DMPE (OIMyristoyl-Phosphatldyl-Ethanolamine) via the NH 2 function of the polar head of this phospholipid.
  • DMPE OFDMPE
  • Cl -COOH-terminated thiopeptide group is activated by EDC / NHS
  • the lipid bilayers are only anchored at their proximal leaflet by hydrophobic interaction, via a cholesterol core or saturated hydrophobic acid chains (in particular the fatty chains of DMPE attached to the C-termendal end of the spacer peptide) that penetrate the liposome during distal leaflet formation.
  • This mode of interaction can introduce local disorders within the lipid layer during its formation, which can lead to a partial destruction of the membrane architecture during the manipulation of the membrane in an aqueous medium.
  • the proximal layer is first constructed by a method of self-assembly of a dilute solution of attachment molecules which generally correspond to thioiipopeptides, i.e.
  • the distal layer of the membrane is then formed; either by liposome fusion or by Langmulr-Blodgett deposition on the self-assembled hydrophobic monolayer.
  • this two-step formation mode does not guarantee the formation of a planar and continuous bilayer, nor the versatility of the lipid composition of the membrane, the presence of the hydrophobic lipid layer because of the anchoring method used limiting the choice of the composition of the proximal leaflet.
  • the synthesis chemistry of the peptides used to obtain the first sheet comprising the hydrophobic lipid can be complex and the dynamic behavior of the lipid bilayer anchored by its proximal leaflet. can be modified.
  • the formation of the two layers of the bilayer in two distinct stages is therefore a major disadvantage for the reconstitution of integral transmembrane proteins which require: a uniform lipid environment for the maintenance of their functionalities.
  • the objective that the present invention proposes to solve is to propose a solution that is adapted to the attachment of a wide range of lipids and therefore to the fixation of different lipid bilayers that are compatible with the insertion of a wide range of lipids.
  • of proteins in particular to propose new solutions adapted to the development of biochips
  • Another object of the invention is to provide a process that is both simple and versatile, which allows the formation of lipid bilayers attached to a support, the link between the lipid bilayer and the support to be robust and adapted to different lipid compositions. , so as to be able to vary and modulate at will the composition of the lipid bilayer attached and thus allow the incorporation of membrane proteins, including integrally membrane proteins, without altering their intrinsic properties.
  • the invention relates to an assembly consisting of a support on which at least one lipid bilayer is attached via a peptide. called peptlde piles, itself linked to the support, characterized in that the pililated peptide has a C ⁇ termlnale end consisting of at least 4 consecutive hlstidines and in that the lipid bilge comprises a portion of lipids having a chelating polar head imprisoning a metal cation providing the binding with the piled peptide through metal-chelate interactions between the metal cation and at least a part of the hlstidines constituting the C-terminal end of the peptlde piles.
  • the binding method used to establish the link between the peptlde pileus and the lipid bilayer makes it possible to modulate as desired the composition of the lipid bilayer which may correspond to any type of cell membranes, given that in the context of the invention, this composition is no longer conditioned by a spacer peptide functionalized with a hydrophobic lipid domain which would be used to form the proximal lipid layer (that is to say that located near the support), but by the nature of the lipids that will be fixed there.
  • the lipid bilayer is attached to the piled peptide which serves as a spacer arm thanks to a metal-chelate interaction established between the metal lion and the imidazole nucleus of at least some of the hlstidines forming the C-terminal end.
  • peptlde piles Some of the imidazoles at the end of the peptide pile also play the role of chelate for metal lion present, as the chelating part presents. The bond thus established gives the assembly a great stability and robustness which are superior to those obtained with the solutions of the prior art, thus enabling it to be handled.
  • the lipid layer is thus attached to the support via the pililated peptide, being kept at a distance from the support and can be considered suspended because of the flexibility of the piled peptides.
  • Various chelating lipids trapping a metal cation are available commercially, and, for example, marketed by Avant! Polar Liplds (Aiabaster, A! Abama, USA) and may be used in the context of the invention.
  • 1-dimethylsilyl-soglycero-3-phosphoethanolamine-M-dietiylenethanamine pentaacetic acid 14: 0 PE-DTPA
  • 1,4-dipainiitoyl-s / 3-Glycero-3-phosphoethanolamine 1,4-dipainiitoyl-s / 3-Glycero-3-phosphoethanolamine
  • N-diethylenetriaminepentaacetic (16: 0 PE-DTPA) in the form of copper or gadolinium salt
  • the acid i, 2-distearoyl-5-gfycero-3-phosphoethanolamine-N diethylenetriaminepentaacetic acid 18: 0 PE-DTPA) in the form of copper or gadolinium salt
  • diethylenetriaminepentaacetic acid bis (14: QPE) -DTPA
  • gadolinium salt bis (1,2-difl) -mitoyl-5-glycero-3-phosphoethanolarnne) - N-N'-diethylenetriaminepentaacetic acid (bis (16: 0PE) ⁇ DTP ') in the form of gadolinium salt, bis (1 / 2-dlstearoyl-5-glycero-3-phosphoethanolamine) -N-N'-diethylenethanamine pentaacetic acid (bis ⁇ 18: 0PE ⁇ ⁇ DTP A) in the form of gadolinium sei.
  • the metal cation is, for example, a cation of nickel (Nl 2+ ), gadolinium (Gd 3 *) or copper (Cu 2+ ).
  • the NIA (nitriiolriacetic) group trapping a Mickel cation is the most effective for hanging the pililated peptide via its polyhlytidine end.
  • the metal cation is a nickel cation and the chelate polar head is nitrilotriaeetic acid.
  • the C-terminal end of the peptlde piles is, for example, constituted, for its part, 4, 5 or 6 consecutive hlstidines. Interactions will be established between the metal cation and at least some of the imidazole groups of histidines located at the C-terminus of the piled peptide. More specifically, a metal-chelate bond is established with the nitrogen carrying a pair of free electrons of at least some of the imidazole groups of the histidines, as for example illustrated in Scheme i below in FIG. case of ⁇ -NTA:
  • the binding with the pililated peptide is ensured by means of metal-chelate interactions established between the metal cation and two of the histidines located in the C-terminal portion of the piled peptide,
  • the portion of lipids having a polar head chelatrlce trapping a metal cation is low and does not alter the properties of the lipid bilayer which can therefore mimic, as close as possible, the composition of biological membranes, and in particular cell membranes.
  • the portion of lipids having a chelating polar head trapping a metal cation represents from 0.5 to 5 mol%, preferably from 1 to 2 mol%, of all the lipids forming the lipid bilayer.
  • the lipid (s) having a chelated polar head trapping a metal cation is (are) distributed in the lipid bilayer and ensures anchoring of the bilayer, with a good distribution in the latter.
  • lipid bilayer a lipid bilayer describes, consisting of two sheets of lipid molecules, most of which consists of phospholipldes, so as to allow such structured sheets,
  • a bilayer is a thin polar membrane.
  • Phospholipids having a polar head and at least two aliphatic chains. The polar heads constitute the surface of the membrane and the aliphatic chains are oriented towards the inside of the membrane, as illustrated in Figure I.
  • phospholines is meant glycerophospholipids, including phospholonyls and sphingophospholipids.
  • the lipid bilayer will preferably consist of at least 70% by weight of phospholines, preferably at least 80% by weight and preferably at least 90% by weight, or even 100% by weight with phospholines. It is not excluded that the lipid bilayer includes other natural lipids, such as cholesterol Such lipids are present in an amount such that it does not affect the structure in the form of a bilayer.
  • the lipid composition of the bilayer can be modulated at will, because it is; Independent of the bilayer formation protocol. Many lipid compositions can be used ; in different proportions, which makes it possible to mimic the composition of the different types of biological membranes. With the exception of the lipid portion which has a cheetah polar head trapping a metal cation, the lipid bilayers may consist of any lipid alone or in admixture, including but not limited to PC (phosphatidylcholine), PS (phosphatidylserine) ), PE
  • Lipid bilayers of varying compositions including different classes of membrane lipids such as phospholipids (including phosphoinositides), sphingolipids and cholesterol can be obtained.
  • Lipid bilayers can also be formed from natural extracts of membrane lipids. The possibility of specifically adapting the composition of the lipid bilayer, so as to obtain an artificial membrane for the protein that is to be inserted, makes it possible to respect its natural lipid environment and then guarantee its reinsertion.
  • the composition of the lipid bilayer is selected so as to mine a biological membrane, and in particular a cell membrane, in particular plasmic, nuclear, mitochondrial, chioropiasms, etc., within the scope of the invention, it is possible to obtain an assembly in which the lipid bilayer is fluid and continuous.
  • the lipid bilayer will preferably be formed by at least 80%, preferably at least 90%, and preferably at least 95% by weight of fluid lipids.
  • the fluidity of a lipid is defined at the level of the acyl fatty chains and at ambient temperature (22 ° in particular).
  • a lipid is said to be fluid when it presents disorders (ie "left" conformations on a chemical plane) at the level of the arrangement of its fatty chains.
  • the fluidity of a given lipid depends mainly on the length of its acyl chains, their unsaturation and the temperature.
  • the phospholipldes having unsaturated acyl chains (C18: l for example) are in the fluid state.
  • lipid composition there may be some variability in the lipid composition: it is notably possible to choose the acyl chains, the length of the chain, choose one acyl chain with one or more unsaturations .
  • the piled peptide is preferably covalently attached to the support, preferably by its N-terminal end.
  • High affinity interactions particularly of the biotin-streptavidin type, could also be envisaged.
  • Different immobilization strategies by covalent bond can be implemented, depending on the nature of the support. It is possible to use the techniques implemented in the prior art.
  • a covenant bond may, for example, be established by reaction of an amino function of the peptide: an amino function of the amino adde located in the M position.
  • the reaction to establish a covenant link may require prior functionalization of the support.
  • the support is made of glass, polymer, silanized glass.
  • the thiol function of a cysteine may react with a surface functionalized by a chemical group such as the maleimide.
  • An amino function may, for its part, establish a covalent bond with a functional group such as aldehydes or activated esters. , epoxies.
  • a functional group such as aldehydes or activated esters. , epoxies.
  • Such groups may be introduced beforehand on the support, in particular on siianized glass slides, according to techniques well known to those skilled in the art.
  • a covalent bond can be directly established with a thiol function, by formation of an S-Au bond by chemisorption.
  • the gold supports are the supports of choice for the detection of molecular interactions by QCM-D (for "Crystal Quartz Crystal Microbalance with Dissipation Monolithization") and SPRi,
  • the piled peptide has a cysteine at its N-terminus establishing an S-Au bond with the gold support.
  • the peptide will have a hydrophilic structure to prevent its adhesion to the support.
  • the conformation and structure of the piled peptide, its hydrophilic properties and its length can be controlled by the nature and the number of amino acid residues constituting it. These characteristics may be adjusted by those skilled in the art, so as to get !
  • the peptide will advantageously consist of amino acids chosen from hydrophilic amino acids, such as lysine, arginine, glutamic acid, aspartic acid, asparagine, glutamine and serine, in the context of the 'invention; we can, for example,
  • the pilil peptide of SEQ ID No. e was synthesized on the basis of a peptide fragment derived from ⁇ -aminamin (PI9) having an N-terminal cysteine for gold grafting and a poly-hlstidine label. in the C-terminus position for the fixation of liposomes by meta-chelate bonds.
  • PI9 ⁇ -aminamin
  • the amount of peptide pileus used will be selected so as to establish a sufficient attachment
  • the peptide piling of SEQ ID ⁇ 1 is present with a density of 2.8 ⁇ 10 13 molecules per cm 2 , corresponding to the saturation of the surface of the support in gold, the peptide will be distributed and homogeneously attached to the surface of the support.
  • the length of the selected peptide will be adapted by those skilled in the art, in particular according to the size of the ectodornaine of the protein to reintegrate.
  • the sensitivity of the SPRI apparatus which will be used for the subsequent analysis will also have to be taken into account, so as not to lose the signal in the case of interactions too far from the surface of the support.
  • the peptides used so far in the literature generate a gap of 2 nm.
  • a gap of 6 nm is ideal for reconstitution of a wide range of membrane protein (Schiller 5.M., Reisler-Friebis A, Gottz H., Hawker Ci, Frank CW, Naumann R., and Knoll W. ., Biomimetics Upoglycopoiymer Membranes: Photochemical Surface Attachment of Supramofecular Architectures with Defined Orientation, Angewandte Chemie Internationa! Edition, 2009, 48 (37): 6896).
  • the peptide will preferably be selected so as to establish a spacing between the support and the lipid bilayer of 1 to 10 nm, and preferably 2 to 7 nm, and in particular of the order of 6 nm.
  • the assembly may contain a membranalre protein, preferably an integral membranalre protein, which is inserted into the lipid bilayer, a protein is said integral passes through at least once completely a lipid bilayer of a cellular membrane.
  • the membrane protein can be introduced after the formation of the lipid bilayer or directly during the formation of the latter.
  • Sets may be used for the constitution of biochips.
  • membrane proteins in a lipid bilayer mimicking a lipid membrane, and this in a capillary manner.
  • the support can be used as an analytical tool, particularly for the study or screening of new agonists or antagonists or for the study of new therapeutic agents. with membranalre aim.
  • the use of a gold support will, in particular, make it possible to carry out monitoring by Surface Plasmon Resonance Imaging (SPRI), which does not require any prior marking of the molecular entities to be studied.
  • SPRI Surface Plasmon Resonance Imaging
  • the assembly according to the invention will comprise a support which has several zones on which a lipid layer is fixed via a peptlde, called peptlde piles, itself linked to the support, said peptlde piles having a C-terminal end consisting of at least 4 consecutive histidines and the lipid layer comprising a portion of lipids having a polar chelating head which traps a metal cation and provides the connection with peptlde piles through metal-type interactions chelate between the metal cation and at least a portion of the histidines located in the O-terminal portion of the peptlde piles,
  • the set corresponds to a biochip.
  • at least two or more zones that correspond to different analysis zones or spots carry a different lipid layer, making it possible to perform different analyzes simultaneously.
  • the various characteristics mentioned in the context of the invention, in connection with the definition of the peptlde piles, of the membrane layer, the preparation process of the support / peptide piling / lipidic bicube sets apply to each of these zones.
  • the subject of the invention is also a method for detection by surface plasmon resonance imaging using an assembly according to the invention in which the support is made of gold.
  • the invention also relates to a method for preparing an assembly according to the invention which comprises the following successive steps: a) fixing the peptlde piles on the surface of the support,
  • the mode of attachment of the lipid bilayer on the support is compatible with different bilipid membrane compositions which can be modulated, depending on the transmembrane protein to be reinserted.
  • the two layers of the lipid bilayer are formed simultaneously, contrary to the protocols described in the prior art, in which the two layers were independently formed in two distinct stages.
  • the process is simplified, since the formation of the two layers of the bilayer is carried out in a single step.
  • the lipid bilayers obtained retain their dynamic behavior and their fluidity since the bilayer is not anchored by its proximal layer and it is attached to the peptide piling only by a few percent (in particular of 0.5 to 5 mol%, and preferably 1 to 2 mol%) lipids with chelate head Included in the composition of liposomes,
  • the corresponding lipid bilayers can be easily used for the reinsertion of membrane proteins, by acellulalre expression in vitro of the protein in the presence of the plane and continuous lipid bilayer obtained.
  • Another advantage of the binding method used in the context of the invention which uses lipids with a cheetiece head trapping a metal cation establishing metal-chelate bonds with histldines, is that these interactions are reversible. Indeed, it is possible to regenerate the surface by eliminating the lipid bilayer and to reuse the support: that is to say that after insertion of a protein and use, it is possible to eliminate the lipid bilayer to keeping the intermediate support functionalized with the peptide pile which is therefore also an integral part of the invention. In the case of an industrial operation, this regeneration will eventually lead to a considerable reduction in the costs of production of biochips and large-scale sample analysis.
  • the subject of the invention is therefore also an intermediate support on which a peptide, called peptide piles, is attached, preferably by its N-terminus end, characterized in that the piled peptide has a free C ⁇ terrnlnal end consisting of at least 4 consecutive hisidines.
  • the characteristics of the support and the peptide described in the context of the invention apply to this intermediate support.
  • the lipid bilayer is most often obtained by melting unliamelar liposomes, with a mean diameter of between 30 and 500 nm.
  • the average liposome diameter may be defined as the number average diameter of the liposome population used, determined by quasi-elastic light scattering, also called Dynamic Light Scattering (DIS).
  • DIS Dynamic Light Scattering
  • uniamellar liposome is meant a liposome which consists only of a single bilayer of lipids.
  • liposome fusion Such a technique of melting liposomes leads to obtaining a homogeneous, homogeneous, flat and continuous layer.
  • the liposomes are not disintegrated upon attachment to the pililated peptide, and remain intact. It is then the action of the fusogenic peptide which causes the rupture of the liposome and the formation of the bilayer.
  • the opening of the liposome and the formation of the bilayer are known by the term "liposome fusion"
  • the fusion is preferably obtained by means of a fusogenic peptide, preferably of SEQ ID NO: 2; SGSWLRDV3 ⁇ 4VDWICrVLTDFKT ⁇ 'VLQSKLDYKD.
  • This peptide corresponds to the N-terminal sequence of 31 amino acids of the alpha-amphipathic helix (AH) of the nonstructural protein (NS5A) of the hepatitis C virus required for the intramembranous association of the virus during its replication. .
  • Such a fusogenic peptide has in particular been described and used in the publications of Cho et al. 2007, 2009 and 2012 f of Coutable et al 2014 and in US Pat. No. 8,211,712, for the fusion of liposomes of different compositions. This peptide is removed and is not reflected in the final set (Hardy et al 2012), From pius f publishing Coutable et al demonstrated that the use of the fusogenic peptide is compatible with the reintegration of membrane proteins.
  • peptides may be considered: peptides derived from viral capsid proteins, such as iiemaggiutinin (B2), gp41 (HIV), gp 30, gp 32, P15E (V of marine leukemia), more details, concerning such peptides, we can refer to A, Lorin and ah 2007,
  • the liposomes are proteoliposomes.
  • the insertion of the protein of interest is carried out simultaneously with the formation of the lipid bilayer, since the latter will be directly included in the proteoliposomes *
  • a film formed from the selected lipidic composition is first formed on the wall of a tube or of a glass balloon by evaporation, in particular with argon, of the organic solvent in which the lipid mixture has been formed. Then, this film is rehydrated with a buffer solution, in particular buffered at a pH in the range from 6 to 8, ideally 7.4, These first two steps are, for example, carried out at a temperature in the range of from 10 to 35% and typically at room temperature (22oC in particular). For example, a HEPES or PBS buffer may be used.
  • Multi-lamellar vesicles are then obtained and are transformed by repeated cycles of freezing (for example in liquid nitrogen) and defrosting at a temperature of 30 to 40 ° C., followed at the end of an extrusion step. allowing to adjust the size of the unilamellar liposomes then obtained,
  • liposomes comprising a portion of lipids having a chelating polar head that traps a metal cation, by establishing metal-chelate interactions between the metal cation and at least a portion of the hlstidines located in the C-position; terminal,
  • a fusogenic agent to induce liposome fusion and the formation of a continuous lipid bilayer, are, most often, carried out at a temperature in the range of 10 to 35 ° C, and typically at room temperature (22 ° C in particular) and at atmospheric pressure (in particular at 1013 hPa).
  • the support is placed in a chamber and the various reagents will be successively injected with a washing step between each of the steps a) to c) with a buffer solution, in particular buffered at a pH in the range from 6 to 8, ideally 7.4, thereby eliminating all the molecules that would not have fixed.
  • a buffer solution in particular buffered at a pH in the range from 6 to 8, ideally 7.4, thereby eliminating all the molecules that would not have fixed.
  • the support is brought into contact with an aqueous solution buffered peptlde piles, typically at a concentration of 10 nM to 10 ⁇ , including 25 nM to 4 ⁇ M peptlde piles.
  • the liposomes are then added in the form of a suspension in a buffered aqueous solution (the buffer in which they are formed) to typically obtain a concentration of 50 to 200 ⁇ g / ml in the reaction mixture in contact with the support.
  • the fusogenic agent is added typically to obtain in the réactlonnel mixture in contact with the carrier concentration of 10 to 20 .mu.M
  • the same type of buffer as previously described for the preparation of unilamellar liposomes can be implemented in each steps a) to c) in the solutions for introducing the reagents,
  • divalent cations such as calcium (Ca 2+ ) to the reaction medium, or a chelating agent such as EDTA at a concentration of, for example, 0.5 at 5 mM, without the whole being disturbed, that is to say without stalling the bilayer after fixation peptlde piles is observed.
  • the invention therefore offers the possibility to develop a versatile tool for high throughput analysis for the study of membrane protein-ligand interactions.
  • Fig 1 is a schematic representation of an assembly according to the invention.
  • Fispre 2 shows the% of reflexivity as a function of time, followed by surface plasmon resonance imaging (SPRi) in the case of the lipid composition: mixture of DOPC, DOPS and DCX3S-NTA- (Ni), in a ratio molar 74/24/2.
  • SPRi surface plasmon resonance imaging
  • Figure 3 presents the characterization of the process of formation of a lipid bilayer suspended by atomic force microscopy - AFM (images A, 8 and C from above) and by fluorescence redistribution after bleaching - FRAP (images D, F, E).
  • G bottom Top: AFM images of the gold surface after grafting of the peptide pileus (A), after addition of liposomes containing DOGS-NTA (Ni) (8) and after addition of fusogenic peptide (C).
  • FIG. 4A shows the% reflexivity versus time followed by SPRi of lipid bilayer formation consisting of DOPC / DOPS 3/1 in the presence or absence of 150 m H NaCl, followed by 1 interaction of lisoform 8 of Mucleoside Diphosphate Kinase (NDPK-8) at a final concentration of 30 nM
  • Fig. 4B shows the% reflexivity as a function of time followed by SPRi of the adsorption of NDPK-8 at a final concentration of 30 nM on the surface of gold in the presence or absence of 150 mM NaCl.
  • FIG. 5A shows fluorescence microseopic images of a gold prism after deposition of a peptide pileus matrix (left image) in the case of a biochip format, after incubation with liposomes incorporating 5% of probe.
  • fluorescent MBO-PE middle image
  • after fusion of liposomes right image.
  • lipids used come from the company Avant! Polar Upids®.
  • SPRi-Lab-f The apparatus of SPRi (SPRi-Lab-f) and the prism used (SPRi-Blochip TM) corresponding to the gold support are marketed by Hohba ⁇ .
  • the HEPES-NaCl buffer consists of HEPES (10 to 20 mM) and MaCi (0 to 150 mM), and adjusted to pH 7.4.
  • the PBS buffer consists of phosphate (10 mM), NaCl (140 mM) and KCl (2.7 mM), and adjusted to pH 7.4, the Hini-Extruder and the syringes, membranes polycarbonate and pre- Filters used for the preparation of liposomes come from Polar Lipids®.
  • the quasi-elastic light scattering gutu (Diffusion Llght Scattering, DIS) is a Malvern ⁇ Zetasizer Nano S.
  • a lipid film is first formed on the wall of a glass tube by argon evaporation of the organic solvent in which the lipid mixture, prepared in chloroform or a mixture of chloroform: methanol (9 / 1; v / v)) according to the composition chosen, was deposited.
  • the total amount of evaporated lipids is: 1 mg.
  • a lipid film is first formed on the wall of a glass tube by argon evaporation of the organic solvent in which the lipid mixture was formed.
  • This step leads to the separation of pieces of bechehes that will form MLVs ("Muiti Lameiiar Vesicie": Mufti vesicles Lamellar),
  • MLVs are then transformed by repeated cycles of freezing in liquid nitrogen and thawing in a water bath at 38 ° C (6x5 min freezing and 6x10 min defrosting)., which are followed by a step of extrusion (21 passages through a 400 nm membrane, then 21 passages through a membrane of 100 nm or less).
  • LUV Large Linlameilar Vesicie: uni-cellular liposomes
  • desired caliber Donald, KM, LlBium, J, 3. Gooding, T. Bocking, AL Mechter, AP Girard- Egrot, and SH Valenzueta. 2007.
  • the size of the liposomes is controlled by quasi-elastic light scattering, also called dynamic light scattering ("Dynamic Light Scattering", DIS). 2. Formation of the lipid bilayer
  • the concentration of 4 ⁇ in peptide pilings corresponds to the minimum concentration to obtain a saturation of the surface in grafted peptide stilts.
  • Liposomes at the initial lipid concentration of! mg / ml, are then injected into the reaction chamber at a final concentration of 100 ⁇ g / ml and are grafted onto the peptide *
  • the fusogenic peptide SEQ ID No. 2; SGSWLRDVWDWICTVLTDFKTWLQSKLDYKD in solution in HEPES buffer 10 to 20 m M pH 7.4 supplemented with HaQ 150 mM is then injected at a final concentration of between 10 and 20 ⁇ .
  • the molecular density determined for a maximum variation of 5% obtained for a final concentration of 4 pH of peptide piled in the reaction vessel and corresponding to the saturation signal, is 2.8 ⁇ 10 13 peptide molecules piled / cm 2 .
  • At 25 nM / density is 2.1G 12 peptide molecules piles / cm 2 leading to a theoretical spacing of 5.8 nm between each pile, if they are distributed homogeneously on the support.
  • Ni chelating lipid NTA
  • variable lipid compositions containing the DOGS-MTA (Mi) chelating lipid induces a sharp increase in reflectivity, as shown in FIG. 2, which reflects a change in the optical properties of the surface of the SPR prism. This reflectivity value is not After the rinsing, the MhMFA chelating head is thus specifically labeled with the polyhistamine label of the peptide for the attachment of the liposomes.
  • the addition of the fusogenic peptide of SEQ ID No. 2 induces, as shown in FIG. 2, at first a slight increase in reflectivity which translates its insertion into the liposomes, followed, in a second step, by a decrease in the signal that has previously been interpreted., for liposomes directly deposited on the gold surface without the addition of peptide pilings, such as burst liposomes and formation of a homogeneous lipid layer on the surface of the prism (Chars and Zare 2008) This characteristic profile presented Figyre 2 was obtained with all the lipid compositions listed above.
  • FIG. 3A The AFM images of the surface before and after incubation with the peptide pile (Fig 3A) show a rough surface with characteristic stripes of commercial gold prisms. After incubation of the prism carrying the pililated peptide with the suspension of unilamellar liposomes, a surface covered with vesicles (FIG. 3B) is observed, indicating the adsorption of liposomes on the surface. After injection of the fusogenic peptide, the surface appears homogeneous (FIGURE 3C), which confirms the fusion of the vesicles on the surface and the covering of the gold surface by a continuous layer of lipids,
  • the fluorophore can not diffuse on the surface, which is characteristic of a discontinuity due to the population of vesicles hanging on the surface, but not fused.
  • a redistribution of the two populations between the bleached zone and the adjacent medium takes place until disappearance of the zone photoblanchie (Fîf yre 3G).
  • the fluorescent molecule thus diffuse freely on the surface attesting to the formation of a continuous and homogeneous bilayer.
  • This protein specifically interacts with the PS molecules and this interaction is inhibited in the presence of 150 mM NaQ (Institut-Moutai et al 2014, The addition of f4DPK ⁇ 6 after formation of a bilayer formed on the pilose peptides consisting of DOPC / DOPS (3/1 molar ratio) in the absence of MaQ induces an increase in the reflectivity recorded by SPRI, which reflects a specific interaction of the protein with the bilayer In the presence of 150 mM of NaOH, there is no increase (Figure 4A). This protein has been found to be adsorbed on the gold surface in the presence and absence of NaG at 1.50 mM (FIG. 4B).
  • a major challenge in obtaining lipid membranes on a solid support is the possibility of carrying out measurements at high flow rates.
  • Traditional automated deposition methods involving dehydration of samples can not be applied to the deposition of lipid vesicles.
  • the deposits of steps a) to c) of the process according to the invention were carried out using a "piezoelectric spotter” device (sdFLEXARRAYER S3, SCIEMIOM, Germany) on a gold prism .
  • a piled peptide (0.04 to 4 ng / spot (2.5 ⁇ 10 12 to 2.5 ⁇ 14 molecules / cm 2 )) was first deposited.
  • Liposome binding (consisting of DOPC / DOPS, 3: 1 in molar ratio, incorporating 5% NBD-PE and 2% DOGS-NTA (Ni)) on the peptide-coated surfaces was followed by SPRI and fluorescence microscopy (FIgyres SA and SB), After deposition of the liposomes, the regions where the peptide was deposited become fluorescent; which attests the attachment of the liposomes to peptides deposited by addressing (FIG. 5 - image of the center). This step is accompanied by an increase in the reflectivity at each deposit of peptide pilings ( Figure SB). After the addition of the fusogenic agent, the fluorescence persists (FIG. 5 - right image) and the decrease of the reflectivity recorded by SPRi (SB Figy) attests to the formation of the bilayer suspended above each region of peptide pilaster spacer deposited by micro-addressing.
  • SPRI and fluorescence microscopy FIgyres SA and

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

L'invention concerne un ensemble constitué d'un support sur lequel au moins une bicouche lipidique est fixée par l'intermédiaire d'un peptide, nommé peptide pilotis, lui-même lié au support, caractérisé en ce que le peptide pilotis possède une extrémité C-terminale constituée d'au moins 4 histidines consécutives et en ce que la bicouche lipidique comprend une part de lipides possédant une tête polaire chélatrice emprisonnant un cation métallique assurant la liaison avec le peptide pilotis grâce à des interactions métal-chélate entre le cation métallique et au moins une partie des histidines situées en position C-terminale du peptide pilotis; ainsi que son procédé de préparation et les procédés de détection associés.

Description

ENSEMBLE SUPPORT/PEPTIDE/BICOUCHE LIPIDIQUE, PROCEDES DE PREPARATION ET PROCEDES DE DETECTION ASSOCIES
La présente invention concerne le domaine technique des membranes lipidiques attachées à un support d'analyse. En particulier, l'invention concerne un support porteur d'une bicouciie lipidique, la liaison entre le support et la bicoucbe lipidique étant établie par l'Intermédiaire d'un peptîde particulier, un procédé de préparation d'un tel support et son utilisation en tant que biopuce et: dans différentes techniques d'analyse.
Les protéines membranaîres jouent un rôle majeur dans chaque cellule vivante. Ces protéines sont les pivots du métabolisme cellulaire et de la transduction des signaux biologiques, A cause de leurs fonctions importantes, elles sont des cibles thérapeutiques privilégiées. Cependant, la reconstitution des protéines membranaîres reste un défi car elle nécessite un environnement memoranaire pour être fonctionnelle. Pour surmonter ce problème, les membranes biomimétiques correspondant à des biœuches lipidiques attachées sur un support sont considérées comme un modèle phare pour l'étude des membranes biologiques dans diverses branches de la recherche fondamentale. De nos jours, l'intégration de membranes biomimétiques incorporant des protéines transmembranaires au concept des biopuces reste un challenge important pour le criblage à haut débit de médicaments et le développement de tests de diagnostics rapides.
Les biopuces à membranes présentent donc un potentiel analytique intéressant, notamment pour deux applications principales. Après réinsertion de protéines membranaîres d'intérêt (notamment un récepteur transmembranaire) dans les membranes présentes sur les zones d'analyse (également nommées « plots ») d'une biopuce, il est possible :
soit d'étudier l'effet de différents ligands (notamment agoni stes/antagonistes) sur la fonctionnalité de la protéine réinsérée ; soit de cribler l'action d'une molécule thérapeutique sur différents récepteurs dans le cas où différents récepteurs ont été insérés sur les plots membranaîres de la puce. En dépit de ces applications et des performances analytiques qui pourraient être associées à l'utilisation de biopuces à membrane,, l'obstacle majeur à surmonter pour la reconstitution de protéines transmembranaires et pour le développement de biopuces à membranes réside dans la formation in vitro d'une bicouche lipidique robuste offrant la capacité d'insertion de protéines transmembranaires intégrales, sans altérer les propriétés Intrinsèques de telles protéines, La piupart des bicouches lipidiques reconstituées in vitro à la surface de supports, de type or notamment, sont en contact direct avec le support, c'est-à-dire que seule une fine couche d'eau de deux à trois nanomètres d'épaisseur sépare la bicouche lipidique du support Aussi, même si ces bicouches lipidiques dites supportées sont faciles à manipuler du fait qu'elles sont déposées sur un support solide, la présence de ce dernier à proximité,, avec un écart insuffisant, empêche la reconstitution fonctionnelle de protéines transmembranaires, du fait de la présence d'ectodomalnes extra-rnembranaires bien souvent volumineux rencontrés dans ces structures pretéiques, De plus, l'écart insuffisant entre la bicouche lipidique et le support engendre ie plus souvent une perte de la mobilité des protéines mernbrartaires réinsérées, qui peuvent interagir directement avec le support,
Pour contourner ce problème, différentes solutions ont été proposées dans l'art antérieur, visant à écarter la membrane lipidique du support et à obtenir des ensembles constitués d'une bicouche lipidique attachée au support solide par l'intermédiaire d'un bras espaceur moléculaire hydrophile.
Pour cela, il a été proposé de lier fa bicouche lipidique au support par {Intermédiaire! d'une couche moléculaire flexible et hydrophile assurant ainsi une séparation entre la bicouche lipidique et le support. Une telle couche intermédiaire agit également comme un réservoir aqueux entre le support et la membrane et fournit un espace suffisant pour augmenter la mobilité des protéines réinsérées,
Différentes techniques de fabrication de membranes et leur fixation sur des supports pour biopuce ont été proposées dans l'art antérieur. Des espaceurs du type polymères, thloafcanes, protéines, ont été envisagés, La publication de Coutab!e et ai 2014 décrit, par exemple, ^utilisation d'un PEG (poiyéthyiène glycol) pour établir le lien entre la bicouche lipidique et le support Cette technique utilise un lipide fonctionnalisé particulier qui est le
Figure imgf000005_0001
pyridyldithiopropionate (POP) permet la formation d'une liaison S-Au sur la surface d'or. Dans cet article, seul le POPC est utilisé en plus du lipide fonctionnalisé» De plus, le DSPE présente des chaînes hydrophobes saturées qui peuvent influencer la fluidité de la membrane lipidique obtenue. Le PEG semble également avoir un impact sur la réinsertion de ia protéine membranaire.
Parmi les stratégies proposées, l'utilisation de peptides polaires comme bras espaceurs est considérée comme la plus prometteuse, pour faciliter ensuite la réincorporation fonctionnelle de protéines membranaires. Ils offrent l'avantage de constituer un milieu biocompatible de même nature que la protéine à insérer et peuvent jouer le rôle de cytosquelette.
Typiquement, les attaches ou espaceurs peptidiques utilisés jusqu'à présent sont constitués : i) d'un groupe fonctionnel tel qu'une fonction thiol, un disuifîde ou un silane, qui peut se lier de manière covalente à un substrat approprié tel que l'or, 2) d'une partie peptidique qui Joue le rôle de bras espaceur hydrophile et, 3) d'une partie lipidique hydrophobe qui permet l'ancrage de la bicouche en formant le feuillet proximal de la membrane lipidique reconstituée.
Ce premier feuillet membranaire proximal est obtenu par autoassemblage sur le support d'une solution diluée de peptides espaceurs comportant une composante lipidique. La liaison covalente au support permet une attache stable de la couche proximale et donc de Sa bicouche. Le feuillet distal de la membrane est ensuite formé, soit par dépôt d'une monocouche de Langmuir par transfert de Langmuir-Blodgett, soit par fusion de liposomes, directement à la surface lipidique hydrophobe du feuillet proximal préalablement formé sur le support par auto-assemblage. La fusion des liposomes est, en particulier, sélectionnée pour obtenir la fusion directe de protéollposomes et favoriser, ensuite,, la reconstitution de protéines membranalres dans la blcouche suspendue attachée.
Les peptldes espaceurs utilisés comme attaches moléculaires sont préparés à partir de thiopeptides ou de thlolipopeptides naturels ou synthétiques. Dans Robelek et al 2007 ou Yildiz ai 2013, les peptldes sont attachés à un substrat d'or par l'Intermédiaire d'un acide lipoïque,, ou d'un groupement suifhydryle d'une cystéine en position M~termina!e et leur extrémité C-terminale est ensuite activée pour coupler chimiquement un phospholipide, qui correspond à une molécule de DMPE (OIMyristoyl- Phosphatldyl-Ethanolamine) via la fonction NH2 de la tête polaire de ce phospholipide. Pour cela, Se groupement -COOH terminai des thiopeptides est activé par EDC/NHS
Figure imgf000006_0001
Figure imgf000006_0002
pour former une liaison ester covaiente avec ia fonction NH2 de la DMPE, Cependant,, cette méthode Impose que le feuillet proximal de la blcouche soit principalement, voire uniquement composé de DMPE. Il n'est donc pas possible, dans ce cas,, de faire varier la composition lipidique de ce dernier,, ce qui peut être un inconvénient majeur lors de la reconstitution de la protéine membranaire d'intérêt. En effet, il est bien connu que toutes les membranes biologiques (plasmiques., nucléaires,, mitochondriales, chloroplastiques,...) présentent des compositions différentes,, en termes de nature des lipides et de leurs proportions. De plus, dans les solutions de l'art antérieur, les bicouches lipidiques sont seulement ancrées au niveau de leur feuillet proximal par interaction hydrophobe, via un noyau de cholestérol ou des chaînes acides hydrophobes saturées (notamment les chaînes grasses de DMPE attachées à l'extrémité C-termsnale du peptide espaceur) qui pénètrent dans le liposome lors de la formation du feuillet distal. Ce mode d'interaction peut introduire des désordres locaux au sein de la blcouche lipidique lors de sa formation, ce qui peut conduire à une destruction partielle de l'architecture membranaire lors de la manipulation de la membrane en milieu aqueux. Aussi, dans l'art antérieur., la couche proxiniale est d'abord construite via un procédé d'auto-assemblage d'une solution diluée des molécules d'attache qui correspondent généralement à des thioiipopeptides, c'est-à-dire à des peptides fonctionnalisés par un domaine lipidique hydrophobe. La couche distale de la membrane est ensuite formée; soit par fusion de liposomes, soit par dépôt de Langmulr-Blodgett sur la monocouche hydrophobe auto-assemblée. Dans ce cas, même si l'ancrage de fa couche proximaie hydrophobe permet de renforcer la stabilité mécanique de la membrane lipidique obtenue par rapport à une bicouche lipidique supportée uniquement adsorhée sur le substrat,, ce mode de formation en deux étapes ne garantit ni la formation d'une bicouche plane et continue, ni la versatilité de la composition lipidique de la membrane,, la présence de la couche lipidique hydrophobe du fait du mode d'ancrage utilisé limitant le choix de la composition du feuillet proximai. De plus, la chimie de synthèse des peptides utilisés pour obtenir le premier feuillet comportant le lipide hydrophobe peut être complexe et le comportement dynamique de la bicouche lipidique ancrée par son feuillet proxima! peut être modifié. La formation des deux feuillets de la bicouche en deux étapes distinctes est donc un inconvénient majeur pour la reconstitution de protéines transmembranaires intégrales qui nécessitent: un environnement lipidique uniforme pour le maintien de leurs fonctionnalités.
Les avancées technologiques concernant la fabrication et les applications industrielles des biopuces à membranes dédiées à la reconstitution de protéines transmembranaires sont donc encore très limitées.
L'objectif que se propose de résoudre la présente invention est de proposer une solution qui soit adaptée à l'attachement d'une large gamme de lipides et donc, à la fixation de différentes bicouches lipidiques compatibles avec l'insertion d'une grande gamme de protéines, de manière notamment à proposer de nouvelles solutions adaptées au développement de biopuces, Un autre objectif de iinvention est de proposer un procédé qui soit à la fois simple et versatile, qui permette la formation de bicouches lipidiques attachées sur un support., la liaison entre la bieouche lipidique et le support devant être robuste et adaptée à différentes compositions lipidiques, de manière à pouvoir faire varier et moduler a souhait la composition de la bieouche lipidique attachée et ainsi permettre l'Incorporation de protéines membranaires, et notamment de protéines membranalres Intégrales, sans altérer leurs propriétés intrinsèques.
Dans ce contexte,, finvention concerne un ensemble constitué d'un support sur lequel au moins une bicouche lipidique est fixée par l'intermédiaire d'un peptlde,. nommé peptlde pilotis, lui-même lié au support, caractérisé en ce que le peptide pilotis possède une extrémité C~termlnale constituée d'au moins 4 hlstidines consécutives et en ce que la bieouche lipidique comprend une part de lipides possédant une tête polaire chélatrice emprisonnant un cation métallique assurant la liaison avec le peptide pilotis grâce à des interactions métal-chélate entre le cation métallique et au moins une partie des hlstidines constituant l'extrémité C-terminale du peptlde pilotis.
Dans le cadre de l'Invention, le mode de liaison utilisé pour établir le lien entre le peptlde pilotis et la bieouche lipidique permet de moduler à souhait la composition de la bieouche lipidique qui pourra correspondre à tout type de membranes cellulaires, étant donné, que dans le cadre de l'invention, cette composition n'est plus conditionnée par un peptide espaceur fonctionnalisé par un domaine lipidique hydrophobe qui serait utilisé pour former la couche lipidique proximale (c'est-à-dire celle située proche du support), mais par la nature des lipides qui vont y être fixés. Dans le cadre de l'invention, la bieouche lipidique est attachée au peptide pilotis qui sert de bras espaceur grâce à une interaction métal-chélate établie entre lion métallique et le noyau imidazole d'au moins certaines des hlstidines formant l'extrémité C-terminale du peptlde pilotis. Certains des imidazoles de l'extrémité po!yhistid!ne du peptide pilotis jouent donc également le rôle de chélate pour lion métallique présent,, comme la partie chélafante présente sur le lipide à tête chélatrice, La liaison ainsi établie confère à l'ensemble une grande stabilité et une grande robustesse qui sont supérieures à celles obtenues avec les solutions de l'art antérieur, permettant ainsi sa manipulation.
La blcouche lipidique est donc attachée au support par l'intermédiaire du peptide pilotis, en étant maintenue à distance du support et peut être considérée comme suspendue du fait de la flexibilité des peptides pilotis.
Différents lipides chélateurs emprisonnant un cation métallique sont disponibies commercialement, et, par exemple, commercialisés par la société Avant! Polar Liplds (Aiabaster, A!abama, Etats-Unis) et peuvent être utilisés dans le cadre de l'Invention. On peut citer l'acide l^-dlmyristoyl-sogiycéro- 3-phosphoéthanolamine-M-diétiiylènetnamine pentaacétique (14:0 PE-DTPA) sous la forme de sel de cuivre ou de gadolinium, l'acide I^-dipainiitoyl-s/?- glycéro-3~phosphoéthanolamirie~N-diéthv1ènetriamlnepentaacétique (16:0 PE-DTPA) sous la forme de sel de cuivre ou de gadolinium, l'acide i,2~ distéaroyi-s/?-gfycéro-3-phosphoéthanolamine~N- diéthylènetrîaminepentaacétique (18:0 PE-DTPA) sous la forme de sel de cuivre ou de gadolinium, l'acide 1,2-dioieéoyi-sn--glycéro~3-[(rM"(5"amino~i- carbox7pentyl)iminodiacétique)succinyl] (DGS-NTA) sous la forme de sel de nickel,, le DTPA-bis(stéarylamide) sous la forme de sel de gadolinium, l'acide bis(1,2~dimyristoyi~sn-glycéro-3-phosphoéthanol3mine}-N~N'~
diéthyiènetriarninepentaacétique (bis(14:QPE)-DTPA) sous la forme de sel de gadolinium, l'acide bis(1,2~dfp3lmitoyl~5^glycéro-3-phosphoéthanolarnfne)- N-N'-diéthylènetriaminepentaacétique (bis(16:0PE)~DTPÂ) sous la forme de sel de gadolinium,, l'acide bîs(i/2-dîstearoyl-5^glycéro-3- phosphoéthanolamine)-N-N'-diéthylènetnamine pentaacétique (bis{18:0PE}~ DTP A) sous la forme de sei de gadolinium.
Dans ie cadre de l'invention, le cation métallique est, par exemple, un cation de Nickel (Nl2+), de Gadolinium (Gd3*) ou de Cuivre (Cu2+). Le groupement NIA (nitriiolriacétique} piégeant un cation Mickel est le plus efficace pour accrocher le peptide pilotis via son extrémité polyhlstidine. Aussi,, de manière préférée, le cation métallique est un cation de Nickel et la tête polaire chélatrlce est l'acide nitrilotriaeétique.
L'extrémité C-terminale du peptlde pilotis est,, par exemple, constituée, quant à elle, de 4, 5 ou 6 hlstidlnes consécutives. Des interactions vont s'établir entre le cation métallique et au moins certains des groupes imidazole des histidines situées à l'extrémité C-terminale du peptide pilotis. Plus précisément, une liaison du type métal-chélate s'établit avec l'azote porteur d'un doublet d'électrons libres d'au moins certains des groupes imidazole des histidines, comme par exemple illustré sur le Schéma i ci- dessous dans le cas de Νί-NTA :
Figure imgf000010_0001
De préférence, la liaison avec le peptide pilotis est assurée grâce à des interactions du type métal-chélate établies entre le cation métallique et deux des histidines situées dans la partie C-terminaie du peptide pilotis,
Dans le cadre de l'invention, ia part de lipides possédant une tête polaire chélatrlce emprisonnant un cation métallique est faible et n'altère en rien les propriétés de la bicouche lipidique qui peut donc mimer, au plus près, la composition des membranes biologiques, et notamment des membranes cellulaires. De manière avantageuse, la part de lipides possédant une tête polaire chélatrice emprisonnant un cation métallique représente de 0,5 à 5% molaire, de préférence de 1 à 2% molaire, de la totalité des lipides formant la bicouche lipidique. Le ou les lipides possédant une tête polaire chélatrlce emprisonnant un cation métallique est(sont) réparti(s) dans la bicouche lipidique et assure(nt) {'ancrage de la bicouche, avec une bonne répartition dans cette dernière.
De manière classique, par « bicouche lipidique », on désigne une double couche lipidique,, constituée de deux feuillets de molécules de lipides dont la majeure partie est constituée de phospholipldes, de manière à permettre une telle structuration en feuillets, Une telle bicouche constitue une fine membrane polaire. Les phospholipldes comportant une tête polaire et au moins deux chaînes aliphatiques. Les têtes polaires constituent la surface de fa membrane et les chaînes aliphatiques sont orientées vers l'intérieur de la membrane, comme Illustré sur la Figure I.
Par phospholipldes, on entend les glycérophospholipides, dont les phospholnosltldes et les sphingophosphoîipides. La bicouche lipidique sera constituée, de préférence, à au moins 70% en masse par des phospholipldes, de préférence à au moins 80% en masse et préférentieliement à au moins 90% en masse, voire à 100% en masse par des phospholipldes. Il n'est pas exclu que la bicouche lipidique inclut d'autres lipides naturels, par exemple, tel que le cholestérol De tels lipides seront présents dans une quantité telle qu'elle n'affecte pas la structuration sous la forme d'une bicouche.
Dans ie cadre de l'invention, la composition lipidique de la bicouche peut être modulée à souhait,, car elle est; Indépendante du protocole de formation des bicouches. De nombreuses compositions de lipides peuvent être utilisées et ce; dans différentes proportions, ce qui permet de mimer à façon la composition des différents types de membranes biologiques. Hormis la part des lipides qui possède une tête polaire chéiatriee emprisonnant un cation métallique, les bicouches lipidiques peuvent être constituées de n'importe quel lipide seul ou en mélange, y compris mais sans s'y limiter, PC (phosphatidylcholine), PS (phosphatidylsérine), PE
(phosphatidyléthanolamine), PI (phosphatidylinositoi, PIP2 (phosphatidylinositol bisphosphate), cholestérol, sphingomyëline. Des bicouches lipidiques de compositions variables incluant les différentes classes de lipides membranaires telles que les phosphoiipides (incluant les phosphoinositides), sphingolipides et ie cholestérol peuvent être obtenues. Les bicouches lipidiques peuvent également être formées à partir des extraits naturels de lipides membranaires. La possibilité d'adapter spécifiquement la composition de la bicouche lipidique, de manière à obtenir une membrane artificielle pour la protéine que l'on veut insérer, permet de respecter son environnement lipidique naturel et garantir ensuite sa réinsertion.
De manière avantageuse., la composition de la bicouche lipidique est choisie de manière â minier une membrane biologique, et notamment une membrane cellulaire, en particulier plasmique, nucléaire, mitochondriale, chioropiasmsque,,.., Dans le cadre de l'invention,, il est possible d'obtenir un ensemble dont la bicouche lipidique est fluide et continue» Pour cela, la bicouche lipidique sera formée, de préférence, d'au moins 80%, de préférence, d'au moins 90%, et de manière préférée, d'au moins 95%, en masse, de lipides fluides, La fluidité d'un lipide se définit au niveau de l'ordre des chaînes grasses acyles et à température ambiante (22°€ notamment). On dit qu'un lipide est fluide quand ii présente des désordres (c'est-à-dire des conformations « gauche » sur un plan chimique) au niveau de l'arrangement de ses chaînes grasses. La fluidité d'un lipide donné dépend principalement de la longueur de ses chaînes acyles,, de leur Insaturation et de la température. A titre d'exemple, à température ambiante, les phospholipldes présentant des chaînes acyles insaturées (C18:l par exemple) sont à l'état fluide.
Avec ie mode de liaison proposé dans le cadre de l'invention, on peut avoir une certaine variabilité de la composition lipidique : il est notamment possible de choisir les chaînes acyles, la longueur de la chaîne, choisir une chaîne acyle avec une ou plusieurs insaturations.
De manière à garantir la fixation permanente de la bicouche lipidique et la robustesse de l'ensemble, le peptide pilotis est, de préférence, attaché de manière covalente au support, de préférence par son extrémité N-terminaie. Des interactions de forte affinité, notamment du type biotine-streptavidine pourraient également être envisagées. Différentes stratégies d'Immobilisation par liaison covalente peuvent être mises en œuvre, en fonction de la nature du support. Il est possible d'utiliser les techniques mises en œuvre dans l'art antérieur» Un lien covaient pourra,, par exemple, être établi par réaction d'une fonction aminé du peptide : une fonction aminé de l'adde aminé située en position M-terminaie ou encore une fonction aminé de la chaîne latérale d'une lysine, ïl est également possible d'établir un lien covaient,, par réaction avec la fonction thiol d'une cystéine ou par Insertion d'un disulfide ou d'un acide lipoïque à l'extrémité N-terminale du peptide,
En fonction de la nature du support, la réaction permettant d'établir un lien covaient pourra nécessiter une fonctionnalisation préalable du support. Ceci sera notamment le cas, lorsque le support est en verre, polymère, verre silanisé. Par exemple,, la fonction thiol d'une cystéine pourra réagir avec une surface fonctionnalisée par un groupement chimique comme le maléimlde, Une fonction aminé pourra, quant à elle, établir une liaison covalente avec un groupement fonctionnel tel que les aldéhydes, les esters activés, les époxy. De tels groupements pourront être introduits préalablement sur le support, notamment, sur des lames de verre siianisées, selon des techniques bien connues de l'homme de l'art
Dans le cas d'un support en or, une liaison covalente peut directement être établie avec une fonction thiol, par formation d'une liaison S-Au par chimisorption. De plus, les supports en or sont les supports de choix pour la détection des interactions moléculaires par QCM-D (pour " Quartz Crystal Microbalance with Dissipation Monîtoring ») et SPRi, Aussi, de manière préférée, dans le cadre de l'invention, te support est en or. Dans ce cas, de manière avantageuse, le peptide pilotis comporte une cystéine à son extrémité N-terminale établissant une liaison S-Au avec le support en or.
De préférence, le peptide présentera une structure hydrophile pour éviter son adhésion au support. La conformation et la structure du peptide pilotis, ses propriétés hydrophiles et sa longueur peuvent être contrôlées par la nature et le nombre de résidus d'acide aminé le constituant. Ces caractéristiques pourront être ajustées par l'homme du métier, de manière à obtenir ! 'écart souhaité entre ia bicouche lipidique et à contrôler ia viscosité de ia couche intermédiaire constituée par le peptide pilotis pour assurer la fluidité latérale nécessaire pour la réinsertion fonctionnelle des protéines transmembranaires, En plus des acides aminés des extrémités M et C- terminale précédemment décrits, le peptide sera avantageusement constitué d'acides aminés choisis parmi les acides aminés hydrophiles, tels que la lysine, l'arginine, l'acide glutamique, l'acide aspartlque, i'asparagine, ia glutamine et la sérine, Dans le cadre de l'invention; on pourra, par exemple,
Figure imgf000014_0001
KVAVSADRHHHH. Le peptide pilotis de SEQ ID Nel a été synthétisé sur la base d'un fragment peptidique issu de i'a-iaminine (PI9) possédant une cystéine en position N-terminale pour on greffage sur l'or et une étiquette poly-hlstidine en position C-terminaie pour ia fixation des liposomes par liaisons de type métai-chélate.
idéalement, s'il est possible de savoir si la protéine d'intérêt à réinsérer dans ia bicouche lipidique a des interactions privilégiées avec des protéines du cytosquelette et de connaître la séquence qui en serait responsable, cette dernière pourrait être incorporée dans la séquence du peptide pilotis, afin de favoriser les interactions avec la protéine et de stabiliser sa conformation après réinsertion,
La quantité de peptide pilotis utilisée sera sélectionnée de manière à établir un attachement suffisant Par exemple, dans le cas d'un support en or, le peptide pilotis de SEQ ID Νº 1 est présent avec une densité de 2,8.1013 molécules par cm2, correspondant à la saturation de la surface du support en or, Le peptide sera réparti et attaché de manière homogène à la surface du support.
La longueur du peptide sélectionné, sera adaptée par l'homme du métier, notamment en fonction de la taille de i'ectodornaine de la protéine à réinsérer. Dans ie cas où le support est en or, 11 faudra également tenir compte de la sensibilité de l'appareil de SPRI qui sera utilisé pour l'analyse ultérieure, de manière à ne pas perdre le signal dans le cas d'interactions trop éloignées de la surface du support.
De façon générale,, les peptides utilisés jusqu'à présent dans la littérature engendrent un espace de 2 nm. Un espace de 6 nm est idéal pour la reconstitution d'une large gamme de protéine membranalre (Schiller 5.M., Reislnger-Friebis A,,. Gôtz H., Hawker Ci,, Frank C.W., Naumann R., and Knoll W., Biomimetie Upoglycopoiymer Membranes: Photochernical Surface Attachment of Supramofecuiar Architectures with Defined Orientation. Angewandte Chemie Internationa! Edition, 2009, 48(37): 6896). Aussi:, dans le cadre de l'invention, le peptlde sera de préférence sélectionné., de manière à établir un espacement entre le support et la bicouche lipidique de 1 à 10 nm, et préférentiel lement de 2 à 7 nm, et en particulier de l'ordre de 6 nm.
Dans le cadre de l'Invention, l'ensemble pourra contenir une protéine membranalre, de préférence une protéine membranalre intégrale, qui est insérée dans la bicouche lipidique, Une protéine est dite intégrale lorsqu'elle traverse au moins une fois entièrement une bicouche lipidique d'une membrane cellulaire. Comme explicité plus Soin,, la protéine membranalre pourra être Introduite après la formation de la bicouche lipidique ou directement lors de la formation de cette dernière.
Les ensembles, selon l'Invention, pourront servir pour la constitution de biopuces. En particulier, ii est possible d'exprimer dans une bicouche lipidique mimant une membrane lipidique des protéines membranaires, et ce de façon aceiluiaire. En fonction de la nature de la protéine membranalre d'Intérêt qui va être insérée, le support pourra servir d'outil d'analyse, notamment pour l'étude ou le criblage de nouveaux agonsstes ou antagonistes ou pour l'étude de nouveaux agents thérapeutiques à visée membranalre. L'utilisation d'un support en or permettra, en particulier, de réaliser un suivi par imagerie par Résonance Plasmonique de surface (SPRI), qui ne nécessite aucun marquage préalable des entités moléculaires à étudier. De manière à pouvoir servir de biopuces, l'ensemble selon l'invention comprendra un support qui présente plusieurs zones sur lesquelles une blcouche lipidique est fixée par l'intermédiaire d'un peptlde, nommé peptlde pilotis, lui-même lié au support, ledit peptlde pilotis possédant une extrémité C-termlnale constituée d'au moins 4 histidines consécutives et la blcouche lipidique comprenant une part de lipides possédant une tête polaire chélatrice qui emprisonne un cation métallique et assure la liaison avec le peptlde pilotis grâce à des interactions de type métal chélate entre le cation métallique et au moins une partie des histidines situées dans la partie O terminale du peptlde pilotis,
Dans ce cas, l'ensemble correspond à une biopuce. De préférence, au moins deux, voire plus, des zones qui correspondront à différentes zones d'analyse ou spots, sont porteuses d'une blcouche lipidique différente, permettant de réaliser différentes analyses simultanément. Les différentes caractéristiques mentionnées dans le cadre de l'Invention, en relation avec la définition du peptlde pilotis, de la blcouche membrsnaire, du procédé de préparation des ensembles support/peptide pilotis/bicouehe lipidique s'appliquent à chacune de ces zones.
L'invention a également pour objet un procédé de détection par imagerie par résonance piasmonîque de surface utilisant un ensemble selon l'invention dans lequel le support est en or.
L'invention concerne également un procédé de préparation d'un ensemble selon linvention qui comprend les étapes successives suivantes : a) la fixation du peptlde pilotis à la surface du support,
b) la fixation sur le peptlde pilotis de liposomes comprenant une part de lipides possédant une tête polaire chélatrice emprisonnant un cation métallique,, ladite fixation étant réalisée par établissement d'Interactions métal-chélate entre le cation métallique et au moins une partie des histidines situées dans la partie Oterminale ;
c) l'ajout d'un agent fusogène pour induire la fusion des liposomes et la formation d'une blcouche lipidique continue. Dans le cadre de ! Invention, le mode de fixation de la bicouche lipidique sur le support est compatible avec différentes compositions de membranes bilipidiques qui pourront donc être modulées,, en fonction de la protéine transmembranaire à réinsérer.
Dans le procédé selon l'Invention, les deux feuillets de la bicouche lipidique sont formés simultanément, contrairement aux protocoles décrits dans l'art antérieur, dans lesqueis les deux feuillets étaient formés indépendamment en deux étapes distinctes. Dans le cadre de l'invention, le procédé est simplifié, puisque la formation des deux feuillets de la bicouche est réalisée en une seule étape. Les bicouches lipidiques obtenues conservent leur comportement dynamique et leur fluidité puisque la bicouche n'est pas ancrée par son feuillet proximai et qu'elle n'est attachée au peptide pilotis que par quelques pourcents (notamment de 0,5 à 5% molaire, et de préférence de 1 à 2% molaire) de lipides à tête chélafrice Inclus dans la composition des liposomes, De ce fait, les bicouches lipidiques correspondantes pourront être facilement utilisées pour la réinsertion de protéines membranaires, par expression acellulalre in vitro de la protéine en présence de la bicouche lipidique plane et continue obtenue.
Un autre avantage du mode de liaison utilisé dans le cadre de l'invention., qui met en œuvre des lipides avec une tête chéiatnce emprisonnant un cation métallique établissant des liaisons du type métal- chélate avec les histldines, est que ces Interactions sont réversibles. En effet, il est possible de régénérer la surface en éliminant la bicouche lipidique et de réutiliser le support : c'est-à-dire qu'après insertion d'une protéine et utilisation, il est possible d'éliminer la bicouche lipidique pour ne garder que le support intermédiaire fonctionnalisé avec le peptide pilotis qui fait donc également partie intégrante de {invention. Dans le cas d'une exploitation industrielle, cette régénération conduira à terme à une réduction considérable des coûts de production des biopuces et d'analyse des échantillons à grande échelle.
L'invention a donc également pour objet un support intermédiaire sur lequel un peptide, nommé peptide pilotis, est fixé, de préférence par son extrémité N-termina!e, caractérisé en ce que le peptide pilotis possède une extrémité C~terrnlnale libre constituée d'au moins 4 hisidines consécutives. Les caractéristiques du support et du peptide décrites dans le cadre de l'invention s'appliquent à ce support intermédiaire.
Dans le cadre de l'invention, la bicouche lipidique est, le plus souvent, obtenue par fusion de liposomes unliameliaires, de diamètre moyen compris entre 30 et 500 nm. Le diamètre moyen des liposomes peut être défini comme le diamètre moyen en nombre de la population de liposomes utilisée, déterminé par diffusion quasi-élastique de la lumière,, également appelée diffusion dynamique de lumière (« Dynamic Light Scattering », DIS).
Par « liposome unîiamellaire », on entend un liposome qui n'est constitué que d'une seule bicouche de lipides.
Une telle technique de fusion de liposomes conduit à l'obtention d'une couche intègre, homogène,, plane et continue. Les liposomes ne sont pas désintégrés lors de leur fixation au peptide pilotis, et restent intacts. C'est ensuite l'action du peptide fusogène qui entraîne la rupture du liposome et la formation de la bicouche. L'ouverture du liposome et la formation de la bicouche sont connues sous ie terme de « fusion des liposomes »,
La fusion est, de préférence, obtenue grâce à un peptide fusogène, de préférence de SEQ 10 N°2 ; SGSWLRDV¾VDWICrVLTDFKT\'VLQSKLDYKD. Ce peptide correspond à la séquence N -terminale de 31 acides aminés de l'hélice alpha-amphîpatique (AH) de ia protéine non structurale (NS5A) du virus de l'hépatite C nécessaire à l'association rnembranaire du virus lors de sa réplication.
Un tel peptide fusogène a notamment été décrit et utilisé dans les publications de Cho et al 2007, 2009 et 2012f de Coutable et al 2014 et dans le brevet US 8,211,712, et ce., pour la fusion de liposomes de différentes compositions. Ce peptide est éliminé et ne se retrouve pas dans l'ensemble final (Hardy et al 2012), De piusf la publication de Coutable et al a démontré que l'utilisation de ce peptide fusogène est compatible avec la réinsertion des protéines membranaires. D'autres pept!des fusogènes peuvent être envisagés : des peptîdes Issus des protéines de la capside virale,, tels que iiémaggiutinine (BÂ2), gp41 (VIH), gp 30, gp 32, P15E (V de la Leucémie Marine), Pour plus de détails, concernant de tels peptîdes, on pourra se référer à A, Lorin et ah 2007,
Dans le cadre de l'invention, il est possible que îes liposomes soient des protéoliposomes. Dans ce cas, l'insertion de la protéine d'Intérêt est réalisée simultanément avec la formation de la bicouche lipidique, puisque cette dernière sera directement incluse dans les protéoliposomes*
L'obtention de liposomes unilamellaires est décrite dans la littérature : on pourra notamment se référer à Donald et aL 2007. Pour cela, un film formé de la composition lipidique sélectionnée est tout d'abord formé sur la paroi d'un tube ou d'un ballon en verre par évaporation, notamment à l'argon., du solvant organique dans lequel le mélange de lipides a été formé. Ensuite, ce film est réhydraté avec une solution tampon, notamment tamponnée à un pH appartenant à la gamme allant de 6 à 8, Idéalement de 7,4, Ces deux premières étapes sont, par exemple, effectuées à une température appartenant à la gamme allant de 10 à 35% et typiquement à température ambiante (22ºC notamment). Un tampon HEPES ou PBS pourra, par exemple, être utilisé. Des vésicules multi-iamellaires sont alors obtenues et: sont transformées par des cycles répétés de congélation (par exemple dans l'azote liquide) et de décongélation à une température de 30 à 40°C, suivis au finai d'une étape d'extrusion permettant d'ajuster la taille des liposomes unilamellaires alors obtenus,
Les étapes :
a) de fixation du peptide pilotis en surface du support,
b) de fixation sur le peptide pilotis, des liposomes comprenant une part de lipides possédant une tête polaire chélatrice emprisonnant un cation métallique, par établissement d'interactions métal-chélate entre le cation métallique et au moins une partie des hlstidines situées en position C-terminale,
c) d'ajout d'un agent fusogène pour induire la fusion des liposomes et la formation d'une bicouche lipidique continue, sont, le plus souvent,, réalisées à une température appartenant à la gamme allant de 10 à 35ºC, et typiquement à température ambiante (22°C notamment) et à pression atmosphérique (en particulier à 1013 hPa).
En général, le support est placé dans une chambre et les différents réactifs seront successivement injectés avec une étape de lavage entre chacune des étapes a) à c) avec une solution tampon,, notamment tamponnée à un pH appartenant à la gamme allant de 6 à 8, idéalement de 7,4, permettant ainsi d'éliminer toutes les molécules qui ne se seraient pas fixées.
Pour l'étape a), le support est mis en contact avec une solution aqueuse tamponnée du peptlde pilotis, typiquement à une concentration de 10 nM à 10 μΜ, notamment de 25 nM à 4 μM en peptlde pilotis. Les liposomes sont ensuite ajoutés sous la forme d'une suspension dans une solution aqueuse tamponnée (le tampon dans lequel ils sont formés), pour obtenir typiquement dans le mélange réactlonnel en contact avec le support une concentration de 50 à 200 pg / ml. Ensuite, l'agent fusogène est ajouté pour obtenir typiquement dans le mélange réactlonnel en contact avec le support une concentration de 10 à 20 μM Les mêmes types de tampon que ceux précédemment décrits pour la préparation de liposomes uni lamellaires peuvent être mis en œuvre à chacune des étapes a) à c) dans les solutions d'introduction des réactifs,
Après formation de la bieouche, 11 est également possible d'ajouter dans le milieu réactlonnel des cations divalents comme le calcium (Ca2 +..), ou un agent chélateur comme l'EDTA à une concentration, par exemple, de 0,5 à 5 mM, sans que l'ensemble ne soit perturbé, c'est-à-dire sans qu'un décrochage de la bicouche après fixation au peptlde pilotis ne soit observé.
En conclusion,, l'invention combine différents avantages :
~ tout d'abord, la stabilité mécanique et la robustesse des bîcouches lipidiques attachées sur le support, par liaison réversible sur un peptlde pilotis de liaison qui est, lui-même, greffé par liaison covalente sur le support, - la possibilité de moduier à façon la composition de la bicouche lipidique qui peut donc être adaptée à la protéine membranaire d'intérêt qui doit être insérée,
- la possibilité de former différentes zones, de manière à obtenir des micro-réseaux de régions porteuses de bicouches lipidiques différentes et donc le développement de biopuces à membranes associées,
- la possibilité de réaliser une détection multiplexée sans marquage et en temps réel par mesure en imagerie par résonnante piasmonlque de surface (SPRJ) dans le cas de supports en or,.
L'Invention offre donc la possibilité de développer un outil polyvalent d'analyse à haut débit pour l'étude des interactions ligand-protéine membranaire.
Les exemples ei~après., en référence aux Figures annexées., permettent d'Illustrer l'invention mais n'ont aucun caractère limitatif.
La Figyre 1 est une représentation schématique d'un ensemble selon l'invention.
La Fispre 2 présente le % de rêflexivité en fonction du temps, suivi en imagerie par résonance piasmonlque de surface (SPRi) dans le cas de la composition lipidique : mélange de DOPC, DOPS et de DCX3S-NTA-(Ni), dans un rapport molaire 74/24/2.
La Figure 3 présents la caractérlsadon du processus de formation d'une bicouche lipidique suspendue par microscopie à force atomique - AFM (images A, 8 et C du haut) et par redistribution de fluorescence après pbotoblanchiment - FRAP (images D, F,. E, G du bas) : Haut : Images AFM de la surface d'or après greffage du peptide pilotis (A), après ajout de liposomes contenant du DOGS-NTA(Ni) (8) et après ajout de peptide fusogène (C). Bas ; Redistribution de fluorescence après photoblanchiment d'une région de la surface recouverte par des liposomes non fusionnées à G min (D) ou 1h après photoblanchiment (E) et d'une région de la surface après formation de la bicouche lipidique par ajout d'agent fusogène à 0 min (F) ou 8 min après photoblanchiment La Figure 4A présente le % de réflexivité en fonction du temps suivi par SPRi de la formation d'une bicouche lipidique constituée de DOPC/DOPS 3/1 en présence ou en absence de 150 m H NaCI, suivie de 1 interaction de lisoforme 8 de la Mucléoside DiPhosphate Kinase (NDPK-8) à une concentration finale de 30 nM La Figyre 4B présente le % de réflexivité en fonction du temps suivi par SPRi de i'adsorptîon de la NDPK-8 à une concentration finale de 30 nM sur la surface d'or en présence ou en absence de 150 mM NaCI.
La Figure SA présentent les images en microseopie de fluorescence d'un prisme d'or après dépôt d'une matrice de peptide pilotis (image de gauche) dans le cas d'un format biopuce, après incubation avec des liposomes incorporant 5% de sonde fluorescente MBO-PE {image du milieu) et après fusion des liposomes (image de droite).
La Figura SE présente révolution du % de réflectivité au cours du processus de formation d'une bicouche lipidique suivie pour chaque région de dépôt du peptide pilotis par SPRI, dans le cas d'un format biopuce. La ligne de base correspond au signa! enregistré après dépôt du peptide pilotis à l'injection des liposomes. Profil représentatif de l'ensemble des régions de dépôt.
EXEMPLES
Matériels et Réactifs
-Les iipides utilisés proviennent de la société Avant! Polar Upids®.
-L'appareil de SPRi (SPRi-Lab-f) et le prisme utilisé (SPRi-Blochip™) correspondant au support en or sont commercialisés par la société Hohba©.
- Le tampon HEPES et le chloroforme proviennent de la société Sigma
Aldriehii, Le tampon HEPES-NaCI est constitué d'HEPES (10 à 20 mM) et de MaCi (0 à 150 mM), et ajusté â pH 7,4. Le tampon PBS est constitué de Phosphate (10 mM), NaCI (140 mM) et KCI (2,7 mM), et ajusté à pH 7,4, -Le Hini-Extruder ainsi que les seringues, membranes en polycarbonate et pré-filtres utilisés pour la préparation des liposomes proviennent d¾vanti Polar Lipids®. -Le gtanu!ometre à diffusion quasi-élastique de la lumière (Diffusion Llght Scattering, DIS) est un Malvern© Zetasizer Nano S.
Figure imgf000023_0001
Un film lipidique est, tout d'abord, formé sur la paroi d'un tube en verre par évaporation à l'argon du solvant organique dans lequel le mélange de lipides, préparé dans du chloroforme ou dans un mélange chloroforme : méthanol (9 /1 ; v/v)) selon la composition choisie, a été déposé. La quantité totale de lipides évaporés est: de i mg.
Plusieurs compositions lipidiques ont été testées :
- un mélange de FOPC et de DOGS-NTA-(Ni), dans un rapport: molaire 98/2,
- un mélange de DOPC et de DCX3S-NTA-(Ni), dans un rapport molaire 98/2,
- un mélange de POPC, DGPE-Biotine et de DOGS-rcrA-(Ni), dans un rapport molaire 88/10/2,
- un mélange de DOPC, DOPS et de DOGS-HTA-fNi), dans un rapport molaire 74/24/2,
- un mélange de DOPC, DOPS, MBD-PE (lipide fluorescent) et de DGGS- NTA-(Mi), dans un rapport molaire 70/23/5/2, - un mélange de PC extraite de jaune d'œuf, PS extraite de cerveau et de DOGS-NTA-(Ni), dans un rapport molaire 67/31/2,
- un mélange de PC extraite de jaune d'œuf, PS extraite de cerveau, PIP2, extrait de cerveau, et de DG6S~MTA-(Ni), dans un rapport molaire 67/39/2/2,
- un mélange de 5 composants lipidiques : POPC / Sphingomyéiine /Cholestéroi /POPE /DCK5S-NTA-(Ni), dans un rapport molaire : 37 / 33 / 19 / 9 / 2, qui mime la composition du feuillet externe de la membrane plasmique des ceiluies eucaryotes,
Un film lipidique est, tout d'abord, formé sur la paroi d'un tube en verre par évaporation â l'argon du solvant organique dans lequel le mélange de lipides a été formé, Le film lipidique obtenu est ensuite hydraté avec un tampon HEPES~NaQ pH= 7,4 ou avec le tampon PBS afin d'avoir une concentration en lipides de 1 mg / ml, Cette étape conduit à la séparation de morceaux de bïcouehes qui vont former des MLVs ("Muiti Lameiiar Vesicie": Vésicules Mufti Lamellaires), Ces MLVs sont alors transformées par des cycles répétés de congélation dans l'azote liquide et de décongélation au bain marie à 38°C (6x5 min de congélation et 6x10 min de décongélation)., qui sont suivis d'une étape d'extrusion (21 passages au travers d'une membrane de 400 nm, puis 21 passages au travers d'une membrane de 100 nm ou moins). Ces étapes d'extrusion conduisent à l'obtention de LUV ("Large linîlameilar Vesicie": liposomes uniiamellaires) du calibre désiré (Donald,, K.M., LlBium, J, 3. Gooding, T. Bôcking, A.L Mechter, A. P. Girard- -Egrot, and S. H. Valenzueta. 2007. Nanoblotechnoiogy of Biomimetic Membranes. Langmuïr- Blodgett Technique for Synthesis of Biomimetic Lipid Membranes, p. 25-37. Liposome Techniques for Synthesis of Biomimetic Lip'sd Membranes, p. 77- 79).
La taiile des liposomes est contrôlée par diffusion quasi-élastique de la lumière, également appelée diffusion dynamique de lumière (« Dynamic Light Scattering »,, DIS), 2. Formation de la bicouche lipidique
Pour former la bicouche, on injecte., en premier, dans la chambre réactionnelie, le peptide en solution aqueuse tamponnée en tampon HEPES de 10 à 20 mM pH 7,4 supplémenté de NaCI 150 mM à une concentration initiale de 9,74.1ο-4 M (soit 2,5 mg/ml) pour obtenir une concentration finale dans la cuve comprise entre 25 nM et 4 μΜ de SEQ ÏD H&1 ; CSRARKQAASIKVAVSADRHHHH qui va servir de lien entre la bïœuche et la surface du support et qui va venir se fixer sur for grâce à ses liaisons tbiol (cystéine ^-terminale). La concentration de 4 μΜ en peptide pilotis correspond à la concentration minimale pour obtenir une saturation de la surface en peptide pilotis greffé. Les liposomes., à la concentration lipidique initiale de ! mg / ml, sont ensuite injectés dans la chambre réactionnelie à une concentration finale de 100 pg /ml et se greffent sur le peptide* Le peptide fusogène SEQ ID Nº2 ; SGSWLRDVWDWICTVLTDFKTWLQSKLDYKD en solution dans du tampon HEPES 10 à 20 m M pH 7,4 supp lémenté de HaQ 150 mM est alors injecté à une concentration finale comprise entre 10 à 20 μΜ. II va interagir avec les liposomes et permettre le passage de LUV à une bicoucbe plane. Entre chaque dépôt, des lavages avec du tampon de travail HEPES 10 à 20 mM pH 7,4 supplémenté de NaCI 150 mM sont effectués {10 fois le volume de la chambre réactionnelie}., permettant ainsi d'éliminer toutes les molécules qui ne se seraient pas fixées spécifiquement.
Des essais ont été réalisés en utilisant des concentrations finales en peptide pilotis de 25 nM et 4 pR L'adsorption du peptide pilotis sur la surface d'or a été suivie par résonance plasmonique de surface. L'appareil de SPRI (SPRï-Lab+) et le prisme utilisé (SPRI-Blochip™) sont commercialisés par la société Horiba©). L'incubation de la surface d'or avec la solution contenant une concentration finale de 4 μΗ de peptide pilotis màult une variation du signal de réflectivité de 0 à 5 %, comme illustré Figure 2, mettant en évidence l'adsorption du peptide sur l¾r. Cette variation de réflectivité est la variation maximale que l'on peut obtenir quand le peptide pilotis sature la surface. Elle n'est pas modifiée après des rinçages intensifs. Les analyses effectuées à partir des valeurs de variation de réflectivité en pourcent permettent de déterminer la densité de molécules greffées en surface. Cette densité peut être estimée en utilisant l'équation de calibration de l'appareillage utilisé (SPRi-Lab+} :
Figure imgf000026_0001
où est la variation de réflectivité en pourcent, Lzc la profondeur de pénétration de Tonde plasmonique (1,02.1er4 mm), le rapport ôn/ôC est fixé à 1,9.10- 10 mmlpg-1, le SP,R désigne la sensibilité de la SPR en pourcent par unité d'index de réfraction (2,25.103 %.RIU-1) et Γ correspond à la densité en pmol.mm-2.
La densité moléculaire déterminée pour une variation maximale de 5% obtenue pour une concentration finale de 4 pH de peptide pilotis dans la cuve réactionnelle et correspondant au signal de saturation, est de 2,8.1013 molécules de peptides pilotis / cm2. A 25 nM/ la densité est de 2.1G12 molécules de peptides pilotis / cm2 conduisant à un écartement théorique de 5,8 nm entre chaque pilotis, si ces derniers sont répartis de façon homogène sur le support.
Des liposomes contenant ί à 2% d'un lipide à tête chélatrice NTA(Ni) (18: 1 DOGS~MTA(Ni) (1 ,2-dioleoyl-sn-glycero-a-ECN-CS-amino-l- carboxypentyl) îminodiacetic acid}succînyf) ont été utilisés pour la formation de la bicouche lipidique. Le processus a été testé avec des liposomes de tailles comprises entre 30 et 100 nm et de compositions lipidiques variables dont 98% DOPQ 98% POPC, DOPC / DGPS, POPC / POPS (ratios variables), extraits naturels de PC et PS (ratios variables), en absence ou en présence de PIP2 et/ou de cholestérol. L'ajout de liposomes à une concentration finale de 100 pg /mL de compositions lipidiques variables contenant le lipide chélateur DOGS~MTA(Mi) induit une forte augmentation de la réflectivité, comme illustré Figure 2, ce qui traduit un changement dans les propriétés optiques de la surface du prisme SPR. Cette valeur de réflectivité n'est pas modifiée après rinçage, La tête chélatrice MhMFA înteraglt donc spécifiquement avec l'étiquette poly-histldine du peptide permettant la fixation des liposomes.
L'ajout du peptide fusogène de SEQ ID Nº2 induit, comme le montre la Figyra 2, dans un premier temps, une légère augmentation de la réflectivité qui traduit son insertion dans les liposomes, suivie, dans un second temps, d'une diminution du signal qui a été précédemment interprétée., pour des liposomes directement déposés sur la surface d'or sans ajout de peptide pilotis, comme l'éclatement des liposomes et formation d'une blcouche lipidique homogène à la surface du prisme (Chars and Zare 2008), Ce profil caractéristique présenté Figyre 2 a été obtenu avec toutes les compositions lipidiques listées précédemment.
3, Caracterisation de la bicouche lipidique attachée sur le peptide pilotis
Les étapes de formation de la blcouche lipidique attachée sur le peptide pilotis, lui-même lié sur la surface d'or, ont été caractérisées par microscopie à force atomique (AFM - SOLVER-PRO© de chez MI-MOT® (balayage maximum de 50x50x2.5 pm ±10% ; tes pointes d'AFM utilisées sont des CSG01 de chez NT-MDT® (raideur : 0,03 mN.m-1)} et par mesure de redistribution de fluorescence après photoblanchiment (FRÂP - Zeiss Observer 21), La Figure 3 montre les images obtenues dans te cas d'une blcouche formée de POPC : DOGS~NTA(Ni) (rapport molaire 98 :2) Ce cas a été choisi pour montrer que te peptide fusogène utilisée par Cho et ai était aussi efficace pour former des membranes sur pilotis (* étude ») que directement sur le support (« étude de Cho et al sans pilotis »}.
Les images d'AFM de la surface avant et après incubation avec le peptide pilotis (Figyre 3A) montrent une surface rugueuse avec des rayures caractéristiques des prismes d'or commerciaux. Après incubation du prisme porteur du peptide pilotis avec la suspension de liposomes unilamellaires, on observe une surface recouverte de vésicules (Figura 3B) indiquant l'adsorption de liposomes sur la surface. Après injection du peptide fusogène, la surface apparaît homogène (FigURE 3C), ce qui confirme la fusion des vésicules sur la surface et le recouvrement de la surface d'or par une couche continue de lipides,
L'homogénéité et la fluidité de la bicouche lipidique formée a été vérifiée par microscople de fluorescence et par redistribution de fluorescence après photoblanchiment (FRAP). Dans ce cas, des liposomes contenant un lipide fluorescent (5% molaire de NBD-PE : sel d'ammonium de 1,2-dioléoyl- sn~glycéro~3~phosplioéthanolamine-H-(7-nitro-2-i3-benzoxadiazol-4-yl} ont été utilisés. Ces liposomes sont préparés, comme précédemment décrit, en ajoutant 5% molaire de NBD-PE. Une partie de la surface a été exposée à un puissant faisceau de lumière focalisée par l'objectif du microscope, avant et après ajout du peptlde fusogène. Le fluorophore présent dans cette région subit une destruction appelée photoblanchiment (Figyre 3D et 3F). Si le mouvement du fluorophore au sein du feuillet membranaire n'est pas contraint et si la bicouche lipidique est fluide et continue, tes molécules fluorescentes situées dans les régions avossinantes vont diffuser librement au cours du temps et la région photoblanchie redevient progressivement fluorescente. Lorsque la mesure de FRAP est effectuée avant ajout de peptlde fusogène, la zone photoblanchie ne redevient pas fluorescente (Figyre 3E). Le fluorophore ne peut pas diffuser sur la surface, ce qui est caractéristique d'une discontinuité due à la population de vésicules accrochées à la surface, mais non fusionnées. Lorsque fa mesure est effectuée après ajout de l'agent fusogène, une redistribution des deux populations entre la zone blanchie et le milieu adjacent a lieu jusqu'à disparition de la zone photoblanchie (Fîf yre 3G). La molécule fluorescente diffuse donc librement sur la surface attestant la formation d'une bicouche continue et homogène.
L'analyse de la cinétique de recouvrement de fluorescence permet de déduire le coefficient de diffusion latérale « D », caractéristique de la fluidité de la bicouche lipidique. Une valeur de 25.ÎG"8 om2/s a été déterminée, ce qui correspond à une bicouche lipidique plus fluide que celles décrites pour des fixations viaôes systèmes protéines/1 igands (Ross! et ai, 20 il). L'intégrité de ia bicouche lipidique formée à la surface d'or a, quant à elle, été vérifiée en utilisant ilsoforme B de la IMudéosIde Di Phosphate Kinase (MDPK-B), Cette protéine interagit spécifiquement avec les molécules de PS et cette interaction est inhibée en présence de 150 mM de NaQ (François- Moutai et al 2014, L'ajout de f4DPK~6 après formation d'une bicouche formée sur les peptides pilotis constituée de DOPC/DOPS (3/1 en rapport molaire) en absence de MaQ induit une augmentation de ia réflectivité enregistrée par SPRI, ce qui traduit une interaction spécifique de la protéine avec la bicouche. En présence de 150 mM de NaQ,, il n'y a pas d'augmentation (Figure 4A). I! a été constaté que cette protéine s'absorbe à la surface d'or en présence et en absence de NaG à 1,50 mM (Figure 4B), L'absence d'adsorptïon en présence de 150 mM de NaQ lorsque la surface est recouverte par la bicouche lipidique suspendue sur les peptides pilotis indique que la surface d'or est parfaitement recouverte et que la bicouche lipidique est intègre et continue ; cette continuité empêchant l'interaction non spécifique de la protéine avec l'or nu.
4. Construction de la oicoyclie en fermât biopuce :
Un enjeu majeur dans l'obtention de membranes lipidiques sur un support solide est la possibilité de réaliser des mesures à hauts débits. Les méthodes traditionnelles de dépôt automatisé impliquant la déshydratation des échantillons ne peuvent pas être appliquées au dépôt de vésicules lipidiques.
Selon le protocole décrit précédemment, les dépôts des étapes a) à c) du procédé selon l'Invention ont été réalisés à l'aide d'un dispositif « piezoelectric spotter » (sdFLEXARRAYER S3, SCIEMIOM, Germany) sur un prisme d'or. Un peptide pilotis (0,04 à 4 ng/spot (2,5.1012 à 2,5.1ο14 molécules/cm2)) a tout d'abord été déposé. La fixation des liposomes (constitués de DOPC/DOPS, 3/1 en rapport molaire,, incorporant 5% NBD-PE et 2% de DOGS-NTA(Ni)} sur les surfaces recouvertes de peptide pilotis a été suivie par SPRI et par microscopie de fluorescence (FIgyres SA et SB), Après dépôt des iiposomes, les régions où le peptide a été déposé deviennent fluorescentes; ce qui atteste la fixation des liposomes aux peptides pilotis déposés par adressage (Figyre 5 - image du centre). Cette étape s'accompagne d'une augmentation de la réflectivité au niveau de chaque dépôt de peptide pilotis (Figure SB). Après ajout de l'agent fusogène, la fluorescence persiste (Figyre 5 - image de droite) et la diminution de la réflectivité enregistrée par SPRi {Figyre SB) atteste de la formation de la bicouche suspendue au-dessus de chaque région de peptide pilotis espaceur déposé par micro-adressage.
Références citées ;
Chah, S. and R. N, Zare (2008), "'Surface plasmon résonance study of vesicle rupture by virus-mi nietic attack," Physical Chemistry Chemical Ptiysics 10(22): 3203-3208.
Cho, N,-J,, S,~J. Cho, K. H, Cheongf 3.S. Gïenn and C. W. Frank (2007). "Employlng an Amphipathlc Viral Peptide to Create a Lipid Bîiayer on Au and 7102." Journal of the American Chemical Society 129(33): 10050-10051.
Cho, N.-l, G. Wang., H. Edvardsson, J. S. Glenn, F. Hook and C. W, Frank (2009). "Àipha-Heilcai Peptide-Indoced Vesicle Rupture Revealing New Insight into the Vesicle Fusion Process As Monîtored in Situ by Quartz Crystal Microbalance-Dissipation and Refiectrometty/' Analytical Chemistry 8.1(12); 4752-4761,
Cho ,N.-3., C.W. Frank , B. Kasemo and F. Hôôk (2010), ¾ Quartz crystal microhalanœ with dissipation monitoring of supported iipid bilayers on varions substrates". Nature Protocols 5: 1096-1106.
Coûtante., A,,, T. Christophe, 3. Chalmesu,, 3.-M. François, C, Vieu, V. Moineaux, E, Trévlsioi, (2014), "Préparation of tethered-lîpid bilayers on gold surfaces for the incorporation of intégral membrane proteins synthesized by ceil-free expression/' Langmulr 30(11) : 3132-3141.
Donald, K.M., LJ.Bium, 3. 3. Gooding., T, Bocking, Ai. Mechier, A, P. Girard-Egrot, and S, M. Valenzueîa, (2007) Nanoblotechnoiogy of Biomimetic Membranes. Langmuir-Blodgett Technique for Synthesis of Biomimetic Lipid Membranes, p. 25-37, Liposome Techniques for Synthesis of Biomimetic Lipid Membranes, p. 77-79 François-Moutal, L, Marciliat 0, and Granjon T, (2014), "Structurai comparison of higbiy similar nudeoside diphosphate klneases: moiecular axpianat!on of distinct membrane binding behavior." Biochimie 105:110-118.
Hardy, G. X, R. Nayak, S. Hunir Alam, 3. G. Shapter, F, Hetnricn. and S, Zauscher (2012). « Biomimetlc sopported Hpid bilayers wlth. high cholestérol content formed by a-hellcai peptide-induced vestde fusion/' Journal of Materials Chemistry 22 : 19506-19513.
Lorin A., B. Giarioteaux, L Uns and R, Brasseur (2007) « Implication des peptides de fusion des giycoprotéines de fusion virales de classe I dans la fusion membranaire », BASE, vol 11, n°4, (http://popups.ufg.ac.be/i780- 4507/index.php?id~ 1740).
Robelek, R.,. E. S. Lemker, B. Wiltschi, V. Ktrste, R, Naurnann, D. Oesterhelt and E,-K. Sinner (2007). "Incorporation of In Vitro Synthesized GPCR into a Tethered Mtficia! Lipid Membrane System.*' Angewandte Chemie International Edition 46(4): 6D5-80B.
Rossi, C, ,S. , Doumïati, C. Lazzarelli, M. Davi, F. Heddar,. D. Ladant and 3. Choplneau (2011). " A Tethered Bilayer Assembled on Top of Immobillzed Calmodulin to Mimic Cellular Compartnientalization.'" Plos One 6(4).
Yldiz, A, A., U. H. Yildlz, B. Uedberg and E. K, Sinner (2013). "Biomlmetsc membrane piatform: Fabrication, characterization and applications/' Colloids and Surfaces 8-8iointerfaces 103: 510-516.
Cho N.-J, Cheong K.H., Glen 3.S., Frank C.W. United States Patent. Mo.: US 8., 211,. 712 B2 "Method of Fabricating Lipid Bilayer Membranes On Solid Supports".

Claims

REVENDICATIONS
1 - Ensemble constitué d'un support sur lequel au moins une blcouche lipidique est fixée par Intermédiaire dfun peptide,, nommé peptide pilotis, lui- même lié au support, caractérisé en ce que ie peptide pilotis possède une extrémité C-termînale constituée d¾u moins 4 histidines consécutives et en ce que la blcouche lipidique comprend une part de lipides possédant une tête polaire chéiatrice emprisonnant un cation métallique assurant fa liaison avec le peptide pilotis grâce à des interactions métal-chélate entre le cation métallique et au moins une partie des histidines constituant l'extrémité C- terminale du peptide pilotis.
2 - Ensemble seion la revendication 1 caractérisé en ce que le cation métallique est un cation de Nickel, de Gadolinium ou de Cuivre.
3 - Ensemble selon la revendication 1 ou 2 caractérisé en ce que le cation métallique est un cation de Nickel et la tête polaire chéiatrice est l'acide nitrilotriacétlque,
4 - Ensemble selon Tune quelconque des revendications i à 3 caractérisé en ce que la part de lipides possédant une tête polaire chéiatrice emprisonnant un cation métallique représente de 0,5 à 5% molaire., de préférence de 1 à 2% molaire, de la totalité des lipides formant la blcouche lipidique,
5 - Ensemble selon l'une quelconque des revendications i à 4 caractérisé en ce que le peptide pilotis est attaché de manière covalente au support, de préférence par son extrémité M~terminale,
6 - Ensemble selon l'une quelconque des revendications 1 à S caractérisé en ce que le support est en or,
7 - Ensemble selon la revendication 6 caractérisé en ce que le peptide pilotis comporte une cystéine à son extrémité N-terminale établissant une liaison S-Au avec le support en or.
8 - Ensemble selon Tune des revendications 1 à 7 caractérisé en ce que l'extrémité C-termlnale du peptide pilotis est constituée de 4, 5 ou 6 histidines consécutives. 9 - Ensemble selon Tune quelconque des revendications i à 8 caractérisé en ce que la liaison avec le peptide pilotis est assurée grâce à des interactions métai-chélate établies entre ie cation métallique et deux des histidines situées dans la partie C-terminaie du peptide pilotis.
10 ~ Ensemble selon l'une quelconque des revendications 1 à 9 caractérisé en ce que la composition de la bicouche lipidique est choisie de manière à mimer une membrane biologique, et notamment cellulaire.
11 - Ensemble selon Tune quelconque des revendications 1 à 10 caractérisé en ce que la bicouche lipidique est fluide et continue.
12 - Ensemble selon Tune quelconque des revendications 1 à 11 caractérisé en ce qu'une protéine membranalre, de préférence une protéine membranaire intégrale, est insérée dans la bicouche lipidique.
13 - Ensemble selon l'une quelconque des revendications i à 12 caractérisé en ce que le support présente plusieurs zones sur lesquelles une bicouche lipidique est fixée par l'intermédiaire d'un peptide, nommé peptide pilotis, ledit peptide pilotis possédant une extrémité C-terminale constituée d'au moins 4 histidines consécutives et la bicouche lipidique comprenant une part de lipides possédant une tête polaire chëlatrice qui emprisonne un cation métallique et assure ia liaison avec le peptide pilotis grâce à des interactions métaL-chéiate entre le cation métallique et au moins une partie des histidines situées dans la partie C-terminale du peptide pilotis.
14 - Procédé de préparation d'un ensemble selon Tune quelconque des revendications 1 à 13 caractérisé en ce qu'il comprend les étapes successives suivantes :
a) la fixation du peptide pilotis à la surface du support,
b) la fixation sur le peptide pilotis de liposomes comprenant une part de lipides possédant une tête polaire chélatrice emprisonnant un cation métallique,, ladite fixation étant réalisée par établissement d'interactions métai-chélate entre ie cation métallique et au moins une partie des histidines dans ia partie en position C-terminale ;
c) l'ajout d'un agent fusogène pour Induire la fusion des liposomes et ia formation d'une bicouche lipidique continue. 15 - Procédé de préparation selon la revendication 14 caractérisé en ce que la bicouche lipidique est obtenue par fusion de liposomes uni lamellaires, de diamètre moyen compris entre 30 et 500 nnru
16 - Procédé de préparation selon la revendication 14 ou 15 caractérisé en ce que les liposomes sont des protéoiiposomes.
17 - Procédé de préparation selon l'une quelconque des revendications 14 à 16 caractérisé en ce que la fusion est obtenue grâce à un peptîde fusogène, de préférence de SEQ ID Nº2.
18 - Procédé de détection par Imagerie par résonance plasmonique de surface utilisant un ensemble selon Tune quelconque des revendications 1 à 13 dans lequel le support est en or.
PCT/FR2015/052890 2014-10-28 2015-10-27 Ensemble support/peptide/bicouche lipidique, procedes de preparation et procedes de detection associes WO2016066947A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15798506.0A EP3213074A1 (fr) 2014-10-28 2015-10-27 Ensemble support/peptide/bicouche lipidique, procedes de preparation et procedes de detection associes
JP2017522905A JP2017534053A (ja) 2014-10-28 2015-10-27 基板/ペプチド/脂質二重層集積体、製造方法及び関連する検出方法
US15/520,896 US20180024125A1 (en) 2014-10-28 2015-10-27 Substrate/peptide/lipid bilayer assembly, preparation methods and associated detection methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1460349 2014-10-28
FR1460349A FR3027679B1 (fr) 2014-10-28 2014-10-28 Ensemble support / peptide / bicouche lipidique, procedes de preparation et procedes de detection associes

Publications (1)

Publication Number Publication Date
WO2016066947A1 true WO2016066947A1 (fr) 2016-05-06

Family

ID=52684334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/052890 WO2016066947A1 (fr) 2014-10-28 2015-10-27 Ensemble support/peptide/bicouche lipidique, procedes de preparation et procedes de detection associes

Country Status (5)

Country Link
US (1) US20180024125A1 (fr)
EP (1) EP3213074A1 (fr)
JP (1) JP2017534053A (fr)
FR (1) FR3027679B1 (fr)
WO (1) WO2016066947A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6400483B2 (ja) * 2015-01-06 2018-10-03 国立大学法人神戸大学 ナノギャップ構造型基板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962638A (en) * 1994-12-16 1999-10-05 Merck Patent Gesellschaft Mit Beschrankter Haftung Peptides and synthetic cell membranes
US20030096418A1 (en) * 1996-11-29 2003-05-22 Proteomic Systems, Inc. Biosensor arrays and methods
WO2007048459A1 (fr) * 2005-10-28 2007-05-03 Max-Planck Gesellschaft zur Förderung der Wissenschaften e.V. Transcription et traduction in vitro acellulaires de proteines membranaires en couches lipidiques planaires attachees
US8211712B2 (en) 2005-03-29 2012-07-03 The Board Of Trustees Of The Leland Stanford Junior University Method of fabricating lipid bilayer membranes on solid supports
WO2013115867A1 (fr) * 2012-02-05 2013-08-08 Biodesy, Llc Procédés d'identification de modulateurs de ras à l'aide de techniques non linéaires

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962638A (en) * 1994-12-16 1999-10-05 Merck Patent Gesellschaft Mit Beschrankter Haftung Peptides and synthetic cell membranes
US20030096418A1 (en) * 1996-11-29 2003-05-22 Proteomic Systems, Inc. Biosensor arrays and methods
US8211712B2 (en) 2005-03-29 2012-07-03 The Board Of Trustees Of The Leland Stanford Junior University Method of fabricating lipid bilayer membranes on solid supports
WO2007048459A1 (fr) * 2005-10-28 2007-05-03 Max-Planck Gesellschaft zur Förderung der Wissenschaften e.V. Transcription et traduction in vitro acellulaires de proteines membranaires en couches lipidiques planaires attachees
WO2013115867A1 (fr) * 2012-02-05 2013-08-08 Biodesy, Llc Procédés d'identification de modulateurs de ras à l'aide de techniques non linéaires

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
BUNJES N ET AL: "Thiopeptide-supported lipid layers on solid surfaces", LANGMUIR, AMERICAN CHEMICAL SOCIETY, NEW YORK, NY; US, vol. 13, 1 November 1997 (1997-11-01), pages 6188 - 6194, XP002097603, ISSN: 0743-7463, DOI: 10.1021/LA970317L *
CHAH, S.; R. N. ZARE: "Surface plasmon résonance study of vesicle rupture by virus-mimetic attack.", PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 10, no. 22, 2008, pages 3203 - 3208
CHO ,N.-J.; C.W. FRANK; B. KASEMO; F. HÔÔK: "Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates", NATURE PROTOCOLS, vol. 5, 2010, pages 1096 - 1106
CHO, N.-J.; G. WANG; M. EDVARDSSON; J. S. GLENN; F. HOOK; C. W. FRANK: "Alpha-Helical Peptide-Induced Vesicle Rupture Revealing New Insight into the Vesicle Fusion Process As Monitored in Situ by Quartz Crystal Microbalance-Dissipation and Reflectrometry", ANALYTICAL CHEMISTRY, vol. 81, no. 12, 2009, pages 4752 - 4761
CHO, N.-J.; S.-J. CHO; K. H. CHEONG; J.S. GLENN; C. W. FRANK: "Employing an Amphipathic Viral Peptide to Create a Lipid Bilayer on Au and Ti02", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 129, no. 33, 2007, pages 10050 - 10051
COUTABLE, A.; T. CHRISTOPHE; J. CHALMEAU; J.-M. FRANÇOIS; C. VIEU; V. NOIREAUX; E. TRÉVISIOL: "Preparation of tethered-lipid bilayers on gold surfaces for the incorporation of intégral membrane proteins synthesized by cell-free expression", LANGMUIR, vol. 30, no. 11, 2014, pages 3132 - 3141
DONALD, K.M.; L.J.BLUM; J. J. GOODING; T. BÔCKING; A.I. MECHLER; A. P. GIRARD-EGROT; S. M. VAIENZUELA: "Nanobiotechnology of Biomimetic Membranes", LANGMUIR-BLODGETT TECHNIQUE FOR SYNTHESIS OF BIOMIMETIC LIPID MEMBRANES, 2007, pages 25 - 37
DONALD, K.M.; L.J.BLUM; J. J. GOODING; T. BOCKING; A.I. MECHLER; A. P. GIRARD-EGROT; S. M. VALENZUELA: "Nanobiotechnology of Biomimetic Membranes", LANGMUIR-BLODGETT TECHNIQUE FOR SYNTHESIS OF BIOMIMETIC LIPID MEMBRANES, 2007, pages 25 - 37
FRANÇOIS-MOUTAL, L.; MARCILLAT O.; GRANJON T: "Structural comparison of highly similar nucleoside diphosphate kineases: molecular explanation of distinct membrane binding behavior", BIOCHIMIE, vol. 105, 2014, pages 110 - 118, XP029053858, DOI: doi:10.1016/j.biochi.2014.06.025
HARDY, G. J.; R. NAYAK; S. MUNIR ALAM; J. G. SHAPTER; F. HEINRICH; S. ZAUSCHER: "Biomimetic supported lipid bilayers with high cholesterol content formed by a-helical peptide-induced vesicle fusion", JOURNAL OF MATERIALS CHEMISTRY, vol. 22, 2012, pages 19506 - 19513
INGO KOEPER ET AL: "Chapter 2 Functional Tethered Bimolecular Lipid Membranes (tBLMs)", ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES, ELSEVIER ACADEMIC PRESS, DE, vol. 3, 1 January 2006 (2006-01-01), pages 37 - 53, XP009167373, ISSN: 1554-4516, DOI: 10.1016/S1554-4516(05)03002-4 *
LIPOSOME TECHNIQUES FOR SYNTHESIS OF BIOMIMETIC LIPID MEMBRANES, pages 77 - 79
LORIN A.; B. CHARLOTEAUX; L. LINS; R. BRASSEUR, IMPLICATION DES PEPTIDES DE FUSION DES GLYCOPROTÉINES DE FUSION VIRALES DE CLASSE I DANS LA FUSION MEMBRANAIRE, vol. 11, no. 4, 2007, Retrieved from the Internet <URL:http://popups.ulg.ac.be/1780-4507/index.php?id=1740>
NAUMANN R ET AL: "Incorporation of membrane proteins in solid-supported lipid layers", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 34, no. 18, 1 January 1995 (1995-01-01), pages 2056 - 2058, XP002097604, ISSN: 1433-7851, DOI: 10.1002/ANIE.199520561 *
REBAUD SAMUEL ET AL: "Tethered bilayer lipid membranes (tBLMs): Interest and applications for biological membrane investigations", BIOCHIMIE, MASSON, PARIS, FR, vol. 107, 4 July 2014 (2014-07-04), pages 135 - 142, XP029105016, ISSN: 0300-9084, DOI: 10.1016/J.BIOCHI.2014.06.021 *
ROBELEK, R.; E. S. LEMKER; B. WILTSCHI; V. KIRSTE; R. NAUMANN; D. OESTERHEIT; E.-K. SINNER: "Incorporation of In Vitro Synthesized GPCR into a Tethered Artificial Lipid Membrane System", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 46, no. 4, 2007, pages 605 - 608
ROSSI, C.; S. , DOUMIATI; C. LAZZARELLI; M. DAVI; F. MEDDAR; D. LADANT; J. CHOPINEAU: "A Tethered Bilayer Assembled on Top of Immobilized Calmodulin to Mimic Cellular Compartmentalization", PLOS ONE, vol. 6, no. 4, 2011
SCHILLER S.M.; REISINGER-FRIEBIS A.; GÔTZ H.; HAWKER C.J.; FRANK C.W.; NAUMANN R.; KNOLL W.: "Biomimetic Lipoglycopolymer Membranes: Photochemical Surface Attachment of Supramolecular Architectures with Defined Orientation", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 48, no. 37, 2009, pages 6896
YLDIZ, A. A.; U. H. YILDIZ; B. LIEDBERG; E. K. SINNER: "Biomimetic membrane platform: Fabrication, characterization and applications", COLLOIDS AND SURFACES B-BIOINTERFACES, vol. 103, 2013, pages 510 - 516, XP028971383, DOI: doi:10.1016/j.colsurfb.2012.10.066

Also Published As

Publication number Publication date
EP3213074A1 (fr) 2017-09-06
JP2017534053A (ja) 2017-11-16
US20180024125A1 (en) 2018-01-25
FR3027679A1 (fr) 2016-04-29
FR3027679B1 (fr) 2016-12-09

Similar Documents

Publication Publication Date Title
El Kirat et al. Nanoscale analysis of supported lipid bilayers using atomic force microscopy
Kolahdouzan et al. Optimizing the formation of supported lipid bilayers from bicellar mixtures
EP2069385B1 (fr) Immobilisation de proteines membranaires sur un support par l&#39;intermediaire d&#39;une molecule amphiphile
Visco et al. Asymmetric supported lipid bilayer formation via methyl-β-cyclodextrin mediated lipid exchange: influence of asymmetry on lipid dynamics and phase behavior
Simonsson et al. Continuous lipid bilayers derived from cell membranes for spatial molecular manipulation
Ramirez et al. NBD-cholesterol probes to track cholesterol distribution in model membranes
Kaufmann et al. A detailed investigation of the formation kinetics and layer structure of poly (ethylene glycol) tether supported lipid bilayers
Simonsson et al. Formation and diffusivity characterization of supported lipid bilayers with complex lipid compositions
Ramadurai et al. Dynamic studies of the interaction of a pH responsive, amphiphilic polymer with a DOPC lipid membrane
Ruiz-Rincón et al. Reversible Monolayer–Bilayer Transition in Supported Phospholipid LB Films under the Presence of Water: Morphological and Nanomechanical Behavior
Gräb et al. 3D-membrane stacks on supported membranes composed of diatom lipids induced by long-chain polyamines
Sondhi et al. Structure, Formation, and biological interactions of supported lipid bilayers (SLB) incorporating lipopolysaccharide
WO2016066947A1 (fr) Ensemble support/peptide/bicouche lipidique, procedes de preparation et procedes de detection associes
FR2828491A1 (fr) Nouvelle membrane supportee, preparation et utilisations
JP5355456B2 (ja) 量子ドット複合体含有ベシクル及びその製造方法
Kataoka-Hamai et al. Interaction Mechanisms of Giant Unilamellar Vesicles with Hydrophobic Glass Surfaces and Silicone Oil–Water Interfaces: Adsorption, Deformation, Rupture, Dynamic Shape Changes, Internal Vesicle Formation, and Desorption
Nikolaus et al. New molecular rods—Characterization of their interaction with membranes
Lorenz et al. Colloidal probe microscopy of membrane–membrane interactions: From ligand–receptor recognition to fusion events
WO2017103534A2 (fr) Assemblages de nanoparticules hydrophobes en milieu aqueux
Kataoka-Hamai et al. Determination of the Coverage of Phosphatidylcholine Monolayers Formed at Silicone Oil–Water Interfaces by Vesicle Fusion
Fonseka et al. Nanodomain formation in planar supported lipid bilayers composed of fluid and polymerized dienoyl lipids
Miles et al. In vitro assembly of a viral envelope
FR2754828A1 (fr) Structure membranaire artificielle, procede et polymere pour sa preparation, procede de preparation de ce polymere, particule et film comprenant cette structure
Cho et al. Fabrication of protein-anchoring surface by modification of Sio2 with liposomal bilayer
Berselli Versatile cell membrane models: biomimetic suspended lipid bilayers designed for protein/DNA membrane dynamics and detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15798506

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15520896

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015798506

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017522905

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE