[go: up one dir, main page]

WO2016001119A1 - Associations de principes actifs insecticides et fongicides - Google Patents

Associations de principes actifs insecticides et fongicides Download PDF

Info

Publication number
WO2016001119A1
WO2016001119A1 PCT/EP2015/064663 EP2015064663W WO2016001119A1 WO 2016001119 A1 WO2016001119 A1 WO 2016001119A1 EP 2015064663 W EP2015064663 W EP 2015064663W WO 2016001119 A1 WO2016001119 A1 WO 2016001119A1
Authority
WO
WIPO (PCT)
Prior art keywords
spp
methyl
species
carboxamide
pyrazole
Prior art date
Application number
PCT/EP2015/064663
Other languages
German (de)
English (en)
Inventor
Peter Jeschke
Wolfgang Thielert
Holger Weckwert
Marita JOHN
Original Assignee
Bayer Cropscience Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Aktiengesellschaft filed Critical Bayer Cropscience Aktiengesellschaft
Publication of WO2016001119A1 publication Critical patent/WO2016001119A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings

Definitions

  • This application relates to mixtures of the compound of formula (I) explained below with at least one further active ingredient which is preferably a fungicide or an antimicrobially active compound.
  • These mixtures are suitable for controlling animal and microbial pests and as a plant tonic.
  • the compound of the formula (I) is known from EP 0 268 915 A2, JP1993078323 A and WO 2012/029672 Al, where its use for controlling animal pests is described.
  • Single drug combinations containing the compound of formula (I) have become known, see WO 2013/129688 Al.
  • acaricidal and / or insecticidal and / or nematicidal and / or fungicidal or antimicrobial efficacy and / or range of action and / or the plant tolerance of this compound and of the known active compound combinations, in particular to crop plants, is not always sufficient.
  • active substance combinations mixtures of active substances containing the compound of the formula (I) and one or more compounds from the groups (Fl) to (F-14) described below and / or one or more compounds of further than preferred mentioned Groups of mixing partners are synergistically effective and are suitable for controlling animal and microbial pests and as a plant tonic.
  • the active compound combinations according to the invention contain the compound of the formula (I)
  • the active compound combinations according to the invention preferably contain the compound of the formula (I) and the mixing partner (s) in synergistically effective amounts.
  • the active compound combinations according to the invention additionally contain one or more compounds from the groups (F-1) to (F-14) described below and / or one or more compounds of groups of mixing partners which are more preferred than those mentioned.
  • inhibitors of nucleic acid synthesis such as benalaxyl, benalaxyl-M (kiralaxyl), bupirimate, clozylacone, dimethirimol, ethirimol, furalaxyl, hymexazole, metalaxyl, metalaxyl-M (mefenoxam), ofurace, oxadixyl, oxolinic acid and octhilinone, (F-2) inhibitors of mitosis and cell division, such as benomyl, carbendazim, chlorfenazole, diethofencarb, ethaboxam, fuberidazole, pencycuron, thiabendazole, thiophanate, thiophanate-methyl, zoxamide, fluopicolide, 5-chloro-7- (4-methylpiperidine) l-yl) -6- (2,4,6-trifluorophenyl) [l,
  • (F-5) inhibitors of ATP production such as, for example, fentin acetate, fentin chloride, fentin hydroxide and silthiofam,
  • (F-6) inhibitors of amino acid and protein biosynthesis such as andoprim, blasticidin-S, cyprodinil, kasugamycin, kasugamycin hydrochloride hydrate, mepanipyrim and pyrimethanil
  • (F-7) signal transduction inhibitors such as fenpiclonil, fludioxonil, fluxapyroxad and quinoxyfen, 3- (5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-1-yl) quinoline, oxytetracycline, streptomycin,
  • Inhibitors of lipid and membrane synthesis such as biphenyl, chlozolinate, edifenphos, etridiazole, iodocarb, Iprobenfos, iprodione, isoprothiolane, procymidone, propamocarb, propamocarb hydrochloride, pyrazophos, tolclofos-methyl and vinclozolin, chloroneb, dicloran , Prothiocarb, Quintozen, Tecnazene,
  • (F-9) inhibitors of ergosterol biosynthesis such as aldimorph, azaconazole, bitertanol, bromuconazole, cyproconazole, diclobutrazole, difenoconazole, diniconazole, diniconazole-M, dodemorph, dodemorph acetate, epoxiconazole, etaconazole, fenarimol, fenbuconazole, fenhexamide, fenpropidin, Fenpropimorph, fluquinconazole, flurprimidol, flusilazole, flutriafol, furconazole, furconazole cis, hexaconazole, imazalil, imazalil sulfate, imibenconazole, ipconazole, metconazole, myclobutanil, naftifine, nuarimol, oxpoconazole, paclobutrazole
  • (F-10) inhibitors of cell wall synthesis such as benthiavalicarb, dimethomorph, flumorph, iprovalicarb, mandipropamide, polyoxins, polyoxorim, validamycin A valefenalate and polyoxin B
  • (Fl l) inhibitors of melanin biosynthesis such as carpropamide, diclocymet, fenoxanil, Fthalide, pyroquilon tricyclazole, and 2,2,2-trifluoroethyl ⁇ 3-methyl-1 - [(4-methylbenzoyl) amino] butan-2-yl carbamate
  • (F-12) resistance inducers such as acibenzolar-S-methyl, probenazole and tiadinil, isotianil, laminarin, (F-13) compounds having multisite activity such as Bordeaux mixture, captafol, captan, chlorothalonil, copper naphthenate, copper oxide, copper oxychloride, Copper Preparations such as Copper Hydroxide, Copper Sulfate, Dichlofluanid, Dithianone, Dodine and its Free Base, Ferbam, Fluorofolpet, Folpet, Guazatin, Guazatin Acetate, Iminoctadine, Iminoctadinal Besilate, Iminoctadine Triacetate, Mancopper, Mancozeb, Maneb, Metiram, Zinc Metiram, Copper Oxine, Propamidine, Propineb , Sulfur and sulfur preparations such as calcium polysulfide, thiram, tolylfluanid, zineb and ziram,
  • Preferred compounds from these groups are furthermore:
  • Azoxystrobin Boscalid, Penflufen, Bixafen, Fluopyram, Carpropamid, Spiroxamine, Fluxapyroxad, Carbendazim, Carboxin, Fenamidon, Fludioxonil, Fluopicolide, Fluoxastrobin, Fluquinconazole, Flutriafol, Ipconazole, Iprodione, Isotianil, Mefenoxam, Metalaxyl, Metominostrobin, Pencycuron, Prochloraz, Prothioconazole, Pyraclostrobin, Pyrimethanil, Sedaxane, Silthiopham, Tebuconazole, Thiram, Tolylfluanid, Triadimenol, Triazoxide, Trifloxystrobin, Triflumuron and Triticonazole.
  • the compounds fluopyram, fosetyl-aluminum, propamocarb hydrochloride, propamocarb fosetylate, isotianil, fluopicolide, isotianil, prothioconazole, penflufen, tebuconazole, triadimenol, pyrimethanil, fenamidone, metalaxyl, dimethomorph, cyazofamide and azoxystrobin are another preferred group of mixing partners.
  • Particularly preferred are those drug combinations in which the compound of formula (I) is combined with the mixing partners indicated in Table A.
  • the preferred, particularly preferred and most preferred mixing ratios given in the table are weight ratios. The ratio is to be understood as the compound of formula (I) Mixing partner no. 1 to 5.
  • Each of the drug combinations (mixtures) Nos. 1 to 5 is a preferred embodiment of the present invention.
  • Further preferred mixing ratios in which the compound of the formula (I) is combined with the mixing partners indicated in Table A are 2000: 1 to 1: 2000, 1000: 1 to 1: 1000, 750: 1 to 1: 750, 500 : 1 to 1: 500, 250: 1 to 1: 250, 200: 1 to 1: 200, 100: 1 to 1: 100, 95: 1 to 1:95, 90: 1 to 1:90, 85: 1 to 1:85, 80: 1 to 1:80, 75: 1 to 1:75, 70: 1 to 1:70, 65: 1 to 1:65, 60: 1 to 1:60, 55: 1 to 1 : 55, 45: 1 to 1:45, 40: 1 to 1:40, 35: 1 to 1:35, 30: 1 to 1:30, 20: 1 to 1:20, 15: 1 to 1:15, 10: 1 to 1:10, 9: 1 to 1: 9, 8: 1 to 1: 8, 7: 1 to 1: 7, 6: 1 to 1: 64: 1 to 1: 4, 3: 1 to 1: 3, 2: 1
  • the antimicrobial action or the fungicidal action and / or acaricidal and / or insecticidal and / or nematicidal action and / or the plant-strengthening and / or yield-increasing action of the active compound combinations according to the invention is substantially higher than the sum of the effects of the individual active substances. There is an unpredictable true synergistic Effect before and not just an effect supplement.
  • the active compound combinations according to the invention can contain one or more further active compounds from the groups (1-1) to (1-29) mentioned below.
  • (1-1) Acetylcholinesterase (AChE) inhibitors such as carbamates, e.g.
  • GABA-controlled chloride channel antagonists such as cyclodiene organochlorines, e.g. Chlordanes and endosulfan or phenylpyrazoles (fiproles), e.g. Ethiprole and fipronil.
  • Sodium channel modulators / voltage dependent sodium channel blockers such as pyrethroids, e.g. Acrinathrin, allethrin, d-cis-trans allethrin, d-trans allethrin, bifenthrin, bioallethrin, bioallethrin S-cyclopentenyl isomer, bioresmethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cypermethrin, alpha- Cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphenothrin [(lR) trans isomers], deltamethrin, empenthrin [(EZ) (lR) isomers
  • Nicotinergic acetylcholine receptor (nAChR) agonists such as neonicotinoids, eg acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam or nicotine or sulfoxaflor or flupyradifurone.
  • Nicotinergic acetylcholine receptor (nAChR) allosteric activators such as spinosines, eg spinetoram and spinosad.
  • chloride channel activators such as avermectins / milbemycins, e.g. Abamectin, Emamectin benzoate, Lepimectin and Milbemectin.
  • Juvenile hormone mimics such as juvenile hormone analogs, e.g. Hydroprene, Kinoprene and Methoprene or Fenoxycarb or Pyriproxyfen.
  • Agents with unknown or nonspecific modes of action such as alkyl halides, e.g. Methyl bromide and other alkyl halides; or chloropicrin or sulfuryl fluoride or borax or tartar emetic.
  • Selective feeding inhibitors e.g. Pymetrozine or flonicamide.
  • Insect intestinal membrane microbial disruptors e.g. Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis and BT plant proteins: CrylAb, CrylAc, CrylFa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34 / 35Abl.
  • Bacillus thuringiensis subspecies israelensis Bacillus sphaericus
  • Bacillus thuringiensis subspecies aizawai Bacillus thuringiensis subspecies kurstaki
  • Bacillus thuringiensis subspecies tenebrionis and BT plant proteins CrylAb, CrylAc, CrylFa, Cry2Ab, mCry
  • Inhibitors of oxidative phosphorylation, ATP disruptors such as diafenthiuron or organotin compounds, e.g. Azocyclotin, Cyhexatin and Fenbutatin-oxide or Propargite or Tetradifon.
  • Nicotinergic acetylcholine receptor antagonists such as Bensultap, Cartap hydrochloride, Thiocyclam, and Thiosultap Sodium.
  • Type 0 inhibitors of chitin biosynthesis such as bistrifluron, chlorofluorazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron and triflumuron.
  • Ecdysone receptor agonists such as chromafenozides, halofenozides, methoxyfenozides, and tebufenozides.
  • Octopaminergic agonists such as amitraz.
  • (1-20) complex III electron transport inhibitors such as hydramethylnone or acequinocyl or fluacrypyrim.
  • METI acaricides e.g. Fenazaquin, Fenpyroximate, Pyrimidifen, Pyridaben, Tebufenpyrad and Tolfenpyrad or Rotenone (Derris).
  • inhibitors of acetyl-CoA carboxylase such as tetronic and tetramic acid derivatives, e.g. Spirodiclofen, spiromesifen and spirotetramat.
  • Complex IV electron transport inhibitors such as phosphines, e.g. Aluminum phosphide, calcium phosphide, phosphine and zinc phosphide or cyanide.
  • ryanodine receptor effectors such as diamides, e.g. Chlorantraniliprole, Cyantraniliprole and Flubendiamide,
  • Preferred compounds from these groups are:
  • the compounds of the formula (I) can be mixed with the following herbicides.
  • Fruit / Vegetable Herbicides Atrazine, Bromacil, Diuron, Glyphosate, Linuron, Metribuzin, Simazine, Trifluralin, Fluazifop, Glufosinate, Halosulfuron Gowan, Paraquat, Propyzamide, Sethoxydim, Butafenacil, Halosulfuron, Indaziflam; Cereal Herbicides: Isoproturon, Bromoxynil, Ioxynil, Phenoxies, Chlorsulfuron, Clodinafop, Diclofop, Diflufenican, Fenoxaprop, Florasulam, Fluroxypyr, Metsulfuron, Triasulfuron, Flucarbazone, Iodosulfuron, Propoxycarbazone, Picolinafen, Mesosulfuron, Beflubutamide, Pinoxaden, Amidosulfuron, Thifensulfuron, Tribenuron, Flupyrsul
  • Corn herbicides atrazines, alachlor, bromoxynil, acetochlor, dicamba, clopyralid, (S) -dimethenamid, glufosinate, glyphosate, isoxaflutole, (S) -metolachlor, mesotrione, nicosulfuron, primisulfuron, rimsulfuron, sulcotrione, foramsulfuron, toramezone, tembotrione, saflufenacil, Thiencarbazone, flufenacet, pyroxasulfone; Rice herbicides: Butachlor, Propanil, Azimsulfuron, Bensulfuron, Cyhalofop, Daimuron, Fentrazamide, Imazosulfuron, Mefenacet, Oxaziclomefone, Pyrazosulfuron, Pyributicarb, Quinclorac, Thiobencarb, Indanofan
  • Soy herbicides alachlor, bentazone, trifluralin, chlorimuron-ethyl, cloransulam-methyl, fenoxaprop, fomesafen, fluazifop, glyphosate, imazamox, imazaquin, imazethapyr, (S) -metolachlor, metribuzin, pendimethalin, tepraloxydim, glufosinate;
  • Sugar beet herbicides Chloridazon, Desmedipham, Ethofumesate, Phenmedipham, Triallate, Clopyralid, Fluazifop, Lenacil, Metamitron, Quinmerac, Cycloxydim, Triflusulfuron, Tepraloxydim, Quizalofop;
  • Rape herbicides Clopyralid, Diclofop, Fluazifop, Glufosinate, Glyphosate, Metazachlor, Trifluralin Ethametsulfuron, Quinmerac, Quizalofop, Clethodim, Tepraloxydim;
  • mixtures of the active compound combinations according to the invention with glyphosate Particular preference is given to mixtures of the active compound combinations according to the invention with glyphosate. Further preferred are in particular mixtures of the active ingredient combinations according to the invention with glufosinate.
  • the active compound combinations according to the invention are suitable for good plant tolerance, favorable toxicity to warm-blooded animals and good environmental compatibility for the protection of plants and plant organs, for increasing crop yields, improving the quality of the crop and for controlling animal pests, in particular insects, arachnids, helminths, nematodes and molluscs found in agriculture, horticulture, livestock, forests, gardens and recreational facilities, in supplies and materials, and in the hygiene sector. They can preferably be used as crop protection agents. They are effective against normally sensitive and resistant species as well as against all or individual stages of development.
  • the above mentioned pests include:
  • Pests of the genus Arthropoda in particular of the class Arachnida eg Acarus spp., Aceria kuko, Aceria sheldoni, Aculops spp., Aculus spp., Amblyomma spp., Amphitetranychus viennensis, Argas spp., Boophilus spp., Brevipalpus spp.
  • Apogonia spp. Atomaria spp., Attagenus spp., Baris caerulescens, Bruchidius obtectus, Bruchus spp., Cassida spp., Cerotoma trifurcata, Ceutorrhynchus spp., Chaetocnema spp., Cleonus mendicus, Conoderus spp., Cosmopolites spp., Costelytra zealandica, Ctenicera spp., Curculio spp., Cryptolestes ferruginus, Cryptorhynchus lapathi, Cylindrocopturus spp., Dermestes spp., Diabrotica spp., Dichocrocis spp., Dicladispa armigera, Diloboderus spp., Epicaerus spp., Epilachna spp., Epitrix spp.
  • hypoderma spp. Liriomyza spp., Lucilla spp., Lutzomyia spp., Mansonia spp., Musca spp., Oestrus spp., Oscinella frit, Paratanytarsus spp., Paralauterborniella subcincta, Pegomyia spp., Phlebotomus spp., Phorbia spp.
  • Pulvinaria spp. Pyrilla spp., Quadraspidiotus spp., Quesada gigas, Rastrococcus spp., Rhopalosiphum spp., Saissetia spp., Scaphoid titanus, Schizaphis graminum, Selenaspidus articulatus, Sitobion avenae, Sogata spp., Sogatella furcifera, Sogatodes spp.
  • Stictocephala festina Siphoninus phillyreae, Tenalaphara malayensis, Tetragonocephela spp., Tinocallis caryaefoliae, Tomaspis spp., Toxoptera spp., Trialeurodes vaporariorum, Trioza spp., Typhlocyba spp., Unaspis spp., Viteus vitifolii, Zygina spp .; from the order of the Hymenoptera eg Acromyrmex spp., Athalia spp., Atta spp., Camponotus spp., Dolichovespula spp., Diprion spp., Hoplocampa spp., Lasius spp., Linepithema (Iridiomyrmex) humile, Monomorium pharaonis, Paratrechina spp.
  • Paravespula spp. Paravespula spp., Plagiolepis spp., Sirex spp., Solenopsis invicta, Tapinoma spp., Technomyrmex albipes, Urocerus spp., Vespa spp., Wasmannia auropunctata, Xeris spp.,; from the order of Isopoda, for example, Armadillidium vulgare, Oniscus asellus, Porcellio scaber; from the order of the Isoptera eg Coptotermes spp., Cornitermes cumulans, Cryptotermes spp., Incisitermes spp., Kalotermes spp., Microtermes obesi, Nasutitermes spp., Odontotermes spp., Porotermes spp., Reticulitermes spp .; from the order of Lepidoptera eg Achroia grisella, Acronica major
  • Pseudaletia spp., Pseudaletia Unipuncta, Pseudoplusia includens, Pyrausta nubilalis, Rachiplusia nu, Schoenobius spp., Scirpophaga spp., Scirpophaga innotata, Ontario segetum, Sesamia spp., Sesamia inferens, Sparganothis spp., Spodoptera spp., Spodoptera praefica, Stathmopoda spp., Stenoma spp.
  • Stomopteryx subsecivella Synanthedon spp., Tecia solanivora, Thaumetopoea spp., Thermesia gemmatalis, Tinea cloacella, Tinea pellionella, Tineola bisselliella, Tortrix spp., Trichophaga tapetzella, Trichoplusia spp., Tryporyza incertulas, Tuta absoluta, Virachola spp .; from the order of Orthoptera or Saltatoria eg Acheta domesticus, Dichroplus spp., Gryllotalpa spp., Hieroglyphus spp., Locusta spp., Melanoplus spp., Paratlanticus ussuriensis, Schistocerca gregaria; from the order of Phthiraptera eg Damalinia spp., Haematopinus spp., Linognathus spp., Ped
  • Pests of the Mollusca strain in particular of the bivalve class, e.g. Dreissena spp., As well as from the class Gastropoda e.g. Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp .;
  • Gastropoda e.g. Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp .;
  • Animal parasites from the strains of Plathelminthes and Nematoda e.g. Aelurostrongylus spp., Amidostomum spp., Ancylostoma duodenale, Ancylostoma ceylanicum, Acylostoma braziliensis, Ancylostoma spp., Angiostrongylus spp., Anisakis spp., Anoplocephala spp., Ascaris spp., Ascaridia spp., Baylisascaris spp., Brugia malayi, Brugia timori , Bunostomum spp., Capillaria spp., Chabertia spp., Clonorchis spp., Cooperia spp., Crenosoma spp., Cyathostoma spp., Dicrocoelium spp., Dictyocaulus fil
  • Plant pests of the Nematoda strain ie plant parasitic nematodes, in particular Aglenchus spp., Anguina spp., Aphelenchoides spp., Belonolaimus spp., Bursaphelenchus spp., Cacopaurus spp., Criconemella spp., Criconemoides spp., Ditylenchus spp., Dolichodorus spp ., Globodera spp., Helicotylenchus spp., Hemicriconemoides spp., Hemicycliophora spp., Heterodera spp., Hoplolaimus spp., Longidorus spp., Meloidogyne spp., Meloinema spp., Nacobbus spp., Neotylenchus spp., Paralongidorus spp., Paraphele
  • the order of coccidia can be determined, e.g. Eimeria spp. fight.
  • the active compound combinations according to the invention in particular those mentioned in Table A, have an increased microbicidal activity and can be used for controlling unwanted microorganisms, such as fungi and bacteria, in crop protection and in the protection of materials.
  • Fungicides can be used for the control of Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes.
  • Bactericides can be used in crop protection for controlling Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae and Streptomycetaceae.
  • Podosphaera species such as Podosphaera leucotricha
  • Sphaerotheca species such as Sphaerotheca fuliginea
  • Uncinula species such as Uncinula necator
  • Gymnosporangium species such as Gymnosporangium sabinae
  • Hemileia species such as Hemileia vastatrix
  • Phakopsora species such as Phakopsora pachyrhizi and Phakopsora meibomiae
  • Puccinia species such as Puccinia recondita
  • Uromyces species such as Uromyces appendiculatus
  • Bremia species such as Bremia lactucae
  • Peronospora species such as Peronospora pisi or P. brassicae;
  • Phytophthora species such as Phytophthora infestans
  • Plasmopara species such as Plasmopara viticola
  • Pseudoperonospora species such as Pseudoperonospora humuli or
  • Pythium species such as Pythium ultimum
  • Alternaria species such as Alternaria solani;
  • Cercospora species such as Cercospora beticola
  • Cladosporium species such as Cladosporium cucumerinum
  • Cochliobolus species such as Cochliobolus sativus
  • Colletotrichum species such as Colletotrichum lindemuthanium
  • Cycloconium species such as cycloconium oleaginum
  • Elsinoe species such as Elsinoe fawcettii
  • Gloeosporium species such as, for example, Gloeosporium laeticolor
  • Glomerella species such as Glomerella cingulata
  • Guignardia species such as Guignardia bidwelli
  • Leptosphaeria species such as Leptosphaeria maculans
  • Magnaporthe species such as Magnaporthe grisea
  • Mycosphaerella species such as Mycosphaerella graminicola and Mycosphaerella fijiensis;
  • Phaeosphaeria species such as Phaeosphaeria nodorum
  • Pyrenophora species such as, for example, Pyrenophora teres
  • Ramularia species such as Ramularia collo-cygni
  • Rhynchosporium species such as Rhynchosporium secalis
  • Septoria species such as Septoria apii
  • Typhula species such as Typhula incarnata
  • Venturia species such as Venturia inaequalis
  • Corticium species such as Corticium graminearum
  • Fusarium species such as Fusarium oxysporum
  • Gaeumannomyces species such as Gaeumannomyces graminis
  • Rhizoctonia species such as Rhizoctonia solani
  • Tapesia species such as Tapesia acuformis
  • Thielaviopsis species such as Thielaviopsis basicola
  • Ear and panicle diseases caused by e.g.
  • Alternaria species such as Alternaria spp .
  • Aspergillus species such as Aspergillus flavus
  • Cladosporium species such as Cladosporium cladosporioides
  • Claviceps species such as Claviceps purpurea
  • Fusarium species such as Fusarium culmorum
  • Gibberella species such as Gibberella zeae
  • Monographella species such as Monographella nivalis
  • Sphacelotheca species such as Sphacelotheca reiliana
  • Tilletia species such as Tilletia caries
  • Urocystis species such as Urocystis occulta
  • Ustilago species such as Ustilago nuda
  • Aspergillus species such as Aspergillus flavus
  • Botrytis species such as Botrytis cinerea
  • Penicillium species such as Penicillium expansum and Penicillium purpurogenum
  • Sclerotinia species such as Sclerotinia sclerotiorum
  • Verticilium species such as Verticilium alboatrum
  • Phytophthora species such as Phytophthora cactorum
  • Pythium species such as Pythium ultimum
  • Rhizoctonia species such as Rhizoctonia solani
  • Sclerotium species such as Sclerotium rolfsii
  • Nectria species such as Nectria galligena
  • Monilinia species such as Monilinia laxa; Deformations of leaves, flowers and fruits, caused by eg.
  • Taphrina species such as Taphrina deformans
  • Esca species such as Phaeomoniella chlamydospora and Phaeoacremonium aleophilum and Fomitiporia mediterranea;
  • Botrytis species such as Botrytis cinerea
  • Rhizoctonia species such as Rhizoctonia solani
  • Helminthosporium species such as Helminthosporium solani
  • Xanthomonas species such as Xanthomonas campestris pv. Oryzae;
  • Pseudomonas species such as Pseudomonas syringae pv. Lachrymans;
  • Erwinia species such as Erwinia amylovora
  • the following diseases of soybean beans can be controlled:
  • Alternaria leaf spot (Alternaria spec. Atrans tenuissima), Anthracnose (Colletotrichum gloeosporoides dematium var. Truncatum), Brown spot (Septoria glycines), Cercospora leaf spot and blight (Cercospora kikuchii), Choanephora leaf blight (Choanephora infundibulifera trispora (Syn.)) , Dactuliophora leaf spot (Dactuliophora glycines), Downy Mildew (Peronospora manshurica), Drechslera blight (Drechslera glycini), Frogeye leaf spot (Cercospora sojina), Leptosphaerulina leaf spot (Leptosphaerulina trifolii), Phyllostica leaf spot (Phyllosticta sojaecola), Pod and Stem Blight (Phomopsis sojae), Powdery Milde
  • the present invention further relates to formulations and application forms prepared therefrom as crop protection agents and / or pesticides such.
  • B. drench, drip and spray comprising at least one of the active compound combinations according to the invention.
  • the use forms contain other crop protection agents and / or pesticides and / or the effect of improving adjuvants such as penetration enhancers, eg.
  • vegetative oils such as rapeseed oil, sunflower oil, mineral oils such as paraffin oils, alkyl esters of vegetable fatty acids such as rapeseed oil or soybean oil or alkanol alkoxylates and / or spreading agents such as alkyl siloxanes and / or salts z.
  • organic or inorganic ammonium or phosphonium salts such as ammonium sulfate or diammonium hydrogen phosphate and / or retention-promoting agents such.
  • dioctylsulfosuccinate or hydroxypropyl guar polymers and / or humectants such as dioctylsulfosuccinate or hydroxypropyl guar polymers and / or humectants such.
  • glycerol and / or fertilizers such as ammonium, potassium or phosphorus-containing fertilizer.
  • Typical formulations are, for example, water-soluble liquids (SL), emulsion concentrates (EC), emulsions in water (EW), suspension concentrates (SC, SE, FS, OD), water-dispersible granules (WG), granules (GR) and capsule concentrates (CS). ;
  • SL water-soluble liquids
  • EC emulsion concentrates
  • EW emulsions in water
  • SC suspension concentrates
  • SC SE, SE, FS, OD
  • WG water-dispersible granules
  • GR granules
  • capsule concentrates CS
  • the formulations contain, in addition to one or more active compounds according to the invention, further agrochemical active substances.
  • auxiliaries such as extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, antifreeze agents, biocides, thickeners and / or further auxiliaries, such as adjuvants.
  • An adjuvant in this context is a component that enhances the biological effect of the formulation without the component itself having a biological effect. Examples of adjuvants are agents that promote retention, spreading behavior, adherence to the leaf surface, or penetration.
  • formulations are prepared in a known manner, e.g. by mixing the active ingredients with excipients such as extenders, solvents and / or solid carriers and / or other excipients such as surfactants.
  • excipients such as extenders, solvents and / or solid carriers and / or other excipients such as surfactants.
  • the preparation of the formulations is carried out either in suitable systems or before or during use.
  • excipients there may be used those substances which are suitable for conferring special properties, such as certain physical, technical and / or biological properties, to the formulation of the active substance or to the forms of use prepared from these formulations (for example usable plant protection agents such as spray or seed dressing).
  • polar and non-polar organic chemical liquids e.g. from the classes of aromatic and non-aromatic hydrocarbons (such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes), alcohols and polyols (which may also be substituted, etherified and / or esterified), ketones (such as acetone, cyclohexanone), Esters (including fats and oils) and (poly) ethers, simple and substituted amines, amides, lactams (such as N-alkylpyrrolidones) and lactones, sulfones and sulfoxides (such as dimethylsulfoxide).
  • aromatic and non-aromatic hydrocarbons such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes
  • alcohols and polyols which may also be substituted, etherified and / or esterified
  • ketones such as
  • Suitable liquid solvents are essentially: aromatics, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, e.g.
  • Petroleum fractions mineral and vegetable oils, alcohols, such as butanol or glycol, and their ethers and esters, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethylformamide and dimethyl sulfoxide, and water.
  • suitable solvents are, for example, aromatic hydrocarbons, e.g. Xylene, toluene or alkylnaphthalenes, chlorinated aromatic or aliphatic hydrocarbons, e.g.
  • Chlorobenzene chloroethylene, or methylene chloride
  • aliphatic hydrocarbons e.g. Cyclohexane, paraffins, petroleum fractions, mineral and vegetable oils
  • alcohols e.g. Methanol, ethanol, iso-propanol, butanol or glycol and their ethers and esters
  • ketones such as e.g. Acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • strong polar solvents such as dimethyl sulfoxide, and water.
  • Suitable carriers are in particular: for example, ammonium salts and ground natural minerals, such as kaolins, clays, talc cumin, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and ground synthetic minerals such as fumed silica, alumina and natural or synthetic silicates, resins, waxes and / or solid fertilizers. Mixtures of such carriers can also be used.
  • Suitable carriers for granules are: eg broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules of inorganic and organic flours and granules of organic material such as sawdust, paper, coconut shells, corn cobs and tobacco stems.
  • liquefied gaseous diluents or solvents can be used.
  • Examples of emulsifying and / or foaming agents, dispersants or wetting agents having ionic or non-ionic properties or mixtures of these surfactants are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, with substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic acid esters, taurine derivatives (preferably alkyl taurates), phosphoric acid esters of polyethoxylated alcohols or phenols, fatty acid esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates, eg Alkylaryl polyglycol ethers, alkylsulfonates, alkyl sulfates, arylsulfonates, protein hydro
  • dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes, and nutrient and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • inorganic pigments e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes
  • nutrient and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • Stabilizers such as cold stabilizers, preservatives, antioxidants, light stabilizers or other chemical and / or physical stability-improving agents may also be present. It may also contain foam-forming agents or defoamers. Further, the formulations and applications derived therefrom may also contain, as additional auxiliaries, adhesives such as carboxymethyl cellulose, natural and synthetic powdery, granular or latex polymers such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and natural phospholipids such as cephalins and lecithins, and synthetic phospholipids. Other auxiliaries may be mineral and vegetable oils. Optionally, further auxiliaries may be present in the formulations and in the use forms derived therefrom.
  • adhesives such as carboxymethyl cellulose, natural and synthetic powdery, granular or latex polymers such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and natural phospholipids such as cephalins and lecithins, and synthetic phospholipids.
  • Such additives are, for example, fragrances, protective colloids, binders, adhesives, thickeners, thixotropic substances, penetration promoters, retention promoters, stabilizers, sequestrants, complexing agents, humectants, spreading agents.
  • the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes.
  • Suitable penetration promoters in the present context are all those substances which are usually used to improve the penetration of agrochemical active substances into plants.
  • Penetration promoters are in this context defined by the fact that they can penetrate from the (usually aqueous) application broth and / or from the spray coating into the cuticle of the plant and thereby increase the material mobility (mobility) of the active ingredients in the cuticle. The method described in the literature (Baur et al., 1997, Pesticide Science 51, 131-152) can be used to determine this property.
  • Examples include alcohol alkoxylates such as coconut oil ethoxylate (10) or Isotridecylethoxylat (12), fatty acid esters such as rapeseed oil or soybean oil, fatty amine alkoxylates such as Tallowamine ethoxylate (15) or ammonium and / or phosphonium salts such as ammonium sulfate or diammonium hydrogen phosphate.
  • alcohol alkoxylates such as coconut oil ethoxylate (10) or Isotridecylethoxylat (12)
  • fatty acid esters such as rapeseed oil or soybean oil
  • fatty amine alkoxylates such as Tallowamine ethoxylate (15) or ammonium and / or phosphonium salts such as ammonium sulfate or diammonium hydrogen phosphate.
  • plants and parts of plants can be treated.
  • plants are understood as meaning all plants and plant populations, such as desired and undesired wild plants or crop plants (including naturally occurring crop plants).
  • Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant varieties which can or can not be protected by plant breeders' rights.
  • the plants which can be treated with the active compound combinations according to the invention include, for.
  • turf vines, cereals, for example wheat, barley, rye, oats, rice, corn and millet, triticale
  • Beets for example sugar beets and fodder beets
  • Fruits such as pome fruit, stone fruit and soft fruit, such as apples, pears, plums, peaches, almonds, cherries and berries, eg.
  • Plant parts are to be understood as meaning all aboveground and underground parts and organs of the plants, such as shoot, leaf, flower and root, by way of example, leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds and roots, tubers and rhizomes .
  • the plant parts also include crops as well as vegetative and generative propagation material, for example cuttings, tubers, rhiomes, offshoots and seeds.
  • the treatment according to the invention of the plants and plant parts with the active compound combinations takes place directly or by acting on their environment, habitat or storage space according to the usual treatment methods, e.g. by dipping, spraying, spraying, sprinkling, vaporizing, atomizing, casting, atomizing, sprinkling, foaming, brushing, spreading, injecting, pouring, drip irrigation and propagating material, in particular at Seeds, further by dry pickling, wet pickling, slurry pickling, encrusting, single or multi-layer wrapping.
  • a preferred direct treatment of the plants is foliar application, i. the active compound combinations according to the invention are applied to the foliage, wherein the treatment frequency and the application rate can be matched to the infestation pressure of the respective pest.
  • the active compound combinations according to the invention also enter the plants via the root system.
  • the treatment of the plants is then carried out by the action of the active compound combinations according to the invention on the habitat of the plant.
  • This may be, for example, by drenching, mixing into the soil or the nutrient solution, i. the location of the plant (e.g., soil or hydroponic systems) is impregnated with a liquid form of the active compound combinations of the invention, or by the soil application, i.
  • the active compound combinations according to the invention are introduced in solid form (for example in the form of granules) into the location of the plants. In water rice crops this may also be by metering the invention in a solid application form (e.g., as granules) into a flooded paddy field.
  • the present invention therefore also relates in particular to a method for protecting seed and germinating plants from the infestation of pests by treating the seed with the active compound combinations according to the invention.
  • the method according to the invention for the protection of seeds and germinating plants from attack by pests comprises a method, in the seed is treated simultaneously in one operation with an active substance of formula I and mixing partners. It also includes a method in which the seed is treated at different times with an active ingredient of formula I and mixing partners.
  • the invention also relates to the use of the active compound combinations according to the invention for the treatment of seed for the protection of the seed and the resulting plant from animal pests.
  • the invention relates to seed which has been treated for protection against animal pests with the active compound combinations according to the invention.
  • the invention also relates to seed which has been treated at the same time with the active ingredient of formula (I) and mixing partner.
  • the invention further relates to seed which has been treated at different times with the active ingredient of the formula (I) and mixing partner.
  • the individual active ingredients of the agent according to the invention may be present in different layers on the seed.
  • the layers containing the active ingredient of the formula (I) and mixing partner may optionally be separated by an intermediate layer.
  • the invention also relates to seed in which the active ingredient of the formula (I) and mixing partner are applied as part of a coating or as a further layer or further layers in addition to a coating.
  • the invention relates to seed which, after treatment with the active compound combinations according to the invention, is subjected to a film coating process in order to avoid dust abrasion on the seed.
  • One of the advantages of the present invention is that because of the particular systemic properties of the compositions of the invention, treatment of the seeds with these agents not only protects the seed itself but also the resulting plants after emergence from animal pests. In this way, the immediate treatment of the culture at the time of sowing or shortly afterwards can be omitted.
  • a further advantage is the fact that germination and emergence of the treated seed can be promoted by treating the seed with the active compound combinations according to the invention.
  • active compound combinations according to the invention can be used in particular also in transgenic seed.
  • wild-type or plant species obtained by conventional biological breeding methods such as cross-breeding or protoplast fusion, and plant varieties and their parts are treated.
  • Traditional propagation and breeding methods may be supported or supplemented by one or more biotechnological methods, such as the use of double haploids, random and directed mutagenesis, molecular or genetic markers, or bioengineering methods and genetic engineering methods.
  • transgenic plants and plant cultivars which have been obtained by genetic engineering methods, if appropriate in combination with conventional methods (Genetically Modified Organisms), and parts thereof are treated.
  • heterologous gene essentially means a gene that is provided or assembled outside the plant or plant cell and that when introduced into the nuclear genome, the chloroplast genome or the mitochondrial genome, provides the transformed plant with new or improved agronomic or other features in that it expresses a protein or polypeptide of interest, or that it downregulates or shuts down another gene present in the plant or other genes present in the plant (eg, by antisense technology, cosuppression technology , RNA interference technology (RNAi technology) or microRNA technology (miRNA technology)).
  • RNAi technology RNA interference technology
  • miRNA technology microRNA technology
  • Plants or plant varieties belong to all plants which received genetic material through the genetic engineering modification, which gives these plants particularly advantageous valuable properties ("traits").
  • traits are better plant growth, increased tolerance to high or low temperatures, increased tolerance to dryness or to bottoms salt, increased flowering, easier harvesting, acceleration of ripeness, higher crop yields, higher quality and / or higher nutritional value of the harvested products , higher shelf life and / or workability of the harvested products.
  • Further and particularly emphasized examples of such properties are an increased defense of the plants against animal and microbial pests, as against insects, mites, phytopathogenic fungi, bacteria and / or viruses as well as an increased tolerance of the plants against certain herbicidal active substances.
  • transgenic plants include the important crops such as cereals (wheat, rice), corn, soy, potato, cotton, rapeseed and fruit plants (with the fruits apples, pears, citrus fruits and grapes), with corn, soy, potato, cotton and rapeseed should be highlighted.
  • Traits which are particularly emphasized are the increased defense of the plants against insects by toxins which are formed in the plants, in particular those which are produced by the genetic material from Bacillus thuringiensis (for example by the genes CrylA (a), CrylA (b), CrylA (c), CryllA, CrylllA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb and CrylF and combinations thereof) are produced in the plants (hereinafter "Bt plants”).
  • trasits which are furthermore particularly emphasized are the increased tolerance of the plants to certain herbicidal active compounds, for example imidazolinones, sulfonylureas, glyphosate or phosphinotricin (eg "PAT" gene).
  • herbicidal active compounds for example imidazolinones, sulfonylureas, glyphosate or phosphinotricin (eg "PAT" gene).
  • the genes which confer the desired properties can also occur in combinations with one another in the transgenic plants.
  • Bt plants are maize varieties, cotton varieties, soya bean varieties and potato varieties which are sold under the trade names YIELD GARD ® (for example maize, cotton, soya beans), KnockOut ® (for example maize), StarLink ® (for example maize), Bollgard ® ( cotton), NuCOTN ® (cotton) and NewLeaf ® (potato).
  • herbicide-tolerant plants are maize varieties, cotton varieties and soybean varieties which are resistant under the trade names Roundup Ready ® (tolerance to glyphosate, for example maize, cotton, soya bean), Liberty Link ® (tolerance to phosphinotricin, for example oilseed rape), IMI ® (tolerance imidazolinones) and STS ® (tolerance to sulphonylureas, for example maize).
  • Herbicide-resistant (conventionally grown on herbicide tolerance) plants are also the varieties marketed under the name Clearfield ® (eg corn) mentioned. Of course, these statements also apply to future or future marketed plant varieties with these or future developed genetic traits.
  • the listed plants can be treated particularly advantageously according to the invention with the active substance mixtures according to the invention.
  • the preferred ranges given above for the active substance combinations also apply to the treatment of these plants.
  • Particularly emphasized is the Plant treatment with the active compound combinations specifically mentioned in the present text.
  • a synergistic effect is always present when the effect of the active ingredient combinations is greater than the sum of the effects of the individually applied active ingredients.
  • X means the degree of killing, expressed in% of the untreated control, when using the active substance A at a rate of m g / ha or in a concentration of m ppm,
  • Y means the degree of killing, expressed in% of the untreated control, when using the active ingredient B in an application rate of n g / ha or in a concentration of n ppm
  • E is the killing degree, expressed in% of the untreated control, when using the active compounds A and B in application rates of m and n g / ha or in a concentration of m and n ppm, then is
  • Emulsifier alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is dissolved with the stated parts by weight of solvent and filled with water containing an emulsifier concentration of 1000 ppm until reaching the desired concentration. Further test concentrations are obtained by dilution with emulsifier-containing water.
  • Chinese cabbage leaf discs (Brassica pekinensis) infested with all stages of the green peach aphid ⁇ Myzus persicae) are sprayed with an active compound preparation of the desired concentration.
  • the effect is determined in%. 100% means that all aphids have been killed and 0% means that no aphids have been killed.
  • the determined kill values are calculated according to the Colby formula (see page 1).
  • Emulsifier alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is dissolved with the stated parts by weight of solvent and filled with water containing an emulsifier concentration of 1000 ppm until reaching the desired concentration. Further test concentrations are obtained by dilution with emulsifier-containing water.
  • Chinese cabbage leaf discs (Brassica pekinensis) are sprayed with a preparation of active compound of the desired concentration and, after drying, are populated with larvae of the horseradish leaf beetle (Phaedon cochleariae).
  • the effect is determined in%. 100% means that all beetle larvae have been killed and 0% means that no beetle larvae have been killed.
  • the determined kill values are calculated according to the Colby formula (see page 1).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

L'invention concerne des associations de principes actifs contenant d'une part un composé connu de formule (I) et d'autre part un ou plusieurs autres principes actifs fongicides, servant à la lutte contre des parasites animaux et microbiens.
PCT/EP2015/064663 2014-07-01 2015-06-29 Associations de principes actifs insecticides et fongicides WO2016001119A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP14175128.9 2014-07-01
EP14175224.6 2014-07-01
EP14175128 2014-07-01
EP14175224 2014-07-01

Publications (1)

Publication Number Publication Date
WO2016001119A1 true WO2016001119A1 (fr) 2016-01-07

Family

ID=53491527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/064663 WO2016001119A1 (fr) 2014-07-01 2015-06-29 Associations de principes actifs insecticides et fongicides

Country Status (1)

Country Link
WO (1) WO2016001119A1 (fr)

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0268915A2 (fr) 1986-11-21 1988-06-01 Bayer Ag Dérivés de trifluorométhylcarbonyle
JPH0578323A (ja) 1991-03-11 1993-03-30 Nippon Soda Co Ltd 新規なヘテロ環化合物、その製造方法及び殺虫剤
WO2001079199A1 (fr) 2000-04-18 2001-10-25 Idemitsu Kosan Co., Ltd. Derives de l'acetylene et herbicides en contenant
WO2001094339A1 (fr) 2000-06-09 2001-12-13 Syngenta Participations Ag Herbicides pyridiniques substitues
US20020016262A1 (en) 1998-03-02 2002-02-07 Idemitsu Kosan Co., Ltd. Pyrazole derivatives and herbicides containing the same
WO2002098227A1 (fr) 2001-05-31 2002-12-12 Sumitomo Chemical Company, Limited Regulateurs de croissance vegetale aidant a la recolte du coton
WO2003076415A1 (fr) 2002-03-12 2003-09-18 Sumitomo Chemical Company, Limited Composes de pyrimidine et utilisation de ceux-ci comme pesticides
WO2003106457A1 (fr) 2002-06-14 2003-12-24 Syngenta Limited Derives de spiroindolinepiperidine
WO2004099160A1 (fr) 2003-05-12 2004-11-18 Sumitomo Chemical Company, Limited Composes de pyrimidine et compostion de lutte contre les animaux nuisibles contenant ces composes
WO2005077934A1 (fr) 2004-02-18 2005-08-25 Ishihara Sangyo Kaisha, Ltd. Anthranilamides, procédé pour la production de ceux-ci et agents antiparasitaires contenant ceux-ci
WO2005085216A1 (fr) 2004-03-05 2005-09-15 Nissan Chemical Industries, Ltd. Composé benzamide substitué par de l’isoxazoline et agent de contrôle d’organisme nocif
WO2006003494A2 (fr) 2004-06-28 2006-01-12 Syngenta Participations Ag Composes chimiques
WO2006043635A1 (fr) 2004-10-20 2006-04-27 Kumiai Chemical Industry Co., Ltd. Dérivé de 3-triazolylphénylsulfide et insecticide/acaricide/nématicide incluant ledit dérivé au titre de principe actif
WO2008134969A1 (fr) 2007-04-30 2008-11-13 Sinochem Corporation Composés benzamides et leurs applications
WO2009002809A2 (fr) 2007-06-26 2008-12-31 E. I. Du Pont De Nemours And Company Agents de lutte contre les parasites invertebres
CN101337940A (zh) 2008-08-12 2009-01-07 国家农药创制工程技术研究中心 具杀虫活性的含氮杂环二氯烯丙醚类化合物
WO2009049851A1 (fr) 2007-10-15 2009-04-23 Syngenta Participations Ag Dérivés pyrrolidine dione spirohétérocycliques utiles comme pesticides
WO2009080250A2 (fr) 2007-12-24 2009-07-02 Syngenta Participations Ag Composés insecticides
WO2009099929A1 (fr) 2008-02-06 2009-08-13 E. I. Du Pont De Nemours And Company Pesticides mésoioniques
WO2010060231A1 (fr) 2008-11-25 2010-06-03 Qin Zhaohai Aminonitroguanidines condensées, leur synthèse et leur emploi en tant qu'insecticides botaniques
WO2010069502A2 (fr) 2008-12-18 2010-06-24 Bayer Cropscience Ag Amides d'acide anthranilique substitués par tétrazol, utilisés comme pesticides
WO2010069266A1 (fr) 2008-12-19 2010-06-24 华东理工大学 Composés azotés ou oxygénés hétérocycliques ayant une activité insecticide formés à partir de dialdéhydes et leur préparation et leurs utilisations
WO2010129500A2 (fr) 2009-05-04 2010-11-11 E. I. Du Pont De Nemours And Company Sulfonamides nématocides
CN102057925A (zh) 2011-01-21 2011-05-18 陕西上格之路生物科学有限公司 一种含噻虫酰胺和生物源类杀虫剂的杀虫组合物
WO2012029672A1 (fr) 2010-08-31 2012-03-08 Meiji Seikaファルマ株式会社 Agent de lutte contre des organismes nuisibles
WO2012034472A1 (fr) 2010-09-13 2012-03-22 中化蓝天集团有限公司 Composés cyanobenzènedicarboxamides, leurs procédés de préparation et leurs utilisations comme insecticides agricoles
WO2012122171A1 (fr) 2011-03-09 2012-09-13 E. I. Du Pont De Nemours And Company Oxohétérocycles bis-azotés herbicides
EP2633756A1 (fr) * 2012-02-29 2013-09-04 Meiji Seika Pharma Co., Ltd. Composition pour la contrôle des organismes nuisibles comprenant un derivé d'iminopyridine

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0268915A2 (fr) 1986-11-21 1988-06-01 Bayer Ag Dérivés de trifluorométhylcarbonyle
JPH0578323A (ja) 1991-03-11 1993-03-30 Nippon Soda Co Ltd 新規なヘテロ環化合物、その製造方法及び殺虫剤
US20020016262A1 (en) 1998-03-02 2002-02-07 Idemitsu Kosan Co., Ltd. Pyrazole derivatives and herbicides containing the same
WO2001079199A1 (fr) 2000-04-18 2001-10-25 Idemitsu Kosan Co., Ltd. Derives de l'acetylene et herbicides en contenant
WO2001094339A1 (fr) 2000-06-09 2001-12-13 Syngenta Participations Ag Herbicides pyridiniques substitues
WO2002098227A1 (fr) 2001-05-31 2002-12-12 Sumitomo Chemical Company, Limited Regulateurs de croissance vegetale aidant a la recolte du coton
WO2003076415A1 (fr) 2002-03-12 2003-09-18 Sumitomo Chemical Company, Limited Composes de pyrimidine et utilisation de ceux-ci comme pesticides
WO2003106457A1 (fr) 2002-06-14 2003-12-24 Syngenta Limited Derives de spiroindolinepiperidine
WO2004099160A1 (fr) 2003-05-12 2004-11-18 Sumitomo Chemical Company, Limited Composes de pyrimidine et compostion de lutte contre les animaux nuisibles contenant ces composes
WO2005077934A1 (fr) 2004-02-18 2005-08-25 Ishihara Sangyo Kaisha, Ltd. Anthranilamides, procédé pour la production de ceux-ci et agents antiparasitaires contenant ceux-ci
WO2005085216A1 (fr) 2004-03-05 2005-09-15 Nissan Chemical Industries, Ltd. Composé benzamide substitué par de l’isoxazoline et agent de contrôle d’organisme nocif
WO2006003494A2 (fr) 2004-06-28 2006-01-12 Syngenta Participations Ag Composes chimiques
WO2006043635A1 (fr) 2004-10-20 2006-04-27 Kumiai Chemical Industry Co., Ltd. Dérivé de 3-triazolylphénylsulfide et insecticide/acaricide/nématicide incluant ledit dérivé au titre de principe actif
WO2008134969A1 (fr) 2007-04-30 2008-11-13 Sinochem Corporation Composés benzamides et leurs applications
WO2009002809A2 (fr) 2007-06-26 2008-12-31 E. I. Du Pont De Nemours And Company Agents de lutte contre les parasites invertebres
WO2009049851A1 (fr) 2007-10-15 2009-04-23 Syngenta Participations Ag Dérivés pyrrolidine dione spirohétérocycliques utiles comme pesticides
WO2009080250A2 (fr) 2007-12-24 2009-07-02 Syngenta Participations Ag Composés insecticides
WO2009099929A1 (fr) 2008-02-06 2009-08-13 E. I. Du Pont De Nemours And Company Pesticides mésoioniques
CN101337940A (zh) 2008-08-12 2009-01-07 国家农药创制工程技术研究中心 具杀虫活性的含氮杂环二氯烯丙醚类化合物
WO2010060231A1 (fr) 2008-11-25 2010-06-03 Qin Zhaohai Aminonitroguanidines condensées, leur synthèse et leur emploi en tant qu'insecticides botaniques
WO2010069502A2 (fr) 2008-12-18 2010-06-24 Bayer Cropscience Ag Amides d'acide anthranilique substitués par tétrazol, utilisés comme pesticides
WO2010069266A1 (fr) 2008-12-19 2010-06-24 华东理工大学 Composés azotés ou oxygénés hétérocycliques ayant une activité insecticide formés à partir de dialdéhydes et leur préparation et leurs utilisations
WO2010129500A2 (fr) 2009-05-04 2010-11-11 E. I. Du Pont De Nemours And Company Sulfonamides nématocides
WO2012029672A1 (fr) 2010-08-31 2012-03-08 Meiji Seikaファルマ株式会社 Agent de lutte contre des organismes nuisibles
EP2631235A2 (fr) * 2010-08-31 2013-08-28 Meiji Seika Pharma Co., Ltd. Agents de contrôle de nuisibles
WO2012034472A1 (fr) 2010-09-13 2012-03-22 中化蓝天集团有限公司 Composés cyanobenzènedicarboxamides, leurs procédés de préparation et leurs utilisations comme insecticides agricoles
CN102057925A (zh) 2011-01-21 2011-05-18 陕西上格之路生物科学有限公司 一种含噻虫酰胺和生物源类杀虫剂的杀虫组合物
WO2012122171A1 (fr) 2011-03-09 2012-09-13 E. I. Du Pont De Nemours And Company Oxohétérocycles bis-azotés herbicides
EP2633756A1 (fr) * 2012-02-29 2013-09-04 Meiji Seika Pharma Co., Ltd. Composition pour la contrôle des organismes nuisibles comprenant un derivé d'iminopyridine
WO2013129688A1 (fr) 2012-02-29 2013-09-06 Meiji Seika Pharma Co., Ltd. Composition de lutte antiparasitaire comprenant un nouveau dérivé d'iminopyridine

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Pesticide Specifications, Manual on development and use of FAO and WHO specifications for pesticides, FAO Plant Production and Protection Papers", vol. 173, 2004, FAO/WHO JOINT MEETING ON PESTICIDE SPECIFICATIONS
"The Pesticide Manual", 2011, BRITISH CROP PROTECTION COUNCIL
BAUR ET AL., PESTICIDE SCIENCE, vol. 51, 1997, pages 131 - 152
S.R. COLBY: "Calculating Synergistic and Antagonistic Responses of Herbicide Combinations", WEEDS, vol. 15, 1967, pages 20 - 22

Similar Documents

Publication Publication Date Title
US11548854B2 (en) Heterocyclic compounds as pesticides
WO2014005982A1 (fr) Associations de principes actifs insecticides et fongicides
WO2012004293A2 (fr) Associations de substances actives insecticides et fongicides
EA031510B1 (ru) Двойная фунгицидная смесь
WO2012004221A2 (fr) Amides d'acide anthranilique combinés à des fongicides
US9783509B2 (en) Six-membered C-N-linked aryl sulfide derivatives and aryl sulfoxide derivatives as pest conrol agents
WO2012045680A2 (fr) Combinaisons de substances actives insecticides et fongicides
WO2019007888A1 (fr) Associations de principes actifs insecticides
CA3032030A1 (fr) Combinaisons de composes actifs et procedes pour proteger le materiau de propagation des plantes
KR20130039331A (ko) 사이클릭 카보닐아미딘을 포함하는 개량된 살충성 조성물
WO2016001120A1 (fr) Association de principes actifs insecticides
WO2019007887A1 (fr) Associations de principes actifs insecticides et fongicides
WO2020002189A1 (fr) Associations de principes actifs
WO2019007891A1 (fr) Associations de principes actifs insecticides
US20160108038A1 (en) Bicyclic aryl sulfide and aryl sulfoxide derivatives as pest control agent
WO2019197615A1 (fr) Associations de principes actifs aux propriétés fongicides, insecticides et acaricides
WO2016001119A1 (fr) Associations de principes actifs insecticides et fongicides
WO2016001124A1 (fr) Associations de principes actifs insecticides
US20150284380A1 (en) Novel heterocyclic compounds as pest control agents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15732248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15732248

Country of ref document: EP

Kind code of ref document: A1