[go: up one dir, main page]

WO2016002992A1 - Image distortion compensation system for three-dimensional ultrasound diagnostic device - Google Patents

Image distortion compensation system for three-dimensional ultrasound diagnostic device Download PDF

Info

Publication number
WO2016002992A1
WO2016002992A1 PCT/KR2014/006021 KR2014006021W WO2016002992A1 WO 2016002992 A1 WO2016002992 A1 WO 2016002992A1 KR 2014006021 W KR2014006021 W KR 2014006021W WO 2016002992 A1 WO2016002992 A1 WO 2016002992A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
ultrasound
dimensional
distortion
moving speed
Prior art date
Application number
PCT/KR2014/006021
Other languages
French (fr)
Korean (ko)
Inventor
이민화
Original Assignee
한국디지털병원수출사업협동조합
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국디지털병원수출사업협동조합 filed Critical 한국디지털병원수출사업협동조합
Priority to PCT/KR2014/006021 priority Critical patent/WO2016002992A1/en
Publication of WO2016002992A1 publication Critical patent/WO2016002992A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image

Definitions

  • the present invention relates to an image image distortion correction system for a 3D ultrasound diagnostic apparatus.
  • the present invention relates to a method for correcting a problem in which an error of an image obtained by a diagnostic operator operating a 3D ultrasound diagnostic apparatus increases.
  • Image for 3D ultrasound diagnosis to improve 3D ultrasound image quality by correcting image distortion of 3D ultrasound image by selecting and rendering 2D ultrasound image for 3D rendering using moving speed and position
  • An image distortion correction system to improve 3D ultrasound image quality by correcting image distortion of 3D ultrasound image by selecting and rendering 2D ultrasound image for 3D rendering using moving speed and position
  • an ultrasound image diagnosis apparatus mainly used to image organs and fetuses in the human body may be mentioned.
  • an ultrasound imager can steer the radiation angle of an ultrasound to the human body. It is possible to image specific points inside, there is no damage to the human body, such as radiation, and there is an advantage that the image can be obtained in a relatively short time than other medical equipment for internal imaging.
  • Means and / or devices for mutually converting an ultrasonic signal and an electrical signal are essential in order to implement an image with an ultrasound image diagnosis apparatus, which is called an ultrasound probe or an ultrasound transducer in the art.
  • the ultrasonic probe reduces the difference in acoustic impedance between the piezoelectric layer and the human body so that the piezoelectric layer vibrates and converts electrical and acoustic signals to each other.
  • an ultrasonic module comprising a matching layer, a lens layer for focusing the ultrasonic waves traveling forward of the piezoelectric layer to a specific point, and a sound absorbing layer for preventing the distortion of the ultrasonic waves by preventing the propagation of the ultrasonic waves behind the piezoelectric layer.
  • a general medical ultrasound probe has a plurality of ultrasound elements, except that it is composed of a single ultrasound element for general and special use.
  • Medical ultrasonic probes can be classified into various criteria such as the number of ultrasonic elements, the arrangement of ultrasonic elements or the shape of the arrangement axis of ultrasonic elements, or their application fields. It can be divided into a multi-element type ultrasonic probe.
  • the multi-element type ultrasonic probe includes a 1-dimensional array type ultrasonic probe in which ultrasonic elements are arranged on a single axis according to an arrangement method of ultrasonic elements, and 2 in which the ultrasonic elements are arranged on a plurality of axes crossing each other.
  • the 1 dimensional array type ultrasonic probe is a linear array ultrasonic probe and a curvilinear array ultrasonic probe according to the shape of the array axis of the ultrasonic elements. And so on.
  • a diagnostic person uses a manual operation to move the one-dimensional array ultrasonic probe or mechanically move the one-dimensional array ultrasonic probe.
  • the quality of the image is extremely poor due to the uneven contrast interval and the error of the acquired image is increased according to the diagnostic person. There is a problem.
  • Korean Patent No. 10-1076917 is disclosed, and a PRF signal input to an ultrasonic probe is disclosed. (Pulse Repetition Frequency Signal) intervals and based on the control of the drive flow of the motor to control the backlash (Backlash), the sync with the PRF signal in the non-linear ultrasonic probe that allows the perfect sync with the PRF signal It is about controlling.
  • Pulse Repetition Frequency Signal Pulse Repetition Frequency Signal
  • the conventional technology is capable of improving the image quality of the ultrasound image by adjusting the backlash by controlling the drive flow of the rotary motor embedded in the ultrasound probe, so that the synchronization with the PRF signal is achieved. Careful attention should be paid to the parts caused by the impact of the driving of the rotary motor built in.
  • the present invention has been made to solve the problems of the prior art as described above is to move the ultrasonic probe to the two-dimensional ultrasound image obtained in order to solve the problem that the error of the image is obtained according to the diagnostic operator operating the three-dimensional ultrasound diagnostic device
  • the purpose of the present invention is to improve the quality of a 3D ultrasound image by correcting an image distortion of the 3D ultrasound image by selecting and rendering a 2D ultrasound image for 3D rendering using speed and position.
  • the present invention has another object for detecting the moving speed and position of the ultrasonic probe with higher reliability by detecting the moving speed and position of the ultrasonic probe by a plurality of means rather than one means.
  • a three-dimensional ultrasound diagnostic apparatus comprising: a two-dimensional ultrasound image acquisition unit configured to acquire a plurality of two-dimensional ultrasound images of a target site of a subject for a predetermined time; A detector for detecting a moving speed and a position of the ultrasonic probe provided in the 2D ultrasound image acquisition unit; A distortion image corrector for correcting image distortion of a 3D ultrasound image by selecting the 2D ultrasound image by using a moving speed and a position of the ultrasound probe detected by the detector; A rendering unit configured to render a 2D ultrasound image selected by the distortion image correcting unit and configure a 3D ultrasound image; And a display unit for displaying the 3D ultrasound image.
  • the image image distortion correction system for the 3D ultrasound diagnostic apparatus of the present invention selects the 2D image in consideration of the moving speed and position of the acoustic wave probe to correct the image distortion when rendering in 3D to improve the quality of the 3D ultrasound image. It is effective to improve.
  • FIG. 1 is a view showing a change in the movement speed generated with time during a general hand operation
  • FIG. 3 is a block diagram of an image image distortion correction system for a three-dimensional ultrasound diagnostic apparatus according to the present invention.
  • FIG. 3 is a block diagram of an image image distortion correction system for a three-dimensional ultrasound diagnostic apparatus according to the present invention.
  • the system for correcting image image distortion of the 3D ultrasound diagnostic apparatus of the present invention is a 2D ultrasound image acquisition unit 100 for a predetermined time period of the ultrasound probe with respect to the target site of the subject.
  • a plurality of two-dimensional ultrasound images are obtained by scanning.
  • the 3D ultrasound image generated by 3D rendering of the plurality of 2D ultrasound images may cause distortion of the image image.
  • the ultrasonic probe provided in the 2D ultrasound image acquisition unit 100 may be used.
  • a distortion image correction unit 300 including a detection unit 200 for detecting a movement speed and a position, and selecting the 2D ultrasound image by using the movement speed and position of the ultrasonic probe detected by the detection unit. Corrects the image distortion of the 3D ultrasound image, and renders the selected 2D ultrasound image by the rendering unit 400
  • the 3D ultrasound image is displayed on the display unit 500 by synthesizing the sound wave image.
  • the detection unit 200 for detecting the moving speed and the position of the ultrasonic probe extracts the feature points of the ultrasonic probe from the image photographed by the image capturing means 210, The position is detected and transmitted to the distortion image corrector 300.
  • Detecting the moving speed and the position of the ultrasonic probe may be detected by the contour recognition of the ultrasonic probe, but it is more preferable to detect the moving speed and the position of the ultrasonic probe by extracting feature points for reducing the throughput of data.
  • the image capturing means 210 is provided in the main body of the 3D ultrasound diagnostic apparatus, acquires the movement of the marker formed on the ultrasound probe, stores the acquired image signal as image data, and then stores information on the marker through image processing. Acquire.
  • the detection unit is further provided by attaching, incorporating or integrating the sensor means 220 which detects the moving speed and position in addition to the image photographing means 210 to the ultrasonic probe, and the sensor means 220 has an output value by wire or wirelessly.
  • the distortion image correction unit 300 is transmitted.
  • the sensor means 220 is a six-axis sensor that senses motion and direction in space, and can realize the function of the six-axis sensor by combining a single or a plurality of sensors among geomagnetic sensors, acceleration sensors, gyro sensors, and optical sensors. It is selected and implemented.
  • the two-dimensional ultrasound image acquisition of the two-dimensional ultrasound image acquisition unit 100 may be obtained in real time to render the acquired image at least ten times per second.
  • the distorted image corrector 300 synchronizes the 2D ultrasound image acquired by the 2D ultrasound image acquirer 100 and the moving speed and the position detected by the detector 200 with each other in a 1: 1 time, and stores the temporal information.
  • the moving speed and position to be synchronized by using one or two moving speeds and positions using the moving speeds and positions detected by the image capturing means 210 and the sensor means 220 of the detector 200, respectively. It is possible to determine, and more preferably, it is possible to improve the reliability of the data by arithmetically determining the two moving speeds and positions detected by the image capturing means 210 and the sensor means 22.
  • the two-dimensional ultrasound image for rendering in three dimensions in the rendering unit 400 is selected in consideration of the moving speed and position in the distortion image correction unit 300, the two-dimensional ultrasound image in the distortion image correction unit 300 It is possible to select the selected two-dimensional ultrasound image so as to be equally spaced temporally and spatially, and more preferably, it is preferably selected so as to be spaced at equal intervals so that the subject portion of the subject can be uniformly rendered. Do.
  • a warping algorithm is used to find an alignment position by comparing partial regions at the same distance from the center of the image in consideration of the movement motion factors of the 2D image.
  • a corresponding point of the 2D ultrasound image is searched using a dimension dynamic wrapping (DDW) algorithm.
  • DSW dimension dynamic wrapping

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

The present invention relates to an image distortion compensation system for a three-dimensional ultrasound diagnostic device, the image distortion compensation system for a three-dimensional ultrasound diagnostic device having the purpose of solving the problem of the error of an obtained image increasing according to the diagnostician operating the three-dimensional ultrasound diagnostic device, the problem being solved by selecting a two-dimensional ultrasound image for rendering an obtained two-dimensional ultrasound image into a three-dimensional image by using the moving speed and location of an ultrasonic probe, and rendering the two-dimensional ultrasound image into a three-dimensional image, thereby compensating for image distortion in the three-dimensional ultrasound image so as to increase the quality of the three-dimensional ultrasound image.

Description

3차원 초음파 진단기용 영상 이미지 왜곡 보정 시스템Image Image Distortion Correction System for 3D Ultrasound

본 발명은 3차원 초음파 진단기용 영상 이미지 왜곡 보정시스템에 관한 것으로서, 3차원 초음파 진단기를 조작하는 진단자에 따라 획득되는 영상의 오차가 커지는 문제점을 해결하기 위하여 획득된 2차원 초음파 영상을 초음파 프로브의 이동속도 및 위치를 이용하여 3차원으로 렌더링하기 위한 2차원 초음파 영상을 선택하여 3차원으로 렌더링함으로서 3차원 초음파 영상의 영상 왜곡을 보정함으로서 3차원 초음파 영상의 품질을 높이기 위한 3차원 초음파 진단기용 영상 이미지 왜곡 보정 시스템에 관한 것이다.The present invention relates to an image image distortion correction system for a 3D ultrasound diagnostic apparatus. The present invention relates to a method for correcting a problem in which an error of an image obtained by a diagnostic operator operating a 3D ultrasound diagnostic apparatus increases. Image for 3D ultrasound diagnosis to improve 3D ultrasound image quality by correcting image distortion of 3D ultrasound image by selecting and rendering 2D ultrasound image for 3D rendering using moving speed and position An image distortion correction system.

일반적으로 의료용으로 사용되는 초음파 장비로 가장 대표적인 것으로는 인체 내부의 장기와 태아 등을 조영하기 위하여 주로 사용되는 초음파 영상진단기를 들 수 있다. 초음파 영상진단기는 X선 촬영기, 컴퓨터단층촬영기(CT) 또는 자기공명영상촬영기(MRI)와 같은 여타의 인체 내부 조영용 의료장비와 달리 진단자가 초음파의 방사각도를 임의로 스티어링(steering)하여 진단자가 원하는 인체 내부의 특정 지점을 조영할 수 있고, 인체에 방사선 등의 피해가 없을 뿐만 아니라 다른 인체 내부 조영용 의료장비보다 상대적으로 짧은 시간 내에 영상을 획득할 수 있다는 장점이 있다.In general, as an ultrasound device used for medical purposes, an ultrasound image diagnosis apparatus mainly used to image organs and fetuses in the human body may be mentioned. Unlike other medical devices for internal imaging such as X-ray radiography, computed tomography (CT), or magnetic resonance imaging (MRI), an ultrasound imager can steer the radiation angle of an ultrasound to the human body. It is possible to image specific points inside, there is no damage to the human body, such as radiation, and there is an advantage that the image can be obtained in a relatively short time than other medical equipment for internal imaging.

초음파 영상진단기로 영상을 구현해내기 위해서는 초음파신호와 전기적인 신호를 상호 변환시키는 수단 및/또는 장치가 필수적이며, 당업계에서는 이를 초음파 프로브 또는 초음파 트랜스듀서라 칭한다. 초음파 프로브는 압전물질이 진동하면서 전기적인 신호와 음향신호를 상호 변환시키는 압전층과, 압전층에서 발생된 초음파가 인체의 목표지점에 최대한 전달될 수 있도록 압전층과 인체 사이의 음향 임피던스 차이를 감소시키는 정합층과, 압전층의 전방으로 진행하는 초음파를 특정지점으로 집속시키는 렌즈층과, 압전층의 후방으로 초음파가 진행하는 것을 차단시켜 영상 왜곡을 방지하는 흡음층으로 구성되는 초음파 모듈로 이루어지는 것이 일반적이며, 특수한 용도로 사용하기 위하여 단일의 초음파 소자로 구성하는 것을 제외하고는 통상적인 의료용 초음파 프로브는 복수의 초음파 소자를 갖는다.Means and / or devices for mutually converting an ultrasonic signal and an electrical signal are essential in order to implement an image with an ultrasound image diagnosis apparatus, which is called an ultrasound probe or an ultrasound transducer in the art. The ultrasonic probe reduces the difference in acoustic impedance between the piezoelectric layer and the human body so that the piezoelectric layer vibrates and converts electrical and acoustic signals to each other. And an ultrasonic module comprising a matching layer, a lens layer for focusing the ultrasonic waves traveling forward of the piezoelectric layer to a specific point, and a sound absorbing layer for preventing the distortion of the ultrasonic waves by preventing the propagation of the ultrasonic waves behind the piezoelectric layer. A general medical ultrasound probe has a plurality of ultrasound elements, except that it is composed of a single ultrasound element for general and special use.

의료용 초음파 프로브는 초음파 소자의 개수, 초음파 소자들의 배열방식 또는 초음파 소자들의 배열 축 형상, 혹은 그 응용분야와 같은 다양한 기준으로 분류할 수 있으며, 초음파 소자의 개수에 따라 분류하면 단일 소자형 초음파 프로브와 복수 소자형 초음파 프로브로 나눌 수 있다. 이때 복수 소자형 초음파 프로브는 초음파 소자들의 배열방식에 따라 초음파 소자를 단일의 축 상에 배열한 1차원 배열(1 dimensional array)형 초음파 프로브와 초음파 소자를 서로 교차하는 복수의 축 상에 배열한 2차원 배열(2 dimensional array)형 초음파 프로브로 나눌 수 있으며, 1차원 배열형 초음파 프로브는 초음파 소자들의 배열축 형상에 따라 직선 배열형(linear array) 초음파 프로브와, 곡선 배열형(Cuvilinear array) 초음파 프로브 등으로 나눌 수 있다.Medical ultrasonic probes can be classified into various criteria such as the number of ultrasonic elements, the arrangement of ultrasonic elements or the shape of the arrangement axis of ultrasonic elements, or their application fields. It can be divided into a multi-element type ultrasonic probe. In this case, the multi-element type ultrasonic probe includes a 1-dimensional array type ultrasonic probe in which ultrasonic elements are arranged on a single axis according to an arrangement method of ultrasonic elements, and 2 in which the ultrasonic elements are arranged on a plurality of axes crossing each other. It can be divided into 2 dimensional array type ultrasonic probe, and the 1 dimensional array type ultrasonic probe is a linear array ultrasonic probe and a curvilinear array ultrasonic probe according to the shape of the array axis of the ultrasonic elements. And so on.

1차원 배열형 초음파 프로브를 활용하여 3차원 영상을 얻기 위해서는, 진단자가 수(手) 조작으로 1차원 배열형 초음파 프로브를 움직이거나, 또는 기계적으로 1차원 배열형 초음파 프로브를 움직이는 방법을 사용한다. 그러나 진단자가 손으로 조작하여 3차원 영상을 얻도록 하는 1차원 배열형 초음파 프로브의 경우, 일정하지 않은 조영 간격으로 인하여 영상의 질이 극히 떨어질 뿐 아니라, 진단자에 따라 획득되는 영상의 오차가 커지는 문제점이 있다.In order to obtain a three-dimensional image by using the one-dimensional array ultrasonic probe, a diagnostic person uses a manual operation to move the one-dimensional array ultrasonic probe or mechanically move the one-dimensional array ultrasonic probe. However, in the case of the one-dimensional array type ultrasonic probe that allows the diagnostic operator to obtain a three-dimensional image by hand, the quality of the image is extremely poor due to the uneven contrast interval and the error of the acquired image is increased according to the diagnostic person. There is a problem.

이를 개선하기 위해서는 1차원 배열형 초음파 프로브를 기계적으로 움직여 3차원 영상을 얻도록 하는 방법이 활발히 연구되고 있으며, 이러한 기술로서는 한국등록특허 제10-1076917호가 개시되어 있으며, 초음파 프로브에 입력되는 PRF 신호(Pulse Repetition Frequency Signal)의 간격을 파악하고, 이를 기반으로 모터의 구동 흐름을 제어함으로써 백래쉬(Backlash)를 컨트롤하여, PRF 신호와의 완벽한 싱크가 가능하도록 하는 비선형 초음파 프로브에서 피알에프 신호와의 싱크를 제어하는 것에 관한 것이다.In order to improve this, a method of mechanically moving a one-dimensional array ultrasonic probe to obtain a three-dimensional image has been actively studied. As such a technique, Korean Patent No. 10-1076917 is disclosed, and a PRF signal input to an ultrasonic probe is disclosed. (Pulse Repetition Frequency Signal) intervals and based on the control of the drive flow of the motor to control the backlash (Backlash), the sync with the PRF signal in the non-linear ultrasonic probe that allows the perfect sync with the PRF signal It is about controlling.

그러나, 이러한 종래의 기술은 초음파 프로브에 내장된 회전 모터의 구동 흐름을 제어하여 백래쉬(backlash)를 조절함으로써, PRF 신호와의 싱크가 이루어지도록 하여 초음파 영상을 화질을 개선하는 것이 가능하나, 초음파 프로브에 내장된 회전 모터의 구동에 따른 충격 등이 발생됨에 따른 부분에 대한 깊은 주의가 필요하다.However, the conventional technology is capable of improving the image quality of the ultrasound image by adjusting the backlash by controlling the drive flow of the rotary motor embedded in the ultrasound probe, so that the synchronization with the PRF signal is achieved. Careful attention should be paid to the parts caused by the impact of the driving of the rotary motor built in.

상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 본 발명은 3차원 초음파 진단기를 조작하는 진단자에 따라 획득되는 영상의 오차가 커지는 문제점을 해결하기 위하여 획득된 2차원 초음파 영상을 초음파 프로브의 이동속도 및 위치를 이용하여 3차원으로 렌더링하기 위한 2차원 초음파 영상을 선택하여 3차원으로 렌더링함으로서 3차원 초음파 영상의 영상 왜곡을 보정함으로서 3차원 초음파 영상의 품질을 높이기 위한 목적이 있다.The present invention has been made to solve the problems of the prior art as described above is to move the ultrasonic probe to the two-dimensional ultrasound image obtained in order to solve the problem that the error of the image is obtained according to the diagnostic operator operating the three-dimensional ultrasound diagnostic device The purpose of the present invention is to improve the quality of a 3D ultrasound image by correcting an image distortion of the 3D ultrasound image by selecting and rendering a 2D ultrasound image for 3D rendering using speed and position.

또한, 본 발명은 초음파 프로브의 이동속도 및 위치를 하나의 수단이 아닌 복수의 수단으로 검출하므로서 보다 높은 신뢰성의 초음파 프로브 이동속도 및 위치를 검축하기 위한 다른 목적이 있다.In addition, the present invention has another object for detecting the moving speed and position of the ultrasonic probe with higher reliability by detecting the moving speed and position of the ultrasonic probe by a plurality of means rather than one means.

본 발명의 상기 목적은 3차원 초음파 진단기에 있어서, 미리 정해진 시간 동안 피검체의 피검부위에 대한 복수의 2차원 초음파 영상을 획득하는 2차원 초음파 영상 획득부; 상기 2차원 초음파 영상 획득부에 구비된 초음파 프로브의 이동속도 및 위치를 검출하기 위한 검출부; 상기 검출부에 의하여 검출된 상기 초음파 프로브의 이동속도 및 위치를 이용하여 상기 2차원 초음파 영상을 선택함으로써 3차원 초음파 영상의 영상 왜곡을 보정하기 위한 왜곡 영상 보정부; 상기 왜곡 영상 보정부에서 선택된 2차원 초음파 영상을 렌더링하여 3차원 초음파 영상으로 구성하는 렌더링부; 및 상기 3차원 초음파 영상을 표시하는 표시부로 구성되는 것을 특징으로 하는 3차원 초음파 진단기용 영상 이미지 왜곡 보정시스템에 의해 달성된다.According to an aspect of the present invention, there is provided a three-dimensional ultrasound diagnostic apparatus, comprising: a two-dimensional ultrasound image acquisition unit configured to acquire a plurality of two-dimensional ultrasound images of a target site of a subject for a predetermined time; A detector for detecting a moving speed and a position of the ultrasonic probe provided in the 2D ultrasound image acquisition unit; A distortion image corrector for correcting image distortion of a 3D ultrasound image by selecting the 2D ultrasound image by using a moving speed and a position of the ultrasound probe detected by the detector; A rendering unit configured to render a 2D ultrasound image selected by the distortion image correcting unit and configure a 3D ultrasound image; And a display unit for displaying the 3D ultrasound image.

따라서, 본 발명의 3차원 초음파 진단기용 영상 이미지 왜곡 보정시스템은 2차원 영상을 포음파 프로브의 이동속도 및 위치를 고려하여 선택함으로서 3차원으로 렌더링시 이미지 왜곡을 보정하여 3차원 초음파 영상의 품질을 향상시키는 효과가 있다.Therefore, the image image distortion correction system for the 3D ultrasound diagnostic apparatus of the present invention selects the 2D image in consideration of the moving speed and position of the acoustic wave probe to correct the image distortion when rendering in 3D to improve the quality of the 3D ultrasound image. It is effective to improve.

도 1은 일반적인 수(手) 조작시 시간에 따라 발생되는 이동속도의 변화를 도시한 도면,1 is a view showing a change in the movement speed generated with time during a general hand operation,

도 2는 종래의 기술에 따른 비선형 초음파 프로브에서 PRF 신호와의 싱크를 제어하는 순서도, 2 is a flow chart for controlling the sync with the PRF signal in a non-linear ultrasonic probe according to the prior art,

도 3는 본 발명에 따른 3차원 초음파 진단기용 영상 이미지 왜곡 보정 시스템의 구성도이다.3 is a block diagram of an image image distortion correction system for a three-dimensional ultrasound diagnostic apparatus according to the present invention.

본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명에 따른 3차원 초음파 진단기용 영상 이미지 왜곡 보정 시스템의 구성도이다. 도 3에 도시된 바와 같이, 본 발명의 3차원 초음파 진단기용 영상 이미지 왜곡을 보정하는 시스템은 미리 정해진 시간 동안 2차원 초음파 영상 획득부(100)으로 환자인 피검체의 피검부위에 대하여 초음파 프로브의 스캐닝에 의하여 복수의 2차원 초음파 영상을 획득한다.3 is a block diagram of an image image distortion correction system for a three-dimensional ultrasound diagnostic apparatus according to the present invention. As shown in FIG. 3, the system for correcting image image distortion of the 3D ultrasound diagnostic apparatus of the present invention is a 2D ultrasound image acquisition unit 100 for a predetermined time period of the ultrasound probe with respect to the target site of the subject. A plurality of two-dimensional ultrasound images are obtained by scanning.

이와 같이 획득된 복수의 2차원 초음파 영상의 경우 도 1에 도시한 바와 같이 수(手) 조작에 의하여 피검체의 피검부위를 스캐닝하는 경우 스캐닝하는 시간동안 일정한 속도로 스캐닝을 하는 것은 거의 불가능하며, 이에 따라 복수의 2차원 초음파 영상을 3차원 렌더링하여 생성되는 3차원 초음파 영상은 영상 이미지의 왜곡이 발생하며, 본 발명에서는 이를 개선하기 위하여 2차원 초음파 영상 획득부(100)에 구비된 초음파 프로브의 이동속도 및 위치를 검출하기 위한 검출부(200)를 구비하고, 검출부에 의하여 검출된 상기 초음파 프로브의 이동속도 및 위치를 이용하여 상기 2차원 초음파 영상을 선택하도록 하는 왜곡 영상 보정부(300)에 의하여 3차원 초음파 영상의 영상 왜곡을 보정하며, 선택된 2차원 초음파 영상을 렌더링부(400)에서 렌더링하여 3차원 초음파 영상으로 합성하여, 표시부(500)에서 3차원 초음파 영상을 표시한다.In the case of a plurality of two-dimensional ultrasound images obtained as described above, when scanning a target part of a subject by hand manipulation as shown in FIG. 1, it is almost impossible to scan at a constant speed during the scanning time. Accordingly, the 3D ultrasound image generated by 3D rendering of the plurality of 2D ultrasound images may cause distortion of the image image. In the present invention, in order to improve this, the ultrasonic probe provided in the 2D ultrasound image acquisition unit 100 may be used. A distortion image correction unit 300 including a detection unit 200 for detecting a movement speed and a position, and selecting the 2D ultrasound image by using the movement speed and position of the ultrasonic probe detected by the detection unit. Corrects the image distortion of the 3D ultrasound image, and renders the selected 2D ultrasound image by the rendering unit 400 The 3D ultrasound image is displayed on the display unit 500 by synthesizing the sound wave image.

이러한 3차원 영상의 왜곡을 방지하기 위하여 초음파 프로브의 이동속도 및 위치를 검출하기 위한 검출부(200)는 영상촬영수단(210)으로 촬영된 영상으로부터 초음파 프로브의 특징점을 추출하여 초음파 프로브의 이동속도 및 위치를 검출하여 왜곡영상 보정부(300)로 전송한다.In order to prevent the distortion of the 3D image, the detection unit 200 for detecting the moving speed and the position of the ultrasonic probe extracts the feature points of the ultrasonic probe from the image photographed by the image capturing means 210, The position is detected and transmitted to the distortion image corrector 300.

초음파 프로브의 이동속도 및 위치를 검출하는 것은 초음파 프로브의 윤곽선인식에 의한 검출도 가능하지만 보다 데이터의 처리량의 감소 등을 위하여 특징점을 추출하여 초음파 프로브의 이동속도 및 위치를 검출하는 것이 보다 바람직하다.Detecting the moving speed and the position of the ultrasonic probe may be detected by the contour recognition of the ultrasonic probe, but it is more preferable to detect the moving speed and the position of the ultrasonic probe by extracting feature points for reducing the throughput of data.

이러한, 영상촬영수단(210)은 3차원 초음파 진단기 본체에 구비되며, 초음파 프로브상에 형성된 마커의 움직임을 취득하며, 취득된 영상 신호를 이미지 데이터로 저장한 후 이미지 프로세싱을 통하여 마커에 대한 정보를 취득한다.The image capturing means 210 is provided in the main body of the 3D ultrasound diagnostic apparatus, acquires the movement of the marker formed on the ultrasound probe, stores the acquired image signal as image data, and then stores information on the marker through image processing. Acquire.

또한, 검출부는 영상촬영수단(210)외에도 이동속도 및 위치를 검출하는 센서수단(220)을 초음파 프로브에 부착, 내장 또는 일체화하여 추가로 구비하며, 센서수단(220)은 출력값을 유선 또는 무선으로 왜곡 영상 보정부(300)로 전송된다.In addition, the detection unit is further provided by attaching, incorporating or integrating the sensor means 220 which detects the moving speed and position in addition to the image photographing means 210 to the ultrasonic probe, and the sensor means 220 has an output value by wire or wirelessly. The distortion image correction unit 300 is transmitted.

이러한, 센서수단(220)은 공간상의 움직임과 방향성을 감지하는 6축 센서로서 지자기센서, 가속도센서, 자이로센서, 광센서 중에서 단독 또는 복수의 센서들을 조합하여 6축 센서의 기능을 구현하는 것이 가능하도록 선택되어 구현된다.The sensor means 220 is a six-axis sensor that senses motion and direction in space, and can realize the function of the six-axis sensor by combining a single or a plurality of sensors among geomagnetic sensors, acceleration sensors, gyro sensors, and optical sensors. It is selected and implemented.

지자기 센서의 경우 지자기 센서가 단독으로 6축 센서의 기능을 구현하도록 하는 제품들이 구현되어 있으며, 복수의 센서를 조합하는 것은 공간상의 움직임을 인식하는 가속도 센서의 3축 및 방향성을 감지하는 지자기 센서의 3축을 활용하여 6축 센서를 구현하는 것이 가능하며, 이로부터 단일동작만 인식하던 기존의 3축과는 달리 연속동작도 인식할 수 있는 장점이 있다.In the case of geomagnetic sensors, products that allow the geomagnetic sensor to independently implement the function of a 6-axis sensor are implemented. Combining a plurality of sensors is a method of geomagnetic sensor that detects the 3-axis and the directionality of an acceleration sensor that recognizes motion in space. It is possible to implement a six-axis sensor by using the three axes, unlike the existing three axes that only recognize a single motion from this, there is an advantage that can recognize the continuous motion.

또한, 수(手) 조작에 의한 왜곡 영상을 보정하기 위해서는 2차원 초음파 영상 획득부(100)의 2차원 초음파 영상 획득은 획득 이미지를 초당 적어도 10회 렌더링 가능하도록 실시간으로 획득하는 것이 바람직하다.In addition, in order to correct the distorted image by hand manipulation, the two-dimensional ultrasound image acquisition of the two-dimensional ultrasound image acquisition unit 100 may be obtained in real time to render the acquired image at least ten times per second.

왜곡 영상 보정부(300)는 2차원 초음파 영상 획득부(100)에서 획득된 2차원 초음파 영상과 검출부(200)에서 검출된 이동속도 및 위치를 서로 시간적으로 1:1로 동기화시켜 저장하며, 시간적으로 동기화시키는 이동속도 및 위치는 검출부(200)의 영상촬영수단(210) 및 센서수단(220)에 의하여 각각 검출된 이동속도 및 위치를 이용하여 이중 1개 또는 2개의 이동속도 및 위치를 이용하여 결정하는 것이 가능하며, 보다 바람직하기로는 영상촬영수단(210) 및 센서수단(22)에 의하여 검출된 2개의 이동속도 및 위치를 산술평균하여 결정함으로써 데이터의 신뢰도를 제고하는 것이 가능하다.The distorted image corrector 300 synchronizes the 2D ultrasound image acquired by the 2D ultrasound image acquirer 100 and the moving speed and the position detected by the detector 200 with each other in a 1: 1 time, and stores the temporal information. The moving speed and position to be synchronized by using one or two moving speeds and positions using the moving speeds and positions detected by the image capturing means 210 and the sensor means 220 of the detector 200, respectively. It is possible to determine, and more preferably, it is possible to improve the reliability of the data by arithmetically determining the two moving speeds and positions detected by the image capturing means 210 and the sensor means 22.

또한, 렌더링부(400)에서 3차원으로 렌더링하기 위한 2차원 초음파 영상은 왜곡 영상 보정부(300)에서 이동속도 및 위치를 고려하여 선택하며, 이러한 왜곡 영상 보정부(300)에서 2차원 초음파 영상을 선택하는 것은 선택된 2차원 초음파 영상이 시간적, 공간적으로 등간격이 되도록 선택하는 것이 가능하며, 보다 바람직하기로는 피검체의 피검부위가 균일하게 렌더링될 수 있도록 공간적으로 등간격이 되도록 선택되는 것이 바람직하다.In addition, the two-dimensional ultrasound image for rendering in three dimensions in the rendering unit 400 is selected in consideration of the moving speed and position in the distortion image correction unit 300, the two-dimensional ultrasound image in the distortion image correction unit 300 It is possible to select the selected two-dimensional ultrasound image so as to be equally spaced temporally and spatially, and more preferably, it is preferably selected so as to be spaced at equal intervals so that the subject portion of the subject can be uniformly rendered. Do.

또한, 2차원 초음파 영상을 3차원으로 렌더링하는 경우 2차원 영상의 이동운동 요소를 고려하여 영상의 중심에서 같은 거리에 있는 부분영역을 비교하여 정렬위치를 찾는 워핑(Warping) 알고리즘을 사용하며, 더욱 바람직하기로는 DDW(Dimension Dynamic Wraping) 알고리즘을 이용하여 2차원 초음파 영상의 대응점을 탐색한다.In addition, when the 2D ultrasound image is rendered in 3D, a warping algorithm is used to find an alignment position by comparing partial regions at the same distance from the center of the image in consideration of the movement motion factors of the 2D image. Preferably, a corresponding point of the 2D ultrasound image is searched using a dimension dynamic wrapping (DDW) algorithm.

본 발명은 이상에서 살펴본 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.Although the present invention has been shown and described with reference to the preferred embodiments as described above, it is not limited to the above embodiments and those skilled in the art without departing from the spirit of the present invention. Various changes and modifications will be possible.

Claims (10)

3차원 초음파 진단기에 있어서,In the three-dimensional ultrasound diagnostic machine, 미리 정해진 시간 동안 피검체의 피검부위에 대한 복수의 2차원 초음파 영상을 획득하는 2차원 초음파 영상 획득부;A two-dimensional ultrasound image acquisition unit configured to acquire a plurality of two-dimensional ultrasound images of a target site of a subject for a predetermined time; 상기 2차원 초음파 영상 획득부에 구비된 초음파 프로브의 이동속도 및 위치를 검출하기 위한 검출부;A detector for detecting a moving speed and a position of the ultrasonic probe provided in the 2D ultrasound image acquisition unit; 상기 검출부에 의하여 검출된 상기 초음파 프로브의 이동속도 및 위치를 이용하여 상기 2차원 초음파 영상을 선택함으로써 3차원 초음파 영상의 영상 왜곡을 보정하기 위한 왜곡 영상 보정부;A distortion image corrector for correcting image distortion of a 3D ultrasound image by selecting the 2D ultrasound image by using a moving speed and a position of the ultrasound probe detected by the detector; 상기 왜곡 영상 보정부에서 선택된 2차원 초음파 영상을 렌더링하여 3차원 초음파 영상으로 구성하는 렌더링부; 및 A rendering unit configured to render a 2D ultrasound image selected by the distortion image correcting unit and configure a 3D ultrasound image; And 상기 3차원 초음파 영상을 표시하는 표시부로 구성되는 것을 특징으로 하는 3차원 초음파 진단기용 영상 이미지 왜곡 보정시스템.The image image distortion correction system for a three-dimensional ultrasound diagnostics, characterized in that consisting of a display unit for displaying the three-dimensional ultrasound image. 제1항에 있어서,The method of claim 1, 상기 검출부는 영상촬영수단으로 촬영된 영상으로부터 상기 초음파 프로브의 특징점을 추출하여 상기 초음파 프로브의 이동속도 및 위치를 검출하여 상기 왜곡 영상 보정부로 전송하는 것을 특징으로 하는 3차원 초음파 진단기용 영상 이미지 왜곡 보정시스템.The detector extracts a feature point of the ultrasound probe from an image photographed by the image capturing means, detects a moving speed and a position of the ultrasound probe, and transmits the detected image point to the distorted image corrector. Calibration system. 제2항에 있어서,The method of claim 2, 상기 영상촬영수단은 상기 3차원 초음파 진단기 본체에 구비되며, 상기 초음파 프로브상에 형성된 마커의 움직임을 취득하며, 취득된 영상 신호를 이미지 데이터로 저장한 후 이미지 프로세싱을 통하여 마커에 대한 정보를 취득하는 것을 특징으로 하는 3차원 초음파 진단기용 영상 이미지 왜곡 보정시스템.The image capturing means is provided in the main body of the 3D ultrasound diagnostic apparatus, acquires movement of the marker formed on the ultrasound probe, stores the acquired image signal as image data, and acquires information on the marker through image processing. Image image distortion correction system for a three-dimensional ultrasound diagnostics. 제2항에 있어서,The method of claim 2, 상기 검출부는 이동속도 및 위치를 검출하기 위하여 센서수단을 상기 초음파 프로브에 추가로 구비하며, 상기 센서수단은 출력값을 유선 또는 무선으로 상기 왜곡 영상 보정부로 전송되는 것을 특징으로 하는 3차원 초음파 진단기용 영상 이미지 왜곡 보정시스템.The detection unit further includes a sensor means in the ultrasonic probe to detect the moving speed and position, the sensor means for transmitting the output value to the distortion image correction unit by wire or wireless. Video image distortion correction system. 제4항에 있어서,The method of claim 4, wherein 상기 센서수단은 공간상의 움직임과 방향성을 감지하는 6축 센서인 것을 특징으로 하는 3차원 초음파 진단기용 영상 이미지 왜곡 보정시스템.And said sensor means is a six-axis sensor for sensing motion and direction in space. 제5항에 있어서, The method of claim 5, 상기 6축 센서는 지자기센서, 가속도센서, 자이로센서, 광센서 중에서 선택되어 구현되는 것을 특징으로 하는 3차원 초음파 진단기용 영상 이미지 왜곡 보정시스템.The six-axis sensor is image image distortion correction system for a three-dimensional ultrasonic diagnostics, characterized in that the implemented by the geomagnetic sensor, acceleration sensor, gyro sensor, optical sensor. 제1항에 있어서,The method of claim 1, 상기 2차원 초음파 영상 획득부의 2차원 초음파 영상 획득은 획득 이미지를 초당 적어도 10회 렌더링 가능하도록 실시간으로 획득하는 것을 특징으로 하는 3차원 초음파 진단기용 영상 이미지 왜곡 보정시스템.2D ultrasound image acquisition of the 2D ultrasound image acquisition unit is a three-dimensional ultrasound image distortion correction system for the diagnostic image, characterized in that to obtain the acquired image in real time to render at least 10 times per second. 제4항에 있어서,The method of claim 4, wherein 상기 왜곡 영상 보정부는 상기 2차원 초음파 영상 획득부에서 획득된 2차원 초음파 영상과 상기 검출부에서 검출된 이동속도 및 위치를 서로 시간적으로 동기화시켜 저장하는 것을 특징으로 하는 3차원 초음파 진단기용 영상 이미지 왜곡 보정시스템.The distortion image corrector corrects the image image distortion of the 3D ultrasound diagnostic apparatus, wherein the 2D ultrasound image acquired by the 2D ultrasound image acquisition unit and the moving speed and the position detected by the detector are synchronized with each other in time. system. 제8항에 있어서,The method of claim 8, 상기 시간적으로 동기화시키는 이동속도 및 위치는 검출부의 상기 영상촬영수단 및 상기 센서수단에 의하여 각각 검출된 이동속도 및 위치를 산술평균하여 결정하는 것을 특징으로 하는 3차원 초음파 진단기용 영상 이미지 왜곡 보정시스템.The moving speed and position for synchronizing in time are determined by arithmetically averaging the moving speed and position detected by the image pickup means and the sensor means of the detector, respectively. 제1항에 있어서,The method of claim 1, 상기 2차원 초음파 영상을 선택하는 것은 선택된 2차원 초음파 영상이 공간적으로 등간격이 되도록 선택되는 것을 특징으로 하는 3차원 초음파 진단기용 영상 이미지 왜곡 보정시스템.And selecting the 2D ultrasound image comprises selecting the 2D ultrasound image so that the selected 2D ultrasound image is spatially equidistantly spaced.
PCT/KR2014/006021 2014-07-04 2014-07-04 Image distortion compensation system for three-dimensional ultrasound diagnostic device WO2016002992A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/006021 WO2016002992A1 (en) 2014-07-04 2014-07-04 Image distortion compensation system for three-dimensional ultrasound diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/006021 WO2016002992A1 (en) 2014-07-04 2014-07-04 Image distortion compensation system for three-dimensional ultrasound diagnostic device

Publications (1)

Publication Number Publication Date
WO2016002992A1 true WO2016002992A1 (en) 2016-01-07

Family

ID=55019510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006021 WO2016002992A1 (en) 2014-07-04 2014-07-04 Image distortion compensation system for three-dimensional ultrasound diagnostic device

Country Status (1)

Country Link
WO (1) WO2016002992A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107928708A (en) * 2017-12-12 2018-04-20 成都优途科技有限公司 Freely three-dimensional backbone ultrasonic image-forming system and control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6554771B1 (en) * 2001-12-18 2003-04-29 Koninklijke Philips Electronics N.V. Position sensor in ultrasound transducer probe
WO2010106379A1 (en) * 2009-03-20 2010-09-23 Mediwatch Uk Limited Ultrasound probe with accelerometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6554771B1 (en) * 2001-12-18 2003-04-29 Koninklijke Philips Electronics N.V. Position sensor in ultrasound transducer probe
WO2010106379A1 (en) * 2009-03-20 2010-09-23 Mediwatch Uk Limited Ultrasound probe with accelerometer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALAN BRANDON: "Epson Toyocom develops tiny 6-axis sensor for motion tracking", GIZMAG, 16 March 2010 (2010-03-16), XP055250358, Retrieved from the Internet <URL:http://www.gizmag.com/epson-toyocom-ah61001r-6-axis-sensor-worlds-smallest/14529> *
PURANG ABOLMAESUMI ET AL.: "Image-guided control of a robot for medical ultrasound", ROBOTICS AND AUTOMATION, IEEE TRANSACTIONS ON, vol. 18, no. 1, February 2002 (2002-02-01), pages 11 - 23, XP055033252, Retrieved from the Internet <URL:http://ieeexplore.ieee.org/xpl/loginjsp?tp=&amumber=988970> *
Q. H. HUANG ET AL.: "Development of a portable 3D ultrasound imaging system for musculoskeletal tissues", ULTRASONICS, vol. 43, no. 3, January 2005 (2005-01-01), pages 153 - 163, XP027612735, Retrieved from the Internet <URL:http://www.sciencedirect.com/science/article/pii/50041624X04002185#> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107928708A (en) * 2017-12-12 2018-04-20 成都优途科技有限公司 Freely three-dimensional backbone ultrasonic image-forming system and control method

Similar Documents

Publication Publication Date Title
JP5404141B2 (en) Ultrasonic device and control method thereof
JP6091949B2 (en) Tracking device and ultrasonic diagnostic device
WO2019143123A1 (en) Ultrasound imaging apparatus and method of controlling the same
JP6081301B2 (en) Ultrasonic diagnostic apparatus and image data correction method
US9295451B2 (en) Ultrasound system for providing an ultrasound image optimized for posture of a user
EP3513738B1 (en) Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device
JP6097452B2 (en) Ultrasonic imaging system and ultrasonic imaging method
JP2019503268A (en) Ultrasound imaging related to position
CN113164156A (en) System and method for guided ultrasound data acquisition
WO2012017827A1 (en) Ultrasonic imaging apparatus and three-dimensional image display method using ultrasonic image
JP6316995B2 (en) Ultrasonic diagnostic apparatus and image data correction method
KR20150131566A (en) Ultrasound diagnosis apparatus and mehtod thereof
JP2013220218A (en) Radiographic imaging apparatus, control method therefor, and program
US20160007971A1 (en) Ultrasound diagnostic apparatus, signal processing method for ultrasound diagnostic apparatus, and recording medium
JP2019517362A (en) Three-dimensional imaging method and system
KR101656127B1 (en) Measuring apparatus and program for controlling the same
US9839412B2 (en) Ultrasonic image display apparatus and control program for controlling the same
WO2014208802A1 (en) Ultrasonic probe having a plurality of arrays connected in parallel structure and ultrasonic image diagnosing apparatus including same
JP2001157677A (en) Ultrasonic diagnostic apparatus
WO2016002992A1 (en) Image distortion compensation system for three-dimensional ultrasound diagnostic device
US20180042576A1 (en) Acoustic wave image generating apparatus and method
JPH0556971A (en) Ultrasonic diagnostic device
JP2009011449A (en) Ultrasonic diagnostic equipment
US11324487B2 (en) Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus
KR101621309B1 (en) Image distortion correction systeem for 3D ultrasonic diagnostic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.04.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14896336

Country of ref document: EP

Kind code of ref document: A1