[go: up one dir, main page]

WO2016006925A1 - Composé électroluminescent organique et dispositif électroluminescent organique comprenant ce composé - Google Patents

Composé électroluminescent organique et dispositif électroluminescent organique comprenant ce composé Download PDF

Info

Publication number
WO2016006925A1
WO2016006925A1 PCT/KR2015/007059 KR2015007059W WO2016006925A1 WO 2016006925 A1 WO2016006925 A1 WO 2016006925A1 KR 2015007059 W KR2015007059 W KR 2015007059W WO 2016006925 A1 WO2016006925 A1 WO 2016006925A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
alkyl
organic electroluminescent
aryl
Prior art date
Application number
PCT/KR2015/007059
Other languages
English (en)
Inventor
Hee-Ryong Kang
Hyun-Ju Kang
Doo-Hyeon Moon
Young-Mook Lim
Bitnari Kim
Nam-Kyun Kim
Original Assignee
Rohm And Haas Electronic Materials Korea Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150096096A external-priority patent/KR102419711B1/ko
Application filed by Rohm And Haas Electronic Materials Korea Ltd. filed Critical Rohm And Haas Electronic Materials Korea Ltd.
Priority to JP2017500876A priority Critical patent/JP6674943B2/ja
Priority to CN201580035605.7A priority patent/CN106536526B/zh
Priority to EP15819133.8A priority patent/EP3166947B1/fr
Priority to US15/324,272 priority patent/US9935274B2/en
Publication of WO2016006925A1 publication Critical patent/WO2016006925A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom

Definitions

  • the present invention relates to organic electroluminescent compounds and organic electroluminescent device comprising the same.
  • An electroluminescent device is a self-light-emitting device which has advantages in that it provides a wider viewing angle, a greater contrast ratio, and a faster response time.
  • the first organic EL device was developed by Eastman Kodak, by using small aromatic diamine molecules, and aluminum complexes as materials for forming a light-emitting layer [Appl. Phys. Lett. 51, 913, 1987].
  • Iridium(III) complexes have been widely known as phosphorescent materials, including bis(2-(2’-benzothienyl)-pyridinato-N,C3’)iridium(acetylacetonate) ((acac)Ir(btp) 2 ), tris(2-phenylpyridine)iridium (Ir(ppy) 3 ) and bis(4,6-difluorophenylpyridinato-N,C2)picolinate iridium (Firpic) as red, green, and blue materials, respectively.
  • CBP 4,4’-N,N’-dicarbazol-biphenyl
  • BCP bathocuproine
  • BAlq aluminum(III)bis(2-methyl-8-quinolinate)(4-phenylphenolate)
  • an organic EL device has a structure of a multilayer comprising a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer.
  • the selection of a compound comprised in the hole transport layer is known as a method for improving the characteristics of a device such as hole transport efficiency to the light-emitting layer, luminous efficiency, lifespan, etc.
  • CuPc copper phthalocyanine
  • NPB 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl
  • TPD N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine
  • MTDATA 4,4',4"-tris(3-methylphenylphenylamino)triphenylamine
  • Korean Patent Appln. Laying-Open No. 2012-0087935 discloses a compound having an indolo[3,2,1-jk]carbazole backbone as an organic electroluminescent compound.
  • Korean Patent Appln. Laying-Open No. 2012-0095997 discloses various nitrogen-containing fused heterocyclic compounds.
  • U.S. Patent Appl. Publication No. US 2011/0303901 A1 discloses a 6H-indolo[2,3-b]quinoxaline derivative as an organic electroluminescent compound.
  • the above references do not specifically disclose an organic electroluminescent compound in which two indoles are fused to a 6H-indolo[2,3-b]quinoxaline.
  • the objective of the present invention is to provide i) an organic electroluminescent compound which can produce an organic electroluminescent device having long driving lifespan, low driving voltage, and excellent luminous efficiencies, such as current and power efficiencies, and ii) an organic electroluminescent device comprising the compound.
  • X and Y each independently represent -CR 13 - or -N-, where X and Y are not simultaneously -CR 13 -;
  • V and W each independently represent a single bond, -CR 14 R 15 -, or -NR 16 -,
  • R 1 to R 16 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)aryl
  • the heteroaryl contains at least one hetero atom selected from B, N, O, S, Si, and P.
  • the organic electroluminescent compound according to the present invention can manufacture an organic electroluminescent device having low driving voltage, excellent current and power efficiencies, and remarkably improved driving lifespan.
  • the present invention relates to an organic electroluminescent compound of formula 1 or 2, an organic electroluminescent material comprising the compound, and an organic electroluminescent device comprising the material.
  • (C1-C30)alkyl is meant to be a linear or branched alkyl having 1 to 30 carbon atoms, in which the number of carbon atoms is preferably 1 to 10, more preferably 1 to 6, and includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, etc.;
  • (C2-C30)alkenyl is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc.
  • (C2-C30)alkynyl is meant to be a linear or branched alkynyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably
  • substituted in the expression “substituted or unsubstituted” means that a hydrogen atom in a certain functional group is replaced with another atom or group, i.e. a substituent.
  • X and Y each independently represent -CR 13 - or -N-, where X and Y are not simultaneously -CR 13 -.
  • V and W each independently represent a single bond, -CR 14 R 15 -, or -NR 16 -.
  • R 1 to R 16 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)aryl
  • X and Y each independently represent -CR 13 - or -N-, where X and Y are not simultaneously -CR 13 -;
  • V and W each independently represent a single bond, -CR 14 R 15- , or -NR 16 -; and R 1 to R 16 each independently represent hydrogen, a substituted or unsubstituted (C6-C20)aryl, or a substituted or unsubstituted 5- to 20-membered heteroaryl; or are linked to an adjacent substituent(s) to form a mono- or polycyclic (C3-C20) alicyclic or aromatic ring.
  • X and Y each independently represent -CR 13 - or -N-, where X and Y are not simultaneously -CR 13 -;
  • V and W each independently represent a single bond, -CR 14 R 15 -, or -NR 16 -; and R 1 to R 16 each independently represent hydrogen, an unsubstituted (C6-C20)aryl, or a 5- to 20-membered heteroaryl unsubstituted or substituted with a (C6-C12)aryl; or are linked to an adjacent substituent(s) to form a mono- or polycyclic (C3-C20) aromatic ring.
  • the specific compounds of the present invention include the following compounds, but are not limited thereto:
  • organic electroluminescent compounds of the present invention can be prepared by a synthetic method known to a person skilled in the art. For example, they can be prepared according to the following reaction scheme.
  • R 1 to R 12 , V, W, X, and Y are as defined in formula 1 or 2.
  • the present invention provides an organic electroluminescent material comprising the organic electroluminescent compound of formula 1 or 2, and an organic electroluminescent device comprising the material.
  • the above material can be comprised of the organic electroluminescent compound according to the present invention alone, or can further include conventional materials generally used in organic electroluminescent materials.
  • the organic electroluminescent device comprises a first electrode; a second electrode; and at least one organic layer between the first and second electrodes.
  • the organic layer may comprise at least one organic electroluminescent compound of formula 1 or 2.
  • the organic layer comprises a light-emitting layer, and may further comprise at least one layer selected from the group consisting of a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an interlayer, a hole blocking layer, and an electron blocking layer.
  • the organic electroluminescent compound of formula 1 or 2 according to the present invention can be comprised in the light-emitting layer.
  • the organic electroluminescent compound of formula 1 or 2 according to the present invention can be comprised as a host material.
  • the light-emitting layer can further comprise one or more dopants.
  • a compound other than the organic electroluminescent compound of formula 1 or 2 according to the present invention can be additionally comprised as a second host material.
  • the weight ratio of the first host material to the second host material is in the range of 1:99 to 99:1.
  • the second host material can be any of the known phosphorescent hosts. Specifically, the phosphorescent host selected from the group consisting of the compounds of formulae 11 to 15 below is preferable in terms of luminous efficiency.
  • A represents -O- or -S-;
  • R 21 to R 24 each independently represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted of unsubstituted (C6-C30)aryl, a substituted or unsubstituted 5- to 30-membered heteroaryl, or -SiR 25 R 26 R 27 ;
  • R 25 to R 27 each independently represent a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl;
  • L 4 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted 5- to 30-membered heteroarylene;
  • M represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted 5- to 30-membered heteroaryl;
  • Y 1 and Y 2 each independently represent -O-, -S-, -N(R 31 )-, or -C(R 32 )(R 33 )-, provided that Y 1 and Y 2 do not simultaneously exist;
  • R 31 to R 33 each independently represent a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted 5- to 30-membered heteroaryl, and R 32 and R 33 may be the same or different;
  • h and i each independently represent an integer of 1 to 3;
  • j, k, l, and m each independently represent an integer of 0 to 4.
  • each of (Cz-L 4 ), each of (Cz), each of R 21 , each of R 22 , each of R 23 , or each of R 24 may be the same or different.
  • preferable examples of the second host material are as follows:
  • TPS represents a triphenylsilyl group
  • the dopant comprised in the organic electroluminescent device according to the present invention is preferably at least one phosphorescent dopant.
  • the dopant materials applied to the organic electroluminescent device according to the present invention are not limited, but may be preferably selected from metallated complex compounds of iridium, osmium, copper, and platinum, more preferably selected from ortho-metallated complex compounds of iridium, osmium, copper, and platinum, and even more preferably ortho-metallated iridium complex compounds.
  • the dopants comprised in the organic electroluminescent device of the present invention may be preferably selected from compounds represented by the following formulae 101 to 103.
  • L is selected from the following structures:
  • R 100 represents hydrogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C3-C30)cycloalkyl;
  • R 101 to R 109 , and R 111 to R 123 each independently represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a cyano, or a substituted or unsubstituted (C1-C30)alkoxy; adjacent substituents of R 106 to R 109 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl; and adjacent substituents of R 120 to R 123 may be linked to each other
  • R 124 to R 127 each independently represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl; and adjacent substituents of R 124 to R 127 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl;
  • R 201 to R 211 each independently represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (C6-C30)aryl, and adjacent substituents of R 208 to R 211 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl;
  • f and g each independently represent an integer of 1 to 3; where f or g is an integer of 2 or more, each of R 100 may be the same or different; and
  • n an integer of 1 to 3.
  • the dopant compounds include the following:
  • compositions for preparing an organic electroluminescent device comprises the compound according to the present invention as a host material or a hole transport material.
  • the organic electroluminescent device comprises a first electrode; a second electrode; and at least one organic layer between the first and second electrodes.
  • the organic layer comprises a light-emitting layer, and the light-emitting layer may comprise the composition for preparing the organic electroluminescent device according to the present invention.
  • the organic electroluminescent device according to the present invention may further comprise, in addition to the organic electroluminescent compound represented by formula 1 or 2, at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds.
  • the organic layer may further comprise at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4 th period, transition metals of the 5 th period, lanthanides and organic metals of d-transition elements of the Periodic Table, or at least one complex compound comprising said metal.
  • the organic layer may further comprise a light-emitting layer and a charge generating layer.
  • the organic electroluminescent device according to the present invention may emit white light by further comprising at least one light-emitting layer which comprises a blue electroluminescent compound, a red electroluminescent compound or a green electroluminescent compound known in the field, besides the compound according to the present invention. Also, if necessary, a yellow or orange light-emitting layer can be comprised in the device.
  • a surface layer is preferably placed on an inner surface(s) of one or both electrode(s); selected from a chalcogenide layer, a metal halide layer, and a metal oxide layer.
  • a chalcogenide (including oxides) layer of silicon or aluminum is preferably placed on an anode surface of an electroluminescent medium layer
  • a metal halide layer or a metal oxide layer is preferably placed on a cathode surface of an electroluminescent medium layer.
  • said chalcogenide includes SiO X (1 ⁇ X ⁇ 2), AlO X (1 ⁇ X ⁇ 1.5), SiON, SiAlON, etc.; said metal halide includes LiF, MgF 2 , CaF 2 , a rare earth metal fluoride, etc.; and said metal oxide includes Cs 2 O, Li 2 O, MgO, SrO, BaO, CaO, etc.
  • a mixed region of an electron transport compound and reductive dopant, or a mixed region of a hole transport compound and an oxidative dopant is preferably placed on at least one surface of a pair of electrodes.
  • the electron transport compound is reduced to an anion, and thus it becomes easier to inject and transport electrons from the mixed region to an electroluminescent medium.
  • the hole transport compound is oxidized to a cation, and thus it becomes easier to inject and transport holes from the mixed region to the electroluminescent medium.
  • the oxidative dopant includes various Lewis acids and acceptor compounds; and the reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof.
  • a reductive dopant layer may be employed as a charge generating layer to prepare an electroluminescent device having two or more electroluminescent layers and emitting white light.
  • dry film-forming methods such as vacuum evaporation, sputtering, plasma and ion plating methods, or wet film-forming methods such as spin coating, dip coating, and flow coating methods can be used.
  • a thin film can be formed by dissolving or diffusing materials forming each layer into any suitable solvent such as ethanol, chloroform, tetrahydrofuran, dioxane, etc.
  • the solvent can be any solvent where the materials forming each layer can be dissolved or diffused, and where there are no problems in film-formation capability.
  • An OLED device was produced using the organic electroluminescent compound according to the present invention.
  • a transparent electrode indium tin oxide (ITO) thin film (10 ⁇ /sq) on a glass substrate for an organic light-emitting diode (OLED) device (Geomatec, Japan) was subjected to an ultrasonic washing with acetone, ethanol, and distilled water, sequentially, and was then stored in isopropanol.
  • the ITO substrate was mounted on a substrate holder of a vacuum vapor depositing apparatus.
  • Compound HI-1 was introduced into a cell of said vacuum vapor depositing apparatus, and then the pressure in the chamber of said apparatus was controlled to 10 -6 torr.
  • Compound HT-2 was introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a second hole transport layer having a thickness of 60 nm on the first hole transport layer. Thereafter, compound A-1 was introduced into one cell of the vacuum vapor depositing apparatus as a host material, and compound D-96 was introduced into another cell as a dopant. The two materials were evaporated at different rates and were deposited in a doping amount of 3 wt% (the amount of dopant) based on the total amount of the host and dopant to form a light-emitting layer having a thickness of 40 nm on the second hole transport layer.
  • Compound ET-1 and compound EI-1 were then introduced into another two cells, evaporated at the rate of 1:1, and deposited to form an electron transport layer having a thickness of 30 nm on the light-emitting layer.
  • an Al cathode having a thickness of 80 nm was deposited by another vacuum vapor deposition apparatus on the electron injection layer.
  • All the materials used for producing the OLED device were purified by vacuum sublimation at 10 -6 torr prior to use.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 20.7 cd/A at 3.5 V.
  • the time period for the luminance to decrease to 90% at 5,000 nit was 50 hours or longer.
  • Comparative Example 1 Production of an OLED device using a conventional organic electroluminescent compound
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound B-1 as below for the host as the light-emitting material.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 1.8 cd/A at 8.1 V. The efficiency was too low to measure the lifespan.
  • the organic electroluminescent compound according to the present invention has excellent luminous characteristics, particularly, current/power efficiencies, and is capable of providing colors of high purity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

La présente invention porte sur un composé électroluminescent organique et sur un dispositif électroluminescent organique comprenant ce composé électroluminescent organique. Ledit composé électroluminescent organique selon la présente invention permet de produire un dispositif électroluminescent organique ayant une faible tension de commande, une excellente efficacité par rapport au courant et à la puissance, et une durée de vie considérablement améliorée.
PCT/KR2015/007059 2014-07-09 2015-07-08 Composé électroluminescent organique et dispositif électroluminescent organique comprenant ce composé WO2016006925A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017500876A JP6674943B2 (ja) 2014-07-09 2015-07-08 有機電界発光化合物及びそれを含む有機電界発光デバイス
CN201580035605.7A CN106536526B (zh) 2014-07-09 2015-07-08 有机电致发光化合物和包含所述有机电致发光化合物的有机电致发光装置
EP15819133.8A EP3166947B1 (fr) 2014-07-09 2015-07-08 Composé électroluminescent organique et dispositif électroluminescent organique comprenant ce composé
US15/324,272 US9935274B2 (en) 2014-07-09 2015-07-08 Substituted 12H-indolo[2,3-b]quinoxalino[2′,3′:4,5]pyrrolo[3,2,1-jk]carbazoles as organic electroluminescent materials

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140086091 2014-07-09
KR10-2014-0086091 2014-07-09
KR1020150096096A KR102419711B1 (ko) 2014-07-09 2015-07-06 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR10-2015-0096096 2015-07-06

Publications (1)

Publication Number Publication Date
WO2016006925A1 true WO2016006925A1 (fr) 2016-01-14

Family

ID=55064483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007059 WO2016006925A1 (fr) 2014-07-09 2015-07-08 Composé électroluminescent organique et dispositif électroluminescent organique comprenant ce composé

Country Status (1)

Country Link
WO (1) WO2016006925A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170179406A1 (en) * 2014-07-09 2017-06-22 Rohm And Haas Electronic Materials Korea Ltd. An organic electroluminescent compound and an organic electroluminescent device comprising the same
CN107216330A (zh) * 2017-06-13 2017-09-29 中节能万润股份有限公司 一种新型oled材料、其制备方法及应用
WO2017175690A1 (fr) 2016-04-08 2017-10-12 出光興産株式会社 Nouveau composé, élément électroluminescent organique et appareil électronique
US9954187B2 (en) 2016-04-08 2018-04-24 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence device and electronic device
WO2018151065A1 (fr) 2017-02-14 2018-08-23 出光興産株式会社 Élément électroluminescent organique et dispositif électronique
JP2019506399A (ja) * 2016-02-11 2019-03-07 エルジー・ケム・リミテッド ヘテロ環化合物およびこれを含む有機電界発光素子
US10249832B1 (en) 2017-12-06 2019-04-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
KR20190132646A (ko) 2017-04-03 2019-11-28 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자 및 전자 기기
KR20190132645A (ko) 2017-04-03 2019-11-28 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자 및 전자 기기
KR20190132644A (ko) 2017-04-03 2019-11-28 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자 및 전자 기기
US10593889B1 (en) 2018-09-26 2020-03-17 Idemitsu Kosan Co., Ltd. Compound and organic electroluminescence device
JP2020510997A (ja) * 2017-02-28 2020-04-09 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 有機エレクトロルミネッセンスデバイス
CN111032441A (zh) * 2017-08-15 2020-04-17 日本制铁株式会社 保险杠横梁和车辆
US12262634B2 (en) 2017-12-06 2025-03-25 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073965A (ja) * 2012-10-02 2014-04-24 Canon Inc 新規ベンゾインドロカルバゾール化合物、これを有する有機発光素子、表示装置、画像情報処理装置、照明装置、画像形成装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073965A (ja) * 2012-10-02 2014-04-24 Canon Inc 新規ベンゾインドロカルバゾール化合物、これを有する有機発光素子、表示装置、画像情報処理装置、照明装置、画像形成装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170179406A1 (en) * 2014-07-09 2017-06-22 Rohm And Haas Electronic Materials Korea Ltd. An organic electroluminescent compound and an organic electroluminescent device comprising the same
US9935274B2 (en) * 2014-07-09 2018-04-03 Rohm And Haas Electronic Materials Korea Ltd. Substituted 12H-indolo[2,3-b]quinoxalino[2′,3′:4,5]pyrrolo[3,2,1-jk]carbazoles as organic electroluminescent materials
JP2019506399A (ja) * 2016-02-11 2019-03-07 エルジー・ケム・リミテッド ヘテロ環化合物およびこれを含む有機電界発光素子
US12029119B2 (en) 2016-04-08 2024-07-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and electronic device
WO2017175690A1 (fr) 2016-04-08 2017-10-12 出光興産株式会社 Nouveau composé, élément électroluminescent organique et appareil électronique
US9954187B2 (en) 2016-04-08 2018-04-24 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence device and electronic device
US10230058B2 (en) 2016-04-08 2019-03-12 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence device and electronic device
US11489123B2 (en) 2016-04-08 2022-11-01 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence device and electronic device
WO2018151065A1 (fr) 2017-02-14 2018-08-23 出光興産株式会社 Élément électroluminescent organique et dispositif électronique
KR20190117524A (ko) 2017-02-14 2019-10-16 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자 및 전자 기기
JP7109460B2 (ja) 2017-02-28 2022-07-29 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 有機エレクトロルミネッセンスデバイス
JP2020510997A (ja) * 2017-02-28 2020-04-09 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 有機エレクトロルミネッセンスデバイス
KR20190132644A (ko) 2017-04-03 2019-11-28 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자 및 전자 기기
KR20190132646A (ko) 2017-04-03 2019-11-28 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자 및 전자 기기
KR20190132645A (ko) 2017-04-03 2019-11-28 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자 및 전자 기기
CN107216330A (zh) * 2017-06-13 2017-09-29 中节能万润股份有限公司 一种新型oled材料、其制备方法及应用
CN111032441A (zh) * 2017-08-15 2020-04-17 日本制铁株式会社 保险杠横梁和车辆
US10658594B2 (en) 2017-12-06 2020-05-19 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
US10680181B2 (en) 2017-12-06 2020-06-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
US10672989B2 (en) 2017-12-06 2020-06-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
US10249832B1 (en) 2017-12-06 2019-04-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
US11557730B2 (en) 2017-12-06 2023-01-17 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
US11569449B2 (en) 2017-12-06 2023-01-31 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
US12262634B2 (en) 2017-12-06 2025-03-25 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
US10593889B1 (en) 2018-09-26 2020-03-17 Idemitsu Kosan Co., Ltd. Compound and organic electroluminescence device
US12108666B2 (en) 2018-09-26 2024-10-01 Idemitsu Kosan Co., Ltd. Compound and organic electroluminescence device

Similar Documents

Publication Publication Date Title
WO2016006925A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique comprenant ce composé
WO2014042420A1 (fr) Nouveau composé à électroluminescence organique et dispositif à électroluminescence organique le comprenant
WO2015099485A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique comprenant ce composé
WO2014030921A1 (fr) Nouveaux composés électroluminescents organiques et dispositif électroluminescent organique contenant ceux-ci
EP2831197A1 (fr) Nouveaux composés à électroluminescence organique et dispositif à électroluminescence organique les contenant
EP3166947A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique comprenant ce composé
WO2013157886A1 (fr) Nouveaux composés organiques électroluminescents et dispositif organique électroluminescent les comprenant
WO2015012618A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique comprenant ce composé
WO2012169821A1 (fr) Nouveaux composés pour une matière électronique organique et dispositif électroluminescent organique utilisant ces nouveaux composés
EP3189035A1 (fr) Matériau de transport de trous et dispositif électroluminescent organique comprenant celui-ci
WO2013165189A1 (fr) Nouveaux composés électroluminescents organiques et dispositif électroluminescent organique les contenant
WO2013081416A1 (fr) Nouveaux composés organiques électroluminescents et dispositif organique électroluminescent utilisant lesdits composés
WO2014171779A1 (fr) Composés électroluminescents organiques et dispositif électroluminescent organique les comprenant
WO2013085243A1 (fr) Nouveaux composés électroluminescents organiques et dispositif électroluminescent organique utilisant ceux-ci
WO2015084114A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique comprenant ce composé
WO2015099486A1 (fr) Nouveaux composés organiques électroluminescents et dispositif organique électroluminescent les comprenant
WO2015084021A1 (fr) Nouveaux composés organiques électroluminescents et dispositif organique électroluminescent les comprenant
EP3583097A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique le comprenant
WO2012121561A1 (fr) Nouveaux composés électroluminescents organiques et dispositif électroluminescent organique utilisant lesdits composés
WO2013073896A1 (fr) Nouveaux composés organiques électroluminescents et dispositif organique électroluminescent utilisant lesdits composés
WO2014061991A1 (fr) Nouveaux composés électroluminescents organiques et dispositif électroluminescent organique en contenant
EP2828254A1 (fr) Nouveaux composés électroluminescents organiques, et dispositif électroluminescent organique les comprenant
WO2014200244A1 (fr) Nouveaux composés électroluminescents organiques et dispositif électroluminescent organique les comprenant
WO2015046955A1 (fr) Nouveau composé organique électroluminescent et dispositif organique électroluminescent le contenant
WO2014196805A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique le comprenant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500876

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15324272

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015819133

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015819133

Country of ref document: EP