[go: up one dir, main page]

WO2017030369A1 - Method for manufacturing secondary battery - Google Patents

Method for manufacturing secondary battery Download PDF

Info

Publication number
WO2017030369A1
WO2017030369A1 PCT/KR2016/009045 KR2016009045W WO2017030369A1 WO 2017030369 A1 WO2017030369 A1 WO 2017030369A1 KR 2016009045 W KR2016009045 W KR 2016009045W WO 2017030369 A1 WO2017030369 A1 WO 2017030369A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
present
charging
discharging
pressing
Prior art date
Application number
PCT/KR2016/009045
Other languages
French (fr)
Korean (ko)
Inventor
김현태
김동명
류상백
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority claimed from KR1020160104134A external-priority patent/KR20170021213A/en
Publication of WO2017030369A1 publication Critical patent/WO2017030369A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery manufacturing method, and more particularly to a secondary battery manufacturing method having a predetermined shape.
  • Cells or batteries that generate electric energy through physical or chemical reactions of materials and supply power to the outside cannot obtain AC power supplied to buildings according to the living environment surrounded by various electric and electronic devices. It is used when DC power is needed.
  • the primary battery is a consumable battery, commonly referred to as a battery.
  • the secondary battery is a rechargeable battery manufactured using a material that can be repeated a number of redox process between the current and the material, the power is charged when the reduction reaction to the material by the electric current, the oxidation reaction to the material When performed, the power is discharged. As the charge-discharge is repeatedly performed, electricity is generated.
  • the manufacturing method of the lithium secondary battery has an advantage that since the electrolyte is in the form of a solid or a gel, even if the battery is damaged due to an accident, there is little risk of ignition or explosion because the electrolyte does not leak out, thereby ensuring safety and high energy efficiency.
  • a solid metal casing it can be manufactured in various sizes and shapes according to the use, it can be manufactured to a thickness of less than 3mm, weight can be reduced by more than 30%, mass production and large battery manufacturing is possible .
  • Korean Patent Laid-Open No. 10-2015-0050319 discloses a conventional method for manufacturing a curved secondary battery.
  • This conventional technique is for molding a secondary battery having a radius of curvature.
  • the conventional technology is to form a radius of curvature by pressing the secondary battery of the finished product, there is a problem that the deformation strength is weak and easily deformed after completion of the shape.
  • the present invention has been made by the above necessity, the object of the present invention is to manufacture a secondary battery that can enhance the resistance strength to the restoring force to prevent deformation of the secondary battery while forming a secondary battery of a predetermined shape. To provide.
  • the method of manufacturing a secondary battery according to the present invention includes a preparation step of preparing a secondary battery in which an electrode assembly is embedded and an activation step of activating the secondary battery, wherein the activation step is a charge / discharge step of charging or discharging the secondary battery. And it is carried out at the same time as the charge and discharge step characterized in that it comprises a molding step of molding the secondary battery to a predetermined shape using a pressure jig.
  • the active material of the electrode assembly may be cured.
  • the secondary battery may be molded to bend.
  • the secondary battery of a predetermined shape can be manufactured by pressing the secondary battery with a pressure jig together with a charging or discharging process.
  • the active material of the electrode assembly is cured to increase the resistance strength to the restoring force after completion of the shape of the secondary battery.
  • the active material of the electrode assembly is cured to increase the resistance strength of the secondary battery, thereby preventing the secondary battery from being deformed.
  • FIG. 1 is a flowchart sequentially illustrating a method of manufacturing a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram illustrating a secondary battery in a preparation step of FIG. 1 from a left side thereof.
  • FIG. 3 is a configuration diagram illustrating the molding of the secondary battery by pressing in the activation step of FIG. 1 from the left side.
  • FIG. 4 is a configuration diagram illustrating the secondary battery formed in FIG. 3 from the left side.
  • Figure 5 is a block diagram showing the left side to press the secondary battery molded in the activation step in accordance with another embodiment of the present invention.
  • FIG. 6 is a configuration diagram illustrating the secondary battery formed in FIG. 5 from the left side.
  • FIG. 7 is a block diagram illustrating the molding of the secondary battery by pressing the secondary battery in an activation step according to another embodiment of the present invention.
  • FIG. 8 is a configuration diagram illustrating the secondary battery formed in FIG. 7 from the left side.
  • FIG. 9 is a block diagram showing the left side of pressing and molding the secondary battery in the activation step according to another embodiment of the present invention.
  • FIG. 10 is a configuration diagram illustrating the secondary battery formed in FIG. 9 from the left side.
  • FIG. 11 is a block diagram illustrating the secondary battery of the preparation step of FIG. 1 in a plan view.
  • FIG. 12 is a block diagram illustrating a plan view of pressing and molding a secondary battery in an activation step according to another embodiment of the present invention.
  • FIG. 13 is a configuration diagram illustrating the rechargeable battery formed in FIG. 12 in a plan view.
  • FIG. 14 is a block diagram illustrating a plan view of pressing and molding a secondary battery in an activation step according to another embodiment of the present invention.
  • FIG. 15 is a configuration diagram illustrating the rechargeable battery formed in FIG. 14 in a plan view.
  • FIG. 1 is a flowchart sequentially illustrating a method of manufacturing a secondary battery according to an embodiment of the present invention.
  • a method of manufacturing a secondary battery according to an exemplary embodiment of the present invention includes a preparation step S1 and an activation step S2.
  • the activation step (S2) includes a charge and discharge step (S2-1) and the molding step (S2-2).
  • the preparation step S1 is a step of preparing a general secondary battery 1 in which an electrode assembly is embedded in the pouch 5 and an electrolyte is filled in the pouch 5 together with the electrode assembly.
  • the secondary battery 1 according to the present invention together with FIG. 2 will be described in more detail.
  • FIG. 2 is a configuration diagram illustrating a secondary battery in a preparation step of FIG. 1 from a left side thereof.
  • the secondary battery 1 according to the present invention may be a pouch-type lithium secondary battery, but is not limited to a shape or a type if the lithium secondary battery is satisfied.
  • the electrode assembly can be produced by, for example, laminating a plurality of times a positive electrode to which a positive electrode active material is applied, a negative electrode to which a negative electrode active material is applied, and a separator interposed between the positive electrode and the negative electrode.
  • the present invention is not limited thereto, and the electrode assembly may be manufactured by winding a laminate in which a cathode, a separator, and a cathode are laminated in a jelly roll form.
  • the positive electrode may include a positive electrode active material portion coated with a positive electrode active material and a positive electrode non-coated portion not coated with the positive electrode active material.
  • the positive electrode active material may be a lithium-containing transition metal oxide such as LiCoO 2, LiNiO 2, LiMnO 2, LiMnO 4, or a lithium chalcogenide compound.
  • the positive electrode active material may be formed by applying a positive electrode active material to a portion of at least one surface of the aluminum plate, and the remaining portion of the aluminum plate not coated with the positive electrode active material may be a positive electrode non-coating portion.
  • the negative electrode may include a negative electrode active material portion coated with a negative electrode active material and a negative electrode non-coated portion not coated with the negative electrode active material.
  • the negative electrode active material may be crystalline carbon, amorphous carbon, carbon composite, carbon material such as carbon fiber, lithium metal, lithium alloy, or the like.
  • the negative electrode active material may be formed by applying a negative electrode active material to a portion of at least one side of the copper plate, and the remaining portion of the copper plate not coated with the negative electrode active material may be a negative electrode non-coating portion.
  • the separator is, for example, any one selected from the group consisting of polyethylene (PE), polystyrene (PS), polypropylene (PP) and copolymers of polyethylene (PE) and polypropylene (PP). It can be prepared by coating a polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP co-polymer).
  • PE polyethylene
  • PS polystyrene
  • PP polypropylene
  • PVDF-HFP co-polymer polyvinylidene fluoride-hexafluoropropylene copolymer
  • the electrode tabs 3 are attached to the positive and negative electrode portions, respectively, and the electrode tabs 3 may be led out through the pouch 5.
  • the pouch 5 seals the electrode assembly and houses the electrolyte together with the electrode assembly therein.
  • the pouch 5 may be formed of, for example, a three-layer structure of an insulating layer, a metal layer, and an insulating layer.
  • the metal layer may be formed of aluminum, steel, stainless steel, or the like
  • the insulating layer may be formed of modified polypropylene (CPP), polyethylene terephthalate (PET), nylon, or the like, but is not limited thereto.
  • the pouch 5 may include an accommodating part forming a first surface and a lid part forming a second surface.
  • the receiving part is provided with an accommodating space for accommodating the electrode assembly.
  • the lid part continuously formed on one side of the accommodating part is folded onto the accommodating part, and then the accommodating part is formed at the edge of the accommodating space.
  • the lid part is melt bonded.
  • the activation step (S2) is a step of activating the secondary battery 1 prepared in the preparation step (S1), and includes a charging and discharging step (S2-1) and a molding step (S2-2).
  • the assembly is completed and the charging of the secondary battery in the discharge state is completed and activated through aging.
  • the assembled secondary battery 1 in the discharged state is placed in the active equipment, and the electrodes are firstly charged by connecting the electrodes.
  • a SEI Solid Electrolyte Inter-phase
  • a SEI Solid Electrolyte Inter-phase
  • the cells in which the discharge and charge processes are completed are aged for two to three weeks.
  • the electrolyte is evenly distributed on the electrode.
  • the time for detecting metal impurities such as nickel (Ni), iron (Fe), copper (Cu), etc. may be obtained through aging.
  • the activation step S2 is performed at the same time as the charging / discharging step S2-1, and presses the secondary battery 1 using the pressure jig 10 to form a predetermined shape.
  • Step S2-2 is included.
  • the forming step (S2-2) is a process that is performed simultaneously with the charging and discharging step (S2-1), and may be a step of pressing the secondary battery 1 using the pressing jig 10 to form a predetermined shape. .
  • the activation step S2 of the present invention is activated secondary battery because the molding step S-2 for pressurizing the secondary battery 1 is performed simultaneously with the charging and discharging step S2-1 of the secondary battery 1.
  • the active material of the electrode assembly of (1) is cured together with molding, thereby enhancing the resistance strength against deformation of the secondary battery 1 molded into a constant shape.
  • the secondary battery 1 according to the present invention in which the resistance strength against shape deformation is enhanced, can prevent a phenomenon in which the secondary battery 1 formed in a predetermined shape is deformed to another shape.
  • the pressing jig 10 used in the molding step (S2-2) is for pressing the secondary battery 1 on opposite sides to form the secondary battery 1 into a predetermined shape, and is larger than the area of the secondary battery 1. It is desirable to have a large area and to make a pair.
  • the pair of pressing jig 10 is not necessarily the same in shape and size.
  • the pressing jig 10 is formed so as to correspond to the shape of the secondary battery 1 required, and the shape thereof is not limited.
  • FIG. 3 is a configuration diagram illustrating the molding of the secondary battery by pressing in the activation step of FIG. 1 from the left side.
  • a pair of pressure jig 10 curved in one direction causes the secondary battery 1 to be indicated by an arrow in FIG. 3. Pressurize on both sides opposite to phosphorus.
  • FIG. 4 is a configuration diagram illustrating the secondary battery formed in FIG. 3 from the left side.
  • the secondary battery 1 pressed by the pair of pressing jigs 10 curved in one direction is formed to be curved in one direction.
  • Figure 5 is a block diagram showing the left side to press the secondary battery molded in the activation step in accordance with another embodiment of the present invention.
  • a pair of pressure jig 10 bent in one direction causes the secondary battery 1 to be indicated by an arrow in FIG. 5. Pressurize on both sides opposite to phosphorus.
  • FIG. 6 is a configuration diagram illustrating the secondary battery formed in FIG. 5 from the left side.
  • the secondary battery 1 pressed by the pair of pressing jigs 10 bent in one direction is formed to be bent in one direction.
  • FIG. 7 is a block diagram illustrating the molding of the secondary battery by pressing the secondary battery in an activation step according to another embodiment of the present invention.
  • a pair of pressure jig 10 curved in two directions causes the secondary battery 1 to be indicated by an arrow in FIG. 7. Pressurize on both sides opposite to phosphorus.
  • FIG. 8 is a configuration diagram illustrating the secondary battery formed in FIG. 7 from the left side.
  • the secondary battery 1 pressed by a pair of pressing jigs 10 curved in two directions is formed to be curved in two directions.
  • FIG. 9 is a block diagram showing the left side of pressing and molding the secondary battery in the activation step according to another embodiment of the present invention.
  • a pair of pressure jig 10 bent in two directions causes the secondary battery 1 to be indicated by an arrow in FIG. 9. Pressurize on both sides opposite to phosphorus.
  • FIG. 10 is a configuration diagram illustrating the secondary battery formed in FIG. 9 from the left side.
  • the secondary battery 1 pressed by a pair of pressing jigs 10 bent in two directions is formed to be bent in two directions.
  • FIG. 11 is a schematic view showing a secondary battery in a preparation step of FIG. 1 in plan view
  • FIG. 12 is a schematic view showing a planar view of pressing and molding a secondary battery in an activation step according to another embodiment of the present invention. .
  • a pair of pressure jig 10 curved at both ends in one direction may move the secondary battery 1 to an arrow in FIG. 12. Pressurizes on opposite sides of the indicated direction.
  • FIG. 13 is a configuration diagram illustrating the rechargeable battery formed in FIG. 12 in a plan view.
  • the secondary battery 1 pressurized by a pair of pressing jigs 10 curved at both ends is formed to be curved at both ends.
  • FIG. 14 is a block diagram illustrating a plan view of pressing and molding a secondary battery in an activation step according to another embodiment of the present invention.
  • a pair of pressure jig 10 curved at both ends in two directions causes the secondary battery 1 to have arrows as shown in FIG. 14. Pressurize on opposite sides of the indicated direction.
  • FIG. 15 is a configuration diagram illustrating the rechargeable battery formed in FIG. 14 in a plan view.
  • the secondary battery 1 pressurized by a pair of pressing jigs 10 curved at both ends is formed to be curved at both ends.
  • the secondary battery 1 having a predetermined shape that is bent or bent has a shape that is bent to have a predetermined radius of curvature or bent to have a predetermined angle through a molding process.
  • the secondary battery 1 having a predetermined shape to be bent or bent may have a constant curved surface or inclination according to the shape of the electronic device (not shown) to be mounted, whereby the electronic device and the secondary battery 1 The gap is removed, so that the internal space of the electronic device can be efficiently used, and damage to the secondary battery 1 can be prevented as the secondary battery 1 flows inside the electronic device.
  • the present invention by pressing the secondary battery 1 in the activation step of the secondary battery 1 to form the secondary battery 1, the active material of the electrode assembly embedded in the secondary battery 1 to cure the secondary battery After completion of the shape of (1) there is an advantage that can strengthen the resistance strength for restoration.
  • the active material of the electrode assembly is cured, thereby increasing the resistance strength to the restoring force after completing the shape of the secondary battery.
  • the active material of the electrode assembly is cured to increase the resistance strength of the secondary battery, thereby preventing the secondary battery from deforming. have.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a method for manufacturing a secondary battery having a predetermined shape. Further, the present invention comprises the steps of: a preparation step for preparing a secondary battery equipped with an electrode assembly; and an activation step for activating the secondary battery, the activation step comprising a charging/discharging step for charging or discharging the secondary battery and a molding step for molding the secondary battery into a predetermined shape using a pressurizing jig, wherein the charging/discharging step and the molding step are performed simultaneously.

Description

이차전지의 제작방법Manufacturing method of secondary battery
관련출원과의 상호인용Citation with Related Applications
본 출원은 2015년 8월 17일자 한국 특허 출원 제10-2015-0115318호 및 2016년 8월 17일자 한국 출원 제10-2016-0104134호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2015-0115318 filed on August 17, 2015 and Korean Patent Application No. 10-2016-0104134 filed on August 17, 2016. All content disclosed in is included as part of this specification.
기술분야Technical Field
본 발명은 이차전지의 제작방법에 관한 것으로서, 보다 자세하게는 소정의 형상을 가지는 이차전지의 제작방법에 관한 것이다.The present invention relates to a secondary battery manufacturing method, and more particularly to a secondary battery manufacturing method having a predetermined shape.
물질의 물리적 반응이나 화학적 반응을 통해 전기에너지를 생성시켜 외부로 전원을 공급하게 되는 전지(cell, battery)는 각종 전기전자 기기로 둘러싸여 있는 생활환경에 따라, 건물로 공급되는 교류전원을 획득하지 못할 경우나 직류전원이 필요할 경우 사용하게 된다.Cells or batteries that generate electric energy through physical or chemical reactions of materials and supply power to the outside cannot obtain AC power supplied to buildings according to the living environment surrounded by various electric and electronic devices. It is used when DC power is needed.
이와 같은 전지 중에서 화학적 반응을 이용하는 화학전지인 일차전지와 이차전지가 일반적으로 많이 사용되고 있는데, 일차전지는 건전지로 통칭되는 것으로 소모성 전지이다. 또한, 이차전지는 전류와 물질 사이의 산화환원과정이 다수 반복 가능한 소재를 사용하여 제조되는 재충전식 전지로서, 전류에 의해 소재에 대한 환원반응이 수행되면 전원이 충전되고, 소재에 대한 산화반응이 수행되면 전원이 방전되는데, 이와 같은 충전-방전이 반복적으로 수행되면서 전기가 생성되게 된다.Among such batteries, a primary battery and a secondary battery, which are chemical cells using chemical reactions, are generally used. The primary battery is a consumable battery, commonly referred to as a battery. In addition, the secondary battery is a rechargeable battery manufactured using a material that can be repeated a number of redox process between the current and the material, the power is charged when the reduction reaction to the material by the electric current, the oxidation reaction to the material When performed, the power is discharged. As the charge-discharge is repeatedly performed, electricity is generated.
리튬 이차전지의 제작방법은 전해질이 고체 또는 젤 형태이기 때문에 불의의 사고로 전지가 파손되어도 전해질이 밖으로 새어 나가지 않아 발화하거나 폭발할 우려가 거의 없어 안전성이 확보되고 에너지 효율이 높다는 장점이 있다.The manufacturing method of the lithium secondary battery has an advantage that since the electrolyte is in the form of a solid or a gel, even if the battery is damaged due to an accident, there is little risk of ignition or explosion because the electrolyte does not leak out, thereby ensuring safety and high energy efficiency.
또한, 견고한 금속 외장을 사용할 필요가 없고, 용도에 따라 다양한 크기와 모양으로 제조할 수 있으며, 3mm이하 두께로 제작이 가능하고 무게도 30% 이상 줄일 수 있으며, 대량생산 및 대형전지 제조가 가능하다.In addition, there is no need to use a solid metal casing, it can be manufactured in various sizes and shapes according to the use, it can be manufactured to a thickness of less than 3mm, weight can be reduced by more than 30%, mass production and large battery manufacturing is possible .
이런 이유로 리튬 이차전지의 제작방법은 현재 상용화되어 다양한 분야에서 사용되고 있다.For this reason, a method of manufacturing a lithium secondary battery is currently commercialized and used in various fields.
대한민국공개특허공보 제10-2015-0050319호에는 종래의 커브드 이차 전지의 제조 방법이 공지되어 있다.Korean Patent Laid-Open No. 10-2015-0050319 discloses a conventional method for manufacturing a curved secondary battery.
이러한 종래의 기술은 곡률 반경을 갖는 이차전지를 성형하기 위한 것이다This conventional technique is for molding a secondary battery having a radius of curvature.
하지만, 종래의 기술은 완제품의 이차전지를 가압하여 곡률 반경을 성형하는 것으로 형상 완성 후 복원력에 대한 저항강도가 약하여 쉽게 변형되는 문제점이 있다.However, the conventional technology is to form a radius of curvature by pressing the secondary battery of the finished product, there is a problem that the deformation strength is weak and easily deformed after completion of the shape.
따라서 본 발명은 위와 같은 필요성에 의해 안출된 것으로서, 본 발명의 과제는 소정 형상의 이차전지를 성형하면서 이차전지의 변형을 방지할 수 있도록 복원력에 대한 저항강도를 강화할 수 있는 이차전지의 제작방법을 제공하는 것이다.Therefore, the present invention has been made by the above necessity, the object of the present invention is to manufacture a secondary battery that can enhance the resistance strength to the restoring force to prevent deformation of the secondary battery while forming a secondary battery of a predetermined shape. To provide.
본 발명에 따른 이차전지의 제작방법은 전극 조립체가 내장되는 이차전지를 준비하는 준비단계 및 상기 이차전지를 활성화시키는 활성화 단계를 포함하며, 상기 활성화 단계는 상기 이차전지를 충전 또는 방전하는 충방전 단계와 상기 충방전 단계와 동시에 수행되며 가압지그를 사용하여 상기 이차전지를 소정의 형상으로 성형하는 성형단계를 포함하는 것을 특징으로 한다.The method of manufacturing a secondary battery according to the present invention includes a preparation step of preparing a secondary battery in which an electrode assembly is embedded and an activation step of activating the secondary battery, wherein the activation step is a charge / discharge step of charging or discharging the secondary battery. And it is carried out at the same time as the charge and discharge step characterized in that it comprises a molding step of molding the secondary battery to a predetermined shape using a pressure jig.
상기 활성화 단계에서는 상기 전극 조립체의 활물질을 경화(硬化)할 수 있다.In the activation step, the active material of the electrode assembly may be cured.
상기 성형단계에서는 상기 이차전지를 굴곡지도록 성형할 수 있다.In the forming step, the secondary battery may be molded to bend.
본 발명에 따르면, 충전 또는 방전 과정과 함께 가압지그로 이차전지를 가압하여 요구되는 소정 형상의 이차전지를 제작할 수 있게 하는 효과가 있다.According to the present invention, there is an effect that the secondary battery of a predetermined shape can be manufactured by pressing the secondary battery with a pressure jig together with a charging or discharging process.
본 발명에 따르면, 충전 또는 방전 과정과 함께 가압하여 이차전지를 성형하기 때문에 전극 조립체의 활물질이 경화되어 이차전지의 형상 완성 후 복원력에 대한 저항강도를 높이는 효과가 있다.According to the present invention, since the secondary battery is formed by pressing together with the charging or discharging process, the active material of the electrode assembly is cured to increase the resistance strength to the restoring force after completion of the shape of the secondary battery.
본 발명에 따르면, 충전 또는 방전 과정과 함께 가압하여 이차전지를 성형하기 때문에 전극 조립체의 활물질이 경화되어 이차전지의 변형에 대한 저항강도가 높아지고, 그에 따라 이차전지의 변형을 방지하는 효과가 있다.According to the present invention, since the secondary battery is formed by pressing together with the charging or discharging process, the active material of the electrode assembly is cured to increase the resistance strength of the secondary battery, thereby preventing the secondary battery from being deformed.
도 1은 본 발명의 일 실시예에 따른 이차전지의 제작방법을 순차적으로 도시한 흐름도이다.1 is a flowchart sequentially illustrating a method of manufacturing a secondary battery according to an embodiment of the present invention.
도 2는 도 1의 준비단계의 이차전지를 좌측면에서 도시한 구성도이다.FIG. 2 is a configuration diagram illustrating a secondary battery in a preparation step of FIG. 1 from a left side thereof.
도 3은 도 1의 활성화 단계에서 이차전지를 가압하여 성형하는 것을 좌측면에서 도시한 구성도이다.FIG. 3 is a configuration diagram illustrating the molding of the secondary battery by pressing in the activation step of FIG. 1 from the left side.
도 4는 도 3에서 성형 된 이차전지를 좌측면에서 도시한 구성도이다.4 is a configuration diagram illustrating the secondary battery formed in FIG. 3 from the left side.
도 5는 본 발명의 다른 실시예에 따라 활성화 단계에서 이차전지를 가압하여 성형하는 것을 좌측면에서 도시한 구성도이다.Figure 5 is a block diagram showing the left side to press the secondary battery molded in the activation step in accordance with another embodiment of the present invention.
도 6은 도 5에서 성형 된 이차전지를 좌측면에서 도시한 구성도이다.FIG. 6 is a configuration diagram illustrating the secondary battery formed in FIG. 5 from the left side.
도 7은 본 발명의 또 다른 실시예에 따라 활성화 단계에서 이차전지를 가압하여 성형하는 것을 좌측면에서 도시한 구성도이다.FIG. 7 is a block diagram illustrating the molding of the secondary battery by pressing the secondary battery in an activation step according to another embodiment of the present invention.
도 8은 도 7에서 성형 된 이차전지를 좌측면에서 도시한 구성도이다.FIG. 8 is a configuration diagram illustrating the secondary battery formed in FIG. 7 from the left side.
도 9는 본 발명의 또 다른 실시예에 따라 활성화 단계에서 이차전지를 가압하여 성형하는 것을 좌측면에서 도시한 구성도이다.9 is a block diagram showing the left side of pressing and molding the secondary battery in the activation step according to another embodiment of the present invention.
도 10은 도 9에서 성형 된 이차전지를 좌측면에서 도시한 구성도이다.FIG. 10 is a configuration diagram illustrating the secondary battery formed in FIG. 9 from the left side.
도 11은 도 1의 준비단계의 이차전지를 평면에서 도시한 구성도이다.FIG. 11 is a block diagram illustrating the secondary battery of the preparation step of FIG. 1 in a plan view.
도 12는 본 발명의 또 다른 실시예에 따라 활성화 단계에서 이차전지를 가압하여 성형하는 것을 평면에서 도시한 구성도이다.12 is a block diagram illustrating a plan view of pressing and molding a secondary battery in an activation step according to another embodiment of the present invention.
도 13은 도 12에서 성형 된 이차전지를 평면에서 도시한 구성도이다.FIG. 13 is a configuration diagram illustrating the rechargeable battery formed in FIG. 12 in a plan view.
도 14는 본 발명의 또 다른 실시예에 따라 활성화 단계에서 이차전지를 가압하여 성형하는 것을 평면에서 도시한 구성도이다.14 is a block diagram illustrating a plan view of pressing and molding a secondary battery in an activation step according to another embodiment of the present invention.
도 15는 도 14에서 성형 된 이차전지를 평면에서 도시한 구성도이다.FIG. 15 is a configuration diagram illustrating the rechargeable battery formed in FIG. 14 in a plan view.
이하, 첨부된 도면을 참조하여 본 발명을 설명한다. 본 발명은 다양한 실시가 가능하고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들이 도면에 예시되고 관련된 상세한 설명이 본 명세서에 기재되어 있다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용되었다.Hereinafter, with reference to the accompanying drawings will be described the present invention. DETAILED DESCRIPTION OF THE INVENTION The present invention is susceptible to various embodiments and may have various embodiments, in which specific embodiments are illustrated in the drawings and related details are described herein. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all equivalents or substitutes included in the spirit and scope of the present invention. In the description of the drawings, similar reference numerals are used for similar elements.
도 1은 본 발명의 일 실시예에 따른 이차전지의 제작방법을 순차적으로 도시한 흐름도이다.1 is a flowchart sequentially illustrating a method of manufacturing a secondary battery according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 이차전지의 제작방법은 준비단계(S1)와 활성화 단계(S2)를 포함한다.As shown in FIG. 1, a method of manufacturing a secondary battery according to an exemplary embodiment of the present invention includes a preparation step S1 and an activation step S2.
그리고 활성화 단계(S2)는 충방전 단계(S2-1)및 성형단계(S2-2)를 포함한다.And the activation step (S2) includes a charge and discharge step (S2-1) and the molding step (S2-2).
상기 준비단계(S1)는 전극 조립체가 파우치(5)의 내부에 내장되며 상기 전극 조립체와 함께 파우치(5)의 내부에 전해액이 채워지는 일반적인 이차전지(1)를 준비하는 단계이다.The preparation step S1 is a step of preparing a general secondary battery 1 in which an electrode assembly is embedded in the pouch 5 and an electrolyte is filled in the pouch 5 together with the electrode assembly.
도 2와 함께 본 발명에 따른 이차전지(1)에 대해 좀 더 상세히 설명한다.The secondary battery 1 according to the present invention together with FIG. 2 will be described in more detail.
도 2는 도 1의 준비단계의 이차전지를 좌측면에서 도시한 구성도이다.FIG. 2 is a configuration diagram illustrating a secondary battery in a preparation step of FIG. 1 from a left side thereof.
도 2에 도시된 바와 같이, 본 발명에 따른 이차전지(1)는 파우치형 리튬 이차전지일 수 있으나, 리튬 이차전지를 만족한다면 형상이나 종류에 한정되지 않는다.As shown in FIG. 2, the secondary battery 1 according to the present invention may be a pouch-type lithium secondary battery, but is not limited to a shape or a type if the lithium secondary battery is satisfied.
전극 조립체는, 예를 들어, 양극 활물질이 도포된 양극과 음극 활물질이 도포된 음극 및 양극과 음극 사이에 개재된 세퍼레이터를 복수 회 적층하여 제작할 수 있다. The electrode assembly can be produced by, for example, laminating a plurality of times a positive electrode to which a positive electrode active material is applied, a negative electrode to which a negative electrode active material is applied, and a separator interposed between the positive electrode and the negative electrode.
다만, 본 발명은 이에 한하지 않으며, 전극 조립체는 양극과 세퍼레이터 및 음극을 적층한 적층체를 젤리 롤 형태로 권취하여 제작할 수도 있다.However, the present invention is not limited thereto, and the electrode assembly may be manufactured by winding a laminate in which a cathode, a separator, and a cathode are laminated in a jelly roll form.
양극은 양극 활물질이 도포된 양극 활물질부와, 양극 활물질이 도포되지 않은 양극 무지부를 포함할 수 있다.The positive electrode may include a positive electrode active material portion coated with a positive electrode active material and a positive electrode non-coated portion not coated with the positive electrode active material.
양극 활물질은 LiCoO2, LiNiO2, LiMnO2, LiMnO4와 같은 리튬 함유 전이금속 산화물 또는 리튬 칼코게나이드 화합물일 수 있다.The positive electrode active material may be a lithium-containing transition metal oxide such as LiCoO 2, LiNiO 2, LiMnO 2, LiMnO 4, or a lithium chalcogenide compound.
양극 활물질부는 예를 들어, 알루미늄 판의 적어도 어느 한 면의 일부에 양극 활물질을 도포하여 형성하며, 양극 활물질이 미 도포된 알루미늄 판의 나머지 부분이 양극 무지부가 될 수 있다.For example, the positive electrode active material may be formed by applying a positive electrode active material to a portion of at least one surface of the aluminum plate, and the remaining portion of the aluminum plate not coated with the positive electrode active material may be a positive electrode non-coating portion.
음극은 음극 활물질이 도포된 음극 활물질부와 음극 활물질이 도포되지 않은 음극 무지부를 포함할 수 있다. The negative electrode may include a negative electrode active material portion coated with a negative electrode active material and a negative electrode non-coated portion not coated with the negative electrode active material.
음극 활물질은, 결정질 탄소, 비정질 탄소, 탄소 복합체, 탄소 섬유와 같은 탄소 재료, 리튬 금속 또는 리튬 합금 등일 수 있다.The negative electrode active material may be crystalline carbon, amorphous carbon, carbon composite, carbon material such as carbon fiber, lithium metal, lithium alloy, or the like.
음극 활물질부는 예를 들어, 구리 판의 적어도 어느 한 면의 일부에 음극 활물질을 도포하여 형성하며, 음극 활물질이 미 도포된 구리 판의 나머지 부분이 음극 무지부가 될 수 있다.For example, the negative electrode active material may be formed by applying a negative electrode active material to a portion of at least one side of the copper plate, and the remaining portion of the copper plate not coated with the negative electrode active material may be a negative electrode non-coating portion.
세퍼레이터는 예를 들어, 폴리에틸렌(PE), 폴리스틸렌(PS), 폴리프로필렌(PP) 및 폴리에틸렌(PE)과 폴리프로필렌(PP)의 공중합체(co-polymer)로 이루어지는 군에서 선택되는 어느 하나의 기재에 폴리비닐리덴 플로우라이드-헥사플로로프로필렌 공중합체(PVDF-HFP co-polymer)를 코팅함으로써 제조될 수 있다. The separator is, for example, any one selected from the group consisting of polyethylene (PE), polystyrene (PS), polypropylene (PP) and copolymers of polyethylene (PE) and polypropylene (PP). It can be prepared by coating a polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP co-polymer).
전극 조립체는 양극 무지부들과 음극 무지부들에 각각 전극 탭(3)이 부착되며, 전극 탭(3)들은 파우치(5)를 관통하여 외부로 도출될 수 있다.In the electrode assembly, the electrode tabs 3 are attached to the positive and negative electrode portions, respectively, and the electrode tabs 3 may be led out through the pouch 5.
파우치(5)는 전극 조립체를 밀봉하며, 내부에 전극 조립체와 함께 전해질을 수용한다. The pouch 5 seals the electrode assembly and houses the electrolyte together with the electrode assembly therein.
파우치(5)는, 일 예로 절연층, 금속층 및 절연층의 3층 구조로 이루어질 수 있다. The pouch 5 may be formed of, for example, a three-layer structure of an insulating layer, a metal layer, and an insulating layer.
예를 들어, 금속층은 알루미늄, 스틸, 스테인리스 스틸 등으로 형성될 수 있으며, 절연층은 변성 폴리프로필렌(CPP), 폴리에틸렌테레프탈레이트(PET), 나일론 등으로 형성될 수 있으나, 이에 한정되는 것은 아니다.For example, the metal layer may be formed of aluminum, steel, stainless steel, or the like, and the insulating layer may be formed of modified polypropylene (CPP), polyethylene terephthalate (PET), nylon, or the like, but is not limited thereto.
파우치(5)는 제1 면을 형성하는 수납부와 제2 면을 형성하는 덮개부를 포함할 수 있다. The pouch 5 may include an accommodating part forming a first surface and a lid part forming a second surface.
수납부에는 전극 조립체를 수용할 수 있는 수용공간이 형성되고, 수용공간에 전극 조립체가 수용되면, 수납부와 일측이 연속적으로 형성된 덮개부가 수납부 상으로 접힌 후, 수용공간의 가장자리에서 수납부와 덮개부가 용융 접합된다. The receiving part is provided with an accommodating space for accommodating the electrode assembly. When the electrode assembly is accommodated in the accommodating space, the lid part continuously formed on one side of the accommodating part is folded onto the accommodating part, and then the accommodating part is formed at the edge of the accommodating space. The lid part is melt bonded.
상기 활성화 단계(S2)는 상기 준비단계(S1)에서 준비된 이차전지(1)를 활성화 하는 단계로서, 충방전 단계(S2-1)와 성형단계(S2-2)를 포함한다.The activation step (S2) is a step of activating the secondary battery 1 prepared in the preparation step (S1), and includes a charging and discharging step (S2-1) and a molding step (S2-2).
즉, 충방전 단계에서는 조립이 완료되어 방전상태인 이차전지의 충전을 완료하고 에이징(aging)을 통해 활성화 시킨다.That is, in the charging and discharging step, the assembly is completed and the charging of the secondary battery in the discharge state is completed and activated through aging.
보다 상세히 설명하면, 먼저, 조립이 완료된 방전상태의 이차전지(1)를 활성장비에 위치시키고 전극을 연결하여 1차로 충전한다.In more detail, first, the assembled secondary battery 1 in the discharged state is placed in the active equipment, and the electrodes are firstly charged by connecting the electrodes.
그리고 1차 충전된 음극 표면에 음극과 전해질 간의 반응에 의한 박막인 SEI(Solid Electrolyte Inter-phase)를 형성한다.In addition, a SEI (Solid Electrolyte Inter-phase), which is a thin film formed by the reaction between the cathode and the electrolyte, is formed on the surface of the first charged cathode.
이와 같이 방전과 충전 과정이 완료된 셀을 2주 내지 3주의 기간 동안 에이징 한다. The cells in which the discharge and charge processes are completed are aged for two to three weeks.
에이징 기간을 통해 전해액이 전극에 고르게 분포되도록 한다.Through the aging period, the electrolyte is evenly distributed on the electrode.
또한, 에이징을 통해 니켈(Ni), 철(Fe), 구리(Cu) 등의 금속불순물을 검출하는 시간을 얻기도 한다.In addition, the time for detecting metal impurities such as nickel (Ni), iron (Fe), copper (Cu), etc. may be obtained through aging.
그리고 상기 활성화 단계(S2)는 앞서 설명된 바와 같이, 상기 충방전 단계(S2-1)와 동시에 수행되며 가압지그(10)를 사용하여 이차전지(1)를 가압하여 소정의 형상으로 성형하는 성형단계(S2-2)를 포함한다.As described above, the activation step S2 is performed at the same time as the charging / discharging step S2-1, and presses the secondary battery 1 using the pressure jig 10 to form a predetermined shape. Step S2-2 is included.
상기 성형 단계(S2-2)는 충방전 단계(S2-1)와 동시에 진행되는 공정으로, 가압지그(10)를 사용하여 이차전지(1)를 가압하여 소정의 형상으로 성형하는 단계일 수 있다.The forming step (S2-2) is a process that is performed simultaneously with the charging and discharging step (S2-1), and may be a step of pressing the secondary battery 1 using the pressing jig 10 to form a predetermined shape. .
이와 같이 본 발명의 활성화 단계(S2)는 이차전지(1)의 충방전 단계(S2-1)와 동시에 이차전지(1)를 가압하는 성형단계(S-2)가 수행되기 때문에 활성화된 이차전지(1)의 전극 조립체의 활물질이 성형과 함께 경화(硬化)되어 일정한 형상으로 성형된 이차전지(1)가 변형되는 것에 대한 저항강도를 강화시키는 효과가 있다.As described above, the activation step S2 of the present invention is activated secondary battery because the molding step S-2 for pressurizing the secondary battery 1 is performed simultaneously with the charging and discharging step S2-1 of the secondary battery 1. The active material of the electrode assembly of (1) is cured together with molding, thereby enhancing the resistance strength against deformation of the secondary battery 1 molded into a constant shape.
일 실시예를 들어 설명하면 이렇게 형상 변형에 대한 저항강도가 강화된 본 발명에 따른 이차전지(1)는 일정한 형상으로 성형된 이차전지(1)가 휘어져서 다른 형상으로 변형되는 현상을 방지할 수 있으며, 그 외에도 이차전지(1)가 성형된 형상에서 변형되는 현상으로 인하여 발생하는 다양한 문제들을 방지할 수 있는 효과가 있다.For example, the secondary battery 1 according to the present invention, in which the resistance strength against shape deformation is enhanced, can prevent a phenomenon in which the secondary battery 1 formed in a predetermined shape is deformed to another shape. In addition, there is an effect that can prevent a variety of problems caused by the phenomenon that the secondary battery 1 is deformed in the molded shape.
성형 단계(S2-2)에서 이용되는 가압지그(10)는 이차전지(1)를 대향하는 양측에서 가압하여 이차전지(1)를 소정의 형상으로 성형하기 위한 것으로 이차전지(1)의 면적보다 면적이 크며 한 쌍을 이루는 것이 바람직하다.The pressing jig 10 used in the molding step (S2-2) is for pressing the secondary battery 1 on opposite sides to form the secondary battery 1 into a predetermined shape, and is larger than the area of the secondary battery 1. It is desirable to have a large area and to make a pair.
하지만, 한 쌍을 이루는 가압지그(10)는 반드시 그 형상 및 크기가 상호 동일할 필요는 없다.However, the pair of pressing jig 10 is not necessarily the same in shape and size.
또한, 가압지그(10)는 요구하는 이차전지(1)의 형상에 대응되게 형성되며, 그 형상을 한정하지는 않는다.In addition, the pressing jig 10 is formed so as to correspond to the shape of the secondary battery 1 required, and the shape thereof is not limited.
이하 도 3 내지 도 15와 함께 성형 단계(S2-2)의 다양한 실시예들을 상세히 설명한다.Hereinafter, various embodiments of the forming step S2-2 will be described in detail with reference to FIGS. 3 to 15.
도 3은 도 1의 활성화 단계에서 이차전지를 가압하여 성형하는 것을 좌측면에서 도시한 구성도이다. FIG. 3 is a configuration diagram illustrating the molding of the secondary battery by pressing in the activation step of FIG. 1 from the left side.
도 3에 도시된 바와 같이, 이차전지(1)의 충전 또는 방전을 수행하는 과정에서, 한 방향으로 굴곡진 한 쌍의 가압지그(10)가 이차전지(1)를 도 3에서 화살표로 표시된 방향인 대향하는 양측에서 가압한다.As shown in FIG. 3, in the process of performing charging or discharging of the secondary battery 1, a pair of pressure jig 10 curved in one direction causes the secondary battery 1 to be indicated by an arrow in FIG. 3. Pressurize on both sides opposite to phosphorus.
도 4는 도 3에서 성형 된 이차전지를 좌측면에서 도시한 구성도이다.4 is a configuration diagram illustrating the secondary battery formed in FIG. 3 from the left side.
도 4에 도시된 바와 같이, 한 방향으로 굴곡진 한 쌍의 가압지그(10)에 의해 가압된 이차전지(1)는 한 방향으로 굴곡지게 성형 된다.As shown in FIG. 4, the secondary battery 1 pressed by the pair of pressing jigs 10 curved in one direction is formed to be curved in one direction.
도 5는 본 발명의 다른 실시예에 따라 활성화 단계에서 이차전지를 가압하여 성형하는 것을 좌측면에서 도시한 구성도이다.Figure 5 is a block diagram showing the left side to press the secondary battery molded in the activation step in accordance with another embodiment of the present invention.
도 5에 도시된 바와 같이, 이차전지(1)의 충전 또는 방전을 수행하는 과정에서, 한 방향으로 절곡된 한 쌍의 가압지그(10)가 이차전지(1)를 도 5에서 화살표로 표시된 방향인 대향하는 양측에서 가압한다.As shown in FIG. 5, in the process of performing the charging or discharging of the secondary battery 1, a pair of pressure jig 10 bent in one direction causes the secondary battery 1 to be indicated by an arrow in FIG. 5. Pressurize on both sides opposite to phosphorus.
도 6은 도 5에서 성형 된 이차전지를 좌측면에서 도시한 구성도이다.FIG. 6 is a configuration diagram illustrating the secondary battery formed in FIG. 5 from the left side.
도 6에 도시된 바와 같이, 한 방향으로 절곡된 한 쌍의 가압지그(10)에 의해 가압된 이차전지(1)는 한 방향으로 절곡지게 성형 된다.As shown in FIG. 6, the secondary battery 1 pressed by the pair of pressing jigs 10 bent in one direction is formed to be bent in one direction.
도 7은 본 발명의 또 다른 실시예에 따라 활성화 단계에서 이차전지를 가압하여 성형하는 것을 좌측면에서 도시한 구성도이다.FIG. 7 is a block diagram illustrating the molding of the secondary battery by pressing the secondary battery in an activation step according to another embodiment of the present invention.
도 7에 도시된 바와 같이, 이차전지(1)의 충전 또는 방전을 수행하는 과정에서, 두 방향으로 굴곡진 한 쌍의 가압지그(10)가 이차전지(1)를 도 7에서 화살표로 표시된 방향인 대향하는 양측에서 가압한다.As shown in FIG. 7, in the process of performing charging or discharging of the secondary battery 1, a pair of pressure jig 10 curved in two directions causes the secondary battery 1 to be indicated by an arrow in FIG. 7. Pressurize on both sides opposite to phosphorus.
도 8은 도 7에서 성형 된 이차전지를 좌측면에서 도시한 구성도이다.FIG. 8 is a configuration diagram illustrating the secondary battery formed in FIG. 7 from the left side.
도 8에 도시된 바와 같이, 두 방향으로 굴곡진 한 쌍의 가압지그(10)에 의해 가압된 이차전지(1)는 두 방향으로 굴곡지게 성형 된다.As shown in FIG. 8, the secondary battery 1 pressed by a pair of pressing jigs 10 curved in two directions is formed to be curved in two directions.
도 9는 본 발명의 또 다른 실시예에 따라 활성화 단계에서 이차전지를 가압하여 성형하는 것을 좌측면에서 도시한 구성도이다.9 is a block diagram showing the left side of pressing and molding the secondary battery in the activation step according to another embodiment of the present invention.
도 9에 도시된 바와 같이, 이차전지(1)의 충전 또는 방전을 수행하는 과정에서, 두 방향으로 절곡된 한 쌍의 가압지그(10)가 이차전지(1)를 도 9에서 화살표로 표시된 방향인 대향하는 양측에서 가압한다.As shown in FIG. 9, in the process of performing charging or discharging of the secondary battery 1, a pair of pressure jig 10 bent in two directions causes the secondary battery 1 to be indicated by an arrow in FIG. 9. Pressurize on both sides opposite to phosphorus.
도 10은 도 9에서 성형 된 이차전지를 좌측면에서 도시한 구성도이다.FIG. 10 is a configuration diagram illustrating the secondary battery formed in FIG. 9 from the left side.
도 10에 도시된 바와 같이, 두 방향으로 절곡된 한 쌍의 가압지그(10)에 의해 가압된 이차전지(1)는 두 방향으로 절곡지게 성형 된다.As shown in FIG. 10, the secondary battery 1 pressed by a pair of pressing jigs 10 bent in two directions is formed to be bent in two directions.
도 11은 도 1의 준비단계의 이차전지를 평면에서 도시한 구성도이고, 도 12는 본 발명의 또 다른 실시예에 따라 활성화 단계에서 이차전지를 가압하여 성형하는 것을 평면에서 도시한 구성도이다.FIG. 11 is a schematic view showing a secondary battery in a preparation step of FIG. 1 in plan view, and FIG. 12 is a schematic view showing a planar view of pressing and molding a secondary battery in an activation step according to another embodiment of the present invention. .
도 12에 도시된 바와 같이, 이차전지(1)의 충전 또는 방전을 수행하는 과정에서, 양단이 한 방향으로 굴곡진 한 쌍의 가압지그(10)가 이차전지(1)를 도 12에서 화살표로 표시된 방향인 대향하는 양측에서 가압한다.As shown in FIG. 12, in the process of performing charging or discharging of the secondary battery 1, a pair of pressure jig 10 curved at both ends in one direction may move the secondary battery 1 to an arrow in FIG. 12. Pressurizes on opposite sides of the indicated direction.
도 13은 도 12에서 성형 된 이차전지를 평면에서 도시한 구성도이다.FIG. 13 is a configuration diagram illustrating the rechargeable battery formed in FIG. 12 in a plan view.
도 13에 도시된 바와 같이, 양단이 한 방향으로 굴곡진 한 쌍의 가압지그(10)에 의해 가압된 이차전지(1)는 양단이 한 방향으로 굴곡지게 성형 된다.As shown in FIG. 13, the secondary battery 1 pressurized by a pair of pressing jigs 10 curved at both ends is formed to be curved at both ends.
도 14는 본 발명의 또 다른 실시예에 따라 활성화 단계에서 이차전지를 가압하여 성형하는 것을 평면에서 도시한 구성도이다.14 is a block diagram illustrating a plan view of pressing and molding a secondary battery in an activation step according to another embodiment of the present invention.
도 14에 도시된 바와 같이, 이차전지(1)의 충전 또는 방전을 수행하는 과정에서, 양단이 두 방향으로 굴곡진 한 쌍의 가압지그(10)가 이차전지(1)를 도 14에서 화살표로 표기된 방향인 대향하는 양측에서 가압한다.As shown in FIG. 14, in the process of performing charging or discharging of the secondary battery 1, a pair of pressure jig 10 curved at both ends in two directions causes the secondary battery 1 to have arrows as shown in FIG. 14. Pressurize on opposite sides of the indicated direction.
도 15는 도 14에서 성형 된 이차전지를 평면에서 도시한 구성도이다.FIG. 15 is a configuration diagram illustrating the rechargeable battery formed in FIG. 14 in a plan view.
도 15에 도시된 바와 같이, 양단이 두 방향으로 굴곡진 한 쌍의 가압지그(10)에 의해 가압된 이차전지(1)는 양단이 두 방향으로 굴곡지게 성형 된다.As shown in FIG. 15, the secondary battery 1 pressurized by a pair of pressing jigs 10 curved at both ends is formed to be curved at both ends.
상술한 바와 같이, 굴곡지거나 절곡되는 소정의 형상을 가지는 이차 전지(1)는 성형과정을 통하여 일정한 곡률 반경을 가지도록 휘어지거나 일정한 각도를 가지도록 꺾여지는 형상을 가진다. As described above, the secondary battery 1 having a predetermined shape that is bent or bent has a shape that is bent to have a predetermined radius of curvature or bent to have a predetermined angle through a molding process.
즉, 굴곡지거나 절곡되는 소정의 형상을 가지는 이차 전지(1)는 장착되는 전자 기기(미도시)의 형상에 따라, 일정한 곡면 또는 기울기를 가질 수 있고, 이에 의해 전자 기기와 이차 전지(1)의 간극이 제거되어, 전자 기기의 내부 공간을 효율적으로 활용할 수 있으며, 이차 전지(1)가 전자 기기의 내부에서 유동함에 따른 이차 전지(1)의 손상을 방지할 수 있다.That is, the secondary battery 1 having a predetermined shape to be bent or bent may have a constant curved surface or inclination according to the shape of the electronic device (not shown) to be mounted, whereby the electronic device and the secondary battery 1 The gap is removed, so that the internal space of the electronic device can be efficiently used, and damage to the secondary battery 1 can be prevented as the secondary battery 1 flows inside the electronic device.
또한, 본 발명에 따라 이차전지(1)의 활성화 단계에서 이차전지(1)를 가압하여 이차전지(1)를 성형함으로써, 이차전지(1)에 내장된 전극 조립체의 활물질이 경화되게 하여 이차전지(1)의 형상 완성 후 복원에 대한 저항강도를 강화할 수 있는 장점이 있다.In addition, according to the present invention, by pressing the secondary battery 1 in the activation step of the secondary battery 1 to form the secondary battery 1, the active material of the electrode assembly embedded in the secondary battery 1 to cure the secondary battery After completion of the shape of (1) there is an advantage that can strengthen the resistance strength for restoration.
상술한 바와 같은 본 발명에 따르면, 충전 또는 방전 과정과 함께 가압지그로 이차전지를 가압하여 요구되는 소정 형상의 이차전지를 제작할 수 있게 하는 효과가 있다.According to the present invention as described above, there is an effect that it is possible to manufacture a secondary battery of a predetermined shape by pressing the secondary battery with a pressure jig together with the charging or discharging process.
또한, 본 발명에 따르면, 충전 또는 방전 과정과 함께 가압하여 이차전지를 성형하기 때문에 전극 조립체의 활물질이 경화되어 이차전지의 형상 완성 후 복원력에 대한 저항강도를 높이는 효과가 있다.In addition, according to the present invention, since the secondary battery is formed by pressing together with the charging or discharging process, the active material of the electrode assembly is cured, thereby increasing the resistance strength to the restoring force after completing the shape of the secondary battery.
또한, 본 발명에 따르면, 충전 또는 방전 과정과 함께 가압하여 이차전지를 성형하기 때문에 전극 조립체의 활물질이 경화되어 이차전지의 변형에 대한 저항강도가 높아지고, 그에 따라 이차전지의 변형을 방지하는 효과가 있다.Further, according to the present invention, since the secondary battery is formed by pressurizing together with the charging or discharging process, the active material of the electrode assembly is cured to increase the resistance strength of the secondary battery, thereby preventing the secondary battery from deforming. have.
이상과 같이 본 발명에 따른 이차전지의 제작방법을 예시된 도면을 참고하여 설명하였으나, 본 발명은 이상에서 설명된 실시예와 도면에 의해 한정되지 않으며, 특허청구범위 내에서 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자들에 의해 다양한 실시가 가능하다.As described above with reference to the drawings illustrated a method of manufacturing a secondary battery according to the present invention, the present invention is not limited by the embodiments and drawings described above, the present invention to which the invention belongs within the claims Various implementations are possible by those skilled in the art.

Claims (3)

  1. 전극 조립체가 내장되는 이차전지를 준비하는 준비단계(S1); 및A preparation step (S1) of preparing a secondary battery in which the electrode assembly is embedded; And
    상기 이차전지를 활성화시키는 활성화 단계(S2); 를 포함하여,An activation step of activating the secondary battery (S2); Including,
    상기 활성화 단계(S2)는 상기 이차전지를 충전 또는 방전하는 충방전 단계(S2-1)와 상기 충방전 단계와 동시에 수행되며 가압지그를 사용하여 상기 이차전지를 소정의 형상으로 성형하는 성형단계(S2-2)를 포함하는 것을 특징으로 하는 이차전지의 제작방법.The activation step (S2) is performed at the same time as the charging and discharging step (S2-1) and the charging and discharging step of charging or discharging the secondary battery, and forming the secondary battery into a predetermined shape using a pressure jig ( S2-2) manufacturing method of a secondary battery comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 활성화 단계(S2)에서는 상기 전극 조립체의 활물질을 경화(硬化)하는 것을 특징으로 하는 이차전지의 제작방법.In the activation step (S2), the manufacturing method of the secondary battery, characterized in that to harden the active material of the electrode assembly.
  3. 청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or 2,
    상기 성형단계(S2-2)에서는 상기 이차전지를 굴곡지도록 성형하는 것을 특징으로 하는 이차전지의 제작방법.In the forming step (S2-2), the secondary battery manufacturing method, characterized in that for molding to bend the secondary battery.
PCT/KR2016/009045 2015-08-17 2016-08-17 Method for manufacturing secondary battery WO2017030369A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150115318 2015-08-17
KR10-2015-0115318 2015-08-17
KR1020160104134A KR20170021213A (en) 2015-08-17 2016-08-17 Manufacturing method for secondary battery
KR10-2016-0104134 2016-08-17

Publications (1)

Publication Number Publication Date
WO2017030369A1 true WO2017030369A1 (en) 2017-02-23

Family

ID=58051818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009045 WO2017030369A1 (en) 2015-08-17 2016-08-17 Method for manufacturing secondary battery

Country Status (1)

Country Link
WO (1) WO2017030369A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030039883A1 (en) * 2001-08-24 2003-02-27 Notten Petrus Henricus Laurentius Method of manufacturing a lithium battery, a lithium battery and an electrical appliance
US20030108787A1 (en) * 2000-11-21 2003-06-12 Takahiro Endo Polymer electrolyte battery and method of producing same
KR101161136B1 (en) * 2011-05-17 2012-06-29 주식회사 엘지화학 Battery Cell of Curved Shape and Battery Pack Employed with the Same
KR101464965B1 (en) * 2012-02-27 2014-11-25 주식회사 엘지화학 Manufacturing of Battery Cell by Curbed Shaped
KR20150050319A (en) * 2013-10-29 2015-05-08 삼성에스디아이 주식회사 Manufacturing method for curved secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030108787A1 (en) * 2000-11-21 2003-06-12 Takahiro Endo Polymer electrolyte battery and method of producing same
US20030039883A1 (en) * 2001-08-24 2003-02-27 Notten Petrus Henricus Laurentius Method of manufacturing a lithium battery, a lithium battery and an electrical appliance
KR101161136B1 (en) * 2011-05-17 2012-06-29 주식회사 엘지화학 Battery Cell of Curved Shape and Battery Pack Employed with the Same
KR101464965B1 (en) * 2012-02-27 2014-11-25 주식회사 엘지화학 Manufacturing of Battery Cell by Curbed Shaped
KR20150050319A (en) * 2013-10-29 2015-05-08 삼성에스디아이 주식회사 Manufacturing method for curved secondary battery

Similar Documents

Publication Publication Date Title
WO2020159306A1 (en) Method for manufacturing electrode assembly, and electrode and secondary battery manufactured thereby
WO2015122667A1 (en) Pouch-type secondary battery including sealing part having recess
WO2014073751A1 (en) Stepped electrode assembly, and secondary battery, battery pack and device comprising same and method for manufacturing same
WO2014017864A1 (en) Secondary battery
WO2013151249A1 (en) Battery cell having stair-like structure
WO2014104728A1 (en) Pouch-type secondary battery having sealing margin for improved durability
WO2009113799A2 (en) Curved battery cell, and a battery pack comprising the same
WO2011099793A2 (en) Rechargeable lithium battery in pouch form
WO2019078453A1 (en) Pouch-type battery case including anti-crack structure and method for manufacturing same
WO2016137141A1 (en) Pouch-type secondary battery
WO2016052867A1 (en) Cylindrical battery comprising pressurizing part and method of manufacturing same
WO2013180449A1 (en) Electrode assembly, battery cell, manufacturing method for electrode assembly and manufacturing method for battery cell
JP2017098184A (en) All-solid-state secondary battery system
WO2018008926A1 (en) Electrode, method for preparing electrode, and rollers for preparing electrode
WO2015122594A1 (en) Battery cell comprising wrinkle preventing member
WO2015005652A1 (en) Electrode assembly, and battery and device comprising same
WO2020175773A1 (en) Venting device
KR100943569B1 (en) Polymer Electrolyte Battery and Formation Method
WO2021054603A1 (en) Method for manufacturing secondary battery, and secondary battery
WO2021096035A1 (en) Secondary battery and sealing block
WO2021118197A1 (en) Electrode assembly manufacturing device, electrode assembly manufactured thereby, and secondary battery
JP2018073502A (en) Manufacturing method of laminated electrode body
WO2018066886A1 (en) Secondary battery
WO2021187726A1 (en) Electrode assembly and method for manufacturing same
WO2021256804A1 (en) Secondary battery and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16837311

Country of ref document: EP

Kind code of ref document: A1