WO2017199724A1 - Propeller and transport device propelled by same - Google Patents
Propeller and transport device propelled by same Download PDFInfo
- Publication number
- WO2017199724A1 WO2017199724A1 PCT/JP2017/016799 JP2017016799W WO2017199724A1 WO 2017199724 A1 WO2017199724 A1 WO 2017199724A1 JP 2017016799 W JP2017016799 W JP 2017016799W WO 2017199724 A1 WO2017199724 A1 WO 2017199724A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- propeller
- guard
- blades
- blade
- peripheral surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H1/00—Propulsive elements directly acting on water
- B63H1/02—Propulsive elements directly acting on water of rotary type
- B63H1/12—Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
- B63H1/14—Propellers
- B63H1/16—Propellers having a shrouding ring attached to blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/20—Rotorcraft characterised by having shrouded rotors, e.g. flying platforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/32—Rotors
- B64C27/46—Blades
- B64C27/473—Constructional features
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/50—Measures to reduce greenhouse gas emissions related to the propulsion system
Definitions
- the present invention relates to a propeller, and more particularly to a propeller having a guard and a transport device propelled thereby.
- Patent Document 1 discloses a propeller to which a safety ring is attached and a helicopter including the propeller.
- the propeller includes four blades extending outward from the center of the propeller and a safety ring having four pivots. Each of the four blades has a distal end distal to the center of the propeller.
- the safety ring is attached to the blade such that each of the four pivots receives the distal end of each of the four blades.
- a main object of the present invention is to provide a propeller and a transport device propelled thereby that can suppress deformation of the guard when the propeller rotates.
- a hub includes a hub, a plurality of blades extending radially from the hub, and a guard connected to each outer end of the plurality of blades, and the guard is made of the same material as the blade.
- a second member made of a material different from that of the blade, the first member being formed integrally with each of the plurality of blades, and from the outer end of each of the plurality of blades to the adjacent blade.
- a propeller is provided that extends in an outwardly convex arcuate shape toward the outer end, and the second member is formed on the inner peripheral surface of the first member and has a higher bending elastic modulus than the first member.
- the first member is formed integrally with each of the plurality of blades (all blades), the first member is not separated from any blade. Therefore, even if a centrifugal force is applied to the guard when the propeller rotates, it is possible to suppress the displacement of the connection portion of the first member with each blade outward.
- the guard since the guard includes the second member having a higher flexural modulus than that of the first member, the rigidity of the guard can be increased as compared with the case where the guard includes only the first member.
- the second member is formed on the inner peripheral surface of the first member.
- the second member receives a force so as to be pressed outward, that is, against the first member, by the generated centrifugal force, thereby preventing the second member from being separated from the first member. It is possible to reliably maintain the high rigidity of the guard. As a result, when the propeller rotates, the guard can be reliably prevented from being deformed so as to bulge outward by centrifugal force.
- the first member is integrally formed with each of the plurality of blades and the second member having a high bending elastic modulus is formed on the inner peripheral surface of the first member, the propeller is rotated.
- the deformation of the guard can be reliably suppressed, the increase in air resistance received by the propeller and the vibration of the propeller can be suppressed.
- bending elastic modulus refers to a physical property value indicating the difficulty of bending deformation.
- the first member is formed in a ring shape.
- the outer ends of all the blades are connected to each other by the first member formed integrally with each of the plurality of blades, the outer ends of the blades oscillate to form a pitch angle (blade rotation axis). It is possible to suppress an increase or decrease in the angle of the blade with respect to a plane perpendicular to the. As a result, it is possible to prevent the control of the propulsive force or the air flow obtained by the rotation of the propeller from becoming complicated.
- the second member is formed in a ring shape.
- the rigidity of the guard can be further increased with respect to the blade.
- the first member includes a plurality of first member pieces formed integrally with each of the plurality of blades, and the plurality of first member pieces are formed discontinuously.
- the total length of the first member can be made smaller than when the first member is formed in a ring shape. Therefore, the propeller can be lightened and the rotational moment of inertia can be reduced. As a result, the centrifugal force generated when the propeller rotates can be reduced, and the deformation of the guard can be suppressed. Moreover, the usage-amount of a 1st member can be reduced and cost can be reduced.
- the second member includes a plurality of second member pieces formed discontinuously in the circumferential direction on the inner peripheral surface of the first member.
- the total length of the second member can be made smaller than when the second member is formed in a ring shape. Therefore, the propeller can be lightened and the rotational moment of inertia can be reduced. As a result, the centrifugal force generated when the propeller rotates can be reduced, and the deformation of the guard can be suppressed. Moreover, the usage-amount of a 2nd member can be reduced and cost can be reduced.
- the first member is also formed on the inner peripheral surface of the second member.
- the second member is separated from the first member even when a force is applied from the outside of the guard. Can be prevented. Thereby, when the propeller rotates, the deformation of the guard can be suppressed more reliably.
- the second member is formed inside the first member. In this case, since the second member is not exposed to the outside, it is possible to prevent the second member from being separated from the first member no matter which direction the guard receives a force. Thereby, when the propeller rotates, the deformation of the guard can be suppressed more reliably.
- the friction coefficient of the outer peripheral surface of the first member outside the second member is smaller than the friction coefficient of the contact surface of the second member with the first member.
- the outer periphery of the first member is suppressed.
- a smaller surface friction coefficient is preferred.
- the one where the friction coefficient of the contact surface with a 1st member in a 2nd member is large is preferable.
- the first coefficient outside the second member can be obtained by making the friction coefficient of the outer peripheral surface of the first member outside the second member smaller than the friction coefficient of the contact surface of the second member with the first member. Even if an object contacts the outer peripheral surface of the member (the outer peripheral surface of the guard), the propeller can be quickly returned to the original rotational speed.
- the propeller according to the present invention can be suitably used for transportation equipment such as a helicopter and a boat propelled by the propeller.
- deformation of the guard can be suppressed when the propeller rotates.
- FIG. 4 is an end view taken along line AA in FIG. 3.
- FIG. 4 is a sectional view taken along line BB in FIG. 3.
- FIG. 4 is a perspective view which shows the propeller which concerns on other embodiment of this invention.
- FIG. 4 is a perspective view which shows the propeller which concerns on other embodiment of this invention.
- FIG. 1 shows a case where a propeller 16 according to an embodiment of the present invention is used as a main rotor of an unmanned helicopter (hereinafter referred to as a helicopter) 10 which is an example of transportation equipment.
- a helicopter unmanned helicopter
- helicopter 10 includes a main body 12, a mast 14, a propeller 16, a tail body 18, and a tail rotor 20.
- the main body 12 includes a frame 22, a body cover 24, leg portions 26 and 28, a pair of skids 30 (only the left skid 30 is shown in FIG. 1), and an under cover 32.
- the tail body 18 and the body cover 24 are supported by the frame 22.
- the leg portions 26 and 28 are each formed in an inverted U shape when viewed from the front, and are supported by the frame 22.
- the pair of skids 30 are attached to the legs 26 and 28 so as to be lined up on the left and right. Specifically, the skid 30 on one side (left side) is attached to the one side (left side) portion of the legs 26 and 28, and the skid 30 (not shown) on the other side (right side) is attached to the leg portion 26. , 28 on the other side (right side).
- the under cover 32 is attached to the tail body 18 and the main frame 22.
- the mast 14 is provided so as to protrude upward from the body cover 24 and to be rotatable.
- a propeller 16 is fixed to the upper end of the mast 14. Thereby, the mast 14 and the propeller 16 rotate integrally.
- the tail body 18 has a substantially cylindrical shape and extends rearward from the main body 12. The front end portion of the tail body 18 is supported by the rear end portion of the frame 22 in the body cover 24.
- the tail rotor 20 is rotatably provided at the rear end portion of the tail body 18.
- the helicopter 10 further includes a drive source 34, a transmission 36, a drive shaft 38, and a control device 40.
- the drive source 34 and the transmission 36 are accommodated in the body cover 24.
- the drive source 34 is supported on the front end of the frame 22 below the propeller 16.
- an engine or a motor is used as the drive source 34.
- the transmission 36 is supported by the frame 22 behind the drive source 34.
- the transmission 36 is connected to the drive source 34.
- a lower end portion of the mast 14 is connected to the transmission 36.
- the propeller 16 rotates based on the driving force transmitted from the driving source 34 via the transmission 36 and the mast 14.
- the helicopter 10 can be propelled by rotating the propeller 16.
- a drive shaft 38 is provided so as to extend rearward from the transmission 36.
- the drive shaft 38 extends in the main body 12 and the tail body 18 in the front-rear direction.
- the tail rotor 20 is connected to the rear end portion of the drive shaft 38. The tail rotor 20 rotates based on the driving force transmitted from the driving source 34 via the transmission 36 and the drive shaft 38.
- the control device 40 is provided on the frame 22 and controls various devices mounted on the helicopter 10.
- the propeller 16 includes a disk-shaped hub 42, a plurality (in this embodiment, five) blades 44, and a guard 46.
- the hub 42 is connected to the mast 14 that is a rotating shaft.
- the plurality of blades 44 are arranged at equal intervals in the circumferential direction of the hub 42, and each blade 44 is formed in a substantially strip shape, extends from the outer surface of the hub 42 in the radial direction (radial) of the hub 42, and Connected. Each blade 44 is formed to have a positive pitch angle and rotates in a clockwise direction indicated by an arrow X.
- each blade 44 includes a pressure surface 48 and a suction surface 50.
- the positive pressure surface 48 receives positive pressure and the negative pressure surface 50 receives negative pressure.
- the positive pressure surface 48 is one main surface (the lower surface in FIGS. 2 and 3) of the blade 44, and the negative pressure surface 50 is the other main surface (the upper surface in FIGS. 2 and 3).
- the negative pressure surface 50 is curved in a convex shape from the front edge portion 52 on the front side in the rotation direction toward the rear edge portion 54 on the rear side in the rotation direction.
- the suction surface 50 is curved so that a convex vertex is located closer to the front edge 52 than the center between the front edge 52 and the rear edge 54.
- each of the blades 44 the inner end 56 connected to the outer surface of the hub 42 and the outer end 58 on the guard 46 side both have a positive pitch angle (from the rear edge 54 to the front edge 52.
- the pitch angle on the inner end 56 side is larger than the pitch angle on the outer end 58 side. That is, each blade 44 has a twisted shape such that the inclination of the hub 42 with respect to the plane perpendicular to the axial direction is smaller at the outer end 58 than at the inner end 56 of the blade 44.
- guard 46 includes a first member 60 made of the same material as blade 44 and a second member 62 made of a material different from blade 44, and includes a plurality of blades. 44 is connected to the outer end 58 of each.
- the hub 42, the first member 60, and the second member 62 are formed concentrically.
- the outer peripheral surface of the second member 62 is in contact with the inner peripheral surface of the first member 60.
- the second member 62 has a higher flexural modulus than the first member 60, and therefore is less likely to bend and deform than the first member 60.
- the friction coefficient of the outer peripheral surface of the first member 60 (that is, the outer peripheral surface of the guard 46) is smaller than the friction coefficient of the contact surface of the second member 62 with the first member 60.
- the blade 44 and the first member 60 can be made of resin
- the second member 62 can be made of CFRP (carbon fiber reinforced plastic).
- the first member 60 extends outwardly from the outer end 58 of each of the plurality of blades 44 toward the outer end 58 of the adjacent blade 44 in an outwardly convex arc shape (circumferential direction of the hub 42). It is formed in a ring shape and a longitudinal section strip shape.
- the outer end portions 58 of the plurality of blades 44 are provided on the inner peripheral surface of the first member 60, and the first member 60 is formed integrally with each of the plurality of blades 44 (all blades 44). At this time, the outer end portion 58 of each blade 44 is provided without protruding from the first member 60 in the axial direction of the first member 60.
- the second member 62 is formed in a ring shape and a longitudinal cross-sectional strip shape, and is formed so as to contact the inner peripheral surface of the first member 60.
- the height H ⁇ b> 2 of the second member 62 is smaller than the height H ⁇ b> 1 of the first member 60, and the distance C ⁇ b> 1 between one end of the second member 62 and one end of the first member 60.
- the distance C2 between the other end of the second member 62 and the other end of the first member 60 is substantially equal. Therefore, the second member 62 is formed without protruding from the first member 60 in the axial direction of the second member 62.
- the second member 62 is not formed at a location connected to the outer end 58 of each blade 44 on the inner peripheral surface of the first member 60.
- the outer end 58 of each blade 44 is formed so as not to protrude from the second member 62 in the axial direction of the second member 62. That is, each blade 44 passes through the second member 62.
- the first member 60 is formed integrally with each of the plurality of blades 44 (all blades 44). Not separated from. Therefore, even if a centrifugal force is applied to the guard 46 when the propeller 16 rotates, it is possible to suppress the displacement of the connection portion of the first member 60 with each blade 44 outward. Further, since the guard 46 includes the second member 62 having a higher bending elastic modulus than the first member 60, the rigidity of the guard 46 can be increased as compared with the case where the guard 46 includes only the first member 60. Moreover, the second member 62 is formed so as to contact the inner peripheral surface of the first member 60.
- the second member 62 receives a force so that the second member 62 is pressed outward, that is, against the first member 60 by the generated centrifugal force, so that the second member 62 is separated from the first member 60. And the high rigidity of the guard 46 can be reliably maintained. As a result, when the propeller 16 rotates, the guard 46 (the first member 60) can be reliably prevented from being deformed so as to expand outward due to the centrifugal force.
- the first member 60 is formed integrally with each of the plurality of blades 44, and the second member 62 having a high bending elastic modulus is formed on the inner peripheral surface of the first member 60.
- the first member 60 formed integrally with each of the plurality of blades 44 connects the outer end portions 58 of all the blades 44, the outer end portions 58 of the blades 44 swing and the pitch angle increases or decreases. Can be suppressed. Thereby, it is possible to prevent the control of the propulsive force obtained by the rotation of the propeller 16 from becoming complicated.
- the rigidity of the guard 46 can be further increased with respect to the blade 44. Thereby, when the propeller 16 rotates, it can further suppress that the guard 46 deform
- the first member 60 and the second member 62 are both formed in a ring shape (entire circumference), and the rigidity of the guard 46 can be greatly increased, so this effect becomes remarkable.
- a helicopter propelled by a propeller obtains a propulsive force by rotating the propeller, but if the guard is attached to the propeller and the propeller is rotated at a high speed, the guard is easily deformed. Therefore, the propeller 16 according to the present invention can be suitably used for the helicopter 10 driven by the propeller.
- the propeller 16a is different from the propeller 16 shown in FIG. 2 in that a guard 46a is used instead of the guard 46.
- the guard 46a is a second member having a divided structure instead of the second member 62 formed in a ring shape. It differs from the guard 46 in that 62a is used.
- the second member 62a of the guard 46a is made of a material different from that of the blade 44, and includes a plurality of (in this embodiment, five) second member pieces 64a extending in the circumferential direction of the hub 42 between all adjacent blades 44. Including.
- Each of the second member pieces 64 a is formed in a thin strip shape, is curved in an arc shape except for the vicinity of the connection portion between the outer end portion 58 of each blade 44 and the first member 60, and the inner periphery of the first member 60. It is formed in contact with the surface.
- the plurality of second member pieces 64 a are formed discontinuously in the circumferential direction on the inner peripheral surface of the first member 60.
- the second member 62 a is divided at a plurality of (in this embodiment, five) locations G in the vicinity of the connection locations between the outer end portions 58 of all the blades 44 and the first members 60.
- the second member 62 a corresponds to the second member 62 formed in a ring shape divided in the vicinity of the connection portion between the outer end portion 58 of each blade 44 and the first member 60. Since the other configuration of the propeller 16a is the same as that of the propeller 16, its overlapping description is omitted.
- the total length of the second member 62a can be made smaller than that of the second member 62. Therefore, the propeller 16a can be lighter than the propeller 16, and the rotational moment of inertia can be reduced. Thereby, the centrifugal force generated when the propeller 16a rotates is reduced, and deformation of the guard 46a can be suppressed. Moreover, the usage-amount of the 2nd member 62a can be reduced, and cost can be reduced.
- the propeller 16a can be lighter and the cost can be further reduced by attaching the second member 62a only to the minimum part necessary for suppressing deformation of the guard 46a when the propeller 16a rotates.
- the second member 62a may be formed integrally with the first member 60, or may be attached to the first member 60 by bonding or the like after the first member 60 is molded.
- the propeller 16b is different from the propeller 16 shown in FIG. 2 in that a guard 46b having a divided structure is used instead of the guard 46 formed in a ring shape.
- the guard 46b includes a first member 60b having a divided structure made of the same material as the blade 44 and a second member 62b having a divided structure made of a material different from the blade 44, and each outer end portion of the plurality of blades 44. 58.
- a plurality of first members 60b extend outwardly from respective outer end portions 58 of the plurality of blades 44 toward the outer end portion 58 of the adjacent blade 44 (circular direction of the hub 42) (this embodiment). Then, five) first member pieces 66b are included. Each first member piece 66 b is formed in a thin strip shape, is curved in an arc shape, and is integrally formed with the corresponding blade 44. In this embodiment, the blades 44 corresponding to the first member pieces 66b are integrally formed so that the outer end portion 58 of the blade 44 is positioned on one end side of the first member piece 66b and substantially L-shaped. It is formed.
- the first member 60b is divided at a plurality of (in this embodiment, five) locations G1 in the vicinity of the connection location between the outer end portions 58 of all the blades 44 and the first members 60b.
- the first member 60 b corresponds to the first member 60 formed in a ring shape divided in the vicinity of the connection portion between the outer end portion 58 of each blade 44 and the first member 60.
- the second member 62b includes a plurality (five in this embodiment) of second member pieces 64b extending in the circumferential direction of the hub 42 between all adjacent blades 44.
- Each of the second member pieces 64b is formed in a thin strip shape, and is curved in an arc shape except for the vicinity of the connection portion between the corresponding first member piece 66b and the outer end portion 58 of the blade 44, and the corresponding first member. It is formed in contact with the inner peripheral surface of the piece 66b.
- the plurality of second member pieces 64b are discontinuously formed in the circumferential direction on the inner peripheral surface of the first member 60b.
- the second member 62b is divided at a plurality of (in this embodiment, five) locations G2 in the vicinity of the connection location between the outer end portions 58 of all the blades 44 and the first member 60b.
- the second member 62 b corresponds to the ring-shaped second member 62 divided in the vicinity of the connection portion between the outer end portion 58 of each blade 44 and the first member 60.
- the first member 60b and the second member 62b can be made smaller in total length than the first member 60 and the second member 62, respectively. Accordingly, the propeller 16b can be made lighter than the propeller 16, and the rotational moment of inertia can be reduced. Thereby, the centrifugal force generated when the propeller 16b rotates is further reduced, and the deformation of the guard 46b can be suppressed. Moreover, the usage-amount of the 1st member 60b and the 2nd member 62b can be reduced, and cost can further be reduced.
- each unit including the blade 44, the first member piece 66b, and the second member piece 64b It becomes possible to mold each unit including the blade 44, the first member piece 66b, and the second member piece 64b.
- a necessary number of units (five in this embodiment) are prepared and attached to the hub 42 so as to be openable and closable with respect to the axial direction of the hub 42 so that a folding structure can be obtained.
- the propeller 16c is different from the propeller 16 shown in FIG. 2 in that a guard 46c having a split structure is used instead of the guard 46 formed in a ring shape.
- the guard 46 c includes a first member 60 c having a divided structure made of the same material as the blade 44 and a second member 62 c having a divided structure made of a material different from the blade 44, and each of the plurality of blades 44. Connected to the outer end 58.
- a plurality of first members 60c extend outwardly from the outer end portions 58 of the plurality of blades 44 toward the outer end portions 58 of the adjacent blades 44 (in the circumferential direction of the hub 42) (this embodiment). Then, five) first member pieces 66c are included. Each first member piece 66 c is formed in a thin strip shape, curved in an arc shape, and formed integrally with the corresponding blade 44. In this embodiment, each first member piece 66c and the corresponding blade 44 are integrally formed so that the outer end portion 58 of the blade 44 is positioned at the center of the first member piece 66c and has a substantially T-shape. It is formed.
- the first member 60c is divided at a plurality of (in this embodiment, five) locations G3 between all adjacent blades 44.
- the first member 60 c is equivalent to the first member 60 formed in a ring shape divided between all adjacent blades 44.
- the second member 62c includes a plurality of (in this embodiment, five) second member pieces 64c extending in the circumferential direction of the hub 42.
- Each of the second member pieces 64c is formed in a thin strip shape, and is curved in an arc shape and corresponding to the first member piece except for a connection portion between the corresponding first member piece 66c and the outer end portion 58 of the blade 44. It is formed so as to contact the inner peripheral surface of 66c.
- the plurality of second member pieces 64c are formed discontinuously in the circumferential direction on the inner peripheral surface of the first member 60c. That is, the second member 62c is divided at a plurality of (in this embodiment, five) locations G3 between all adjacent blades 44.
- the second member 62 c corresponds to a member in which the second member 62 formed in a ring shape is divided between all adjacent blades 44.
- the total length of the first member 60c and the second member 62c can be made smaller than that of the first member 60 and the second member 62, respectively. Accordingly, the propeller 16c can be made lighter than the propeller 16, and the rotational moment of inertia can be reduced. Thereby, the centrifugal force generated when the propeller 16c rotates is further reduced, and deformation of the guard 46c can be suppressed. Moreover, the usage-amount of the 1st member 60c and the 2nd member 62c can be reduced, and cost can be reduced further.
- each unit including the blade 44, the first member piece 66c, and the second member piece 64c.
- a necessary number of units (five in this embodiment) are prepared and attached to the hub 42 so as to be openable and closable with respect to the axial direction of the hub 42 so that a folding structure can be obtained.
- the guard has a two-layer structure including the first member and the second member, but is not limited thereto.
- FIG. 9 shows a cross section of the guard 46 d between the adjacent blades 44.
- the second member 62d is formed so as to be in contact with the inner peripheral surface of the first member 60d1
- the first member 60d2 is formed so as to be in contact with the inner peripheral surface of the second member 62d. That is, the first member 60d1 is formed to cover the outer peripheral surface of the second member 62d, and the first member 60d2 is formed to cover the inner peripheral surface of the second member 62d.
- the first member 60d1 and the first member 60d2 are at least partially connected to each other. For example, in the vicinity of the connection portion between the first member 60d2 and the blade 44, the first member 60d1 and the first member 60d2 are connected to each other so as to penetrate the second member 62d.
- the first member 60d1 and 60d2 connected to each other sandwich the inner peripheral surface and the outer peripheral surface of the second member 62d. It is possible to prevent the two members 62d from being separated from the first members 60d1 and 60d2. Thereby, when the propeller rotates, the deformation of the guard 46d can be more reliably suppressed.
- the connection points between the first member 60d1 and the first member 60d2 are formed symmetrically in the circumferential direction, and there are two or more connection points. It is preferable.
- FIG. 10 shows a cross section of the guard 46 e between the adjacent blades 44.
- the first member 60e is formed in contact with the outer peripheral surface, the inner peripheral surface, and the upper end portion of the second member 62e. That is, in the guard 46e, the first member 60e is formed so as to cover the outer peripheral surface, the inner peripheral surface, and the upper end portion of the second member 62e.
- the guard 46e it is possible to prevent the second member 62e from being separated from the first member 60e even when the guard 46e receives a force from the vertical direction.
- FIG. 11 shows a cross section of the guard 46 f between the adjacent blades 44.
- the guard 46f is formed such that the periphery of the second member 62f is in contact with the first member 60f. That is, in the guard 46f, the second member 62f is formed inside the first member 60f.
- the second member 62f can be formed inside the first member 60f without being exposed to the outside.
- the guard 46f since the second member 62f is not exposed to the outside, the second member 62f can be prevented from being separated from the first member 60f no matter which direction the guard 46f receives force.
- FIG. 12 shows a cross section of the guard 46 g between the adjacent blades 44.
- the fibrous second member 62g is formed so as to extend in the circumferential direction inside the first member 60g.
- the guard 46g since the second member 62g is not exposed to the outside, it is possible to prevent the second member 62g from being separated from the first member 60g no matter which direction the guard 46g receives a force.
- carbon fiber may be used as the second member 62g.
- FIG. 13 shows a cross section of the guard 46 h between the adjacent blades 44.
- the first member 60h has protrusions 61a and 61b formed at the upper end and the lower end thereof, and the protrusions 61a and 61b cover the upper end surface and the lower end surface of the second member 62h. Formed. Further, in the guard 46h, the first member 60h is formed so as to contact the outer peripheral surface, the upper end portion, and the lower end portion of the second member 62h.
- the guard 46h since the upper end surface and the lower end surface of the second member 62h are sandwiched between the protrusions 61a and 61b of the first member 60h, the second member can be applied even if a force is applied from the outside of the guard 46h. It is possible to prevent 62h from being separated from the first member 60h. Thereby, when the propeller rotates, the deformation of the guard 46h can be suppressed more reliably.
- the blade and the guard may be formed by insert molding in which the second member formed in advance is loaded in a mold and the blade and the first member are integrally formed.
- the propeller according to the present invention is used as a main rotor of an unmanned helicopter, but the present invention is not limited to this.
- the propeller according to the present invention may be used as a tail rotor of an unmanned helicopter, or may be used as a main rotor or a tail rotor of a manned helicopter.
- the propeller according to the present invention may be used as a rotor of a multicopter.
- FIG. 14 shows the boat 10 a propelled by the propeller 16.
- a boat propelled by a propeller obtains a propulsive force by rotating the propeller.
- the propeller 16 according to the present invention can be suitably used for the boat 10a propelled by the propeller.
- the propellers 16a to 16c shown in FIGS. 6 to 8 and the guards 46d to 46h shown in FIGS. 9 to 13 may be applied to the boat 10a shown in FIG.
- the propeller according to the present invention can be applied to any transport equipment propelled by a propeller, in addition to helicopters and boats.
- the adjacent first member pieces 66b are not connected to each other, and the plurality of first member pieces 66b are formed discontinuously.
- the adjacent first member pieces 66c are not connected to each other, and the plurality of first member pieces 66c are formed discontinuously, but are not limited thereto.
- one or a plurality of first member pieces may be formed so that there is at least one discontinuous portion (the first member is divided at at least one portion).
- the adjacent first member pieces 66b may be connected to form the first member 60b in a ring shape.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Toys (AREA)
- Motor Power Transmission Devices (AREA)
Abstract
Description
この発明はプロペラに関し、より特定的には、ガードを有するプロペラおよびそれによって推進される輸送機器に関する。 The present invention relates to a propeller, and more particularly to a propeller having a guard and a transport device propelled thereby.
この種の従来技術の一例として、特許文献1には、安全リングが取り付けられたプロペラおよびそれを備えたヘリコプタが開示されている。このプロペラは、プロペラの中心から外方に延びる4つのブレードと、4つの枢動部を有する安全リングとを含む。4つのブレードはそれぞれ、プロペラの中心から遠位にある遠位端部を有する。安全リングは、4つの枢動部のそれぞれが4つのブレードのそれぞれの遠位端部を受けるようにブレードに取り付けられる。このように、安全リングが取り付けられることによって、ブレードの遠位端部で手や目をひっかくことを防止できる。
As an example of this type of prior art,
しかし、特許文献1に示すプロペラでは、プロペラが回転したときに、プロペラの回転にともなって生じる遠心力によって、安全リングが外方へ引っ張られる。したがって、安全リングのうち、ブレードの遠位端部に取り付けられていない箇所は、外方へ膨らむように変形してしまう。これによって、プロペラの回転速度を上げると、空気抵抗の増大や振動等が生じ、プロペラを本来のように回転させることが困難になる。
それゆえにこの発明の主たる目的は、プロペラの回転時にガードの変形を抑制できる、プロペラおよびそれによって推進される輸送機器を提供することである。
However, in the propeller shown in
Therefore, a main object of the present invention is to provide a propeller and a transport device propelled thereby that can suppress deformation of the guard when the propeller rotates.
この発明の或る見地によれば、ハブと、ハブから放射状に延びる複数のブレードと、複数のブレードのそれぞれの外端部に接続されるガードとを備え、ガードは、ブレードと同一の材料からなる第1部材と、ブレードとは異なる材料からなる第2部材とを含み、第1部材は、複数のブレードのそれぞれと一体に形成され、複数のブレードのそれぞれの外端部から隣りのブレードの外端部へ向かって外側に凸の円弧状に延び、第2部材は、第1部材の内周面に形成されかつ第1部材よりも曲げ弾性率が高い、プロペラが提供される。 According to one aspect of the present invention, a hub includes a hub, a plurality of blades extending radially from the hub, and a guard connected to each outer end of the plurality of blades, and the guard is made of the same material as the blade. And a second member made of a material different from that of the blade, the first member being formed integrally with each of the plurality of blades, and from the outer end of each of the plurality of blades to the adjacent blade. A propeller is provided that extends in an outwardly convex arcuate shape toward the outer end, and the second member is formed on the inner peripheral surface of the first member and has a higher bending elastic modulus than the first member.
この発明では、第1部材は、複数のブレードのそれぞれ(すべてのブレード)と一体に形成されるので、第1部材はいずれのブレードからも分離しない。したがって、プロペラが回転したときにガードに遠心力が加わっても、第1部材のうち各ブレードとの接続箇所が外方に変位することが抑制される。また、ガードが、第1部材よりも曲げ弾性率が高い第2部材を含むことによって、ガードが第1部材のみからなる場合よりもガードの剛性を大きくできる。しかも、第2部材は第1部材の内周面に形成される。したがって、プロペラが回転したとき、発生する遠心力によって、第2部材は外方にすなわち第1部材に押し付けられるように力を受けるので、第2部材が第1部材から分離してしまうことを防止でき、ガードの高剛性を確実に維持できる。その結果、プロペラが回転したときに、ガードが遠心力によって外方に膨らむように変形することを確実に抑制できる。このように、第1部材が複数のブレードのそれぞれと一体に形成されるとともに、第1部材の内周面に曲げ弾性率が高い第2部材が形成されることによって、プロペラが回転したときに、確実にガードの変形を抑制でき、プロペラが受ける空気抵抗の増大およびプロペラの振動を抑制することができる。 In the present invention, since the first member is formed integrally with each of the plurality of blades (all blades), the first member is not separated from any blade. Therefore, even if a centrifugal force is applied to the guard when the propeller rotates, it is possible to suppress the displacement of the connection portion of the first member with each blade outward. In addition, since the guard includes the second member having a higher flexural modulus than that of the first member, the rigidity of the guard can be increased as compared with the case where the guard includes only the first member. Moreover, the second member is formed on the inner peripheral surface of the first member. Therefore, when the propeller rotates, the second member receives a force so as to be pressed outward, that is, against the first member, by the generated centrifugal force, thereby preventing the second member from being separated from the first member. It is possible to reliably maintain the high rigidity of the guard. As a result, when the propeller rotates, the guard can be reliably prevented from being deformed so as to bulge outward by centrifugal force. As described above, when the first member is integrally formed with each of the plurality of blades and the second member having a high bending elastic modulus is formed on the inner peripheral surface of the first member, the propeller is rotated. Thus, the deformation of the guard can be reliably suppressed, the increase in air resistance received by the propeller and the vibration of the propeller can be suppressed.
ここで、「曲げ弾性率」とは、曲げ変形のしにくさを表す物性値をいう。 Here, “bending elastic modulus” refers to a physical property value indicating the difficulty of bending deformation.
好ましくは、第1部材はリング状に形成される。この場合、複数のブレードのそれぞれと一体に形成された第1部材によって、すべてのブレードの外端部同士をつないでいるので、ブレードの外端部が揺動してピッチ角(ブレードの回転軸に垂直な面に対するブレードの角度)が増減することを抑制できる。これによって、プロペラの回転によって得られる推進力または送風量の制御が複雑になることを防止できる。 Preferably, the first member is formed in a ring shape. In this case, since the outer ends of all the blades are connected to each other by the first member formed integrally with each of the plurality of blades, the outer ends of the blades oscillate to form a pitch angle (blade rotation axis). It is possible to suppress an increase or decrease in the angle of the blade with respect to a plane perpendicular to the. As a result, it is possible to prevent the control of the propulsive force or the air flow obtained by the rotation of the propeller from becoming complicated.
また好ましくは、第2部材はリング状に形成される。この場合、ブレードに対してガードの剛性をさらに高めることができる。これによって、プロペラが回転したときに、ガードが遠心力によって変形してしまうことをさらに抑制できる。 Also preferably, the second member is formed in a ring shape. In this case, the rigidity of the guard can be further increased with respect to the blade. Thereby, when a propeller rotates, it can further suppress that a guard deform | transforms with a centrifugal force.
さらに好ましくは、第1部材は、複数のブレードのそれぞれと一体に形成される複数の第1部材片を含み、複数の第1部材片は不連続に形成される。この場合、第1部材がリング状に形成される場合よりも、第1部材の総全長を小さくできる。したがって、プロペラを軽くでき、回転慣性モーメントを小さくできる。これによって、プロペラが回転したときに発生する遠心力が小さくなり、ガードの変形を抑制することができる。また、第1部材の使用量を減らすことができ、コストを削減することができる。 More preferably, the first member includes a plurality of first member pieces formed integrally with each of the plurality of blades, and the plurality of first member pieces are formed discontinuously. In this case, the total length of the first member can be made smaller than when the first member is formed in a ring shape. Therefore, the propeller can be lightened and the rotational moment of inertia can be reduced. As a result, the centrifugal force generated when the propeller rotates can be reduced, and the deformation of the guard can be suppressed. Moreover, the usage-amount of a 1st member can be reduced and cost can be reduced.
好ましくは、第2部材は、第1部材の内周面において周方向に不連続に形成される複数の第2部材片を含む。この場合、第2部材がリング状に形成される場合よりも、第2部材の総全長を小さくできる。したがって、プロペラを軽くでき、回転慣性モーメントを小さくできる。これによって、プロペラが回転したときに発生する遠心力が小さくなり、ガードの変形を抑制することができる。また、第2部材の使用量を減らすことができ、コストを削減することができる。 Preferably, the second member includes a plurality of second member pieces formed discontinuously in the circumferential direction on the inner peripheral surface of the first member. In this case, the total length of the second member can be made smaller than when the second member is formed in a ring shape. Therefore, the propeller can be lightened and the rotational moment of inertia can be reduced. As a result, the centrifugal force generated when the propeller rotates can be reduced, and the deformation of the guard can be suppressed. Moreover, the usage-amount of a 2nd member can be reduced and cost can be reduced.
また好ましくは、第1部材は第2部材の内周面にも形成される。この場合、第1部材によって第2部材の内周面と外周面とを挟んでいるので、ガードの外方から力を受けた場合でも、第2部材が第1部材から分離してしまうことを防止できる。これによって、プロペラが回転したときに、さらに確実にガードの変形を抑制することができる。 Preferably, the first member is also formed on the inner peripheral surface of the second member. In this case, since the inner peripheral surface and the outer peripheral surface of the second member are sandwiched by the first member, the second member is separated from the first member even when a force is applied from the outside of the guard. Can be prevented. Thereby, when the propeller rotates, the deformation of the guard can be suppressed more reliably.
さらに好ましくは、第2部材は第1部材の内部に形成される。この場合、第2部材が外部に露出しないので、ガードがどの方向に力を受けた場合でも、第2部材が第1部材から分離してしまうことを防止できる。これによって、プロペラが回転したときに、さらに確実にガードの変形を抑制することができる。 More preferably, the second member is formed inside the first member. In this case, since the second member is not exposed to the outside, it is possible to prevent the second member from being separated from the first member no matter which direction the guard receives a force. Thereby, when the propeller rotates, the deformation of the guard can be suppressed more reliably.
好ましくは、第2部材の外側にある第1部材の外周面の摩擦係数は、第2部材における第1部材との接触面の摩擦係数より小さい。プロペラの回転中に第2部材の外側にある第1部材の外周面(ガードの外周面)に物体が接触したときに、プロペラの回転数低下を抑制するためには、当該第1部材の外周面の摩擦係数は小さい方が好ましい。また、第2部材が第1部材から分離してしまうことを抑制するためには、第2部材における第1部材との接触面の摩擦係数は大きい方が好ましい。したがって、第2部材の外側にある第1部材の外周面の摩擦係数を、第2部材における第1部材との接触面の摩擦係数よりも小さくすることで、第2部材の外側にある第1部材の外周面(ガードの外周面)に物体が接触してもプロペラを元の回転数に素早く戻すことができる。 Preferably, the friction coefficient of the outer peripheral surface of the first member outside the second member is smaller than the friction coefficient of the contact surface of the second member with the first member. In order to suppress a decrease in the rotation speed of the propeller when an object comes into contact with the outer peripheral surface (the outer peripheral surface of the guard) of the first member outside the second member during the rotation of the propeller, the outer periphery of the first member is suppressed. A smaller surface friction coefficient is preferred. Moreover, in order to suppress that a 2nd member isolate | separates from a 1st member, the one where the friction coefficient of the contact surface with a 1st member in a 2nd member is large is preferable. Therefore, the first coefficient outside the second member can be obtained by making the friction coefficient of the outer peripheral surface of the first member outside the second member smaller than the friction coefficient of the contact surface of the second member with the first member. Even if an object contacts the outer peripheral surface of the member (the outer peripheral surface of the guard), the propeller can be quickly returned to the original rotational speed.
プロペラによって推進されるヘリコプタやボートなどの輸送機器は、プロペラを回転させることで推進力を得ているが、プロペラにガードを取り付けてプロペラを高速回転させると、ガードが変形しやすくなる。したがって、この発明に係るプロペラは、プロペラによって推進されるヘリコプタやボートなどの輸送機器に好適に用いることができる。 Transport equipment such as helicopters and boats propelled by propellers gains propulsive power by rotating the propeller, but when the guard is attached to the propeller and the propeller is rotated at high speed, the guard is easily deformed. Therefore, the propeller according to the present invention can be suitably used for transportation equipment such as a helicopter and a boat propelled by the propeller.
この発明によれば、プロペラの回転時にガードの変形を抑制できる。 According to this invention, deformation of the guard can be suppressed when the propeller rotates.
以下、図面を参照してこの発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1に、この発明の一実施形態であるプロペラ16を、輸送機器の一例である無人ヘリコプタ(以下、ヘリコプタという)10のメインロータとして用いた場合を示す。
FIG. 1 shows a case where a
図1を参照して、ヘリコプタ10は、メインボディ12、マスト14、プロペラ16、テールボディ18およびテールロータ20を含む。
Referring to FIG. 1,
メインボディ12は、フレーム22、ボディカバー24、脚部26,28、一対のスキッド30(図1では左側のスキッド30のみ図示)、およびアンダーカバー32を含む。
The
テールボディ18およびボディカバー24は、フレーム22に支持される。
The
脚部26および28はそれぞれ、正面視逆U字状に形成され、フレーム22に支持される。
The
一対のスキッド30は、左右に並ぶように脚部26および28に取り付けられる。具体的には、一方側(左側)のスキッド30は、脚部26,28の一方側(左側)の部分に取り付けられ、他方側(右側)のスキッド30(図示せず)は、脚部26,28の他方側(右側)の部分に取り付けられる。
The pair of
アンダーカバー32は、テールボディ18およびメインフレーム22に取り付けられる。
The under
マスト14は、ボディカバー24から上方に突出するようにかつ回転可能に設けられる。マスト14の上端部に、プロペラ16が固定される。これにより、マスト14とプロペラ16とが一体的に回転する。テールボディ18は略円筒形状を有し、メインボディ12よりも後方に延びる。テールボディ18の前端部は、ボディカバー24内においてフレーム22の後端部に支持される。テールロータ20は、テールボディ18の後端部に回転可能に設けられる。
The
ヘリコプタ10はさらに、駆動源34、トランスミッション36、ドライブシャフト38および制御装置40を含む。駆動源34およびトランスミッション36は、ボディカバー24に収容される。
The
駆動源34は、プロペラ16の下方においてフレーム22の前端部に支持される。駆動源34としては、たとえばエンジンやモータが用いられる。
The
トランスミッション36は、駆動源34の後方においてフレーム22に支持される。トランスミッション36は、駆動源34に連結される。トランスミッション36にマスト14の下端部が連結される。プロペラ16は、駆動源34からトランスミッション36およびマスト14を介して伝達される駆動力に基づいて回転する。プロペラ16を回転させることによって、ヘリコプタ10を推進させることができる。
The
トランスミッション36から後方に延びるようにドライブシャフト38が設けられる。ドライブシャフト38は、メインボディ12内およびテールボディ18内を前後方向に延びる。テールロータ20は、ドライブシャフト38の後端部に連結される。テールロータ20は、駆動源34からトランスミッション36およびドライブシャフト38を介して伝達される駆動力に基づいて回転する。
A
制御装置40は、フレーム22に設けられ、ヘリコプタ10に搭載される種々の装置を制御する。
The
以下、プロペラ16について詳細に説明する。
Hereinafter, the
図2および図3を参照して、プロペラ16は、円盤状のハブ42と、複数(この実施形態では、5つ)のブレード44と、ガード46とを含む。
2 and 3, the
ハブ42は、回転軸であるマスト14に連結される。
The
複数のブレード44は、ハブ42の周方向に等間隔に配置され、各ブレード44は、略短冊状に形成され、ハブ42の外側面からハブ42の径方向(放射状)に延び、ガード46に接続される。各ブレード44は、正のピッチ角を有するように形成され、矢印Xで示す時計廻り方向に回転する。
The plurality of
図4をも参照して、各ブレード44は、正圧面48と負圧面50とを含む。ブレード44が回転する際に、正圧面48は正圧を受け、負圧面50は負圧を受ける。正圧面48は、ブレード44の一方主面(図2,図3では、下面)であり、負圧面50は、ブレード44の他方主面(図2,図3では、上面)である。負圧面50は、回転方向前側の前縁部52から回転方向後側の後縁部54に向かって、凸状に湾曲される。また、負圧面50は、前縁部52と後縁部54との間における中央よりも前縁部52寄りに凸状の頂点が位置するように湾曲する。
Referring also to FIG. 4, each
このような各ブレード44において、ハブ42の外側面に接続される内端部56およびガード46側の外端部58は、ともに正のピッチ角を有し(後縁部54から前縁部52に向けて斜め上方に延び)、かつ内端部56側のピッチ角は外端部58側のピッチ角より大きい。すなわち、ハブ42の軸方向に垂直な面に対する傾きが、ブレード44の内端部56より外端部58の方が小さくなるように、各ブレード44は捩じれた形状を有する。
In each of the
図2、図3および図5を参照して、ガード46は、ブレード44と同一の材料からなる第1部材60と、ブレード44とは異なる材料からなる第2部材62とを含み、複数のブレード44のそれぞれの外端部58に接続される。なお、ハブ42、第1部材60および第2部材62は、同心円状に形成される。第2部材62の外周面は、第1部材60の内周面と接している。第2部材62は、第1部材60よりも曲げ弾性率が高く、したがって第1部材60よりも曲げ変形しにくい。また、第1部材60の外周面(すなわち、ガード46の外周面)の摩擦係数は、第2部材62における第1部材60との接触面の摩擦係数よりも小さい。たとえば、ブレード44および第1部材60として樹脂を、第2部材62としてCFRP(炭素繊維強化プラスチック)を、それぞれ用いることができる。
Referring to FIGS. 2, 3 and 5,
第1部材60は、複数のブレード44のそれぞれの外端部58から隣りのブレード44の外端部58へ向かって外側に凸の円弧状(ハブ42の周方向)に延び、この実施形態では、リング状かつ縦断面短冊状に形成される。複数のブレード44のそれぞれの外端部58は、第1部材60の内周面に設けられ、第1部材60は、複数のブレード44のそれぞれ(すべてのブレード44)と一体に形成される。このとき、第1部材60の軸方向において、各ブレード44の外端部58は、第1部材60からはみ出ることなく設けられる。
The
第2部材62は、リング状かつ縦断面短冊状に形成され、第1部材60の内周面に接するように形成される。第2部材62の軸方向において、第2部材62の高さH2は、第1部材60の高さH1よりも小さく、第2部材62の一端部と第1部材60の一端部との間隔C1と、第2部材62の他端部と第1部材60の他端部との間隔C2とは、略等しくされる。したがって、第2部材62の軸方向において、第2部材62は、第1部材60からはみ出ることなく形成される。また、第2部材62は、第1部材60の内周面のうち、各ブレード44の外端部58と接続されている箇所には形成されない。なお、第2部材62の軸方向において、各ブレード44の外端部58は、第2部材62からはみ出ることなく形成される。すなわち、各ブレード44は、第2部材62を貫通している。
The
このようなプロペラ16によって推進されるヘリコプタ10によれば、第1部材60は、複数のブレード44のそれぞれ(すべてのブレード44)と一体に形成されるので、第1部材60はいずれのブレード44からも分離しない。したがって、プロペラ16が回転したときにガード46に遠心力が加わっても、第1部材60のうち各ブレード44との接続箇所が外方に変位することが抑制される。また、ガード46が、第1部材60よりも曲げ弾性率が高い第2部材62を含むことによって、ガード46が第1部材60のみからなる場合よりもガード46の剛性を大きくできる。しかも、第2部材62は第1部材60の内周面に接するように形成される。したがって、プロペラ16が回転したとき、発生する遠心力によって、第2部材62は外方にすなわち第1部材60に押し付けられるように力を受けるので、第2部材62が第1部材60から分離してしまうことを防止でき、ガード46の高剛性を確実に維持できる。その結果、プロペラ16が回転したときに、ガード46(第1部材60)が遠心力によって外方に膨らむように変形することを確実に抑制できる。このように、第1部材60が複数のブレード44のそれぞれと一体に形成されるとともに、第1部材60の内周面に曲げ弾性率が高い第2部材62が形成されることによって、プロペラ16が回転したときに、確実にガード46の変形を抑制でき、プロペラ16が受ける空気抵抗の増大およびプロペラ16の振動を抑制することができる。
According to the
複数のブレード44のそれぞれと一体に形成された第1部材60によって、すべてのブレード44の外端部58同士をつないでいるので、ブレード44の外端部58が揺動してピッチ角が増減することを抑制できる。これによって、プロペラ16の回転によって得られる推進力の制御が複雑になることを防止できる。
Since the
第2部材62はリング状に形成されるので、ブレード44に対してガード46の剛性をさらに高めることができる。これによって、プロペラ16が回転したときに、ガード46が遠心力によって変形してしまうことをさらに抑制できる。ガード46では、第1部材60および第2部材62がともにリング状(全周)に形成されており、ガード46の剛性を大きく高めることができるので、この効果が顕著となる。
Since the
第2部材62の外側にある第1部材60の外周面(ガード46の外周面)の摩擦係数を、第2部材62における第1部材60との接触面の摩擦係数よりも小さくすることで、第2部材62の外側にある第1部材60の外周面(ガード46の外周面)に物体が接触しても、プロペラ16の回転数低下を抑制できるので、プロペラ16を元の回転数に素早く戻すことができる。
By making the friction coefficient of the outer peripheral surface of the first member 60 (the outer peripheral surface of the guard 46) outside the
プロペラによって推進されるヘリコプタは、プロペラを回転させることで推進力を得ているが、プロペラにガードを取り付けてプロペラを高速回転させると、ガードが変形しやすくなる。したがって、この発明に係るプロペラ16は、プロペラによって推進されるヘリコプタ10に好適に用いることができる。
A helicopter propelled by a propeller obtains a propulsive force by rotating the propeller, but if the guard is attached to the propeller and the propeller is rotated at a high speed, the guard is easily deformed. Therefore, the
ついで、図6を参照して、この発明の他の実施形態のプロペラ16aについて説明する。
Next, a
プロペラ16aは、ガード46の代わりにガード46aを用いる点で、図2に示すプロペラ16と異なり、ガード46aは、リング状に形成された第2部材62の代わりに、分割構造を有する第2部材62aを用いる点で、ガード46と異なる。
The
ガード46aの第2部材62aは、ブレード44とは異なる材料からなり、すべての隣り合うブレード44間においてハブ42の周方向に延びる複数(この実施形態では、5つ)の第2部材片64aを含む。各第2部材片64aは、薄い短冊状に形成され、各ブレード44の外端部58と第1部材60との接続箇所近傍を除いて、円弧状に湾曲しかつ第1部材60の内周面に接するように形成される。このように複数の第2部材片64aは、第1部材60の内周面において周方向に不連続に形成される。すなわち、第2部材62aは、すべてのブレード44の外端部58と第1部材60との接続箇所近傍の複数(この実施形態では、5つ)の箇所Gで分断されている。言い換えれば、第2部材62aは、リング状に形成された第2部材62を、各ブレード44の外端部58と第1部材60との接続箇所近傍で分断したものに相当する。プロペラ16aの他の構成については、プロペラ16と同様であるので、その重複する説明は省略する。
The
このようなプロペラ16aによれば、第2部材62aは、第2部材62よりも総全長を小さくできる。したがって、プロペラ16aをプロペラ16よりも軽くでき、回転慣性モーメントを小さくできる。これによって、プロペラ16aが回転したときに発生する遠心力が小さくなり、ガード46aの変形を抑制することができる。また、第2部材62aの使用量を減らすことができ、コストを削減することができる。
According to such a
プロペラ16aが回転したときのガード46aの変形を抑制するために必要な最小限の箇所にのみ第2部材62aを装着することによって、プロペラ16aをより軽くでき、コストをさらに削減できる。
The
第2部材62aは、第1部材60と一体的に形成されてもよく、また、第1部材60の成形後に第1部材60に接着等によって取り付けられてもよい。
The
つぎに、図7を参照して、この発明のその他の実施形態のプロペラ16bについて説明する。
Next, a
プロペラ16bは、リング状に形成されたガード46の代わりに、分割構造のガード46bを用いる点で、図2に示すプロペラ16と異なる。
The
ガード46bは、ブレード44と同一の材料からなる分割構造の第1部材60bと、ブレード44とは異なる材料からなる分割構造の第2部材62bとを含み、複数のブレード44のそれぞれの外端部58に接続される。
The
第1部材60bは、複数のブレード44のそれぞれの外端部58から隣のブレード44の外端部58へ向かって外側に凸の円弧状(ハブ42の周方向)に延びる複数(この実施形態では、5つ)の第1部材片66bを含む。各第1部材片66bは、薄い短冊状に形成され、円弧状に湾曲し、対応するブレード44に一体に形成される。この実施形態では、各第1部材片66bと対応するブレード44とは、第1部材片66bの一端側にブレード44の外端部58を位置させて、略L字状を呈するように一体に形成される。このような第1部材片66bと隣の第1部材片66bとの間には隙間があり、隣り合う第1部材片66b同士は接続されず、複数の第1部材片66bは不連続に形成される。すなわち、第1部材60bは、すべてのブレード44の外端部58と第1部材60bとの接続箇所近傍の複数(この実施形態では、5つ)の箇所G1で分断されている。言い換えれば、第1部材60bは、リング状に形成された第1部材60を、各ブレード44の外端部58と第1部材60との接続箇所近傍で分断したものに相当する。
A plurality of
第2部材62bは、すべての隣り合うブレード44間においてハブ42の周方向に延びる複数(この実施形態では、5つ)の第2部材片64bを含む。各第2部材片64bは、薄い短冊状に形成され、対応する第1部材片66bとブレード44の外端部58との接続箇所近傍を除いて、円弧状に湾曲しかつ対応する第1部材片66bの内周面に接するように形成される。このように複数の第2部材片64bは、第1部材60bの内周面において周方向に不連続に形成される。すなわち、第2部材62bは、すべてのブレード44の外端部58と第1部材60bとの接続箇所近傍の複数(この実施形態では、5つ)の箇所G2で分断されている。言い換えれば、第2部材62bは、リング状に形成された第2部材62を、各ブレード44の外端部58と第1部材60との接続箇所近傍で分断したものに相当する。
The
プロペラ16bの他の構成については、プロペラ16と同様であるので、その重複する説明は省略する。
Since the other configuration of the
このようなプロペラ16bによれば、第1部材60bおよび第2部材62bはそれぞれ、第1部材60および第2部材62よりも総全長を小さくできる。したがって、プロペラ16bをプロペラ16よりもさらに軽くでき、回転慣性モーメントを小さくできる。これによって、プロペラ16bが回転したときに発生する遠心力がさらに小さくなり、ガード46bの変形を抑制することができる。また、第1部材60bおよび第2部材62bの使用量を減らすことができ、コストをさらに削減することができる。
According to such a
ブレード44と第1部材片66bと第2部材片64bとを含むユニットごとの成形が可能となる。当該ユニットを必要数(この実施形態では、5つ)用意し、ハブ42の軸方向に対して開閉可能にハブ42に取り付けることによって、折りたたみ構造とすることもできる。
It becomes possible to mold each unit including the
つぎに、図8を参照して、この発明のさらにその他の実施形態のプロペラ16cについて説明する。
Next, a
プロペラ16cは、リング状に形成されたガード46の代わりに、分割構造のガード46cを用いる点で、図2に示すプロペラ16と異なる。
The
ガード46cは、ブレード44と同一の材料からなる分割構造の第1部材60cと、ブレード44とは異なる材料からなる分割構造の第2部材62cとを含み、複数のブレード44のぞれぞれの外端部58に接続される。
The
第1部材60cは、複数のブレード44のそれぞれの外端部58から両隣のブレード44の外端部58へ向かって外側に凸の円弧状(ハブ42の周方向)に延びる複数(この実施形態では、5つ)の第1部材片66cを含む。各第1部材片66cは、薄い短冊状に形成され、円弧状に湾曲し、対応するブレード44に一体に形成される。この実施形態では、各第1部材片66cと対応するブレード44とは、第1部材片66cの中央部にブレード44の外端部58を位置させて、略T字状を呈するように一体に形成される。このような第1部材片66cと隣の第1部材片66cとの間には隙間があり、隣り合う第1部材片66c同士は接続されず、複数の第1部材片66cは不連続に形成される。すなわち、第1部材60cは、すべての隣り合うブレード44間の複数(この実施形態では、5つ)の箇所G3で分断されている。言い換えれば、第1部材60cは、リング状に形成された第1部材60を、すべての隣り合うブレード44間で分断したものに相当する。
A plurality of
第2部材62cは、ハブ42の周方向に延びる複数(この実施形態では、5つ)の第2部材片64cを含む。各第2部材片64cは、薄い短冊状に形成され、対応する第1部材片66cとブレード44の外端部58との接続箇所を除いて、円弧状に湾曲しかつ対応する第1部材片66cの内周面に接するように形成される。このようにして複数の第2部材片64cは、第1部材60cの内周面において周方向に不連続に形成される。すなわち、第2部材62cは、すべての隣り合うブレード44間の複数(この実施形態では、5つ)の箇所G3で分断されている。言い換えれば、第2部材62cは、リング状に形成された第2部材62を、すべての隣り合うブレード44間で分断したものに相当する。
The
プロペラ16cの他の構成については、プロペラ16と同様であるので、その重複する説明は省略する。
Since the other configuration of the
このようなプロペラ16cによれば、第1部材60cおよび第2部材62cはそれぞれ、第1部材60および第2部材62よりも総全長を小さくできる。したがって、プロペラ16cをプロペラ16よりもさらに軽くでき、回転慣性モーメントを小さくできる。これによって、プロペラ16cが回転したときに発生する遠心力がさらに小さくなり、ガード46cの変形を抑制することができる。また、第1部材60cおよび第2部材62cの使用量を減らすことができ、コストをさらに削減することができる。
According to such a
ブレード44と第1部材片66cと第2部材片64cとを含むユニットごとの成形が可能となる。当該ユニットを必要数(この実施形態では、5つ)用意し、ハブ42の軸方向に対して開閉可能にハブ42に取り付けることによって、折りたたみ構造とすることもできる。
It becomes possible to form each unit including the
上述の実施形態では、ガードは、第1部材と第2部材とを有する2層構造であったが、これに限定されない。 In the above-described embodiment, the guard has a two-layer structure including the first member and the second member, but is not limited thereto.
上述の各実施形態において、図9に示すような3層構造のガード46dが用いられてもよい。図9は、隣り合うブレード44間におけるガード46dの断面を示している。ガード46dでは、第1部材60d1の内周面に接するように第2部材62dが形成され、さらに第2部材62dの内周面にも接するように第1部材60d2が形成される。すなわち、第1部材60d1が第2部材62dの外周面を覆うように形成され、第1部材60d2が第2部材62dの内周面を覆うように形成される。図9では図示されていないが、第1部材60d1と第1部材60d2とは少なくとも一部で相互に接続される。たとえば、第1部材60d2とブレード44との接続箇所近傍において、第1部材60d1と第1部材60d2とは、第2部材62dを貫通するように相互に接続される。
In each of the embodiments described above, a
ガード46dによれば、相互に接続された第1部材60d1,60d2によって、第2部材62dの内周面と外周面とを挟んでいるので、ガード46dの外方から力を受けても、第2部材62dが第1部材60d1,60d2から分離してしまうことを防止できる。これによって、プロペラが回転したときに、さらに確実にガード46dの変形を抑制することができる。なお、ガード46dでは、良好な回転バランスを維持するため、第1部材60d1と第1部材60d2との接続箇所は周方向に対称に形成されることが好ましく、当該接続箇所は2箇所以上であることが好ましい。
According to the
また、上述の各実施形態において、図10に示すような3層構造のガード46eが用いられてもよい。図10は、隣り合うブレード44間におけるガード46eの断面を示している。ガード46eでは、第1部材60eが、第2部材62eの外周面、内周面および上端部に接するように形成される。すなわち、ガード46eでは、第1部材60eが、第2部材62eの外周面、内周面および上端部を覆うように形成される。
Further, in each of the above-described embodiments, a three-
ガード46eによれば、ガード46eが上下方向から力を受けても、第2部材62eが第1部材60eから分離してしまうことを防止できる。
According to the
さらに、上述の各実施形態において、図11に示すような3層構造のガード46fが用いられてもよい。図11は、隣り合うブレード44間におけるガード46fの断面を示している。ガード46fでは、第2部材62fの周囲が第1部材60fに接するように形成される。すなわち、ガード46fでは、第2部材62fが第1部材60fの内部に形成される。たとえば、第1部材60fの一部を予め成形しておくことで、第2部材62fを外部に露出することなく第1部材60fの内部に形成できる。
Furthermore, in each of the above-described embodiments, a
ガード46fによれば、第2部材62fは外部に露出しないので、ガード46fがどの方向に力を受けても、第2部材62fが第1部材60fから分離してしまうことを防止できる。
According to the
また、上述の各実施形態において、図12に示すようなガード46gが用いられてもよい。図12は、隣り合うブレード44間におけるガード46gの断面を示している。ガード46gでは、繊維状の第2部材62gが、第1部材60gの内部において周方向に延びるように形成される。
Further, in each of the above-described embodiments, a
ガード46gによれば、第2部材62gは外部に露出しないので、ガード46gがどの方向に力を受けても、第2部材62gが第1部材60gから分離してしまうことを防止できる。この場合、第2部材62gとして、炭素繊維を用いてもよい。
According to the
上述の各実施形態において、図13に示すようなガード46hが用いられてもよい。図13は、隣り合うブレード44間におけるガード46hの断面を示している。ガード46hでは、第1部材60hは、その上端部および下端部に形成される突部61a,61bを有し、突部61a,61bは、第2部材62hの上端面と下端面とを覆うように形成される。さらに、ガード46hでは、第1部材60hが、第2部材62hの外周面、上端部および下端部に接するように形成される。
In each embodiment described above, a
ガード46hによれば、第1部材60hの突部61a,61bによって、第2部材62hの上端面と下端面とを挟んでいるので、ガード46hの外方から力を受けても、第2部材62hが第1部材60hから分離してしまうことを防止できる。これによって、プロペラが回転したときに、さらに確実にガード46hの変形を抑制することができる。
According to the
さらに、上述の各実施形態において、ブレードおよびガードは、あらかじめ形成された第2部材を金型に装填しておいてブレードおよび第1部材を一体成形するインサート成形によって、形成されてもよい。 Further, in each of the above-described embodiments, the blade and the guard may be formed by insert molding in which the second member formed in advance is loaded in a mold and the blade and the first member are integrally formed.
上述の実施形態では、この発明に係るプロペラが無人ヘリコプタのメインロータとして用いられる場合について説明したが、これに限定されない。この発明に係るプロペラは、無人ヘリコプタのテールロータとして用いられてもよく、また、有人ヘリコプタのメインロータやテールロータとして用いられてもよい。さらに、この発明に係るプロペラは、マルチコプタのロータとして用いられてもよい。 In the above-described embodiment, the case where the propeller according to the present invention is used as a main rotor of an unmanned helicopter has been described, but the present invention is not limited to this. The propeller according to the present invention may be used as a tail rotor of an unmanned helicopter, or may be used as a main rotor or a tail rotor of a manned helicopter. Furthermore, the propeller according to the present invention may be used as a rotor of a multicopter.
また、図14に、プロペラ16によって推進されるボート10aを示す。プロペラによって推進されるボートは、プロペラを回転させることで推進力を得ているが、プロペラにガードを取り付けてプロペラを高速回転させると、ガードが変形しやすくなる。したがって、この発明に係るプロペラ16は、プロペラによって推進されるボート10aに好適に用いることができる。なお、図6~図8に示すプロペラ16a~16cや、図9~図13に示すガード46d~46hが、図14に示すボート10aに適用されてもよい。
FIG. 14 shows the
この発明に係るプロペラは、ヘリコプタやボートの他、プロペラによって推進される任意の輸送機器に適用できる。 The propeller according to the present invention can be applied to any transport equipment propelled by a propeller, in addition to helicopters and boats.
上述の実施形態では、ブレードは正のピッチ角を有するように形成され、プロペラは矢印Xで示す時計廻り方向に回転する場合について説明したが、これに限定されない。この発明は、ブレードが負のピッチ角を有するように形成され、プロペラが反時計廻り方向に回転する場合にも適用できる。 In the above-described embodiment, a case has been described in which the blade is formed to have a positive pitch angle, and the propeller rotates in the clockwise direction indicated by the arrow X, but the present invention is not limited to this. The present invention can also be applied to the case where the blade is formed to have a negative pitch angle and the propeller rotates counterclockwise.
図7に示す実施形態では、隣り合う第1部材片66b同士は接続されず、複数の第1部材片66bは不連続に形成され、図8に示す実施形態では、隣り合う第1部材片66c同士は接続されず、複数の第1部材片66cは不連続に形成されているが、これに限定されない。この発明では、少なくとも1つの不連続な箇所がある(第1部材が少なくとも1箇所で分断される)ように、1または複数の第1部材片が形成されてもよい。
In the embodiment shown in FIG. 7, the adjacent
また、図7に示す実施形態において、少なくともプロペラ16bの回転時には、隣り合う第1部材片66b同士が繋がって第1部材60bがリング状に形成されてもよい。図8に示す実施形態においても同様である。
In the embodiment shown in FIG. 7, at least when the
以上、この発明の好ましい実施形態について説明されたが、この発明の範囲および精神を逸脱しない限りにおいて種々の変更が可能であることは明らかである。この発明の範囲は、添付された請求の範囲のみによって限定される。 Although the preferred embodiments of the present invention have been described above, it is apparent that various modifications can be made without departing from the scope and spirit of the present invention. The scope of the invention is limited only by the appended claims.
10 無人ヘリコプタ
10a ボート
16,16a,16b,16c プロペラ
20 テールロータ
42 ハブ
44 ブレード
46,46a,46b,46c,46d,46e,46f,46g,46h ガード
58 ブレードの外端部
60,60b,60c,60d1,60d2,60e,60f,60g,60h 第1部材
62,62a、62b,62c,62d,62e,62f,62g,62h 第2部材
64a,64b,64c 第2部材片
66b,66c 第1部材片
DESCRIPTION OF
Claims (11)
前記ハブから放射状に延びる複数のブレードと、
前記複数のブレードのそれぞれの外端部に接続されるガードとを備え、
前記ガードは、前記ブレードと同一の材料からなる第1部材と、前記ブレードとは異なる材料からなる第2部材とを含み、
前記第1部材は、前記複数のブレードのそれぞれと一体に形成され、前記複数のブレードのそれぞれの前記外端部から隣りの前記ブレードの前記外端部へ向かって外側に凸の円弧状に延び、
前記第2部材は、前記第1部材の内周面に形成されかつ前記第1部材よりも曲げ弾性率が高い、プロペラ。 A hub,
A plurality of blades extending radially from the hub;
A guard connected to each outer end of the plurality of blades,
The guard includes a first member made of the same material as the blade, and a second member made of a material different from the blade,
The first member is formed integrally with each of the plurality of blades, and extends outwardly from the outer end portion of each of the plurality of blades toward the outer end portion of the adjacent blade. ,
The second member is a propeller formed on an inner peripheral surface of the first member and having a higher flexural modulus than the first member.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2018518193A JP6578057B2 (en) | 2016-05-19 | 2017-04-27 | Propeller and transportation equipment driven by it |
| KR1020187031780A KR20190008202A (en) | 2016-05-19 | 2017-04-27 | Propellers and transport equipment propelled thereby |
| CN201780030868.8A CN109153446B (en) | 2016-05-19 | 2017-04-27 | Propeller and conveying equipment propelled by same |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2016-100616 | 2016-05-19 | ||
| JP2016100616 | 2016-05-19 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2017199724A1 true WO2017199724A1 (en) | 2017-11-23 |
Family
ID=60325795
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2017/016799 Ceased WO2017199724A1 (en) | 2016-05-19 | 2017-04-27 | Propeller and transport device propelled by same |
Country Status (4)
| Country | Link |
|---|---|
| JP (1) | JP6578057B2 (en) |
| KR (1) | KR20190008202A (en) |
| CN (1) | CN109153446B (en) |
| WO (1) | WO2017199724A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2021131196A1 (en) * | 2019-12-27 | 2021-07-01 | 三菱重工業株式会社 | Motor integrated type fluid machine, vertical take-off and landing aircraft, and design method for motor integrated type fluid machine |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102131562B1 (en) | 2019-07-05 | 2020-07-07 | 도레이첨단소재 주식회사 | Fiber reinforced plastic propellers for unmanned aerial vehicle and menufacturing method thereof |
| KR102213587B1 (en) | 2020-02-07 | 2021-02-05 | 도레이첨단소재 주식회사 | Fiber reinforced plastic propellers for unmanned aerial vehicle using form and menufacturing method thereof |
| KR102320344B1 (en) | 2020-08-21 | 2021-11-02 | 도레이첨단소재 주식회사 | Fiber reinforced plastic propellers for unmanned aerial vehicle using foam material and menufacturing method thereof |
| KR102702542B1 (en) | 2022-03-25 | 2024-09-05 | 도레이첨단소재 주식회사 | Fiber reinforced composite material propellers for drone and manufacturing method thereof |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5536194A (en) * | 1978-08-30 | 1980-03-13 | Propeller Design Ltd | Propeller for ships |
| JP2001097288A (en) * | 1999-09-30 | 2001-04-10 | Mitsubishi Heavy Ind Ltd | Helicopter ducted fan |
| US7172477B1 (en) * | 2005-05-04 | 2007-02-06 | Houston Rollins | Safety propeller |
| JP2011132858A (en) * | 2009-12-24 | 2011-07-07 | E & E Kk | Wind turbine for horizontal shaft type wind power generation device |
| JP2015182744A (en) * | 2014-03-26 | 2015-10-22 | 保俊 横山 | Coaxial dual reversal type helicopter of stationery pitch type |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2852554C2 (en) * | 1978-12-05 | 1983-01-20 | Alberto 8131 Berg Kling | Rotor for a turbo machine |
| CN1318263C (en) | 2001-11-07 | 2007-05-30 | 瑞科有限公司 | Propellers, propeller stabilizers, and propeller related vehicles |
| US7494320B2 (en) * | 2005-06-28 | 2009-02-24 | Petter Muren | Rotor for passively stable helicopter |
| EP2610176B1 (en) * | 2011-12-28 | 2018-02-07 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | Electrical powered tail rotor of a helicopter |
| US9381988B2 (en) * | 2012-10-26 | 2016-07-05 | Thoi H. Huynh | Rotating circular airfoil and propeller system |
| KR20150064868A (en) * | 2013-12-04 | 2015-06-12 | 한국항공우주연구원 | Ducted fan with vortex generating means |
-
2017
- 2017-04-27 WO PCT/JP2017/016799 patent/WO2017199724A1/en not_active Ceased
- 2017-04-27 JP JP2018518193A patent/JP6578057B2/en active Active
- 2017-04-27 KR KR1020187031780A patent/KR20190008202A/en not_active Withdrawn
- 2017-04-27 CN CN201780030868.8A patent/CN109153446B/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5536194A (en) * | 1978-08-30 | 1980-03-13 | Propeller Design Ltd | Propeller for ships |
| JP2001097288A (en) * | 1999-09-30 | 2001-04-10 | Mitsubishi Heavy Ind Ltd | Helicopter ducted fan |
| US7172477B1 (en) * | 2005-05-04 | 2007-02-06 | Houston Rollins | Safety propeller |
| JP2011132858A (en) * | 2009-12-24 | 2011-07-07 | E & E Kk | Wind turbine for horizontal shaft type wind power generation device |
| JP2015182744A (en) * | 2014-03-26 | 2015-10-22 | 保俊 横山 | Coaxial dual reversal type helicopter of stationery pitch type |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2021131196A1 (en) * | 2019-12-27 | 2021-07-01 | 三菱重工業株式会社 | Motor integrated type fluid machine, vertical take-off and landing aircraft, and design method for motor integrated type fluid machine |
| JP2021108506A (en) * | 2019-12-27 | 2021-07-29 | 三菱重工業株式会社 | How to design a motor-integrated fluid machine, vertical take-off and landing machine, and a motor-integrated fluid machine |
| EP4060879A4 (en) * | 2019-12-27 | 2023-01-04 | Mitsubishi Heavy Industries, Ltd. | Motor integrated type fluid machine, vertical take-off and landing aircraft, and design method for motor integrated type fluid machine |
| JP7413013B2 (en) | 2019-12-27 | 2024-01-15 | 三菱重工業株式会社 | Design method for motor-integrated fluid machinery, vertical take-off and landing aircraft, and motor-integrated fluid machinery |
| US12054247B2 (en) | 2019-12-27 | 2024-08-06 | Mitsubishi Heavy Industries, Ltd. | Motor integrated type fluid machine, vertical take-off and landing aircraft, and design method for motor integrated type fluid machine |
Also Published As
| Publication number | Publication date |
|---|---|
| CN109153446B (en) | 2022-01-14 |
| CN109153446A (en) | 2019-01-04 |
| JPWO2017199724A1 (en) | 2018-12-06 |
| KR20190008202A (en) | 2019-01-23 |
| JP6578057B2 (en) | 2019-09-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6578057B2 (en) | Propeller and transportation equipment driven by it | |
| US6475045B2 (en) | Thrust enhancing propeller guard assembly | |
| JP5496610B2 (en) | Helicopter rotor | |
| JP5753925B2 (en) | Duct type rotor for aircraft and rotorcraft | |
| JP3221317U (en) | Super lightweight composite propeller for outboard motors | |
| JP5100711B2 (en) | Turbo fan | |
| JP4818322B2 (en) | Propeller fan | |
| US7172477B1 (en) | Safety propeller | |
| WO2021216241A3 (en) | Hubless propulsion unit | |
| JP2008209004A (en) | Transmission joint | |
| KR101834323B1 (en) | Propeller boss cap | |
| JP2008121610A (en) | Boss structure of blower impeller and impeller of blower equipped with the same | |
| JP7210409B2 (en) | Motor-integrated fluid machine and vertical take-off and landing aircraft | |
| AU2008343061A1 (en) | Propeller assembly incorporating spindle with fins and overmolded bushing | |
| US5967754A (en) | One-piece ceiling fan arm and blade unit | |
| US1073413A (en) | Propeller. | |
| JP7001918B2 (en) | Blower | |
| CN113879497A (en) | Screw propeller and ship with same | |
| KR20150006133A (en) | Propeller for ship | |
| JP4680947B2 (en) | Propeller fan | |
| JP2018199444A (en) | Flight device | |
| KR101701730B1 (en) | Ducted propeller propulsion device | |
| KR102757838B1 (en) | Marine accelerating propeller | |
| CN107380388A (en) | A kind of amphibious marine propeller | |
| JP2023057973A (en) | propulsion generator |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 2018518193 Country of ref document: JP |
|
| ENP | Entry into the national phase |
Ref document number: 20187031780 Country of ref document: KR Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17799154 Country of ref document: EP Kind code of ref document: A1 |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17799154 Country of ref document: EP Kind code of ref document: A1 |