[go: up one dir, main page]

WO2018041476A1 - Procédé et système d'optimisation informatisée d'un processus de traitement à commande numérique d'une pièce - Google Patents

Procédé et système d'optimisation informatisée d'un processus de traitement à commande numérique d'une pièce Download PDF

Info

Publication number
WO2018041476A1
WO2018041476A1 PCT/EP2017/068747 EP2017068747W WO2018041476A1 WO 2018041476 A1 WO2018041476 A1 WO 2018041476A1 EP 2017068747 W EP2017068747 W EP 2017068747W WO 2018041476 A1 WO2018041476 A1 WO 2018041476A1
Authority
WO
WIPO (PCT)
Prior art keywords
optimization
sequence
control commands
machining
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2017/068747
Other languages
German (de)
English (en)
Inventor
Florian Ulli Wolfgang SCHNÖS
Dirk Hartmann
Birgit OBST
Utz Wever
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Publication of WO2018041476A1 publication Critical patent/WO2018041476A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4069Simulating machining process on screen

Definitions

  • the invention relates to a method and a system for computer-optimized optimization of a numerically controlled machining process of a workpiece with a machining module, which comprises at least one numerically controlled machine tool, which is controlled by a sequence of control commands.
  • NC code numerical control code
  • Process parameters The selection of a production strategy, the detailed implementation of tool paths, a selection of tools and a definition of the process parameters are the responsibility of an NC programmer. Thus, all manufacturing steps and the associated quality of the processing ⁇ process and the workpiece to be produced depends on the level of knowledge and experience of the NC programmer.
  • the NC code can either be written by hand or created using a computer-aided manufacturing program, also known as computer-aided manufacturing CAM software.
  • a computer-aided manufacturing program also known as computer-aided manufacturing CAM software.
  • CAM software For the selection of the tools, the creation of the process parameters and the definition of the production strategy, a lot of manual effort and knowledge is required on the user side.
  • the result of CAM planning largely depends on the experience and knowledge of the user. So this is for example for the selection of the fundamental manufacturing strategy, the Spindle speed, the feed parameters, the return heights, the tools, the delivery, the division in roughing and finishing operations and the coolant options responsible. For their setting, machine, tool and process-specific boundary conditions must be adhered to.
  • One aspect of the invention relates to a method for computer-aided optimization of a numerically controlled machining process of a workpiece with a machining module, which is characterized in that in a first procedural step the machining process is simulated on the basis of a predetermined workpiece geometry and a sequence of control commands for controlling the machining module. Subsequently, a parameter of the machining process is determined from the resulting simulation result Minim ⁇ least. The at least one parameter is checked against at least one predetermined optimization variable for a machining process of the workpiece with the machining module.
  • the sequence of Steuerbe ⁇ missing is adjusted using a determined deviation between the at least one parameter and the at least one Opti ⁇ m istsucc and the process steps of the simulation, the Befitteins and checking with the adjusted sequence of control commands carried out again. If all optimization criteria are met, the resulting sequence of control commands for producing the workpiece is provided by the processing module.
  • the process described is a digital ⁇ tool chain for the production of workpieces on machine tools, which are numerically controlled via a sequence of control commands expanded. This simplifies and improves the generation of a sequence of control commands, ie NC code.
  • a "resulting sequence” is to be understood as meaning the sequence of control commands used in the first simulation if the method does not detect any deviation from at least one of the optimization variables was adapted and immediately following iteration results in no deviate ⁇ monitoring of at least one optimization size.
  • the rich He ⁇ the number of maximum iterations for example, can be output.
  • the resulting sequence of control commands can either be provided for the production of the workpiece as in method step e) or an indication of the termination criterion can be provided.
  • control commands for example, control commands for STEU ⁇ augmentation of a numerical control of machines, in particular machine tools understood, for example, be present as program code and vice in the working or movement sequences be set.
  • NC code is used synonymously.
  • computer-aided can-making in connection with the inventions, for example, be an implementation of the method ver ⁇ stood, in which in particular a microprocessor performs at least one step of the method.
  • processing module is to be understood least a machine tool, an arrangement of at controlled by min ⁇ least a numerical control.
  • a “parameter of the machining process” is at ⁇ play, a processing time of the workpiece surface quality, a top or understood to be a dimensional accuracy of the geometry of the workpiece or a degree of loading of the machine tools and the tools contained in the processing module.
  • the terms "perform,””compute,””compute,””compute,””determine,””generate,””configure,””reconstruct,””simulate,” and the like. preferably on actions and / or processes
  • the at least one optimization are input variable and / or at least one boundary condition of the machining process, for example before tion passage Simulationsbe ⁇ beginning or after checking the characteristic size in a simulation.
  • Optimization criteria may refer, for example, to the dimensional accuracy and / or surface quality of the workpiece or, for example, to a production time of the workpiece or to a tool life
  • a optimization variable is a value, in particular a numerical value, based on an optimization criterion.
  • the adaptation of the sequence of control commands takes place while maintaining the predetermined boundary conditions.
  • Optimization criteria that are not being as optimization variable ⁇ selected may be limited in the form of boundary conditions.
  • a user could, for example, specify as Opti ⁇ m istsschreib a numerical value for the lifetime of the processing module or of the associated tools or at least one machine tool as the optimization criterion and preset as a boundary condition, a maximum processing time.
  • the simulation is carried out using operative relationships for the machine tools contained in the processing module, operative relationships for the tools used and operative relationships for the machining process.
  • Such an operative relationship of a machine tool can be, for example, the influence that a specific embodiment of a machine tool has on the guidance of a tool the machining of a specific workpiece blank has.
  • the operative relationship between a robot arm as a guide of a milling tool and a semifinished material differs, for example, the operative relationship of a conventional milling machine and the same semi-finished material in the tool ⁇ path of the milling tool.
  • Effect relationships are also known as Mo ⁇ delle, such as a machine tool model or work ⁇ convincing model or process model.
  • the effects are provided by a central database.
  • a "machine tool” is to be understood with tools in particular a machine for the production of workpieces.
  • a robot in particular understood to be a Industriero ⁇ boter leading a tool for machining a workpiece.
  • cause-effect relationships to be determined using measured values from previous baysprozes ⁇ sen. This makes it possible to record instead of ⁇ found contexts in the previous processing and to take into account in the next Simu ⁇ lations trimgang. But it can be applies also determined effect relationships after completion of the entire editing process ⁇ and comparable for subsequent machining processes. Interdependencies can be determined, for example, by measuring the workpiece.
  • action relationships are determined on the basis of information about the state of the processing module that is detected during the processing of the workpiece.
  • the measured values are determined by additional sensors in the processing module.
  • additional sensors can in particular also be mounted spatially at particularly relevant positions of the processing module.
  • existing causal relationships are compared and updated with the ascertained functional relationships.
  • the determined causal relationships are used for decision-making about the optimization process, in particular when checking the optimization variables.
  • a further variant of the present invention relates to a system for computer-aided optimization of a numerically controlled machining process of a workpiece with a numerical control unit, an optimization unit and a machining module.
  • the numerical control unit is adapted on the basis of a sequence of control commands a machining process of a processing module to steu ⁇ s.
  • the optimization unit is adapted to perform a) simulation of the machining process, based on a specified differently surrounded workpiece geometry and a sequence of control commands,
  • the processing module comprises at least one machine tool that performs the processing of the workpiece based on the resulting sequence of control commands.
  • the system is connected to a central database and the system is designed such, operative relationships for in the processing module contained machine tools, knits for the tools used and Wirkzusammenschitz the passspro ⁇ zesses of the database to receive.
  • the processing module to sensors detect the measurement values of the passspro ⁇ zesses and provide the optimization unit and / or the As ⁇ tenbank.
  • One aspect of the present invention relates to a computer program product that is directly loadable into a memory of a digital processor and includes program code portions that are adapted to perform the described method.
  • Figure 1 shows an embodiment of an inventive
  • Figure 2 shows an embodiment of the invention sys tems in a schematic representation
  • FIG. 3 shows an exemplary information flow of the method according to the invention in a schematic representation.
  • 1 now illustrates an exemplary sequence of the process.
  • the initial state 10 is a first version of a Se acid sequence of control commands and information about the geometry of the manufactured workpiece before.
  • the tool path ie the path with which the tool is guided during machining, is specified by the sequence of the control commands.
  • general information about a tool path, about process parameters and about the clamping position can be given.
  • step 11 is now a simulation of the machining process, in particular a machine tool and Pro ⁇ zess simulated by means of the predetermined sequence of control commands and the workpiece geometry.
  • At least one parameter of the machining process is determined in step 12 from the Simula ⁇ tion result.
  • a characteristic size refers for example to a required for machining ⁇ tung working, a surface quality of the workpiece, a resulting workpiece geometry or a load contained in the processing module tool ⁇ machinery and tools used.
  • the at least one characteristic to at least a predetermined optimization ⁇ approximate size is then checked for the machining process in process step. 13
  • the dimensional accuracy of the workpiece, the surface quality, the production time or the tool life of tools can be used as optimization criteria.
  • the optimization variables are one or more values that are predefined for at least one of the optimization criteria.
  • a user can also specify or change one or more optimization criteria or optimization variables, for example, before the entire optimization procedure or between individual optimization steps. Optimization criteria, for which no optimization variable has been selected can be selected as constraints and restricted.
  • the sequence of control commands is adjusted using the deviation determined in the method step Ver ⁇ fourteenth
  • the machine tool and process behavior is simulated again.
  • the key figures are used for the next iteration of the optimization process by the work ⁇ convincing path is adjusted based on empirical effect relationships.
  • the optimization is finished as soon as all optimization variables are reached in compliance with the boundary conditions or as soon as a predefined number of iteration steps has been exceeded.
  • the resulting sequence of control commands is then provided in step 15 for the manufacture of the work piece ⁇ by the processing module.
  • At least one optimization variable but also several optimization variables can be specified.
  • one or more boundary conditions can also be fixed in the optimization process or specified as required.
  • FIG. 2 shows by way of example a system 50 for optimizing a numerically controlled machining process.
  • the system includes a numerical control unit 51, a Optim michsmo- dul 52 and a processing module 53.
  • the numerical control ⁇ unit 51 that is, the sequence of control commands controls an editing process of the baysmo ⁇ duls 53 based on the NC codes.
  • This numerical control unit may be part ei ⁇ ner or several machine tools or a central controller for all used in the process module tool ⁇ machine.
  • An input and output unit 59 is connected to the integrated Optimtechniksein ⁇ 53rd For example, a first version of the NC code can be entered or read in via this input / output unit 59.
  • At least one optimization variable and / or one or more boundary conditions which are to be maintained during the machining process are input via the input / output unit 59.
  • messages from the optimization unit 52 can be output at the input / output unit 59. For example, a message indicating that the maximum number of iteration steps has been reached and further ⁇ a deviation be- see the determined parameters and the predetermined optimization variables or constraints present.
  • the optimization unit 52 has a simulation unit 60, a comparison unit 61 and an adaptation unit 62.
  • the simulation unit is designed in this case to carry out the simulation of the machining process on the basis of the desired workpiece geometry, the sequence of control commands and the use of interactive relationships.
  • the at least one parameter is also determined by an evaluation of the simulation result and this parameter or parameters compared to the predetermined or set optimization variables.
  • the interactions that are often referred to as models, and there is a work ⁇ generating machine, a tool and process behavior itself, are necessary for the simulation.
  • This information can be read, for example, from a central database 54.
  • the machine manufacturer provides machine models determined experimentally or simulatively, which describe, for example, the dynamic compliance behavior.
  • performance data and a kinematic model of the machine tool are stored in these models.
  • information is stored in the database 54 on the basis of measured values from previous machining processes and made available for the simulation.
  • the processing module 53 comprises two machine tools 70, 71, which are guided respectively by control instructions from egg ⁇ ne numerical control.
  • This machine tool 70 comprises sensors 56, 57, the machine tool 71 detect a Sen ⁇ sor 58 which specifically relevant for the manufacturing process parameters of the processing module 53, and examples play, via a machine interface 55 provide the Opti ⁇ m iststechnik 52nd.
  • sensors for measuring the process forces, the acceleration at selected points of the machine tool structure and the relative position between the workpiece and the tool are of particular interest.
  • the state of the machining module can also be read out via a machine interface 55 of the CNC control during machining of a workpiece.
  • the information determined from the current machining process can be provided via the machine interface 55 of the optimization unit 52 and in particular the Simulationsein ⁇ standardized 60 which matches the existing models and effect relationships with the current data from the manufacturing or updated, and for example, a ⁇ n ⁇ determination of the NC code and, for example, via an interface 63 to the processing module 53 provides.
  • This feedback can be used to calibrate the NC code during regular production.
  • the time to compile the code can be shortened and adapted for example for the herstel ⁇ development of small quantities of various products.
  • the processing module 53, the optimization unit 52, the loading ⁇ processing module 53, as well as the numerical control 51 and the input / output unit 59 may be configured as a se- parate physical units in various ways.
  • FIG. 3 shows an exemplary information flow during the process.
  • the process extends the digital tool chain for the production of workpieces, for example on NC-controlled machine tools.
  • the geometry of a workpiece 101 onsvon designed in a computer-protected constructive workpiece is transferred to a computerun ⁇ terconstitutedes production tool 102nd
  • the computer-aided manufacturing system 102 is supplemented by a simulation 119 of the machine tools and the process parameters.
  • the resulting optimized NC code is provided to the processing module 104.
  • predefined or custom optimization variables 103 are entered for optimization ⁇ approximately criteria and boundary conditions are respected in the optimization.
  • additional information 125 such as estimated machine or tool life is output.
  • the simulation 119 returns the result 124 already key figures, such as machining ⁇ -up time 121, 122 surface quality, workpiece geometry 123, and for example, the load of machines and work ⁇ testify 120th
  • the centra ⁇ le database can be configured as a cloud service.
  • the operative relationships of the machine tools 113 used have mostly been determined experimentally or simulatively by the manufacturer or supplier and can be provided in the database 112.
  • performance as well as a kinematic model of the horrma ⁇ machine are stored in these models.
  • the tool manufacturer and the semi-finished parts manufacturer provide process-relevant data records, such as tool geometry 114 and specific cutting parameters 115.
  • semi-finished product is meant the raw material from which the workpiece is to be manufactured.
  • the operative relationships can be determined and refined via workpiece measurements 109, which are determined on the manufactured workpiece after its production or via online measurements by additional sensors in the machine tools.
  • workpiece measurements 109 which are determined on the manufactured workpiece after its production or via online measurements by additional sensors in the machine tools.
  • a measurement of the process forces 108, the acceleration 106 at selected points of the machine structure and the relative position between the workpiece and the tool 107 is of interest.
  • the state of the machining module is read out during machining via a machine interface 105 of the NC controller.
  • This state of the machining module includes, for example, the position and Geschwin ⁇ speed signals of the kinematic axes, the spindle speed, the temperature of individual components and information on the use of cooling lubricants.
  • a workpiece measurement 109 is used to record further information about the achieved surface quality and dimensional accuracy of the workpiece.
  • the described information 111 is used to compare the model parameters or the functional relationships 112 and as a database for decision-making for the optimization process.
  • Knowledge of machine, tool and process behavior also lays the foundation for the estimation of tool life and the lifetime of machine components 125, which may be provided as output parameters to the user.
  • the method and system allows automated opti mized ⁇ NC code for controlling machine tools and the production of workpieces to produce on the basis of Maschinen Anlagengeome ⁇ trie. The necessary knowledge on the part of the user is eliminated for the generation of the NC code.
  • the generation of the NC code can be actively influenced and adapted to the respective requirements.
  • the automated Op ⁇ optimization of the necessary time required for CAM design can be reduced.
  • the costs can be reduced during the production of the workpieces.
  • the service life of components and tool life of tools can be estimated by continuous planning of machine and tool use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

L'invention concerne un procédé d'optimisation informatisée d'un processus de traitement à commande numérique d'une pièce au moyen d'un module de traitement caractérisé en ce que, dans une première étape, le processus de traitement est simulé à partir d'une géométrie de pièce prédéterminée et d'une séquence de commandes afin de commander le module de traitement (11). Ensuite, au moins un paramètre du processus de traitement est déterminé (12) sur la base du résultat de la simulation. L'au moins un paramètre est contrôlé par rapport à au moins une variable d'optimisation prédéterminée pour un processus de traitement de la pièce au moyen du module de traitement (13). Si le contrôle révèle un écart par rapport à au moins une variable d'optimisation, la séquence d'instructions de commande est ajustée à l'aide d'un écart déterminé entre l'au moins un paramètre et l'au moins une variable d'optimisation et les étapes de la simulation (11), de détermination (12) et de contrôle (13) est à nouveau effectuée avec la séquence ajustée d'instructions de commande. Si tous les critères d'optimisation sont remplis, la séquence d'instructions de commande qui en résulte est établie pour la fabrication de la pièce par le module de traitement (15). Le procédé décrit permet d'élargir une chaîne d'outils numériques pour la production de pièces sur des machines-outils qui sont commandées numériquement au moyen d'une séquence d'instructions de commande. Cela simplifie et améliore la génération d'une séquence d'instructions de commande, c'est-à-dire de code de commande numérique.
PCT/EP2017/068747 2016-08-29 2017-07-25 Procédé et système d'optimisation informatisée d'un processus de traitement à commande numérique d'une pièce Ceased WO2018041476A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016216190.3 2016-08-29
DE102016216190.3A DE102016216190A1 (de) 2016-08-29 2016-08-29 Verfahren und System zum rechnergestützten Optimieren eines numerisch gesteuerten Bearbeitungsprozesses eines Werkstücks

Publications (1)

Publication Number Publication Date
WO2018041476A1 true WO2018041476A1 (fr) 2018-03-08

Family

ID=59581866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/068747 Ceased WO2018041476A1 (fr) 2016-08-29 2017-07-25 Procédé et système d'optimisation informatisée d'un processus de traitement à commande numérique d'une pièce

Country Status (2)

Country Link
DE (1) DE102016216190A1 (fr)
WO (1) WO2018041476A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3685969A1 (fr) 2019-01-28 2020-07-29 Siemens Aktiengesellschaft Optimisation assistée par ordinateur d'un usinage à commande numérique d'une pièce à usiner
EP3798773A1 (fr) 2019-09-30 2021-03-31 Siemens Aktiengesellschaft Discrétisation efficace de trajectoire d'outil sur la base de critères physiquement justifiés
EP3825795A1 (fr) 2019-11-19 2021-05-26 Siemens Aktiengesellschaft Adaptation multi-force en ligne pendant l'usinage
CN112904800A (zh) * 2021-01-20 2021-06-04 山东恒远智能科技有限公司 一种机床智能优化方法及机床智能优化辅助系统
CN113341882A (zh) * 2021-06-28 2021-09-03 成都飞机工业(集团)有限责任公司 一种基于加工知识的数控工艺设计及优化方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859754B (zh) * 2019-11-28 2022-06-17 智能云科信息科技有限公司 机床加工控制方法、装置、存储介质、边缘设备及服务器
CN111007798B (zh) * 2019-12-17 2021-04-13 中国航发动力股份有限公司 锻铸类结构件自适应数控加工方法
EP3955072A1 (fr) 2020-08-13 2022-02-16 Siemens Aktiengesellschaft Dispositif et procédé d'usinage d'une pièce
DE102020212798A1 (de) * 2020-10-09 2022-04-14 Dmg Mori Digital Gmbh Verfahren und vorrichtung zur simulation einer bearbeitung an einer werkzeugmaschine mittels selbstlernendem system
CN112257252B (zh) * 2020-10-19 2024-03-01 北京精雕科技集团有限公司 一种仿真分析机床空间误差对工件加工精度影响的方法
DE102021132300B3 (de) * 2021-12-08 2023-04-27 Röders Gmbh Verfahren zum Betreiben einer Werkzeugmaschine mit Achsüberwachung und Werkzeugmaschine eingerichtet zur Durchführung des Verfahrens
CN116224930B (zh) * 2023-01-17 2023-08-22 扬州市职业大学(扬州开放大学) 一种数控磨床产品的加工控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036466A2 (fr) * 2005-09-30 2007-04-05 Siemens Aktiengesellschaft Procede de simulation d'un comportement de commande et/ou de machine d'une machine-outil ou d'une machine de production
US20110118865A1 (en) * 2008-07-25 2011-05-19 Snecma Method of determining the conditions of a phase for machining a workpiece with modulated cutting rate
WO2016065491A1 (fr) * 2014-10-31 2016-05-06 Cloudbased Industry 4.0 Technologies Ag Procédé d'optimisation de la productivité d'un processus d'usinage d'une machine à cnc

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3904945B2 (ja) 2002-02-28 2007-04-11 スター精密株式会社 Ncプログラムのための最適データ変換方法および数値制御工作機械
DE10346589A1 (de) 2003-10-07 2005-05-12 P&L Gmbh & Co Kg Verfahren zur automatischen Optimierung des Materialabtrags bei der spanenden Bearbeitung eines Werkstücks
DE102009023475A1 (de) 2009-06-02 2010-12-09 Robert Bosch Gmbh Verfahren und Vorrichtung zur Generierung eines variablen Bewegungsprofils für eine Antriebseinheit einer Maschine
DE102011011542B4 (de) 2011-02-17 2016-05-25 Convergent Information Technologies Gmbh Verfahren zur automatisierten Programmierung und Optimierung von robotischen Arbeitsabläufen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036466A2 (fr) * 2005-09-30 2007-04-05 Siemens Aktiengesellschaft Procede de simulation d'un comportement de commande et/ou de machine d'une machine-outil ou d'une machine de production
US20110118865A1 (en) * 2008-07-25 2011-05-19 Snecma Method of determining the conditions of a phase for machining a workpiece with modulated cutting rate
WO2016065491A1 (fr) * 2014-10-31 2016-05-06 Cloudbased Industry 4.0 Technologies Ag Procédé d'optimisation de la productivité d'un processus d'usinage d'une machine à cnc

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3685969A1 (fr) 2019-01-28 2020-07-29 Siemens Aktiengesellschaft Optimisation assistée par ordinateur d'un usinage à commande numérique d'une pièce à usiner
WO2020156732A1 (fr) 2019-01-28 2020-08-06 Siemens Aktiengesellschaft Optimisation assisté par ordinateur de l'usinage à commande numérique d'une pièce
CN113365784A (zh) * 2019-01-28 2021-09-07 西门子股份公司 工件的数控加工的计算机辅助优化
US11567470B2 (en) 2019-01-28 2023-01-31 Siemens Aktiengesellschaft Computer-aided optimization of numerically controlled machining of a workpiece
CN113365784B (zh) * 2019-01-28 2023-11-14 西门子股份公司 工件的数控加工的计算机辅助优化
EP3798773A1 (fr) 2019-09-30 2021-03-31 Siemens Aktiengesellschaft Discrétisation efficace de trajectoire d'outil sur la base de critères physiquement justifiés
EP3825795A1 (fr) 2019-11-19 2021-05-26 Siemens Aktiengesellschaft Adaptation multi-force en ligne pendant l'usinage
WO2021099349A1 (fr) 2019-11-19 2021-05-27 Siemens Aktiengesellschaft Adaptation multi-force en ligne pendant l'usinage
US12321160B2 (en) 2019-11-19 2025-06-03 Siemens Aktiengesellschaft Online multi-force-adaption during machining
CN112904800A (zh) * 2021-01-20 2021-06-04 山东恒远智能科技有限公司 一种机床智能优化方法及机床智能优化辅助系统
CN113341882A (zh) * 2021-06-28 2021-09-03 成都飞机工业(集团)有限责任公司 一种基于加工知识的数控工艺设计及优化方法
CN113341882B (zh) * 2021-06-28 2022-06-14 成都飞机工业(集团)有限责任公司 一种基于加工知识的数控工艺设计及优化方法

Also Published As

Publication number Publication date
DE102016216190A1 (de) 2018-03-01

Similar Documents

Publication Publication Date Title
WO2018041476A1 (fr) Procédé et système d'optimisation informatisée d'un processus de traitement à commande numérique d'une pièce
EP1894068B1 (fr) Procede permettant le controle de qualite pour une machine industrielle en fonction
DE112015004939B4 (de) Verfahren zum Optimieren der Produktivität eines Bearbeitungsprozesses einer CNC-Maschine
DE602005006126T2 (de) Verfahren und system zur off-line-programmierung von mehreren interagierenden robotern
DE60222026T2 (de) Intelligente step-nc-steuerung
US6671571B1 (en) Method for NC- programming and system for NC- machining
DE10352815B4 (de) Simulationsverfahren für eine Bearbeitung eines Werkstücks durch eine Werkzeugmaschine und korrespondierender Rechner
DE112015004920T5 (de) Computerimplementiertes Verfahren zur Teilanalytik eines Werkstücks, das von mindestens einer CNC- Maschine bearbeitet wird
DE112009001797T5 (de) Verfahren und Systeme zur Herstellung einer Komponente
JP2009510574A (ja) 工作機械又は生産機械の制御挙動ないし機械挙動のシミュレーション方法
JP2019188558A (ja) 工具選定装置及び機械学習装置
EP2837981B1 (fr) Procédé et dispositif de configuration automatisée d'une fonction de surveillance d'un robot industriel
EP3227061A1 (fr) Procédé de simulation de mouvement pour un manipulateur
WO2008011845A1 (fr) Compensation de la compliance dépendant de la position pour une machine-outil
WO2020156732A1 (fr) Optimisation assisté par ordinateur de l'usinage à commande numérique d'une pièce
DE102023207127A1 (de) Parametrierung eines digitalen Zwillings und/oder eines Automatisierungs-systems
EP3045986A1 (fr) Machine de fabrication avec contrôle de fonctionnalité propre et procédé
DE102017004591A1 (de) Numerische Steuerung
DE102020129885A1 (de) System und verfahren zum ableiten und anwenden von globalen offsets der numerischen computersteuerung während der messung von teilen auf einem koordinatenmessgerät
WO2008113305A1 (fr) Dispositif permettant d'élaborer des programmes d'usinage pour une machine d'usinage
CN116627088A (zh) 用于监测工件加工过程的方法
EP3760392B1 (fr) Procédé et système d'essai et/ou de montage d'un objet au moyen d'un robot
EP3176659A1 (fr) Procede et dispositif de determination de donnees de surface d'un outil virtuel
CN118493939B (zh) 一种基于物联网的数控旋压设备控制方法、设备及介质
US11366459B2 (en) Program simulation system for industrial machines and numerical control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17751300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17751300

Country of ref document: EP

Kind code of ref document: A1