WO2018061101A1 - Steel - Google Patents
Steel Download PDFInfo
- Publication number
- WO2018061101A1 WO2018061101A1 PCT/JP2016/078558 JP2016078558W WO2018061101A1 WO 2018061101 A1 WO2018061101 A1 WO 2018061101A1 JP 2016078558 W JP2016078558 W JP 2016078558W WO 2018061101 A1 WO2018061101 A1 WO 2018061101A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel
- content
- less
- present
- hardness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
Definitions
- the present invention relates to steel.
- Cold forging can improve the surface texture and dimensional accuracy of the product compared to hot forging, and also has a good yield, so it is a relatively small machine such as a bolt. It is widely applied as a manufacturing method for parts.
- machine parts carbon steel and alloys for medium-carbon mechanical structures specified in JIS G 4051, JIS G 4052, JIS G 4104, JIS G 4105, JIS G 4106, etc. as materials.
- Steel is often used as a final product through manufacturing processes such as hot wire rolling, annealing (or spheroidizing annealing), wire drawing, cold forging, quenching, and tempering.
- the general manufacturing process is characterized by adding an annealing or spheroidizing annealing process before cold forging.
- the reason why annealing or spheroidizing annealing is added before cold forging is the reason why medium carbon carbon steel and alloy steel remain hot rolled (that is, when air cooled without heat treatment after hot rolling) ),
- the hardness of the rolled material is high, and the die is worn at the time of cold forging, resulting in an increase in manufacturing cost, and cracking occurs at the time of cold forging because the ductility of the material is insufficient with hot rolling. This is because there is a manufacturing problem such as a reduction in yield due to facilitation.
- Patent Document 4 describes that the precipitation of BN is suppressed by setting Ti / N (mass% ratio) to 4 or more. In principle, if Ti / N is set to 3.42 or more, precipitation of BN can be suppressed.
- the general boron steel as described above tends to generate so-called coarse grains in which some austenite crystal grains are coarsened by abnormal grain growth during quenching heating as compared with conventional steels.
- coarse grains In a part in which coarse grains are generated, deterioration in dimensional accuracy due to an increase in heat treatment strain generated during quenching, and deterioration in part characteristics such as impact value, fatigue strength, and delayed fracture characteristics occur. Therefore, especially in the case of high strength bolts having a tensile strength of 800 MPa or more, preventing the generation of coarse grains is a major practical issue.
- N in the steel is fixed as TiN by the addition of Ti, so that AlN that effectively acts as pinning particles in carbon steel and alloy steel as conventional steel is not generated.
- TiN is coarser than AlN, it cannot be finely dispersed, and it is difficult to secure the number of pinning particles necessary for preventing coarse particles.
- the above factor (1) is unavoidable in order to omit the annealing process. Therefore, how to secure the number of pinning particles in boron steel to improve the factor (2) It has been a point of prevention.
- Patent Document 5 and Patent Document 6 describe using TiC and Ti (CN), which are finer precipitates than TiN, instead of AlN and TiN as pinning particles.
- TiC and Ti (CN) having a diameter of 0.2 ⁇ m or less in steel before quenching and after hot rolling are used. Is dispersed in a total number of 20/100 ⁇ m 2 or more. By dispersing a large amount of such fine precipitates before quenching and heating, these precipitates function as pinning particles that pin the austenite grain boundaries during quenching and heating. Since this technology makes it possible to stably prevent the generation of coarse grains in boron steel, steel to which this technology is applied is currently widely used as an inexpensive bolt steel material that can omit the annealing process.
- Patent Document 7 also describes a technical idea similar to the technique for preventing the generation of coarse grains of the boron steel. That is, it is a technique for preventing the coarsening of crystal grains by dispersing the carbonitrides of these elements in steel by making the relationship among the contents of Ti, Nb, Al, and N within a certain range. Patent Document 7 further describes the effect of improving the machinability by adding 0.01% or more of Bi. However, in Patent Document 7, only the effect of improving the machinability is disclosed as the effect of Bi. There is no description of the relationship between Bi and the coarsening characteristics of crystal grains. Since Bi is added for the purpose of improving the machinability, Patent Document 7 only considers adding a relatively large amount of Bi. In this case, as described in Patent Document 7, there is a concern about a decrease in hot workability due to Bi addition.
- Patent Document 8 discloses a case-hardening steel that exhibits excellent grain coarsening characteristics even when carburized at a higher temperature than conventional examples, and exhibits excellent cold workability without soft annealing. Steel for case hardening intended to provide is disclosed. However, Patent Document 8 proposes only the use of fine Ti carbides, Ti-containing composite carbides, and the like as means for ensuring the crystal grain coarsening resistance. In Patent Document 8, the hot rolling temperature is extremely low in order to ensure cold workability, and thus the productivity of case hardening steel is impaired.
- the present invention has been made in view of the above problems. That is, the present invention suppresses the generation of coarse grains during quenching without using Ti carbides and Ti carbonitrides such as TiC and Ti (CN), thereby improving productivity, cold forgeability, and quenching. It is an object to provide a steel excellent in all mechanical properties.
- the gist of the present invention is as follows.
- the chemical composition is unit mass%, C: 0.15% to 0.40%, Mn: 0.10% to 1.50%, S: 0.00. 002 to 0.020%, Ti: 0.005% to 0.050%, B: 0.0005 to 0.0050%, Bi: 0.0010% to 0.0100%, P: 0.020% or less, N: 0.0100% or less, Si: 0% or more and less than 0.30%, Cr: 0 to 0.050%, Mo: 0 to 0.20%, Cu: 0 to It contains 0.20%, Ni: 0 to 0.20%, and Nb: 0 to 0.030%, with the balance being Fe and impurities.
- the chemical component is unit mass%, Si: 0.01% or more and less than 0.30%, Cr: 0.01 to 1.50%, and Al: One or more selected from the group consisting of 0.001 to 0.050% may be contained.
- the chemical component is unit mass%, Mo: 0.02 to 0.20%, Cu: 0.02 to 0.20%, Ni One or two or more selected from the group consisting of: 0.02 to 0.20% and Nb: 0.002 to 0.030% may be contained.
- the steel according to any one of (1) to (3) may have an N fixed index I FN defined by the following formula 1 of 0 or more.
- I FN [Ti] ⁇ 3.5 ⁇ [N] (Formula 1)
- [Ti] is the Ti content in unit mass%
- [N] is the N content in unit mass%.
- I P 0.3 ⁇ [Ti] + 0.15 ⁇ [Nb] ⁇ [N] (Formula 2)
- [Ti] is the Ti content in unit mass%
- [Nb] is the Nb content in unit mass%
- [N] is the N content in unit mass%.
- the steel according to the present invention it is possible to provide steel that can achieve both softening before cold forging and suppression of generation of coarse grains during quenching after cold forging. Moreover, the steel according to the present invention is excellent in manufacturability because it is not cracked during casting or rolling, and can be manufactured under conditions that do not place a load on the manufacturing equipment.
- wear of the mold during cold forging can be suppressed, and the life of the mold can be improved.
- the steel according to the present invention to cold forged parts, the cost of expensive dies can be reduced, which can contribute to the reduction of the manufacturing cost of high-strength bolts having a tensile strength of 800 MPa or more. it can.
- the steel according to the present invention is excellent in machinability. Therefore, the present invention has a great industrial contribution.
- the steel according to one embodiment of the present invention will be described.
- the steel according to this embodiment has the following characteristics.
- the chemical composition is unit mass%, C: 0.15% to 0.40%, Mn: 0.10% to 1.50%, S: 0.002 to 0.020%, Ti: 0.005% to 0.050%, B: 0.0005 to 0.0050%, Bi: 0.0010% to 0.0100%, P: 0.020% or less, N: 0.0100% or less, Si: 0% or more and less than 0.30%, Cr: 0 to 0.050%, Mo: 0 to 0.20%, Cu: 0 to 0.0. 20%, Ni: 0 to 0.20%, and Nb: 0 to 0.030%, with the balance being Fe and impurities.
- the chemical component is unit mass%, Si: 0.01% or more and less than 0.30%, Cr: 0.01 to 1.50%, and Al: One or more selected from the group consisting of 0.001 to 0.050% may be contained.
- the chemical component is unit mass%, Mo: 0.02 to 0.20%, Cu: 0.02 to 0.20%, Ni One or two or more selected from the group consisting of: 0.02 to 0.20% and Nb: 0.002 to 0.030% may be contained.
- the steel according to any one of the above (a) to (c) may have an N fixed index I FN defined by the following formula 1 of 0 or more.
- I FN [Ti] ⁇ 3.5 ⁇ [N] (Formula 1)
- [Ti] is the Ti content in unit mass%
- [N] is the N content in unit mass%.
- I P 0.3 ⁇ [Ti] + 0.15 ⁇ [Nb] ⁇ [N]
- [Ti] is the Ti content in unit mass%
- [Nb] is the Nb content in unit mass%
- [N] is the N content in unit mass%.
- produce a coarse grain with excellent productivity is obtained by performing bolt processing, quenching, and tempering with respect to the steel which concerns on this embodiment by a well-known method.
- the inventors have noticed a significant increase in ferrite hardness due to precipitation strengthening, and hence TiC and Ti (CN), etc., which are particles that cause an increase in steel hardness and impair the cold workability of steel.
- TiC and Ti (CN), etc. are particles that cause an increase in steel hardness and impair the cold workability of steel.
- the above features are based on the following findings obtained by the present inventors by earnestly studying the technology for suppressing abnormal grain growth of austenite grains during quenching and heating of steel.
- C is an element necessary for increasing the strength of steel having a tempered martensite structure.
- the C content needs to be 0.15% or more.
- the lower limit of the preferred C content is 0.17%, 0.19%, or 0.23%.
- the upper limit of C content is 0.40%.
- the upper limit of the preferable C content is 0.35%, 0.34%, 0.33%, or 0.30%.
- Mn is an element effective for improving the hardenability of steel.
- the Mn content needs to be 0.10% or more.
- the lower limit of the preferable Mn content is 0.20%, 0.35%, or 0.40%.
- the upper limit of the Mn content is 1.50%.
- the upper limit of the preferable Mn content is 1.30%, 1.00%, or 0.80%.
- S exists in steel as MnS, TiS, and Ti 2 C 2 S, and has the effect of suppressing abnormal grain growth of austenite crystal grains by acting as pinning particles during quenching heating. For this reason, it is necessary to make S content 0.002% or more.
- the lower limit of the preferable S content is 0.003%.
- the steel according to the present embodiment uses Bi to suppress abnormal grain growth, the S content may be smaller than that of the prior art.
- S content exceeds 0.020%, S causes embrittlement of the prior austenite grain boundaries of the steel after quenching, and deteriorates delayed fracture resistance (hydrogen embrittlement resistance).
- Ti 2 C 2 S described above is a particle that impairs the machinability of the steel, if the S content exceeds 0.020%, the machinability of the steel may be deteriorated. Therefore, it is necessary to limit the S content to 0.020% or less.
- the upper limit of the S content is 0.015%, 0.010%, or 0.005%.
- Ti forms a compound with C, N, and S in steel and exists in steel as Ti-based inclusions such as TiN, Ti (CN), TiC, TiS, and Ti 2 C 2 S. By acting as a stop particle, it has the effect of suppressing abnormal grain growth of austenite grains. Further, Ti has a strong affinity for solute N in steel, and is therefore an extremely effective element for preliminarily fixing solute N in steel as TiN and suppressing the formation of BN. In boron steel, it is necessary to suppress the formation of BN in order to ensure the content of solute B that is effective in improving hardenability. Therefore, the Ti content needs to be 0.005% or more.
- the lower limit of the preferable Ti content is 0.010%, 0.015%, or 0.020%.
- the Ti content may be smaller than that of the prior art.
- Ti-based inclusion particles cause precipitation strengthening, and the hardness of the rolled material after hot rolling becomes too high. The service life is significantly reduced.
- the upper limit of the Ti content is 0.050%.
- a preferable Ti content is 0.040% or less, 0.030% or less, less than 0.030%, or 0.025% or less.
- B is an element that contributes to improving the hardenability of steel when contained in a trace amount, and improves hardenability without increasing the hardness of the rolled material after hot rolling and before cold forging. An effect can be acquired and the hardness after cold forging and hardening can be increased.
- B is an essential element particularly for boron steel for bolts. Further, B has an effect of suppressing grain boundary fracture by segregating at the prior austenite grain boundaries and strengthening the prior austenite grain boundaries. In order to obtain the above effect, the B content needs to be 0.0005% or more. Preferably, the lower limit of the B content is 0.0010%, 0.0012%, or 0.0015%.
- the B content exceeds 0.0050%, the effect is saturated. Therefore, the B content is 0.0050% or less.
- the upper limit of the B content is 0.0030%, 0.0025%, 0.0020%, or 0.0018%.
- Bi 0.0010% to 0.0100%
- the lower limit of Bi content is preferably 0.0020%, 0.0025%, or 0.0030%.
- the Bi content exceeds 0.0100%, not only the effect is saturated, but also the hot ductility of the steel decreases, so cracks and flaws occur in the steel manufacturing process (casting, rolling process, etc.). It becomes easier and the yield decreases.
- the Bi content exceeds 0.0100%, grain boundary embrittlement occurs in the steel after quenching, and the mechanical properties of the steel are impaired. Therefore, the Bi content is 0.0100% or less.
- the Bi content is preferably less than 0.0100%, 0.0080% or less, or 0.0060% or less.
- P is an impurity and is an element that embrittles the old ⁇ grain boundary and lowers the delayed fracture resistance (hydrogen embrittlement resistance) of the steel. Therefore, it is necessary to limit the P content to 0.020% or less.
- the upper limit of the P content is 0.015%, 0.013%, or 0.010%. Since P is not required to solve the problem of the steel according to the present embodiment, the lower limit value of the P content is 0%. However, in order to suppress the cost of the refining process for reducing the P content, the lower limit value of the P content may be 0.001%.
- the lower limit of the N content is 0%.
- the lower limit value of the N content may be 0.0001%, 0.0005%, or 0.0010%.
- the upper limit of the N content is 0.0070%, 0.0050%, or 0.0040%.
- the spring steel according to the present embodiment may further contain one or more selected from the group consisting of Si, Cr, and Al as necessary, within a range described below. However, since Si, Cr, and Al are not essential, the lower limit of the content of each of Si, Cr, and Al is 0%.
- the lower limit value of the Si content is 0%.
- Si is an element effective in improving the hardenability of steel and improving the temper softening resistance of martensite.
- the Si content is preferably more than 0% or 0.01% or more.
- the lower limit value of the Si content may be 0.05% or 0.15%.
- the Si content is less than 0.30%.
- the upper limit of the preferable Si content is 0.27%, 0.25%, or 0.20%.
- the lower limit value of the Cr content is 0%.
- Cr is an effective element for improving the hardenability of steel and improving the temper softening resistance of martensite.
- the Cr content is preferably more than 0% or 0.01% or more.
- the lower limit of the Cr content may be 0.10%, 0.20%, or 0.30%.
- the upper limit of the Cr content is 1.50%.
- the upper limit of the preferable Cr content is 1.20%, 1.00%, or 0.80%.
- Al is an element effective for deoxidation of steel.
- the lower limit of the Al content is 0%.
- the Al content exceeds 0.050%, problems such as generation of coarse inclusions and deterioration of the toughness of steel become significant. Therefore, even when Al is contained, the upper limit of the Al content is 0.050%.
- the upper limit of the Al content is preferably 0.040%, 0.030%, or 0.025%.
- the spring steel according to the present embodiment may further contain one or more selected from the group consisting of Mo, Cu, Ni, and Nb as necessary, within a range described below. However, since Mo, Cu, Ni, and Nb are not essential, the lower limit of the contents of Mo, Cu, Ni, and Nb is 0%.
- the lower limit value of the Mo content is 0%.
- Mo is an element that contributes to improving the hardenability of steel even if its content is small.
- the Mo content is preferably set to 0.02% or more. More preferably, the lower limit of the Mo content is 0.03%, 0.04%, or 0.05%.
- the Mo content is set to 0.20% or less.
- the upper limit of the Mo content is 0.16%, 0.13%, or 0.10%.
- the lower limit value of the Cu content is 0%.
- Cu is an element that improves the corrosion resistance of steel.
- the Cu content is preferably set to 0.02% or more. More preferably, the lower limit of the Cu content is 0.05%.
- the upper limit of Cu content is 0.15%, 0.10%, or 0.08%.
- the lower limit value of the Ni content is 0%.
- Ni is an element that improves the corrosion resistance of steel and is also an effective element for improving the toughness of steel.
- the Ni content is preferably 0.02% or more. More preferably, the lower limit of the Ni content is 0.03%, 0.04%, or 0.05%.
- the upper limit of the Ni content is 0.15%, 0.12%, 0.10%, or 0.08%.
- the lower limit value of the Nb content is 0%.
- Nb forms a compound with C in steel and exists in steel as Nb-based inclusions such as NbC or TiNb (CN), and suppresses abnormal growth of austenite grains as pinning particles during quenching heating.
- the Nb content is preferably set to 0.002% or more. More preferably, the lower limit of Nb content is 0.003%, 0.005%, or 0.006%.
- the Nb content exceeds 0.030%, not only the effect is saturated, but also the Nb-based inclusions cause precipitation strengthening, so that the manufacturability during continuous casting is impaired.
- Nb-based inclusions cause precipitation strengthening, so that the hardness of the rolled material after hot rolling becomes too high. Therefore, when the Nb content exceeds 0.030%, problems such as a decrease in manufacturability and a significant decrease in the life of a cold forging die become prominent. Therefore, even when Nb is contained, the Nb content is set to 0.030% or less.
- the upper limit of Nb content is 0.015%, 0.013%, or 0.010%.
- the steel according to this embodiment contains the above alloy components, and the balance of the chemical components contains Fe and impurities.
- impurities are components mixed due to raw materials such as ores and scraps and other factors when industrially producing steel materials, and do not impair the effects of the steel according to the present embodiment. Means what is the amount.
- N fixed index I FN preferably 0 or more
- N fixed index IFN defined by the following formula 1 to 0 or more.
- the lower limit of the N fixed index I FN 0.0005,0.0010,0.0014, or may be 0.0050.
- the steel according to the present embodiment is softened before cold forging as long as the Ti content and the N content are controlled within the above-described range even if the N fixed index IFN is not particularly limited.
- the generation of coarse grains during quenching can be suppressed.
- I FN [Ti] ⁇ 3.5 ⁇ [N] (Formula 1)
- [Ti] and [N] in the above formula 1 indicate the Ti content and N content in the steel in unit mass%, and 0% when these elements are not contained.
- Ti—Nb-based precipitate formation index I P preferably 0.0100 or less
- I P the amount of solid solution N
- Ti combines with C and S to form fine precipitates, and these fine precipitates may adversely affect the properties of the steel according to the present embodiment.
- the present inventors have also found that Nb has the same function as Ti.
- Ti—Nb-based precipitates such as Ti 2 C 2 S, which are precipitates existing in steel, are pinned during quenching heating.
- Ti—Nb-based precipitates such as Ti 2 C 2 S, which are precipitates existing in steel.
- these Ti—Nb-based precipitate particles are dispersed in a large amount in the structure after hot rolling, there is a side effect that the hardness of the ferrite increases due to precipitation strengthening by fine precipitate particles. . Therefore, when these Ti—Nb-based precipitate particles are dispersed in an excessively large amount in the steel, the hardness of the rolled material after hot rolling becomes too high.
- Ti 2 C 2 S causes deterioration of machinability. Therefore, in the steel according to the present embodiment, it is preferable to limit the amount of these Ti—Nb-based precipitate particles.
- the Ti-Nb-based precipitates generated index I P which is calculated by the following equation 2 and 0.0100 or less.
- the Ti-Nb-based precipitates generated index I P 0.0075 or less, less than 0.0050, 0.0045 or less, 0.0040 or less, or 0.0035 may be less.
- Steel is softened before cold forging and can suppress the generation of coarse grains during quenching.
- the suitable manufacturing method of the steel of this embodiment is demonstrated.
- the above-described chemical component steel is melted in a converter, and a slab is obtained by continuous casting through a secondary refining process as necessary.
- the slab is reheated and subjected to ingot rolling to obtain a wire rolling material (steel slab) having a cross section of, for example, 162 mm square (vertical 162 mm ⁇ lateral 162 mm).
- the steel slab is heated at a temperature of about 1000 to 1280 ° C. and subsequently subjected to wire rod rolling to form a wire rod having a diameter of 6 to 20 mm.
- it after being hotly wound into a coil shape by a winding device, it is cooled to room temperature. In this way, the steel of this embodiment is obtained.
- the amount of Ti-based precipitated particles that cause precipitation strengthening is suppressed. Therefore, in the steel manufacturing method according to the present embodiment, hot rolling is performed in order to suppress the hardness of the steel. It is not necessary to apply a load to the hot rolling equipment by lowering the temperature, and defects such as cracks and wrinkles due to an increase in hardness are less likely to occur in the steel. Furthermore, the hardness of the steel according to the present embodiment is suppressed without performing annealing after hot rolling. Therefore, the steel according to this embodiment is excellent in terms of high productivity.
- both softening before cold forging and suppression of the generation of coarse grains during quenching can be achieved.
- the steel of this embodiment is excellent in manufacturability without cracking during casting or rolling.
- the hardness of the steel according to the present embodiment is not particularly limited because it can be appropriately adjusted according to the application. However, when it is necessary to ensure cold forgeability, the hardness of the steel according to this embodiment is preferably Hv 180 or less, and more preferably Hv 170 or less, or Hv 160 or less. .
- the lower limit value of the hardness of the steel according to the present embodiment is not particularly limited, but is considered to be substantially about Hv130 or about Hv140 in view of its chemical composition. Even if it does not anneal after hot rolling, the steel which concerns on this embodiment can make the hardness into the above-mentioned suitable range. Moreover, the steel according to the present embodiment is excellent in machinability.
- the steel according to the present embodiment is heated to a temperature of, for example, 840 ° C. to 1100 ° C., held for 30 minutes, and then quenched under water cooling or oil cooling, and further in a temperature range of 150 ° C. to 450 ° C.
- the tensile strength can be 800 MPa or more. Therefore, the steel according to the present embodiment is suitable as a material for parts that require high strength.
- heat processing conditions are not specifically limited, It can select suitably according to a use.
- the use of the steel according to the present embodiment is not particularly limited, it is preferable that the steel is applied to high-strength mechanical parts manufactured by cold forging and quenching, particularly high-strength bolts.
- the steel according to the present embodiment having high cold forgeability is used as a material for high-strength mechanical parts, wear of the mold during cold forging can be suppressed and the life of the mold can be improved.
- die can be reduced, it can contribute to the reduction of the manufacturing cost of the high intensity
- the cast slab was subjected to soaking diffusion treatment and partial rolling as necessary to obtain a wire rolling material (steel piece) having a cross section of 162 mm square (vertical 162 mm ⁇ lateral 162 mm).
- a wire rolling material steel piece
- the steel slab was heated at a temperature of about 1000 to 1280 ° C. and subsequently subjected to wire rod rolling to obtain a wire rod (spring steel) having a diameter of 10 mm.
- a test piece for Vickers hardness measurement was cut out from the rolled wire. Specifically, a test piece having a cross section including the central axis of the wire in a direction parallel to the rolling direction was cut out. After the cut cross section was polished, the Vickers hardness of a portion (1/4 part) having a depth of 1/4 of the diameter of the wire from the surface of the wire was measured.
- the test load is 10 kgf, and the average value obtained by measuring four points is described as “hardness after rolling” in Tables 2-1 and 2-2. This is an index for predicting the life of a die for cold forging. did.
- the prior austenite grain boundaries appeared by corrosion and observed with an optical microscope to measure the prior austenite grain size after quenching and tempering.
- the prior austenite grain size was measured according to JISG0551.
- the measurement field of view was 400 times magnification and 10 fields or more, and a test piece in which even one large crystal grain having a prior austenite grain size of No. 5 or less was present was determined to have coarse grains.
- the results of measuring the crystal grain coarsening temperature are shown in Tables 2-1 and 2-2.
- A1 to A32 which are examples of the present invention, have low hardness of the wire after rolling and can be expected to improve the life of the cold forging die.
- Slab debris rate because no coarse grains are generated even when heated above 900 ° C during quenching and heating after cold working, and surface cracks of the slab do not occur during continuous casting It is clear that it is low and therefore is excellent in manufacturability.
- the inventive examples A1 to A32 after the heat treatment for measuring the prior austenite grain size described above all had a tensile strength of 800 MPa or more.
- any of the cold forgeability, coarse grain prevention characteristics, and manufacturability is inferior. That is, since B1 to B4 have too much Bi added, the hot ductility is lowered and the manufacturability is poor. In B5 to B7, Bi was not added, or the addition amount was too small, so the coarse grain preventing properties were inferior. In B8 and B9, the added amount of Ti is too large, or the N content is small relative to the added Ti amount and the Ti—Nb-based precipitate formation index IP is exceeded. It was inferior to the forgeability.
- the steel according to the present invention it is possible to provide steel that can achieve both softening during cold forging and suppression of generation of coarse grains during quenching after cold forging.
- the steel according to the present invention is excellent in manufacturability because it is not cracked during casting or rolling, and can be manufactured under conditions that do not impose a load on manufacturing equipment.
- wear of the mold during cold forging can be suppressed, and the life of the mold can be improved.
- the steel according to the present invention to cold forged parts, the cost of expensive dies can be reduced, which can contribute to the reduction of the manufacturing cost of high-strength bolts having a tensile strength of 800 MPa or more. it can.
- the steel according to the present invention is excellent in machinability. Therefore, the present invention has a great industrial contribution.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、鋼に関する。 The present invention relates to steel.
冷間鍛造(転造を含む)は、熱間鍛造に比べて製品の表面肌、及び寸法精度等を良くすることができ、さらに歩留まりも良好であるため、ボルトのような比較的小型の機械部品の製造方法として広く適用されている。冷間鍛造によって機械部品を製造する場合は、素材として例えばJIS G 4051、JIS G 4052、JIS G 4104、JIS G 4105、JIS G 4106等に規定されている中炭素の機械構造用炭素鋼や合金鋼を用い、例えば熱間線材圧延-焼鈍(あるいは球状化焼鈍)-伸線-冷間鍛造-焼入れ・焼戻しのような製造工程を経て最終製品とすることが多い。上記の一般的な製造工程は、冷間鍛造の前に焼鈍、あるいは球状化焼鈍の工程を付加していることが特徴である。冷間鍛造の前に焼鈍、あるいは球状化焼鈍を付加している理由は、中炭素の炭素鋼や合金鋼は、熱間圧延のまま(即ち、熱間圧延後に熱処理を行わずに空冷した場合)では圧延材の硬さが高く、冷間鍛造時の金型の損耗が著しいため製造コストが高くなること、及び熱間圧延のままでは素材の延性が不足するため冷間鍛造時に割れが生じやすくなるため歩留まりが低下する等の製造上の問題があるためである。 Cold forging (including rolling) can improve the surface texture and dimensional accuracy of the product compared to hot forging, and also has a good yield, so it is a relatively small machine such as a bolt. It is widely applied as a manufacturing method for parts. When manufacturing machine parts by cold forging, carbon steel and alloys for medium-carbon mechanical structures specified in JIS G 4051, JIS G 4052, JIS G 4104, JIS G 4105, JIS G 4106, etc. as materials. Steel is often used as a final product through manufacturing processes such as hot wire rolling, annealing (or spheroidizing annealing), wire drawing, cold forging, quenching, and tempering. The general manufacturing process is characterized by adding an annealing or spheroidizing annealing process before cold forging. The reason why annealing or spheroidizing annealing is added before cold forging is the reason why medium carbon carbon steel and alloy steel remain hot rolled (that is, when air cooled without heat treatment after hot rolling) ), The hardness of the rolled material is high, and the die is worn at the time of cold forging, resulting in an increase in manufacturing cost, and cracking occurs at the time of cold forging because the ductility of the material is insufficient with hot rolling. This is because there is a manufacturing problem such as a reduction in yield due to facilitation.
しかしながら、焼鈍には多大なコストがかかるため、部品の製造コストを低減するために、焼鈍工程の省略を可能とする鋼材の開発が求められてきた。このような要請から、鋼材に微量のBを添加した、いわゆるボルト用のボロン鋼が開発されてきた(例えば、特許文献1、及び特許文献3)。ボロン鋼の特徴は、鋼材の炭素含有量、及びCr、Mo等の合金元素の添加量を低減することによって熱間圧延のままの線材の硬さを低減するとともに延性を向上することによって焼鈍を不要とし、合金元素の添加量の低減による焼入性の低下を、圧延材の硬さを増加しない、微量のBの添加による焼入性の向上効果によって補うことにある。 However, since annealing is very costly, it has been demanded to develop a steel material that can omit the annealing process in order to reduce the manufacturing cost of parts. In view of such a demand, so-called bolt boron steel in which a small amount of B is added to steel has been developed (for example, Patent Document 1 and Patent Document 3). The feature of boron steel is that it reduces the carbon content of steel and the addition amount of alloy elements such as Cr and Mo, thereby reducing the hardness of the wire as it is hot rolled and improving the ductility. There is no need to compensate for the decrease in hardenability due to the reduction in the addition amount of the alloy element by the effect of improving hardenability by adding a small amount of B without increasing the hardness of the rolled material.
微量B添加による焼入性向上効果を発現させるためには、Bがオーステナイト中で固溶状態にあることが必要である。一方、鋼中に固溶状態の窒素が存在している場合にはBNが生成し、固溶B(鋼中に固溶したB)の量が減少することによってBの持つ焼入性向上効果が失われてしまう。このためボロン鋼においては、Nと強い親和力を持つTiを添加することによって鋼中のNを予めTiNとして固定し、BNの生成を抑制することが一般に行われている。例えば、特許文献4には、Ti/N(質量%比)を4以上とすることによってBNの析出を抑制することが記載されている。原理的には、Ti/Nを3.42以上にすればBNの析出を抑制できる。 In order to express the effect of improving hardenability by adding a trace amount of B, it is necessary that B is in a solid solution state in austenite. On the other hand, when solid solution nitrogen is present in the steel, BN is formed, and the amount of solid solution B (solid solution B in the steel) decreases, thereby improving the hardenability of B. Will be lost. For this reason, in boron steel, it is a common practice to suppress the formation of BN by adding Ti having a strong affinity for N to previously fix N in the steel as TiN. For example, Patent Document 4 describes that the precipitation of BN is suppressed by setting Ti / N (mass% ratio) to 4 or more. In principle, if Ti / N is set to 3.42 or more, precipitation of BN can be suppressed.
しかしながら上記のような一般的なボロン鋼は、従来鋼に比べて、焼入れ加熱時に一部のオーステナイト結晶粒が異常粒成長を起こして粗大化する、いわゆる粗大粒が発生しやすくなる。粗大粒が発生した部品では、焼入れ時に発生する熱処理歪が大きくなることによる寸法精度の劣化、並びに衝撃値、疲労強度、及び遅れ破壊特性等の部品の特性の低下が生じる。従って、特に引張強さが800MPa以上の高強度ボルトにおいては、粗大粒発生の防止が実用上の大きな課題である。このような異常粒成長による粗大粒の発生を抑制するためには、オーステナイト結晶粒の粒界をピン止めするために、組織中にピン止め粒子(析出物等)を数多く分散させること、すなわち微細な粒子を多量に分散させることが有効である。 However, the general boron steel as described above tends to generate so-called coarse grains in which some austenite crystal grains are coarsened by abnormal grain growth during quenching heating as compared with conventional steels. In a part in which coarse grains are generated, deterioration in dimensional accuracy due to an increase in heat treatment strain generated during quenching, and deterioration in part characteristics such as impact value, fatigue strength, and delayed fracture characteristics occur. Therefore, especially in the case of high strength bolts having a tensile strength of 800 MPa or more, preventing the generation of coarse grains is a major practical issue. In order to suppress the generation of coarse grains due to such abnormal grain growth, a large number of pinning particles (precipitates, etc.) are dispersed in the structure in order to pin the grain boundaries of austenite crystal grains. It is effective to disperse a large amount of particles.
ボロン鋼に粗大粒が発生しやすい理由は、以下の2つが主なものである。 There are two main reasons why coarse grains are likely to occur in boron steel.
(1)ボロン鋼を部品材料とする場合、ボロン鋼の冷間鍛造後の焼鈍工程が省略されるので、ボロン鋼は冷間加工組織から直接オーステナイト域に加熱されることになる。この場合、冷間加工の影響によってオーステナイト結晶粒の過度の微細化や結晶粒径の部分的な不均一が生じるので、一部の結晶粒が異常粒成長を起こしやすい状態となる。 (1) When boron steel is used as a component material, the annealing process after cold forging of boron steel is omitted, so that boron steel is directly heated from the cold-worked structure to the austenite region. In this case, since the austenite crystal grains are excessively refined and the crystal grain size is partially nonuniform due to the influence of cold working, some crystal grains are likely to cause abnormal grain growth.
(2)上述のボロン鋼では、Tiの添加によって鋼中のNがTiNとして固定されるので、従来鋼である炭素鋼や合金鋼においてピン止め粒子として有効に作用しているAlNが生成せず、なおかつTiNはAlNに比べて粗大であるため微細に分散させることができず、粗大粒の防止のために必要なピン止め粒子の数を確保することが困難である。 (2) In the above boron steel, N in the steel is fixed as TiN by the addition of Ti, so that AlN that effectively acts as pinning particles in carbon steel and alloy steel as conventional steel is not generated. In addition, since TiN is coarser than AlN, it cannot be finely dispersed, and it is difficult to secure the number of pinning particles necessary for preventing coarse particles.
焼鈍工程の省略のためには上記(1)の要因は不可避であるので、(2)の要因の改善のためにボロン鋼においてピン止め粒子の数をいかにして確保するかが粗大粒の発生防止のポイントとされてきた。 The above factor (1) is unavoidable in order to omit the annealing process. Therefore, how to secure the number of pinning particles in boron steel to improve the factor (2) It has been a point of prevention.
このような状況から、ボロン鋼の粗大粒の発生を防止するための技術が提案されてきた。例えば、特許文献5及び特許文献6には、ピン止め粒子としてAlNやTiNの代わりに、TiNよりも微細な析出物であるTiC及びTi(CN)を利用することが記載されている。これらの技術では、粗大粒の防止のために必要なピン止め粒子の数を確保するために、焼入れ加熱前且つ熱間圧延後の鋼中に直径が0.2μm以下のTiCとTi(CN)とを総個数にして20個/100μm2以上分散させることが規定されている。焼入れ加熱前にあらかじめこのような微細な析出物を多量に分散させておくことにより、焼入れ加熱時にこれらの析出物がオーステナイト結晶粒界をピン止めするピン止め粒子として機能する。この技術によって、ボロン鋼において粗大粒の発生を安定的に防止することが可能となるので、この技術が適用された鋼は焼鈍工程を省略できる安価なボルト用鋼材として現在広く使用されている。 Under such circumstances, techniques for preventing the occurrence of coarse grains of boron steel have been proposed. For example, Patent Document 5 and Patent Document 6 describe using TiC and Ti (CN), which are finer precipitates than TiN, instead of AlN and TiN as pinning particles. In these techniques, in order to ensure the number of pinning particles necessary for preventing coarse grains, TiC and Ti (CN) having a diameter of 0.2 μm or less in steel before quenching and after hot rolling are used. Is dispersed in a total number of 20/100 μm 2 or more. By dispersing a large amount of such fine precipitates before quenching and heating, these precipitates function as pinning particles that pin the austenite grain boundaries during quenching and heating. Since this technology makes it possible to stably prevent the generation of coarse grains in boron steel, steel to which this technology is applied is currently widely used as an inexpensive bolt steel material that can omit the annealing process.
しかしながら、上記の技術には欠点がある。すなわち、熱間圧延後の組織中に微細なTiCやTi(CN)が多量に分散している場合には、微細な析出物粒子による析出強化によってフェライトの硬さが増加するという副作用があるため、ボロン鋼化による熱間圧延材の軟質化効果が目減りするという問題である。すなわち、微細なTiCやTi(CN)の量を増やした場合、粗大粒の発生は抑制できるが、圧延材の硬さが析出強化によって増加することにより冷間鍛造用金型の寿命が低下する。逆に、微細なTiCやTi(CN)の量を抑制すると、圧延材の硬さは抑制できるが粗大粒が発生する。即ち、微細なTiCやTi(CN)を利用する場合、粗大粒の発生の抑制と、冷間鍛造前の圧延材の硬さの抑制とは、背反の関係にある。したがって、圧延材の軟質化と安定した粗大粒の抑制との両方を完全に達成することは、上記の技術のみでは困難である。 However, the above techniques have drawbacks. That is, when fine TiC and Ti (CN) are dispersed in a large amount in the structure after hot rolling, there is a side effect that the hardness of ferrite increases due to precipitation strengthening by fine precipitate particles. The problem is that the softening effect of the hot-rolled material due to boron steel is reduced. That is, when the amount of fine TiC or Ti (CN) is increased, the generation of coarse grains can be suppressed, but the life of the cold forging die is reduced by increasing the hardness of the rolled material by precipitation strengthening. . Conversely, when the amount of fine TiC or Ti (CN) is suppressed, the hardness of the rolled material can be suppressed, but coarse grains are generated. That is, when fine TiC or Ti (CN) is used, the suppression of the generation of coarse grains and the suppression of the hardness of the rolled material before cold forging are in a trade-off relationship. Therefore, it is difficult to achieve both the softening of the rolled material and the suppression of stable coarse grains completely only by the above technique.
特許文献7にも、上記のボロン鋼の粗大粒の発生を防止する技術と同様の技術思想が記載されている。すなわち、Ti、Nb、Al、Nの含有量の関係をある範囲内にすることによって、これらの元素の炭窒化物を鋼中に分散させ、結晶粒の粗大化を防止する技術である。特許文献7にはさらに、Biを0.01%以上添加することによって、切削性を高める効果についても記載されている。しかしながら、特許文献7において、Biの効果としては切削性を高める効果のみ開示されている。Biと、結晶粒の粗大化特性との関係についての記述は全くない。切削性向上効果を目的としてBiが添加されているので、特許文献7においては比較的多量のBiを添加することについてしか検討されていない。この場合、特許文献7に記載されているように、Bi添加による熱間加工性の低下が懸念される。 Patent Document 7 also describes a technical idea similar to the technique for preventing the generation of coarse grains of the boron steel. That is, it is a technique for preventing the coarsening of crystal grains by dispersing the carbonitrides of these elements in steel by making the relationship among the contents of Ti, Nb, Al, and N within a certain range. Patent Document 7 further describes the effect of improving the machinability by adding 0.01% or more of Bi. However, in Patent Document 7, only the effect of improving the machinability is disclosed as the effect of Bi. There is no description of the relationship between Bi and the coarsening characteristics of crystal grains. Since Bi is added for the purpose of improving the machinability, Patent Document 7 only considers adding a relatively large amount of Bi. In this case, as described in Patent Document 7, there is a concern about a decrease in hot workability due to Bi addition.
特許文献8には、従来例よりも高温で浸炭を行なった場合でも優れた耐結晶粒粗大化特性を発揮し、且つ軟化焼鈍をせずとも優れた冷間加工性を示す肌焼用鋼を提供することを目的とした肌焼用鋼が開示されている。しかし特許文献8でも、耐結晶粒粗大化特性を確保する手段として微細なTi炭化物及びTi含有複合炭化物等の利用しか提案されていない。特許文献8では、冷間加工性の確保のために熱間圧延温度が極めて低くされており、このため肌焼用鋼の生産性が損なわれている。 Patent Document 8 discloses a case-hardening steel that exhibits excellent grain coarsening characteristics even when carburized at a higher temperature than conventional examples, and exhibits excellent cold workability without soft annealing. Steel for case hardening intended to provide is disclosed. However, Patent Document 8 proposes only the use of fine Ti carbides, Ti-containing composite carbides, and the like as means for ensuring the crystal grain coarsening resistance. In Patent Document 8, the hot rolling temperature is extremely low in order to ensure cold workability, and thus the productivity of case hardening steel is impaired.
冷間鍛造用の鋼の課題の一つは、鋼の冷間鍛造性及び鋼の生産性の向上のために、熱間圧延後かつ冷間鍛造前に焼鈍を行うことなく、且つ生産性を損なうような製造条件を用いることなく、鋼を軟質に保つことである。冷間鍛造用の鋼の別の課題は、機械部品に高強度を付与するために、冷間鍛造後に高い焼入性を発揮することである。そして、冷間鍛造用の鋼のさらなる課題は、機械部品の寸法精度、衝撃値、疲労強度、及び遅れ破壊特性等の劣化を防止するために、冷間鍛造後の焼入れの際の粗大粒発生を抑制することである。上述のように、従来技術はこれらすべてを同時に解決することができない。粗大粒発生の抑制手段として従来技術で提案されたTiC及びTi(CN)の利用は、熱間圧延後かつ冷間鍛造前の鋼を析出強化によって硬質化させるので、鋼の冷間鍛造性及び生産性を損なう。 One of the challenges of steel for cold forging is to improve productivity without annealing after hot rolling and before cold forging in order to improve the cold forgeability of steel and the productivity of steel. It is to keep the steel soft without using damaging manufacturing conditions. Another problem with cold forging steel is to exhibit high hardenability after cold forging in order to impart high strength to machine parts. A further problem with steel for cold forging is the generation of coarse grains during quenching after cold forging in order to prevent deterioration of dimensional accuracy, impact value, fatigue strength, delayed fracture characteristics, etc. of machine parts. It is to suppress. As mentioned above, the prior art cannot solve all of these simultaneously. The use of TiC and Ti (CN) proposed in the prior art as a means for suppressing the generation of coarse grains hardens the steel after hot rolling and before cold forging by precipitation strengthening. Impair productivity.
本発明は上記の課題に鑑みてなされたものである。すなわち、本発明は、TiC及びTi(CN)等のTi炭化物及びTi炭窒化物を用いることなく焼入れ時の粗大粒の発生を抑制し、これにより製造性、冷間鍛造性、及び焼入れ後の機械特性の全てに優れた鋼を提供することを課題とする。 The present invention has been made in view of the above problems. That is, the present invention suppresses the generation of coarse grains during quenching without using Ti carbides and Ti carbonitrides such as TiC and Ti (CN), thereby improving productivity, cold forgeability, and quenching. It is an object to provide a steel excellent in all mechanical properties.
本発明の要旨は以下のとおりである。 The gist of the present invention is as follows.
(1)本発明の一態様に係る鋼は、化学成分が、単位質量%で、C:0.15%~0.40%、Mn:0.10%~1.50%、S:0.002~0.020%、Ti:0.005%~0.050%、B:0.0005~0.0050%、Bi:0.0010%~0.0100%、P:0.020%以下、N:0.0100%以下、Si:0%以上0.30%未満、Cr:0~1.50%、Al:0~0.050%、Mo:0~0.20%、Cu:0~0.20%、Ni:0~0.20%、及びNb:0~0.030%を含有し、残部がFeおよび不純物からなる。
(2)上記(1)に記載の鋼は、前記化学成分が、単位質量%で、Si:0.01%以上0.30%未満、Cr:0.01~1.50%、及びAl:0.001~0.050%からなる群から選択される1種又は2種以上を含有してもよい。
(3)上記(1)または(2)に記載の鋼は、前記化学成分が、単位質量%で、Mo:0.02~0.20%、Cu:0.02~0.20%、Ni:0.02~0.20%、及びNb:0.002~0.030%からなる群から選択される1種又は2種以上を含有してもよい。
(4)上記(1)~(3)のいずれか一項に記載の鋼は、以下の式1によって定義されるN固定指数IFNが0以上であってもよい。
IFN=[Ti]-3.5×[N]…(式1)
ここで[Ti]は単位質量%でのTi含有量であり、[N]は単位質量%でのN含有量である。
(5)上記(1)~(4)のいずれか一項に記載の鋼は、以下の式2によって定義されるTi-Nb系析出物生成指数IPが0.0100以下であってもよい。
IP=0.3×[Ti]+0.15×[Nb]-[N]…(式2)
ここで[Ti]は単位質量%でのTi含有量であり、[Nb]は単位質量%でのNb含有量であり、[N]は単位質量%でのN含有量である。
(1) In the steel according to one embodiment of the present invention, the chemical composition is unit mass%, C: 0.15% to 0.40%, Mn: 0.10% to 1.50%, S: 0.00. 002 to 0.020%, Ti: 0.005% to 0.050%, B: 0.0005 to 0.0050%, Bi: 0.0010% to 0.0100%, P: 0.020% or less, N: 0.0100% or less, Si: 0% or more and less than 0.30%, Cr: 0 to 1.50%, Al: 0 to 0.050%, Mo: 0 to 0.20%, Cu: 0 to It contains 0.20%, Ni: 0 to 0.20%, and Nb: 0 to 0.030%, with the balance being Fe and impurities.
(2) In the steel according to (1), the chemical component is unit mass%, Si: 0.01% or more and less than 0.30%, Cr: 0.01 to 1.50%, and Al: One or more selected from the group consisting of 0.001 to 0.050% may be contained.
(3) In the steel according to (1) or (2), the chemical component is unit mass%, Mo: 0.02 to 0.20%, Cu: 0.02 to 0.20%, Ni One or two or more selected from the group consisting of: 0.02 to 0.20% and Nb: 0.002 to 0.030% may be contained.
(4) The steel according to any one of (1) to (3) may have an N fixed index I FN defined by the following formula 1 of 0 or more.
I FN = [Ti] −3.5 × [N] (Formula 1)
Here, [Ti] is the Ti content in unit mass%, and [N] is the N content in unit mass%.
(5) above (1) to (4) Steel according to any one of, Ti-Nb-based precipitates generated index I P, which is defined by Equation 2 below may also be 0.0100 or less .
I P = 0.3 × [Ti] + 0.15 × [Nb] − [N] (Formula 2)
Here, [Ti] is the Ti content in unit mass%, [Nb] is the Nb content in unit mass%, and [N] is the N content in unit mass%.
本発明によれば、冷間鍛造前の軟質化と、冷間鍛造後の焼入れ時の粗大粒の発生の抑制との両方を達成することができる鋼を提供できる。また、本発明に係る鋼は、鋳造時及び圧延時等に割れが生じることがなく、さらに製造設備に負荷を掛けない範囲内の条件で製造可能であるので、製造性に優れる。本発明に係る鋼を冷間鍛造部品に適用することで、冷間鍛造時の金型の損耗を抑制し、金型の寿命が向上できる。また、本発明に係る鋼を冷間鍛造部品に適用することで、高価な金型のコストを低減できるので、特に引張強さが800MPa以上の高強度ボルトの製造コストの低減に寄与することができる。さらに、本発明に係る鋼は切削性にも優れる。そのため、本発明は産業上の貢献が極めて大きい。 According to the present invention, it is possible to provide steel that can achieve both softening before cold forging and suppression of generation of coarse grains during quenching after cold forging. Moreover, the steel according to the present invention is excellent in manufacturability because it is not cracked during casting or rolling, and can be manufactured under conditions that do not place a load on the manufacturing equipment. By applying the steel according to the present invention to a cold forged part, wear of the mold during cold forging can be suppressed, and the life of the mold can be improved. In addition, by applying the steel according to the present invention to cold forged parts, the cost of expensive dies can be reduced, which can contribute to the reduction of the manufacturing cost of high-strength bolts having a tensile strength of 800 MPa or more. it can. Furthermore, the steel according to the present invention is excellent in machinability. Therefore, the present invention has a great industrial contribution.
本発明の一実施形態に係る鋼について説明する。本実施形態に係る鋼は、以下の特徴を有する。 The steel according to one embodiment of the present invention will be described. The steel according to this embodiment has the following characteristics.
(a)本実施形態に係る鋼は、化学成分が、単位質量%で、C:0.15%~0.40%、Mn:0.10%~1.50%、S:0.002~0.020%、Ti:0.005%~0.050%、B:0.0005~0.0050%、Bi:0.0010%~0.0100%、P:0.020%以下、N:0.0100%以下、Si:0%以上0.30%未満、Cr:0~1.50%、Al:0~0.050%、Mo:0~0.20%、Cu:0~0.20%、Ni:0~0.20%、及びNb:0~0.030%を含有し、残部がFeおよび不純物からなる。
(b)上記(a)に記載の鋼は、前記化学成分が、単位質量%で、Si:0.01%以上0.30%未満、Cr:0.01~1.50%、及びAl:0.001~0.050%からなる群から選択される1種又は2種以上を含有してもよい。
(c)上記(a)または(b)に記載の鋼は、前記化学成分が、単位質量%で、Mo:0.02~0.20%、Cu:0.02~0.20%、Ni:0.02~0.20%、及びNb:0.002~0.030%からなる群から選択される1種又は2種以上を含有してもよい。
(d)上記(a)~(c)のいずれか一項に記載の鋼は、以下の式1によって定義されるN固定指数IFNが0以上であってもよい。
IFN=[Ti]-3.5×[N]…(式1)
ここで[Ti]は単位質量%でのTi含有量であり、[N]は単位質量%でのN含有量である。
(e)上記(a)~(d)のいずれか一項に記載の鋼は、以下の式2によって定義されるTi-Nb系析出物生成指数IPが0.0100以下であってもよい。
IP=0.3×[Ti]+0.15×[Nb]-[N]…(式2)
ここで[Ti]は単位質量%でのTi含有量であり、[Nb]は単位質量%でのNb含有量であり、[N]は単位質量%でのN含有量である。
また、本実施形態に係る鋼に対して、公知の方法でボルト加工・焼入れ・焼戻しを行うことにより、優れた生産性で、粗大粒の発生がないボルトが得られる。
(A) In the steel according to the present embodiment, the chemical composition is unit mass%, C: 0.15% to 0.40%, Mn: 0.10% to 1.50%, S: 0.002 to 0.020%, Ti: 0.005% to 0.050%, B: 0.0005 to 0.0050%, Bi: 0.0010% to 0.0100%, P: 0.020% or less, N: 0.0100% or less, Si: 0% or more and less than 0.30%, Cr: 0 to 1.50%, Al: 0 to 0.050%, Mo: 0 to 0.20%, Cu: 0 to 0.0. 20%, Ni: 0 to 0.20%, and Nb: 0 to 0.030%, with the balance being Fe and impurities.
(B) In the steel described in (a) above, the chemical component is unit mass%, Si: 0.01% or more and less than 0.30%, Cr: 0.01 to 1.50%, and Al: One or more selected from the group consisting of 0.001 to 0.050% may be contained.
(C) In the steel described in (a) or (b), the chemical component is unit mass%, Mo: 0.02 to 0.20%, Cu: 0.02 to 0.20%, Ni One or two or more selected from the group consisting of: 0.02 to 0.20% and Nb: 0.002 to 0.030% may be contained.
(D) The steel according to any one of the above (a) to (c) may have an N fixed index I FN defined by the following formula 1 of 0 or more.
I FN = [Ti] −3.5 × [N] (Formula 1)
Here, [Ti] is the Ti content in unit mass%, and [N] is the N content in unit mass%.
(E) above (a) ~ according to any one of (d) steel, Ti-Nb-based precipitates generated index I P, which is defined by Equation 2 below may also be 0.0100 or less .
I P = 0.3 × [Ti] + 0.15 × [Nb] − [N] (Formula 2)
Here, [Ti] is the Ti content in unit mass%, [Nb] is the Nb content in unit mass%, and [N] is the N content in unit mass%.
Moreover, the bolt which does not generate | occur | produce a coarse grain with excellent productivity is obtained by performing bolt processing, quenching, and tempering with respect to the steel which concerns on this embodiment by a well-known method.
本発明者らは、析出強化による顕著なフェライトの硬さの増加を生じさせ、従って鋼の硬さの増加を生じさせて鋼の冷間加工性を損なう粒子であるTiC及びTi(CN)等を微細分散させる従来技術とは別の、粗大粒の発生抑制技術について検討した。上記の特徴は、鋼の焼入れ加熱時におけるオーステナイト結晶粒の異常粒成長の抑制技術について本発明者らが鋭意研究して得られた以下の知見に基づいている。 The inventors have noticed a significant increase in ferrite hardness due to precipitation strengthening, and hence TiC and Ti (CN), etc., which are particles that cause an increase in steel hardness and impair the cold workability of steel. We studied a technology for suppressing the generation of coarse grains, which is different from the conventional technology for finely dispersing the particles. The above features are based on the following findings obtained by the present inventors by earnestly studying the technology for suppressing abnormal grain growth of austenite grains during quenching and heating of steel.
(1)0.0100%以下という極めて微量のBiによって、焼入れ加熱時のオーステナイト結晶粒の異常粒成長を抑制し、寸法精度及び機械特性などに優れた冷間加工部品を得ることができる。 (1) With a very small amount of Bi of 0.0100% or less, abnormal grain growth of austenite crystal grains during quenching heating can be suppressed, and a cold-worked part having excellent dimensional accuracy and mechanical properties can be obtained.
(2)上述のBiの効果によって、従来ピン止め粒子として利用していた析出物(TiC、Ti(CN)、NbC)に依存することなく(即ち鋼の冷間加工性を損なうことなく)オーステナイト結晶粒の異常粒成長を抑制することができる。これにより、熱間圧延後の圧延材の硬さを抑制し、鋼の冷間加工性を高めることができる。 (2) Austenite without depending on precipitates (TiC, Ti (CN), NbC) conventionally used as pinning particles (ie, without impairing the cold workability of steel) due to the effect of Bi described above. Abnormal grain growth of crystal grains can be suppressed. Thereby, the hardness of the rolling material after hot rolling can be suppressed and the cold workability of steel can be improved.
(3)一方、Bi含有量が0.0100%を超えると、鋼の熱間延性が低下することにより鋼の製造工程(鋳造、圧延工程等)において割れ、きずが発生しやすくなり、鋼の歩留まりが低下することがわかった。さらに、Bi含有量が0.0100%を超えると、焼入れ後の鋼において粒界脆化が生じ、鋼の機械特性が損なわれることもわかった。従って、本実施形態に係る鋼においてBiの含有は必須であるものの、その含有量は極めて低い水準に抑制される必要があることもわかった。 (3) On the other hand, if the Bi content exceeds 0.0100%, the hot ductility of the steel decreases, so that cracks and flaws are likely to occur in the steel manufacturing process (casting, rolling process, etc.). It was found that the yield decreased. Furthermore, it was also found that when the Bi content exceeds 0.0100%, grain boundary embrittlement occurs in the steel after quenching, and the mechanical properties of the steel are impaired. Therefore, it was also found that the Bi content is essential in the steel according to the present embodiment, but the content needs to be suppressed to an extremely low level.
以下、本実施形態に係る鋼について詳細に説明する。
まず、本発明の鋼の化学成分について説明する。以下、化学成分に関する単位「%」は、「質量%」を示す。
Hereinafter, the steel according to the present embodiment will be described in detail.
First, chemical components of the steel of the present invention will be described. Hereinafter, the unit “%” regarding the chemical component indicates “% by mass”.
[C:0.15~0.40%]
Cは、焼戻しマルテンサイト組織を持つ鋼の強度を高めるために必要な元素である。焼入れ後の引張強さを800MPa以上とするために、C含有量を0.15%以上とする必要がある。好ましいC含有量の下限は、0.17%、0.19%、又は0.23%である。
他方、C含有量が0.40%を超えると熱間圧延後の圧延材の硬さが高くなりすぎるので、冷間鍛造用金型の寿命が著しく低下する。そのため、C含有量の上限を0.40%とする。好ましいC含有量の上限は0.35%、0.34%、0.33%、又は0.30%である。
[C: 0.15-0.40%]
C is an element necessary for increasing the strength of steel having a tempered martensite structure. In order to set the tensile strength after quenching to 800 MPa or more, the C content needs to be 0.15% or more. The lower limit of the preferred C content is 0.17%, 0.19%, or 0.23%.
On the other hand, if the C content exceeds 0.40%, the hardness of the rolled material after hot rolling becomes too high, so the life of the cold forging die is significantly reduced. Therefore, the upper limit of C content is 0.40%. The upper limit of the preferable C content is 0.35%, 0.34%, 0.33%, or 0.30%.
[Mn:0.10~1.50%]
Mnは鋼の焼入性を向上させるのに有効な元素である。焼入れによってマルテンサイトを得るために必要な焼入性を確保するために、Mn含有量を0.10%以上とする必要がある。好ましいMn含有量の下限は0.20%、0.35%、又は0.40%である。
他方、Mn含有量が1.50%を超えると、熱間圧延後且つ冷間鍛造前の圧延材の硬さが高くなりすぎるので、冷間鍛造用の金型の寿命が著しく低下する。そのため、Mn含有量の上限を1.50%とする。好ましいMn含有量の上限は1.30%、1.00%、又は0.80%である。
[Mn: 0.10 to 1.50%]
Mn is an element effective for improving the hardenability of steel. In order to ensure the hardenability necessary for obtaining martensite by quenching, the Mn content needs to be 0.10% or more. The lower limit of the preferable Mn content is 0.20%, 0.35%, or 0.40%.
On the other hand, if the Mn content exceeds 1.50%, the hardness of the rolled material after hot rolling and before cold forging becomes too high, so that the life of the cold forging die is significantly reduced. Therefore, the upper limit of the Mn content is 1.50%. The upper limit of the preferable Mn content is 1.30%, 1.00%, or 0.80%.
[S:0.002~0.020%]
Sは、MnS、TiS、及びTi2C2Sとして鋼中に存在し、焼入れ加熱時にピン止め粒子として働くことによりオーステナイト結晶粒の異常粒成長を抑制する効果を持つ。このため、S含有量を0.002%以上とする必要がある。好ましいS含有量の下限は0.003%である。
しかし、本実施形態に係る鋼ではBiを用いて異常粒成長を抑制するので、S含有量は従来技術より少なくても足りる。さらに、S含有量が0.020%を超えると、Sが焼入れ後の鋼の旧オーステナイト粒界を脆化させ、耐遅れ破壊特性(耐水素脆化特性)を低下させる。加えて、上述のTi2C2Sは鋼の切削性を損ねる粒子であるので、S含有量が0.020%を超えると鋼の切削性の劣化が生じるおそれがある。そのため、S含有量を0.020%以下に制限する必要がある。好ましくは、S含有量の上限値は0.015%、0.010%、又は0.005%である。
[S: 0.002 to 0.020%]
S exists in steel as MnS, TiS, and Ti 2 C 2 S, and has the effect of suppressing abnormal grain growth of austenite crystal grains by acting as pinning particles during quenching heating. For this reason, it is necessary to make S content 0.002% or more. The lower limit of the preferable S content is 0.003%.
However, since the steel according to the present embodiment uses Bi to suppress abnormal grain growth, the S content may be smaller than that of the prior art. Furthermore, if the S content exceeds 0.020%, S causes embrittlement of the prior austenite grain boundaries of the steel after quenching, and deteriorates delayed fracture resistance (hydrogen embrittlement resistance). In addition, since Ti 2 C 2 S described above is a particle that impairs the machinability of the steel, if the S content exceeds 0.020%, the machinability of the steel may be deteriorated. Therefore, it is necessary to limit the S content to 0.020% or less. Preferably, the upper limit of the S content is 0.015%, 0.010%, or 0.005%.
[Ti:0.005%~0.050%]
Tiは、鋼中のC、N、Sと化合物を形成してTiN、Ti(CN)、TiC、TiS、Ti2C2S等のTi系介在物として鋼中に存在し、焼入れ加熱時にピン止め粒子として働くことによりオーステナイト結晶粒の異常粒成長を抑制する効果を持つ。またTiは、鋼中の固溶Nと強い親和力を持つので、鋼中の固溶Nを予めTiNとして固定し、BNの生成を抑制するのに極めて有効な元素である。ボロン鋼においては、焼入性の向上に有効である固溶Bの含有量を確保するために、BNの生成を抑制することが必要である。よって、Ti含有量を0.005%以上とする必要がある。好ましいTi含有量の下限は0.010%、0.015%、又は0.020%である。
しかし、本実施形態に係る鋼ではBiを用いて異常粒成長を抑制するので、Ti含有量は従来技術より少なくても足りる。さらに、Ti含有量が0.050%を超えると、Ti系介在物粒子が析出強化を生じさせ、熱間圧延後の圧延材の硬さが高くなりすぎるので、冷間鍛造用の金型の寿命が著しく低下する。Ti系介在物粒子の含有量を高めながら熱間圧延後の圧延材の硬さを抑制するためには、熱間圧延温度を低くする必要があるが、このことは生産性、及び設備寿命等の点で好ましくない。さらに、Ti含有量を高めた場合、鋼の切削性を損ねる粒子であるTi2C2Sが大量に生じ、切削性の劣化が生じるので、本実施形態に係る鋼に切削加工を適用することが困難になる。そのため、Ti含有量の上限を0.050%とする。好ましいTi含有量は、0.040%以下、0.030%以下、0.030%未満、または0.025%以下である。
[Ti: 0.005% to 0.050%]
Ti forms a compound with C, N, and S in steel and exists in steel as Ti-based inclusions such as TiN, Ti (CN), TiC, TiS, and Ti 2 C 2 S. By acting as a stop particle, it has the effect of suppressing abnormal grain growth of austenite grains. Further, Ti has a strong affinity for solute N in steel, and is therefore an extremely effective element for preliminarily fixing solute N in steel as TiN and suppressing the formation of BN. In boron steel, it is necessary to suppress the formation of BN in order to ensure the content of solute B that is effective in improving hardenability. Therefore, the Ti content needs to be 0.005% or more. The lower limit of the preferable Ti content is 0.010%, 0.015%, or 0.020%.
However, since the steel according to this embodiment uses Bi to suppress abnormal grain growth, the Ti content may be smaller than that of the prior art. Furthermore, if the Ti content exceeds 0.050%, Ti-based inclusion particles cause precipitation strengthening, and the hardness of the rolled material after hot rolling becomes too high. The service life is significantly reduced. In order to suppress the hardness of the rolled material after hot rolling while increasing the content of Ti-based inclusion particles, it is necessary to lower the hot rolling temperature, which means productivity, equipment life, etc. This is not preferable. Furthermore, when the Ti content is increased, a large amount of Ti 2 C 2 S, which is a particle that impairs the machinability of the steel, is produced, and the machinability is deteriorated. Becomes difficult. Therefore, the upper limit of the Ti content is 0.050%. A preferable Ti content is 0.040% or less, 0.030% or less, less than 0.030%, or 0.025% or less.
[B:0.0005~0.0050%]
Bは、微量に含有された場合に鋼の焼入性の向上に寄与する元素であり、熱間圧延後且つ冷間鍛造前の圧延材の硬さを増加させることなく、焼入性の向上効果を得て冷間鍛造及び焼入れ後の硬さを増大させることができる。Bは、特にボルト用ボロン鋼に必須の元素である。また、Bは旧オーステナイト粒界に偏析して旧オーステナイト粒界を強化することによって粒界破壊を抑制する効果を有する。上記の効果を得る場合には、B含有量を0.0005%以上とする必要がある。好ましくは、B含有量の下限値は0.0010%、0.0012%、または0.0015%である。
他方、B含有量が0.0050%を超えると、その効果は飽和する。そのため、B含有量を0.0050%以下とする。好ましくは、B含有量の上限値は0.0030%、0.0025%、0.0020%、又は0.0018%である。
[B: 0.0005 to 0.0050%]
B is an element that contributes to improving the hardenability of steel when contained in a trace amount, and improves hardenability without increasing the hardness of the rolled material after hot rolling and before cold forging. An effect can be acquired and the hardness after cold forging and hardening can be increased. B is an essential element particularly for boron steel for bolts. Further, B has an effect of suppressing grain boundary fracture by segregating at the prior austenite grain boundaries and strengthening the prior austenite grain boundaries. In order to obtain the above effect, the B content needs to be 0.0005% or more. Preferably, the lower limit of the B content is 0.0010%, 0.0012%, or 0.0015%.
On the other hand, when the B content exceeds 0.0050%, the effect is saturated. Therefore, the B content is 0.0050% or less. Preferably, the upper limit of the B content is 0.0030%, 0.0025%, 0.0020%, or 0.0018%.
[Bi:0.0010%~0.0100%]
約0.0010%~0.0100%程度の微量のBiが鋼の焼入れの際に組織に及ぼす影響について、これまで詳細に検討された例は無い。本発明者らは、微量のBiが焼入れ加熱時のオーステナイト結晶粒の異常粒成長を抑制することによって、粗大粒の発生を防止する効果があることを知見した。また、異常粒成長を抑制するために必要なBi含有量は微量であるので、焼入れ加熱時の粗大粒の発生を抑制する上述のBiの効果が、熱間圧延後の圧延材の硬さを増加させることなく得られることも、本発明者らは知見した。上記の効果を得る場合には、Bi含有量を0.0010%以上とする必要がある。Bi含有量の下限値は、好ましくは0.0020%、0.0025%、又は0.0030%である。
他方、Bi含有量が0.0100%を超えると、その効果は飽和するのみならず、鋼の熱間延性が低下するので鋼の製造工程(鋳造、圧延工程等)において割れ、きずが発生しやすくなり、歩留まりが低下する。さらに、Bi含有量が0.0100%を超えると、焼入れ後の鋼において粒界脆化が生じ、鋼の機械特性が損なわれる。そのため、Bi含有量を0.0100%以下とする。Bi含有量は好ましくは0.0100%未満、0.0080%以下、又は0.0060%以下である。
[Bi: 0.0010% to 0.0100%]
There has been no detailed study of the influence of a minute amount of Bi of about 0.0010% to 0.0100% on the structure during steel quenching. The present inventors have found that a small amount of Bi has an effect of preventing the generation of coarse grains by suppressing abnormal grain growth of austenite crystal grains during quenching heating. Moreover, since Bi content required in order to suppress abnormal grain growth is very small, the above-mentioned effect of Bi that suppresses the generation of coarse grains during quenching heating reduces the hardness of the rolled material after hot rolling. The inventors have also found that it can be obtained without increasing. In order to obtain the above effect, the Bi content needs to be 0.0010% or more. The lower limit of Bi content is preferably 0.0020%, 0.0025%, or 0.0030%.
On the other hand, when the Bi content exceeds 0.0100%, not only the effect is saturated, but also the hot ductility of the steel decreases, so cracks and flaws occur in the steel manufacturing process (casting, rolling process, etc.). It becomes easier and the yield decreases. Furthermore, if the Bi content exceeds 0.0100%, grain boundary embrittlement occurs in the steel after quenching, and the mechanical properties of the steel are impaired. Therefore, the Bi content is 0.0100% or less. The Bi content is preferably less than 0.0100%, 0.0080% or less, or 0.0060% or less.
[P:0.020%以下]
Pは不純物であり、旧γ粒界を脆化させ、鋼の耐遅れ破壊特性(耐水素脆化特性)を低下させる元素である。そのため、P含有量を0.020%以下に制限する必要がある。好ましくは、P含有量の上限値は0.015%、0.013%、又は0.010%である。
Pは本実施形態にかかる鋼の課題を解決するために必要とされないので、P含有量の下限値は0%である。しかし、P含有量を低減するための精錬工程のコストを抑制するために、P含有量の下限値を0.001%としてもよい。
[P: 0.020% or less]
P is an impurity and is an element that embrittles the old γ grain boundary and lowers the delayed fracture resistance (hydrogen embrittlement resistance) of the steel. Therefore, it is necessary to limit the P content to 0.020% or less. Preferably, the upper limit of the P content is 0.015%, 0.013%, or 0.010%.
Since P is not required to solve the problem of the steel according to the present embodiment, the lower limit value of the P content is 0%. However, in order to suppress the cost of the refining process for reducing the P content, the lower limit value of the P content may be 0.001%.
[N:0.0100%以下]
Nは、Bと化合物を形成してBNとして鋼中に存在している場合には、固溶B量を減少させて、Bによる焼入性の向上効果を損なう。Nは、本実施形態に係る鋼では有害であるので、N含有量の下限値は0%である。しかし、N含有量を低減するための精錬工程のコストを抑制するために、N含有量の下限値を0.0001%、0.0005%、又は0.0010%としてもよい。
N含有量が多い場合には、鋼中のNをTiNとして固定するために必要なTi含有量が増加するので、できるだけN含有量を低減することが望ましい。そのためN含有量を0.0100%以下に制限する必要がある。好ましくは、N含有量の上限値は0.0070%、0.0050%、又は0.0040%である。
[N: 0.0100% or less]
When N forms a compound with B and is present in the steel as BN, the amount of solid solution B is reduced, and the effect of improving the hardenability by B is impaired. Since N is harmful in the steel according to this embodiment, the lower limit of the N content is 0%. However, in order to suppress the cost of the refining process for reducing the N content, the lower limit value of the N content may be 0.0001%, 0.0005%, or 0.0010%.
When the N content is large, the Ti content necessary for fixing N in the steel as TiN increases, so it is desirable to reduce the N content as much as possible. Therefore, it is necessary to limit the N content to 0.0100% or less. Preferably, the upper limit of the N content is 0.0070%, 0.0050%, or 0.0040%.
本実施形態に関わるばね用鋼には、必要に応じてSi、Cr、及びAlからなる群から選択される1種又は2種以上を、後述する範囲でさらに含有させても良い。ただし、Si、Cr、及びAlは必須ではないので、Si、Cr、及びAlそれぞれの含有量の下限は0%である。 The spring steel according to the present embodiment may further contain one or more selected from the group consisting of Si, Cr, and Al as necessary, within a range described below. However, since Si, Cr, and Al are not essential, the lower limit of the content of each of Si, Cr, and Al is 0%.
[Si:0%以上0.30%未満]
上述の通り、本実施形態に係る鋼において、Si含有量の下限値は0%である。しかし、Siは、鋼の焼入性を向上させ、マルテンサイトの焼戻し軟化抵抗を向上させるのに有効な元素である。上記の効果を得る場合には、Si含有量を0%超または0.01%以上とすることが好ましい。Si含有量の下限値を、0.05%、又は0.15%としても良い。
しかしSi含有量が0.30%以上になると、熱間圧延後且つ冷間鍛造前の鋼(圧延材)の硬さの上昇量が大きくなるので、冷間鍛造用の金型の寿命が低下する。そのため、Si含有量を0.30%未満とする。好ましいSi含有量の上限は0.27%、0.25%、又は0.20%である。
[Si: 0% or more and less than 0.30%]
As described above, in the steel according to the present embodiment, the lower limit value of the Si content is 0%. However, Si is an element effective in improving the hardenability of steel and improving the temper softening resistance of martensite. In order to obtain the above effect, the Si content is preferably more than 0% or 0.01% or more. The lower limit value of the Si content may be 0.05% or 0.15%.
However, when the Si content is 0.30% or more, the amount of increase in the hardness of the steel (rolled material) after hot rolling and before cold forging increases, so the life of the die for cold forging decreases. To do. Therefore, the Si content is less than 0.30%. The upper limit of the preferable Si content is 0.27%, 0.25%, or 0.20%.
[Cr:0~1.50%]
上述の通り、本実施形態に係る鋼において、Cr含有量の下限値は0%である。しかし、Crは鋼の焼入性を向上させ、またマルテンサイトの焼戻し軟化抵抗を向上させるために有効な元素である。上記の効果を得る場合には、Cr含有量を0%超または0.01%以上とすることが好ましい。Cr含有量の下限値を、0.10%、0.20%、又は0.30%としても良い。
他方、Cr含有量が1.50%を超えると、熱間圧延後且つ冷間鍛造前の圧延材の硬さが高くなりすぎるので、冷間鍛造用の金型の寿命が著しく低下する。そのため、Cr含有量の上限を1.50%とする。好ましいCr含有量の上限は1.20%、1.00%、又は0.80%である。
[Cr: 0 to 1.50%]
As described above, in the steel according to the present embodiment, the lower limit value of the Cr content is 0%. However, Cr is an effective element for improving the hardenability of steel and improving the temper softening resistance of martensite. In order to obtain the above effect, the Cr content is preferably more than 0% or 0.01% or more. The lower limit of the Cr content may be 0.10%, 0.20%, or 0.30%.
On the other hand, if the Cr content exceeds 1.50%, the hardness of the rolled material after hot rolling and before cold forging becomes too high, so the life of the cold forging die is significantly reduced. Therefore, the upper limit of the Cr content is 1.50%. The upper limit of the preferable Cr content is 1.20%, 1.00%, or 0.80%.
[Al:0~0.050%]
Alは鋼の脱酸に有効な元素であるが、他の元素(Si、Ti等)によって脱酸を行う場合は必ずしも含有させなくても良い。従って、Al含有量の下限値は0%である。しかしながら、Alによる脱酸効果を得るためには、0.001%以上、0.005%以上、又は0.010%以上含有させることが好ましい。
他方、Al含有量が0.050%を超えると、粗大な介在物が生成して鋼の靭性が低下するなどの問題が顕著になる。そのため、Alを含有させる場合でも、Al含有量の上限は0.050%とする。Al含有量の上限は好ましくは0.040%、0.030%、又は0.025%である。
[Al: 0 to 0.050%]
Al is an element effective for deoxidation of steel. However, when deoxidation is performed with other elements (Si, Ti, etc.), it is not necessarily included. Therefore, the lower limit of the Al content is 0%. However, in order to obtain the deoxidation effect by Al, it is preferable to contain 0.001% or more, 0.005% or more, or 0.010% or more.
On the other hand, when the Al content exceeds 0.050%, problems such as generation of coarse inclusions and deterioration of the toughness of steel become significant. Therefore, even when Al is contained, the upper limit of the Al content is 0.050%. The upper limit of the Al content is preferably 0.040%, 0.030%, or 0.025%.
本実施形態に関わるばね用鋼には、必要に応じてMo、Cu、Ni、及びNbからなる群から選択される1種又は2種以上を、後述する範囲でさらに含有させても良い。ただし、Mo、Cu、Ni、及びNbは必須ではないので、Mo、Cu、Ni、及びNbそれぞれの含有量の下限は0%である。 The spring steel according to the present embodiment may further contain one or more selected from the group consisting of Mo, Cu, Ni, and Nb as necessary, within a range described below. However, since Mo, Cu, Ni, and Nb are not essential, the lower limit of the contents of Mo, Cu, Ni, and Nb is 0%.
[Mo:0~0.20%]
上述の通り、本実施形態に係る鋼において、Mo含有量の下限値は0%である。しかし、Moは、その含有量が少量であっても鋼の焼入性の向上に寄与する元素である。上記の効果を得る場合には、Mo含有量を0.02%以上とすることが好ましい。さらに好ましくは、Mo含有量の下限値は0.03%、0.04%、又は0.05%である。
他方、Moは高価な合金元素であるので、Mo含有量が0.20%超となると製造コスト上不利である。そのため、Moを含有させる場合でも、Mo含有量を0.20%以下とする。好ましくは、Mo含有量の上限値は0.16%、0.13%、又は0.10%である。
[Mo: 0 to 0.20%]
As described above, in the steel according to the present embodiment, the lower limit value of the Mo content is 0%. However, Mo is an element that contributes to improving the hardenability of steel even if its content is small. In order to obtain the above effect, the Mo content is preferably set to 0.02% or more. More preferably, the lower limit of the Mo content is 0.03%, 0.04%, or 0.05%.
On the other hand, since Mo is an expensive alloy element, if the Mo content exceeds 0.20%, it is disadvantageous in terms of manufacturing cost. Therefore, even when Mo is contained, the Mo content is set to 0.20% or less. Preferably, the upper limit of the Mo content is 0.16%, 0.13%, or 0.10%.
[Cu:0~0.20%]
上述の通り、本実施形態に係る鋼において、Cu含有量の下限値は0%である。しかし、Cuは鋼の耐食性を向上させる元素である。上記の効果を得る場合には、Cu含有量を0.02%以上とすることが好ましい。さらに好ましくは、Cu含有量の下限値は0.05%である。
他方、Cu含有量が0.20%を超えると、鋼の熱間延性が低下し、連続鋳造時の製造性が損なわれるなどの問題が顕著になる。そのため、Cuを含有させる場合でも、Cu含有量を0.20%以下とする。好ましくは、Cu含有量の上限値は0.15%、0.10%、又は0.08%である。
[Cu: 0 to 0.20%]
As described above, in the steel according to the present embodiment, the lower limit value of the Cu content is 0%. However, Cu is an element that improves the corrosion resistance of steel. In order to obtain the above effect, the Cu content is preferably set to 0.02% or more. More preferably, the lower limit of the Cu content is 0.05%.
On the other hand, when the Cu content exceeds 0.20%, the hot ductility of the steel is lowered, and problems such as impaired productivity during continuous casting become remarkable. Therefore, even when Cu is contained, the Cu content is set to 0.20% or less. Preferably, the upper limit of Cu content is 0.15%, 0.10%, or 0.08%.
[Ni:0~0.20%]
上述の通り、本実施形態に係る鋼において、Ni含有量の下限値は0%である。しかし、Niは鋼の耐食性を向上させる元素であり、また、鋼の靭性の向上にも有効な元素である。上記の効果を得る場合には、Ni含有量を0.02%以上とすることが好ましい。さらに好ましくは、Ni含有量の下限値は0.03%、0.04%、又は0.05%である。
他方、Niは高価な合金元素であるので、Ni含有量が0.20%を超えると製造コスト上不利である。そのため、Niを含有させる場合でも、Ni含有量を0.20%以下とする。好ましくは、Ni含有量の上限値は0.15%、0.12%、0.10%、又は0.08%である。
[Ni: 0 to 0.20%]
As described above, in the steel according to the present embodiment, the lower limit value of the Ni content is 0%. However, Ni is an element that improves the corrosion resistance of steel and is also an effective element for improving the toughness of steel. In order to obtain the above effects, the Ni content is preferably 0.02% or more. More preferably, the lower limit of the Ni content is 0.03%, 0.04%, or 0.05%.
On the other hand, since Ni is an expensive alloy element, if the Ni content exceeds 0.20%, it is disadvantageous in terms of manufacturing cost. Therefore, even when Ni is contained, the Ni content is 0.20% or less. Preferably, the upper limit of the Ni content is 0.15%, 0.12%, 0.10%, or 0.08%.
[Nb:0~0.030%]
上述の通り、本実施形態に係る鋼において、Nb含有量の下限値は0%である。しかし、Nbは鋼中のCと化合物を形成してNbC、あるいはTiNb(CN)等のNb系介在物として鋼中に存在し、焼入れ加熱時にピン止め粒子としてオーステナイト結晶粒の異常粒成長を抑制する効果を持つ。上記の効果を得る場合には、Nb含有量を0.002%以上とすることが好ましい。さらに好ましくは、Nb含有量の下限値は0.003%、0.005%、又は0.006%である。
他方、Nb含有量が0.030%を超えると、その効果が飽和するだけでなく、Nb系介在物が析出強化を生じさせるので、連続鋳造時の製造性が損なわれる。あるいはこの場合、Nb系介在物が析出強化を生じさせるので、熱間圧延後の圧延材の硬さが高くなりすぎる。従って、Nb含有量が0.030%を超えると、製造性の低下、及び冷間鍛造用の金型の寿命の著しい低下などの問題が顕著になる。そのため、Nbを含有させる場合でも、Nb含有量を0.030%以下とする。好ましくは、Nb含有量の上限値は0.015%、0.013%、又は0.010%である。
[Nb: 0 to 0.030%]
As described above, in the steel according to the present embodiment, the lower limit value of the Nb content is 0%. However, Nb forms a compound with C in steel and exists in steel as Nb-based inclusions such as NbC or TiNb (CN), and suppresses abnormal growth of austenite grains as pinning particles during quenching heating. Has the effect of In order to obtain the above effect, the Nb content is preferably set to 0.002% or more. More preferably, the lower limit of Nb content is 0.003%, 0.005%, or 0.006%.
On the other hand, when the Nb content exceeds 0.030%, not only the effect is saturated, but also the Nb-based inclusions cause precipitation strengthening, so that the manufacturability during continuous casting is impaired. Alternatively, in this case, Nb-based inclusions cause precipitation strengthening, so that the hardness of the rolled material after hot rolling becomes too high. Therefore, when the Nb content exceeds 0.030%, problems such as a decrease in manufacturability and a significant decrease in the life of a cold forging die become prominent. Therefore, even when Nb is contained, the Nb content is set to 0.030% or less. Preferably, the upper limit of Nb content is 0.015%, 0.013%, or 0.010%.
本実施形態に係る鋼は、上記の合金成分を含有し、その化学成分の残部がFe及び不純物を含む。本実施形態において、不純物とは、鋼材を工業的に製造する際に、鉱石、スクラップ等の原料、その他の要因により混入する成分であって、本実施形態に係る鋼の作用効果を損なわない水準の量であるものを意味する。 The steel according to this embodiment contains the above alloy components, and the balance of the chemical components contains Fe and impurities. In the present embodiment, impurities are components mixed due to raw materials such as ores and scraps and other factors when industrially producing steel materials, and do not impair the effects of the steel according to the present embodiment. Means what is the amount.
[N固定指数IFN:好ましくは0以上]
上述したB含有による効果を得るためには、鋼中に固溶したN(固溶N)を低減することによってBNの生成を抑制することが必要である。したがって、鋼中のNの含有量を低減するとともに、Tiを鋼中に含有させることによって、NをTiNの形で安定的に固定し、これにより固溶N量を低減することが望ましい。TiによりNを固定して上記の効果を得るためには、下記式1によって定義されるN固定指数IFNを0以上とすることが好ましい。N固定指数IFNの下限値を0.0005、0.0010、0.0014、又は0.0050としても良い。ただし、N固定指数IFNを特に限定しなくても、上述された範囲内にTi含有量及びN含有量が制御されている限り、本実施形態に係る鋼は冷間鍛造前に軟質化され、焼入れ時の粗大粒の発生を抑制できる。
IFN=[Ti]-3.5×[N]…(式1)
なお、上記式1における[Ti]、及び[N]は、単位質量%での鋼中のTi含有量、及びN含有量を示し、これらの元素が含有されない場合は0%とする。
[N fixed index I FN : preferably 0 or more]
In order to obtain the above-described effect of containing B, it is necessary to suppress the formation of BN by reducing N (solid solution N) dissolved in the steel. Therefore, it is desirable to reduce the content of N in the steel and to stably fix N in the form of TiN by containing Ti in the steel, thereby reducing the amount of solute N. In order to obtain the above effect by fixing N with Ti, it is preferable to set the N fixed index IFN defined by the following formula 1 to 0 or more. The lower limit of the N fixed index I FN 0.0005,0.0010,0.0014, or may be 0.0050. However, the steel according to the present embodiment is softened before cold forging as long as the Ti content and the N content are controlled within the above-described range even if the N fixed index IFN is not particularly limited. The generation of coarse grains during quenching can be suppressed.
I FN = [Ti] −3.5 × [N] (Formula 1)
In addition, [Ti] and [N] in the above formula 1 indicate the Ti content and N content in the steel in unit mass%, and 0% when these elements are not contained.
[Ti-Nb系析出物生成指数IP:好ましくは0.0100以下]
上述したように、Tiを用いてNをTiNとして固定して固溶N量を減少させることが好ましい。しかしながら、TiNを固定するために必要な量を超過する量のTiを含有することは好ましくない。上述したように、TiはC及びS等とも結合して微細析出物を形成し、これら微細析出物が本実施形態に係る鋼の特性に悪影響を及ぼすおそれがある。また、Nbについても、Tiと同様の働きを有することを本発明者らは知見した。
[Ti—Nb-based precipitate formation index I P : preferably 0.0100 or less]
As described above, it is preferable to reduce the amount of solid solution N by fixing Ti as TiN using Ti. However, it is not preferable to contain an amount of Ti that exceeds the amount necessary to fix TiN. As described above, Ti combines with C and S to form fine precipitates, and these fine precipitates may adversely affect the properties of the steel according to the present embodiment. The present inventors have also found that Nb has the same function as Ti.
具体的には、鋼中に存在する析出物である微細なTiC、Ti(CN)、NbC、TiNb(CN)、及びTi2C2S等のTi-Nb系析出物は、焼入れ加熱時にピン止め粒子としてオーステナイト結晶粒の異常粒成長を抑制することによって粗大粒の発生を抑制する効果を持つ。しかしながら、熱間圧延後の組織中にこれらのTi-Nb系析出物粒子が多量に分散している場合には、微細な析出物粒子による析出強化によってフェライトの硬さが増加するという副作用がある。このため、これらのTi-Nb系析出物粒子が鋼中に過度に多量に分散している場合には熱間圧延後の圧延材の硬さが高くなりすぎるので、冷間鍛造用の金型の寿命が著しく低下するなどの問題が顕著になる。さらに、上述したように、Ti2C2Sは切削性の劣化を生じさせる。そのため、本実施形態に係る鋼では、これらのTi-Nb系析出物粒子の量を制限することが好ましい。 Specifically, fine TiC, Ti (CN), NbC, TiNb (CN), and Ti—Nb-based precipitates such as Ti 2 C 2 S, which are precipitates existing in steel, are pinned during quenching heating. By suppressing abnormal grain growth of austenite crystal grains as stopping grains, it has the effect of suppressing the generation of coarse grains. However, when these Ti—Nb-based precipitate particles are dispersed in a large amount in the structure after hot rolling, there is a side effect that the hardness of the ferrite increases due to precipitation strengthening by fine precipitate particles. . Therefore, when these Ti—Nb-based precipitate particles are dispersed in an excessively large amount in the steel, the hardness of the rolled material after hot rolling becomes too high. Problems such as a significant decrease in the service life of the battery become noticeable. Furthermore, as described above, Ti 2 C 2 S causes deterioration of machinability. Therefore, in the steel according to the present embodiment, it is preferable to limit the amount of these Ti—Nb-based precipitate particles.
熱間圧延後の圧延後の硬さを抑制するためには、下記式2によって算出されるTi-Nb系析出物生成指数IPを0.0100以下とすることが望ましい。Ti-Nb系析出物生成指数IPを0.0075以下、0.0050未満、0.0045以下、0.0040以下、又は0.0035以下としてもよい。ただし、Ti-Nb系析出物生成指数IPを特に限定しなくても、上述された範囲内にTi含有量、Nb含有量、及びN含有量が制御されている限り、本実施形態に係る鋼は冷間鍛造前に軟質化され、焼入れ時の粗大粒の発生を抑制できる。
IP=0.3×[Ti]+0.15×[Nb]-[N]…(式2)
なお、上記式2における[Ti]、[N]及び[Nb]は、単位質量%での鋼中のTi含有量、N含有量、及びNb含有量を示し、これらの元素が含有されない場合は0%とする。
In order to suppress the hardness after rolling after the hot rolling, it is preferable that the Ti-Nb-based precipitates generated index I P, which is calculated by the following equation 2 and 0.0100 or less. The Ti-Nb-based precipitates generated index I P 0.0075 or less, less than 0.0050, 0.0045 or less, 0.0040 or less, or 0.0035 may be less. However, even without particularly limiting the Ti-Nb-based precipitates generated index I P, Ti content within the range described above, Nb content, and N as long as the content is controlled, according to the present embodiment Steel is softened before cold forging and can suppress the generation of coarse grains during quenching.
I P = 0.3 × [Ti] + 0.15 × [Nb] − [N] (Formula 2)
[Ti], [N] and [Nb] in the above formula 2 indicate the Ti content, the N content, and the Nb content in the steel in unit mass%, and when these elements are not contained. 0%.
次に、本実施形態の鋼の好適な製造方法について説明する。
本実施形態の鋼を製造するためには、上述された化学成分の鋼を転炉において溶製し、必要に応じて二次精錬工程を経て、連続鋳造によって鋳片とする。この鋳片を再加熱し、分塊圧延を行うことによって断面が例えば162mm角(縦162mm×横162mm)の線材圧延用の素材(鋼片)とする。次に、鋼片を1000~1280℃程度の温度で加熱し、引き続いて線材圧延を行うことによって、直径6~20mmの線材形状とする。その後熱間において巻取装置によってコイル形状に巻取った後、室温まで冷却する。このようにして、本実施形態の鋼が得られる。
Next, the suitable manufacturing method of the steel of this embodiment is demonstrated.
In order to manufacture the steel of the present embodiment, the above-described chemical component steel is melted in a converter, and a slab is obtained by continuous casting through a secondary refining process as necessary. The slab is reheated and subjected to ingot rolling to obtain a wire rolling material (steel slab) having a cross section of, for example, 162 mm square (vertical 162 mm × lateral 162 mm). Next, the steel slab is heated at a temperature of about 1000 to 1280 ° C. and subsequently subjected to wire rod rolling to form a wire rod having a diameter of 6 to 20 mm. Then, after being hotly wound into a coil shape by a winding device, it is cooled to room temperature. In this way, the steel of this embodiment is obtained.
なお、本実施形態に係る鋼では、析出強化を生じさせるTi系析出粒子の量が抑制されているので、本実施形態に係る鋼の製造方法では、鋼の硬さを抑制するために熱延温度を下げて熱延設備に負荷をかけることは必要とされず、また、硬度上昇に起因する割れ及び疵などの欠陥が鋼に生じにくい。さらに、本実施形態に係る鋼は、熱間圧延後に焼鈍を行うことなく、その硬さが抑制される。従って、本実施形態に係る鋼は、生産性が高い点においても優れている。 In the steel according to the present embodiment, the amount of Ti-based precipitated particles that cause precipitation strengthening is suppressed. Therefore, in the steel manufacturing method according to the present embodiment, hot rolling is performed in order to suppress the hardness of the steel. It is not necessary to apply a load to the hot rolling equipment by lowering the temperature, and defects such as cracks and wrinkles due to an increase in hardness are less likely to occur in the steel. Furthermore, the hardness of the steel according to the present embodiment is suppressed without performing annealing after hot rolling. Therefore, the steel according to this embodiment is excellent in terms of high productivity.
本実施形態の鋼によれば、冷間鍛造前の軟質化と、焼入れ時の粗大粒の発生の抑制とを両立することができる。また、本実施形態の鋼は、鋳造時や圧延時に割れが生じることがなく、製造性に優れる。 According to the steel of this embodiment, both softening before cold forging and suppression of the generation of coarse grains during quenching can be achieved. Moreover, the steel of this embodiment is excellent in manufacturability without cracking during casting or rolling.
本実施形態に係る鋼の硬度は、用途に応じて適宜調整することができるので特に限定されない。しかし冷間鍛造性の確保が必要な場合には、本実施形態に係る鋼の硬度は、Hv180以下とされることが好適であり、Hv170以下、又はHv160以下とされることがさらに好適である。本実施形態に係る鋼の硬度の下限値は特に限定されないが、その化学成分に鑑みて、実質的には約Hv130または約Hv140になると考えられる。本実施形態に係る鋼は、熱間圧延後に焼鈍をしなくても、その硬度を上述の好適範囲内とすることができる。また、本実施形態に係る鋼は切削性にも優れる。 The hardness of the steel according to the present embodiment is not particularly limited because it can be appropriately adjusted according to the application. However, when it is necessary to ensure cold forgeability, the hardness of the steel according to this embodiment is preferably Hv 180 or less, and more preferably Hv 170 or less, or Hv 160 or less. . The lower limit value of the hardness of the steel according to the present embodiment is not particularly limited, but is considered to be substantially about Hv130 or about Hv140 in view of its chemical composition. Even if it does not anneal after hot rolling, the steel which concerns on this embodiment can make the hardness into the above-mentioned suitable range. Moreover, the steel according to the present embodiment is excellent in machinability.
また、本実施形態に係る鋼に対して、例えば840℃~1100℃の温度に加熱して30分間保持し、その後水冷あるいは油冷する条件で焼入れを行い、更に150℃から450℃の温度範囲で加熱保持する焼戻処理を行った場合、その引張強さを800MPa以上とすることができる。従って本実施形態に係る鋼は、高強度を要求される部品の材料として好適である。ただし、本実施形態に係る鋼を焼入れ用鋼として用いる場合に、熱処理条件は特に限定されず、用途に応じて適宜選択することができる。 Further, the steel according to the present embodiment is heated to a temperature of, for example, 840 ° C. to 1100 ° C., held for 30 minutes, and then quenched under water cooling or oil cooling, and further in a temperature range of 150 ° C. to 450 ° C. When the tempering process is performed by heating and holding, the tensile strength can be 800 MPa or more. Therefore, the steel according to the present embodiment is suitable as a material for parts that require high strength. However, when using the steel which concerns on this embodiment as steel for hardening, heat processing conditions are not specifically limited, It can select suitably according to a use.
本実施形態に係る鋼の用途は特に限定されないが、冷間鍛造及び焼入れによって製造される高強度機械部品、特に高強度ボルトに適用されることが好適である。冷間鍛造性が高い本実施形態に係る鋼を高強度機械部品の材料として用いる場合、冷間鍛造時の金型の損耗を抑制し、金型の寿命が向上できる。また、高価な金型のコストを低減できるので、特に引張強さが800MPa以上の高強度ボルトの製造コストの低減に寄与することができる。 Although the use of the steel according to the present embodiment is not particularly limited, it is preferable that the steel is applied to high-strength mechanical parts manufactured by cold forging and quenching, particularly high-strength bolts. When the steel according to the present embodiment having high cold forgeability is used as a material for high-strength mechanical parts, wear of the mold during cold forging can be suppressed and the life of the mold can be improved. Moreover, since the cost of an expensive metal mold | die can be reduced, it can contribute to the reduction of the manufacturing cost of the high intensity | strength volt | bolt whose tensile strength is 800 MPa or more especially.
次に、実施例を用いて本発明を説明するが、本発明は、以下の例に限定されない。 Next, the present invention will be described using examples, but the present invention is not limited to the following examples.
まず、表1-1及び表1-2に示す化学成分を有する鋼を転炉により溶製し、更に連続鋳造により鋳片とした。なお、表1-1及び表1-2において、含有量が不純物水準以下である元素については、その含有量の表示を空白とし、N固定指数IFN及びTi-Nb系析出物生成指数IPの算出の際は「0質量%」と見なした。また、表1-1及び表1-2において、本発明の規定範囲外である値には下線を付した。これにより得られた鋳片に、鋳片表面割れが生じているか否かを確認した。鋳片表面割れの確認においては、チェックスカーフによって鋳片表面のスケールを除去した後、鋳片表面を観察し、割れ深さを調査した。鋳片の表面に深さ1mm以上の割れが検出されたものは、連続鋳造時の鋳片表面割れ「あり」と判定し、製造性について「不合格」と判定した。製造性評価結果を表2-1及び2-2に示す。 First, steels having the chemical components shown in Table 1-1 and Table 1-2 were melted by a converter and further cast into slabs by continuous casting. In Table 1-1 and Table 1-2, for elements whose content is less than or equal to the impurity level, the content display is left blank, and the N fixed index I FN and Ti—Nb-based precipitate formation index I P In the calculation of “0% by mass”, it was considered. In Table 1-1 and Table 1-2, values outside the specified range of the present invention are underlined. It was confirmed whether or not a slab surface crack occurred in the slab obtained in this way. In the confirmation of the slab surface crack, the scale of the slab surface was removed with a check scarf, and then the slab surface was observed to investigate the crack depth. When a crack having a depth of 1 mm or more was detected on the surface of the slab, the slab surface crack during continuous casting was determined as “present”, and the manufacturability was determined as “failed”. The manufacturability evaluation results are shown in Tables 2-1 and 2-2.
この鋳片に必要に応じて均熱拡散処理、分塊圧延を行い、断面が162mm角(縦162mm×横162mm)の線材圧延用の素材(鋼片)を得た。次に、鋼片を1000~1280℃程度の温度で加熱し、引き続いて線材圧延を行うことによって、直径10mmの線材(ばね用鋼)とした。 The cast slab was subjected to soaking diffusion treatment and partial rolling as necessary to obtain a wire rolling material (steel piece) having a cross section of 162 mm square (vertical 162 mm × lateral 162 mm). Next, the steel slab was heated at a temperature of about 1000 to 1280 ° C. and subsequently subjected to wire rod rolling to obtain a wire rod (spring steel) having a diameter of 10 mm.
圧延後の線材からビッカース硬さ測定用の試験片を切り出した。具体的には、圧延方向に対して平行方向で、線材の中心軸を含む断面を有する試験片を切り出した。切り出した断面に対して研磨を行った後、線材の表面から線材の直径の1/4の深さの部位(1/4部)のビッカース硬さを測定した。試験荷重は10kgfとし、4点を測定した平均値を「圧延後硬さ」として表2-1及び表2-2に記載し、これを冷間鍛造用の金型の寿命を予測する指標とした。圧延材の硬さがHV180を超えるものについては、冷間鍛造用の金型の寿命の十分な改善効果が得られないので「冷間鍛造性」が「不合格」であると判定した。冷間鍛造性の評価結果を表2-1及び2-2に示す。 A test piece for Vickers hardness measurement was cut out from the rolled wire. Specifically, a test piece having a cross section including the central axis of the wire in a direction parallel to the rolling direction was cut out. After the cut cross section was polished, the Vickers hardness of a portion (1/4 part) having a depth of 1/4 of the diameter of the wire from the surface of the wire was measured. The test load is 10 kgf, and the average value obtained by measuring four points is described as “hardness after rolling” in Tables 2-1 and 2-2. This is an index for predicting the life of a die for cold forging. did. About what the hardness of a rolling material exceeds HV180, since the sufficient improvement effect of the metal mold | die for cold forging was not acquired, it was determined that "cold forgeability" was "failed". The evaluation results of cold forgeability are shown in Tables 2-1 and 2-2.
また、線材をボルト形状に加工する際の伸線や冷間鍛造(冷間加工)の影響をシミュレートするために、線材に対して減面率70%の冷間引き抜き加工を行った後、840℃~1100℃の温度に30分間加熱し、水冷による焼入れを行って、オーステナイト組織をマルテンサイト組織の旧オーステナイト粒界として凍結した。その後、焼入れを行った試験片に対して必要に応じてA1点以下の温度域で焼戻しを行い、圧延・引抜方向に対して平行方向で、引き抜き材の中心を含む断面を有する試験片を切り出した。切り出した試験片の断面に対して研磨を行った後、腐食によって旧オーステナイト粒界を現出し、光学顕微鏡で観察することによって、焼入れ及び焼戻し後の旧オーステナイト結晶粒度を測定した。旧オーステナイト結晶粒度の測定は、JISG0551に準じて行った。測定視野は倍率400倍で10視野以上とし、旧オーステナイト粒度が5番以下の大きな結晶粒が1つでも存在する試験片は、粗大粒が発生しているものと判定した。種々の温度に加熱した試験片に対して旧オーステナイト粒度の観察・測定を行うことにより明らかになる、粗大粒が発生する限界(最低)の加熱温度を、その試験片の結晶粒粗大化温度と定義し、耐結晶粒粗大化特性の指標とした。結晶粒粗大化温度が900℃以下のものは耐結晶粒粗大化特性に劣るので「不合格」と判定した。結晶粒粗大化温度測定結果を表2-1及び表2-2に示す。 In addition, in order to simulate the effect of wire drawing or cold forging (cold working) when processing the wire into a bolt shape, after performing cold drawing with a surface reduction ratio of 70% on the wire, Heating was performed at a temperature of 840 ° C. to 1100 ° C. for 30 minutes, and quenching by water cooling was performed to freeze the austenite structure as a prior austenite grain boundary of the martensite structure. Thereafter, tempering is performed on the quenched specimen as necessary, and a specimen having a cross section including the center of the drawn material is cut out in a direction parallel to the rolling / pulling direction. It was. After the cross section of the cut specimen was polished, the prior austenite grain boundaries appeared by corrosion and observed with an optical microscope to measure the prior austenite grain size after quenching and tempering. The prior austenite grain size was measured according to JISG0551. The measurement field of view was 400 times magnification and 10 fields or more, and a test piece in which even one large crystal grain having a prior austenite grain size of No. 5 or less was present was determined to have coarse grains. The limit (minimum) heating temperature at which coarse grains are generated, which is clarified by observing and measuring the prior austenite grain size for test pieces heated to various temperatures, is the crystal grain coarsening temperature of the test piece. Defined and used as an index of the resistance to grain coarsening. Those having a crystal grain coarsening temperature of 900 ° C. or lower were judged to be “failed” because they had poor resistance to crystal grain coarsening. The results of measuring the crystal grain coarsening temperature are shown in Tables 2-1 and 2-2.
表2-1及び表2-2より、本発明例であるA1~A32は圧延後の線材の硬さが低く、冷間鍛造用金型の寿命を向上させることが期待できるので、冷間鍛造性に優れており、冷間加工後の焼入れ加熱時において900℃を超えて加熱しても粗大粒が発生せず、しかも連続鋳造時に鋳片の表面割れが発生しないので鋳片の屑化率が低く、従って製造性に優れていることが明らかである。なお、上述の旧オーステナイト結晶粒度測定のための熱処理を行った後の本発明例A1~A32は、すべて800MPa以上の引張強さを有していた。 From Tables 2-1 and 2-2, A1 to A32, which are examples of the present invention, have low hardness of the wire after rolling and can be expected to improve the life of the cold forging die. Slab debris rate because no coarse grains are generated even when heated above 900 ° C during quenching and heating after cold working, and surface cracks of the slab do not occur during continuous casting It is clear that it is low and therefore is excellent in manufacturability. The inventive examples A1 to A32 after the heat treatment for measuring the prior austenite grain size described above all had a tensile strength of 800 MPa or more.
これに対して比較例の場合には、上記冷間鍛造性、粗大粒防止特性、製造性のいずれかが劣っている。すなわち、B1~B4はBi添加量が多すぎるので熱間延性が低下し、製造性が劣った。B5~B7はBiが添加されていない、あるいは添加量が少なすぎるので粗大粒防止特性が劣った。B8、B9はTiの添加量が多すぎる、あるいはTi添加量に対してN含有量が少量でTi-Nb系析出物生成指数IPが超過したので圧延後の線材の硬さが高く、冷間鍛造性に劣った。 On the other hand, in the case of the comparative example, any of the cold forgeability, coarse grain prevention characteristics, and manufacturability is inferior. That is, since B1 to B4 have too much Bi added, the hot ductility is lowered and the manufacturability is poor. In B5 to B7, Bi was not added, or the addition amount was too small, so the coarse grain preventing properties were inferior. In B8 and B9, the added amount of Ti is too large, or the N content is small relative to the added Ti amount and the Ti—Nb-based precipitate formation index IP is exceeded. It was inferior to the forgeability.
本発明によれば、冷間鍛造時の軟質化と、冷間鍛造後の焼入れ時の粗大粒の発生の抑制との両方を達成することができる鋼を提供できる。また、本発明に係る鋼は、鋳造時や圧延時に割れが生じることがなく、さらに製造設備に負荷を掛けない範囲内の条件で製造可能であるので、製造性に優れる。本発明に係る鋼を冷間鍛造部品に適用することで、冷間鍛造時の金型の損耗を抑制し、金型の寿命が向上できる。また、本発明に係る鋼を冷間鍛造部品に適用することで、高価な金型のコストを低減できるので、特に引張強さが800MPa以上の高強度ボルトの製造コストの低減に寄与することができる。さらに、本発明に係る鋼は切削性にも優れる。そのため、本発明は産業上の貢献が極めて大きい。 According to the present invention, it is possible to provide steel that can achieve both softening during cold forging and suppression of generation of coarse grains during quenching after cold forging. In addition, the steel according to the present invention is excellent in manufacturability because it is not cracked during casting or rolling, and can be manufactured under conditions that do not impose a load on manufacturing equipment. By applying the steel according to the present invention to a cold forged part, wear of the mold during cold forging can be suppressed, and the life of the mold can be improved. In addition, by applying the steel according to the present invention to cold forged parts, the cost of expensive dies can be reduced, which can contribute to the reduction of the manufacturing cost of high-strength bolts having a tensile strength of 800 MPa or more. it can. Furthermore, the steel according to the present invention is excellent in machinability. Therefore, the present invention has a great industrial contribution.
Claims (5)
C:0.15%~0.40%、
Mn:0.10%~1.50%、
S:0.002~0.020%、
Ti:0.005%~0.050%、
B:0.0005~0.0050%、
Bi:0.0010%~0.0100%、
P:0.020%以下、
N:0.0100%以下、
Si:0%以上0.30%未満、
Cr:0~1.50%、
Al:0~0.050%、
Mo:0~0.20%、
Cu:0~0.20%、
Ni:0~0.20%、及び
Nb:0~0.030%を含有し、
残部がFeおよび不純物からなる
ことを特徴とする鋼。 Chemical component is unit mass%,
C: 0.15% to 0.40%,
Mn: 0.10% to 1.50%,
S: 0.002 to 0.020%,
Ti: 0.005% to 0.050%,
B: 0.0005 to 0.0050%,
Bi: 0.0010% to 0.0100%,
P: 0.020% or less,
N: 0.0100% or less,
Si: 0% or more and less than 0.30%,
Cr: 0 to 1.50%,
Al: 0 to 0.050%,
Mo: 0 to 0.20%,
Cu: 0 to 0.20%,
Ni: 0 to 0.20%, and Nb: 0 to 0.030%,
A steel characterized in that the balance consists of Fe and impurities.
Si:0.01%以上0.30%未満、
Cr:0.01~1.50%、及び
Al:0.001~0.050%
からなる群から選択される1種又は2種以上を含有する
ことを特徴とする請求項1に記載の鋼。 The chemical component is unit mass%,
Si: 0.01% or more and less than 0.30%,
Cr: 0.01 to 1.50%, and Al: 0.001 to 0.050%
The steel according to claim 1, comprising one or more selected from the group consisting of:
Mo:0.02~0.20%、
Cu:0.02~0.20%、
Ni:0.02~0.20%、及び
Nb:0.002~0.030%
からなる群から選択される1種又は2種以上を含有する
ことを特徴とする請求項1又は2に記載の鋼。 The chemical component is unit mass%,
Mo: 0.02 to 0.20%,
Cu: 0.02 to 0.20%,
Ni: 0.02 to 0.20%, and Nb: 0.002 to 0.030%
The steel according to claim 1 or 2, comprising one or more selected from the group consisting of:
IFN=[Ti]-3.5×[N]…(式1)
ここで[Ti]は単位質量%でのTi含有量であり、[N]は単位質量%でのN含有量である。 The steel according to any one of claims 1 to 3, wherein the N fixed index IFN defined by the following formula 1 is 0 or more.
I FN = [Ti] −3.5 × [N] (Formula 1)
Here, [Ti] is the Ti content in unit mass%, and [N] is the N content in unit mass%.
IP=0.3×[Ti]+0.15×[Nb]-[N]…(式2)
ここで[Ti]は単位質量%でのTi含有量であり、[Nb]は単位質量%でのNb含有量であり、[N]は単位質量%でのN含有量である。 Steel according to any one of claims 1 to 4 or less is defined by equation 2 Ti-Nb-based precipitates generated index I P is equal to or is 0.0100 or less.
I P = 0.3 × [Ti] + 0.15 × [Nb] − [N] (Formula 2)
Here, [Ti] is the Ti content in unit mass%, [Nb] is the Nb content in unit mass%, and [N] is the N content in unit mass%.
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020197007851A KR20190041502A (en) | 2016-09-28 | 2016-09-28 | River |
| CN201680089493.8A CN109790602B (en) | 2016-09-28 | 2016-09-28 | steel |
| EP16917654.2A EP3521469A4 (en) | 2016-09-28 | 2016-09-28 | STEEL |
| PCT/JP2016/078558 WO2018061101A1 (en) | 2016-09-28 | 2016-09-28 | Steel |
| JP2018541768A JP6798557B2 (en) | 2016-09-28 | 2016-09-28 | steel |
| US16/329,463 US20190256957A1 (en) | 2016-09-28 | 2016-09-28 | Steel |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2016/078558 WO2018061101A1 (en) | 2016-09-28 | 2016-09-28 | Steel |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018061101A1 true WO2018061101A1 (en) | 2018-04-05 |
Family
ID=61760184
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2016/078558 Ceased WO2018061101A1 (en) | 2016-09-28 | 2016-09-28 | Steel |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20190256957A1 (en) |
| EP (1) | EP3521469A4 (en) |
| JP (1) | JP6798557B2 (en) |
| KR (1) | KR20190041502A (en) |
| CN (1) | CN109790602B (en) |
| WO (1) | WO2018061101A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2019218584A (en) * | 2018-06-18 | 2019-12-26 | 日本製鉄株式会社 | bolt |
| CN111100976A (en) * | 2019-09-20 | 2020-05-05 | 河南中原特钢装备制造有限公司 | Heat treatment process for preventing cracking of steel for glass mold after forging |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113667906B (en) * | 2021-07-22 | 2023-01-31 | 河钢股份有限公司 | Fine steel for straight weather-resistant high-strength bolt and production method thereof |
| CN114855093B (en) * | 2022-03-28 | 2023-10-03 | 本钢板材股份有限公司 | A kind of high cold heading formability, low carbon, low silicon and aluminum-containing cold heading steel hot-rolled wire rod and its preparation method |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS49293B1 (en) | 1969-03-24 | 1974-01-07 | ||
| JPS61253347A (en) | 1985-04-30 | 1986-11-11 | Kobe Steel Ltd | Low carbon steel having superior cold workability |
| JPH0347918A (en) | 1989-04-08 | 1991-02-28 | Kobe Steel Ltd | Production of b-containing steel |
| JPH0563524A (en) | 1991-08-29 | 1993-03-12 | Sharp Corp | Signal input circuit |
| JPH05339676A (en) | 1992-06-11 | 1993-12-21 | Nippon Steel Corp | Steel material for machine structure excellent in cold workability and its manufacturing method |
| JP2000328189A (en) | 1999-05-11 | 2000-11-28 | Sumitomo Metal Ind Ltd | Steel for cold forging |
| JP3443285B2 (en) | 1997-07-23 | 2003-09-02 | 新日本製鐵株式会社 | Hot rolled steel for cold forging with excellent crystal grain coarsening prevention properties and cold forgeability, and method for producing the same |
| JP2006265704A (en) | 2005-03-25 | 2006-10-05 | Kobe Steel Ltd | Steel for case hardening having excellent crystal grain coarsening resistance and cold workability and capable of obviating softening and method for producing the same |
| JP2007239028A (en) * | 2006-03-08 | 2007-09-20 | Honda Motor Co Ltd | Heat treatment method for steel |
| JP2014019904A (en) * | 2012-07-18 | 2014-02-03 | Nippon Steel & Sumitomo Metal | Hardened steel material, method for producing the same and, steel material for hardening |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5241276B2 (en) | 1972-04-20 | 1977-10-17 | ||
| JPS63216952A (en) * | 1987-03-04 | 1988-09-09 | Daido Steel Co Ltd | Steel for cold forging |
| JPH0797656A (en) * | 1993-09-30 | 1995-04-11 | Kobe Steel Ltd | Cold forging steel |
| JP5664803B2 (en) * | 2012-01-26 | 2015-02-04 | 新日鐵住金株式会社 | Case-hardened steel with low heat treatment distortion |
| CN104428435A (en) * | 2012-04-10 | 2015-03-18 | 新日铁住金株式会社 | Steel sheet suitable as impact absorbing member, and method for manufacturing same |
| IN2015DN00788A (en) * | 2012-08-07 | 2015-07-03 | Nippon Steel & Sumitomo Metal Corp | |
| CN104308089A (en) * | 2012-10-22 | 2015-01-28 | 宁波吉威熔模铸造有限公司 | Method for manufacturing automobile engine support |
-
2016
- 2016-09-28 JP JP2018541768A patent/JP6798557B2/en active Active
- 2016-09-28 WO PCT/JP2016/078558 patent/WO2018061101A1/en not_active Ceased
- 2016-09-28 US US16/329,463 patent/US20190256957A1/en not_active Abandoned
- 2016-09-28 EP EP16917654.2A patent/EP3521469A4/en not_active Withdrawn
- 2016-09-28 KR KR1020197007851A patent/KR20190041502A/en not_active Ceased
- 2016-09-28 CN CN201680089493.8A patent/CN109790602B/en not_active Expired - Fee Related
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS49293B1 (en) | 1969-03-24 | 1974-01-07 | ||
| JPS61253347A (en) | 1985-04-30 | 1986-11-11 | Kobe Steel Ltd | Low carbon steel having superior cold workability |
| JPH0347918A (en) | 1989-04-08 | 1991-02-28 | Kobe Steel Ltd | Production of b-containing steel |
| JPH0563524A (en) | 1991-08-29 | 1993-03-12 | Sharp Corp | Signal input circuit |
| JPH05339676A (en) | 1992-06-11 | 1993-12-21 | Nippon Steel Corp | Steel material for machine structure excellent in cold workability and its manufacturing method |
| JP3443285B2 (en) | 1997-07-23 | 2003-09-02 | 新日本製鐵株式会社 | Hot rolled steel for cold forging with excellent crystal grain coarsening prevention properties and cold forgeability, and method for producing the same |
| JP2000328189A (en) | 1999-05-11 | 2000-11-28 | Sumitomo Metal Ind Ltd | Steel for cold forging |
| JP2006265704A (en) | 2005-03-25 | 2006-10-05 | Kobe Steel Ltd | Steel for case hardening having excellent crystal grain coarsening resistance and cold workability and capable of obviating softening and method for producing the same |
| JP2007239028A (en) * | 2006-03-08 | 2007-09-20 | Honda Motor Co Ltd | Heat treatment method for steel |
| JP2014019904A (en) * | 2012-07-18 | 2014-02-03 | Nippon Steel & Sumitomo Metal | Hardened steel material, method for producing the same and, steel material for hardening |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP3521469A4 |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2019218584A (en) * | 2018-06-18 | 2019-12-26 | 日本製鉄株式会社 | bolt |
| JP7155644B2 (en) | 2018-06-18 | 2022-10-19 | 日本製鉄株式会社 | bolt |
| CN111100976A (en) * | 2019-09-20 | 2020-05-05 | 河南中原特钢装备制造有限公司 | Heat treatment process for preventing cracking of steel for glass mold after forging |
Also Published As
| Publication number | Publication date |
|---|---|
| CN109790602A (en) | 2019-05-21 |
| JPWO2018061101A1 (en) | 2019-07-04 |
| EP3521469A1 (en) | 2019-08-07 |
| KR20190041502A (en) | 2019-04-22 |
| JP6798557B2 (en) | 2020-12-09 |
| CN109790602B (en) | 2021-03-02 |
| US20190256957A1 (en) | 2019-08-22 |
| EP3521469A4 (en) | 2020-03-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102021216B1 (en) | Wire rods for bolts with excellent delayed fracture resistance after pickling and quenching tempering, and bolts | |
| JP4448456B2 (en) | Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method | |
| KR101965520B1 (en) | Rolled steel bar or rolled wire material for cold-forged component | |
| JP4808828B2 (en) | Induction hardening steel and method of manufacturing induction hardening steel parts | |
| JP5363922B2 (en) | High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability | |
| WO2013145868A1 (en) | Boron-added high strength bolt steel having excellent delayed fracture resistance and high strength bolt | |
| EP3124638B1 (en) | Stabilizer steel having high strength and excellent corrosion resistance, vehicle stabilizer employing same, and method for manufacturing same | |
| JP5913214B2 (en) | Bolt steel and bolts, and methods for producing the same | |
| CN105849297A (en) | Rolled material for high-strength spring and high-strength spring wire using it | |
| JPH11335777A (en) | Case hardening steel excellent in cold workability and low carburizing strain characteristics and its manufacturing method | |
| WO2017115842A1 (en) | Case-hardened steel, carburized component, and process for producing case-hardened steel | |
| JP5871085B2 (en) | Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening | |
| JP6461672B2 (en) | Bolt steel wire and bolt with excellent cold forgeability and delayed fracture resistance after quenching and tempering | |
| JP5302840B2 (en) | High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability | |
| JP6798557B2 (en) | steel | |
| WO2015146331A1 (en) | Steel for high strength bolts having excellent delayed fracture resistance and high strength bolt | |
| WO2015159650A1 (en) | Hot-rolled wire | |
| WO2018008703A1 (en) | Rolled wire rod | |
| JP7149131B2 (en) | Machine structural steel with excellent cold workability and resistance to grain coarsening | |
| KR20180011427A (en) | Steel wire rod having enhanced delayed fracture resistance and method for manufacturing the same | |
| JP5601861B2 (en) | Manufacturing method of boron steel rolled annealed steel sheet | |
| JP6459704B2 (en) | Steel for cold forging parts | |
| WO2017094487A1 (en) | High-strength bolt | |
| JP5633426B2 (en) | Steel for heat treatment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16917654 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2018541768 Country of ref document: JP Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 20197007851 Country of ref document: KR Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2016917654 Country of ref document: EP Effective date: 20190429 |