[go: up one dir, main page]

WO2018078858A1 - Wireless base station, wireless terminal, wireless communication system, and wireless communication method - Google Patents

Wireless base station, wireless terminal, wireless communication system, and wireless communication method Download PDF

Info

Publication number
WO2018078858A1
WO2018078858A1 PCT/JP2016/082285 JP2016082285W WO2018078858A1 WO 2018078858 A1 WO2018078858 A1 WO 2018078858A1 JP 2016082285 W JP2016082285 W JP 2016082285W WO 2018078858 A1 WO2018078858 A1 WO 2018078858A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
length
signal
period
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2016/082285
Other languages
French (fr)
Japanese (ja)
Inventor
三夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to PCT/JP2016/082285 priority Critical patent/WO2018078858A1/en
Publication of WO2018078858A1 publication Critical patent/WO2018078858A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the present invention relates to a wireless base station, a wireless terminal, a wireless communication system, and a wireless communication method that perform wireless communication.
  • an object of the present invention is to provide a radio base station, a radio terminal, a radio communication system, and a radio communication method that can efficiently detect a synchronization signal transmitted by beam sweeping.
  • the first radio base station sets the length of the intermittent time interval in which the radio terminal may not receive a signal from the own station. It is possible to set for each time interval, and the radio terminal receives a signal from the first radio base station in a different interval from the time interval, and is different from the first radio base station in the time interval. 2 radio base stations, each time the same signal is transmitted from the own station using a plurality of transmission antennas, the phase difference between the plurality of transmission antennas and the phase difference between the transmission streams of the same signal A radio base station, a radio terminal, a radio communication system, and a radio communication method that receive a signal from a second radio base station that can change at least one of them are proposed.
  • FIG. 1 is a diagram illustrating an example of a communication system according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of transmission of a synchronization signal by beam sweeping by a peripheral base station of a connection base station according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of the transmission timing of the synchronization signal by the peripheral base station of the connected base station according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of a configuration of a gap period according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of setting a measurement gap for each gap period by the connecting base station according to the embodiment.
  • FIG. 6 is a diagram illustrating an example of an arrangement of measurement gaps within a gap period by a connecting base station according to the embodiment.
  • FIG. 7 is a diagram illustrating another example of setting a measurement gap for each gap period by the connecting base station according to the embodiment.
  • FIG. 8 is a sequence diagram illustrating an example of measurement gap parameter notification from the connected base station to the terminal according to the embodiment.
  • FIG. 9 is a diagram illustrating an example of improvement in the maximum detection time versus loss rate by the connected base station according to the embodiment.
  • FIG. 10 is a diagram of an example of the connection base station according to the embodiment.
  • FIG. 11 is a diagram illustrating an example of a hardware configuration of a connection base station according to the embodiment.
  • FIG. 12 is a diagram illustrating an example of a terminal according to the embodiment.
  • FIG. 13 is a diagram illustrating an example of a hardware configuration of the terminal according to the embodiment.
  • FIG. 14 is a flowchart illustrating an example of gap determination processing by the measurement gap control unit of the connected base station according to the embodiment.
  • FIG. 15 is a flowchart illustrating an example of gap determination processing by the measurement gap control unit of the terminal according to the embodiment.
  • FIG. 16 is a sequence diagram illustrating an example of processing in the wireless communication system according to the embodiment.
  • FIG. 1 is a diagram illustrating an example of a communication system according to an embodiment.
  • a wireless communication system 100 includes a connection base station 110, a peripheral base station 120, and a terminal 130.
  • the connection base station 110 is a radio base station to which the terminal 130 is connected.
  • the terminal 130 is a wireless terminal that is connected to the cell of the connected base station 110 and performs wireless communication with the connected base station 110.
  • the peripheral base station 120 is a radio base station around the connection base station 110, for example, a radio base station that can be a handover destination of the terminal 130 connected to the connection base station 110.
  • the connected base station 110 and the peripheral base station 120 are connected to each other by an inter-base station interface such as an X2 interface, and can transmit and receive information to and from each other.
  • a TDD (Time Division Duplex) method in which amplifier link communication and downlink communication are performed in a time division manner is used.
  • the connecting base station 110 transmits a synchronization signal and a downlink signal (DL signal for the terminal) to the terminal (for example, the terminal 130) at the frequency # 1.
  • the terminal 130 transmits an uplink signal (UL signal) to the connected base station 110 at the frequency # 1.
  • Peripheral base station 120 transmits a periodic synchronization signal at frequency # 2 different from frequency # 1. Also, the peripheral base station 120 transmits the synchronization signal by beam sweeping that transmits a signal while switching the beam angle.
  • the beam 121 shown in FIG. 1 is a sync signal beam when the beam angle is angle # 1.
  • the beam 122 shown in FIG. 1 is a sync signal beam when the beam angle is #x different from the angle # 1.
  • Terminal 130 detects the synchronization signal from neighboring base station 120 and measures the power of the detected synchronization signal. Then, the terminal 130 reports the measurement result of the synchronization signal power to the connecting base station 110 using an uplink signal.
  • the connecting base station 110 sets a measurement gap for the terminal 130 so that the terminal 130 wirelessly measures the synchronization signal from the neighboring base station 120. In the measurement gap section, the connecting base station 110 does not transmit a downlink signal to the terminal 130.
  • the terminal 130 detects the synchronization signal from the neighboring base station 120 in the measurement gap set by the connecting base station 110.
  • the synchronization signal beam is not always directed to the terminal 130 at that timing, so the terminal 130 can detect the synchronization signal.
  • the synchronization signal from the neighboring base station 120 to be detected is known only in the transmission period, and the timing and beam angle are unknown.
  • the connecting base station 110 sets the measurement gap of the terminal 130 so that the synchronization signal transmitted from the neighboring base station 120 by beam sweeping can be detected efficiently.
  • FIG. 2 is a diagram illustrating an example of transmission of a synchronization signal by beam sweeping by a peripheral base station of a connection base station according to the embodiment.
  • the peripheral base station 120 located in the vicinity of the connection base station 110 according to the embodiment transmits a synchronization signal by, for example, beam sweeping illustrated in FIG.
  • the neighboring base station 120 divides the cell 200 of the neighboring base station 120 into 16 beam angles, and wirelessly transmits a synchronization signal while sequentially switching the 16 divided angles # 1 to # 16.
  • Beam sweeping switching of the beam angle
  • FIG. 3 is a diagram illustrating an example of the transmission timing of the synchronization signal by the peripheral base station of the connected base station according to the embodiment.
  • the horizontal direction indicates time.
  • the radio frame 300 is a radio frame for radio communication in the radio communication system 100.
  • the length of the radio frame 300 is 10 [ms] as an example.
  • Subframes # 0 to # 9 are 10 subframes included in radio frame 300.
  • the length of each of the subframes # 0 to # 9 is 1 [ms] as an example.
  • PSS 311 and SSS 312 are synchronization signals wirelessly transmitted by neighboring base station 120 in subframe # 0.
  • PSS is an abbreviation for Primary Synchronization Signal (primary synchronization signal).
  • SSS is an abbreviation for Secondary Synchronization Signal (secondary synchronization signal).
  • PSS 321 and SSS 322 are synchronization signals that are wirelessly transmitted by neighboring base station 120 in subframe # 5.
  • the peripheral base station 120 transmits the synchronization signal at a constant synchronization signal period 330 by transmitting the synchronization signal at the same timing in each of the subframes # 0 and # 5.
  • the length of the synchronization signal period 330 is 5 [ms].
  • the peripheral base station 120 performs beam sweeping to switch the beam angle of the synchronization signal at a constant period while wirelessly transmitting the synchronization signal at a constant synchronization signal period 330 (see, for example, FIG. 2).
  • FIG. 4 is a diagram illustrating an example of a configuration of a gap period according to the embodiment.
  • the gap period 410 shown in FIG. 4 indicates the length of the period in which the measurement gap is set by the connecting base station 110.
  • the period of the gap cycle 410 includes a measurement gap 411, a communication section 412, and a gap shift section 413.
  • the measurement gap 411 is a period during which the connected base station 110 does not perform wireless communication with the terminal 130 and the terminal 130 measures the power of the synchronization signal from the neighboring cell (for example, the neighboring base station 120).
  • the communication section 412 is a period during which the connecting base station 110 performs wireless communication with the terminal 130.
  • the gap shift section 413 is a period set in order to change the length of the gap period 410. In the gap shift section 413, the connected base station 110 performs wireless communication with the terminal 130 as in the communication section 412.
  • MGRP is the length of the gap period 410.
  • MGL is the length of the measurement gap 411.
  • MGST is the length of the gap shift section 413.
  • the connection base station 110 can set MGRP, MGL, and MMGST, respectively. MGST can be set to 0. In this case, the gap shift section 413 is eliminated.
  • the connecting base station 110 can set the measurement gap 411 having a different length for each gap period 410 in the terminal 130.
  • the sweep pattern (timing and beam angle) of the synchronization signal of the neighboring cell for example, neighboring base station 120
  • FIG. 5 is a diagram illustrating an example of setting a measurement gap for each gap period by the connecting base station according to the embodiment.
  • the horizontal direction indicates time.
  • a beam 510 (Beam) illustrated in FIG. 5 is a beam transmitted by the peripheral base station 120.
  • Beams # 1 to # 16 of the beam 510 are beams for one cycle of beam sweeping by the peripheral base station 120, and are beams having different beam angles.
  • Beams # 1 to # 16 are beams corresponding to the beam angles # 1 to # 16 shown in FIG. 2, for example.
  • the peripheral base station 120 transmits a synchronization signal having a period of 5 [ms] as in the LTE specification, and performs beam sweeping to divide the beam angle into 16 at a period of 640 [ms].
  • a method for determining the length Tsync of the synchronization signal detection section will be described later.
  • a measurement gap (G) of 3 [ms] is set in the first eight gap periods 521 to 528 of the gap periods 521 to 544.
  • a measurement gap (G) of 6 [ms] is set in the next eight gap periods 537 to 544 after the gap periods 529 to 536.
  • a measurement gap (G) of 4 [ms] is set in the next eight gap periods 537 to 544 after the gap periods 529 to 536.
  • the measurement gap (G) is illustrated as being arranged at the beginning of each gap period, but the position of the measurement gap (G) is not limited to the beginning of each gap period.
  • the connecting base station 110 can set a measurement gap having a different length for each gap period.
  • the length of each measurement gap in the gap periods 521 to 528 is MGL (1).
  • the length of each measurement gap in the gap periods 529 to 536 is MGL (2).
  • the length of each measurement gap in the gap periods 537 to 544 is MGL (3).
  • MGL (1) to MGL (3) can be calculated by, for example, the following formulas (1) to (3).
  • MGL (2) (Tss + Trf) (1)
  • MGL (1) int ((Tss + Trf) / 2)
  • MGL (3) (Tss + Trf + Trf) ⁇ MGL (1)
  • Tss is a transmission period of the synchronization signal in the peripheral base station 120, and is 5 [ms] as an example.
  • Trf is a time for frequency switching of a radio unit (for example, radio reception unit 1202 shown in FIG. 12) of terminal 130, and is 1 [ms] as an example.
  • Tss and Trf are defined in the wireless communication system 100, for example, and are included in the system information of the wireless communication system 100.
  • int () is a function indicating fractional truncation of the quotient.
  • MGL (2) is the length of the measurement gap that the terminal 130 can reliably receive the synchronization signal in one measurement gap, assuming that the neighboring base station 120 simultaneously transmits the synchronization signal into the cell 200. is there.
  • MGL (1) and MGL (3) are shorter than MGL (2), respectively, but when MGL (1) and MGL (3) are combined, they are determined to be MGL (2) or more.
  • the division search 550 is divided into a gap period including a measurement gap of MGL (1) and a gap including a measurement gap of MGL (2) in one synchronization signal detection period in each period of beam angles # 1 to # 16. Indicates the period during which the cycle is set. In the example shown in FIG. 5, in each period of beam angles # 1 to # 8, a gap period including a measurement gap of MGL (1) and a gap period including a measurement gap of MGL (2) are set, and the synchronization signal A split search is performed. The measurement gap of MGL (1) and the measurement gap of MGL (2) are different from each other in the start position (timing) within the gap period. For this reason, since the synchronization signal is searched at different timings in the divided search, it is possible to efficiently detect the synchronization signal transmitted by beam sweeping.
  • FIG. 6 is a diagram illustrating an example of an arrangement of measurement gaps within a gap period by a connecting base station according to the embodiment.
  • the horizontal direction indicates time.
  • a gap cycle 610 shown in FIG. 6 is a gap cycle in which a measurement gap 611 having a length of MGL (1) is set, and corresponds to each of the gap cycles 521 to 528 in the example shown in FIG.
  • the connecting base station 110 makes the start position of the measurement gap 611 having a length of MGL (1) the same as the start position of the gap period 610.
  • the connecting base station 110 makes the start position of the measurement gap 621 having a length of MGL (2) the same as the start position of the gap period 620.
  • MGST 0 is set, and a period excluding the measurement gap 621 in the gap period 620 is a communication section 622 (communication section 412 shown in FIG. 4).
  • the gap period 630 shown in FIG. 6 is a gap period in which the measurement gap 631 having a length of MGL (3) is set, and corresponds to each of the gap periods 537 to 544 in the example shown in FIG.
  • the connecting base station 110 sets the start position of the measurement gap 631 having a length of MGL (3) as a position after MGL (1) ⁇ Trf from the start position of the gap period 630.
  • MGST 0 is set, and the period excluding the measurement gap 631 in the gap period 630 is the communication sections 632 and 633 (communication section 412 shown in FIG. 4).
  • the beam division number of the beam sweeping of the synchronization signal by the peripheral base station 120 is Nbeam (16 as an example).
  • the period of beam sweeping of the synchronization signal by the peripheral base station 120 is Tbs (640 [ms] as an example).
  • the length of the synchronization signal detection section is assumed to be Tsync.
  • the connecting base station 110 determines the length MGRP of the gap period 410 (each of the gap periods 521 to 544) by, for example, the following equation (4).
  • N is a cycle adjustment coefficient and is an integer from 1 to Nbeam. A method for determining the cycle adjustment coefficient will be described later.
  • MGRP_0 is a basic gap period.
  • the connecting base station 110 determines the length Tsync of the synchronization signal detection section, for example, by the following equation (5). However, 0 ⁇ Ndg / 2 ⁇ Nbeam and Ndg is an even number.
  • Tsync is the number of gap periods in which the measurement gaps of MGL (1) and MGL (3) are set in the length of the gap period, and the number of gap periods in which the measurement gap of MGL (2) is set.
  • the length multiplied by the sum of The length of the gap period corresponds to MGRP_0
  • the number of gap periods in which the measurement gaps of MGL (1) and MGL (3) are set corresponds to (Ndg / 2) * 2
  • the measurement gap of MGL (2) The number of gap periods for which is set corresponds to Nbeam-Ndg / 2.
  • the neighboring base station 120 sets the gap period 610 for setting the measurement gap 611 having a length of MGL (1) as a gap period of Ndg / 2 from the head gap period in the synchronization signal detection section.
  • the neighboring base station 120 sets a gap period 620 for setting the measurement gap 621 having a length of MGL (2) to a gap period corresponding to Nbeam ⁇ Ndg / 2 from the Ndg / 2 + 1th gap period in the synchronization signal detection period.
  • the neighboring base station 120 sets the gap period 630 for setting the measurement gap 631 having a length of MGL (3) as the gap period for Ndg / 2 from the Nbeam + 1st gap period in the synchronization signal detection section.
  • FIG. 7 is a diagram illustrating another example of setting a measurement gap for each gap period by the connecting base station according to the embodiment.
  • the connecting base station 110 does not select N that satisfies, for example, N ⁇ 2 and MOD (Nbeam, N)> 0.
  • MOD () is a function indicating remainder calculation.
  • the gap periods 711 to 726 are 16 gap periods included in the synchronization signal detection section.
  • Each of the gap periods 711 to 726 is the gap period 410 shown in FIG. That is, the connected base station 110 sets the gap periods 711 to 726 shown in FIG. 7 for each synchronization signal detection section when N ⁇ 2.
  • each of the gap periods 711 to 717 and 719 to 725 has the same length of 40 [ms] as the beam for each angle of the beam 510.
  • a measurement gap (G) having a length of MGL (2) is set in all the gap periods 711 to 726.
  • the connecting base station 110 determines the length MGST (n) of the gap shift section (for example, the gap shift section 413 shown in FIG. 4) in the n-th (n is 1 to Nbeam) gap period by the following equation (6): Decide like this.
  • the connecting base station 110 determines the length MGRP (n) of the n-th (n is 1 to Nbeam) gap period, for example, by the following equation (7).
  • the connecting base station 110 determines the length Tsync of the synchronization signal detection section by, for example, the following equation (8).
  • the connecting base station 110 determines the sum of the lengths MGRP (n) of the first to Nbeam gap periods as the length Tsync of the synchronization signal detection section.
  • the length of one step of beam sweeping of the peripheral base station 120 is as short as 10 [ms]
  • the synchronization signal transmission cycle Tss (for example, it is close to 5 [ms]).
  • the length of the communication section 412 shown in FIG. 4 is shortened, and the period during which data communication between the connecting base station 110 and the terminal 130 is possible is shortened.
  • the communication period 412 is lengthened by periodically increasing the gap period length MGRP (n) and shifting the gap period.
  • the period in which data communication between the terminal 130 and the terminal 130 is possible can be lengthened.
  • the gap period is shifted by increasing the multiple of 8 gap periods 718 and 726 so that the division search 550 does not occur.
  • FIG. 8 is a sequence diagram illustrating an example of measurement gap parameter notification from the connected base station to the terminal according to the embodiment.
  • UE 810 shown in FIG. 8 is, for example, terminal 130.
  • EUTRAN 820 shown in FIG. 8 is, for example, connected base station 110.
  • EUTRAN 820 is an abbreviation for Evolved Universal Terrestrial Radio Access Network.
  • EUTRAN 820 transmits RRC connection reconfiguration (RRCConnectionReconfiguration) to UE 810 (step S801). Further, the EUTRAN 820 stores the measurement gap parameter in the RRC connection reconfiguration transmitted in step S801.
  • RRC connection reconfiguration RRCConnectionReconfiguration
  • EUTRAN 820 stores the measurement gap parameter in MeasGapConfig of RRC connection reconfiguration.
  • the measurement gap parameters include, for example, the division measurement gap interval number Ndg, the beam division number Nbeam, the cycle adjustment coefficient N, the basic gap cycle MGRP_0, and the start offset gapOffset.
  • the measurement gap parameters stored in the RRC connection reconfiguration are not limited to these measurement gap parameters, and may be other information that can specify these measurement gap parameters.
  • the UE 810 transmits an RRC connection reconfiguration complete (RRCConnectionReconfigurationCompletion) to the EUTRAN 820 (step S802).
  • the RRC connection reconfiguration complete transmitted at step S802 is a response signal to the RRC connection reconfiguration received at step S801.
  • the UE 810 and the EUTRAN 820 set a common measurement gap according to the measurement gap parameter included in the RRC connection reconfiguration transmitted in step S801.
  • FIG. 9 is a diagram illustrating an example of improvement in the maximum detection time versus loss rate by the connected base station according to the embodiment.
  • the horizontal axis represents the maximum detection time [ms]
  • the vertical axis represents the loss rate [%].
  • the maximum detection time is the maximum time required for detecting the synchronization signal.
  • the loss rate can be calculated by dividing the total length of each measurement gap in the synchronization signal detection section by the length of the synchronization signal detection section.
  • FIG. 9 shows an example of beam sweeping in which the peripheral base station 120 transmits a synchronization signal with a period of 5 [ms] and divides the beam angle into 16 with a period of 640 [ms] as in the LTE specification.
  • the maximum detection time vs. loss rate 911 shows the characteristic of the loss rate with respect to the maximum detection time in the first method in which a long continuous measurement gap is set.
  • the maximum detection time versus loss rate 912 is a characteristic of the loss rate with respect to the maximum detection time in the second method in which a measurement gap having a fixed length (for example, 6 [ms]) is set with a constant gap period (for example, 40 [ms]). Is shown.
  • the maximum detection time vs. loss rate 913 shows the characteristic of the loss rate with respect to the maximum detection time in the third method in which the length of the measurement gap is shortened and the timing of the measurement gap is slid for each gap period to perform multiple searches. Yes.
  • the minimum value MGL (min) of the length of the measurement gap in the first method and the second method can be calculated by, for example, the following formula (9) and the following formula (10), respectively.
  • the loss rate LG of data transmission / reception between the connected base station 110 and the terminal 130 during the period required for the detection of the synchronization signal can be expressed by the following equation (11), for example.
  • the total measurement gap length MGL (total) in the third method can be calculated by, for example, the following equation (12).
  • Tg is the divided gap length [ms]
  • Ndiv is the number of beam divisions
  • Nbeam is the number of beams of the base station.
  • Tg * Ndiv> Tss + Trf is satisfied.
  • the loss rate LG of data transmission / reception between the connected base station 110 and the terminal 130 during the period required for the detection of the synchronization signal can be expressed by the following equation (13), for example.
  • the maximum detection time vs. loss rate 920 indicates the characteristic of the loss rate with respect to the maximum detection time in the gap determination method by the connecting base station 110 according to the embodiment.
  • the loss rate is low at the same maximum detection time, and the same It can be seen that the maximum detection time is shortened in the loss rate.
  • the connecting base station 110 by setting a plurality of time interval periods in one synchronization signal detection interval and searching the same beam in two, the beam sweeping period and the synchronization signal transmission period It is possible to eliminate the waste of duplicate search due to the mutual relationship. For this reason, the loss rate of data transmission / reception can be suppressed, and the number of selectable combinations can be increased. Further, unlike the third method, the number of beams for performing the divided search can be set, so that the number of combinations that can be selected for the search time request can be increased.
  • FIG. 10 is a diagram of an example of the connection base station according to the embodiment.
  • the connection base station 110 includes, for example, an inter-base station communication unit 1001, a beam sweep control unit 1002, a synchronization signal weight coefficient calculation unit 1003, and a synchronization signal generation unit 1004.
  • the connected base station 110 includes a measurement gap control unit 1006, a transmission data generation unit 1007, an encoding / modulation unit 1008, a beamforming / radio transmission unit 1009, and an antenna group 1010.
  • the connecting base station 110 includes a wireless reception unit 1011, a demodulation / decoding unit 1012, a reception data processing unit 1013, and a transmission signal weight coefficient calculation unit 1014.
  • the inter-base station communication unit 1001 performs communication with the peripheral base station 120 via an inter-base station interface such as an X2 interface.
  • the inter-base station communication unit 1001 receives the peripheral base station information of the peripheral base station 120 from the peripheral base station 120.
  • the peripheral base station information of the peripheral base station 120 includes the beam division number Nbeam and the period Tbs in the beam sweeping of the synchronization signal by the peripheral base station 120.
  • the inter-base station communication unit 1001 outputs the received neighboring base station information to the measurement gap control unit 1006.
  • the inter-base station communication unit 1001 may transmit the local station information output from the beam sweep control unit 1002 to the neighboring base stations 120.
  • the beam sweep control unit 1002 controls beam sweeping of the synchronization signal by the connecting base station 110.
  • the beam sweep control unit 1002 controls the synchronization signal beam sweeping by the connecting base station 110 by controlling the calculation of the synchronization signal weight coefficient in the synchronization signal weight coefficient calculation unit 1003.
  • the beam sweep control unit 1002 may output the local station information including the beam division number Nbeam and the cycle Tbs in the beam sweeping of the synchronization signal by the connected base station 110 to the inter-base station communication unit 1001.
  • the synchronization signal weight coefficient calculation unit 1003 calculates a weight coefficient for the synchronization signal in the beamforming / radio transmission unit 1009 according to the control from the beam sweep control unit 1002. Then, the synchronization signal weight coefficient calculation unit 1003 outputs the calculated weight coefficient to the beamforming / radio transmission unit 1009.
  • beam sweeping can be performed by controlling the phase difference between a plurality of transmission antennas and the phase difference between transmission streams.
  • the synchronization signal generator 1004 generates a synchronization signal such as PSS or SSS. Then, the synchronization signal generation unit 1004 outputs the generated synchronization signal to the synchronization signal modulation unit 1005.
  • the synchronization signal modulation unit 1005 modulates the synchronization signal output from the synchronization signal generation unit 1004 and outputs the modulated synchronization signal to the beamforming / radio transmission unit 1009.
  • the measurement gap control unit 1006 selects the period adjustment coefficient N based on the number of beam divisions Nbeam and the period Tbs included in the neighboring base station information output from the inter-base station communication unit 1001. For example, the measurement gap control unit 1006 obtains the period adjustment coefficient N by searching for the minimum N that satisfies ⁇ ⁇ (Tss + Trf) / (Tbs / Nbeam) / N on the condition that N is a divisor of Nbeam. select. ⁇ is a parameter of the connecting base station 110 and satisfies 0 ⁇ ⁇ 1.0.
  • the measurement gap control unit 1006 arranges the measurement gaps with a gap period of 1 to Nbeam + Ndg / 2 times or 1 to Nbeam times according to the determined divided measurement gap interval number Ndg. Further, the measurement gap control unit 1006 determines the start position of the first MGRP by the start offset gapOffset, and generates terminal notification information indicating each parameter related to the determined measurement gap.
  • the measurement gap control unit 1006 outputs the generated terminal notification information to the transmission data generation unit 1007.
  • the measurement gap control unit 1006 controls setting of the measurement gap by the encoding / modulation unit 1008 based on each parameter related to the determined measurement gap.
  • the measurement gap control unit 1006 may perform control to stop the demodulation and decoding processes in the demodulation / decoding unit 1012 in the determined measurement gap.
  • the transmission data generation unit 1007 generates transmission data to be transmitted to the terminal 130. For example, the transmission data generation unit 1007 generates transmission data including downlink user data for the terminal 130. Also, the transmission data generation unit 1007 generates transmission data including RRC connection reconfiguration in which the terminal notification information output from the measurement gap control unit 1006 is stored. Then, transmission data generation section 1007 outputs the generated transmission data to encoding / modulation section 1008.
  • the encoding / modulation unit 1008 encodes and modulates transmission data output from the transmission data generation unit 1007. Then, encoding / modulation section 1008 outputs the transmission signal obtained by the encoding and modulation to beamforming / radio transmission section 1009.
  • the encoding / modulation unit 1008 sets a measurement gap for each terminal (for example, the terminal 130) that is the transmission destination of the transmission signal in accordance with control from the measurement gap control unit 1006. Then, the encoding / modulation section 1008 does not output the transmission signal to the target terminal in the set measurement gap. Thereby, the target terminal can measure a radio signal from another base station such as the neighboring base station 120.
  • the beamforming / radio transmission unit 1009 weights the synchronization signal output from the synchronization signal modulation unit 1005 with the weighting factor output from the synchronization signal weighting factor calculation unit 1003.
  • the beamforming / radio transmission unit 1009 weights the transmission signal output from the encoding / modulation unit 1008 with the weighting coefficient output from the transmission signal weighting coefficient calculation unit 1014. Thereby, the beam forming (beam sweeping) of the synchronization signal and the beam forming of the transmission signal can be realized.
  • the beamforming / radio transmission unit 1009 performs radio transmission processing of a signal including the weighted synchronization signal and transmission signal.
  • the wireless transmission processing includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband to a high frequency band, amplification, and the like.
  • Beamforming / radio transmission section 1009 outputs a signal subjected to radio transmission processing to antenna group 1010.
  • the antenna group 1010 is a plurality of antennas that wirelessly transmit signals output from the beamforming / wireless transmission unit 1009 to other wireless communication devices (for example, the terminal 130). Further, the antenna group 1010 receives a signal wirelessly transmitted from another wireless communication device (for example, the terminal 130), and outputs the received signal to the wireless reception unit 1011.
  • the wireless reception unit 1011 performs wireless reception processing on the signals output from the antenna group 1010.
  • the wireless reception processing includes, for example, amplification, frequency conversion from a high frequency band to a base band, conversion from an analog signal to a digital signal, and the like.
  • Radio reception section 1011 outputs the signal subjected to radio reception processing to demodulation / decoding section 1012 and transmission signal weight coefficient calculation section 1014.
  • the demodulation / decoding unit 1012 demodulates and decodes the signal output from the wireless reception unit 1011. Demodulation / decoding section 1012 then outputs received data obtained by demodulation and decoding to received data processing section 1013.
  • the reception data processing unit 1013 performs processing based on the reception data output from the demodulation / decoding unit 1012.
  • the transmission signal weighting factor calculation unit 1014 applies a transmission signal to the beamforming / radio transmission unit 1009 based on a control signal (feedback signal) from a terminal (for example, the terminal 130) included in the signal output from the radio reception unit 1011. Calculate the weighting factor. Then, transmission signal weight coefficient calculation section 1014 outputs the calculated weight coefficient to beamforming / radio transmission section 1009.
  • a setting unit that sets the length of an intermittent time interval (measurement gap) that does not require the wireless terminal to receive a signal from the own station can be realized by the measurement gap control unit 1006, for example.
  • a generation unit that generates a signal including information related to the length of the time interval can be realized by, for example, the transmission data generation unit 1007 and the encoding / modulation unit 1008.
  • a transmission unit that transmits the generated signal to the neighboring base station 120 can be realized by, for example, the wireless transmission unit 1209 (see, for example, FIG. 12) and the antenna group 1010.
  • the peripheral base station 120 can also have the same configuration as the connection base station 110. Accordingly, the neighboring base station 120 can perform beam sweeping by controlling the phase difference between the plurality of transmission antennas and the phase difference between the transmission streams by calculating the weighting factor by the synchronization signal weighting factor calculating unit 1003. .
  • FIG. 11 is a diagram illustrating an example of a hardware configuration of a connection base station according to the embodiment. 11, the same parts as those shown in FIG. 10 are denoted by the same reference numerals, and the description thereof is omitted.
  • the inter-base station communication unit 1001, the beam sweep control unit 1002, the synchronization signal weight coefficient calculation unit 1003, the synchronization signal generation unit 1004, and the synchronization signal modulation unit 1005 can be realized by a digital circuit 1100, for example. it can.
  • the measurement gap control unit 1006, the transmission data generation unit 1007, the encoding / modulation unit 1008, the demodulation / decoding unit 1012, the reception data processing unit 1013, and the transmission signal weight coefficient calculation unit 1014 are realized by, for example, the digital circuit 1100.
  • the digital circuit 1100 is, for example, a processor such as an FPGA (Field Programmable Gate Array) or a DSP (Digital Signal Processor).
  • the beamforming / radio transmission unit 1009 shown in FIG. 10 can be realized by a circuit such as a DAC (Digital / Analog Converter), a mixer, and an amplifier. 10 can be realized by a circuit such as an amplifier, a mixer, and an ADC (Analog / Digital Converter).
  • DAC Digital / Analog Converter
  • ADC Analog / Digital Converter
  • FIG. 12 is a diagram illustrating an example of a terminal according to the embodiment.
  • the terminal 130 according to the embodiment includes, for example, an antenna 1201, a radio reception unit 1202, a demodulation / decoding unit 1203, a reception data processing unit 1204, a synchronization signal detection / measurement unit 1205, And a measurement gap control unit 1206.
  • the terminal 130 includes a transmission data generation unit 1207, an encoding / modulation unit 1208, and a wireless transmission unit 1209.
  • the antenna 1201 is a plurality of antennas that receive signals wirelessly transmitted from other wireless communication devices (for example, the connecting base station 110 and the neighboring base station 120) and output the received signals to the wireless receiving unit 1202. Further, the antenna 1201 wirelessly transmits the signal output from the wireless transmission unit 1209 to another wireless communication device (for example, the connection base station 110).
  • other wireless communication devices for example, the connecting base station 110 and the neighboring base station 120
  • the antenna 1201 wirelessly transmits the signal output from the wireless transmission unit 1209 to another wireless communication device (for example, the connection base station 110).
  • the wireless reception unit 1202 performs wireless reception processing on the signal output from the antenna 1201.
  • the wireless reception processing includes, for example, amplification, frequency conversion from a high frequency band to a base band, conversion from an analog signal to a digital signal, and the like.
  • Radio reception section 1202 outputs the signal subjected to the radio reception processing to demodulation / decoding section 1203 and synchronization signal detection / measurement section 1205.
  • the radio reception unit 1202 performs radio reception processing on the signal component in the frequency band of the synchronization signal from the neighboring base station 120 in the measurement gap section set by the measurement gap control unit 1206.
  • Radio reception section 1202 performs radio reception processing on signal components in the frequency band of a signal (for example, communication data) from connected base station 110 serving as a serving cell in a section other than the measurement gap set by measurement gap control section 1206. I do.
  • the above Trf is a time for switching the target frequency (carrier frequency) of the wireless reception processing by the wireless reception unit 1202, for example.
  • the demodulation / decoding unit 1203 demodulates and decodes the signal output from the wireless reception unit 1202.
  • Demodulation / decoding section 1203 outputs the reception data obtained by demodulation and decoding to reception data processing section 1204 and measurement gap control section 1206.
  • the reception data processing unit 1204 performs processing based on the reception data output from the demodulation / decoding unit 1203.
  • the synchronization signal detection / measurement unit 1205 detects a synchronization signal included in the signal output from the wireless reception unit 1202 in the measurement gap set by the measurement gap control unit 1206. Then, the synchronization signal detection / measurement unit 1205 measures the power of the detected synchronization signal. Further, the synchronization signal detection / measurement unit 1205 notifies the transmission data generation unit 1207 of the measurement result of the power of the synchronization signal.
  • the measurement gap control unit 1206 acquires terminal notification information included in the reception data (for example, RRC connection reconfiguration) output from the demodulation / decoding unit 1203. Then, measurement gap control section 1206 sets a measurement gap for radio reception section 1202 and synchronization signal detection / measurement section 1205 based on each parameter indicated by the acquired terminal notification information. Further, the measurement gap control unit 1206 may perform control to stop the encoding and modulation by the encoding / modulation unit 1208 and the wireless transmission processing by the wireless transmission unit 1209 in the measurement gap section. In addition, the measurement gap control unit 1206 outputs a response signal (for example, RRC connection reconfiguration complete) to the connection base station 110 with respect to the terminal notification information to the transmission data generation unit 1207.
  • a response signal for example, RRC connection reconfiguration complete
  • the transmission data generation unit 1207 generates transmission data to be transmitted to the connected base station 110. For example, the transmission data generation unit 1207 generates transmission data including uplink user data to the connected base station 110. Also, the transmission data generation unit 1207 generates transmission data including the measurement result (report information) of the power of the synchronization signal output from the synchronization signal detection / measurement unit 1205. Further, the transmission data generation unit 1207 generates transmission data including the RRC connection reconfiguration complete output from the measurement gap control unit 1206. Then, transmission data generating section 1207 outputs the generated transmission data to encoding / modulation section 1208.
  • the encoding / modulation unit 1208 encodes and modulates the transmission data output from the transmission data generation unit 1207. Then, encoding / modulation section 1208 outputs a transmission signal obtained by encoding and modulation to radio transmission section 1209.
  • the encoding / modulation unit 1208 sets the measurement gap in accordance with the control from the measurement gap control unit 1206. Then, encoding / modulation section 1208 does not output a transmission signal to connected base station 110 in the set measurement gap.
  • the wireless transmission unit 1209 performs wireless transmission processing of the transmission signal output from the encoding / modulation unit 1208.
  • the wireless transmission processing includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband to a high frequency band, amplification, and the like.
  • the wireless transmission unit 1209 outputs the signal subjected to the wireless transmission process to the antenna 1201.
  • the first receiving unit that receives a signal including information related to the length of the time interval (measurement gap) from the connected base station 110 can be realized by the antenna 1201 and the wireless receiving unit 1202, for example.
  • the second receiving unit that receives signals from the connecting base station 110 and the neighboring base station 120 can be realized by, for example, the antenna 1201, the wireless receiving unit 1202, the synchronization signal detecting / measuring unit 1205, and the measurement gap control unit 1206.
  • FIG. 13 is a diagram illustrating an example of a hardware configuration of the terminal according to the embodiment.
  • the same parts as those shown in FIG. As illustrated in FIG. 13, the demodulation / decoding unit 1203, the reception data processing unit 1204, and the synchronization signal detection / measurement unit 1205 illustrated in FIG. 12 can be realized by a digital circuit 1300, for example.
  • the measurement gap control unit 1206, the transmission data generation unit 1207, and the encoding / modulation unit 1208 can be realized by a digital circuit 1300, for example.
  • the digital circuit 1300 is a processor such as an FPGA or a DSP, for example.
  • the radio reception unit 1202 illustrated in FIG. 12 can be realized by a circuit such as a DAC, a mixer, and an amplifier.
  • the radio transmission unit 1209 illustrated in FIG. 12 can be realized by a circuit such as an amplifier, a mixer, and an ADC.
  • FIG. 14 is a flowchart illustrating an example of gap determination processing by the measurement gap control unit of the connected base station according to the embodiment.
  • the measurement gap control unit 1006 of the connecting base station 110 according to the embodiment executes, for example, each step shown in FIG. 14 as the gap determination process.
  • the measurement gap control unit 1006 determines whether or not the cycle adjustment coefficient N is 1 (step S1401).
  • the cycle adjustment coefficient N is an integer of 1 or more.
  • the measurement gap control unit 1006 sets the minimum integer satisfying ⁇ ⁇ (Tss + Trf) / (Tbs / Nbeam) / N as the period adjustment coefficient on condition that the period adjustment coefficient N is a divisor of the beam division number Nbeam.
  • N is a parameter of the connected base station 110 that satisfies 0 ⁇ ⁇ 1.0.
  • the beam division number Nbeam and the period Tbs are included in the peripheral base station information from the peripheral base station 120, for example.
  • the transmission cycle Tss and time Trf are included in the system information, for example.
  • step S1401 when the cycle adjustment coefficient N is 1 (step S1401: Yes), the measurement gap control unit 1006 sets the length MGST of the gap shift section (for example, the gap shift section 413 shown in FIG. 4) to 0. Determination is made (step S1402). That is, the measurement gap control unit 1006 determines not to insert a gap shift section.
  • the measurement gap control unit 1006 determines three types of lengths MGL (1) to MGL (3) of the measurement gap (for example, the measurement gap 411 shown in FIG. 4) (step S1403). For example, the measurement gap control unit 1006 determines MGL (2) from the above equation (1), MGL (1) from the above equation (2), and MGL (3) from the above equation (3). .
  • the measurement gap control unit 1006 determines the arrangement of the measurement gaps having lengths MGL (1) to MGL (3) within the gap period (for example, the gap period 410 shown in FIG. 4) (step S1404). ). For example, the measurement gap control unit 1006 determines the start position of the measurement gap having the lengths MGL (1) and MGL (2) as the start position of the gap period. In addition, the measurement gap control unit 1006 determines the start position of the measurement gap having a length of MGL (3) at a timing after MGL (1) ⁇ Trf from the start position of the gap period.
  • the measurement gap control unit 1006 also includes a gap period length MGRP, a divided measurement gap interval number Ndg, which is the number of measurement gaps whose length in the synchronization signal detection interval is MGL (1) or MGL (3), Is determined (step S1405).
  • is a parameter of the connected base station 110 that satisfies 0 ⁇ ⁇ ⁇ 1.0.
  • the measurement gap control unit 1006 determines the arrangement of gap periods in the synchronization signal detection section (step S1406). For example, the measurement gap control unit 1006 determines the first to Ndg / 2nd gap cycle as a gap cycle including a measurement gap having a length of MGL (1). In addition, the measurement gap control unit 1006 determines the Ndg / 2 + 1-th to Nbeam-th gap period as a gap period including a measurement gap having a length of MGL (2). Further, the measurement gap control unit 1006 determines the Nbeam + 1-th to Nbeam + Ndg / 2nd gap cycle as a gap cycle including a measurement gap having a length of MGL (3).
  • step S1401 when the cycle adjustment coefficient N is 2 or more (step S1401: No), it may be determined that the length of one step of beam sweeping of the neighboring base station 120 is short and close to the synchronization signal transmission cycle Tss. it can.
  • the measurement gap control unit 1006 determines the length MGL of the measurement gap (step S1409). For example, the measurement gap control unit 1006 determines MGL by (Tss + Trf) in the above equation (1). In this case, the length of each measurement gap is all MGL (2). In addition, the measurement gap control unit 1006 determines the arrangement of the measurement gaps within the gap period (step S1410). For example, the measurement gap control unit 1006 determines the start position of each measurement gap as the start position of the gap period.
  • the measurement gap control unit 1006 determines the arrangement of gap periods in the synchronization signal detection section (step S1412). For example, the measurement gap control unit 1006 arranges the above-described gap cycles from the first to the Nbeams in order. That is, the measurement gap control unit 1006 arranges the first gap cycle, the second gap cycle,..., The Nbeam-th gap cycle in this order.
  • Steps S1402 to S1407 or Steps S1408 to S1413, MGST, MGL, arrangement of measurement gaps in the gap period, MGRP, Ndg, arrangement of each gap period in the synchronization signal detection section, and Tsync are determined.
  • the measurement gap control unit 1006 determines the start offset of the gap period, that is, the start position of the first gap period for each terminal (for example, terminal 130) connected to the own cell (step S1414).
  • the determination of the start offset gapOffset is specified in, for example, 3GPP TS36.331.
  • the start offset gapOffset is determined by the following equation (14).
  • FLOOR () is a floor function.
  • SFN in the above equation (14) is a system frame number shared by the connecting base station 110 and the terminal 130.
  • T MGRP / 10 is defined in TS36.133 of 3GPP, for example.
  • the measurement gap control unit 1006 determines the start offset gapOffset based on, for example, the determined Tsync and the following equation (15).
  • basicTime is a predetermined time as a reference, and is 10 [ms] in LTE.
  • the measurement gap control unit 1006 generates terminal notification information for notifying the terminal 130 based on the information determined in steps S1402 to S1407 or steps S1408 to S1413 (step S1415), and ends the series of processes. To do.
  • the terminal notification information includes, for example, a start offset gapOffset, a division measurement gap interval number Ndg, a beam division number Nbeam, a period adjustment coefficient N, and a basic gap period MGRP_0.
  • the measurement gap control unit 1006 transmits the terminal notification information generated in each step shown in FIG. 14 to the transmission data generation unit 1007 to transmit it to the terminal 130.
  • the measurement gap control unit 1006 controls setting of the measurement gap by the encoding / modulation unit 1008 based on each parameter related to the determined measurement gap.
  • FIG. 15 is a flowchart illustrating an example of gap determination processing by the measurement gap control unit of the terminal according to the embodiment.
  • the measurement gap control unit 1206 of the terminal 130 according to the embodiment performs, for example, FIG. 15 as a gap determination process based on the terminal notification information generated in step S1414 in FIG. 14 and transmitted from the connected base station 110 to the own terminal.
  • the terminal notification information includes, for example, a start offset gapOffset, a division measurement gap interval number Ndg, a beam division number Nbeam, a period adjustment coefficient N, and a basic gap period MGRP_0.
  • the measurement gap control unit 1206 determines whether or not the cycle adjustment coefficient N included in the terminal notification information is 1 (step S1501). When the cycle adjustment coefficient N is 1 (step S1501: Yes), the process proceeds to step S1502.
  • Steps S1502 to S1507 by the measurement gap control unit 1206 are the same as steps S1402 to S1407 by the measurement gap control unit 1006 shown in FIG. However, in step S1505, the measurement gap control unit 1206 determines the length MGRP of each gap period as the basic gap period MGRP_0 included in the terminal notification information. In step S1505, the measurement gap control unit 1206 determines the divided measurement gap interval number Ndg based on the divided measurement gap interval number Ndg included in the terminal notification information.
  • the measurement gap control unit 1206 determines Tsync based on the beam division number Nbeam and the division measurement gap interval number Ndg included in the terminal notification information.
  • step S1501 when the cycle adjustment coefficient N is 2 or more (step S1501: No), the measurement gap control unit 1206 proceeds to step S1508.
  • Steps S1508 to S1513 shown in FIG. 15 are the same as steps S1408 to S1413 shown in FIG. However, in step S1508, the measurement gap control unit 1206 determines the basic gap period MGRP_0 and the MGST (n) of the nth gap period based on the beam division number Nbeam included in the terminal notification information.
  • the measurement gap control unit 1206 determines the length MGRP (n) of the nth gap cycle based on the basic gap cycle MGRP_0 and the cycle adjustment coefficient N included in the terminal notification information.
  • steps S1502 to S1507 or S1508 to S1513 MGST, MGL, arrangement of measurement gaps in the gap period, MGRP, Ndg, arrangement of the gap periods in the synchronization signal detection section, and Tsync are determined.
  • the measurement gap control unit 1206 sets the start offset of the gap period included in the terminal notification information in the own terminal (step S1514), and ends the series of processes. For example, the measurement gap control unit 1206 sets a measurement gap for the radio reception unit 1202 and the synchronization signal detection / measurement unit 1205.
  • FIG. 16 is a sequence diagram illustrating an example of processing in the wireless communication system according to the embodiment.
  • the connecting base station 110 transmits / receives information regarding beam sweeping to / from the neighboring base station 120 as neighboring base station information (step S1601).
  • the information related to beam sweeping includes a beam sweeping period (beam sweeping period) Tbs and a beam division number Nbeam.
  • the neighboring base station 120 transmits a synchronization signal by beam sweeping according to information related to beam sweeping included in the neighboring base station information transmitted to the connecting base station 110 in step S1601 (step S1602).
  • the connecting base station 110 determines a measurement gap parameter (step S1603). Determination of the measurement gap parameter is, for example, determination of each parameter in steps S1401 to S1414 shown in FIG. Next, the connecting base station 110 sets a measurement gap based on the measurement gap parameter determined in step S1603 (step S1604).
  • the connecting base station 110 transmits terminal notification information including the measurement gap parameter determined in step S1603 to the terminal 130 (step S1605).
  • the terminal notification information is transmitted by, for example, MeasGapConfig of RRC connection reconfiguration.
  • MeasGapConfig includes a division measurement gap interval number Ndg, a beam division number Nbeam, a period adjustment coefficient N, and a basic gap period MGRP_0 as measurement information.
  • the terminal 130 sets a measurement gap based on the measurement gap parameter included in the terminal notification information transmitted from the connected base station 110 in step S1605 (step S1606). Thereby, a common measurement gap is set in the connecting base station 110 and the terminal 130, and radio measurement using the measurement gap is started.
  • the connecting base station 110 stops transmission / reception of communication data with the terminal 130 in the measurement gap section set in step S1404 (step S1607).
  • the terminal 130 performs radio measurement of the synchronization signal transmitted from the neighboring base station 120 in step S1602 (step S1608).
  • the terminal 130 switches the frequency of the radio unit (step S1609). For example, the terminal 130 switches the frequency received by the radio unit from the frequency used by the connecting base station 110 for communication data to the terminal 130 to the frequency used by the neighboring base station 120 for transmitting the synchronization signal.
  • the connected base station 110 transmits downlink communication data to the terminal 130 when the communication period (including the gap shift period) other than the measurement gap period set in step S1404 is reached (step S1610).
  • the terminal 130 transmits uplink communication data and the wireless measurement result in step S1608 to the connected base station 110 ( Step S1611).
  • the terminal 130 switches the frequency of the radio unit (step S1612). For example, the terminal 130 switches the frequency received by the radio unit from the frequency used by the connecting base station 110 for communication data to the terminal 130 to the frequency used by the neighboring base station 120 for transmitting the synchronization signal.
  • step S1613 when the connecting base station 110 enters the section of the measurement gap set in step S1404, transmission / reception of communication data with the terminal 130 is stopped (step S1613).
  • the terminal 130 when the measurement gap section set in step S1406 is reached, the terminal 130 performs radio measurement of the synchronization signal transmitted from the neighboring base station 120 in step S1612 (step S1614).
  • the length of the intermittent time interval in which the terminal 130 does not have to receive the signal from the connection base station 110 is set for each time interval.
  • a signal including information related to the length of the time interval can be transmitted to the terminal 130.
  • the time section is a section in which no data signal is transmitted from the connecting base station 110 to the terminal 130, and is, for example, the above-described measurement gap.
  • the length of the time interval is, for example, the above-described MGL, MGL (1) to MGL (3).
  • the information related to the length of the time interval is information that enables the terminal 130 to specify the length of the time interval, and is the period adjustment coefficient N described above as an example.
  • the connecting base station 110 sets, for the terminal 130, a period for setting a time interval of a first length, a period for setting a time interval of a second length, and a time interval of a short third length.
  • the length of the time interval is determined for each time interval so that the set cycles are mixed.
  • the first length is the above-described MGL (2).
  • the second length is shorter than the first length, and is, for example, MGL (1) described above.
  • the third length is shorter than the first length, and is, for example, the above-described MGL (3).
  • the third time period is a time period having a different timing from the second time period.
  • the measurement gap is determined at each timing when the beam angle of the synchronization signal is the same.
  • the search time interval can be shortened. For this reason, it is possible to efficiently detect a synchronization signal transmitted by beam sweeping.
  • the connecting base station 110 determines the length of the time interval based on the peripheral base station information received from the peripheral base station 120. Thereby, even if the beam sweep pattern of the synchronization signal in the neighboring base station 120 is unknown, the length of the time interval in which the neighboring base station 120 can efficiently detect the synchronization signal transmitted by beam sweeping is determined. it can.
  • the neighboring base station 120 transmits the same signal (synchronization signal) using a plurality of transmission antennas, the neighboring base station 120 calculates at least one of the phase difference between the plurality of transmission antennas and the phase difference between the transmission streams of the synchronization signals. It is a radio base station that can be changed.
  • Peripheral base station information is information related to changing at least one of the phase difference between a plurality of transmission antennas and the phase difference between transmission streams of synchronization signals.
  • the peripheral base station information includes the number of beam divisions Nbeam and the period Tbs in beam sweeping of the synchronization signal by the peripheral base station 120.
  • the connecting base station 110 may set a period length for setting a time interval (for example, a measurement gap) for each period and generate a signal including information on the set period length.
  • the period for setting the time interval is, for example, the above-described gap period.
  • the information on the length of the period for setting the time interval is, for example, the gap period length MGRP (n) described above.
  • the information regarding the period length for setting the time interval is information that enables the terminal 130 to specify the gap period length MGRP (n), for example, and includes the period adjustment coefficient N and the number of beam divisions described above as an example. Nbeam and basic gap period MGRP_0.
  • the connecting base station 110 and the terminal 130 thereby, between the connecting base station 110 and the terminal 130, the length of the period for setting the time interval in which the terminal 130 does not need to receive the signal from the connecting base station 110 is set for each period, and transmitted by beam sweeping.
  • the detected sync signal can be detected efficiently. For example, it is possible to eliminate the duplicate search in which the measurement gap is set a plurality of times for the same beam angle in one synchronization signal detection section. For this reason, it is possible to efficiently detect a synchronization signal transmitted by beam sweeping.
  • the connecting base station 110 has a period length (for example, Tss) at which the neighboring base station 120 transmits a synchronization signal and a period length (for example, Tbs / Nbeam) at which the neighboring base station 120 switches the beam angle. Make a comparison. Then, the connecting base station 110 may perform processing for setting the length of the period for setting the time interval for each period in accordance with the comparison result. As an example, as described above, the connecting base station 110 calculates the minimum integer satisfying ⁇ ⁇ (Tss + Trf) / (Tbs / Nbeam) / N as the period adjustment coefficient N, and when N ⁇ 2 is satisfied, A process for setting the length of the period for setting the time interval for each period is performed. As a result, it is possible to efficiently detect the synchronization signal transmitted by beam sweeping while suppressing a period during which data communication between the connecting base station 110 and the terminal 130 is possible from being shortened.
  • Tss period length
  • Tbs / Nbeam a period
  • the radio base station As described above, according to the radio base station, the radio terminal, the radio communication system, and the radio communication method, it is possible to efficiently detect the synchronization signal transmitted by beam sweeping.
  • the fifth generation mobile communication system is expected to start commercial service from around 2020.
  • an ITU that a peak data rate of 20 [Gbps] at the maximum in the downlink (DL) and 10 [Gbps] at the maximum in the uplink (UL) should be obtained.
  • ITU is an abbreviation for International Telecommunication Union.
  • the use of multi-element antennas in the millimeter wave band is considered an effective method.
  • the maximum number of antenna elements included in one transmission antenna is assumed to be 256.
  • One of the important things in wireless cellular communication is that the process of connecting a terminal to a wireless cell base station and the signal for maintaining the connection and the system control signal can be received by the terminal throughout the wireless cell. That is.
  • beamforming transmission (beam generation based on an arrival angle obtained from measurement of a signal transmitted by the terminal) in which a beam is directed to the terminal is effective.
  • beamforming transmission a beam that is transmitted multiple times so that a beam with a narrow width with a changed beam angle reaches the entire area of the cell is used for transmission of a common radio signal that is received by all terminals in the cell.
  • Beam sweeping is realized by changing with the time of a weight matrix composed of amplitude and phase every time transmission is performed.
  • 3GPP has started basic study work for the specification of the fifth generation mobile communication system.
  • a radio downlink synchronization signal (equivalent to PSS or SSS in LTE) which is one of common radio signals.
  • Digital beam forming transmission, hybrid beam forming transmission or analog beam forming transmission is used when beam forming transmission is performed using a multi-element transmission antenna.
  • Hybrid beamforming transmission is a combination of digital beamforming transmission and analog beamforming transmission.
  • the radio signal introduced into the radio section of the fifth generation mobile communication system does not depend on these beamforming transmission methods. That is, it is required that the terminal can receive the radio signal transmitted by beamforming without knowing the type of beamforming transmission method used on the base station side.
  • the number of beams transmitted at the same time can be varied by making the setting contents of the phase matrix given between the antenna elements appropriate. As the number of beams increases, the power allocated to one beam decreases and the beam reaching distance decreases. When the power allocated to one beam is the same, the beam reaching distance decreases as the beam width increases. .
  • the beam width and the number of sweeps are set for each radio base station in consideration of the cell size, the configuration of the transmission antenna, the radio carrier frequency, and the like. For this reason, the terminal needs to be able to receive a signal to be transmitted by beam sweeping without knowing the beam width or the number of sweeps of beam sweeping.
  • Wireless communication in the millimeter wave band (for example, 24 to 40 [GHz] or 66 to 86 [GHz] band) is more effective than the wireless communication in the low frequency band such as 2 to 3 [GHz]. It is strongly influenced by the environment between the transmission / reception point (wireless base station) and the wireless terminal. This is due to the fact that the higher the frequency, the stronger the straightness of radio waves and the greater the spatial propagation loss of radio signals.
  • the number of beam sweeps and beam sweep patterns of the same signal are different for each radio cell. It will be possible to set.
  • a measurement gap (wireless measurement gap) needs to be set particularly when performing different frequency measurement.
  • the measurement gap is a time interval in which the wireless network interrupts transmission of a data signal to the wireless terminal and the wireless terminal performs wireless measurement.
  • the current LTE specification does not assume beam sweep transmission of synchronization signals. For this reason, beam sweep transmission of the synchronization signal is performed in the peripheral base station, and when different beam sweep numbers and beam sweep patterns are set for each radio base station, the measurement gap pattern set for the radio terminal is It becomes complicated. The number of measurement gaps and the length of time are expected to increase, but the measurement gaps to be set will be excessive, and there will be no need to interrupt data transmission from the wireless base station to which the wireless terminal is connected. It will be longer.
  • the length of the measurement gap can be set for each measurement gap, so that efficient measurement can be performed even when different beam sweep numbers and beam sweep patterns are set in the radio base station. It becomes possible to set a gap.
  • Wireless communication system 110 Connection base station 120 Peripheral base station 121,122,510 Beam 130 Terminal 200 Cell 300 Radio frame 311 321 PSS 312,322 SSS 330 Sync signal period 410, 521 to 544, 610, 620, 630, 711 to 726 Gap period 411, 611, 621, 631 Measurement gap 412, 612, 622, 632, 633 Communication period 413 Gap shift period 550 Division search 810 UE 820 EUTRAN 911 to 913, 920 Maximum detection time vs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A connection base station (110) makes it possible to set the length of an intermittent time interval during which a wireless terminal does not have to receive a signal from the connection base station, for each time inerval. The terminal (130) receives a signal from the connection base station (110) during an interval different from a time interval and receives a signal from a peripheral base station (120) during the time interval. Each time the peripheral base station (120) transmits an identical signal by use of a plurality of transmission antennas, the peripheral base station (120) can change at least one of the phase difference between the plurality of transmission antennas and the phase difference between the transmission streams of the identical signal.

Description

無線基地局、無線端末、無線通信システムおよび無線通信方法Wireless base station, wireless terminal, wireless communication system, and wireless communication method

 本発明は、無線通信を行う無線基地局、無線端末、無線通信システムおよび無線通信方法に関する。 The present invention relates to a wireless base station, a wireless terminal, a wireless communication system, and a wireless communication method that perform wireless communication.

 従来、3GPPにおいて、第3世代移動通信システム(3G)、第3.9世代移動通信システムに対応するLTE、第4世代移動通信システムに対応するLTE-Advancedなどの移動通信システムの仕様が検討されている。3GPPは3rd Generation Partnership Projectの略である。LTEはLong Term Evolutionの略である。また、第5世代移動通信システム(5G)に関する技術の検討も開始されている。また、基地局装置が、同期信号に対するビームフォーミング(beam forming)用ウェイトを所定の時間間隔で変更する技術が知られている(たとえば、下記特許文献1参照。)。 Conventionally, in 3GPP, specifications of mobile communication systems such as the third generation mobile communication system (3G), LTE corresponding to the 3.9th generation mobile communication system, LTE-Advanced corresponding to the fourth generation mobile communication system have been studied. ing. 3GPP is an abbreviation for 3rd Generation Partnership Project. LTE is an abbreviation for Long Term Evolution. In addition, studies on technologies relating to the fifth generation mobile communication system (5G) have also started. In addition, a technique is known in which a base station apparatus changes a beam forming weight for a synchronization signal at a predetermined time interval (see, for example, Patent Document 1 below).

特開2015-041817号公報Japanese Patent Laying-Open No. 2015-041817

 しかしながら、上述した従来技術では、たとえば基地局からの同期信号がビームスイーピング(beam sweeping)によって送信される場合において、同期信号の検出を効率よく行うことが求められる。 However, in the above-described conventional technique, for example, when a synchronization signal from a base station is transmitted by beam sweeping, it is required to efficiently detect the synchronization signal.

 1つの側面では、本発明は、ビームスイーピングにより送信される同期信号の検出を効率よく行うことができる無線基地局、無線端末、無線通信システムおよび無線通信方法を提供することを目的とする。 In one aspect, an object of the present invention is to provide a radio base station, a radio terminal, a radio communication system, and a radio communication method that can efficiently detect a synchronization signal transmitted by beam sweeping.

 上述した課題を解決し、目的を達成するため、1つの実施態様では、第1無線基地局が、自局からの信号を無線端末が受信しなくてよい断続的な時間区間の長さを前記時間区間ごとに設定することが可能であり、無線端末が、前記時間区間と異なる区間において前記第1無線基地局からの信号を受信し、前記時間区間において、前記第1無線基地局と異なる第2無線基地局であって、自局から複数の送信アンテナを用いて同一の信号を送信するごとに、前記複数の送信アンテナの間の位相差および前記同一の信号の送信ストリーム間の位相差の少なくともいずれかを変えることが可能な第2無線基地局からの信号を受信する無線基地局、無線端末、無線通信システムおよび無線通信方法が提案される。 In order to solve the above-described problems and achieve the object, in one embodiment, the first radio base station sets the length of the intermittent time interval in which the radio terminal may not receive a signal from the own station. It is possible to set for each time interval, and the radio terminal receives a signal from the first radio base station in a different interval from the time interval, and is different from the first radio base station in the time interval. 2 radio base stations, each time the same signal is transmitted from the own station using a plurality of transmission antennas, the phase difference between the plurality of transmission antennas and the phase difference between the transmission streams of the same signal A radio base station, a radio terminal, a radio communication system, and a radio communication method that receive a signal from a second radio base station that can change at least one of them are proposed.

 本発明の一側面によれば、ビームスイーピングにより送信される同期信号の検出を効率よく行うことができるという効果を奏する。 According to one aspect of the present invention, it is possible to efficiently detect a synchronization signal transmitted by beam sweeping.

図1は、実施の形態にかかる通信システムの一例を示す図である。FIG. 1 is a diagram illustrating an example of a communication system according to an embodiment. 図2は、実施の形態にかかる接続基地局の周辺基地局によるビームスイーピングによる同期信号の送信の一例を示す図である。FIG. 2 is a diagram illustrating an example of transmission of a synchronization signal by beam sweeping by a peripheral base station of a connection base station according to the embodiment. 図3は、実施の形態にかかる接続基地局の周辺基地局による同期信号の送信タイミングの一例を示す図である。FIG. 3 is a diagram illustrating an example of the transmission timing of the synchronization signal by the peripheral base station of the connected base station according to the embodiment. 図4は、実施の形態にかかるギャップ周期の構成の一例を示す図である。FIG. 4 is a diagram illustrating an example of a configuration of a gap period according to the embodiment. 図5は、実施の形態にかかる接続基地局によるギャップ周期ごとの測定ギャップの設定の一例を示す図である。FIG. 5 is a diagram illustrating an example of setting a measurement gap for each gap period by the connecting base station according to the embodiment. 図6は、実施の形態にかかる接続基地局によるギャップ周期内の測定ギャップの配置の一例を示す図である。FIG. 6 is a diagram illustrating an example of an arrangement of measurement gaps within a gap period by a connecting base station according to the embodiment. 図7は、実施の形態にかかる接続基地局によるギャップ周期ごとの測定ギャップの設定の他の一例を示す図である。FIG. 7 is a diagram illustrating another example of setting a measurement gap for each gap period by the connecting base station according to the embodiment. 図8は、実施の形態にかかる接続基地局から端末への測定ギャップパラメータの通知の一例を示すシーケンス図である。FIG. 8 is a sequence diagram illustrating an example of measurement gap parameter notification from the connected base station to the terminal according to the embodiment. 図9は、実施の形態にかかる接続基地局による最大検出時間対損失率の改善の一例を示す図である。FIG. 9 is a diagram illustrating an example of improvement in the maximum detection time versus loss rate by the connected base station according to the embodiment. 図10は、実施の形態にかかる接続基地局の一例を示す図である。FIG. 10 is a diagram of an example of the connection base station according to the embodiment. 図11は、実施の形態にかかる接続基地局のハードウェア構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of a hardware configuration of a connection base station according to the embodiment. 図12は、実施の形態にかかる端末の一例を示す図である。FIG. 12 is a diagram illustrating an example of a terminal according to the embodiment. 図13は、実施の形態にかかる端末のハードウェア構成の一例を示す図である。FIG. 13 is a diagram illustrating an example of a hardware configuration of the terminal according to the embodiment. 図14は、実施の形態にかかる接続基地局の測定ギャップ制御部によるギャップ決定処理の一例を示すフローチャートである。FIG. 14 is a flowchart illustrating an example of gap determination processing by the measurement gap control unit of the connected base station according to the embodiment. 図15は、実施の形態にかかる端末の測定ギャップ制御部によるギャップ決定処理の一例を示すフローチャートである。FIG. 15 is a flowchart illustrating an example of gap determination processing by the measurement gap control unit of the terminal according to the embodiment. 図16は、実施の形態にかかる無線通信システムにおける処理の一例を示すシーケンス図である。FIG. 16 is a sequence diagram illustrating an example of processing in the wireless communication system according to the embodiment.

 以下に図面を参照して、本発明にかかる無線基地局、無線端末、無線通信システムおよび無線通信方法の実施の形態を詳細に説明する。 Hereinafter, embodiments of a radio base station, a radio terminal, a radio communication system, and a radio communication method according to the present invention will be described in detail with reference to the drawings.

(実施の形態)
(実施の形態にかかる通信システム)
 図1は、実施の形態にかかる通信システムの一例を示す図である。図1に示すように、実施の形態にかかる無線通信システム100は、接続基地局110と、周辺基地局120と、端末130と、を含む。接続基地局110は、端末130が接続中の無線基地局である。端末130は、接続基地局110のセルに接続しており、接続基地局110との間で無線通信を行う無線端末である。
(Embodiment)
(Communication system according to embodiment)
FIG. 1 is a diagram illustrating an example of a communication system according to an embodiment. As illustrated in FIG. 1, a wireless communication system 100 according to an embodiment includes a connection base station 110, a peripheral base station 120, and a terminal 130. The connection base station 110 is a radio base station to which the terminal 130 is connected. The terminal 130 is a wireless terminal that is connected to the cell of the connected base station 110 and performs wireless communication with the connected base station 110.

 周辺基地局120は、接続基地局110の周辺の無線基地局であり、たとえば接続基地局110に接続している端末130のハンドオーバ先になり得る無線基地局である。接続基地局110および周辺基地局120は、たとえばX2インタフェースなどの基地局間インタフェースにより互いに接続されており、互いに情報の送受信が可能である。 The peripheral base station 120 is a radio base station around the connection base station 110, for example, a radio base station that can be a handover destination of the terminal 130 connected to the connection base station 110. The connected base station 110 and the peripheral base station 120 are connected to each other by an inter-base station interface such as an X2 interface, and can transmit and receive information to and from each other.

 無線通信システム100において、アンプリンクの通信とダウンリンクの通信を時分割で行うTDD(Time Division Duplex:時分割複信)方式が用いられる。図1に示す例では、接続基地局110は、同期信号および端末(たとえば端末130)へのダウンリンクの信号(端末向けDL信号)を周波数#1で送信する。端末130は、接続基地局110へのアップリンクの信号(UL信号)を周波数#1で送信する。 In the wireless communication system 100, a TDD (Time Division Duplex) method in which amplifier link communication and downlink communication are performed in a time division manner is used. In the example illustrated in FIG. 1, the connecting base station 110 transmits a synchronization signal and a downlink signal (DL signal for the terminal) to the terminal (for example, the terminal 130) at the frequency # 1. The terminal 130 transmits an uplink signal (UL signal) to the connected base station 110 at the frequency # 1.

 周辺基地局120は、周期的な同期信号を、周波数#1と異なる周波数#2で送信する。また、周辺基地局120は、同期信号を、ビーム角度を切り替えながら信号を送信するビームスイーピングにより送信する。図1に示すビーム121は、ビームの角度が角度#1であるときの同期信号のビームである。図1に示すビーム122は、ビームの角度が角度#1と異なる#xであるときの同期信号のビームである。 Peripheral base station 120 transmits a periodic synchronization signal at frequency # 2 different from frequency # 1. Also, the peripheral base station 120 transmits the synchronization signal by beam sweeping that transmits a signal while switching the beam angle. The beam 121 shown in FIG. 1 is a sync signal beam when the beam angle is angle # 1. The beam 122 shown in FIG. 1 is a sync signal beam when the beam angle is #x different from the angle # 1.

 端末130は、周辺基地局120からの同期信号を検出し、検出した同期信号の電力を測定する。そして、端末130は、同期信号の電力の測定結果をアップリンクの信号によって接続基地局110へ報告する。接続基地局110は、端末130が周辺基地局120からの同期信号を無線測定するための測定ギャップを端末130に対して設定する。測定ギャップの区間においては、接続基地局110は端末130へのダウンリンクの信号を送信しない。端末130は、接続基地局110によって設定された測定ギャップにおいて、周辺基地局120からの同期信号を検出する。 Terminal 130 detects the synchronization signal from neighboring base station 120 and measures the power of the detected synchronization signal. Then, the terminal 130 reports the measurement result of the synchronization signal power to the connecting base station 110 using an uplink signal. The connecting base station 110 sets a measurement gap for the terminal 130 so that the terminal 130 wirelessly measures the synchronization signal from the neighboring base station 120. In the measurement gap section, the connecting base station 110 does not transmit a downlink signal to the terminal 130. The terminal 130 detects the synchronization signal from the neighboring base station 120 in the measurement gap set by the connecting base station 110.

 ただし、周辺基地局120が同期信号を送信するタイミングにおいて測定ギャップが設定されたとしても、そのタイミングで同期信号のビームが端末130へ向いているとは限らないため端末130が同期信号を検出できるとは限らない。たとえば、接続基地局110および端末130において、検出すべき周辺基地局120からの同期信号は、送信周期のみ既知であり、タイミングおよびビーム角度は未知である。 However, even if the measurement gap is set at the timing when the peripheral base station 120 transmits the synchronization signal, the synchronization signal beam is not always directed to the terminal 130 at that timing, so the terminal 130 can detect the synchronization signal. Not necessarily. For example, in the connecting base station 110 and the terminal 130, the synchronization signal from the neighboring base station 120 to be detected is known only in the transmission period, and the timing and beam angle are unknown.

 これに対して、接続基地局110は、周辺基地局120からビームスイーピングにより送信される同期信号の検出を効率よく行うことができるように端末130の測定ギャップを設定する。 On the other hand, the connecting base station 110 sets the measurement gap of the terminal 130 so that the synchronization signal transmitted from the neighboring base station 120 by beam sweeping can be detected efficiently.

(実施の形態にかかる接続基地局の周辺基地局によるビームスイーピングによる同期信号の送信)
 図2は、実施の形態にかかる接続基地局の周辺基地局によるビームスイーピングによる同期信号の送信の一例を示す図である。実施の形態にかかる接続基地局110の周辺に位置する周辺基地局120は、たとえば図2に示すビームスイーピングにより同期信号を送信する。図2に示す例では、周辺基地局120は、周辺基地局120のセル200をビームの角度で16分割し、16分割した角度#1~#16を順次切り替えながら同期信号を無線送信する。ビームスイーピング(ビームの角度の切替)は、たとえば周辺基地局120の複数の送信アンテナの間の位相差と送信ストリーム間の位相差の少なくともいずれかを変えることにより実現することができる。
(Transmission of synchronization signal by beam sweeping by peripheral base stations of connected base station according to embodiment)
FIG. 2 is a diagram illustrating an example of transmission of a synchronization signal by beam sweeping by a peripheral base station of a connection base station according to the embodiment. The peripheral base station 120 located in the vicinity of the connection base station 110 according to the embodiment transmits a synchronization signal by, for example, beam sweeping illustrated in FIG. In the example illustrated in FIG. 2, the neighboring base station 120 divides the cell 200 of the neighboring base station 120 into 16 beam angles, and wirelessly transmits a synchronization signal while sequentially switching the 16 divided angles # 1 to # 16. Beam sweeping (switching of the beam angle) can be realized, for example, by changing at least one of a phase difference between a plurality of transmission antennas of the neighboring base station 120 and a phase difference between transmission streams.

(実施の形態にかかる接続基地局の周辺基地局による同期信号の送信タイミング)
 図3は、実施の形態にかかる接続基地局の周辺基地局による同期信号の送信タイミングの一例を示す図である。図3において、横方向は時間を示す。無線フレーム300は、無線通信システム100における無線通信の無線フレームである。無線フレーム300の長さは、一例としては10[ms]である。サブフレーム#0~#9は、無線フレーム300に含まれる10個のサブフレームである。サブフレーム#0~#9のそれぞれの長さは、一例としては1[ms]である。
(Transmission timing of synchronization signal by peripheral base station of connected base station according to embodiment)
FIG. 3 is a diagram illustrating an example of the transmission timing of the synchronization signal by the peripheral base station of the connected base station according to the embodiment. In FIG. 3, the horizontal direction indicates time. The radio frame 300 is a radio frame for radio communication in the radio communication system 100. The length of the radio frame 300 is 10 [ms] as an example. Subframes # 0 to # 9 are 10 subframes included in radio frame 300. The length of each of the subframes # 0 to # 9 is 1 [ms] as an example.

 PSS311およびSSS312は、サブフレーム#0において周辺基地局120が無線送信する同期信号である。PSSはPrimary Synchronization Signal(プライマリ同期信号)の略である。SSSはSecondary Synchronization Signal(セカンダリ同期信号)の略である。 PSS 311 and SSS 312 are synchronization signals wirelessly transmitted by neighboring base station 120 in subframe # 0. PSS is an abbreviation for Primary Synchronization Signal (primary synchronization signal). SSS is an abbreviation for Secondary Synchronization Signal (secondary synchronization signal).

 PSS321およびSSS322は、サブフレーム#5において周辺基地局120が無線送信する同期信号である。周辺基地局120は、サブフレーム#0,#5のそれぞれの同じタイミングにおいて同期信号を送信することで、一定の同期信号周期330で同期信号を送信する。同期信号周期330の長さは、一例としては5[ms]である。そして、周辺基地局120は、同期信号を一定の同期信号周期330で無線送信しつつ、同期信号のビーム角度を一定周期で切り替えるビームスイーピングを行う(たとえば図2参照)。 PSS 321 and SSS 322 are synchronization signals that are wirelessly transmitted by neighboring base station 120 in subframe # 5. The peripheral base station 120 transmits the synchronization signal at a constant synchronization signal period 330 by transmitting the synchronization signal at the same timing in each of the subframes # 0 and # 5. As an example, the length of the synchronization signal period 330 is 5 [ms]. Then, the peripheral base station 120 performs beam sweeping to switch the beam angle of the synchronization signal at a constant period while wirelessly transmitting the synchronization signal at a constant synchronization signal period 330 (see, for example, FIG. 2).

(実施の形態にかかるギャップ周期の構成)
 図4は、実施の形態にかかるギャップ周期の構成の一例を示す図である。図4に示すギャップ周期410は、接続基地局110によって測定ギャップが設定される周期の長さを示す。ギャップ周期410の期間には、測定ギャップ411と、通信区間412と、ギャップシフト区間413と、が含まれる。
(Configuration of gap period according to the embodiment)
FIG. 4 is a diagram illustrating an example of a configuration of a gap period according to the embodiment. The gap period 410 shown in FIG. 4 indicates the length of the period in which the measurement gap is set by the connecting base station 110. The period of the gap cycle 410 includes a measurement gap 411, a communication section 412, and a gap shift section 413.

 測定ギャップ411は、接続基地局110が端末130との間で無線通信を行わず、端末130が周辺セル(たとえば周辺基地局120)からの同期信号の電力を測定する期間である。通信区間412は、接続基地局110が端末130との間で無線通信を行う期間である。ギャップシフト区間413は、ギャップ周期410の長さを変化させるために設定される期間である。ギャップシフト区間413においては、通信区間412と同様に、接続基地局110は端末130との間で無線通信を行う。 The measurement gap 411 is a period during which the connected base station 110 does not perform wireless communication with the terminal 130 and the terminal 130 measures the power of the synchronization signal from the neighboring cell (for example, the neighboring base station 120). The communication section 412 is a period during which the connecting base station 110 performs wireless communication with the terminal 130. The gap shift section 413 is a period set in order to change the length of the gap period 410. In the gap shift section 413, the connected base station 110 performs wireless communication with the terminal 130 as in the communication section 412.

 MGRPは、ギャップ周期410の長さである。MGLは、測定ギャップ411の長さである。MGSTは、ギャップシフト区間413の長さである。接続基地局110は、たとえばMGRP,MGL,MGSTをそれぞれ設定可能である。MGSTは0に設定することも可能であり、この場合はギャップシフト区間413がなくなる。 MGRP is the length of the gap period 410. MGL is the length of the measurement gap 411. MGST is the length of the gap shift section 413. For example, the connection base station 110 can set MGRP, MGL, and MMGST, respectively. MGST can be set to 0. In this case, the gap shift section 413 is eliminated.

 接続基地局110は、ギャップ周期410ごとに異なる長さの測定ギャップ411を端末130に設定可能である。これにより、周辺セル(たとえば周辺基地局120)の同期信号のスイーピングパターン(タイミングやビーム角度)が未知の状況において、同期信号の検出に要する時間と損失率の最適化を両立することが可能になる。 The connecting base station 110 can set the measurement gap 411 having a different length for each gap period 410 in the terminal 130. As a result, in a situation where the sweep pattern (timing and beam angle) of the synchronization signal of the neighboring cell (for example, neighboring base station 120) is unknown, it is possible to achieve both optimization of the time required for detecting the synchronization signal and the loss rate. Become.

(実施の形態にかかる接続基地局によるギャップ周期ごとの測定ギャップの設定)
 図5は、実施の形態にかかる接続基地局によるギャップ周期ごとの測定ギャップの設定の一例を示す図である。図5において、横方向は時間を示す。図5に示すビーム510(Beam)は、周辺基地局120が送信するビームである。ビーム510のビーム#1~#16は、周辺基地局120のビームスイーピングの1周期分の各ビームであって、それぞれビーム角度が異なるビームである。ビーム#1~#16は、たとえば図2に示したビームの角度#1~#16に対応する各ビームである。
(Setting of measurement gap for each gap period by the connecting base station according to the embodiment)
FIG. 5 is a diagram illustrating an example of setting a measurement gap for each gap period by the connecting base station according to the embodiment. In FIG. 5, the horizontal direction indicates time. A beam 510 (Beam) illustrated in FIG. 5 is a beam transmitted by the peripheral base station 120. Beams # 1 to # 16 of the beam 510 are beams for one cycle of beam sweeping by the peripheral base station 120, and are beams having different beam angles. Beams # 1 to # 16 are beams corresponding to the beam angles # 1 to # 16 shown in FIG. 2, for example.

 図5に示す例では、周辺基地局120は、LTE仕様のように5[ms]周期の同期信号を送信し、640[ms]の周期でビーム角度を16分割するビームスイーピングを行うとする。この場合に、ビーム510のビーム#1~#16はそれぞれ640[ms]/16=40[ms]の長さになる。 In the example shown in FIG. 5, it is assumed that the peripheral base station 120 transmits a synchronization signal having a period of 5 [ms] as in the LTE specification, and performs beam sweeping to divide the beam angle into 16 at a period of 640 [ms]. In this case, the beams # 1 to # 16 of the beam 510 each have a length of 640 [ms] / 16 = 40 [ms].

 また、測定ギャップの配置の繰り返し周期である同期信号検出区間の長さTsyncを、MGRP*(8*2+8)=MGRP*24とする。同期信号検出区間の長さTsyncの決定方法については後述する。 Also, the length Tsync of the synchronization signal detection section, which is the repetition period of the measurement gap arrangement, is set to MGRP * (8 * 2 + 8) = MGRP * 24. A method for determining the length Tsync of the synchronization signal detection section will be described later.

 ギャップ周期521~544は、同期信号検出区間に含まれる24個のギャップ周期である。ギャップ周期521~544のそれぞれは、図4に示したギャップ周期410である。すなわち、接続基地局110は、同期信号検出区間ごとに、図5に示したギャップ周期521~544を設定する。同期信号検出区間の決定方法については後述する。また、図5に示す例では、ギャップ周期521~544のそれぞれは、ビーム510の角度ごとのビームと同じ40[ms]の長さである(MGRP=40[ms])。 The gap periods 521 to 544 are 24 gap periods included in the synchronization signal detection section. Each of the gap periods 521 to 544 is the gap period 410 shown in FIG. That is, the connecting base station 110 sets the gap periods 521 to 544 shown in FIG. 5 for each synchronization signal detection period. A method for determining the synchronization signal detection period will be described later. In the example shown in FIG. 5, each of the gap periods 521 to 544 has the same length of 40 [ms] as the beam for each angle of the beam 510 (MGRP = 40 [ms]).

 また、図5に示す例では、ギャップ周期521~544のうちの最初の8個のギャップ周期521~528では3[ms]の測定ギャップ(G)が設定される。また、ギャップ周期521~528の次の8個のギャップ周期529~536では6[ms]の測定ギャップ(G)が設定される。また、ギャップ周期529~536の次の8個のギャップ周期537~544では4[ms]の測定ギャップ(G)が設定される。なお、図5においては測定ギャップ(G)が各ギャップ周期の先頭に配置されているように図示しているが、測定ギャップ(G)の位置は各ギャップ周期の先頭に限らない。 In the example shown in FIG. 5, a measurement gap (G) of 3 [ms] is set in the first eight gap periods 521 to 528 of the gap periods 521 to 544. In the next eight gap periods 529 to 536 after the gap periods 521 to 528, a measurement gap (G) of 6 [ms] is set. In the next eight gap periods 537 to 544 after the gap periods 529 to 536, a measurement gap (G) of 4 [ms] is set. In FIG. 5, the measurement gap (G) is illustrated as being arranged at the beginning of each gap period, but the position of the measurement gap (G) is not limited to the beginning of each gap period.

 このように、接続基地局110は、ギャップ周期ごとに長さが異なる測定ギャップを設定可能である。ギャップ周期521~528における各測定ギャップの長さをMGL(1)とする。また、ギャップ周期529~536における各測定ギャップの長さをMGL(2)とする。また、ギャップ周期537~544における各測定ギャップの長さをMGL(3)とする。MGL(1)~MGL(3)は、たとえば下記(1)式~(3)式により計算できる。 Thus, the connecting base station 110 can set a measurement gap having a different length for each gap period. The length of each measurement gap in the gap periods 521 to 528 is MGL (1). Further, the length of each measurement gap in the gap periods 529 to 536 is MGL (2). In addition, the length of each measurement gap in the gap periods 537 to 544 is MGL (3). MGL (1) to MGL (3) can be calculated by, for example, the following formulas (1) to (3).

 MGL(2)=(Tss+Trf) …(1)
 MGL(1)=int((Tss+Trf)/2) …(2)
 MGL(3)=(Tss+Trf+Trf)-MGL(1) …(3)
MGL (2) = (Tss + Trf) (1)
MGL (1) = int ((Tss + Trf) / 2) (2)
MGL (3) = (Tss + Trf + Trf) −MGL (1) (3)

 Tssは、周辺基地局120における同期信号の送信周期であり、一例としては5[ms]である。Trfは、端末130の無線部(たとえば図12に示す無線受信部1202)の周波数切替のための時間であり、一例としては1[ms]である。Tss,Trfは、たとえば無線通信システム100において定義され、無線通信システム100のシステム情報に含まれる。int()は商の小数切り捨てを示す関数である。 Tss is a transmission period of the synchronization signal in the peripheral base station 120, and is 5 [ms] as an example. Trf is a time for frequency switching of a radio unit (for example, radio reception unit 1202 shown in FIG. 12) of terminal 130, and is 1 [ms] as an example. Tss and Trf are defined in the wireless communication system 100, for example, and are included in the system information of the wireless communication system 100. int () is a function indicating fractional truncation of the quotient.

 すなわち、MGL(2)は、仮に周辺基地局120が同期信号をセル200内に一斉送信すると仮定した場合に端末130が1回の測定ギャップで同期信号を確実に受信できる測定ギャップの長さである。図5に示す例では、MGL(2)=(Tss+Trf)=5+1=6[ms]である。 That is, MGL (2) is the length of the measurement gap that the terminal 130 can reliably receive the synchronization signal in one measurement gap, assuming that the neighboring base station 120 simultaneously transmits the synchronization signal into the cell 200. is there. In the example illustrated in FIG. 5, MGL (2) = (Tss + Trf) = 5 + 1 = 6 [ms].

 MGL(1),MGL(3)は、それぞれMGL(2)より短いが、MGL(1),MGL(3)を合わせるとMGL(2)以上になるように決定される。MGL(1)は、図5に示す例では、MGL(1)=int((Tss+Trf)/2)=int((5+1)/2)=3[ms]である。MGL(3)は、図5に示す例では、MGL(3)=(Tss+Trf+Trf)-MGL(1)=(5+1+1)-3=4[ms]である。 MGL (1) and MGL (3) are shorter than MGL (2), respectively, but when MGL (1) and MGL (3) are combined, they are determined to be MGL (2) or more. In the example shown in FIG. 5, MGL (1) is MGL (1) = int ((Tss + Trf) / 2) = int ((5 + 1) / 2) = 3 [ms]. In the example shown in FIG. 5, MGL (3) is MGL (3) = (Tss + Trf + Trf) −MGL (1) = (5 + 1 + 1) −3 = 4 [ms].

 分割検索550の分割は、ビーム角度#1~#16の各期間のうち、1回の同期信号検出区間においてMGL(1)の測定ギャップを含むギャップ周期およびMGL(2)の測定ギャップを含むギャップ周期が設定される期間を示す。図5に示す例では、ビーム角度#1~#8のそれぞれの期間において、MGL(1)の測定ギャップを含むギャップ周期およびMGL(2)の測定ギャップを含むギャップ周期が設定されて同期信号の分割検索が行われる。そして、MGL(1)の測定ギャップとMGL(2)の測定ギャップはそれぞれギャップ周期内の開始位置(タイミング)が異なる。このため、分割検索においてはそれぞれ異なるタイミングで同期信号の検索が行われるため、ビームスイーピングにより送信される同期信号の検出を効率よく行うことができる。 The division search 550 is divided into a gap period including a measurement gap of MGL (1) and a gap including a measurement gap of MGL (2) in one synchronization signal detection period in each period of beam angles # 1 to # 16. Indicates the period during which the cycle is set. In the example shown in FIG. 5, in each period of beam angles # 1 to # 8, a gap period including a measurement gap of MGL (1) and a gap period including a measurement gap of MGL (2) are set, and the synchronization signal A split search is performed. The measurement gap of MGL (1) and the measurement gap of MGL (2) are different from each other in the start position (timing) within the gap period. For this reason, since the synchronization signal is searched at different timings in the divided search, it is possible to efficiently detect the synchronization signal transmitted by beam sweeping.

(実施の形態にかかる接続基地局によるギャップ周期内の測定ギャップの配置)
 図6は、実施の形態にかかる接続基地局によるギャップ周期内の測定ギャップの配置の一例を示す図である。図6において、横方向は時間を示す。図6に示すギャップ周期610は、長さがMGL(1)の測定ギャップ611が設定されるギャップ周期であって、図5に示した例ではギャップ周期521~528のそれぞれに相当する。接続基地局110は、長さがMGL(1)の測定ギャップ611の開始位置を、ギャップ周期610の開始位置と同じにする。また、図6に示す例ではMGST=0としており、ギャップ周期610のうち測定ギャップ611を除いた期間は通信区間612(図4に示した通信区間412)となる。
(Arrangement of measurement gaps within the gap period by the connecting base station according to the embodiment)
FIG. 6 is a diagram illustrating an example of an arrangement of measurement gaps within a gap period by a connecting base station according to the embodiment. In FIG. 6, the horizontal direction indicates time. A gap cycle 610 shown in FIG. 6 is a gap cycle in which a measurement gap 611 having a length of MGL (1) is set, and corresponds to each of the gap cycles 521 to 528 in the example shown in FIG. The connecting base station 110 makes the start position of the measurement gap 611 having a length of MGL (1) the same as the start position of the gap period 610. In the example shown in FIG. 6, MGST = 0 is set, and a period excluding the measurement gap 611 in the gap period 610 is a communication section 612 (communication section 412 shown in FIG. 4).

 図6に示すギャップ周期620は、長さがMGL(2)の測定ギャップ621が設定されるギャップ周期であって、図5に示した例ではギャップ周期529~536のそれぞれに相当する。接続基地局110は、長さがMGL(2)の測定ギャップ621の開始位置を、ギャップ周期620の開始位置と同じにする。また、図6に示す例ではMGST=0としており、ギャップ周期620のうち測定ギャップ621を除いた期間は通信区間622(図4に示した通信区間412)となる。 6 is a gap period in which the measurement gap 621 having a length of MGL (2) is set, and corresponds to each of the gap periods 529 to 536 in the example shown in FIG. The connecting base station 110 makes the start position of the measurement gap 621 having a length of MGL (2) the same as the start position of the gap period 620. In the example shown in FIG. 6, MGST = 0 is set, and a period excluding the measurement gap 621 in the gap period 620 is a communication section 622 (communication section 412 shown in FIG. 4).

 図6に示すギャップ周期630は、長さがMGL(3)の測定ギャップ631が設定されるギャップ周期であって、図5に示した例ではギャップ周期537~544のそれぞれに相当する。接続基地局110は、長さがMGL(3)の測定ギャップ631の開始位置を、ギャップ周期630の開始位置からMGL(1)-Trfだけ後の位置とする。また、図6に示す例ではMGST=0としており、ギャップ周期630のうち測定ギャップ631を除いた期間は通信区間632,633(図4に示した通信区間412)となる。 The gap period 630 shown in FIG. 6 is a gap period in which the measurement gap 631 having a length of MGL (3) is set, and corresponds to each of the gap periods 537 to 544 in the example shown in FIG. The connecting base station 110 sets the start position of the measurement gap 631 having a length of MGL (3) as a position after MGL (1) −Trf from the start position of the gap period 630. In the example shown in FIG. 6, MGST = 0 is set, and the period excluding the measurement gap 631 in the gap period 630 is the communication sections 632 and 633 (communication section 412 shown in FIG. 4).

 また、同期信号検出区間において、長さがMGL(1)である測定ギャップ611と、長さがMGL(3)である測定ギャップ631と、は互いに同数にする。同期信号検出区間において設定される測定ギャップ611,631の合計数をNdgとする。すなわち、同期信号検出区間において、測定ギャップ611,631はそれぞれNdg/2個ずつ設定される。図5に示した例ではNdg=16である。 In the synchronization signal detection section, the number of measurement gaps 611 having a length of MGL (1) and the number of measurement gaps 631 having a length of MGL (3) are the same. Let Ndg be the total number of measurement gaps 611 and 631 set in the synchronization signal detection section. That is, in the synchronization signal detection section, Ndg / 2 measurement gaps 611 and 631 are set. In the example shown in FIG. 5, Ndg = 16.

 また、周辺基地局120による同期信号のビームスイーピングのビーム分割数をNbeam(一例としては16)とする。また、周辺基地局120による同期信号のビームスイーピングの周期をTbs(一例としては640[ms])とする。また、同期信号検出区間の長さをTsyncとする。 In addition, the beam division number of the beam sweeping of the synchronization signal by the peripheral base station 120 is Nbeam (16 as an example). In addition, the period of beam sweeping of the synchronization signal by the peripheral base station 120 is Tbs (640 [ms] as an example). Further, the length of the synchronization signal detection section is assumed to be Tsync.

 接続基地局110は、たとえば下記(4)式によりギャップ周期410(ギャップ周期521~544のそれぞれ)の長さMGRPを決定する。ただし、Nは、周期調整係数であり1~Nbeamの整数である。周期調整係数の決定方法については後述する。MGRP_0は基本ギャップ周期である。 The connecting base station 110 determines the length MGRP of the gap period 410 (each of the gap periods 521 to 544) by, for example, the following equation (4). Here, N is a cycle adjustment coefficient and is an integer from 1 to Nbeam. A method for determining the cycle adjustment coefficient will be described later. MGRP_0 is a basic gap period.

 MGRP_0=Tbs/Nbeam*N
 MGRP=MGRP_0
                 …(4)
MGRP_0 = Tbs / Nbeam * N
MGRP = MGRP_0
... (4)

 図5に示した例では、N=1であり、MGRP=MGRP_0=Tbs/Nbeam*N=640/16*1=40[ms]となる。また、接続基地局110は、たとえば下記(5)式により同期信号検出区間の長さTsyncを決定する。ただし0≦Ndg/2≦NbeamかつNdgは偶数である。 In the example shown in FIG. 5, N = 1 and MGRP = MGRP — 0 = Tbs / Nbeam * N = 640/16 * 1 = 40 [ms]. Further, the connecting base station 110 determines the length Tsync of the synchronization signal detection section, for example, by the following equation (5). However, 0 ≦ Ndg / 2 ≦ Nbeam and Ndg is an even number.

 Tsync=MGRP_0*((Ndg/2)*2+(Nbeam-Ndg/2))
      =MGRP_0*(Ndg/2+Nbeam)
                …(5)
Tsync = MGRP — 0 * ((Ndg / 2) * 2 + (Nbeam−Ndg / 2))
= MGRP_0 * (Ndg / 2 + Nbeam)
... (5)

 すなわち、Tsyncは、ギャップ周期の長さに、MGL(1),MGL(3)の測定ギャップが設定されるギャップ周期の数と、MGL(2)の測定ギャップが設定されるギャップ周期の数と、の和を乗じた長さである。ギャップ周期の長さはMGRP_0に対応し、MGL(1),MGL(3)の測定ギャップが設定されるギャップ周期の数は(Ndg/2)*2に対応し、MGL(2)の測定ギャップが設定されるギャップ周期の数はNbeam-Ndg/2に対応する。 That is, Tsync is the number of gap periods in which the measurement gaps of MGL (1) and MGL (3) are set in the length of the gap period, and the number of gap periods in which the measurement gap of MGL (2) is set. The length multiplied by the sum of The length of the gap period corresponds to MGRP_0, the number of gap periods in which the measurement gaps of MGL (1) and MGL (3) are set corresponds to (Ndg / 2) * 2, and the measurement gap of MGL (2) The number of gap periods for which is set corresponds to Nbeam-Ndg / 2.

 図5に示した例では、Tsync=MGRP_0*(Ndg/2+Nbeam)=40*(16/2+16)=960[ms]となる。またはTsync=MGRP_0*((Ndg/2)*2+(Nbeam-Ndg/2))=40*((16/2)*2+(16-16/2))=960[ms]となる。 In the example shown in FIG. 5, Tsync = MGRP — 0 * (Ndg / 2 + Nbeam) = 40 * (16/2 + 16) = 960 [ms]. Or, Tsync = MGRP — 0 * ((Ndg / 2) * 2 + (Nbeam−Ndg / 2)) = 40 * ((16/2) * 2 + (16−16 / 2)) = 960 [ms].

 また、周辺基地局120は、長さがMGL(1)の測定ギャップ611を設定するギャップ周期610を、同期信号検出区間における先頭のギャップ周期からNdg/2個分のギャップ周期とする。図6に示した例では、長さがMGL(1)の測定ギャップ611を設定するギャップ周期610は、先頭のギャップ周期521から16/2=8個分のギャップ周期521~528となる。 Also, the neighboring base station 120 sets the gap period 610 for setting the measurement gap 611 having a length of MGL (1) as a gap period of Ndg / 2 from the head gap period in the synchronization signal detection section. In the example shown in FIG. 6, the gap period 610 for setting the measurement gap 611 having a length of MGL (1) is 16/2 = 8 gap periods 521 to 528 from the head gap period 521.

 また、周辺基地局120は、長さがMGL(2)の測定ギャップ621を設定するギャップ周期620を、同期信号検出区間におけるNdg/2+1番目のギャップ周期からNbeam-Ndg/2個分のギャップ周期とする。図6に示した例では、長さがMGL(2)の測定ギャップ621を設定するギャップ周期620は、16/2+1=9番目のギャップ周期から16-16/2=8個分のギャップ周期529~536となる。 Also, the neighboring base station 120 sets a gap period 620 for setting the measurement gap 621 having a length of MGL (2) to a gap period corresponding to Nbeam−Ndg / 2 from the Ndg / 2 + 1th gap period in the synchronization signal detection period. And In the example shown in FIG. 6, the gap period 620 for setting the measurement gap 621 having a length of MGL (2) is 16-16 / 2 = 8 gap periods 529 from the 16/2 + 1 = 9th gap period. ~ 536.

 また、周辺基地局120は、長さがMGL(3)の測定ギャップ631を設定するギャップ周期630を、同期信号検出区間におけるNbeam+1番目のギャップ周期からNdg/2個分のギャップ周期とする。図5に示した例では、長さがMGL(3)の測定ギャップ631を設定するギャップ周期630は、16+1=17番目のギャップ周期から16/2=8個分のギャップ周期537~544となる。 Also, the neighboring base station 120 sets the gap period 630 for setting the measurement gap 631 having a length of MGL (3) as the gap period for Ndg / 2 from the Nbeam + 1st gap period in the synchronization signal detection section. In the example shown in FIG. 5, the gap period 630 for setting the measurement gap 631 having a length of MGL (3) is 16/2 = 8 gap periods 537 to 544 from the 16 + 1 = 17th gap period. .

(実施の形態にかかる接続基地局によるギャップ周期ごとの測定ギャップの設定の他の例)
 図7は、実施の形態にかかる接続基地局によるギャップ周期ごとの測定ギャップの設定の他の一例を示す図である。図7において、図5に示した部分と同様の部分については同一の符号を付して説明を省略する。図7においては、N≧2かつMOD(Nbeam,N)=0を満たす場合について説明する。なお、接続基地局110は、たとえばN≧2かつMOD(Nbeam,N)>0となるNは選択しない。MOD()は剰余計算を示す関数である。
(Another example of measurement gap setting for each gap period by the connecting base station according to the embodiment)
FIG. 7 is a diagram illustrating another example of setting a measurement gap for each gap period by the connecting base station according to the embodiment. In FIG. 7, the same parts as those shown in FIG. In FIG. 7, a case where N ≧ 2 and MOD (Nbeam, N) = 0 is described. Note that the connecting base station 110 does not select N that satisfies, for example, N ≧ 2 and MOD (Nbeam, N)> 0. MOD () is a function indicating remainder calculation.

 ギャップ周期711~726は、同期信号検出区間に含まれる16個のギャップ周期である。ギャップ周期711~726のそれぞれは、図4に示したギャップ周期410である。すなわち、接続基地局110は、N≧2の場合は、同期信号検出区間ごとに、図7に示すギャップ周期711~726を設定する。また、図7に示す例では、ギャップ周期711~717,719~725のそれぞれは、ビーム510の角度ごとのビームと同じ40[ms]の長さである。また、図7に示す例では、ギャップ周期718,726のそれぞれは、ビーム510の角度ごとのビームの長さ40[ms]と、MGST=Tbs/Nbeamと、の合計の長さである。また、図7に示す例では、ギャップ周期711~726のすべてにおいて長さがMGL(2)の測定ギャップ(G)が設定される。 The gap periods 711 to 726 are 16 gap periods included in the synchronization signal detection section. Each of the gap periods 711 to 726 is the gap period 410 shown in FIG. That is, the connected base station 110 sets the gap periods 711 to 726 shown in FIG. 7 for each synchronization signal detection section when N ≧ 2. In the example shown in FIG. 7, each of the gap periods 711 to 717 and 719 to 725 has the same length of 40 [ms] as the beam for each angle of the beam 510. In the example shown in FIG. 7, each of the gap periods 718 and 726 is a total length of the beam length 40 [ms] for each angle of the beam 510 and MGST = Tbs / Nbeam. In the example shown in FIG. 7, a measurement gap (G) having a length of MGL (2) is set in all the gap periods 711 to 726.

 N≧2の場合に、接続基地局110は、Ndg=0とする。すなわち、接続基地局110は、長さがMGL(1)またはMGL(3)である測定ギャップを設定せずに、各ギャップ周期に長さがMGL(2)の測定ギャップを設定する。 When N ≧ 2, the connecting base station 110 sets Ndg = 0. That is, the connecting base station 110 sets a measurement gap having a length of MGL (2) in each gap period without setting a measurement gap having a length of MGL (1) or MGL (3).

 また、接続基地局110は、n番目(nは1~Nbeam)のギャップ周期におけるギャップシフト区間(たとえば図4に示したギャップシフト区間413)の長さMGST(n)を、下記(6)式のように決定する。 Also, the connecting base station 110 determines the length MGST (n) of the gap shift section (for example, the gap shift section 413 shown in FIG. 4) in the n-th (n is 1 to Nbeam) gap period by the following equation (6): Decide like this.

 If MOD(n,Nbeam/N)=0 then
   MGST(n)=MGRP_0
 Else
   MGST(n)=0
                        …(6)
If MOD (n, Nbeam / N) = 0 then
MGST (n) = MGRP_0
Else
MGST (n) = 0
... (6)

 すなわち、接続基地局110は、MOD(n,Nbeam/N)=0を満たすn番目のギャップ周期におけるギャップシフト区間の長さMGST(n)をMGRP_0=Tbs/Nbeamとする。また、接続基地局110は、MOD(n,Nbeam/N)=0を満たさないn番目のギャップ周期におけるギャップシフト区間の長さMGST(n)を0とする。また、接続基地局110は、n番目(nは1~Nbeam)のギャップ周期の長さMGRP(n)を、たとえば下記(7)式により決定する。 That is, the connecting base station 110 sets the length MGST (n) of the gap shift section in the nth gap period that satisfies MOD (n, Nbeam / N) = 0 as MGRP — 0 = Tbs / Nbeam. In addition, the connecting base station 110 sets the length MGST (n) of the gap shift section in the nth gap period not satisfying MOD (n, Nbeam / N) = 0 to 0. Further, the connecting base station 110 determines the length MGRP (n) of the n-th (n is 1 to Nbeam) gap period, for example, by the following equation (7).

 MGRP_0=Tbs/Nbeam
 MGRP(n)=MGRP_0*N+MGST(n)
                       …(7)
MGRP_0 = Tbs / Nbeam
MGRP (n) = MGRP_0 * N + MGST (n)
... (7)

 また、接続基地局110は、たとえば下記(8)式により同期信号検出区間の長さTsyncを決定する。 Further, the connecting base station 110 determines the length Tsync of the synchronization signal detection section by, for example, the following equation (8).

 Tsync=ΣMGRP(n)   …(8) Tsync = ΣMGRP (n) (8)

 すなわち、接続基地局110は、1番目~Nbeam番目のギャップ周期の長さMGRP(n)の合計を同期信号検出区間の長さTsyncとして決定する。図7に示す例では、ギャップ周期711~717,719~725のそれぞれの長さはMGRP_0=Tbs/Nbeam=40[ms]であり、ギャップ周期718,726のそれぞれの長さはMGRP_0+MGST(n)=40+40=80[ms]である。このため、Tsync=40*14+80*2=720[ms]となる。 That is, the connecting base station 110 determines the sum of the lengths MGRP (n) of the first to Nbeam gap periods as the length Tsync of the synchronization signal detection section. In the example shown in FIG. 7, the lengths of the gap periods 711 to 717 and 719 to 725 are MGRP_0 = Tbs / Nbeam = 40 [ms], and the lengths of the gap periods 718 and 726 are MGRP_0 + MGST (n). = 40 + 40 = 80 [ms]. Therefore, Tsync = 40 * 14 + 80 * 2 = 720 [ms].

 N≧2の場合とは、たとえばTbs/Nbeam=10[ms]の場合のように、周辺基地局120のビームスイーピングの1ステップの長さが10[ms]と短く同期信号の送信周期Tss(たとえば5[ms])に近い場合である。この場合は、たとえば図4に示した通信区間412の長さが短くなり、接続基地局110と端末130との間のデータ通信が可能な期間が短くなる。 In the case of N ≧ 2, for example, as in the case of Tbs / Nbeam = 10 [ms], the length of one step of beam sweeping of the peripheral base station 120 is as short as 10 [ms], and the synchronization signal transmission cycle Tss ( For example, it is close to 5 [ms]). In this case, for example, the length of the communication section 412 shown in FIG. 4 is shortened, and the period during which data communication between the connecting base station 110 and the terminal 130 is possible is shortened.

 これに対して、図7に示した例のように、周期的にギャップ周期の長さMGRP(n)を長くしてギャップ周期をシフトさせることで、通信区間412を長くし、接続基地局110と端末130との間のデータ通信が可能な期間を長くすることができる。図7に示す例では、8の倍数番目のギャップ周期718,726を長くすることでギャップ周期をシフトさせ、分割検索550が起こらないようにしている。 On the other hand, as in the example shown in FIG. 7, the communication period 412 is lengthened by periodically increasing the gap period length MGRP (n) and shifting the gap period. The period in which data communication between the terminal 130 and the terminal 130 is possible can be lengthened. In the example shown in FIG. 7, the gap period is shifted by increasing the multiple of 8 gap periods 718 and 726 so that the division search 550 does not occur.

 これにより、接続基地局110と端末130との間のデータ通信が可能な期間を長くしつつ、1回の同期信号検出区間において同じビーム角度に対して測定ギャップを複数回設定する重複検索をなくすことができる。このため、ビームスイーピングにより送信される同期信号の検出を効率よく行うことができる。 This lengthens the period in which data communication between the connecting base station 110 and the terminal 130 is possible, and eliminates the redundant search that sets the measurement gap multiple times for the same beam angle in one synchronization signal detection section. be able to. For this reason, it is possible to efficiently detect a synchronization signal transmitted by beam sweeping.

(実施の形態にかかる接続基地局から端末への測定ギャップパラメータの通知)
 図8は、実施の形態にかかる接続基地局から端末への測定ギャップパラメータの通知の一例を示すシーケンス図である。図8に示すUE810は、たとえば端末130である。図8に示すEUTRAN820は、たとえば接続基地局110である。EUTRAN820はEvolved Universal Terrestrial Radio Access Networkの略である。
(Notification of measurement gap parameter from connected base station to terminal according to embodiment)
FIG. 8 is a sequence diagram illustrating an example of measurement gap parameter notification from the connected base station to the terminal according to the embodiment. UE 810 shown in FIG. 8 is, for example, terminal 130. EUTRAN 820 shown in FIG. 8 is, for example, connected base station 110. EUTRAN 820 is an abbreviation for Evolved Universal Terrestrial Radio Access Network.

 まず、EUTRAN820が、RRCコネクションリコンフィギュレーション(RRCConnectionReconfiguration)をUE810へ送信する(ステップS801)。また、EUTRAN820は、ステップS801により送信するRRCコネクションリコンフィギュレーションに測定ギャップパラメータを格納する。 First, EUTRAN 820 transmits RRC connection reconfiguration (RRCConnectionReconfiguration) to UE 810 (step S801). Further, the EUTRAN 820 stores the measurement gap parameter in the RRC connection reconfiguration transmitted in step S801.

 たとえば、EUTRAN820は、RRCコネクションリコンフィギュレーションのMeasGapConfigに測定ギャップパラメータを格納する。測定ギャップパラメータには、たとえば、分割測定ギャップ区間数Ndg、ビーム分割数Nbeam、周期調整係数N、基本ギャップ周期MGRP_0および開始オフセットgapOffsetが含まれる。ただし、RRCコネクションリコンフィギュレーションに格納される測定ギャップパラメータは、これらの測定ギャップパラメータに限らず、これらの測定ギャップパラメータを特定可能な他の情報であってもよい。 For example, EUTRAN 820 stores the measurement gap parameter in MeasGapConfig of RRC connection reconfiguration. The measurement gap parameters include, for example, the division measurement gap interval number Ndg, the beam division number Nbeam, the cycle adjustment coefficient N, the basic gap cycle MGRP_0, and the start offset gapOffset. However, the measurement gap parameters stored in the RRC connection reconfiguration are not limited to these measurement gap parameters, and may be other information that can specify these measurement gap parameters.

 つぎに、UE810が、RRCコネクションリコンフィギュレーションコンプリート(RRCConnectionReconfigurationComplate)をEUTRAN820へ送信する(ステップS802)。ステップS802によって送信されるRRCコネクションリコンフィギュレーションコンプリートは、ステップS801によって受信したRRCコネクションリコンフィギュレーションに対する応答信号である。 Next, the UE 810 transmits an RRC connection reconfiguration complete (RRCConnectionReconfigurationCompletion) to the EUTRAN 820 (step S802). The RRC connection reconfiguration complete transmitted at step S802 is a response signal to the RRC connection reconfiguration received at step S801.

 そして、UE810およびEUTRAN820は、ステップS801によって送信されたRRCコネクションリコンフィギュレーションに含まれる測定ギャップパラメータに応じた共通の測定ギャップを設定する。 Then, the UE 810 and the EUTRAN 820 set a common measurement gap according to the measurement gap parameter included in the RRC connection reconfiguration transmitted in step S801.

(実施の形態にかかる接続基地局による最大検出時間対損失率の改善)
 図9は、実施の形態にかかる接続基地局による最大検出時間対損失率の改善の一例を示す図である。図9において、横軸は最大検出時間[ms]を示し、縦軸は損失率[%]を示す。最大検出時間は、同期信号の検出に要する最大の時間である。損失率は、同期信号検出区間における各測定ギャップの長さの合計を同期信号検出区間の長さで除算することにより算出することができる。
(Improvement of maximum detection time versus loss rate by connected base station according to embodiment)
FIG. 9 is a diagram illustrating an example of improvement in the maximum detection time versus loss rate by the connected base station according to the embodiment. In FIG. 9, the horizontal axis represents the maximum detection time [ms], and the vertical axis represents the loss rate [%]. The maximum detection time is the maximum time required for detecting the synchronization signal. The loss rate can be calculated by dividing the total length of each measurement gap in the synchronization signal detection section by the length of the synchronization signal detection section.

 図9は、LTE仕様のように周辺基地局120が5[ms]周期の同期信号を送信し、640[ms]の周期でビーム角度を16分割するビームスイーピングの例を示している。最大検出時間対損失率911は、長い連続した1回の測定ギャップを設定する第1方式における最大検出時間に対する損失率の特性を示している。 FIG. 9 shows an example of beam sweeping in which the peripheral base station 120 transmits a synchronization signal with a period of 5 [ms] and divides the beam angle into 16 with a period of 640 [ms] as in the LTE specification. The maximum detection time vs. loss rate 911 shows the characteristic of the loss rate with respect to the maximum detection time in the first method in which a long continuous measurement gap is set.

 最大検出時間対損失率912は、一定のギャップ周期(たとえば40[ms])で一定の長さ(たとえば6[ms])の測定ギャップを設定する第2方式における最大検出時間に対する損失率の特性を示している。最大検出時間対損失率913は、測定ギャップの長さを短くしてギャップ周期の度に測定ギャップのタイミングをスライドさせて複数検索を行う第3方式における最大検出時間に対する損失率の特性を示している。 The maximum detection time versus loss rate 912 is a characteristic of the loss rate with respect to the maximum detection time in the second method in which a measurement gap having a fixed length (for example, 6 [ms]) is set with a constant gap period (for example, 40 [ms]). Is shown. The maximum detection time vs. loss rate 913 shows the characteristic of the loss rate with respect to the maximum detection time in the third method in which the length of the measurement gap is shortened and the timing of the measurement gap is slid for each gap period to perform multiple searches. Yes.

 第1方式および第2方式における測定ギャップの長さの最小値MGL(min)は、たとえばそれぞれ下記(9)式および下記(10)式により計算できる。 The minimum value MGL (min) of the length of the measurement gap in the first method and the second method can be calculated by, for example, the following formula (9) and the following formula (10), respectively.

 MGL(min)=max(Tbs,Tss*Nbeam)+Trf …(9) MGL (min) = max (Tbs, Tss * Nbeam) + Trf (9)

 MGL(min)=(Tss+Trf)*Nbeam …(10) MGL (min) = (Tss + Trf) * Nbeam (10)

 また、たとえば上記(10)式について、同期信号の検出に要した期間の接続基地局110と端末130のデータ送受信の損失率LGは、たとえば下記(11)式によって表すことができる。 Further, for example, regarding the above equation (10), the loss rate LG of data transmission / reception between the connected base station 110 and the terminal 130 during the period required for the detection of the synchronization signal can be expressed by the following equation (11), for example.

 LG=MGL(min)/(MGRP*Nbeam)
   =(Tss+Trf)/MGRP
                             …(11)
LG = MGL (min) / (MGRP * Nbeam)
= (Tss + Trf) / MGRP
... (11)

 第3方式における測定ギャップの長さの総計MGL(total)は、たとえば下記(12)式により計算できる。Tgは分割したギャップ長[ms]、Ndivはビーム分割数、Nbeamは基地局のビーム数である。ただしTg*Ndiv> Tss+Trfを満たす。 The total measurement gap length MGL (total) in the third method can be calculated by, for example, the following equation (12). Tg is the divided gap length [ms], Ndiv is the number of beam divisions, and Nbeam is the number of beams of the base station. However, Tg * Ndiv> Tss + Trf is satisfied.

 MGL(total)=Tg*Ndiv*Nbeam   …(12) MGL (total) = Tg * Ndiv * Nbeam (12)

 また、(12)式について、同期信号の検出に要した期間の接続基地局110と端末130のデータ送受信の損失率LGは、たとえば下記(13)式により表すことができる。 Further, with regard to the equation (12), the loss rate LG of data transmission / reception between the connected base station 110 and the terminal 130 during the period required for the detection of the synchronization signal can be expressed by the following equation (13), for example.

 LG=MGL(total)/(MGRP*Ndiv*Nbeam)
   =Tg/MGRP
                            …(13)
LG = MGL (total) / (MGRP * Ndiv * Nbeam)
= Tg / MGRP
... (13)

 最大検出時間対損失率920は、実施の形態にかかる接続基地局110によるギャップ決定方法における最大検出時間に対する損失率の特性を示している。 The maximum detection time vs. loss rate 920 indicates the characteristic of the loss rate with respect to the maximum detection time in the gap determination method by the connecting base station 110 according to the embodiment.

 最大検出時間対損失率911~913,920に示すように、接続基地局110による本方式によれば、第1~第3方式と比べて、同一の最大検出時間において損失率が低く、同一の損失率において最大検出時間が短くなることが分かる。 As shown in the maximum detection time to loss ratios 911 to 913 and 920, according to the present method by the connecting base station 110, compared with the first to third systems, the loss rate is low at the same maximum detection time, and the same It can be seen that the maximum detection time is shortened in the loss rate.

 図9に示したように、接続基地局110によれば、1つの同期信号検出区間に複数の時間区間周期を設定し、同一ビームを2分割検索することにより、ビームスイーピング周期と同期信号送信周期の相互関係による重複検索の無駄を排除することができる。このため、データ送受信の損失率を抑え、選択可能な組み合わせを増やすことができる。また、第3方式とは異なり分割検索を行うビーム数を設定できるため、検索時間要求に対する選択可能な組み合わせを増やすことができる。 As shown in FIG. 9, according to the connecting base station 110, by setting a plurality of time interval periods in one synchronization signal detection interval and searching the same beam in two, the beam sweeping period and the synchronization signal transmission period It is possible to eliminate the waste of duplicate search due to the mutual relationship. For this reason, the loss rate of data transmission / reception can be suppressed, and the number of selectable combinations can be increased. Further, unlike the third method, the number of beams for performing the divided search can be set, so that the number of combinations that can be selected for the search time request can be increased.

(実施の形態にかかる接続基地局)
 図10は、実施の形態にかかる接続基地局の一例を示す図である。図10に示すように、実施の形態にかかる接続基地局110は、たとえば、基地局間通信部1001と、ビームスイープ制御部1002と、同期信号重み係数計算部1003と、同期信号生成部1004と、同期信号変調部1005と、を備える。また、接続基地局110は、測定ギャップ制御部1006と、送信データ生成部1007と、符号化・変調部1008と、ビームフォーミング・無線送信部1009と、アンテナ群1010と、を備える。また、接続基地局110は、無線受信部1011と、復調・復号部1012と、受信データ処理部1013と、送信信号重み係数計算部1014と、を備える。
(Connection base station according to the embodiment)
FIG. 10 is a diagram of an example of the connection base station according to the embodiment. As shown in FIG. 10, the connection base station 110 according to the embodiment includes, for example, an inter-base station communication unit 1001, a beam sweep control unit 1002, a synchronization signal weight coefficient calculation unit 1003, and a synchronization signal generation unit 1004. A synchronization signal modulation unit 1005. The connected base station 110 includes a measurement gap control unit 1006, a transmission data generation unit 1007, an encoding / modulation unit 1008, a beamforming / radio transmission unit 1009, and an antenna group 1010. In addition, the connecting base station 110 includes a wireless reception unit 1011, a demodulation / decoding unit 1012, a reception data processing unit 1013, and a transmission signal weight coefficient calculation unit 1014.

 基地局間通信部1001は、たとえばX2インタフェースなどの基地局間インタフェースを介して周辺基地局120との間で通信を行う。たとえば、基地局間通信部1001は、周辺基地局120の周辺基地局情報を周辺基地局120から受信する。周辺基地局120の周辺基地局情報には、周辺基地局120による同期信号のビームスイーピングにおけるビーム分割数Nbeamおよび周期Tbsが含まれる。基地局間通信部1001は、受信した周辺基地局情報を測定ギャップ制御部1006へ出力する。 The inter-base station communication unit 1001 performs communication with the peripheral base station 120 via an inter-base station interface such as an X2 interface. For example, the inter-base station communication unit 1001 receives the peripheral base station information of the peripheral base station 120 from the peripheral base station 120. The peripheral base station information of the peripheral base station 120 includes the beam division number Nbeam and the period Tbs in the beam sweeping of the synchronization signal by the peripheral base station 120. The inter-base station communication unit 1001 outputs the received neighboring base station information to the measurement gap control unit 1006.

 また、基地局間通信部1001は、ビームスイープ制御部1002から出力される自局情報を周辺基地局120へ送信してもよい。自局情報には、たとえば接続基地局110による同期信号のビームスイーピングにおけるビーム分割数Nbeamおよび周期Tbsが含まれる。また、たとえばビーム分割数Nbeam=1は、ビームスイーピングを行わないことを示す。 In addition, the inter-base station communication unit 1001 may transmit the local station information output from the beam sweep control unit 1002 to the neighboring base stations 120. The local station information includes, for example, the beam division number Nbeam and the cycle Tbs in beam sweeping of the synchronization signal by the connecting base station 110. Further, for example, the beam division number Nbeam = 1 indicates that beam sweeping is not performed.

 ビームスイープ制御部1002は、接続基地局110による同期信号のビームスイーピングを制御する。たとえば、ビームスイープ制御部1002は、同期信号重み係数計算部1003における同期信号の重み係数の計算を制御することにより、接続基地局110による同期信号のビームスイーピングを制御する。また、ビームスイープ制御部1002は、接続基地局110による同期信号のビームスイーピングにおけるビーム分割数Nbeamおよび周期Tbsを含む自局情報を基地局間通信部1001へ出力してもよい。 The beam sweep control unit 1002 controls beam sweeping of the synchronization signal by the connecting base station 110. For example, the beam sweep control unit 1002 controls the synchronization signal beam sweeping by the connecting base station 110 by controlling the calculation of the synchronization signal weight coefficient in the synchronization signal weight coefficient calculation unit 1003. Further, the beam sweep control unit 1002 may output the local station information including the beam division number Nbeam and the cycle Tbs in the beam sweeping of the synchronization signal by the connected base station 110 to the inter-base station communication unit 1001.

 同期信号重み係数計算部1003は、ビームスイープ制御部1002からの制御に従って、ビームフォーミング・無線送信部1009における同期信号に対する重み係数を計算する。そして、同期信号重み係数計算部1003は、計算した重み係数をビームフォーミング・無線送信部1009へ出力する。同期信号重み係数計算部1003による重み係数の計算により、複数の送信アンテナの間の位相差と送信ストリーム間の位相差を制御してビームスイーピングを行うことができる。 The synchronization signal weight coefficient calculation unit 1003 calculates a weight coefficient for the synchronization signal in the beamforming / radio transmission unit 1009 according to the control from the beam sweep control unit 1002. Then, the synchronization signal weight coefficient calculation unit 1003 outputs the calculated weight coefficient to the beamforming / radio transmission unit 1009. By calculating the weighting factor by the synchronization signal weighting factor calculation unit 1003, beam sweeping can be performed by controlling the phase difference between a plurality of transmission antennas and the phase difference between transmission streams.

 同期信号生成部1004は、たとえばPSSやSSSなどの同期信号を生成する。そして、同期信号生成部1004は、生成した同期信号を同期信号変調部1005へ出力する。同期信号変調部1005は、同期信号生成部1004から出力された同期信号の変調を行い、変調を行った同期信号をビームフォーミング・無線送信部1009へ出力する。 The synchronization signal generator 1004 generates a synchronization signal such as PSS or SSS. Then, the synchronization signal generation unit 1004 outputs the generated synchronization signal to the synchronization signal modulation unit 1005. The synchronization signal modulation unit 1005 modulates the synchronization signal output from the synchronization signal generation unit 1004 and outputs the modulated synchronization signal to the beamforming / radio transmission unit 1009.

 測定ギャップ制御部1006は、基地局間通信部1001から出力された周辺基地局情報に含まれるビーム分割数Nbeamおよび周期Tbsに基づいて、周期調整係数Nを選択する。たとえば、測定ギャップ制御部1006は、NがNbeamの約数であることを条件として、β<(Tss+Trf)/(Tbs/Nbeam)/Nとなる最小のNを検索することによって周期調整係数Nを選択する。βは、接続基地局110のパラメータであり0<β<1.0を満たす。 The measurement gap control unit 1006 selects the period adjustment coefficient N based on the number of beam divisions Nbeam and the period Tbs included in the neighboring base station information output from the inter-base station communication unit 1001. For example, the measurement gap control unit 1006 obtains the period adjustment coefficient N by searching for the minimum N that satisfies β <(Tss + Trf) / (Tbs / Nbeam) / N on the condition that N is a divisor of Nbeam. select. β is a parameter of the connecting base station 110 and satisfies 0 <β <1.0.

 また、測定ギャップ制御部1006は、選択した周期調整係数Nに応じて、ギャップシフト区間の長さMGST、測定ギャップの長さMGL、測定ギャップの開始オフセットgapOffset、ギャップ周期の長さMGRP等を決定する。また、測定ギャップ制御部1006は、分割測定ギャップ区間数Ndgを決定する。たとえば、N=1の場合は、測定ギャップ制御部1006は、Ndg=2*int(α*Nbeam)により分割測定ギャップ区間数Ndgを決定する。ただし、αは、接続基地局110のパラメータであり、0≦α≦1.0を満たす。 Further, the measurement gap control unit 1006 determines a gap shift section length MGST, a measurement gap length MGL, a measurement gap start offset gapOffset, a gap period length MGRP, and the like according to the selected period adjustment coefficient N. To do. Further, the measurement gap control unit 1006 determines the number Ndg of divided measurement gap sections. For example, when N = 1, the measurement gap control unit 1006 determines the number Ndg of divided measurement gap intervals by Ndg = 2 * int (α * Nbeam). However, α is a parameter of the connecting base station 110 and satisfies 0 ≦ α ≦ 1.0.

 そして、測定ギャップ制御部1006は、決定した分割測定ギャップ区間数Ndgに応じてギャップ周期1~Nbeam+Ndg/2回、または1~Nbeam回の測定ギャップの配置を行う。また、測定ギャップ制御部1006は、開始オフセットgapOffsetによる最初のMGRPの開始位置を決定し、決定した測定ギャップに関する各パラメータを示す端末通知情報を生成する。 Then, the measurement gap control unit 1006 arranges the measurement gaps with a gap period of 1 to Nbeam + Ndg / 2 times or 1 to Nbeam times according to the determined divided measurement gap interval number Ndg. Further, the measurement gap control unit 1006 determines the start position of the first MGRP by the start offset gapOffset, and generates terminal notification information indicating each parameter related to the determined measurement gap.

 測定ギャップ制御部1006は、生成した端末通知情報を送信データ生成部1007へ出力する。また、測定ギャップ制御部1006は、決定した測定ギャップに関する各パラメータに基づいて、符号化・変調部1008による測定ギャップの設定を制御する。また、測定ギャップ制御部1006は、決定した測定ギャップにおいて、復調・復号部1012における復調および復号の処理を停止させる制御を行ってもよい。 The measurement gap control unit 1006 outputs the generated terminal notification information to the transmission data generation unit 1007. In addition, the measurement gap control unit 1006 controls setting of the measurement gap by the encoding / modulation unit 1008 based on each parameter related to the determined measurement gap. In addition, the measurement gap control unit 1006 may perform control to stop the demodulation and decoding processes in the demodulation / decoding unit 1012 in the determined measurement gap.

 送信データ生成部1007は、端末130へ送信するための送信データを生成する。たとえば、送信データ生成部1007は、端末130への下りのユーザデータを含む送信データを生成する。また、送信データ生成部1007は、測定ギャップ制御部1006から出力された端末通知情報を格納したRRCコネクションリコンフィギュレーションを含む送信データを生成する。そして、送信データ生成部1007は、生成した送信データを符号化・変調部1008へ出力する。 The transmission data generation unit 1007 generates transmission data to be transmitted to the terminal 130. For example, the transmission data generation unit 1007 generates transmission data including downlink user data for the terminal 130. Also, the transmission data generation unit 1007 generates transmission data including RRC connection reconfiguration in which the terminal notification information output from the measurement gap control unit 1006 is stored. Then, transmission data generation section 1007 outputs the generated transmission data to encoding / modulation section 1008.

 符号化・変調部1008は、送信データ生成部1007から出力された送信データの符号化および変調を行う。そして、符号化・変調部1008は、符号化および変調により得られた送信信号をビームフォーミング・無線送信部1009へ出力する。 The encoding / modulation unit 1008 encodes and modulates transmission data output from the transmission data generation unit 1007. Then, encoding / modulation section 1008 outputs the transmission signal obtained by the encoding and modulation to beamforming / radio transmission section 1009.

 また、符号化・変調部1008は、測定ギャップ制御部1006からの制御に従って、送信信号の送信先の端末(たとえば端末130)ごとに測定ギャップを設定する。そして、符号化・変調部1008は、設定した測定ギャップにおいては、対象の端末への送信信号の出力を行わない。これにより、対象の端末が周辺基地局120などの他の基地局からの無線信号の測定を行うことができる。 Also, the encoding / modulation unit 1008 sets a measurement gap for each terminal (for example, the terminal 130) that is the transmission destination of the transmission signal in accordance with control from the measurement gap control unit 1006. Then, the encoding / modulation section 1008 does not output the transmission signal to the target terminal in the set measurement gap. Thereby, the target terminal can measure a radio signal from another base station such as the neighboring base station 120.

 ビームフォーミング・無線送信部1009は、同期信号変調部1005から出力された同期信号に対して、同期信号重み係数計算部1003から出力された重み係数による重み付けを行う。また、ビームフォーミング・無線送信部1009は、符号化・変調部1008から出力された送信信号に対して、送信信号重み係数計算部1014から出力された重み係数による重み付けを行う。これにより、同期信号のビームフォーミング(ビームスイーピング)および送信信号のビームフォーミングを実現することができる。 The beamforming / radio transmission unit 1009 weights the synchronization signal output from the synchronization signal modulation unit 1005 with the weighting factor output from the synchronization signal weighting factor calculation unit 1003. The beamforming / radio transmission unit 1009 weights the transmission signal output from the encoding / modulation unit 1008 with the weighting coefficient output from the transmission signal weighting coefficient calculation unit 1014. Thereby, the beam forming (beam sweeping) of the synchronization signal and the beam forming of the transmission signal can be realized.

 そして、ビームフォーミング・無線送信部1009は、重み付けを行った同期信号および送信信号を含む信号の無線送信処理を行う。無線送信処理には、たとえば、ディジタル信号からアナログ信号への変換、ベースバンド帯から高周波帯への周波数変換、増幅などが含まれる。ビームフォーミング・無線送信部1009は、無線送信処理を行った信号をアンテナ群1010へ出力する。 The beamforming / radio transmission unit 1009 performs radio transmission processing of a signal including the weighted synchronization signal and transmission signal. The wireless transmission processing includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband to a high frequency band, amplification, and the like. Beamforming / radio transmission section 1009 outputs a signal subjected to radio transmission processing to antenna group 1010.

 アンテナ群1010は、ビームフォーミング・無線送信部1009から出力された信号を他の無線通信装置(たとえば端末130)へ無線送信する複数のアンテナである。また、アンテナ群1010は、他の無線通信装置(たとえば端末130)から無線送信された信号を受信し、受信した信号を無線受信部1011へ出力する。 The antenna group 1010 is a plurality of antennas that wirelessly transmit signals output from the beamforming / wireless transmission unit 1009 to other wireless communication devices (for example, the terminal 130). Further, the antenna group 1010 receives a signal wirelessly transmitted from another wireless communication device (for example, the terminal 130), and outputs the received signal to the wireless reception unit 1011.

 無線受信部1011は、アンテナ群1010から出力された信号に対する無線受信処理を行う。無線受信処理には、たとえば、増幅、高周波帯からベースバンド帯への周波数変換、アナログ信号からディジタル信号への変換などが含まれる。無線受信部1011は、無線受信処理を行った信号を復調・復号部1012および送信信号重み係数計算部1014へ出力する。 The wireless reception unit 1011 performs wireless reception processing on the signals output from the antenna group 1010. The wireless reception processing includes, for example, amplification, frequency conversion from a high frequency band to a base band, conversion from an analog signal to a digital signal, and the like. Radio reception section 1011 outputs the signal subjected to radio reception processing to demodulation / decoding section 1012 and transmission signal weight coefficient calculation section 1014.

 復調・復号部1012は、無線受信部1011から出力された信号の復調および復号を行う。そして、復調・復号部1012は、復調および復号により得られた受信データを受信データ処理部1013へ出力する。受信データ処理部1013は、復調・復号部1012から出力された受信データに基づく処理を行う。 The demodulation / decoding unit 1012 demodulates and decodes the signal output from the wireless reception unit 1011. Demodulation / decoding section 1012 then outputs received data obtained by demodulation and decoding to received data processing section 1013. The reception data processing unit 1013 performs processing based on the reception data output from the demodulation / decoding unit 1012.

 送信信号重み係数計算部1014は、無線受信部1011から出力された信号に含まれる端末(たとえば端末130)からの制御信号(フィードバック信号)に基づいて、ビームフォーミング・無線送信部1009における送信信号に対する重み係数を計算する。そして、送信信号重み係数計算部1014は、計算した重み係数をビームフォーミング・無線送信部1009へ出力する。 The transmission signal weighting factor calculation unit 1014 applies a transmission signal to the beamforming / radio transmission unit 1009 based on a control signal (feedback signal) from a terminal (for example, the terminal 130) included in the signal output from the radio reception unit 1011. Calculate the weighting factor. Then, transmission signal weight coefficient calculation section 1014 outputs the calculated weight coefficient to beamforming / radio transmission section 1009.

 自局からの信号を無線端末が受信しなくてよい断続的な時間区間(測定ギャップ)の長さを設定する設定部は、たとえば測定ギャップ制御部1006により実現することができる。時間区間の長さに関する情報を含む信号を生成する生成部は、たとえば送信データ生成部1007および符号化・変調部1008により実現することができる。生成された信号を周辺基地局120へ送信する送信部は、たとえば無線送信部1209(たとえば図12参照)およびアンテナ群1010により実現することができる。 A setting unit that sets the length of an intermittent time interval (measurement gap) that does not require the wireless terminal to receive a signal from the own station can be realized by the measurement gap control unit 1006, for example. A generation unit that generates a signal including information related to the length of the time interval can be realized by, for example, the transmission data generation unit 1007 and the encoding / modulation unit 1008. A transmission unit that transmits the generated signal to the neighboring base station 120 can be realized by, for example, the wireless transmission unit 1209 (see, for example, FIG. 12) and the antenna group 1010.

 接続基地局110の構成について説明したが、周辺基地局120も接続基地局110と同様の構成とすることができる。これにより、周辺基地局120は、同期信号重み係数計算部1003による重み係数の計算により、複数の送信アンテナの間の位相差と送信ストリーム間の位相差を制御してビームスイーピングを行うことができる。 Although the configuration of the connection base station 110 has been described, the peripheral base station 120 can also have the same configuration as the connection base station 110. Accordingly, the neighboring base station 120 can perform beam sweeping by controlling the phase difference between the plurality of transmission antennas and the phase difference between the transmission streams by calculating the weighting factor by the synchronization signal weighting factor calculating unit 1003. .

(実施の形態にかかる接続基地局のハードウェア構成)
 図11は、実施の形態にかかる接続基地局のハードウェア構成の一例を示す図である。図11において、図10に示した部分と同様の部分については同一の符号を付して説明を省略する。図11に示すように、基地局間通信部1001、ビームスイープ制御部1002、同期信号重み係数計算部1003、同期信号生成部1004、同期信号変調部1005は、たとえばディジタル回路1100により実現することができる。
(Hardware configuration of connected base station according to embodiment)
FIG. 11 is a diagram illustrating an example of a hardware configuration of a connection base station according to the embodiment. 11, the same parts as those shown in FIG. 10 are denoted by the same reference numerals, and the description thereof is omitted. As shown in FIG. 11, the inter-base station communication unit 1001, the beam sweep control unit 1002, the synchronization signal weight coefficient calculation unit 1003, the synchronization signal generation unit 1004, and the synchronization signal modulation unit 1005 can be realized by a digital circuit 1100, for example. it can.

 また、測定ギャップ制御部1006、送信データ生成部1007、符号化・変調部1008、復調・復号部1012、受信データ処理部1013および送信信号重み係数計算部1014は、たとえばディジタル回路1100により実現することができる。ディジタル回路1100は、たとえばFPGA(Field Programmable Gate Array)やDSP(Digital Signal Processor)等のプロセッサである。 The measurement gap control unit 1006, the transmission data generation unit 1007, the encoding / modulation unit 1008, the demodulation / decoding unit 1012, the reception data processing unit 1013, and the transmission signal weight coefficient calculation unit 1014 are realized by, for example, the digital circuit 1100. Can do. The digital circuit 1100 is, for example, a processor such as an FPGA (Field Programmable Gate Array) or a DSP (Digital Signal Processor).

 図10に示したビームフォーミング・無線送信部1009は、たとえばDAC(Digital/Analog Converter:ディジタル/アナログ変換器)、ミキサ、増幅器などの回路により実現することができる。図10に示した無線受信部1011は、たとえば増幅器、ミキサおよびADC(Analog/Digital Converter:アナログ/ディジタル変換器)などの回路により実現することができる。 The beamforming / radio transmission unit 1009 shown in FIG. 10 can be realized by a circuit such as a DAC (Digital / Analog Converter), a mixer, and an amplifier. 10 can be realized by a circuit such as an amplifier, a mixer, and an ADC (Analog / Digital Converter).

(実施の形態にかかる端末)
 図12は、実施の形態にかかる端末の一例を示す図である。図11に示すように、実施の形態にかかる端末130は、たとえば、アンテナ1201と、無線受信部1202と、復調・復号部1203と、受信データ処理部1204と、同期信号検出・測定部1205と、測定ギャップ制御部1206と、を備える。また、端末130は、送信データ生成部1207と、符号化・変調部1208と、無線送信部1209と、を備える。
(Terminal according to the embodiment)
FIG. 12 is a diagram illustrating an example of a terminal according to the embodiment. As illustrated in FIG. 11, the terminal 130 according to the embodiment includes, for example, an antenna 1201, a radio reception unit 1202, a demodulation / decoding unit 1203, a reception data processing unit 1204, a synchronization signal detection / measurement unit 1205, And a measurement gap control unit 1206. The terminal 130 includes a transmission data generation unit 1207, an encoding / modulation unit 1208, and a wireless transmission unit 1209.

 アンテナ1201は、他の無線通信装置(たとえば接続基地局110や周辺基地局120)から無線送信された信号を受信し、受信した信号を無線受信部1202へ出力する複数のアンテナである。また、アンテナ1201は、無線送信部1209から出力された信号を他の無線通信装置(たとえば接続基地局110)へ無線送信する。 The antenna 1201 is a plurality of antennas that receive signals wirelessly transmitted from other wireless communication devices (for example, the connecting base station 110 and the neighboring base station 120) and output the received signals to the wireless receiving unit 1202. Further, the antenna 1201 wirelessly transmits the signal output from the wireless transmission unit 1209 to another wireless communication device (for example, the connection base station 110).

 無線受信部1202は、アンテナ1201から出力された信号に対する無線受信処理を行う。無線受信処理には、たとえば、増幅、高周波帯からベースバンド帯への周波数変換、アナログ信号からディジタル信号への変換などが含まれる。無線受信部1202は、無線受信処理を行った信号を復調・復号部1203および同期信号検出・測定部1205へ出力する。 The wireless reception unit 1202 performs wireless reception processing on the signal output from the antenna 1201. The wireless reception processing includes, for example, amplification, frequency conversion from a high frequency band to a base band, conversion from an analog signal to a digital signal, and the like. Radio reception section 1202 outputs the signal subjected to the radio reception processing to demodulation / decoding section 1203 and synchronization signal detection / measurement section 1205.

 たとえば、無線受信部1202は、測定ギャップ制御部1206によって設定された測定ギャップの区間においては周辺基地局120からの同期信号の周波数帯域の信号成分に対する無線受信処理を行う。また、無線受信部1202は、測定ギャップ制御部1206によって設定された測定ギャップ以外の区間においては、サービングセルである接続基地局110からの信号(たとえば通信データ)の周波数帯域の信号成分に対する無線受信処理を行う。上述のTrfは、たとえば無線受信部1202による無線受信処理の対象周波数(搬送波周波数)の切替のための時間である。 For example, the radio reception unit 1202 performs radio reception processing on the signal component in the frequency band of the synchronization signal from the neighboring base station 120 in the measurement gap section set by the measurement gap control unit 1206. Radio reception section 1202 performs radio reception processing on signal components in the frequency band of a signal (for example, communication data) from connected base station 110 serving as a serving cell in a section other than the measurement gap set by measurement gap control section 1206. I do. The above Trf is a time for switching the target frequency (carrier frequency) of the wireless reception processing by the wireless reception unit 1202, for example.

 復調・復号部1203は、無線受信部1202から出力された信号の復調および復号を行う。そして、復調・復号部1203は、復調および復号により得られた受信データを受信データ処理部1204および測定ギャップ制御部1206へ出力する。受信データ処理部1204は、復調・復号部1203から出力された受信データに基づく処理を行う。 The demodulation / decoding unit 1203 demodulates and decodes the signal output from the wireless reception unit 1202. Demodulation / decoding section 1203 outputs the reception data obtained by demodulation and decoding to reception data processing section 1204 and measurement gap control section 1206. The reception data processing unit 1204 performs processing based on the reception data output from the demodulation / decoding unit 1203.

 同期信号検出・測定部1205は、測定ギャップ制御部1206によって設定された測定ギャップにおいて無線受信部1202から出力された信号に含まれる同期信号を検出する。そして、同期信号検出・測定部1205は、検出した同期信号の電力の測定を行う。また、同期信号検出・測定部1205は、同期信号の電力の測定結果を送信データ生成部1207へ通知する。 The synchronization signal detection / measurement unit 1205 detects a synchronization signal included in the signal output from the wireless reception unit 1202 in the measurement gap set by the measurement gap control unit 1206. Then, the synchronization signal detection / measurement unit 1205 measures the power of the detected synchronization signal. Further, the synchronization signal detection / measurement unit 1205 notifies the transmission data generation unit 1207 of the measurement result of the power of the synchronization signal.

 測定ギャップ制御部1206は、復調・復号部1203から出力された受信データ(たとえばRRCコネクションリコンフィギュレーション)に含まれる端末通知情報を取得する。そして、測定ギャップ制御部1206は、取得した端末通知情報が示す各パラメータに基づいて、無線受信部1202および同期信号検出・測定部1205に対して測定ギャップを設定する。また、測定ギャップ制御部1206は、測定ギャップの区間において、符号化・変調部1208による符号化および変調や無線送信部1209による無線送信処理を停止させる制御を行ってもよい。また、測定ギャップ制御部1206は、端末通知情報に対する接続基地局110への応答信号(たとえばRRCコネクションリコンフィギュレーションコンプリート)を送信データ生成部1207へ出力する。 The measurement gap control unit 1206 acquires terminal notification information included in the reception data (for example, RRC connection reconfiguration) output from the demodulation / decoding unit 1203. Then, measurement gap control section 1206 sets a measurement gap for radio reception section 1202 and synchronization signal detection / measurement section 1205 based on each parameter indicated by the acquired terminal notification information. Further, the measurement gap control unit 1206 may perform control to stop the encoding and modulation by the encoding / modulation unit 1208 and the wireless transmission processing by the wireless transmission unit 1209 in the measurement gap section. In addition, the measurement gap control unit 1206 outputs a response signal (for example, RRC connection reconfiguration complete) to the connection base station 110 with respect to the terminal notification information to the transmission data generation unit 1207.

 送信データ生成部1207は、接続基地局110へ送信するための送信データを生成する。たとえば、送信データ生成部1207は、接続基地局110への上りのユーザデータを含む送信データを生成する。また、送信データ生成部1207は、同期信号検出・測定部1205から出力された同期信号の電力の測定結果(報告情報)を含む送信データを生成する。また、送信データ生成部1207は、測定ギャップ制御部1206から出力されたRRCコネクションリコンフィギュレーションコンプリートを含む送信データを生成する。そして、送信データ生成部1207は、生成した送信データを符号化・変調部1208へ出力する。 The transmission data generation unit 1207 generates transmission data to be transmitted to the connected base station 110. For example, the transmission data generation unit 1207 generates transmission data including uplink user data to the connected base station 110. Also, the transmission data generation unit 1207 generates transmission data including the measurement result (report information) of the power of the synchronization signal output from the synchronization signal detection / measurement unit 1205. Further, the transmission data generation unit 1207 generates transmission data including the RRC connection reconfiguration complete output from the measurement gap control unit 1206. Then, transmission data generating section 1207 outputs the generated transmission data to encoding / modulation section 1208.

 符号化・変調部1208は、送信データ生成部1207から出力された送信データの符号化および変調を行う。そして、符号化・変調部1208は、符号化および変調により得られた送信信号を無線送信部1209へ出力する。 The encoding / modulation unit 1208 encodes and modulates the transmission data output from the transmission data generation unit 1207. Then, encoding / modulation section 1208 outputs a transmission signal obtained by encoding and modulation to radio transmission section 1209.

 また、符号化・変調部1208は、測定ギャップ制御部1206からの制御に従って測定ギャップを設定する。そして、符号化・変調部1208は、設定した測定ギャップにおいては、接続基地局110への送信信号の出力を行わない。 Also, the encoding / modulation unit 1208 sets the measurement gap in accordance with the control from the measurement gap control unit 1206. Then, encoding / modulation section 1208 does not output a transmission signal to connected base station 110 in the set measurement gap.

 無線送信部1209は、符号化・変調部1208から出力された送信信号の無線送信処理を行う。無線送信処理には、たとえば、ディジタル信号からアナログ信号への変換、ベースバンド帯から高周波帯への周波数変換、増幅などが含まれる。無線送信部1209は、無線送信処理を行った信号をアンテナ1201へ出力する。 The wireless transmission unit 1209 performs wireless transmission processing of the transmission signal output from the encoding / modulation unit 1208. The wireless transmission processing includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband to a high frequency band, amplification, and the like. The wireless transmission unit 1209 outputs the signal subjected to the wireless transmission process to the antenna 1201.

 接続基地局110から時間区間(測定ギャップ)の長さに関する情報を含む信号を受信する第1受信部は、たとえばアンテナ1201および無線受信部1202により実現することができる。接続基地局110および周辺基地局120からの信号を受信する第2受信部は、たとえばアンテナ1201、無線受信部1202、同期信号検出・測定部1205および測定ギャップ制御部1206により実現することができる。 The first receiving unit that receives a signal including information related to the length of the time interval (measurement gap) from the connected base station 110 can be realized by the antenna 1201 and the wireless receiving unit 1202, for example. The second receiving unit that receives signals from the connecting base station 110 and the neighboring base station 120 can be realized by, for example, the antenna 1201, the wireless receiving unit 1202, the synchronization signal detecting / measuring unit 1205, and the measurement gap control unit 1206.

(実施の形態にかかる端末のハードウェア構成)
 図13は、実施の形態にかかる端末のハードウェア構成の一例を示す図である。図13において、図12に示した部分と同様の部分については同一の符号を付して説明を省略する。図13に示すように、図12に示した復調・復号部1203、受信データ処理部1204および同期信号検出・測定部1205は、たとえばディジタル回路1300により実現することができる。
(Hardware configuration of terminal according to embodiment)
FIG. 13 is a diagram illustrating an example of a hardware configuration of the terminal according to the embodiment. In FIG. 13, the same parts as those shown in FIG. As illustrated in FIG. 13, the demodulation / decoding unit 1203, the reception data processing unit 1204, and the synchronization signal detection / measurement unit 1205 illustrated in FIG. 12 can be realized by a digital circuit 1300, for example.

 また、測定ギャップ制御部1206、送信データ生成部1207および符号化・変調部1208は、たとえばディジタル回路1300により実現することができる。ディジタル回路1300は、たとえばFPGAやDSP等のプロセッサである。図12に示した無線受信部1202は、たとえばDAC、ミキサ、増幅器などの回路により実現することができる。図12に示した無線送信部1209は、たとえば増幅器、ミキサおよびADCなどの回路により実現することができる。 Also, the measurement gap control unit 1206, the transmission data generation unit 1207, and the encoding / modulation unit 1208 can be realized by a digital circuit 1300, for example. The digital circuit 1300 is a processor such as an FPGA or a DSP, for example. The radio reception unit 1202 illustrated in FIG. 12 can be realized by a circuit such as a DAC, a mixer, and an amplifier. The radio transmission unit 1209 illustrated in FIG. 12 can be realized by a circuit such as an amplifier, a mixer, and an ADC.

(実施の形態にかかる接続基地局の測定ギャップ制御部によるギャップ決定処理)
 図14は、実施の形態にかかる接続基地局の測定ギャップ制御部によるギャップ決定処理の一例を示すフローチャートである。実施の形態にかかる接続基地局110の測定ギャップ制御部1006は、ギャップ決定処理として、たとえば図14に示す各ステップを実行する。
(Gap determination process by measurement gap control unit of connected base station according to embodiment)
FIG. 14 is a flowchart illustrating an example of gap determination processing by the measurement gap control unit of the connected base station according to the embodiment. The measurement gap control unit 1006 of the connecting base station 110 according to the embodiment executes, for example, each step shown in FIG. 14 as the gap determination process.

 まず、測定ギャップ制御部1006は、周期調整係数Nが1であるか否かを判断する(ステップS1401)。周期調整係数Nは、1以上の整数である。たとえば、測定ギャップ制御部1006は、周期調整係数Nがビーム分割数Nbeamの約数であることを条件として、β<(Tss+Trf)/(Tbs/Nbeam)/Nとなる最小の整数を周期調整係数Nとして算出する。βは、0<β<1.0を満たす接続基地局110のパラメータである。ビーム分割数Nbeamおよび周期Tbsは、たとえば周辺基地局120からの周辺基地局情報に含まれる。送信周期Tssおよび時間Trfは、たとえばシステム情報に含まれる。 First, the measurement gap control unit 1006 determines whether or not the cycle adjustment coefficient N is 1 (step S1401). The cycle adjustment coefficient N is an integer of 1 or more. For example, the measurement gap control unit 1006 sets the minimum integer satisfying β <(Tss + Trf) / (Tbs / Nbeam) / N as the period adjustment coefficient on condition that the period adjustment coefficient N is a divisor of the beam division number Nbeam. Calculate as N. β is a parameter of the connected base station 110 that satisfies 0 <β <1.0. The beam division number Nbeam and the period Tbs are included in the peripheral base station information from the peripheral base station 120, for example. The transmission cycle Tss and time Trf are included in the system information, for example.

 ステップS1401において、周期調整係数Nが1である場合(ステップS1401:Yes)は、測定ギャップ制御部1006は、ギャップシフト区間(たとえば図4に示したギャップシフト区間413)の長さMGSTを0に決定する(ステップS1402)。すなわち、測定ギャップ制御部1006はギャップシフト区間を挿入しないと決定する。 In step S1401, when the cycle adjustment coefficient N is 1 (step S1401: Yes), the measurement gap control unit 1006 sets the length MGST of the gap shift section (for example, the gap shift section 413 shown in FIG. 4) to 0. Determination is made (step S1402). That is, the measurement gap control unit 1006 determines not to insert a gap shift section.

 また、測定ギャップ制御部1006は、測定ギャップ(たとえば図4に示した測定ギャップ411)の三種類の長さMGL(1)~MGL(3)を決定する(ステップS1403)。たとえば、測定ギャップ制御部1006は、MGL(2)を上記(1)式により決定し、MGL(1)を上記(2)式により決定し、MGL(3)を上記(3)式により決定する。 Also, the measurement gap control unit 1006 determines three types of lengths MGL (1) to MGL (3) of the measurement gap (for example, the measurement gap 411 shown in FIG. 4) (step S1403). For example, the measurement gap control unit 1006 determines MGL (2) from the above equation (1), MGL (1) from the above equation (2), and MGL (3) from the above equation (3). .

 また、測定ギャップ制御部1006は、それぞれ長さがMGL(1)~MGL(3)の各測定ギャップのギャップ周期(たとえば図4に示したギャップ周期410)内の配置をそれぞれ決定する(ステップS1404)。たとえば、測定ギャップ制御部1006は、長さがMGL(1),MGL(2)の測定ギャップの開始位置を、ギャップ周期の開始位置に決定する。また、測定ギャップ制御部1006は、長さがMGL(3)の測定ギャップの開始位置を、ギャップ周期の開始位置からMGL(1)-Trfだけ後のタイミングに決定する。 The measurement gap control unit 1006 determines the arrangement of the measurement gaps having lengths MGL (1) to MGL (3) within the gap period (for example, the gap period 410 shown in FIG. 4) (step S1404). ). For example, the measurement gap control unit 1006 determines the start position of the measurement gap having the lengths MGL (1) and MGL (2) as the start position of the gap period. In addition, the measurement gap control unit 1006 determines the start position of the measurement gap having a length of MGL (3) at a timing after MGL (1) −Trf from the start position of the gap period.

 また、測定ギャップ制御部1006は、ギャップ周期の長さMGRPと、同期信号検出区間における長さがMGL(1)またはMGL(3)である測定ギャップの数である分割測定ギャップ区間数Ndgと、を決定する(ステップS1405)。たとえば、測定ギャップ制御部1006は、まずMGRP_0=Tbs/Nbeamにより基本ギャップ周期MGRP_0を計算する。そして、測定ギャップ制御部1006は、各ギャップ周期の長さMGRPを、基本ギャップ周期MGRP_0に決定する。この場合は各ギャップ周期が同一のMGRP_0=Tbs/Nbeamになる。また、測定ギャップ制御部1006は、Ndg=2*int(α*Nbeam)によりNdgを決定する。αは、0≦α≦1.0を満たす接続基地局110のパラメータである。 The measurement gap control unit 1006 also includes a gap period length MGRP, a divided measurement gap interval number Ndg, which is the number of measurement gaps whose length in the synchronization signal detection interval is MGL (1) or MGL (3), Is determined (step S1405). For example, the measurement gap control unit 1006 first calculates the basic gap period MGRP_0 from MGRP_0 = Tbs / Nbeam. Then, the measurement gap control unit 1006 determines the length MGRP of each gap period as the basic gap period MGRP_0. In this case, each gap period becomes the same MGRP_0 = Tbs / Nbeam. The measurement gap control unit 1006 determines Ndg according to Ndg = 2 * int (α * Nbeam). α is a parameter of the connected base station 110 that satisfies 0 ≦ α ≦ 1.0.

 また、測定ギャップ制御部1006は、同期信号検出区間内におけるギャップ周期の配置を決定する(ステップS1406)。たとえば、測定ギャップ制御部1006は、1番目~Ndg/2番目のギャップ周期を、長さがMGL(1)の測定ギャップを含むギャップ周期に決定する。また、測定ギャップ制御部1006は、Ndg/2+1番目~Nbeam番目のギャップ周期を、長さがMGL(2)の測定ギャップを含むギャップ周期に決定する。また、測定ギャップ制御部1006は、Nbeam+1番目~Nbeam+Ndg/2番目のギャップ周期を、長さがMGL(3)の測定ギャップを含むギャップ周期に決定する。 Further, the measurement gap control unit 1006 determines the arrangement of gap periods in the synchronization signal detection section (step S1406). For example, the measurement gap control unit 1006 determines the first to Ndg / 2nd gap cycle as a gap cycle including a measurement gap having a length of MGL (1). In addition, the measurement gap control unit 1006 determines the Ndg / 2 + 1-th to Nbeam-th gap period as a gap period including a measurement gap having a length of MGL (2). Further, the measurement gap control unit 1006 determines the Nbeam + 1-th to Nbeam + Ndg / 2nd gap cycle as a gap cycle including a measurement gap having a length of MGL (3).

 また、測定ギャップ制御部1006は、同期信号検出区間の長さTsyncを決定する(ステップS1407)。たとえば、測定ギャップ制御部1006は、Tsync=MGRP_0*(Ndg/2+Nbeam)によりTsyncを決定する。ただし0≦Ndg/2≦NbeamかつNdgは偶数である。 Further, the measurement gap control unit 1006 determines the length Tsync of the synchronization signal detection section (step S1407). For example, the measurement gap control unit 1006 determines Tsync by Tsync = MGRP — 0 * (Ndg / 2 + Nbeam). However, 0 ≦ Ndg / 2 ≦ Nbeam and Ndg is an even number.

 ステップS1401において、周期調整係数Nが2以上である場合(ステップS1401:No)は、周辺基地局120のビームスイーピングの1ステップの長さが短く同期信号の送信周期Tssに近いと判断することができる。この場合は、測定ギャップ制御部1006は、各ギャップ周期に挿入するギャップシフト区間の長さMGSTを決定する(ステップS1408)。たとえば、測定ギャップ制御部1006は、まずMGRP_0=Tbs/Nbeamにより基本ギャップ周期MGRP_0を計算する。 In step S1401, when the cycle adjustment coefficient N is 2 or more (step S1401: No), it may be determined that the length of one step of beam sweeping of the neighboring base station 120 is short and close to the synchronization signal transmission cycle Tss. it can. In this case, the measurement gap control unit 1006 determines the length MGST of the gap shift section to be inserted in each gap cycle (step S1408). For example, the measurement gap control unit 1006 first calculates the basic gap period MGRP_0 from MGRP_0 = Tbs / Nbeam.

 そして、測定ギャップ制御部1006は、1番目~Nbeam番目のギャップ周期のそれぞれにおけるギャップシフト区間の長さMGSTを決定する。たとえば、測定ギャップ制御部1006は、n番目のギャップ周期のMGST(n)を、MOD(n,Nbeam/N)=0の場合は基本ギャップ周期MGRP_0に決定し、MOD(n,Nbeam/N)≠0の場合は0に決定する。nはギャップ周期の番号であり、1~Nbeamの範囲の整数である。MOD()は剰余計算を示す関数である。 Then, the measurement gap control unit 1006 determines the length MGST of the gap shift section in each of the first to Nbeam gap periods. For example, the measurement gap control unit 1006 determines the MGST (n) of the nth gap cycle as the basic gap cycle MGRP_0 when MOD (n, Nbeam / N) = 0, and MOD (n, Nbeam / N). If ≠ 0, 0 is determined. n is the number of the gap period and is an integer in the range of 1 to Nbeam. MOD () is a function indicating remainder calculation.

 また、測定ギャップ制御部1006は、測定ギャップの長さMGLを決定する(ステップS1409)。たとえば、測定ギャップ制御部1006は、MGLを上記(1)式の(Tss+Trf)により決定する。この場合は、各測定ギャップの長さはすべてMGL(2)になる。また、測定ギャップ制御部1006は、測定ギャップのギャップ周期内の配置をそれぞれ決定する(ステップS1410)。たとえば、測定ギャップ制御部1006は、各測定ギャップの開始位置を、ギャップ周期の開始位置に決定する。 Also, the measurement gap control unit 1006 determines the length MGL of the measurement gap (step S1409). For example, the measurement gap control unit 1006 determines MGL by (Tss + Trf) in the above equation (1). In this case, the length of each measurement gap is all MGL (2). In addition, the measurement gap control unit 1006 determines the arrangement of the measurement gaps within the gap period (step S1410). For example, the measurement gap control unit 1006 determines the start position of each measurement gap as the start position of the gap period.

 また、測定ギャップ制御部1006は、ギャップ周期の長さMGRPと、同期信号検出区間における長さがMGL(1)またはMGL(3)である測定ギャップの数である分割測定ギャップ区間数Ndgと、を決定する(ステップS1411)。たとえば、測定ギャップ制御部1006は、n番目のギャップ周期の長さMGRP(n)を、上記(7)式のMGRP(n)=MGRP_0*N+MGST(n)により算出する。また、測定ギャップ制御部1006は、この場合は各測定ギャップの長さはMGL(2)であり長さがMGL(1)またはMGL(3)である測定ギャップはないため、Ndgを0に決定する。 The measurement gap control unit 1006 also includes a gap period length MGRP, a divided measurement gap interval number Ndg, which is the number of measurement gaps whose length in the synchronization signal detection interval is MGL (1) or MGL (3), Is determined (step S1411). For example, the measurement gap control unit 1006 calculates the length MGRP (n) of the nth gap period by MGRP (n) = MGRP — 0 * N + MGMT (n) in the above equation (7). In this case, the measurement gap control unit 1006 determines that Ndg is 0 because the length of each measurement gap is MGL (2) and there is no measurement gap whose length is MGL (1) or MGL (3). To do.

 また、測定ギャップ制御部1006は、同期信号検出区間内におけるギャップ周期の配置を決定する(ステップS1412)。たとえば、測定ギャップ制御部1006は、上述した1番目からNbeam番目までのギャップ周期を順番に配置する。すなわち、測定ギャップ制御部1006は、1番目のギャップ周期、2番目のギャップ周期、…Nbeam番目のギャップ周期の順に配置する。 In addition, the measurement gap control unit 1006 determines the arrangement of gap periods in the synchronization signal detection section (step S1412). For example, the measurement gap control unit 1006 arranges the above-described gap cycles from the first to the Nbeams in order. That is, the measurement gap control unit 1006 arranges the first gap cycle, the second gap cycle,..., The Nbeam-th gap cycle in this order.

 また、測定ギャップ制御部1006は、同期信号検出区間の長さTsyncを決定する(ステップS1413)。たとえば、測定ギャップ制御部1006は、Tsync=ΣMGRP(n)によりTsyncを決定する。すなわち、測定ギャップ制御部1006は、1番目からNbeam番目までのギャップ周期の長さMGRP(1)~MGRP(Nbeam)の合計をTsyncとして決定する。 In addition, the measurement gap control unit 1006 determines the length Tsync of the synchronization signal detection section (step S1413). For example, the measurement gap control unit 1006 determines Tsync by Tsync = ΣMGRP (n). That is, the measurement gap control unit 1006 determines the total of the gap period lengths MGRP (1) to MGRP (Nbeam) from the first to the Nbeamth as Tsync.

 ステップS1402~S1407またはステップS1408~S1413により、MGST、MGL、測定ギャップのギャップ周期内の配置、MGRP、Ndg、各ギャップ周期の同期信号検出区間内の配置およびTsyncが決定される。 At Steps S1402 to S1407 or Steps S1408 to S1413, MGST, MGL, arrangement of measurement gaps in the gap period, MGRP, Ndg, arrangement of each gap period in the synchronization signal detection section, and Tsync are determined.

 つぎに、測定ギャップ制御部1006は、ギャップ周期の開始オフセット、すなわち1番目のギャップ周期の開始位置を、自セルに接続した端末(たとえば端末130)ごとに決定する(ステップS1414)。開始オフセットgapOffsetの決定は、たとえば3GPPのTS36.331に規定されている。このLTEの規定においては、開始オフセットgapOffsetは下記(14)式により決定される。FLOOR()は床関数である。 Next, the measurement gap control unit 1006 determines the start offset of the gap period, that is, the start position of the first gap period for each terminal (for example, terminal 130) connected to the own cell (step S1414). The determination of the start offset gapOffset is specified in, for example, 3GPP TS36.331. In this LTE regulation, the start offset gapOffset is determined by the following equation (14). FLOOR () is a floor function.

 SFN mod T=FLOOR(gapOffset/10);
 subframe=gapOffset mod 10;
 with T=MGRP/10
                           …(14)
SFN mod T = FLOOR (gapOffset / 10);
subframe = gapOffset mod 10;
with T = MGRP / 10
... (14)

 上記(14)式におけるSFNは、接続基地局110と端末130が共通にもつSystem Frame Numberである。T=MGRP/10は、たとえば3GPPのTS36.133において定義されている。測定ギャップ制御部1006は、たとえば決定したTsyncおよび下記(15)式により開始オフセットgapOffsetを決定する。下記(15)式において、basicTimeは、基準となる所定の時間であり、LTEでは10[ms]である。 SFN in the above equation (14) is a system frame number shared by the connecting base station 110 and the terminal 130. T = MGRP / 10 is defined in TS36.133 of 3GPP, for example. The measurement gap control unit 1006 determines the start offset gapOffset based on, for example, the determined Tsync and the following equation (15). In the following formula (15), basicTime is a predetermined time as a reference, and is 10 [ms] in LTE.

 SFN mod Ts=FLOOR(gapOffset/basicTime);
 subframe=gapOffset mod basicTime;
 with Ts=Tsync/basicTime
                …(15)
SFN mod Ts = FLOOR (gapOffset / basicTime);
subframe = gapOffset mod basicTime;
with Ts = Tsync / basicTime
... (15)

 つぎに、測定ギャップ制御部1006は、ステップS1402~S1407またはステップS1408~S1413によって決定した情報に基づいて、端末130へ通知するための端末通知情報を生成し(ステップS1415)、一連の処理を終了する。端末通知情報には、たとえば、開始オフセットgapOffsetと、分割測定ギャップ区間数Ndgと、ビーム分割数Nbeamと、周期調整係数Nと、基本ギャップ周期MGRP_0と、が含まれる。 Next, the measurement gap control unit 1006 generates terminal notification information for notifying the terminal 130 based on the information determined in steps S1402 to S1407 or steps S1408 to S1413 (step S1415), and ends the series of processes. To do. The terminal notification information includes, for example, a start offset gapOffset, a division measurement gap interval number Ndg, a beam division number Nbeam, a period adjustment coefficient N, and a basic gap period MGRP_0.

 測定ギャップ制御部1006は、図14に示した各ステップによって生成した端末通知情報を、送信データ生成部1007へ出力することにより端末130へ送信する。また、測定ギャップ制御部1006は、決定した測定ギャップに関する各パラメータに基づいて、符号化・変調部1008による測定ギャップの設定を制御する。 The measurement gap control unit 1006 transmits the terminal notification information generated in each step shown in FIG. 14 to the transmission data generation unit 1007 to transmit it to the terminal 130. In addition, the measurement gap control unit 1006 controls setting of the measurement gap by the encoding / modulation unit 1008 based on each parameter related to the determined measurement gap.

(実施の形態にかかる端末の測定ギャップ制御部によるギャップ決定処理)
 図15は、実施の形態にかかる端末の測定ギャップ制御部によるギャップ決定処理の一例を示すフローチャートである。実施の形態にかかる端末130の測定ギャップ制御部1206は、図14のステップS1414によって生成されて接続基地局110から自端末へ送信された端末通知情報に基づいて、ギャップ決定処理として、たとえば図15に示す各ステップを実行する。端末通知情報には、たとえば、開始オフセットgapOffsetと、分割測定ギャップ区間数Ndgと、ビーム分割数Nbeamと、周期調整係数Nと、基本ギャップ周期MGRP_0と、が含まれる。
(Gap determination process by measurement gap control unit of terminal according to embodiment)
FIG. 15 is a flowchart illustrating an example of gap determination processing by the measurement gap control unit of the terminal according to the embodiment. The measurement gap control unit 1206 of the terminal 130 according to the embodiment performs, for example, FIG. 15 as a gap determination process based on the terminal notification information generated in step S1414 in FIG. 14 and transmitted from the connected base station 110 to the own terminal. The steps shown in FIG. The terminal notification information includes, for example, a start offset gapOffset, a division measurement gap interval number Ndg, a beam division number Nbeam, a period adjustment coefficient N, and a basic gap period MGRP_0.

 まず、測定ギャップ制御部1206は、端末通知情報に含まれる周期調整係数Nが1であるか否かを判断する(ステップS1501)。周期調整係数Nが1である場合(ステップS1501:Yes)は、ステップS1502へ移行する。 First, the measurement gap control unit 1206 determines whether or not the cycle adjustment coefficient N included in the terminal notification information is 1 (step S1501). When the cycle adjustment coefficient N is 1 (step S1501: Yes), the process proceeds to step S1502.

 測定ギャップ制御部1206によるステップS1502~S1507は、図14に示した測定ギャップ制御部1006によるステップS1402~S1407と同様である。ただし、ステップS1505において、測定ギャップ制御部1206は、各ギャップ周期の長さMGRPを、端末通知情報に含まれる基本ギャップ周期MGRP_0に決定する。また、ステップS1505において、測定ギャップ制御部1206は、端末通知情報に含まれる分割測定ギャップ区間数Ndgによって分割測定ギャップ区間数Ndgを決定する。 Steps S1502 to S1507 by the measurement gap control unit 1206 are the same as steps S1402 to S1407 by the measurement gap control unit 1006 shown in FIG. However, in step S1505, the measurement gap control unit 1206 determines the length MGRP of each gap period as the basic gap period MGRP_0 included in the terminal notification information. In step S1505, the measurement gap control unit 1206 determines the divided measurement gap interval number Ndg based on the divided measurement gap interval number Ndg included in the terminal notification information.

 また、ステップS1507において、測定ギャップ制御部1206は、端末通知情報に含まれるビーム分割数Nbeamおよび分割測定ギャップ区間数Ndgに基づいてTsyncを決定する。 Also, in step S1507, the measurement gap control unit 1206 determines Tsync based on the beam division number Nbeam and the division measurement gap interval number Ndg included in the terminal notification information.

 ステップS1501において、周期調整係数Nが2以上である場合(ステップS1501:No)は、測定ギャップ制御部1206は、ステップS1508へ移行する。図15に示すステップS1508~S1513は、図14に示したステップS1408~S1413と同様である。ただし、ステップS1508において、測定ギャップ制御部1206は、端末通知情報に含まれるビーム分割数Nbeamに基づいて基本ギャップ周期MGRP_0およびn番目のギャップ周期のMGST(n)を決定する。 In step S1501, when the cycle adjustment coefficient N is 2 or more (step S1501: No), the measurement gap control unit 1206 proceeds to step S1508. Steps S1508 to S1513 shown in FIG. 15 are the same as steps S1408 to S1413 shown in FIG. However, in step S1508, the measurement gap control unit 1206 determines the basic gap period MGRP_0 and the MGST (n) of the nth gap period based on the beam division number Nbeam included in the terminal notification information.

 また、ステップS1511において、測定ギャップ制御部1206は、端末通知情報に含まれる基本ギャップ周期MGRP_0および周期調整係数Nに基づいて、n番目のギャップ周期の長さMGRP(n)を決定する。 Also, in step S1511, the measurement gap control unit 1206 determines the length MGRP (n) of the nth gap cycle based on the basic gap cycle MGRP_0 and the cycle adjustment coefficient N included in the terminal notification information.

 ステップS1502~S1507またはステップS1508~S1513により、MGST、MGL、測定ギャップのギャップ周期内の配置、MGRP、Ndg、各ギャップ周期の同期信号検出区間内の配置およびTsyncが決定される。つぎに、測定ギャップ制御部1206は、端末通知情報に含まれるギャップ周期の開始オフセットを自端末に設定し(ステップS1514)、一連の処理を終了する。たとえば、測定ギャップ制御部1206は、無線受信部1202および同期信号検出・測定部1205に対して測定ギャップを設定する。 In steps S1502 to S1507 or S1508 to S1513, MGST, MGL, arrangement of measurement gaps in the gap period, MGRP, Ndg, arrangement of the gap periods in the synchronization signal detection section, and Tsync are determined. Next, the measurement gap control unit 1206 sets the start offset of the gap period included in the terminal notification information in the own terminal (step S1514), and ends the series of processes. For example, the measurement gap control unit 1206 sets a measurement gap for the radio reception unit 1202 and the synchronization signal detection / measurement unit 1205.

(実施の形態にかかる無線通信システムにおける処理)
 図16は、実施の形態にかかる無線通信システムにおける処理の一例を示すシーケンス図である。無線通信システム100においては、たとえば図16に示す各ステップが実行される。まず、接続基地局110が、周辺基地局120との間で、互いのビームスイーピングに関する情報を周辺基地局情報として送受信する(ステップS1601)。ビームスイーピングに関する情報には、ビームスイーピングにおける周期(ビームスイーピング周期)Tbsおよびビーム分割数Nbeamが含まれる。
(Processing in Radio Communication System According to Embodiment)
FIG. 16 is a sequence diagram illustrating an example of processing in the wireless communication system according to the embodiment. In the wireless communication system 100, for example, each step shown in FIG. 16 is executed. First, the connecting base station 110 transmits / receives information regarding beam sweeping to / from the neighboring base station 120 as neighboring base station information (step S1601). The information related to beam sweeping includes a beam sweeping period (beam sweeping period) Tbs and a beam division number Nbeam.

 周辺基地局120は、ステップS1601によって接続基地局110へ送信した周辺基地局情報に含まれるビームスイーピングに関する情報に応じたビームスイーピングによって同期信号の送信を行う(ステップS1602)。 The neighboring base station 120 transmits a synchronization signal by beam sweeping according to information related to beam sweeping included in the neighboring base station information transmitted to the connecting base station 110 in step S1601 (step S1602).

 また、接続基地局110が、測定ギャップパラメータの決定を行う(ステップS1603)。測定ギャップパラメータの決定は、たとえば図14に示したステップS1401~S1414による各パラメータの決定である。つぎに、接続基地局110が、ステップS1603によって決定した測定ギャップパラメータに基づいて測定ギャップの設定を行う(ステップS1604)。 Also, the connecting base station 110 determines a measurement gap parameter (step S1603). Determination of the measurement gap parameter is, for example, determination of each parameter in steps S1401 to S1414 shown in FIG. Next, the connecting base station 110 sets a measurement gap based on the measurement gap parameter determined in step S1603 (step S1604).

 つぎに、接続基地局110が、ステップS1603によって決定した測定ギャップパラメータを含む端末通知情報を端末130へ送信する(ステップS1605)。端末通知情報は、たとえばRRCコネクションリコンフィギュレーションのMeasGapConfigによって送信される。MeasGapConfigには、3GPPにて規定されたrelease、setup、gapOffsetに加えて、測定情報として分割測定ギャップ区間数Ndg、ビーム分割数Nbeam、周期調整係数Nおよび基本ギャップ周期MGRP_0が含まれる。 Next, the connecting base station 110 transmits terminal notification information including the measurement gap parameter determined in step S1603 to the terminal 130 (step S1605). The terminal notification information is transmitted by, for example, MeasGapConfig of RRC connection reconfiguration. In addition to release, setup, and gapOffset defined in 3GPP, MeasGapConfig includes a division measurement gap interval number Ndg, a beam division number Nbeam, a period adjustment coefficient N, and a basic gap period MGRP_0 as measurement information.

 つぎに、端末130が、ステップS1605によって接続基地局110から送信された端末通知情報に含まれる測定ギャップパラメータに基づいて測定ギャップの設定を行う(ステップS1606)。これにより、接続基地局110および端末130において共通の測定ギャップが設定され、測定ギャップによる無線測定が開始される。 Next, the terminal 130 sets a measurement gap based on the measurement gap parameter included in the terminal notification information transmitted from the connected base station 110 in step S1605 (step S1606). Thereby, a common measurement gap is set in the connecting base station 110 and the terminal 130, and radio measurement using the measurement gap is started.

 まず、接続基地局110は、ステップS1404によって設定した測定ギャップの区間になると、端末130との間の通信データの送受信を停止する(ステップS1607)。一方、端末130は、ステップS1406によって設定した測定ギャップの区間になると、ステップS1602によって周辺基地局120から送信される同期信号の無線測定を行う(ステップS1608)。つぎに、端末130は、無線部の周波数の切替を行う(ステップS1609)。たとえば、端末130は、無線部が受信する周波数を、接続基地局110が端末130への通信データに使用する周波数から、周辺基地局120が同期信号の送信に使用する周波数に切り替える。 First, the connecting base station 110 stops transmission / reception of communication data with the terminal 130 in the measurement gap section set in step S1404 (step S1607). On the other hand, when the measurement gap section set in step S1406 is reached, the terminal 130 performs radio measurement of the synchronization signal transmitted from the neighboring base station 120 in step S1602 (step S1608). Next, the terminal 130 switches the frequency of the radio unit (step S1609). For example, the terminal 130 switches the frequency received by the radio unit from the frequency used by the connecting base station 110 for communication data to the terminal 130 to the frequency used by the neighboring base station 120 for transmitting the synchronization signal.

 つぎに、接続基地局110は、ステップS1404によって設定した測定ギャップの区間以外の通信区間(ギャップシフト区間も含む)になると、ダウンリンクの通信データを端末130へ送信する(ステップS1610)。一方、端末130は、ステップS1406により設定した測定ギャップの区間以外の通信区間(ギャップシフト区間も含む)になると、アップリンクの通信データおよびステップS1608による無線測定結果を接続基地局110へ送信する(ステップS1611)。 Next, the connected base station 110 transmits downlink communication data to the terminal 130 when the communication period (including the gap shift period) other than the measurement gap period set in step S1404 is reached (step S1610). On the other hand, when the communication section (including the gap shift section) other than the measurement gap section set in step S1406 is entered, the terminal 130 transmits uplink communication data and the wireless measurement result in step S1608 to the connected base station 110 ( Step S1611).

 つぎに、端末130が、無線部の周波数の切替を行う(ステップS1612)。たとえば、端末130は、無線部が受信する周波数を、接続基地局110が端末130への通信データに使用する周波数から、周辺基地局120が同期信号の送信に使用する周波数に切り替える。 Next, the terminal 130 switches the frequency of the radio unit (step S1612). For example, the terminal 130 switches the frequency received by the radio unit from the frequency used by the connecting base station 110 for communication data to the terminal 130 to the frequency used by the neighboring base station 120 for transmitting the synchronization signal.

 つぎに、接続基地局110が、ステップS1404によって設定した測定ギャップの区間になると、端末130との間の通信データの送受信を停止する(ステップS1613)。一方、端末130は、ステップS1406によって設定した測定ギャップの区間になると、ステップS1612によって周辺基地局120から送信される同期信号の無線測定を行う(ステップS1614)。 Next, when the connecting base station 110 enters the section of the measurement gap set in step S1404, transmission / reception of communication data with the terminal 130 is stopped (step S1613). On the other hand, when the measurement gap section set in step S1406 is reached, the terminal 130 performs radio measurement of the synchronization signal transmitted from the neighboring base station 120 in step S1612 (step S1614).

 このように、実施の形態にかかる接続基地局110によれば、接続基地局110からの信号を端末130が受信しなくてよい断続的な時間区間の長さを時間区間ごとに設定し、設定した時間区間の長さに関する情報を含む信号を端末130へ送信することができる。これにより、接続基地局110および端末130の間で、接続基地局110からの信号を端末130が受信しなくてよい時間区間の長さを時間区間ごとに設定し、ビームスイーピングにより送信される同期信号の検出を効率よく行うことができる。 As described above, according to the connection base station 110 according to the embodiment, the length of the intermittent time interval in which the terminal 130 does not have to receive the signal from the connection base station 110 is set for each time interval. A signal including information related to the length of the time interval can be transmitted to the terminal 130. Thereby, between the connecting base station 110 and the terminal 130, the length of the time interval in which the terminal 130 does not have to receive the signal from the connecting base station 110 is set for each time interval, and the synchronization is transmitted by beam sweeping. Signal detection can be performed efficiently.

 時間区間は、接続基地局110から端末130へのデータ信号を送信しない区間であって、たとえば上述した測定ギャップである。時間区間の長さは、たとえば上述したMGL,MGL(1)~MGL(3)である。時間区間の長さに関する情報は、端末130による時間区間の長さの特定を可能にする情報であって、一例としては上述した周期調整係数Nである。 The time section is a section in which no data signal is transmitted from the connecting base station 110 to the terminal 130, and is, for example, the above-described measurement gap. The length of the time interval is, for example, the above-described MGL, MGL (1) to MGL (3). The information related to the length of the time interval is information that enables the terminal 130 to specify the length of the time interval, and is the period adjustment coefficient N described above as an example.

 たとえば、接続基地局110は、端末130について、第1の長さの時間区間を設定する周期と、第2の長さの時間区間を設定する周期と、短い第3の長さの時間区間を設定する周期と、が混在するように時間区間の長さを時間区間ごとに決定する。第1の長さは、一例としては上述したMGL(2)である。第2の長さは、第1の長さより短く、一例としては上述したMGL(1)である。第3の長さは、第1の長さより短く、一例としては上述したMGL(3)である。また、第3の長さの時間区間は、第2の長さの時間区間とタイミングが異なる時間区間である。 For example, the connecting base station 110 sets, for the terminal 130, a period for setting a time interval of a first length, a period for setting a time interval of a second length, and a time interval of a short third length. The length of the time interval is determined for each time interval so that the set cycles are mixed. As an example, the first length is the above-described MGL (2). The second length is shorter than the first length, and is, for example, MGL (1) described above. The third length is shorter than the first length, and is, for example, the above-described MGL (3). Further, the third time period is a time period having a different timing from the second time period.

 これにより、たとえば第1の長さの時間区間のみを設定して第1の長さの時間区間を長くする場合と比べて、同期信号のビーム角度が同じ各タイミングに測定ギャップが決定される重複検索の時間区間を短くすることができる。このため、ビームスイーピングにより送信される同期信号の検出を効率よく行うことができる。 Thereby, for example, compared to a case where only the first length of the time interval is set and the first length of the time interval is lengthened, the measurement gap is determined at each timing when the beam angle of the synchronization signal is the same. The search time interval can be shortened. For this reason, it is possible to efficiently detect a synchronization signal transmitted by beam sweeping.

 また、接続基地局110は、周辺基地局120から受信した、周辺基地局情報に基づいて時間区間の長さを決定する。これにより、周辺基地局120における同期信号のビームスイーピングのパターンが未知であっても、周辺基地局120がビームスイーピングにより送信する同期信号の検出を効率よく行うことができる時間区間の長さを決定できる。周辺基地局120は、複数の送信アンテナを用いて同一の信号(同期信号)を送信するごとに、複数の送信アンテナの間の位相差および同期信号の送信ストリーム間の位相差の少なくともいずれかを変えることが可能な無線基地局である。 Also, the connecting base station 110 determines the length of the time interval based on the peripheral base station information received from the peripheral base station 120. Thereby, even if the beam sweep pattern of the synchronization signal in the neighboring base station 120 is unknown, the length of the time interval in which the neighboring base station 120 can efficiently detect the synchronization signal transmitted by beam sweeping is determined. it can. Each time the neighboring base station 120 transmits the same signal (synchronization signal) using a plurality of transmission antennas, the neighboring base station 120 calculates at least one of the phase difference between the plurality of transmission antennas and the phase difference between the transmission streams of the synchronization signals. It is a radio base station that can be changed.

 周辺基地局情報は、複数の送信アンテナの間の位相差および同期信号の送信ストリーム間の位相差の少なくともいずれかを変えることに関する情報である。周辺基地局情報には、一例としては、周辺基地局120による同期信号のビームスイーピングにおけるビーム分割数Nbeamおよび周期Tbsが含まれる。 Peripheral base station information is information related to changing at least one of the phase difference between a plurality of transmission antennas and the phase difference between transmission streams of synchronization signals. As an example, the peripheral base station information includes the number of beam divisions Nbeam and the period Tbs in beam sweeping of the synchronization signal by the peripheral base station 120.

 また、接続基地局110は、時間区間(たとえば測定ギャップ)を設定する周期の長さを周期ごとに設定し、設定した周期の長さに関する情報を含む信号を生成してもよい。時間区間を設定する周期は、一例としては上述したギャップ周期である。時間区間を設定する周期の長さに関する情報は、たとえば上述したギャップ周期の長さMGRP(n)である。時間区間を設定する周期の長さに関する情報は、たとえば端末130によるギャップ周期の長さMGRP(n)の特定を可能にする情報であって、一例としては上述した周期調整係数N、ビーム分割数Nbeamおよび基本ギャップ周期MGRP_0である。 Also, the connecting base station 110 may set a period length for setting a time interval (for example, a measurement gap) for each period and generate a signal including information on the set period length. The period for setting the time interval is, for example, the above-described gap period. The information on the length of the period for setting the time interval is, for example, the gap period length MGRP (n) described above. The information regarding the period length for setting the time interval is information that enables the terminal 130 to specify the gap period length MGRP (n), for example, and includes the period adjustment coefficient N and the number of beam divisions described above as an example. Nbeam and basic gap period MGRP_0.

 これにより、接続基地局110および端末130の間で、接続基地局110からの信号を端末130が受信しなくてよい時間区間を設定する周期の長さを周期ごとに設定し、ビームスイーピングにより送信される同期信号の検出を効率よく行うことができる。たとえば、1回の同期信号検出区間において同じビーム角度に対して測定ギャップを複数回設定する重複検索をなくすことができる。このため、ビームスイーピングにより送信される同期信号の検出を効率よく行うことができる。 Thereby, between the connecting base station 110 and the terminal 130, the length of the period for setting the time interval in which the terminal 130 does not need to receive the signal from the connecting base station 110 is set for each period, and transmitted by beam sweeping. The detected sync signal can be detected efficiently. For example, it is possible to eliminate the duplicate search in which the measurement gap is set a plurality of times for the same beam angle in one synchronization signal detection section. For this reason, it is possible to efficiently detect a synchronization signal transmitted by beam sweeping.

 たとえば、接続基地局110は、周辺基地局120が同期信号を送信する周期の長さ(たとえばTss)と、周辺基地局120がビーム角度を切り替える周期の長さ(たとえばTbs/Nbeam)と、の比較を行う。そして、接続基地局110は、比較結果に応じて、時間区間を設定する周期の長さを周期ごとに設定する処理を行ってもよい。一例としては、接続基地局110は、上述のように、β<(Tss+Trf)/(Tbs/Nbeam)/Nとなる最小の整数を周期調整係数Nとして算出し、N≧2を満たす場合に、時間区間を設定する周期の長さを周期ごとに設定する処理を行う。これにより、接続基地局110と端末130との間のデータ通信が可能な期間が短くなることを抑制しつつ、ビームスイーピングにより送信される同期信号の検出を効率よく行うことができる。 For example, the connecting base station 110 has a period length (for example, Tss) at which the neighboring base station 120 transmits a synchronization signal and a period length (for example, Tbs / Nbeam) at which the neighboring base station 120 switches the beam angle. Make a comparison. Then, the connecting base station 110 may perform processing for setting the length of the period for setting the time interval for each period in accordance with the comparison result. As an example, as described above, the connecting base station 110 calculates the minimum integer satisfying β <(Tss + Trf) / (Tbs / Nbeam) / N as the period adjustment coefficient N, and when N ≧ 2 is satisfied, A process for setting the length of the period for setting the time interval for each period is performed. As a result, it is possible to efficiently detect the synchronization signal transmitted by beam sweeping while suppressing a period during which data communication between the connecting base station 110 and the terminal 130 is possible from being shortened.

 以上説明したように、無線基地局、無線端末、無線通信システムおよび無線通信方法によれば、ビームスイーピングにより送信される同期信号の検出を効率よく行うことができる。 As described above, according to the radio base station, the radio terminal, the radio communication system, and the radio communication method, it is possible to efficiently detect the synchronization signal transmitted by beam sweeping.

 たとえば、第5世代移動体通信システムは、2020年頃から商用サービスが開始されることが期待されている。第5世代移動体通信システムにおいては、ダウンリンク(DL)では最大で20[Gbps]、アップリンク(UL)では最大で10[Gbps]のピークデータレート(peak data rate)が得られるべきというITUからの要求がある。これを実現する方法として、広帯域を確保できるミリ波帯の活用がある。ITUはInternational Telecommunication Unionの略である。 For example, the fifth generation mobile communication system is expected to start commercial service from around 2020. In the fifth generation mobile communication system, an ITU that a peak data rate of 20 [Gbps] at the maximum in the downlink (DL) and 10 [Gbps] at the maximum in the uplink (UL) should be obtained. There is a request from. As a method for realizing this, there is a utilization of a millimeter wave band capable of securing a wide band. ITU is an abbreviation for International Telecommunication Union.

 ミリ波帯においては、電波伝搬損失が大きくなり無線セルが小さくなるが、多素子アンテナを用いてビームフォーミング送信を行うことにより無線セルの範囲を拡大することが有効と考えられている。また、多素子アンテナを用いて空間ストリーム多重送信を行うことで、データレート(data rate)の増加を図れる。したがって、ミリ波帯における多素子アンテナの活用は有効な方法と考えられている。一つの送信アンテナに含まれるアンテナ素子数は、最大でたとえば256が想定されている。 In the millimeter wave band, radio wave propagation loss increases and the radio cell becomes smaller, but it is considered effective to expand the range of the radio cell by performing beamforming transmission using a multi-element antenna. In addition, by performing spatial stream multiplex transmission using a multi-element antenna, the data rate can be increased. Therefore, the use of multi-element antennas in the millimeter wave band is considered an effective method. For example, the maximum number of antenna elements included in one transmission antenna is assumed to be 256.

 無線セルラ通信において重要なことの一つとして、端末が無線セル基地局へ接続する処理の過程ならびに接続を維持するための信号やシステム制御信号が、無線セル内全域において端末により受信できるようにすることである。 One of the important things in wireless cellular communication is that the process of connecting a terminal to a wireless cell base station and the signal for maintaining the connection and the system control signal can be received by the terminal throughout the wireless cell. That is.

 端末個別に送信する無線信号については、端末に対してビームが向けられるようなビームフォーミング送信(端末が送信する信号に対する測定から得られる到来角を元にしたビーム生成)が有効である。また、ビームフォーミング送信においては、セル内の全端末が受信するような共通無線信号の送信には、ビーム角度を変えた狭い幅のビームをセル内全域に到達するよう複数回送信するようなビームスイーピング送信を適用することが好ましい。ビームスイーピングは送信するごとに振幅と位相で構成される重み行列の時間とともに変化させることで実現される。 For a radio signal transmitted individually for each terminal, beamforming transmission (beam generation based on an arrival angle obtained from measurement of a signal transmitted by the terminal) in which a beam is directed to the terminal is effective. In beamforming transmission, a beam that is transmitted multiple times so that a beam with a narrow width with a changed beam angle reaches the entire area of the cell is used for transmission of a common radio signal that is received by all terminals in the cell. It is preferable to apply sweeping transmission. Beam sweeping is realized by changing with the time of a weight matrix composed of amplitude and phase every time transmission is performed.

 また、3GPPにおいて第5世代移動体通信システムの仕様化のための基本検討作業が開始されている。たとえば、ミリ波帯においては共通無線信号の一つである無線ダウンリンク同期信号(LTEにおけるPSSやSSSに相当)をビームスイーピング送信することが検討されている。 Also, 3GPP has started basic study work for the specification of the fifth generation mobile communication system. For example, in the millimeter wave band, it is considered to perform beam sweep transmission of a radio downlink synchronization signal (equivalent to PSS or SSS in LTE) which is one of common radio signals.

 多素子送信アンテナを用いて信号をビームフォーミング送信する際に、ディジタルビームフォーミング送信、ハイブリッドビームフォーミング送信またはアナログビームフォーミング送信が用いられる。ハイブリッドビームフォーミング送信は、ディジタルビームフォーミング送信とアナログビームフォーミング送信の組み合わせである。 Digital beam forming transmission, hybrid beam forming transmission or analog beam forming transmission is used when beam forming transmission is performed using a multi-element transmission antenna. Hybrid beamforming transmission is a combination of digital beamforming transmission and analog beamforming transmission.

 第5世代移動体通信システムの無線区間に導入する無線信号は、これらのビームフォーミング送信方式に依存しないものにすることが求められている。すなわち、基地局側で使用されているビームフォーミング送信の方式の種類を端末が知らなくても、ビームフォーミング送信される無線信号を端末は受信できるようにすることが求められている。 It is required that the radio signal introduced into the radio section of the fifth generation mobile communication system does not depend on these beamforming transmission methods. That is, it is required that the terminal can receive the radio signal transmitted by beamforming without knowing the type of beamforming transmission method used on the base station side.

 また、信号をビームフォーミング送信する際に、アンテナ素子間に与える位相行列の設定内容を適切なものにすることで、同時に送信されるビームの数を可変できる。ビームの数が多くなるほど、一つのビームに割り当てられる電力は小さくなってビームの到達距離は短くなり、一つのビームに割り当てる電力が同じである場合はビーム幅が広くなるほどビームの到達距離が短くなる。 Also, when the signal is transmitted by beam forming, the number of beams transmitted at the same time can be varied by making the setting contents of the phase matrix given between the antenna elements appropriate. As the number of beams increases, the power allocated to one beam decreases and the beam reaching distance decreases. When the power allocated to one beam is the same, the beam reaching distance decreases as the beam width increases. .

 そのため、無線信号をビームスイーピングする際、ビーム幅、スイープ数をどうするかは、セルの大きさ、送信アンテナの構成、無線搬送周波数等を考慮して無線基地局ごとに設定される。このため、端末は、ビームスイーピングのビーム幅やスイープ数を知らなくても、ビームスイーピング送信される信号を受信できるようにすることを要する。 Therefore, when beam sweeping a radio signal, the beam width and the number of sweeps are set for each radio base station in consideration of the cell size, the configuration of the transmission antenna, the radio carrier frequency, and the like. For this reason, the terminal needs to be able to receive a signal to be transmitted by beam sweeping without knowing the beam width or the number of sweeps of beam sweeping.

 ミリ波帯(たとえば24~40[GHz]や66~86[GHz]帯)における無線通信は、2~3[GHz]帯等の低い周波数帯における無線通信と比較して、無線基地局側の送受信点(無線基地局)と無線端末の間の環境の影響を強く受ける。これは、周波数が高くなるほど、電波の直進性が強くなることと、無線信号の空間伝搬損失が増加することに起因する。 Wireless communication in the millimeter wave band (for example, 24 to 40 [GHz] or 66 to 86 [GHz] band) is more effective than the wireless communication in the low frequency band such as 2 to 3 [GHz]. It is strongly influenced by the environment between the transmission / reception point (wireless base station) and the wireless terminal. This is due to the fact that the higher the frequency, the stronger the straightness of radio waves and the greater the spatial propagation loss of radio signals.

 ミリ波帯における無線端末と無線基地局の間の無線回線の品質の変動は、より大きくなり、また、通信不能となる状況に陥るまで品質が急激に劣化する状態が頻繁に発生すると考えられている。このため、接続する基地局の速やかな変更が可能となるように、隣接基地局に対する無線測定の頻度をより高くすることを要する。 The fluctuation of the quality of the radio link between the radio terminal and the radio base station in the millimeter wave band becomes larger, and it is thought that the state where the quality deteriorates rapidly until the situation where communication becomes impossible frequently occurs. Yes. For this reason, it is necessary to increase the frequency of radio measurement for adjacent base stations so that the connected base station can be quickly changed.

 このように、たとえばミリ波帯で運用される無線基地局無線セルにおいて、同期信号等の無線信号をビームスイーピング送信するにあたり、同一信号のビームスイープ数やビームスイープパタンは無線セルごとに異なるものが設定できるようになると考えられる。 As described above, for example, in a radio base station radio cell operated in the millimeter wave band, when beam sweep transmission of a radio signal such as a synchronization signal is performed, the number of beam sweeps and beam sweep patterns of the same signal are different for each radio cell. It will be possible to set.

 無線端末が周辺の複数の無線基地局に対する無線測定を行うにあたり、特に異周波測定を行う場合は、測定ギャップ(無線測定ギャップ)の設定を要する。測定ギャップは、無線ネットワークが無線端末に対するデータ信号の送信を中断し、無線端末が無線測定を実施する時間区間である。 When a wireless terminal performs wireless measurement on a plurality of nearby wireless base stations, a measurement gap (wireless measurement gap) needs to be set particularly when performing different frequency measurement. The measurement gap is a time interval in which the wireless network interrupts transmission of a data signal to the wireless terminal and the wireless terminal performs wireless measurement.

 現状のLTE仕様においては同期信号のビームスイープ送信が想定されていない。このため、周辺基地局において同期信号のビームスイープ送信が行われ、また無線基地局ごとに異なるビームスイープ数やビームスイープパタンが設定される場合は、無線端末に対して設定する測定ギャップのパターンが複雑になる。そして、測定ギャップの設定区間数や時間長は長くなることが予想されるが、設定される測定ギャップは過剰になり、無線端末が接続中の無線基地局からのデータ送信の中断時間が不必要に長くなると考えられる。 The current LTE specification does not assume beam sweep transmission of synchronization signals. For this reason, beam sweep transmission of the synchronization signal is performed in the peripheral base station, and when different beam sweep numbers and beam sweep patterns are set for each radio base station, the measurement gap pattern set for the radio terminal is It becomes complicated. The number of measurement gaps and the length of time are expected to increase, but the measurement gaps to be set will be excessive, and there will be no need to interrupt data transmission from the wireless base station to which the wireless terminal is connected. It will be longer.

 上述した実施の形態によれば、たとえば測定ギャップの長さを測定ギャップごとに設定可能にすることで、無線基地局において異なるビームスイープ数やビームスイープパタンが設定される場合においても効率的な測定ギャップを設定することが可能になる。 According to the above-described embodiment, for example, the length of the measurement gap can be set for each measurement gap, so that efficient measurement can be performed even when different beam sweep numbers and beam sweep patterns are set in the radio base station. It becomes possible to set a gap.

 100 無線通信システム
 110 接続基地局
 120 周辺基地局
 121,122,510 ビーム
 130 端末
 200 セル
 300 無線フレーム
 311,321 PSS
 312,322 SSS
 330 同期信号周期
 410,521~544,610,620,630,711~726 ギャップ周期
 411,611,621,631 測定ギャップ
 412,612,622,632,633 通信区間
 413 ギャップシフト区間
 550 分割検索
 810 UE
 820 EUTRAN
 911~913,920 最大検出時間対損失率
 1001 基地局間通信部
 1002 ビームスイープ制御部
 1003 同期信号重み係数計算部
 1004 同期信号生成部
 1005 同期信号変調部
 1006,1206 測定ギャップ制御部
 1007,1207 送信データ生成部
 1008,1208 符号化・変調部
 1009 ビームフォーミング・無線送信部
 1010 アンテナ群
 1011,1202 無線受信部
 1012,1203 復調・復号部
 1013,1204 受信データ処理部
 1014 送信信号重み係数計算部
 1100,1300 ディジタル回路
 1201 アンテナ
 1205 同期信号検出・測定部
 1209 無線送信部
DESCRIPTION OF SYMBOLS 100 Wireless communication system 110 Connection base station 120 Peripheral base station 121,122,510 Beam 130 Terminal 200 Cell 300 Radio frame 311 321 PSS
312,322 SSS
330 Sync signal period 410, 521 to 544, 610, 620, 630, 711 to 726 Gap period 411, 611, 621, 631 Measurement gap 412, 612, 622, 632, 633 Communication period 413 Gap shift period 550 Division search 810 UE
820 EUTRAN
911 to 913, 920 Maximum detection time vs. loss ratio 1001 Inter-base station communication unit 1002 Beam sweep control unit 1003 Synchronization signal weight coefficient calculation unit 1004 Synchronization signal generation unit 1005 Synchronization signal modulation unit 1006, 1206 Measurement gap control unit 1007, 1207 Transmission Data generation unit 1008, 1208 Encoding / modulation unit 1009 Beamforming / radio transmission unit 1010 Antenna group 1011, 1202 Radio reception unit 1012, 1203 Demodulation / decoding unit 1013, 1204 Reception data processing unit 1014 Transmission signal weight coefficient calculation unit 1100, 1300 Digital circuit 1201 Antenna 1205 Synchronization signal detection / measurement unit 1209 Wireless transmission unit

Claims (11)

 自局からの信号を無線端末が受信しなくてよい断続的な時間区間の長さを前記時間区間ごとに設定することが可能な設定部と、
 前記設定部によって設定された前記時間区間の長さに関する情報を含む信号を生成する生成部と、
 前記生成部によって生成された前記信号を前記無線端末へ送信する送信部と、
 を備えることを特徴とする無線基地局。
A setting unit capable of setting, for each time interval, a length of an intermittent time interval in which a wireless terminal does not need to receive a signal from the own station;
A generation unit that generates a signal including information on the length of the time interval set by the setting unit;
A transmitter that transmits the signal generated by the generator to the wireless terminal;
A radio base station comprising:
 前記設定部は、第1の長さの前記時間区間を設定する周期と、前記第1の長さより短い第2の長さの前記時間区間を設定する周期と、前記第1の長さより短い第3の長さの前記時間区間であって前記第2の長さの前記時間区間とタイミングが異なる前記時間区間を設定する周期と、が混在するように前記時間区間の長さを決定することを特徴とする請求項1に記載の無線基地局。 The setting unit includes a period for setting the time interval having a first length, a period for setting the time interval having a second length shorter than the first length, and a period shorter than the first length. Determining the length of the time interval such that the time interval of 3 and the period of setting the time interval different in timing from the time interval of the second length are mixed. The radio base station according to claim 1.  前記設定部は、複数の送信アンテナを用いて同一の信号を送信するごとに、前記複数の送信アンテナの間の位相差および前記同一の信号の送信ストリーム間の位相差の少なくともいずれかを変えることが可能な他の無線基地局から受信した、前記複数の送信アンテナの間の位相差および前記同一の信号の送信ストリーム間の位相差の少なくともいずれかを変えることに関する情報に基づいて前記時間区間の長さを決定することを特徴とする請求項1または2に記載の無線基地局。 The setting unit changes at least one of a phase difference between the plurality of transmission antennas and a phase difference between transmission streams of the same signal each time the same signal is transmitted using the plurality of transmission antennas. Based on information about changing at least one of a phase difference between the plurality of transmit antennas and a phase difference between transmission streams of the same signal received from another radio base station capable of The radio base station according to claim 1 or 2, wherein a length is determined.  前記設定部は、前記時間区間を設定する周期の長さを前記周期ごとに設定し、
 前記生成部は、前記設定部によって設定された前記周期の長さに関する情報を含む信号を生成する、
 ことを特徴とする請求項1~3のいずれか一つに記載の無線基地局。
The setting unit sets the length of the period for setting the time interval for each period,
The generation unit generates a signal including information on the length of the period set by the setting unit;
The radio base station according to any one of claims 1 to 3, wherein:
 前記設定部は、複数の送信アンテナを用いて同一の信号を送信するごとに、前記複数の送信アンテナの間の位相差および前記同一の信号の送信ストリーム間の位相差の少なくともいずれかを変えることが可能な他の無線基地局から受信した、前記複数の送信アンテナの間の位相差および前記同一の信号の送信ストリーム間の位相差の少なくともいずれかを変えることに関する情報に基づいて前記周期の長さを決定することを特徴とする請求項4に記載の無線基地局。 The setting unit changes at least one of a phase difference between the plurality of transmission antennas and a phase difference between transmission streams of the same signal each time the same signal is transmitted using the plurality of transmission antennas. The length of the period based on information about changing at least one of a phase difference between the plurality of transmission antennas and a phase difference between transmission streams of the same signal received from another radio base station capable of The radio base station according to claim 4, wherein the radio base station is determined.  前記設定部は、前記他の無線基地局が前記同一の信号を送信する周期の長さと、前記他の無線基地局が前記複数の送信アンテナの間の位相差および前記同一の信号の送信ストリーム間の位相差の少なくともいずれかを切り替える周期の長さと、の比較結果に応じて、前記時間区間を設定する周期の長さを前記周期ごとに設定することを特徴とする請求項5に記載の無線基地局。 The setting unit includes a length of a period in which the other radio base station transmits the same signal, a phase difference between the plurality of transmission antennas by the other radio base station, and a transmission stream of the same signal. 6. The radio according to claim 5, wherein a period length for setting the time interval is set for each period in accordance with a comparison result with a period length for switching at least one of the phase differences. base station.  前記同一の信号は同期信号であることを特徴とする請求項3、5、6のいずれか一つに記載の無線基地局。 The radio base station according to any one of claims 3, 5, and 6, wherein the same signal is a synchronization signal.  自局からの信号を無線端末が受信しなくてよい断続的な時間区間の長さを前記時間区間ごとに設定することが可能な第1無線基地局から前記時間区間の長さに関する情報を含む信号を受信する第1受信部と、
 前記第1受信部によって受信された前記信号に基づいて、前記時間区間と異なる区間において前記第1無線基地局からの信号を受信し、前記時間区間において、前記第1無線基地局と異なる第2無線基地局であって、自局から複数の送信アンテナを用いて同一の信号を送信するごとに、前記複数の送信アンテナの間の位相差および前記同一の信号の送信ストリーム間の位相差の少なくともいずれかを変えることが可能な第2無線基地局からの信号を受信する第2受信部と、
 を備えることを特徴とする無線端末。
Includes information on the length of the time interval from the first radio base station capable of setting, for each time interval, the length of an intermittent time interval in which the wireless terminal may not receive a signal from the own station A first receiver for receiving a signal;
Based on the signal received by the first receiver, a signal from the first radio base station is received in a period different from the time period, and a second different from the first radio base station in the time period. Each time a wireless base station transmits the same signal from its own station using a plurality of transmission antennas, at least a phase difference between the plurality of transmission antennas and a phase difference between transmission streams of the same signal A second receiving unit for receiving a signal from the second radio base station capable of changing either of them;
A wireless terminal comprising:
 自局からの信号を無線端末が受信しなくてよい断続的な時間区間の長さを前記時間区間ごとに設定することが可能な第1無線基地局と、
 前記時間区間と異なる区間において前記第1無線基地局からの信号を受信し、前記時間区間において、前記第1無線基地局と異なる第2無線基地局であって、自局から複数の送信アンテナを用いて同一の信号を送信するごとに、前記複数の送信アンテナの間の位相差および前記同一の信号の送信ストリーム間の位相差の少なくともいずれかを変えることが可能な第2無線基地局からの信号を受信する無線端末と、
 を含むことを特徴とする無線通信システム。
A first radio base station capable of setting, for each time interval, a length of an intermittent time interval in which a radio terminal does not need to receive a signal from the own station;
A signal from the first radio base station is received in a section different from the time section, and the second radio base station is different from the first radio base station in the time section, and a plurality of transmission antennas are transmitted from the own station. From the second radio base station that can change at least one of the phase difference between the plurality of transmission antennas and the phase difference between the transmission streams of the same signal each time the same signal is transmitted using A wireless terminal that receives the signal;
A wireless communication system comprising:
 自局からの信号を無線端末が受信しなくてよい断続的な時間区間の長さを前記時間区間ごとに設定することが可能な無線基地局が、
 設定した前記時間区間の長さに関する情報を含む信号を生成し、
 生成した前記信号を前記無線端末へ送信する、
 ことを特徴とする無線通信方法。
A radio base station capable of setting, for each time interval, a length of an intermittent time interval in which a radio terminal does not need to receive a signal from the own station,
Generating a signal including information on the length of the set time interval;
Transmitting the generated signal to the wireless terminal;
A wireless communication method.
 無線端末が、
 自局からの信号を無線端末が受信しなくてよい断続的な時間区間の長さを前記時間区間ごとに設定することが可能な第1無線基地局から前記時間区間の長さに関する情報を含む信号を受信し、
 受信した前記信号に基づいて、前記時間区間と異なる区間において前記第1無線基地局からの信号を受信し、前記時間区間において、前記第1無線基地局と異なる第2無線基地局であって、自局から複数の送信アンテナを用いて同一の信号を送信するごとに、前記複数の送信アンテナの間の位相差および前記同一の信号の送信ストリーム間の位相差の少なくともいずれかを変えることが可能な第2無線基地局からの信号を受信する、
 ことを特徴とする無線通信方法。
Wireless terminal
Includes information on the length of the time interval from the first radio base station capable of setting, for each time interval, the length of an intermittent time interval in which the wireless terminal may not receive a signal from the own station Receive the signal,
Based on the received signal, a signal from the first radio base station is received in a section different from the time section, and the second radio base station is different from the first radio base station in the time section, Each time the same signal is transmitted from a local station using a plurality of transmission antennas, it is possible to change at least one of the phase difference between the plurality of transmission antennas and the phase difference between transmission streams of the same signal. Receiving a signal from the second radio base station,
A wireless communication method.
PCT/JP2016/082285 2016-10-31 2016-10-31 Wireless base station, wireless terminal, wireless communication system, and wireless communication method Ceased WO2018078858A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082285 WO2018078858A1 (en) 2016-10-31 2016-10-31 Wireless base station, wireless terminal, wireless communication system, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082285 WO2018078858A1 (en) 2016-10-31 2016-10-31 Wireless base station, wireless terminal, wireless communication system, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2018078858A1 true WO2018078858A1 (en) 2018-05-03

Family

ID=62024637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082285 Ceased WO2018078858A1 (en) 2016-10-31 2016-10-31 Wireless base station, wireless terminal, wireless communication system, and wireless communication method

Country Status (1)

Country Link
WO (1) WO2018078858A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11330481B2 (en) * 2017-04-28 2022-05-10 China Mobile Communication Co., Ltd Research Institute Method and device for configuring measurement parameter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130083774A1 (en) * 2011-09-29 2013-04-04 Samsung Electronics Co., Ltd Method and apparatus for short handover latency in wireless communication system using beam forming
WO2015045774A1 (en) * 2013-09-26 2015-04-02 株式会社Nttドコモ User terminal, wireless base station, and inter-frequency measurement method
JP2016063243A (en) * 2014-09-12 2016-04-25 日本電気株式会社 Measurement timing adjustment method, radio communication system, base station device, and base station control program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130083774A1 (en) * 2011-09-29 2013-04-04 Samsung Electronics Co., Ltd Method and apparatus for short handover latency in wireless communication system using beam forming
WO2015045774A1 (en) * 2013-09-26 2015-04-02 株式会社Nttドコモ User terminal, wireless base station, and inter-frequency measurement method
JP2016063243A (en) * 2014-09-12 2016-04-25 日本電気株式会社 Measurement timing adjustment method, radio communication system, base station device, and base station control program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Beam support in NR", 3GPP TSG RAN WG2 MEETING #93BIS R2-162709, 2 April 2016 (2016-04-02), XP051082507, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_93bis/Docs/R2-162709.zip> [retrieved on 20161214] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11330481B2 (en) * 2017-04-28 2022-05-10 China Mobile Communication Co., Ltd Research Institute Method and device for configuring measurement parameter

Similar Documents

Publication Publication Date Title
US11800377B2 (en) Communication system
US10425835B2 (en) Post network entry connection method in millimeter wave communication system and related apparatuses using the same
US9661547B1 (en) Method and system for handover with pre-configuration of timing advance
US11398874B2 (en) Method and apparatus for measuring signal quality in wireless communication system
US20190166513A1 (en) CSI-RS Radio Resource Management (RRM) Measurement
KR101925698B1 (en) System and method for beam-based physical random-access
US20170006593A1 (en) Beam Detection, Beam Tracking and Random Access in MM-Wave Small Cells in Heterogeneous Network
JP6388076B2 (en) Wireless communication system, wireless device, and processing method
RU2747052C1 (en) Signal measurement control in wireless beam-forming devices
CN106851712B (en) Message processing method, base station and terminal
CN104737584A (en) Method and device for cell switching and reconfiguration
KR20080083939A (en) Device and method for uplink pilot transmission in scanning interval in mobile communication system
US11343736B2 (en) Method and device for performing handover in wireless communication system
US10122435B2 (en) Methods and systems for beam searching
US10477496B2 (en) User device, access node device, central network controller and corresponding methods
US10757633B2 (en) Optimized broadcasting of system information messages
CN104796989A (en) Channel switching synchronization transmission method and station equipment
WO2018078858A1 (en) Wireless base station, wireless terminal, wireless communication system, and wireless communication method
CN114339820B (en) Communication method, device, equipment and readable storage medium in satellite communication network
EP2255565B1 (en) Methods for provision of system information, computer programs, network node, terminal, and radio access network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP