[go: up one dir, main page]

WO2018142036A1 - Source de plasma - Google Patents

Source de plasma Download PDF

Info

Publication number
WO2018142036A1
WO2018142036A1 PCT/FR2017/053798 FR2017053798W WO2018142036A1 WO 2018142036 A1 WO2018142036 A1 WO 2018142036A1 FR 2017053798 W FR2017053798 W FR 2017053798W WO 2018142036 A1 WO2018142036 A1 WO 2018142036A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
diameter
plasma
plasma source
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/FR2017/053798
Other languages
English (en)
Inventor
Pascal Sortais
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polygon Physics SAS
Original Assignee
Polygon Physics SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polygon Physics SAS filed Critical Polygon Physics SAS
Priority to DK17832280.6T priority Critical patent/DK3578014T3/da
Priority to JP2019563692A priority patent/JP6847267B2/ja
Priority to EP17832280.6A priority patent/EP3578014B1/fr
Priority to KR1020197025109A priority patent/KR102526862B1/ko
Priority to US16/480,063 priority patent/US10798810B2/en
Priority to CN201780085783.XA priority patent/CN110383957B/zh
Priority to PL17832280T priority patent/PL3578014T3/pl
Publication of WO2018142036A1 publication Critical patent/WO2018142036A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/463Microwave discharges using antennas or applicators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0815Methods of ionisation
    • H01J2237/0817Microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes

Definitions

  • the present invention relates to a gaseous plasma source and more particularly to a source in which the plasma is obtained by interaction between a high-frequency electromagnetic radiation and a low-pressure gas.
  • FIG. 1 attached is Figure 1 of Japanese Patent Application Publication Number JPH09245658 describing a plasma source. Only certain elements of this figure will be described below. Reference can be made to the Japanese patent application for more complete explanations.
  • the plasma source represented in this figure comprises a plasma chamber 1, in which is disposed a quarter-wave antenna 6.
  • the antenna 6 is isolated from the chamber of the plasma chamber 1 at its base by an insulator 2
  • the free end of the antenna 6 is located opposite an electrode 8.
  • An inlet 4 allows the introduction of gas into the low pressure chamber of the chamber 1.
  • the antenna is excited by a high frequency electromagnetic field and a plasma 5 is formed in the chamber 1 at locations where the field electromagnetic is maximum, as indicated by a scatter plot.
  • Permanent magnets 3 are arranged around the chamber of the plasma chamber 1, so as to confine the plasma. Plasma charges may be extracted by an opening or extraction grid 14.
  • the antenna 6 is described as having a life of two to three hours, and this is attributed to the fact that the antenna 6 is subjected to spraying, same as the walls of the chamber 1. It is specified that it is therefore necessary to regularly change the antenna 6 and clean the plasma chamber 1. Accordingly, it is necessary to regularly remove the plasma source of the vacuum chamber in which it is used, which leads to relatively long maintenance and vacuum restoration operations.
  • an embodiment provides a plasma source comprising a quarter-wave antenna located in a cylindrical chamber provided with an opening opposite the end of the antenna, wherein: the diameter of the antenna is included between the third and the quarter of the internal diameter of the enclosure, the distance between the end of the antenna and the opening is between 2/3 and 5/3 of the diameter of the antenna.
  • the internal diameter of the enclosure is of the order of 10 mm.
  • the internal diameter of the chamber is 10 mm
  • the diameter of the antenna is between 2.5 and 3.3 mm
  • the distance between the end of the antenna and the opening is between 1.5 and 5.5 mm.
  • the opening is a circular opening with a diameter of between 1 ⁇ m and the internal diameter of the enclosure.
  • the opening is an extraction grid.
  • the excitation frequency of the antenna is 2.45 GHz.
  • One embodiment provides a large plasma source comprising an assembly of plasma sources, such as those previously described, arranged side by side.
  • Figure 1 described above, is a sectional view of a plasma source, and shows Figure 1 of the patent application JPH09245658;
  • FIGS. 2A to 2C show plasma chambers provided with antennas of different diameters
  • Figs. 3A and 3B are diagrams showing the average energy E radiated by the antenna in various areas as a function of the diameter d of the antenna.
  • Figure 4 is a schematic front view of an embodiment of a plasma source.
  • the same elements have been designated by the same references in the various figures. For the sake of clarity, only the elements useful for understanding the described embodiments have been shown and are detailed.
  • the plasma source elements surrounding the plasma chamber such as in particular a gas inlet, permanent magnets, high frequency signal connections and extraction electrodes are not shown.
  • the terms “approximately”, “substantially” and “of the order of” mean within 10%, preferably within 5%.
  • FIGS. 2A to 2C are sectional views of cylindrical plasma chambers 100, all identical, in which quarter-wave antennas 102 of different diameters are disposed.
  • a quarter-wave antenna is here understood to mean an antenna whose length is approximately equal to a quarter of the wavelength of the excitation signal of this antenna.
  • the antennas of FIGS. 2A, 2B and 2C have respective diameters of 1, 3 and 6 mm.
  • Each plasma chamber 100 includes an opening or extraction grid 104 through which plasma ions can be extracted.
  • a surface 105 defines a plasma formation zone.
  • This plasma formation zone corresponds to the area surrounding the antenna in which the electromagnetic field has a high enough value to allow plasma formation. This value may for example be of the order of 10 ⁇ V / m.
  • the inventors consider a first region 106 in each plasma formation zone. This region 106 is located on the side of the opening or extraction grid 104.
  • the region 106 called here useful region, contains a plasma that will be called the useful plasma, that is to say the plasma from from which ions can be extracted to form an ion source.
  • This region 108 is located around the antenna 102 over at least a part of its length.
  • the region 108 called here useless region, contains a plasma which will be called the useless plasma.
  • the useless plasma can not be extracted from the plasma source, thus has no useful role but proves to be the cause of the degradation of the antenna 102 described in the patent application JPH09245658.
  • the inventors have therefore sought to maximize the useful plasma volume while reducing the unnecessary plasma volume. For this, the inventors have studied the incidence of the diameter of the antenna 102 of a plasma chamber 100 on these plasma regions useful and useless.
  • plasma chambers 100 with an internal diameter of 10 mm are considered as examples.
  • the antenna 102 has a diameter of 1 mm. This corresponds to the dimensions of the antenna and the plasma chamber illustrated in the aforementioned Japanese patent application.
  • the antenna 102 has a diameter of 3 mm.
  • the unnecessary region 108 has a smaller volume than in the case of Figure 2A, resulting in reduced degradation.
  • the useful region 106 retains a similar volume.
  • the antenna 102 has a diameter of 6 mm.
  • the useless region 108 has a still smaller volume. However, the volume of the useful region 106 is also reduced.
  • FIGS. 3A and 3B are diagrams respectively representing the energy E stored in the useful region 106 and in the useless region 108, as a function of the diameter d of the antenna 102, for the same radiated power with an intensity of 5 W at a frequency of 2.45 GHz.
  • the energy E stored in the useful region 106 for diameters d of the antenna 102 between 1 and 3 mm, is approximately constant, and close to ⁇ . ⁇ - !! J. It is also noted that, for diameters of between 3 and 6 mm, the energy E stored in the useful region 106 decreases sharply until it reaches a value substantially half, close to 3.10%. for a diameter d of the antenna 102 of 6 mm.
  • an increase in the diameter of the antenna causes a decrease in the volume of the useless region 108, i.e. a decrease in the amount of unnecessary plasma capable of damaging the antenna 102.
  • the useful region 106 contains a substantially constant amount of plasma useful for antenna diameters 102 approximately between 1 and 3 mm.
  • An advantageous diameter of the antenna 102 is therefore a diameter which makes it possible to keep a useful region volume 106 as large as possible while reducing as much as possible the volume of the useless region 108.
  • a diameter of the advantageous antenna is about 3 mm, for example between 2.5 and 3.3 mm, for an internal diameter of the plasma chamber 100 of 10 mm. This corresponds to a diameter of the antenna of a plasma source between a quarter and a third of the internal diameter of the plasma chamber.
  • FIG. 4 is a schematic sectional view of an embodiment of a plasma chamber 200.
  • the plasma chamber 200 comprises a cylindrical enclosure 202.
  • a quarter-wave antenna 204 is disposed in the enclosure 202.
  • the The base of the antenna 204 is isolated from the enclosure by an insulator 206.
  • the enclosure 202 comprises an opening 208 facing the end of the antenna 204.
  • the opening 208 is, in this example, a circular opening .
  • the opening 208 may also be an extraction grid.
  • the internal diameter d ] _ of the enclosure is in this example of 10 mm.
  • an optimum value of the diameter d of the antenna 204 is between a quarter and a third of the internal diameter d ] _ of the enclosure, that is to say approximately between 2.5 and 3.3 mm.
  • the distance 1 between the end of the antenna 204 and the opening 208 has a value for example between 2/3 and 5/3 of the diameter of the antenna 204, that is to say between here 1 , 5 and 5.5 mm.
  • the diameter d2 of the opening 208 in the example of FIG. 4 has a diameter approximately equal to the diameter d of the antenna 208, for example between 4/5 and 6/5 of the diameter d of the antenna 204.
  • the inner diameter d] _ from the plasma chamber is described herein as having a value of 10 mm. This diameter can be chosen differently.
  • the diameter of the opening 208 may vary between 1 ⁇ m and the internal diameter d ] _ of the enclosure.
  • Such plasma sources can be associated with each other to form an extended plasma source.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma Technology (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

L'invention concerne une source de plasma comprenant une antenne (204) quart d'onde située dans une enceinte cylindrique (202) munie d'une ouverture (208) en face de l'extrémité de l'antenne (204), dans laquelle : le diamètre (d) de l'antenne (204) est compris entre le tiers et le quart du diamètre (d) interne de l'enceinte (202), la distance (l) entre l'extrémité de l'antenne (204) et l'ouverture (208) est comprise entre 2/3 et 5/3 du diamètre (d) de l'antenne (204).

Description

SOURCE DE PLASMA.
La présente demande de brevet revendique la priorité de la demande de brevet français FR17/50978 qui sera considérée comme faisant partie intégrante de la présente description.
Domaine
La présente invention concerne une source de plasma gazeux et plus particulièrement une source dans laquelle le plasma est obtenu par interaction entre un rayonnement électromagnétique haute fréquence et un gaz à basse pression.
Exposé de 1 ' art antérieur
Il est connu qu'en appliquant un rayonnement électro¬ magnétique à un gaz à basse pression, ce gaz est susceptible de s'ioniser et de former un plasma dans une zone où le champ élec¬ tromagnétique haute fréquence présente une intensité suffisante.
La figure 1 ci-joint reprend la figure 1 de la demande de brevet japonais de numéro de publication JPH09245658 décrivant une source de plasma. Seuls certains éléments de cette figure seront décrits ci-après. On pourra se référer à la demande de brevet japonais pour des explications plus complètes. La source de plasma représentée dans cette figure comprend une chambre à plasma 1, dans laquelle est disposée une antenne quart d'onde 6. L'antenne 6 est isolée de l'enceinte de la chambre à plasma 1 à sa base par un isolant 2. L'extrémité libre de l'antenne 6 est située en regard d'une électrode perforée 8. Une entrée 4 permet 1 ' introduction de gaz dans 1 ' enceinte à basse pression de la chambre 1. L'antenne est excitée par un champ électromagnétique haute fréquence et un plasma 5 se forme dans la chambre 1 aux emplacements où le champ électromagnétique est maximum, comme cela est indiqué par un nuage de points. Des aimants permanents 3 sont disposés autour de l'enceinte de la chambre à plasma 1, de manière à confiner le plasma. Des charges du plasma sont susceptibles d'être extraites par une ouverture ou grille d'extraction 14.
Dans le paragraphe [0020] de la demande de brevet japonais JPH09245658, l'antenne 6 est décrite comme ayant une durée de vie de deux à trois heures, et ceci est attribué au fait que l'antenne 6 est soumise à une pulvérisation, de même que les parois de la chambre 1. Il est précisé qu'il est donc nécessaire de changer régulièrement 1 ' antenne 6 et de nettoyer la chambre à plasma 1. En conséquence, il est nécessaire de sortir régulièrement la source de plasma de l'enceinte à vide dans laquelle elle est utilisée, ce qui entraine des opérations relativement longues de maintenance et de restauration du vide.
Il serait souhaitable d'avoir une source de plasma ayant une durée de vie supérieure à celle décrite dans la demande de brevet JPH09245658.
Résumé
Ainsi, un mode de réalisation prévoit une source de plasma comprenant une antenne quart d'onde située dans une enceinte cylindrique munie d'une ouverture en face de l'extrémité de l'antenne, dans laquelle : le diamètre de l'antenne est compris entre le tiers et le quart du diamètre interne de l'enceinte, la distance entre l'extrémité de l'antenne et l'ouverture est comprise entre 2/3 et 5/3 du diamètre de l'antenne.
Selon un mode de réalisation, le diamètre interne de l'enceinte est de l'ordre de 10 mm.
Selon un mode de réalisation, le diamètre interne de l'enceinte est de 10 mm, le diamètre de l'antenne est compris entre 2,5 et 3,3 mm, et la distance entre l'extrémité de l'antenne et l'ouverture est comprise entre 1,5 et 5,5 mm. Selon un mode de réalisation, dans laquelle l'ouverture est une ouverture circulaire de diamètre compris entre 1 ym et le diamètre interne de l'enceinte.
Selon un mode de réalisation, l'ouverture est une grille d'extraction.
Selon un mode de réalisation, la fréquence d'excitation de l'antenne est 2,45 GHz.
Un mode de réalisation prévoit une source de plasma de grande étendue comprenant un assemblage de sources de plasma, telles que celles décrites précédemment, disposées côte à côte. Brève description des dessins
Ces caractéristiques et avantages, ainsi que d'autres, seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non limitatif en relation avec les figures jointes parmi lesquelles :
la figure 1, décrite précédemment, est une vue en coupe d'une source de plasma, et reprend la figure 1 de la demande de brevet JPH09245658 ;
les figures 2A à 2C représentent des chambres à plasma munies d'antennes de différents diamètres ;
les figures 3A et 3B sont des diagrammes représentant l'énergie moyenne E rayonnée par l'antenne dans diverses zones en fonction du diamètre d de 1 ' antenne ; et
la figure 4 est une vue de face schématique d'un mode de réalisation d'une source de plasma.
Description détaillée
De mêmes éléments ont été désignés par de mêmes références dans les différentes figures. Par souci de clarté, seuls les éléments utiles à la compréhension des modes de réalisation décrits ont été représentés et sont détaillés. En particulier, les éléments de source à plasma entourant la chambre à plasma, tels que notamment une entrée de gaz, des aimants permanents, des connexions de signaux hautes fréquences et des électrodes d'extraction ne sont pas représentés. Sauf précision contraire, les expressions "approximativement", "sensiblement" et "de l'ordre de" signifient à 10 % près, de préférence à 5 % près.
Les figures 2A à 2C sont des vues en coupe de chambres à plasma 100 cylindriques, toutes identiques, dans lesquelles sont disposées des antennes quart d'onde 102 de diamètres différents. On entend ici par antenne quart d'onde une antenne dont la longueur est approximativement égale au quart de la longueur d'onde du signal d'excitation de cette antenne. Les antennes des figures 2A, 2B et 2C ont des diamètres respectifs de 1, 3 et 6 mm. Chaque chambre à plasma 100 comprend une ouverture ou grille d'extraction 104 à travers laquelle des ions du plasma peuvent être extraits.
Dans chaque chambre 100, une surface 105 délimite une zone de formation de plasma. Cette zone de formation de plasma correspond à la zone entourant l'antenne dans laquelle le champ électromagnétique a une valeur suffisamment élevée pour permettre la formation du plasma. Cette valeur peut par exemple être de l'ordre de 10^ V/m.
Les inventeurs considèrent une première région 106 dans chaque zone de formation de plasma. Cette région 106 est située du côté de l'ouverture ou grille d'extraction 104. La région 106, appelée ici région utile, contient un plasma que l'on appellera le plasma utile, c'est-à-dire le plasma à partir duquel on peut extraire des ions pour former une source d'ion.
Les inventeurs considèrent, de plus, une seconde région
108 dans chaque zone de formation de plasma. Cette région 108 est située autour de l'antenne 102 sur au moins une partie de sa longueur. La région 108, appelée ici région inutile, contient un plasma que l'on appellera le plasma inutile. Le plasma inutile ne peut être extrait de la source de plasma, n'a donc pas de rôle utile mais s'avère être la cause de la dégradation de l'antenne 102 décrite dans la demande de brevet JPH09245658.
Les inventeurs ont donc cherché à maximiser le volume de plasma utile tout en réduisant le volume de plasma inutile. Pour cela les inventeurs ont étudié l'incidence du diamètre de l'antenne 102 d'une chambre à plasma 100 sur ces régions de plasma utile et inutile.
Dans les figures 2A à 2C, ainsi que dans les figures suivantes, on considère à titre d'exemple des chambres à plasma 100 d'un diamètre interne égal à 10 mm.
En figure 2A, l'antenne 102 a un diamètre de 1 mm. Ceci correspond aux dimensions de l'antenne et de la chambre à plasma illustrées dans la demande de brevet japonais susmentionnée.
En figure 2B, l'antenne 102 a un diamètre de 3 mm. La région inutile 108 a un volume moins important que dans le cas de la figure 2A, ce qui entraine une dégradation réduite. La région utile 106 conserve par contre un volume similaire.
En figure 2C, l'antenne 102 a un diamètre de 6 mm. La région inutile 108 a un volume encore réduit. Cependant, le volume de la région utile 106 est également réduit.
Les figures 3A et 3B sont des diagrammes représentant respectivement l'énergie E stockée dans la région utile 106 et dans la région inutile 108, en fonction du diamètre d de l'antenne 102, pour une même puissance rayonnée d'une intensité de 5 W à une fréquence de 2,45 GHz.
En figure 3A, on remarque que l'énergie E stockée dans la région utile 106, pour des diamètres d de l'antenne 102 compris entre 1 et 3 mm, est approximativement constante, et voisine de δ.ΙΟ-!! J. On remarque aussi que, pour des diamètres d compris entre 3 et 6 mm, l'énergie E stockée dans la région utile 106 décroit nettement jusqu'à atteindre une valeur sensiblement moitié, voisine de 3.10--'--'- J pour un diamètre d de l'antenne 102 de 6 mm.
En figure 3B, on remarque que l'énergie E stockée dans la région inutile 108 décroit d'un facteur sensiblement égal à 3, de 2.10~ j à 6,4.10" 10 quand le diamètre de l'antenne 102 augmente de 1 à 6 mm.
Comme le montre la figure 3B, une augmentation du diamètre de l'antenne provoque une diminution du volume de la région inutile 108, c'est-à-dire une diminution de la quantité de plasma inutile susceptible de détériorer l'antenne 102. De plus, comme le montre la figure 3A, la région utile 106 contient une quantité sensiblement constante de plasma utile pour des diamètres de l'antenne 102 approximativement compris entre 1 et 3 mm.
Un diamètre avantageux de l'antenne 102 est donc un diamètre qui permet de conserver un volume de région utile 106 aussi grand que possible tout en réduisant le plus possible le volume de la région inutile 108.
Les inventeurs ont donc déterminé qu'un diamètre de l'antenne avantageux est d'environ 3 mm, par exemple compris entre 2,5 et 3,3 mm, pour un diamètre interne de la chambre à plasma 100 de 10 mm. Cela correspond à un diamètre de l'antenne d'une source de plasma compris entre un quart et un tiers du diamètre interne de la chambre à plasma.
La figure 4 est une vue en coupe schématique d'un mode de réalisation d'une chambre à plasma 200. La chambre à plasma 200 comprend une enceinte cylindrique 202. Une antenne quart d'onde 204 est disposée dans l'enceinte 202. La base de l'antenne 204 est isolée de l'enceinte par un isolant 206. L'enceinte 202 comprend une ouverture 208 en face de l'extrémité de l'antenne 204. L'ouverture 208 est, dans cet exemple, une ouverture circulaire. L'ouverture 208 peut aussi être une grille d'extraction. Le diamètre interne d]_ de l'enceinte est dans cet exemple de 10 mm. Comme déterminé précédemment, une valeur optimale du diamètre d de l'antenne 204 est comprise entre un quart et un tiers du diamètre interne d]_ de l'enceinte, c'est-à- dire approximativement entre 2,5 et 3,3 mm. La distance 1 entre l'extrémité de l'antenne 204 et l'ouverture 208 a une valeur par exemple comprise entre 2/3 et 5/3 du diamètre de l'antenne 204, c'est-à-dire comprise ici entre 1,5 et 5,5 mm. De même, le diamètre d2 de l'ouverture 208 dans l'exemple de la figure 4, a un diamètre approximativement égal au diamètre d de l'antenne 208, par exemple compris entre 4/5 et 6/5 du diamètre d de l'antenne 204.
Des modes de réalisation particuliers ont été décrits. Diverses variantes et modifications apparaîtront à l'homme de l'art. En particulier, le diamètre interne d]_ de la chambre à plasma est décrit ici comme ayant une valeur de 10 mm. Ce diamètre peut être choisi différemment.
De plus, le diamètre de l'ouverture 208 peut varier entre 1 ym et le diamètre interne d]_ de l'enceinte.
De telles sources de plasma peuvent être associées entre elles pour former une source de plasma étendue.

Claims

REVENDICATIONS
1. Source de plasma comprenant une antenne (204) quart d'onde située dans une enceinte cylindrique (202) munie d'une ouverture (208) en face de l'extrémité de l'antenne (204), dans laquelle :
le diamètre (d) de l'antenne (204) est compris entre le tiers et le quart du diamètre (d]_) interne de l'enceinte (202), la distance (1) entre l'extrémité de l'antenne (204) et l'ouverture (208) est comprise entre 2/3 et 5/3 du diamètre (d) de l'antenne (204).
2. Source de plasma selon la revendication 1, dans laquelle le diamètre (d]_) interne de l'enceinte (202) est de l'ordre de 10 mm.
3. Source de plasma selon la revendication 2, dans laquelle le diamètre (d]_) interne de l'enceinte (202) est de 10 mm, le diamètre (d) de l'antenne (204) est compris entre 2,5 et 3,3 mm, et la distance (1) entre l'extrémité de l'antenne (204) et l'ouverture (208) est comprise entre 1,5 et 5,5 mm.
4. Source de plasma selon l'une quelconque des revendications 1 à 3, dans laquelle l'ouverture (208) est une ouverture circulaire de diamètre compris entre 1 ym et le diamètre (d]_) interne de l'enceinte (202).
5. Source de plasma selon l'une quelconque des revendications 1 à 3, dans laquelle l'ouverture (208) est une grille d'extraction.
6. Source de plasma selon l'une quelconque des revendications 1 à 5, dans laquelle la fréquence d'excitation de l'antenne est 2,45 GHz.
7. Source de plasma de grande étendue comprenant un assemblage de sources de plasma selon l'une quelconque des revendications 1 à 6 disposées côte à côte.
PCT/FR2017/053798 2017-02-06 2017-12-21 Source de plasma Ceased WO2018142036A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DK17832280.6T DK3578014T3 (da) 2017-02-06 2017-12-21 Plasmakilde
JP2019563692A JP6847267B2 (ja) 2017-02-06 2017-12-21 プラズマ源
EP17832280.6A EP3578014B1 (fr) 2017-02-06 2017-12-21 Source de plasma
KR1020197025109A KR102526862B1 (ko) 2017-02-06 2017-12-21 플라즈마 소스
US16/480,063 US10798810B2 (en) 2017-02-06 2017-12-21 Plasma source
CN201780085783.XA CN110383957B (zh) 2017-02-06 2017-12-21 等离子体源
PL17832280T PL3578014T3 (pl) 2017-02-06 2017-12-21 Źródło plazmy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1750978A FR3062770B1 (fr) 2017-02-06 2017-02-06 Source de plasma
FR1750978 2017-02-06

Publications (1)

Publication Number Publication Date
WO2018142036A1 true WO2018142036A1 (fr) 2018-08-09

Family

ID=58547698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/053798 Ceased WO2018142036A1 (fr) 2017-02-06 2017-12-21 Source de plasma

Country Status (9)

Country Link
US (1) US10798810B2 (fr)
EP (1) EP3578014B1 (fr)
JP (1) JP6847267B2 (fr)
KR (1) KR102526862B1 (fr)
CN (1) CN110383957B (fr)
DK (1) DK3578014T3 (fr)
FR (1) FR3062770B1 (fr)
PL (1) PL3578014T3 (fr)
WO (1) WO2018142036A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3136104A1 (fr) 2022-05-30 2023-12-01 Polygon Physics Dispositif à faisceau d’électrons pour le traitement d’une surface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2480552A1 (fr) * 1980-04-10 1981-10-16 Anvar Generateur de plasmaŸ
US5361737A (en) * 1992-09-30 1994-11-08 West Virginia University Radio frequency coaxial cavity resonator as an ignition source and associated method
JPH09245658A (ja) 1996-03-12 1997-09-19 Nissin Electric Co Ltd 永久磁石によるecr共鳴を利用するプラズマ生成機構
WO1998035379A1 (fr) * 1997-01-23 1998-08-13 The Regents Of The University Of California Jet de plasma a pression atmospherique

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3023055A1 (de) * 1979-07-12 1981-02-05 Emi Ltd Antenne
US7103460B1 (en) * 1994-05-09 2006-09-05 Automotive Technologies International, Inc. System and method for vehicle diagnostics
US20070095823A1 (en) * 2005-10-27 2007-05-03 Sedlmayr Steven R Microwave nucleon-electron-bonding spin alignment and alteration of materials
CN100388559C (zh) * 2005-12-29 2008-05-14 上海交通大学 自重构等离子体天线
PT2599506T (pt) * 2007-11-06 2018-10-22 Creo Medical Ltd Aplicador para sistema de esterilização por plasma de micro-ondas
KR101012345B1 (ko) * 2008-08-26 2011-02-09 포항공과대학교 산학협력단 저 전력 휴대용 마이크로파 플라즈마 발생기
FR2937494B1 (fr) * 2008-10-17 2012-12-07 Centre Nat Rech Scient Source de plasma gazeux basse puissance
US20110248002A1 (en) * 2010-04-13 2011-10-13 General Electric Company Plasma generation apparatus
EP2928011B1 (fr) * 2014-04-02 2020-02-12 Andrew Wireless Systems GmbH Résonateur à cavité micro-ondes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2480552A1 (fr) * 1980-04-10 1981-10-16 Anvar Generateur de plasmaŸ
US5361737A (en) * 1992-09-30 1994-11-08 West Virginia University Radio frequency coaxial cavity resonator as an ignition source and associated method
JPH09245658A (ja) 1996-03-12 1997-09-19 Nissin Electric Co Ltd 永久磁石によるecr共鳴を利用するプラズマ生成機構
WO1998035379A1 (fr) * 1997-01-23 1998-08-13 The Regents Of The University Of California Jet de plasma a pression atmospherique

Also Published As

Publication number Publication date
FR3062770A1 (fr) 2018-08-10
CN110383957B (zh) 2021-09-17
EP3578014B1 (fr) 2020-10-28
KR102526862B1 (ko) 2023-04-27
DK3578014T3 (da) 2020-11-30
JP2020506526A (ja) 2020-02-27
PL3578014T3 (pl) 2021-05-31
CN110383957A (zh) 2019-10-25
KR20190109749A (ko) 2019-09-26
FR3062770B1 (fr) 2019-03-29
JP6847267B2 (ja) 2021-03-24
EP3578014A1 (fr) 2019-12-11
US20190394866A1 (en) 2019-12-26
US10798810B2 (en) 2020-10-06

Similar Documents

Publication Publication Date Title
EP2353347B1 (fr) Dispositif et procede de production et/ou de confinement d'un plasma
EP2617051A1 (fr) Dispositif multiplicateur d'électrons a couche de nanodiamant
WO2009027156A1 (fr) Systeme d'analyse de gaz a basse pression par spectroscopie d'emission optique
FR3025658A1 (fr) Antenne a diagramme de rayonnement mecaniquement reconfigurable
FR2856525A1 (fr) Alimentation pour une antenne a reflecteur.
EP3578014B1 (fr) Source de plasma
EP2338318B1 (fr) Source de plasma gazeux basse puissance
WO2006090037A1 (fr) Excitateurs de plasmas micro-ondes
EP2567431B1 (fr) Cavité laser à extraction centrale par polarisation pour couplage cohérent de faisceaux intracavité intenses
EP0669461B1 (fr) Système d'optique ionique à trois grilles
EP2873307A1 (fr) Applicateur d'onde de surface pour la production de plasma
FR2706078A1 (fr) Tube à faisceau d'électrons.
EP2873090B1 (fr) Lampe a decharge luminescente
EP2227819A1 (fr) Source puisée d'électrons, procédé d'alimentation électrique pour source puisée d'électrons et procédé de commande d'une source puisée d'électrons
EP0048690A1 (fr) Tube à gaz à décharge pour émission laser de puissance à très haute stabilité
FR2544951A1 (fr) Haut-parleur a effet corona, avec moyens permettant d'obtenir une forte diminution d'ozone, a l'exterieur de celui-ci
EP3136418A1 (fr) Dispositif generateur d'ions a resonance cyclotronique electronique
BE1004442A3 (fr) Installation de pulverisation cathodique a taux eleve.
FR3136104A1 (fr) Dispositif à faisceau d’électrons pour le traitement d’une surface
FR2985366A1 (fr) Generateur d'ondes hyperfrequences et procede de generation d'une onde hyperfrequence associe
WO2018189189A1 (fr) Source de lumiere ultraviolette
EP4111831A1 (fr) Applicateur d'onde haute fréquence, coupleur et dispositif associés pour la production d'un plasma
EP0611482B1 (fr) Systeme d'optique ionique pour source d'ions a decharge dans un gaz
FR3114442A1 (fr) Procédé de fabrication d’une cellule photovoltaïque à contacts passivés
FR2542104A1 (fr) Procede et dispositif de creation d'impulsions lumineuses breves

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17832280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019563692

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197025109

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017832280

Country of ref document: EP