[go: up one dir, main page]

WO2018142814A1 - Cold-storing receptacle and air-cooling device provided with same - Google Patents

Cold-storing receptacle and air-cooling device provided with same Download PDF

Info

Publication number
WO2018142814A1
WO2018142814A1 PCT/JP2017/046458 JP2017046458W WO2018142814A1 WO 2018142814 A1 WO2018142814 A1 WO 2018142814A1 JP 2017046458 W JP2017046458 W JP 2017046458W WO 2018142814 A1 WO2018142814 A1 WO 2018142814A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold storage
main body
storage container
fin
container according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2017/046458
Other languages
French (fr)
Japanese (ja)
Inventor
敬太 森本
浜田 浩
淳 安部井
山本 敏博
壽久 内藤
章太 茶谷
亜弥 飯村
邦枝 中江
聡也 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017208125A external-priority patent/JP2018124048A/en
Application filed by Denso Corp filed Critical Denso Corp
Publication of WO2018142814A1 publication Critical patent/WO2018142814A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present disclosure relates to a cold storage container stored in an air cooling device and an air cooling device including the cold storage container.
  • the said cool air cooler has stored what frozen the drink container which contained the drink inside the container main body formed in the cylinder shape.
  • a fan device for sending air inside the container body to the outside is provided at the upper part of the container body.
  • An air inlet for taking outside air into the container body is formed on the lower wall surface of the container body.
  • a beverage container containing a beverage is used as a “cold storage container” stored in the air cooling apparatus.
  • beverages in beverage containers are used as “cold storage materials”.
  • the beverage container is not originally designed as a cold storage container for the air cooling device, the heat transfer performance inside and outside through the wall surface is not high. For this reason, in an air cooling device using a beverage container as a cold storage container, there is a possibility that air cooling performance cannot be sufficiently exhibited.
  • the present disclosure is intended to provide a cold storage container that can enhance the cooling performance of air and an air cooling device including the cold storage container.
  • a cold storage container is a cold storage container stored in an air cooling device, and a main body portion in which a cold storage space for accommodating a cold storage material is formed, and between an inner side and an outer side of the main body portion.
  • a heat transfer promotion unit that promotes heat transfer.
  • heat transfer between the inside and the outside of the main body is promoted by the heat transfer promoting portion.
  • a heat transfer promotion part the fin formed in the inner surface and outer surface of a cool storage container is mentioned, for example.
  • heat can be efficiently taken from surrounding air by providing such a heat-transfer promotion part. That is, the air cooling performance can be enhanced by the heat transfer promoting portion.
  • a cold storage container that can enhance the cooling performance of air, and an air cooling device including the cold storage container.
  • FIG. 1 is a diagram illustrating a configuration of a cold storage container according to the first embodiment and an air cooling device including the cold storage container.
  • FIG. 2 is an exploded view showing the configuration of the cold storage container of FIG. 3 is a top view of the cold storage container of FIG. 4 is a cross-sectional view of the cold storage container of FIG.
  • FIG. 5 is a diagram schematically illustrating how the regenerator material solidifies inside the regenerator container of FIG. 1.
  • FIG. 6 is a diagram for explaining the influence of the external fins on the cooling performance.
  • FIG. 7 is a diagram for explaining the influence of the external fins on the temperature of the blown air.
  • FIG. 8 is an exploded view illustrating the configuration of the cold storage container according to the second embodiment.
  • FIG. 9 is an exploded view showing the configuration of the cold storage container according to the third embodiment.
  • FIG. 10 is a cross-sectional view of the cold storage container according to the fourth embodiment.
  • FIG. 11 is a cross-sectional view of a cold storage container according to the fifth embodiment.
  • FIG. 12 is a cross-sectional view of the cold storage container according to the sixth embodiment.
  • FIG. 13 is a cross-sectional view of the cold storage container according to the seventh embodiment.
  • FIG. 14 is a cross-sectional view of the cold storage container according to the eighth embodiment.
  • FIG. 15 is a cross-sectional view of a cold storage container according to the ninth embodiment.
  • FIG. 16 is a cross-sectional view of the cold storage container according to the tenth embodiment.
  • FIG. 17 is a diagram illustrating an internal configuration of the cold storage container according to the eleventh embodiment.
  • FIG. 18 is a diagram schematically illustrating how the regenerator material solidifies inside the regenerator container according to the comparative example.
  • the cold storage container 100 is a container that stores the cold storage material HM therein, and is configured as a container to be stored in the air cooling device 10. Prior to the description of the cold storage container 100, the configuration of the air cooling device 10 will be described first. As shown in FIG. 1, the air cooling device 10 includes a casing 210 and an upper lid 220.
  • Casing 210 is a container formed of resin.
  • the casing 210 has a generally cylindrical shape, and is formed as a bottomed container having an open top.
  • a space 201 is formed inside the casing 210.
  • a cold storage container 100 described later is stored in the space 201.
  • a cylindrical blowing portion 212 that protrudes outward is formed on the lower portion of the outer surface of the casing 210.
  • the central axis of the blowing part 212 is perpendicular to the central axis of the casing 210.
  • An opening 213 is formed at the tip of the blowing portion 212.
  • the external space communicates with the space 201 through the opening 213.
  • the blowing part 212 is a part serving as an outlet for blowing out the cooled air to the outside.
  • a male screw 211 is formed in the vicinity of the upper end of the outer wall surface of the casing 210.
  • a female screw 221 formed on an upper lid 220 which will be described below, is screwed into the male screw 211, whereby the casing 210 and the upper lid 220 are connected to each other.
  • the upper lid 220 is a resin member provided so as to cover the opening formed in the upper part of the casing 210.
  • the upper lid 220 has a substantially cylindrical shape, and its lower side is opened.
  • the female screw 221 already described is formed in the vicinity of the lower end portion of the inner wall surface of the upper lid 220.
  • the upper lid 220 is connected to the casing 210 by a female screw 221 with the central axis thereof aligned with the central axis of the casing 210.
  • an introduction port 222 is formed in the upper part of the upper lid 220.
  • the external space communicates with the space 201 through the introduction port 222.
  • the inlet 222 is a portion that serves as an inlet for introducing outside air into the space 201.
  • An electric fan 223 is attached inside the upper lid 220.
  • the electric fan 223 is a blower for sending outside air from the introduction port 222 into the space 201.
  • a switch not shown
  • the electric fan 223 is driven, and air is sent from the introduction port 222 into the space 201.
  • the air flows downward in the space 201, that is, along the outer wall surface 118 (outer peripheral surface) of the cold storage container 100, and then blows out from the opening 213 of the blowing portion 212 to the outside.
  • a solidified low temperature cold storage material HM is accommodated as will be described later. Since the surface of the cold storage container 100 has a low temperature, the air flowing as described above is cooled when flowing along the outer wall surface 118 of the cold storage container 100, and the temperature is lowered. Thereby, low temperature air is blown out from the blowing unit 212.
  • the electric fan 223 is disposed at a position above the cold storage container 100. For this reason, the situation where the dew condensation water produced on the surface of the cool storage container 100 etc. dripped at the electric fan 223 and the electric fan 223 breaks down is prevented. Further, since the air passing through the electric fan 223 is room temperature air before being cooled, it is possible to prevent dew condensation in the electric fan 223.
  • the configuration of the cold storage container 100 will be described with reference to FIGS.
  • the cold storage container 100 includes a main body 110, internal fins 114, external fins 112, an upper lid 120, and a cap 130. These are all made of aluminum.
  • the shape of the main body 110 is a cylindrical shape, specifically a substantially cylindrical shape.
  • the main body 110 is formed as a bottomed container whose upper part is opened.
  • the main body 110 is installed inside the casing 210 (that is, the space 201) with the central axis AX aligned with the central axis of the casing 210.
  • a cold storage space SP is formed inside the main body 110.
  • the cold storage space SP is a space for accommodating the cold storage material HM (not shown in FIG. 2 and the like, see FIG. 5).
  • water is used as the cold storage material HM.
  • the internal fins 114 are a plurality of plate-shaped (flat plate) members provided on the inner side (inner peripheral side) of the main body 110. Each internal fin 114 is formed so as to extend from the inner wall surface 119 (inner peripheral surface) of the main body 110 toward the inside of the cold storage space SP (specifically, the central axis AX).
  • FIG. 4 is a cross-sectional view of the main body 110 cut along a plane perpendicular to the central axis AX. As shown in the figure, a plurality of internal fins 114 are provided inside the main body 110, and each of them is parallel to the central axis AX of the main body 110. Each of the internal fins 114 is formed so as to be arranged in a plurality along the circumferential direction of the main body (direction rotating around the central axis AX).
  • the internal fins 114 are connected to each other at the position of the central axis AX.
  • the internal fins 114 may not extend to the position of the central axis AX but may be separated from each other.
  • heat transfer between the inner side and the outer side of the main body 110 is promoted by providing such internal fins 114 on the inner side of the main body 110.
  • the internal fin 114 corresponds to one of the “heat transfer promoting portions” in the present embodiment.
  • the external fin 112 is a plurality of plate-like (flat plate-like) members provided on the outer side (outer peripheral side) of the main body 110. Each external fin 112 is formed so as to extend outward from the outer wall surface 118 of the main body 110. As shown in FIG. 4, a plurality of external fins 112 are provided outside the main body 110, and each of them is parallel to the central axis AX of the main body 110. As in the case of the internal fins 114, each external fin 112 is formed so as to be arranged in a plurality along the circumferential direction of the main body.
  • the contact area with the air flowing downward along the outer wall surface 118 of the cold storage container 100 is increased.
  • the external fin 112 efficiently exchanges heat between the air and the cold storage material HM. That is, the air cooling performance of the air cooling device 10 is enhanced by the external fins 112.
  • the heat transfer between the inner side and the outer side of the main body 110 is further promoted by providing such external fins 112 on the outer side of the main body 110.
  • the external fin 112 corresponds to one of the “heat transfer promoting portions” in the present embodiment, together with the internal fin 114 described above.
  • all the internal fins 114 and the external fins 112 are all formed integrally with the main body 110.
  • Such a main body 110 can be formed, for example, by extrusion molding of aluminum. In such a configuration, both the thermal resistance between the internal fins 114 and the main body 110 and the thermal resistance between the external fins 112 and the main body 110 are reduced, so the regenerator HM and the air Can be efficiently exchanged.
  • the upper lid part 120 is a member provided so as to cover the opening formed in the upper part of the main body part 110.
  • the upper lid portion 120 has a shape that is reduced in diameter toward the upper side, and the diameter of the opening 121 formed at the upper end thereof is smaller than the diameter of the opening 123 formed at the lower end thereof.
  • a female screw (not shown) is formed in the vicinity of the opening 123 in the inner wall surface of the upper lid portion 120.
  • a male screw 111 is formed in the vicinity of the upper end portion of the outer wall surface 118 of the main body 110.
  • the female screw 111 is screwed with the female screw of the upper lid portion 120, whereby the upper lid portion 120 and the main body portion 110 are connected to each other.
  • the cap 130 is a member provided to cover the opening 121 of the upper lid 120 from above and prevent the cold storage material HM from leaking out of the cold storage space SP.
  • the cap 130 is formed as a cylindrical member whose upper part is closed and whose lower part is opened.
  • a female screw (not shown) is formed in the vicinity of the lower end portion of the inner wall surface of the cap 130.
  • a male screw 122 is formed in the vicinity of the opening 121 in the outer wall surface of the upper lid portion 120. The female screw 122 of the cap 130 is screwed into the male screw 122, whereby the cap 130 and the upper lid part 120 are connected to each other.
  • the user can remove the cap 130 from the upper lid 120 by rotating the cap 130 around the central axis AX.
  • the cold storage material HM can be supplied to the cold storage space SP through the opening 121, or the cold storage material HM can be discharged from the cold storage space SP through the opening 121.
  • the opening 121 and the cap 130 covering this correspond to the “supply / discharge section” in the present embodiment.
  • the user In the state shown in FIG. 1, when the user takes out the cool storage container 100 from the casing 210, the user first removes the upper lid 220 from the casing 210, and then holds the cap 130 in the cool storage container 100 and moves upward. Pull up.
  • the diameter D ⁇ b> 1 of the cap 130 is smaller than the diameter D ⁇ b> 2 of the main body 110.
  • the shape of the cap 130 when viewed along the central axis AX is smaller than the shape of the main body 110 when viewed along the central axis AX. For this reason, it is relatively easy for the user to grip and pull the cap 130 up.
  • the cap 130 that is a portion to be gripped by the user corresponds to the “grip portion” in the present embodiment.
  • the diameter of the main body 110 is 65 mm, and the height from the lower end of the main body 110 to the upper end of the cap 130 (that is, the total length of the cold storage container 100) is 200 mm.
  • the shape of the cold storage container 100 is compatible with the shape of a beverage container that is commercially available as a 500 ml plastic bottle. For this reason, if it is an air cooling device of composition which uses a commercially available beverage container as a cold storage container, in many cases, cold storage container 100 concerning this embodiment can be used as a drink container.
  • FIG. 5A shows a cross section of the main body 110 immediately after the liquid-phase regenerator material HM (that is, water) is supplied to the regenerator space SP.
  • the liquid-phase cold storage material HM is also referred to as “liquid-phase cold storage material HM1”.
  • the whole cool storage material HM is the liquid phase cool storage material HM1.
  • FIG. 5B shows a cross section of the main body 110 when the cold storage container 100 in the state shown in FIG. 5A is put into a freezer and a part of the cold storage material HM is solidified to become a solid phase. It is shown.
  • the solid-phase regenerator material HM is also referred to as “solid-phase regenerator material HM2”.
  • the cool storage material HM is cooled from a portion of the cool storage material HM that is in contact with the inner wall surface 119 and the internal fins 114. For this reason, as shown in FIG. 5B, the above-mentioned portion of the regenerator material HM first becomes the solid-phase regenerator material HM2.
  • the solid phase cold storage material HM2 starts to be generated early not only in the outer portion but also in the inner portion of the cold storage space SP. For this reason, it will be in the state which the whole cool storage material HM changed to the solid-phase cool storage material HM2, ie, the state shown by FIG.5 (C), in a comparatively short time.
  • FIG. 18 shows a state in which the cold storage container 100 that does not have the internal fins 114 and the external fins 112 is cooled and the cold storage material HM in the cold storage space SP is solidified.
  • FIG. 18A shows a cross section of the main body 110 immediately after the liquid-phase regenerator material HM (that is, water) is supplied to the regenerator space SP.
  • the entire regenerator material HM is the liquid-phase regenerator material HM1.
  • FIG. 18B shows a cross section of the main body 110 when the cool storage container 100 in the state shown in FIG. 18A is put into a freezer and a part of the cool storage material HM is solidified to become a solid phase. It is shown.
  • the cooling of the regenerator material HM is performed from the part of the regenerator material HM that touches the regenerator container 100. For this reason, in this comparative example, only the part which touches the inner wall surface 119 of the main-body part 110 among the cool storage materials HM becomes solid-phase cool storage material HM2 previously. That is, in the comparative example, since the internal fin 114 is not formed, the cold storage material HM becomes the solid-phase cold storage material HM2 in the outer portion of the cold storage space SP, while the cold storage in the inner portion of the cold storage space SP. The material HM remains as the liquid phase regenerator material HM1. As a result, in this comparative example, it takes a long time until the entire regenerator material HM changes to the solid-phase regenerator material HM2, that is, the state shown in FIG.
  • the entire regenerator material HM becomes the solid-phase regenerator material HM2 within a relatively short time. For this reason, it is possible to prevent a situation in which preparation (that is, freezing) of the cold storage container 100 is not in time before the user carries out the air cooling device 10 and goes out.
  • the solid phase regenerator material HM2 that has solidified due to the heat transfer gradually melts from the portion near the wall surface. For this reason, while the cool storage material is solidified in the part near the center of the cool storage container 100, the cool storage material HM is melted in the vicinity of the wall surface of the cool storage container 100.
  • a temperature distribution is generated in the melted liquid phase regenerator material HM1. That is, among the melted liquid phase regenerator material HM1, the portion close to the solidified solid state regenerator material HM2 is relatively low temperature, while the portion near the wall surface of the regenerator container 100, that is, air and The portion used for heat exchange is relatively high in temperature. As a result, the temperature of the portion of the cool storage container 100 that is in contact with the outside air also becomes relatively high, and the air is not sufficiently cooled.
  • the air cooling is performed despite the solidified low-temperature solid-phase cold storage material HM2 remaining in the cold storage container 100. May not be sufficiently performed, and the temperature of the blown air may increase.
  • the portion of the cold storage container 100 that is in contact with the outside air that is, the main body portion 110
  • each portion of the cold storage space SP are provided.
  • Heat transfer with the existing cool storage material HM is performed through the wall surface of the main body 110 and the internal fins 114.
  • the solid phase regenerator HM2 gradually melts due to heat transfer from the air. Since the internal fin 114 at this time is in direct contact with (or in the vicinity of) the solid-phase regenerator material HM2 remaining inside, it is cooled by the solid-phase regenerator material HM2 and has a low temperature.
  • the effect of forming the external fin 112 on the main body 110 will be described. As described above, the contact area with the air is increased by the external fins 112, thereby improving the air cooling performance in the air cooling device 10.
  • the measurement result of the cooling performance when the external fin 112 is not formed is shown by a graph G01
  • the measurement result of the cooling performance when the external fin 112 is formed is shown by a graph G02. Yes.
  • the “cooling performance” of the air cooling device 10 is energy (unit: W) taken from the air per unit time when the air passes through the air cooling device 10.
  • the inventors measured the cooling performance under the conditions that the temperature of the external air was 28 ° C., the humidity was 40%, and the air was blown out from the blowing section 212 with an air volume of 21 m 3 / h. Went.
  • the cooling performance when the external fin 112 was not formed was 34 W as shown in the graph G01.
  • the cooling performance in the case where the external fins 112 are formed as in the present embodiment was 66 W as shown in the graph G02.
  • the cooling performance is improved to nearly twice by the external fin 112. This is due to the fact that the contact area with air is increased 3.5 times from 0.04 m 2 to 0.14 m 2 due to the formation of the external fins 112.
  • the inventors In measuring the cooling performance as described above, the inventors also measured the temperature of the air blown out from the blowing section 212 (hereinafter also referred to as (blowing air temperature)).
  • the measurement result of the blown air temperature when the fin 112 is not formed is shown by a graph G11
  • the measurement result of the blown air temperature when the external fin 112 is formed is shown by a graph G12.
  • the blown air temperature when the external fin 112 was not formed was 23 ° C. as shown in the graph G11. That is, when passing through the inside of the air cooling device 10, the temperature of the air decreased by 5 ° C. from the outside air temperature (28 ° C.).
  • the blown air temperature is 18 ° C. as shown in the graph G12. That is, when passing through the inside of the air cooling device 10, the temperature of the air decreased by 10 ° C. from the outside air temperature (28 ° C.).
  • the air cooling device 10 when the air cooling device 10 is attached to a baby stroller and used at a height of 1 m from the ground surface, the blown air temperature is required to be 10 ° C. lower than the outside air temperature.
  • the air cooling device 10 by providing the external fins 112, the blown air temperature that is 10 ° C. lower than the outside air temperature is realized as described above.
  • water is used as the cold storage material HM in this embodiment.
  • what is used as the cold storage material HM is not necessarily limited to water, and other fluids may be used as the cold storage material HM.
  • the melting point of the cold storage material HM can be lowered compared to water. Thereby, the blowing air temperature of the air cooling device 10 can be further lowered.
  • Water and saline (hereinafter collectively referred to as “water”) have a relatively large latent heat during phase change. For this reason, when water etc. are used as the cool storage material HM, the state in which all or a part of the cool storage material HM is in a solid phase can be kept long, and the cooling performance of the air cooling device 10 can be increased for a long time. It can be exhibited over a wide range.
  • water or the like has a characteristic that its volume decreases when it changes from a solid phase to a liquid phase. For this reason, in the process in which the cool storage material HM in the cool storage container 100 changes from the solid phase to the liquid phase, the outer shape of the main body 110 becomes smaller as the volume decreases as described above, and the front end surfaces 113 of the external fins 112 become smaller. There is a concern that the casing 210 may be separated from the inner wall surface 224 of the casing 210. In such a state, as described above, a phenomenon may occur in which a part of the air passes through the outer side of the front end surface 113 of the external fin 112 without being subjected to heat exchange. There is.
  • paraffin instead of water or the like as the cold storage material HM.
  • Paraffin has a characteristic that its volume increases when it is changed from a solid phase to a liquid phase, like a general fluid. For this reason, if paraffin is used as the cold storage material HM, the state in which the front end surface 113 of the external fin 112 is in contact with the inner wall surface 224 of the casing 210 even after the cold storage material HM in the cold storage container 100 starts to melt. The cooling performance of the air cooling device 10 can be maintained.
  • paraffin has a lower latent heat during phase change than water. For this reason, compared with the case where water etc. are used as the cool storage material HM, the time which can exhibit the cooling performance of the air cooling device 10 becomes short. Thus, since water etc. and paraffin have merits and demerits, it is preferable to select an appropriate cold storage material HM suitable for the use of the air cooling device 10. In this embodiment, since the opening 121 and the cap 130 are provided as the supply / discharge section, the regenerator material HM can be replaced in accordance with the application of the air cooling device 10.
  • the second embodiment will be described with reference to FIG.
  • differences from the first embodiment will be mainly described, and description of points that are common to the first embodiment will be omitted as appropriate.
  • the external fin 112 and the main body 110 are not integrally formed, and both are separated.
  • the external fin 112 is formed on the outer wall surface 118A of the cylindrical body 110A that is a cylindrical member.
  • the cylindrical body 110A is made of aluminum, and the cylindrical body 110A and the external fin 112 are integrally formed.
  • the cold storage container 100 according to the present embodiment has a configuration in which the main body 110 is inserted inside such a cylindrical body 110A.
  • the outer wall surface 118 of the main body 110 is in contact with the inner wall surface 119A of the cylindrical body 110A. Thereby, heat transfer between the external fin 112 and the main body 110 is ensured. Even if it is such an aspect, there exists an effect similar to 1st Embodiment.
  • the cool storage material HM it is preferable to use water etc. as the cool storage material HM. If water or the like is used as the cold storage material HM, the volume of the cold storage material HM expands in the process of solidifying, thereby increasing the outer shape of the main body 110. As a result, the outer wall surface 118 of the main body 110 and the inner wall surface 119A of the cylindrical body 110A are in close contact with each other, so that the thermal resistance between them can be reduced.
  • the third embodiment will be described with reference to FIG.
  • differences from the first embodiment will be mainly described, and description of points that are common to the first embodiment will be omitted as appropriate.
  • each of the external fins 112 in the first embodiment is divided into three, and a plurality of the divided external fins 112 are arranged in a direction along the central axis AX (vertical direction in FIG. 9). It is formed as follows.
  • reference numeral 1121 is assigned to the outer fin 112 disposed at the uppermost position among the outer fins 112 divided into three as described above.
  • the outer fin 112 arranged at the center is denoted by reference numeral 1122
  • the outer fin 112 disposed at the lowermost position is denoted by reference numeral 1123.
  • each of them is also expressed as “external fin 1121”, “external fin 1122”, and “external fin 1123”.
  • a so-called leading edge effect occurs at the upper end of each of the external fin 1121, the external fin 1122, and the external fin 1123, that is, the upstream end in the air flow direction. Heat exchange between the fins 112 and the air is performed more efficiently. That is, in the present embodiment, a plurality of external fins 112 are provided along the air flow direction, so that the leading edge effect is increased and the air cooling performance is further enhanced.
  • the position where the external fin 1122 is formed may be a position immediately below the external fin 1121 as in this embodiment, or may be a position shifted in the circumferential direction from the position of the external fin 1121. Good.
  • the position where the external fin 1123 is formed may be a position directly below the external fin 1122 as in the present embodiment, but is a position shifted in the circumferential direction from the position of the external fin 1122. Also good.
  • FIG. 10 is a cross-sectional view of the main body 110 of the cold storage container 100 according to the present embodiment cut along a plane perpendicular to the central axis AX as in FIG.
  • the cold storage container 100 has the same internal fin 114 as that of the first embodiment (FIG. 4) formed inside the main body 110, while the main body 110. External fins 112 are not formed on the outside. Thus, even if it is an aspect in which only the internal fins 114 are formed as the heat transfer promoting part, the air cooling performance by the cold storage container 100 can be enhanced.
  • FIG. 11 is a cross-sectional view when the main body 110 of the cold storage container 100 according to the present embodiment is cut along a plane perpendicular to the central axis AX similarly to FIG.
  • external fins 112 similar to those in the first embodiment (FIG. 4) are formed outside the main body 110, while the main body 110.
  • the internal fin 114 is not formed on the inside.
  • FIG. 12 is a cross-sectional view of the main body 110 of the cold storage container 100 according to the present embodiment cut along a plane perpendicular to the central axis AX as in FIG.
  • the inner wall surface 224 of the casing 210 is indicated by a dotted line.
  • the cold storage container 100 is provided with external fins 112A so as to surround the outer wall surface 118 of the main body 110 from the outside.
  • the external fin 112A is a cylindrical corrugated fin made of an aluminum plate bent into a wave shape.
  • the top of the mountain of the external fin 112 ⁇ / b> A is in contact with the inner wall surface 224 of the casing 210, and the bottom of the valley of the external fin 112 ⁇ / b> A is in contact with the outer wall surface 118 of the main body 110.
  • the external fin 112A may be brazed at part or all of the portions that are in contact as described above.
  • the external fin 112A on the outer side of the main body 110 is formed as a corrugated fin instead of a flat fin, it is the same as that described in the first embodiment. There is an effect.
  • FIG. 13 is a cross-sectional view when the main body 110 of the cold storage container 100 according to the present embodiment is cut along a plane perpendicular to the central axis AX similarly to FIG.
  • the inner wall surface 224 of the casing 210 is indicated by a dotted line.
  • the cold storage container 100 is provided with external fins 112 ⁇ / b> B so as to surround the outer wall surface 118 of the main body 110 from the outside.
  • the external fin 112B is formed by winding a thin aluminum plate in a spiral shape (roll shape). One end on the inner peripheral side of the external fin 112B is in contact with the outer wall surface 118 of the main body 110 at a point P1 in FIG. Further, one end on the outer peripheral side of the external fin 112B is in contact with the inner wall surface 224 of the casing 210 at a point P2 in FIG. It should be noted that the external fin 112B may be brazed at a part or all of the portions in contact as described above.
  • FIG. 14 is a cross-sectional view when the main body 110 of the cold storage container 100 according to the present embodiment is cut along a plane perpendicular to the central axis AX similarly to FIG.
  • an internal fin 114 ⁇ / b> C is provided in the cold storage space SP (that is, inside the main body 110) of the cold storage container 100 according to the present embodiment.
  • the internal fin 114 ⁇ / b> C is a plate-like (flat plate) member formed so as to extend radially from the central axis AX toward the inner wall surface 119 of the main body 110.
  • the tip of the internal fin 114C is not connected to the inner wall surface 119 of the main body 110, and a small gap is formed between the internal fin 114C and the inner wall surface 119.
  • such internal fins 114 ⁇ / b> C may be formed integrally with the main body 110, or may be formed separately from the main body 110. In the latter case, the internal fin 114 ⁇ / b> C may be brazed to the main body 110, or may simply be placed inside the cold storage container 100.
  • FIG. 15 is a cross-sectional view when the main body 110 of the cold storage container 100 according to the present embodiment is cut along a plane perpendicular to the central axis AX similarly to FIG.
  • an internal fin 114 ⁇ / b> D is provided in the cold storage space SP (that is, inside the main body 110) of the cold storage container 100 according to the present embodiment.
  • the internal fin 114D is formed by winding a thin aluminum plate in a spiral shape (roll shape) with a gap.
  • the inner fin 114D and the inner wall surface 119 are separated from each other, but a mode in which a part of the inner fin 114D is in contact with the inner wall surface 119 may be employed. Further, the internal fin 114 ⁇ / b> D may be brazed to the main body 110, or may simply be placed inside the cold storage container 100.
  • the internal fins 114D are not formed radially but formed in a spiral shape, the same effects as those described in the first embodiment can be obtained.
  • the internal fin 114D easily deforms and follows when the volume of the cold storage material HM is changed when the cold storage material HM is solidified. For this reason, the effect that internal stress is reduced is also acquired.
  • FIG. 16 is a cross-sectional view when the main body 110 of the cold storage container 100 according to the present embodiment is cut along a plane perpendicular to the central axis AX similarly to FIG.
  • the internal fin 114E is provided in the cool storage space SP (that is, the inner side of the main-body part 110) of the cool storage container 100 which concerns on this embodiment.
  • the internal fin 114E is a corrugated fin made of an aluminum plate bent into a wave shape and formed into a cylindrical shape.
  • the inner fin 114E and the inner wall surface 119 are separated from each other, but a mode in which a part of the inner fin 114E is in contact with the inner wall surface 119 may be employed.
  • the internal fin 114E may be brazed to the main body 110, or may simply be placed inside the cold storage container 100.
  • the internal fin 114E is formed as a corrugated fin, the same effects as those described in the first embodiment can be obtained.
  • the internal fins 114E are easily deformed and follow up. For this reason, the effect that internal stress is reduced is also acquired.
  • FIG. 17 is a diagram schematically depicting the internal configuration of the main body 110 of the cold storage container 100 according to the present embodiment as a perspective view.
  • the inner surface (the inner wall surface 119 and the bottom surface BS) of the main body 110 that partitions the cold storage space SP is indicated by a dotted line.
  • a plurality of internal fins 114F are provided in the cold storage space SP (that is, inside the main body 110).
  • Each internal fin 114F is formed as a cylindrical pin fin extending along the central axis AX.
  • Each internal fin 114F has a lower end in contact with the bottom surface BS and is brazed.
  • the internal fins 114F are cooled by heat transfer to the bottom surface BS and kept at a low temperature.
  • the air cooling device 10 having the configuration shown in FIG. 1 can accommodate and use each of the cold storage containers 100 described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Abstract

A cold-storing receptacle (100) which is housed in an air-cooling device (10) is provided with the following: a body part (110) having formed thereinside a cold-storing space (SP) for accommodating a cold-storing material (HM); and heat-transfer promoting parts (112, 114, 114A, 114B, 114C, 114D, 114E, 114F) that promote heat transfer between the inner side and the outer side of the body part.

Description

蓄冷容器、及びこれを備えた空気冷却装置Cold storage container and air cooling device provided with the same 関連出願の相互参照Cross-reference of related applications

 本出願は、2017年2月3日に出願された日本国特許出願2017-018109号と、2017年10月27日に出願された日本国特許出願2017-208125号と、に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2017-018109 filed on February 3, 2017 and Japanese Patent Application No. 2017-208125 filed on October 27, 2017. Claims the benefit of that priority, the entire contents of which are incorporated herein by reference.

 本開示は、空気冷却装置に格納される蓄冷容器、及び当該蓄冷容器を備えた空気冷却装置に関する。 The present disclosure relates to a cold storage container stored in an air cooling device and an air cooling device including the cold storage container.

 携帯することのできるコンパクトな空気冷却装置として、例えば下記特許文献1に記載されているような冷風器が提案されている。当該冷風器は、筒状に形成された容器本体の内部に、飲料が入った飲料容器を冷凍したものを格納している。容器本体の上部には、容器本体の内部の空気を外部に送り出すファン装置が設けられている。また、容器本体の下部壁面には、外部の空気を容器本体の内部に取り入れるための吸気口が形成されている。 As a compact air cooling device that can be carried around, for example, a chiller as described in Patent Document 1 has been proposed. The said cool air cooler has stored what frozen the drink container which contained the drink inside the container main body formed in the cylinder shape. A fan device for sending air inside the container body to the outside is provided at the upper part of the container body. An air inlet for taking outside air into the container body is formed on the lower wall surface of the container body.

 ファン装置が駆動されると、空気は吸気口を通じて容器本体の内部に取り入れられる。その後、当該空気は飲料容器の側面に沿って上方側に向かって流れて、ファン装置を通過して外部へと放出される。その際、空気は低温の飲料容器に触れることによって冷却され、その温度を低下させる。このため、冷却器からは低温の空気が吹き出される。 When the fan device is driven, air is taken into the container body through the air inlet. Thereafter, the air flows upward along the side surface of the beverage container, passes through the fan device, and is discharged to the outside. In doing so, the air is cooled by touching the cold beverage container, reducing its temperature. For this reason, low temperature air is blown out from the cooler.

 このような構成の空気冷却装置では、飲料が入った飲料容器が、空気冷却装置に格納される「蓄冷容器」として用いられている。また、飲料容器内の飲料が「蓄冷材」として用いられている。 In the air cooling apparatus having such a configuration, a beverage container containing a beverage is used as a “cold storage container” stored in the air cooling apparatus. In addition, beverages in beverage containers are used as “cold storage materials”.

登録実用新案第3115995号公報Registered Utility Model No. 3115995

 上記特許文献1に記載されているような構成の空気冷却装置においては、蓄冷材(飲料)と空気との間における熱交換が、筒状に形成された蓄冷容器(飲料容器)の壁面を通じて行われる。 In the air cooling apparatus configured as described in Patent Document 1, heat exchange between the cold storage material (beverage) and the air is performed through the wall surface of the cold storage container (beverage container) formed in a cylindrical shape. Is called.

 しかしながら、飲料容器は、元々空気冷却装置のための蓄冷容器として設計されたものではないから、壁面を通じた内外の伝熱性能は高くない。このため、蓄冷容器として飲料容器を用いるような空気冷却装置では、空気の冷却性能を十分に発揮できない可能性がある。 However, since the beverage container is not originally designed as a cold storage container for the air cooling device, the heat transfer performance inside and outside through the wall surface is not high. For this reason, in an air cooling device using a beverage container as a cold storage container, there is a possibility that air cooling performance cannot be sufficiently exhibited.

 本開示は、空気の冷却性能を高めることのできる蓄冷容器、及び当該蓄冷容器を備えた空気冷却装置を提供することを目的とする。 The present disclosure is intended to provide a cold storage container that can enhance the cooling performance of air and an air cooling device including the cold storage container.

 本開示に係る蓄冷容器は、空気冷却装置に格納される蓄冷容器であって、蓄冷材を収容するための蓄冷空間が内部に形成された本体部と、本体部の内側と外側との間における伝熱を促進する伝熱促進部と、を備える。 A cold storage container according to the present disclosure is a cold storage container stored in an air cooling device, and a main body portion in which a cold storage space for accommodating a cold storage material is formed, and between an inner side and an outer side of the main body portion. A heat transfer promotion unit that promotes heat transfer.

 このような構成の蓄冷容器では、本体部の内側と外側との間における伝熱が、伝熱促進部によって促進される。このような伝熱促進部としては、例えば、蓄冷容器の内面や外面に形成されたフィンが挙げられる。上記蓄冷容器では、このような伝熱促進部を備えることにより、周囲の空気から熱を効率的に奪うことができる。つまり、伝熱促進部によって空気の冷却性能を高めることができる。 In the cold storage container having such a configuration, heat transfer between the inside and the outside of the main body is promoted by the heat transfer promoting portion. As such a heat transfer promotion part, the fin formed in the inner surface and outer surface of a cool storage container is mentioned, for example. In the said cool storage container, heat can be efficiently taken from surrounding air by providing such a heat-transfer promotion part. That is, the air cooling performance can be enhanced by the heat transfer promoting portion.

 本開示によれば、空気の冷却性能を高めることのできる蓄冷容器、及び当該蓄冷容器を備えた空気冷却装置が提供される。 According to the present disclosure, there are provided a cold storage container that can enhance the cooling performance of air, and an air cooling device including the cold storage container.

図1は、第1実施形態に係る蓄冷容器、及び当該蓄冷容器を備える空気冷却装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a cold storage container according to the first embodiment and an air cooling device including the cold storage container. 図2は、図1の蓄冷容器の構成を示す分解組立図である。FIG. 2 is an exploded view showing the configuration of the cold storage container of FIG. 図3は、図1の蓄冷容器の上面図である。3 is a top view of the cold storage container of FIG. 図4は、図1の蓄冷容器の断面図である。4 is a cross-sectional view of the cold storage container of FIG. 図5は、図1の蓄冷容器の内部において、蓄冷材が凝固して行く様子を模式的に示す図である。FIG. 5 is a diagram schematically illustrating how the regenerator material solidifies inside the regenerator container of FIG. 1. 図6は、冷却性能に対する外部フィンの影響を説明するための図である。FIG. 6 is a diagram for explaining the influence of the external fins on the cooling performance. 図7は、吹き出される空気の温度に対する外部フィンの影響を説明するための図である。FIG. 7 is a diagram for explaining the influence of the external fins on the temperature of the blown air. 図8は、第2実施形態に係る蓄冷容器の構成を示す分解組立図である。FIG. 8 is an exploded view illustrating the configuration of the cold storage container according to the second embodiment. 図9は、第3実施形態に係る蓄冷容器の構成を示す分解組立図である。FIG. 9 is an exploded view showing the configuration of the cold storage container according to the third embodiment. 図10は、第4実施形態に係る蓄冷容器の断面図である。FIG. 10 is a cross-sectional view of the cold storage container according to the fourth embodiment. 図11は、第5実施形態に係る蓄冷容器の断面図である。FIG. 11 is a cross-sectional view of a cold storage container according to the fifth embodiment. 図12は、第6実施形態に係る蓄冷容器の断面図である。FIG. 12 is a cross-sectional view of the cold storage container according to the sixth embodiment. 図13は、第7実施形態に係る蓄冷容器の断面図である。FIG. 13 is a cross-sectional view of the cold storage container according to the seventh embodiment. 図14は、第8実施形態に係る蓄冷容器の断面図である。FIG. 14 is a cross-sectional view of the cold storage container according to the eighth embodiment. 図15は、第9実施形態に係る蓄冷容器の断面図である。FIG. 15 is a cross-sectional view of a cold storage container according to the ninth embodiment. 図16は、第10実施形態に係る蓄冷容器の断面図である。FIG. 16 is a cross-sectional view of the cold storage container according to the tenth embodiment. 図17は、第11実施形態に係る蓄冷容器の内部構成を示す図である。FIG. 17 is a diagram illustrating an internal configuration of the cold storage container according to the eleventh embodiment. 図18は、比較例に係る蓄冷容器の内部において、蓄冷材が凝固して行く様子を模式的に示す図である。FIG. 18 is a diagram schematically illustrating how the regenerator material solidifies inside the regenerator container according to the comparative example.

 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, the present embodiment will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.

 本実施形態に係る蓄冷容器100は、内部に蓄冷材HMを収容する容器であって、空気冷却装置10に格納されるための容器として構成されている。蓄冷容器100の説明に先立ち、空気冷却装置10の構成について先に説明する。図1に示されるように、空気冷却装置10は、ケーシング210と上蓋220とを備えている。 The cold storage container 100 according to the present embodiment is a container that stores the cold storage material HM therein, and is configured as a container to be stored in the air cooling device 10. Prior to the description of the cold storage container 100, the configuration of the air cooling device 10 will be described first. As shown in FIG. 1, the air cooling device 10 includes a casing 210 and an upper lid 220.

 ケーシング210は、樹脂によって形成された容器である。ケーシング210は概ね円筒形状であって、その上部が開放された有底の容器として形成されている。ケーシング210の内部には空間201が形成されている。後に説明する蓄冷容器100は、この空間201に格納されている。 Casing 210 is a container formed of resin. The casing 210 has a generally cylindrical shape, and is formed as a bottomed container having an open top. A space 201 is formed inside the casing 210. A cold storage container 100 described later is stored in the space 201.

 ケーシング210の外側面のうち下方側の部分には、外方に向けて突出する円筒状の吹き出し部212が形成されている。吹き出し部212の中心軸は、ケーシング210の中心軸に対して垂直となっている。吹き出し部212の先端には開口213が形成されている。開口213を通じて、外部の空間と空間201とが連通されている。吹き出し部212は、冷却された空気を外部に向けて吹き出すための出口となる部分である。 A cylindrical blowing portion 212 that protrudes outward is formed on the lower portion of the outer surface of the casing 210. The central axis of the blowing part 212 is perpendicular to the central axis of the casing 210. An opening 213 is formed at the tip of the blowing portion 212. The external space communicates with the space 201 through the opening 213. The blowing part 212 is a part serving as an outlet for blowing out the cooled air to the outside.

 ケーシング210の外壁面のうち上端部の近傍には、雄螺子211が形成されている。雄螺子211には、次に説明する上蓋220に形成された雌螺子221が螺合されており、これによりケーシング210と上蓋220とが互いに連結されている。 A male screw 211 is formed in the vicinity of the upper end of the outer wall surface of the casing 210. A female screw 221 formed on an upper lid 220, which will be described below, is screwed into the male screw 211, whereby the casing 210 and the upper lid 220 are connected to each other.

 上蓋220は、ケーシング210の上部に形成された開口を覆うように設けられた樹脂製の部材である。上蓋220は概ね円筒形状であって、その下方側が開放されている。上蓋220の内壁面のうち下端部の近傍には、既に述べた雌螺子221が形成されている。上蓋220は、その中心軸をケーシング210の中心軸に一致させた状態で、ケーシング210に対して雌螺子221により連結されている。 The upper lid 220 is a resin member provided so as to cover the opening formed in the upper part of the casing 210. The upper lid 220 has a substantially cylindrical shape, and its lower side is opened. The female screw 221 already described is formed in the vicinity of the lower end portion of the inner wall surface of the upper lid 220. The upper lid 220 is connected to the casing 210 by a female screw 221 with the central axis thereof aligned with the central axis of the casing 210.

 上蓋220の上部には、導入口222が形成されている。導入口222を通じて、外部の空間と空間201とが連通されている。導入口222は、外部の空気を空間201内に導入するための入口となる部分である。 In the upper part of the upper lid 220, an introduction port 222 is formed. The external space communicates with the space 201 through the introduction port 222. The inlet 222 is a portion that serves as an inlet for introducing outside air into the space 201.

 上蓋220の内部には、電動ファン223が取り付けられている。電動ファン223は、外部の空気を導入口222から空間201内に向けて送り込むための送風機である。空気冷却装置10に設けられた不図示のスイッチが使用者によってONとされると、電動ファン223が駆動され、導入口222から空間201内に向けて空気が送り込まれる。当該空気は、空間201を下方に向けて、すなわち蓄冷容器100の外壁面118(外周面)に沿って下方側に流れた後、吹き出し部212の開口213から外部へと吹き出される。 An electric fan 223 is attached inside the upper lid 220. The electric fan 223 is a blower for sending outside air from the introduction port 222 into the space 201. When a switch (not shown) provided in the air cooling device 10 is turned on by the user, the electric fan 223 is driven, and air is sent from the introduction port 222 into the space 201. The air flows downward in the space 201, that is, along the outer wall surface 118 (outer peripheral surface) of the cold storage container 100, and then blows out from the opening 213 of the blowing portion 212 to the outside.

 蓄冷容器100の内部には、後に説明するように、凝固した低温の蓄冷材HMが収容されている。蓄冷容器100の表面は低温となっているので、上記のように流れる空気は、蓄冷容器100の外壁面118に沿って流れる際に冷却され、その温度を低下させる。これにより、吹き出し部212からは低温の空気が吹き出される。 In the cold storage container 100, a solidified low temperature cold storage material HM is accommodated as will be described later. Since the surface of the cold storage container 100 has a low temperature, the air flowing as described above is cooled when flowing along the outer wall surface 118 of the cold storage container 100, and the temperature is lowered. Thereby, low temperature air is blown out from the blowing unit 212.

 空気冷却装置10では、電動ファン223が蓄冷容器100よりも上方側となる位置に配置されている。このため、蓄冷容器100の表面などで生じた結露水が電動ファン223に滴下し、電動ファン223が故障してしまうような事態が防止される。また、電動ファン223を通過する空気は、冷却が行われる前の常温の空気であるから、電動ファン223において結露水が生じることも防止される。 In the air cooling device 10, the electric fan 223 is disposed at a position above the cold storage container 100. For this reason, the situation where the dew condensation water produced on the surface of the cool storage container 100 etc. dripped at the electric fan 223 and the electric fan 223 breaks down is prevented. Further, since the air passing through the electric fan 223 is room temperature air before being cooled, it is possible to prevent dew condensation in the electric fan 223.

 蓄冷容器100の構成について、図1乃至4を参照しながら説明する。蓄冷容器100は、本体部110と、内部フィン114と、外部フィン112と、上蓋部120と、キャップ130と、を備えている。これらは、いずれもアルミニウムによって形成されている。 The configuration of the cold storage container 100 will be described with reference to FIGS. The cold storage container 100 includes a main body 110, internal fins 114, external fins 112, an upper lid 120, and a cap 130. These are all made of aluminum.

 本体部110の形状は筒状、具体的には概ね円筒形状となっている。本体部110は、その上部が開放された有底の容器として形成されている。本体部110は、その中心軸AXをケーシング210の中心軸に一致させた状態で、ケーシング210の内部(つまり空間201)に設置されている。 The shape of the main body 110 is a cylindrical shape, specifically a substantially cylindrical shape. The main body 110 is formed as a bottomed container whose upper part is opened. The main body 110 is installed inside the casing 210 (that is, the space 201) with the central axis AX aligned with the central axis of the casing 210.

 本体部110の内部には蓄冷空間SPが形成されている。蓄冷空間SPは、蓄冷材HM(図2等では不図示、図5を参照)を収容するための空間となっている。本実施形態では、蓄冷材HMとして水が用いられる。 A cold storage space SP is formed inside the main body 110. The cold storage space SP is a space for accommodating the cold storage material HM (not shown in FIG. 2 and the like, see FIG. 5). In the present embodiment, water is used as the cold storage material HM.

 内部フィン114は、本体部110の内側(内周側)に設けられた複数の板状(平板状)の部材である。それぞれの内部フィン114は、本体部110の内壁面119(内周面)から、蓄冷空間SPの内側(具体的には中心軸AX)に向けて伸びるように形成されている。図4は、中心軸AXに対して垂直な面で本体部110を切断した場合における断面図である。同図に示されるように、内部フィン114は本体部110の内側において複数設けられており、それぞれが本体部110の中心軸AXに対して平行となっている。それぞれの内部フィン114は、本体部の周方向(中心軸AXの周りに回転する方向)に沿って複数枚並ぶように形成されている。 The internal fins 114 are a plurality of plate-shaped (flat plate) members provided on the inner side (inner peripheral side) of the main body 110. Each internal fin 114 is formed so as to extend from the inner wall surface 119 (inner peripheral surface) of the main body 110 toward the inside of the cold storage space SP (specifically, the central axis AX). FIG. 4 is a cross-sectional view of the main body 110 cut along a plane perpendicular to the central axis AX. As shown in the figure, a plurality of internal fins 114 are provided inside the main body 110, and each of them is parallel to the central axis AX of the main body 110. Each of the internal fins 114 is formed so as to be arranged in a plurality along the circumferential direction of the main body (direction rotating around the central axis AX).

 本実施形態では、それぞれの内部フィン114が、中心軸AXの位置において互いに繋がっている。このような態様に替えて、それぞれの内部フィン114が中心軸AXの位置までは伸びておらず、互いに分離されているような態様であってもよい。 In the present embodiment, the internal fins 114 are connected to each other at the position of the central axis AX. Instead of such an aspect, the internal fins 114 may not extend to the position of the central axis AX but may be separated from each other.

 このような内部フィン114が形成されていることにより、蓄冷空間SPに収容された蓄冷材HMと本体部110との間の伝熱は、蓄冷空間SPのうち外側部分において内壁面119を介して行われるほか、蓄冷空間SPのうち内側部分(中心軸AXの近傍部分)においても内部フィン114を介して行われる。このため、蓄冷材HMの各部における温度分布が生じにくくなっている。 By forming such internal fins 114, heat transfer between the regenerator material HM accommodated in the regenerator space SP and the main body 110 is performed via the inner wall surface 119 in the outer portion of the regenerator space SP. In addition, it is also performed via the internal fin 114 in the inner portion (portion in the vicinity of the central axis AX) of the cold storage space SP. For this reason, temperature distribution in each part of the cold storage material HM is less likely to occur.

 本実施形態では、このような内部フィン114が本体部110の内側に設けられていることにより、本体部110の内側と外側との間における伝熱が促進される。内部フィン114は、本実施形態における「伝熱促進部」の一つに該当する。 In the present embodiment, heat transfer between the inner side and the outer side of the main body 110 is promoted by providing such internal fins 114 on the inner side of the main body 110. The internal fin 114 corresponds to one of the “heat transfer promoting portions” in the present embodiment.

 外部フィン112は、本体部110の外側(外周側)に設けられた複数の板状(平板状)の部材である。それぞれの外部フィン112は、本体部110の外壁面118から、外側に向けて伸びるように形成されている。図4に示されるように、外部フィン112は本体部110の外側において複数設けられており、それぞれが本体部110の中心軸AXに対して平行となっている。内部フィン114の場合と同様に、それぞれの外部フィン112は、本体部の周方向に沿って複数枚並ぶように形成されている。 The external fin 112 is a plurality of plate-like (flat plate-like) members provided on the outer side (outer peripheral side) of the main body 110. Each external fin 112 is formed so as to extend outward from the outer wall surface 118 of the main body 110. As shown in FIG. 4, a plurality of external fins 112 are provided outside the main body 110, and each of them is parallel to the central axis AX of the main body 110. As in the case of the internal fins 114, each external fin 112 is formed so as to be arranged in a plurality along the circumferential direction of the main body.

 このような外部フィン112が形成されていることにより、蓄冷容器100の外壁面118に沿って下方側に向けて流れる空気との接触面積が大きくなっている。外部フィン112により、空気と蓄冷材HMとの間の熱交換が効率よく行われる。つまり、空気冷却装置10における空気の冷却性能が外部フィン112によって高められている。 By forming such external fins 112, the contact area with the air flowing downward along the outer wall surface 118 of the cold storage container 100 is increased. The external fin 112 efficiently exchanges heat between the air and the cold storage material HM. That is, the air cooling performance of the air cooling device 10 is enhanced by the external fins 112.

 本実施形態では、このような外部フィン112が本体部110の外側に設けられていることにより、本体部110の内側と外側との間における伝熱が更に促進される。外部フィン112は、先に述べた内部フィン114と共に、本実施形態における「伝熱促進部」の一つに該当する。 In the present embodiment, the heat transfer between the inner side and the outer side of the main body 110 is further promoted by providing such external fins 112 on the outer side of the main body 110. The external fin 112 corresponds to one of the “heat transfer promoting portions” in the present embodiment, together with the internal fin 114 described above.

 図1のように、蓄冷容器100が空気冷却装置10のケーシング210内に格納された状態においては、それぞれの外部フィン112の先端面113が、いずれもケーシング210の内壁面224に当接した状態となっている。このため、外部フィン112の先端面113よりも更に外側を、一部の空気が熱交換に供されることなく素通りしてしまうような現象が防止されている。 As shown in FIG. 1, in a state where the cold storage container 100 is stored in the casing 210 of the air cooling device 10, the tip surfaces 113 of the respective external fins 112 are in contact with the inner wall surface 224 of the casing 210. It has become. For this reason, a phenomenon in which a part of the air passes through the outer side of the front end surface 113 of the external fin 112 without being subjected to heat exchange is prevented.

 本実施形態では、全ての内部フィン114及び外部フィン112が、いずれも本体部110と一体に形成されている。このような本体部110は、例えばアルミニウムの押し出し成形によって形成することができる。このような構成においては、内部フィン114と本体部110との間における熱抵抗、及び外部フィン112と本体部110との間における熱抵抗、のいずれもが低減されるので、蓄冷材HMと空気との間の熱交換を効率よく行うことができる。 In this embodiment, all the internal fins 114 and the external fins 112 are all formed integrally with the main body 110. Such a main body 110 can be formed, for example, by extrusion molding of aluminum. In such a configuration, both the thermal resistance between the internal fins 114 and the main body 110 and the thermal resistance between the external fins 112 and the main body 110 are reduced, so the regenerator HM and the air Can be efficiently exchanged.

 上蓋部120は、本体部110の上部に形成された開口を覆うように設けられた部材である。上蓋部120は、上方側に行くほど縮径するような形状となっており、その上端に形成された開口121の直径は、その下端に形成された開口123の直径よりも小さくなっている。 The upper lid part 120 is a member provided so as to cover the opening formed in the upper part of the main body part 110. The upper lid portion 120 has a shape that is reduced in diameter toward the upper side, and the diameter of the opening 121 formed at the upper end thereof is smaller than the diameter of the opening 123 formed at the lower end thereof.

 上蓋部120の内壁面のうち開口123の近傍には、不図示の雌螺子が形成されている。また、本体部110の外壁面118のうち上端部の近傍には、雄螺子111が形成されている。雄螺子111には、上蓋部120の上記雌螺子が螺合されており、これにより上蓋部120と本体部110とが互いに連結されている。 A female screw (not shown) is formed in the vicinity of the opening 123 in the inner wall surface of the upper lid portion 120. A male screw 111 is formed in the vicinity of the upper end portion of the outer wall surface 118 of the main body 110. The female screw 111 is screwed with the female screw of the upper lid portion 120, whereby the upper lid portion 120 and the main body portion 110 are connected to each other.

 キャップ130は、上蓋部120の開口121を上方側から覆い、蓄冷空間SPから蓄冷材HMが外部に漏出することを防ぐために設けられた部材である。キャップ130は、上部が塞がれ下部が開放された円筒形状の部材として形成されている。キャップ130の内壁面のうち下端部の近傍には、不図示の雌螺子が形成されている。また、上蓋部120の外壁面のうち開口121の近傍には、雄螺子122が形成されている。雄螺子122には、キャップ130の上記雌螺子が螺合されており、これによりキャップ130と上蓋部120とが互いに連結されている。 The cap 130 is a member provided to cover the opening 121 of the upper lid 120 from above and prevent the cold storage material HM from leaking out of the cold storage space SP. The cap 130 is formed as a cylindrical member whose upper part is closed and whose lower part is opened. A female screw (not shown) is formed in the vicinity of the lower end portion of the inner wall surface of the cap 130. Further, a male screw 122 is formed in the vicinity of the opening 121 in the outer wall surface of the upper lid portion 120. The female screw 122 of the cap 130 is screwed into the male screw 122, whereby the cap 130 and the upper lid part 120 are connected to each other.

 使用者は、キャップ130を中心軸AXの周りに回転させることにより、キャップ130を上蓋部120から取り外すことができる。これにより、開口121を通じて蓄冷空間SPへの蓄冷材HMの供給を行ったり、開口121を通じて蓄冷空間SPからの蓄冷材HMの排出を行ったりすることができる。開口121、及びこれを覆うキャップ130は、本実施形態における「給排部」に該当する。 The user can remove the cap 130 from the upper lid 120 by rotating the cap 130 around the central axis AX. Thereby, the cold storage material HM can be supplied to the cold storage space SP through the opening 121, or the cold storage material HM can be discharged from the cold storage space SP through the opening 121. The opening 121 and the cap 130 covering this correspond to the “supply / discharge section” in the present embodiment.

 図1に示される状態において、使用者が、ケーシング210から蓄冷容器100を取り出す際には、使用者は先ずケーシング210から上蓋220を取り外した後、蓄冷容器100のうちキャップ130を把持して上方に引き上げる。図3に示されるように、キャップ130の直径D1は、本体部110の直径D2よりも小さくなっている。換言すれば、中心軸AXに沿って見た場合におけるキャップ130の形状は、同じく中心軸AXに沿って見た場合における本体部110の形状よりも小さくなっている。このため、使用者がキャップ130を把持して引き上げる作業を、比較的行いやすくなっている。このように、使用者によって把持される部分であるキャップ130は、本実施形態における「把持部」に該当する。 In the state shown in FIG. 1, when the user takes out the cool storage container 100 from the casing 210, the user first removes the upper lid 220 from the casing 210, and then holds the cap 130 in the cool storage container 100 and moves upward. Pull up. As shown in FIG. 3, the diameter D <b> 1 of the cap 130 is smaller than the diameter D <b> 2 of the main body 110. In other words, the shape of the cap 130 when viewed along the central axis AX is smaller than the shape of the main body 110 when viewed along the central axis AX. For this reason, it is relatively easy for the user to grip and pull the cap 130 up. As described above, the cap 130 that is a portion to be gripped by the user corresponds to the “grip portion” in the present embodiment.

 本実施形態では、本体部110の直径が65mmとなっており、本体部110の下端からキャップ130の上端までの高さ(つまり蓄冷容器100の全長)が200mmとなっている。このような蓄冷容器100の形状は、500mlサイズのペットボトルとして市販されている飲料容器の形状と、互換性を有する形状となっている。このため、市販の飲料容器を蓄冷容器として用いる構成の空気冷却装置であれば、多くの場合、本実施形態に係る蓄冷容器100を飲料容器の代わりとして用いることができる。 In the present embodiment, the diameter of the main body 110 is 65 mm, and the height from the lower end of the main body 110 to the upper end of the cap 130 (that is, the total length of the cold storage container 100) is 200 mm. The shape of the cold storage container 100 is compatible with the shape of a beverage container that is commercially available as a 500 ml plastic bottle. For this reason, if it is an air cooling device of composition which uses a commercially available beverage container as a cold storage container, in many cases, cold storage container 100 concerning this embodiment can be used as a drink container.

 本体部110に内部フィン114が形成されていることの効果について説明する。図5(A)には、蓄冷空間SPに液相の蓄冷材HM(つまり水)が供給された直後における、本体部110の断面が示されている。以下では、液相の蓄冷材HMのことを、「液相蓄冷材HM1」とも表記する。図5(A)の状態では、蓄冷材HMの全体が液相蓄冷材HM1となっている。 The effect of the internal fins 114 being formed on the main body 110 will be described. FIG. 5A shows a cross section of the main body 110 immediately after the liquid-phase regenerator material HM (that is, water) is supplied to the regenerator space SP. Hereinafter, the liquid-phase cold storage material HM is also referred to as “liquid-phase cold storage material HM1”. In the state of FIG. 5 (A), the whole cool storage material HM is the liquid phase cool storage material HM1.

 図5(B)には、図5(A)に示される状態の蓄冷容器100が冷凍庫に投入され、一部の蓄冷材HMが凝固して固相となったときにおける、本体部110の断面が示されている。以下では、固相の蓄冷材HMのことを、「固相蓄冷材HM2」とも表記する。 FIG. 5B shows a cross section of the main body 110 when the cold storage container 100 in the state shown in FIG. 5A is put into a freezer and a part of the cold storage material HM is solidified to become a solid phase. It is shown. Hereinafter, the solid-phase regenerator material HM is also referred to as “solid-phase regenerator material HM2”.

 蓄冷材HMの冷却は、蓄冷材HMのうち内壁面119や内部フィン114に触れている部分から行われる。このため、図5(B)に示されるように、蓄冷材HMのうち上記の部分が先に固相蓄冷材HM2となる。本実施形態では、内部フィン114が蓄冷空間SPの内側まで伸びているので、蓄冷空間SPのうち外側部分のみならず、内側部分においても早期に固相蓄冷材HM2が生じ始める。このため、比較的短時間のうちに、蓄冷材HMの全体が固相蓄冷材HM2に変化した状態、すなわち図5(C)に示される状態となる。 The cool storage material HM is cooled from a portion of the cool storage material HM that is in contact with the inner wall surface 119 and the internal fins 114. For this reason, as shown in FIG. 5B, the above-mentioned portion of the regenerator material HM first becomes the solid-phase regenerator material HM2. In the present embodiment, since the internal fins 114 extend to the inside of the cold storage space SP, the solid phase cold storage material HM2 starts to be generated early not only in the outer portion but also in the inner portion of the cold storage space SP. For this reason, it will be in the state which the whole cool storage material HM changed to the solid-phase cool storage material HM2, ie, the state shown by FIG.5 (C), in a comparatively short time.

 図18には、本実施形態との比較例として、内部フィン114及び外部フィン112を有さない蓄冷容器100が冷却され、蓄冷空間SPの蓄冷材HMが凝固して行く様子が示されている。図18(A)には、蓄冷空間SPに液相の蓄冷材HM(つまり水)が供給された直後における、本体部110の断面が示されている。図5(A)の場合と同様に、図18(A)の状態では、蓄冷材HMの全体が液相蓄冷材HM1となっている。 As a comparative example with the present embodiment, FIG. 18 shows a state in which the cold storage container 100 that does not have the internal fins 114 and the external fins 112 is cooled and the cold storage material HM in the cold storage space SP is solidified. . FIG. 18A shows a cross section of the main body 110 immediately after the liquid-phase regenerator material HM (that is, water) is supplied to the regenerator space SP. Similarly to the case of FIG. 5A, in the state of FIG. 18A, the entire regenerator material HM is the liquid-phase regenerator material HM1.

 図18(B)には、図18(A)に示される状態の蓄冷容器100が冷凍庫に投入され、一部の蓄冷材HMが凝固して固相となったときにおける、本体部110の断面が示されている。 FIG. 18B shows a cross section of the main body 110 when the cool storage container 100 in the state shown in FIG. 18A is put into a freezer and a part of the cool storage material HM is solidified to become a solid phase. It is shown.

 蓄冷材HMの冷却は、蓄冷材HMのうち蓄冷容器100に触れている部分から行われる。このため、この比較例においては、蓄冷材HMのうち本体部110の内壁面119に触れている部分のみが先に固相蓄冷材HM2となる。つまり、比較例においては内部フィン114が形成されていないので、蓄冷空間SPのうち外側部分においては蓄冷材HMが固相蓄冷材HM2となる一方で、蓄冷空間SPのうち内側部分においては、蓄冷材HMは液相蓄冷材HM1のままとなっている。その結果、この比較例においては、蓄冷材HMの全体が固相蓄冷材HM2に変化した状態、すなわち図18(C)に示される状態となるまでに、長時間を要してしまう。 The cooling of the regenerator material HM is performed from the part of the regenerator material HM that touches the regenerator container 100. For this reason, in this comparative example, only the part which touches the inner wall surface 119 of the main-body part 110 among the cool storage materials HM becomes solid-phase cool storage material HM2 previously. That is, in the comparative example, since the internal fin 114 is not formed, the cold storage material HM becomes the solid-phase cold storage material HM2 in the outer portion of the cold storage space SP, while the cold storage in the inner portion of the cold storage space SP. The material HM remains as the liquid phase regenerator material HM1. As a result, in this comparative example, it takes a long time until the entire regenerator material HM changes to the solid-phase regenerator material HM2, that is, the state shown in FIG.

 これに対し本実施形態では、内部フィン114が形成されていることにより、比較的短時間のうちに蓄冷材HMの全体が固相蓄冷材HM2となる。このため、使用者が空気冷却装置10を携帯して外出するまでの間に、蓄冷容器100の準備(つまり冷凍)が間に合わないような事態を防止することができる。 In contrast, in the present embodiment, since the internal fins 114 are formed, the entire regenerator material HM becomes the solid-phase regenerator material HM2 within a relatively short time. For this reason, it is possible to prevent a situation in which preparation (that is, freezing) of the cold storage container 100 is not in time before the user carries out the air cooling device 10 and goes out.

 また、図18の比較例に係る蓄冷容器100を用いた空気冷却装置10において、空気の冷却が行われているときには、蓄冷容器100のうち外側の空気に触れている部分(つまり本体部110)と、蓄冷空間SPの各部に存在する蓄冷材HMとの間における伝熱が、本体部110の壁面のみを介して行われる。 Further, in the air cooling device 10 using the cool storage container 100 according to the comparative example of FIG. 18, when air is being cooled, a portion of the cool storage container 100 that is in contact with the outside air (that is, the main body 110). And heat transfer between the cool storage material HM present in each part of the cool storage space SP is performed only through the wall surface of the main body 110.

 上記伝熱により、凝固していた固相蓄冷材HM2は、当該壁面に近い部分から次第に融解して行く。このため、蓄冷容器100の中心に近い部分においては蓄冷材が凝固している一方で、蓄冷容器100の壁面近傍においては蓄冷材HMが融解している状態となる。 The solid phase regenerator material HM2 that has solidified due to the heat transfer gradually melts from the portion near the wall surface. For this reason, while the cool storage material is solidified in the part near the center of the cool storage container 100, the cool storage material HM is melted in the vicinity of the wall surface of the cool storage container 100.

 このような状態においては、融解している液相蓄冷材HM1において温度分布が生じている。つまり、融解している液相蓄冷材HM1のうち、凝固している固相蓄冷材HM2に近い部分においては比較的低温となっている一方で、蓄冷容器100の壁面に近い部分、すなわち空気との熱交換に供される部分においては比較的高温となっている。その結果、蓄冷容器100のうち外部の空気に触れている部分の温度も比較的高温となってしまい、空気の冷却が十分には行われなくなってしまう。 In such a state, a temperature distribution is generated in the melted liquid phase regenerator material HM1. That is, among the melted liquid phase regenerator material HM1, the portion close to the solidified solid state regenerator material HM2 is relatively low temperature, while the portion near the wall surface of the regenerator container 100, that is, air and The portion used for heat exchange is relatively high in temperature. As a result, the temperature of the portion of the cool storage container 100 that is in contact with the outside air also becomes relatively high, and the air is not sufficiently cooled.

 このように、図18の比較例に係る蓄冷容器100を用いた空気冷却装置10においては、蓄冷容器100には凝固した低温の固相蓄冷材HM2が残っているにも拘らず、空気の冷却が十分には行われなくなり、吹き出される空気の温度が上昇してしまうことがあった。 As described above, in the air cooling apparatus 10 using the cold storage container 100 according to the comparative example of FIG. 18, the air cooling is performed despite the solidified low-temperature solid-phase cold storage material HM2 remaining in the cold storage container 100. May not be sufficiently performed, and the temperature of the blown air may increase.

 これに対し本実施形態では、空気冷却装置10において空気の冷却が行われているときには、蓄冷容器100のうち外側の空気に触れている部分(つまり本体部110)と、蓄冷空間SPの各部に存在する蓄冷材HMとの間における伝熱が、本体部110の壁面及び内部フィン114を介して行われる。 On the other hand, in the present embodiment, when air is cooled in the air cooling device 10, the portion of the cold storage container 100 that is in contact with the outside air (that is, the main body portion 110) and each portion of the cold storage space SP are provided. Heat transfer with the existing cool storage material HM is performed through the wall surface of the main body 110 and the internal fins 114.

 空気からの伝熱により、固相蓄冷材HM2は次第に融解して行く。このときの内部フィン114は、内側に残っている固相蓄冷材HM2に直接触れている(もしくはその近傍にある)ので、固相蓄冷材HM2によって冷却され低温となっている。 The solid phase regenerator HM2 gradually melts due to heat transfer from the air. Since the internal fin 114 at this time is in direct contact with (or in the vicinity of) the solid-phase regenerator material HM2 remaining inside, it is cooled by the solid-phase regenerator material HM2 and has a low temperature.

 空気との熱交換によって一部の蓄冷材HMが融解し液相蓄冷材HM1となった後においても、液相蓄冷材HM1の略全体が低温の内部フィン114によって冷却される。このため、液相蓄冷材HM1の各部における温度分布はほぼ均等なものとなる。その結果、固相蓄冷材HM2が蓄冷空間SPに残っている限り、蓄冷容器100のうち外部の空気に触れている部分、すなわち外壁面118や外部フィン112の温度は比較的低温に保たれる。これにより、空気冷却装置10による空気の冷却を長時間に亘って行うことが可能となる。 Even after a portion of the regenerator material HM is melted by heat exchange with air and becomes the liquid-phase regenerator material HM1, substantially the entire liquid-phase regenerator material HM1 is cooled by the low-temperature internal fins 114. For this reason, the temperature distribution in each part of the liquid phase regenerator material HM1 becomes substantially uniform. As a result, as long as the solid-phase regenerator material HM2 remains in the regenerator space SP, the temperature of the part of the regenerator 100 that is in contact with outside air, that is, the outer wall surface 118 and the external fin 112 is kept relatively low. . Thereby, it becomes possible to cool the air by the air cooling device 10 for a long time.

 本体部110に外部フィン112が形成されていることの効果について説明する。これについては既に述べたように、外部フィン112によって空気との接触面積が大きくなっており、これにより空気冷却装置10における空気の冷却性能が高められている。図6では、外部フィン112が形成されていない場合における冷却性能の測定結果がグラフG01で示されており、外部フィン112が形成されている場合における冷却性能の測定結果がグラフG02で示されている。 The effect of forming the external fin 112 on the main body 110 will be described. As described above, the contact area with the air is increased by the external fins 112, thereby improving the air cooling performance in the air cooling device 10. In FIG. 6, the measurement result of the cooling performance when the external fin 112 is not formed is shown by a graph G01, and the measurement result of the cooling performance when the external fin 112 is formed is shown by a graph G02. Yes.

 尚、空気冷却装置10の「冷却性能」とは、空気が空気冷却装置10を通過する際において、当該空気から単位時間あたりに奪われるエネルギー(単位:W)のことである。本発明者らは、外部の空気の温度が28℃、湿度が40%であり、且つ当該空気が21m3/hの風量で吹き出し部212から吹き出される、という条件の下で、冷却性能の測定を行った。 The “cooling performance” of the air cooling device 10 is energy (unit: W) taken from the air per unit time when the air passes through the air cooling device 10. The inventors measured the cooling performance under the conditions that the temperature of the external air was 28 ° C., the humidity was 40%, and the air was blown out from the blowing section 212 with an air volume of 21 m 3 / h. Went.

 外部フィン112が形成されていない場合における冷却性能は、グラフG01に示されるように34Wであった。これに対し、本実施形態のように外部フィン112が形成されている場合における冷却性能は、グラフG02に示されるように66Wであった。このように、上記の測定においては、外部フィン112によって冷却性能が2倍近くまで向上することが確認された。これは、外部フィン112が形成されたことにより、空気との接触面積が0.04m2から0.14m2へと3.5倍も大きくなったことに起因している。 The cooling performance when the external fin 112 was not formed was 34 W as shown in the graph G01. On the other hand, the cooling performance in the case where the external fins 112 are formed as in the present embodiment was 66 W as shown in the graph G02. As described above, in the above measurement, it was confirmed that the cooling performance is improved to nearly twice by the external fin 112. This is due to the fact that the contact area with air is increased 3.5 times from 0.04 m 2 to 0.14 m 2 due to the formation of the external fins 112.

 上記のような冷却性能の測定を行うに当たり、発明者らは、吹き出し部212から吹き出される空気の温度(以下では(吹き出し空気温度」とも称する)についても測定を行った。図7では、外部フィン112が形成されていない場合における吹き出し空気温度の測定結果がグラフG11で示されており、外部フィン112が形成されている場合における吹き出し空気温度の測定結果がグラフG12で示されている。 In measuring the cooling performance as described above, the inventors also measured the temperature of the air blown out from the blowing section 212 (hereinafter also referred to as (blowing air temperature)). The measurement result of the blown air temperature when the fin 112 is not formed is shown by a graph G11, and the measurement result of the blown air temperature when the external fin 112 is formed is shown by a graph G12.

 外部フィン112が形成されていない場合における吹き出し空気温度は、グラフG11に示されるように23℃であった。つまり、空気冷却装置10の内部を通過する際において、空気の温度は外気温(28℃)から5℃低下した。これに対し、本実施形態のように外部フィン112が形成されている場合における吹き出し空気温度は、グラフG12に示されるように18℃であった。つまり、空気冷却装置10の内部を通過する際において、空気の温度は外気温(28℃)から10℃低下した。 The blown air temperature when the external fin 112 was not formed was 23 ° C. as shown in the graph G11. That is, when passing through the inside of the air cooling device 10, the temperature of the air decreased by 5 ° C. from the outside air temperature (28 ° C.). On the other hand, when the external fin 112 is formed as in this embodiment, the blown air temperature is 18 ° C. as shown in the graph G12. That is, when passing through the inside of the air cooling device 10, the temperature of the air decreased by 10 ° C. from the outside air temperature (28 ° C.).

 一般に、外気温よりも5℃以上低い温度の空気が吹き付けられたときに、人は涼しいと感じることが知られている。また、地表から1mの高さとなる位置においては、体感温度が外気温よりも5℃上昇することも知られている。これらに鑑みれば、空気冷却装置10をベビーカーに取り付けて、地表から1mの高さとなる位置において使用する際には、吹き出し空気温度が外気温よりも10℃以上低い温度となることが求められる。本実施形態に係る空気冷却装置10では、外部フィン112を設けることにより、上記のように外気温よりも10℃低い吹き出し空気温度を実現している。 Generally, it is known that people feel cool when air at a temperature 5 ° C. lower than the outside air temperature is blown. It is also known that at a position 1 m above the ground surface, the sensible temperature rises 5 ° C. above the outside air temperature. In view of these, when the air cooling device 10 is attached to a baby stroller and used at a height of 1 m from the ground surface, the blown air temperature is required to be 10 ° C. lower than the outside air temperature. In the air cooling device 10 according to the present embodiment, by providing the external fins 112, the blown air temperature that is 10 ° C. lower than the outside air temperature is realized as described above.

 既に述べたように、本実施形態では蓄冷材HMとして水が用いられている。ただし、蓄冷材HMとして用いられるのは水に限定される必要はなく、他の流体が蓄冷材HMとして用いられてもよい。例えば、蓄冷材HMとして食塩水を用いれば、水に比べて蓄冷材HMの融点を下げることができる。これにより、空気冷却装置10の吹き出し空気温度を更に下げることもできる。 As already described, water is used as the cold storage material HM in this embodiment. However, what is used as the cold storage material HM is not necessarily limited to water, and other fluids may be used as the cold storage material HM. For example, if salt water is used as the cold storage material HM, the melting point of the cold storage material HM can be lowered compared to water. Thereby, the blowing air temperature of the air cooling device 10 can be further lowered.

 水や食塩水(以下では、これらをまとめて「水等」とも表記する)は、相変化する際における潜熱が比較的大きい。このため、蓄冷材HMとして水等が用いられた場合には、蓄冷材HMの全部または一部が固相となっている状態を長く保つことができ、空気冷却装置10の冷却性能を長時間に亘って発揮させることができる。 Water and saline (hereinafter collectively referred to as “water”) have a relatively large latent heat during phase change. For this reason, when water etc. are used as the cool storage material HM, the state in which all or a part of the cool storage material HM is in a solid phase can be kept long, and the cooling performance of the air cooling device 10 can be increased for a long time. It can be exhibited over a wide range.

 ただし、水等は、固相から液相となる際においてその体積が減少するという特性を有している。このため、蓄冷容器100内の蓄冷材HMが固相から液相となる過程においては、上記のような体積の減少に伴って本体部110の外形が小さくなり、外部フィン112の先端面113がケーシング210の内壁面224から離れてしまうことが懸念される。このような状態になると、既に述べたように、外部フィン112の先端面113よりも更に外側を、一部の空気が熱交換に供されることなく素通りしてしまうような現象が生じる可能性がある。 However, water or the like has a characteristic that its volume decreases when it changes from a solid phase to a liquid phase. For this reason, in the process in which the cool storage material HM in the cool storage container 100 changes from the solid phase to the liquid phase, the outer shape of the main body 110 becomes smaller as the volume decreases as described above, and the front end surfaces 113 of the external fins 112 become smaller. There is a concern that the casing 210 may be separated from the inner wall surface 224 of the casing 210. In such a state, as described above, a phenomenon may occur in which a part of the air passes through the outer side of the front end surface 113 of the external fin 112 without being subjected to heat exchange. There is.

 この点に鑑みれば、蓄冷材HMとしては水等に替えてパラフィンを用いることが好ましい。パラフィンは、一般的な流体と同様に、固相から液相となる際においてその体積が増加するという特性を有している。このため、蓄冷材HMとしてパラフィンを用いれば、蓄冷容器100内の蓄冷材HMの融解が始まった後においても、外部フィン112の先端面113がケーシング210の内壁面224に当接している状態を維持することができ、空気冷却装置10の冷却性能を維持することができる。 In view of this point, it is preferable to use paraffin instead of water or the like as the cold storage material HM. Paraffin has a characteristic that its volume increases when it is changed from a solid phase to a liquid phase, like a general fluid. For this reason, if paraffin is used as the cold storage material HM, the state in which the front end surface 113 of the external fin 112 is in contact with the inner wall surface 224 of the casing 210 even after the cold storage material HM in the cold storage container 100 starts to melt. The cooling performance of the air cooling device 10 can be maintained.

 ただし、パラフィンは、相変化する際における潜熱が水等に比べると小さい。このため、蓄冷材HMとして水等が用いられる場合に比べると、空気冷却装置10の冷却性能を発揮し得る時間は短くなる。このように、水等とパラフィンとは一長一短であるから、空気冷却装置10の用途に合わせた適切な蓄冷材HMが選択されることが好ましい。本実施形態では、給排部として開口121及びキャップ130が設けられているので、空気冷却装置10の用途に合わせて蓄冷材HMを入れ替えることができる。 However, paraffin has a lower latent heat during phase change than water. For this reason, compared with the case where water etc. are used as the cool storage material HM, the time which can exhibit the cooling performance of the air cooling device 10 becomes short. Thus, since water etc. and paraffin have merits and demerits, it is preferable to select an appropriate cold storage material HM suitable for the use of the air cooling device 10. In this embodiment, since the opening 121 and the cap 130 are provided as the supply / discharge section, the regenerator material HM can be replaced in accordance with the application of the air cooling device 10.

 第2実施形態について、図8を参照しながら説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。 The second embodiment will be described with reference to FIG. Hereinafter, differences from the first embodiment will be mainly described, and description of points that are common to the first embodiment will be omitted as appropriate.

 本実施形態では、外部フィン112と本体部110とが一体に形成されておらず、両者が別体となっている。外部フィン112は、円筒状の部材である筒状体110Aの外壁面118Aに形成されている。筒状体110Aはアルミニウムによって形成されており、筒状体110Aと外部フィン112とが一体に形成されている。本実施形態に係る蓄冷容器100は、このような筒状体110Aの内側に本体部110が挿入された構成となっている。本体部110の外壁面118は、筒状体110Aの内壁面119Aに当接している。これにより、外部フィン112と本体部110との間における伝熱が確保される。このような態様であっても、第1実施形態と同様の効果を奏する。 In the present embodiment, the external fin 112 and the main body 110 are not integrally formed, and both are separated. The external fin 112 is formed on the outer wall surface 118A of the cylindrical body 110A that is a cylindrical member. The cylindrical body 110A is made of aluminum, and the cylindrical body 110A and the external fin 112 are integrally formed. The cold storage container 100 according to the present embodiment has a configuration in which the main body 110 is inserted inside such a cylindrical body 110A. The outer wall surface 118 of the main body 110 is in contact with the inner wall surface 119A of the cylindrical body 110A. Thereby, heat transfer between the external fin 112 and the main body 110 is ensured. Even if it is such an aspect, there exists an effect similar to 1st Embodiment.

 尚、本実施形態の構成においては、蓄冷材HMとして水等を用いることが好ましい。蓄冷材HMとして水等を用いれば、蓄冷材HMが凝固する過程においてその体積が膨張し、これにより本体部110の外形が大きくなる。その結果、本体部110の外壁面118と筒状体110Aの内壁面119Aとの間が密着するので、両者間の熱抵抗を小さくすることができる。 In addition, in the structure of this embodiment, it is preferable to use water etc. as the cool storage material HM. If water or the like is used as the cold storage material HM, the volume of the cold storage material HM expands in the process of solidifying, thereby increasing the outer shape of the main body 110. As a result, the outer wall surface 118 of the main body 110 and the inner wall surface 119A of the cylindrical body 110A are in close contact with each other, so that the thermal resistance between them can be reduced.

 第3実施形態について、図9を参照しながら説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。 The third embodiment will be described with reference to FIG. Hereinafter, differences from the first embodiment will be mainly described, and description of points that are common to the first embodiment will be omitted as appropriate.

 本実施形態では、第1実施形態における外部フィン112のそれぞれが3つに分割されており、分割された外部フィン112が、中心軸AXに沿った方向(図9では上下方向)に複数枚並ぶように形成されている。図9では、上記のように3つに分割された外部フィン112のうち、最も上方に配置されている外部フィン112に符号1121が付されている。また、中央に配置されている外部フィン112には符号1122が付されており、最も下方に配置されている外部フィン112には符号1123が付されている。以下では、それぞれを「外部フィン1121」「外部フィン1122」「外部フィン1123」のようにも表記する。 In the present embodiment, each of the external fins 112 in the first embodiment is divided into three, and a plurality of the divided external fins 112 are arranged in a direction along the central axis AX (vertical direction in FIG. 9). It is formed as follows. In FIG. 9, reference numeral 1121 is assigned to the outer fin 112 disposed at the uppermost position among the outer fins 112 divided into three as described above. Further, the outer fin 112 arranged at the center is denoted by reference numeral 1122, and the outer fin 112 disposed at the lowermost position is denoted by reference numeral 1123. Hereinafter, each of them is also expressed as “external fin 1121”, “external fin 1122”, and “external fin 1123”.

 このような構成においては、外部フィン1121、外部フィン1122、及び外部フィン1123のそれぞれの上方側端部、すなわち、空気の流れ方向における上流側の端部において、所謂前縁効果が生じるため、外部フィン112と空気との間における熱交換がより効率よく行われる。つまり、本実施形態では、それぞれの外部フィン112が空気の流れ方向に沿って複数枚設けられることにより、前縁効果が大きくなっており、空気の冷却性能が更に高められている。 In such a configuration, a so-called leading edge effect occurs at the upper end of each of the external fin 1121, the external fin 1122, and the external fin 1123, that is, the upstream end in the air flow direction. Heat exchange between the fins 112 and the air is performed more efficiently. That is, in the present embodiment, a plurality of external fins 112 are provided along the air flow direction, so that the leading edge effect is increased and the air cooling performance is further enhanced.

 尚、外部フィン1122が形成されている位置は、本実施形態のように外部フィン1121の直下となる位置であってもよいが、外部フィン1121の位置から周方向にずれた位置であってもよい。同様に、外部フィン1123が形成されている位置は、本実施形態のように外部フィン1122の直下となる位置であってもよいが、外部フィン1122の位置から周方向にずれた位置であってもよい。 The position where the external fin 1122 is formed may be a position immediately below the external fin 1121 as in this embodiment, or may be a position shifted in the circumferential direction from the position of the external fin 1121. Good. Similarly, the position where the external fin 1123 is formed may be a position directly below the external fin 1122 as in the present embodiment, but is a position shifted in the circumferential direction from the position of the external fin 1122. Also good.

 第4実施形態について、図10を参照しながら説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。図10は、本実施形態に係る蓄冷容器100の本体部110を、図4と同様に中心軸AXに対して垂直な面で切断した場合における断面図である。 The fourth embodiment will be described with reference to FIG. Hereinafter, differences from the first embodiment will be mainly described, and description of points that are common to the first embodiment will be omitted as appropriate. FIG. 10 is a cross-sectional view of the main body 110 of the cold storage container 100 according to the present embodiment cut along a plane perpendicular to the central axis AX as in FIG.

 図10に示されるように、本実施形態に係る蓄冷容器100には、本体部110の内側に第1実施形態(図4)と同様の内部フィン114が形成されている一方で、本体部110の外側に外部フィン112は形成されていない。このように、伝熱促進部として内部フィン114のみが形成されている態様であっても、蓄冷容器100による空気の冷却性能を高めることができる。 As shown in FIG. 10, the cold storage container 100 according to the present embodiment has the same internal fin 114 as that of the first embodiment (FIG. 4) formed inside the main body 110, while the main body 110. External fins 112 are not formed on the outside. Thus, even if it is an aspect in which only the internal fins 114 are formed as the heat transfer promoting part, the air cooling performance by the cold storage container 100 can be enhanced.

 第5実施形態について、図11を参照しながら説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。図11は、本実施形態に係る蓄冷容器100の本体部110を、図4と同様に中心軸AXに対して垂直な面で切断した場合における断面図である。 The fifth embodiment will be described with reference to FIG. Hereinafter, differences from the first embodiment will be mainly described, and description of points that are common to the first embodiment will be omitted as appropriate. FIG. 11 is a cross-sectional view when the main body 110 of the cold storage container 100 according to the present embodiment is cut along a plane perpendicular to the central axis AX similarly to FIG.

 図11に示されるように、本実施形態に係る蓄冷容器100には、本体部110の外側に第1実施形態(図4)と同様の外部フィン112が形成されている一方で、本体部110の内側に内部フィン114は形成されていない。このように、伝熱促進部として外部フィン112のみが形成されている態様であっても、蓄冷容器100による空気の冷却性能を高めることができる。 As shown in FIG. 11, in the cold storage container 100 according to the present embodiment, external fins 112 similar to those in the first embodiment (FIG. 4) are formed outside the main body 110, while the main body 110. The internal fin 114 is not formed on the inside. Thus, even if it is an aspect in which only the external fin 112 is formed as the heat transfer promoting part, the air cooling performance by the cold storage container 100 can be enhanced.

 第6実施形態について、図12を参照しながら説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。図12は、本実施形態に係る蓄冷容器100の本体部110を、図4と同様に中心軸AXに対して垂直な面で切断した場合における断面図である。同図においては、ケーシング210の内壁面224が点線で示されている。 The sixth embodiment will be described with reference to FIG. Hereinafter, differences from the first embodiment will be mainly described, and description of points that are common to the first embodiment will be omitted as appropriate. FIG. 12 is a cross-sectional view of the main body 110 of the cold storage container 100 according to the present embodiment cut along a plane perpendicular to the central axis AX as in FIG. In the figure, the inner wall surface 224 of the casing 210 is indicated by a dotted line.

 図12に示されるように、本実施形態に係る蓄冷容器100には、本体部110の外壁面118を外側から囲むように、外部フィン112Aが設けられている。外部フィン112Aは、波状に折り曲げられたアルミニウム板からなるコルゲートフィンの全体を、円筒状に形成したものとなっている。外部フィン112Aの山の頂部はケーシング210の内壁面224に接しており、外部フィン112Aの谷の底部は本体部110の外壁面118に接している。尚、上記のように接している箇所の一部または全部において、外部フィン112Aがろう接されていてもよい。 As shown in FIG. 12, the cold storage container 100 according to this embodiment is provided with external fins 112A so as to surround the outer wall surface 118 of the main body 110 from the outside. The external fin 112A is a cylindrical corrugated fin made of an aluminum plate bent into a wave shape. The top of the mountain of the external fin 112 </ b> A is in contact with the inner wall surface 224 of the casing 210, and the bottom of the valley of the external fin 112 </ b> A is in contact with the outer wall surface 118 of the main body 110. It should be noted that the external fin 112A may be brazed at part or all of the portions that are in contact as described above.

 このように、本体部110の外側にある外部フィン112Aが平板状のフィンではなく、波状のコルゲートフィンとして形成されているような態様であっても、第1実施形態において説明したものと同様の効果を奏する。 Thus, even if the external fin 112A on the outer side of the main body 110 is formed as a corrugated fin instead of a flat fin, it is the same as that described in the first embodiment. There is an effect.

 第7実施形態について、図13を参照しながら説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。図13は、本実施形態に係る蓄冷容器100の本体部110を、図4と同様に中心軸AXに対して垂直な面で切断した場合における断面図である。同図においては、ケーシング210の内壁面224が点線で示されている。 The seventh embodiment will be described with reference to FIG. Hereinafter, differences from the first embodiment will be mainly described, and description of points that are common to the first embodiment will be omitted as appropriate. FIG. 13 is a cross-sectional view when the main body 110 of the cold storage container 100 according to the present embodiment is cut along a plane perpendicular to the central axis AX similarly to FIG. In the figure, the inner wall surface 224 of the casing 210 is indicated by a dotted line.

 図13に示されるように、本実施形態に係る蓄冷容器100には、本体部110の外壁面118を外側から囲むように、外部フィン112Bが設けられている。外部フィン112Bは、薄いアルミニウムの板を渦巻状(ロール状)に巻くことによって形成したものとなっている。外部フィン112Bのうち内周側の一端は、図13の点P1において本体部110の外壁面118に接している。また、外部フィン112Bのうち外周側の一端は、図13の点P2においてケーシング210の内壁面224に接している。尚、上記のように接している箇所の一部または全部において、外部フィン112Bがろう接されていてもよい。 As shown in FIG. 13, the cold storage container 100 according to this embodiment is provided with external fins 112 </ b> B so as to surround the outer wall surface 118 of the main body 110 from the outside. The external fin 112B is formed by winding a thin aluminum plate in a spiral shape (roll shape). One end on the inner peripheral side of the external fin 112B is in contact with the outer wall surface 118 of the main body 110 at a point P1 in FIG. Further, one end on the outer peripheral side of the external fin 112B is in contact with the inner wall surface 224 of the casing 210 at a point P2 in FIG. It should be noted that the external fin 112B may be brazed at a part or all of the portions in contact as described above.

 このように、本体部110の外側にある外部フィン112Bが平板状のフィンではなく、渦巻状に巻くことによって形成されているような態様であっても、第1実施形態において説明したものと同様の効果を奏する。 As described above, even if the external fin 112B on the outside of the main body 110 is formed not by a flat plate but by spirally winding, the same as described in the first embodiment. The effect of.

 第8実施形態について、図14を参照しながら説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。図14は、本実施形態に係る蓄冷容器100の本体部110を、図4と同様に中心軸AXに対して垂直な面で切断した場合における断面図である。 The eighth embodiment will be described with reference to FIG. Hereinafter, differences from the first embodiment will be mainly described, and description of points that are common to the first embodiment will be omitted as appropriate. FIG. 14 is a cross-sectional view when the main body 110 of the cold storage container 100 according to the present embodiment is cut along a plane perpendicular to the central axis AX similarly to FIG.

 図14に示されるように、本実施形態に係る蓄冷容器100の蓄冷空間SP(つまり本体部110の内側)には、内部フィン114Cが設けられている。内部フィン114Cは、中心軸AXから、本体部110の内壁面119に向けて放射状に伸びるように形成された板状(平板状)の部材となっている。第1実施形態と異なり、内部フィン114Cの先端は本体部110の内壁面119に繋がっておらず、内部フィン114Cと内壁面119との間には小さな隙間が形成されている。当該隙間がある程度小さければ、内部フィン114Cと内壁面119とが繋がっていないような態様であっても、第1実施形態において説明したものと同様の効果(液相蓄冷材HM1の各部における温度分布をほぼ均等なものとする効果)を奏することができる。 As shown in FIG. 14, an internal fin 114 </ b> C is provided in the cold storage space SP (that is, inside the main body 110) of the cold storage container 100 according to the present embodiment. The internal fin 114 </ b> C is a plate-like (flat plate) member formed so as to extend radially from the central axis AX toward the inner wall surface 119 of the main body 110. Unlike the first embodiment, the tip of the internal fin 114C is not connected to the inner wall surface 119 of the main body 110, and a small gap is formed between the internal fin 114C and the inner wall surface 119. If the gap is small to some extent, the same effect as described in the first embodiment (temperature distribution in each part of the liquid phase regenerator HM1) even if the internal fin 114C and the inner wall surface 119 are not connected. (Effects of making the images substantially uniform).

 尚、このような内部フィン114Cは本体部110と一体に形成されていてもよく、本体部110とは別体のものとして形成されていてもよい。後者の場合、内部フィン114Cは本体部110にろう接されていてもよく、単に蓄冷容器100の内部に置かれているだけでもよい。 Note that such internal fins 114 </ b> C may be formed integrally with the main body 110, or may be formed separately from the main body 110. In the latter case, the internal fin 114 </ b> C may be brazed to the main body 110, or may simply be placed inside the cold storage container 100.

 第9実施形態について、図15を参照しながら説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。図15は、本実施形態に係る蓄冷容器100の本体部110を、図4と同様に中心軸AXに対して垂直な面で切断した場合における断面図である。 The ninth embodiment will be described with reference to FIG. Hereinafter, differences from the first embodiment will be mainly described, and description of points that are common to the first embodiment will be omitted as appropriate. FIG. 15 is a cross-sectional view when the main body 110 of the cold storage container 100 according to the present embodiment is cut along a plane perpendicular to the central axis AX similarly to FIG.

 図15に示されるように、本実施形態に係る蓄冷容器100の蓄冷空間SP(つまり本体部110の内側)には、内部フィン114Dが設けられている。内部フィン114Dは、薄いアルミニウムの板を、隙間を空けて渦巻状(ロール状)に巻くことによって形成したものとなっている。 As shown in FIG. 15, an internal fin 114 </ b> D is provided in the cold storage space SP (that is, inside the main body 110) of the cold storage container 100 according to the present embodiment. The internal fin 114D is formed by winding a thin aluminum plate in a spiral shape (roll shape) with a gap.

 本実施形態では、内部フィン114Dと内壁面119との間が離間しているのであるが、内部フィン114Dの一部が内壁面119に接しているような態様であってもよい。また、内部フィン114Dは本体部110にろう接されていてもよく、単に蓄冷容器100の内部に置かれているだけでもよい。 In the present embodiment, the inner fin 114D and the inner wall surface 119 are separated from each other, but a mode in which a part of the inner fin 114D is in contact with the inner wall surface 119 may be employed. Further, the internal fin 114 </ b> D may be brazed to the main body 110, or may simply be placed inside the cold storage container 100.

 このように、内部フィン114Dが放射状に形成されておらず渦巻状に形成されているような態様であっても、第1実施形態において説明したものと同様の効果を奏する。本実施形態においては、蓄冷材HMが凝固する際などにおいてその体積を変化させた場合に、内部フィン114Dが容易に変形して追従することとなる。このため、内部応力が低減されるという効果も得られる。 Thus, even if the internal fins 114D are not formed radially but formed in a spiral shape, the same effects as those described in the first embodiment can be obtained. In the present embodiment, the internal fin 114D easily deforms and follows when the volume of the cold storage material HM is changed when the cold storage material HM is solidified. For this reason, the effect that internal stress is reduced is also acquired.

 第10実施形態について、図16を参照しながら説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。図16は、本実施形態に係る蓄冷容器100の本体部110を、図4と同様に中心軸AXに対して垂直な面で切断した場合における断面図である。 The tenth embodiment will be described with reference to FIG. Hereinafter, differences from the first embodiment will be mainly described, and description of points that are common to the first embodiment will be omitted as appropriate. FIG. 16 is a cross-sectional view when the main body 110 of the cold storage container 100 according to the present embodiment is cut along a plane perpendicular to the central axis AX similarly to FIG.

 図16に示されるように、本実施形態に係る蓄冷容器100の蓄冷空間SP(つまり本体部110の内側)には、内部フィン114Eが設けられている。内部フィン114Eは、波状に折り曲げられたアルミニウム板からなるコルゲートフィンの全体を、円筒状に形成したものとなっている。本実施形態では、内部フィン114Eと内壁面119との間が離間しているのであるが、内部フィン114Eの一部が内壁面119に接しているような態様であってもよい。また、内部フィン114Eは本体部110にろう接されていてもよく、単に蓄冷容器100の内部に置かれているだけでもよい。 As FIG. 16 shows, the internal fin 114E is provided in the cool storage space SP (that is, the inner side of the main-body part 110) of the cool storage container 100 which concerns on this embodiment. The internal fin 114E is a corrugated fin made of an aluminum plate bent into a wave shape and formed into a cylindrical shape. In the present embodiment, the inner fin 114E and the inner wall surface 119 are separated from each other, but a mode in which a part of the inner fin 114E is in contact with the inner wall surface 119 may be employed. Further, the internal fin 114E may be brazed to the main body 110, or may simply be placed inside the cold storage container 100.

 このように、内部フィン114Eがコルゲートフィンとして形成されているような態様であっても、第1実施形態において説明したものと同様の効果を奏する。本実施形態においては、蓄冷材HMが凝固する際などにおいてその体積を変化させた場合に、内部フィン114Eが容易に変形して追従することとなる。このため、内部応力が低減されるという効果も得られる。 Thus, even if the internal fin 114E is formed as a corrugated fin, the same effects as those described in the first embodiment can be obtained. In the present embodiment, when the volume of the regenerator material HM is changed, for example, when the cold storage material HM is solidified, the internal fins 114E are easily deformed and follow up. For this reason, the effect that internal stress is reduced is also acquired.

 第11実施形態について、図17を参照しながら説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。図17は、本実施形態に係る蓄冷容器100の本体部110の内部構成を、斜視図として模式的に描いた図である。同図においては、蓄冷空間SPを区画する本体部110の内面(内壁面119及び底面BS)が点線で示されている。 The eleventh embodiment will be described with reference to FIG. Hereinafter, differences from the first embodiment will be mainly described, and description of points that are common to the first embodiment will be omitted as appropriate. FIG. 17 is a diagram schematically depicting the internal configuration of the main body 110 of the cold storage container 100 according to the present embodiment as a perspective view. In the figure, the inner surface (the inner wall surface 119 and the bottom surface BS) of the main body 110 that partitions the cold storage space SP is indicated by a dotted line.

 蓄冷空間SP(つまり本体部110の内側)には、内部フィン114Fが複数設けられている。それぞれの内部フィン114Fは、中心軸AXに沿って伸びる円柱状のピンフィンとして形成されている。それぞれの内部フィン114Fは、その下端部が底面BSに当接しており、且つろう接されている。本実施形態では、内部フィン114Fが底面BSへの伝熱によって冷却され、低温に保たれる。これにより、第1実施形態において説明したものと同様の効果(液相蓄冷材HM1の各部における温度分布をほぼ均等なものとする効果)を奏することができる。 A plurality of internal fins 114F are provided in the cold storage space SP (that is, inside the main body 110). Each internal fin 114F is formed as a cylindrical pin fin extending along the central axis AX. Each internal fin 114F has a lower end in contact with the bottom surface BS and is brazed. In the present embodiment, the internal fins 114F are cooled by heat transfer to the bottom surface BS and kept at a low temperature. Thereby, the effect similar to what was demonstrated in 1st Embodiment (Effect which makes temperature distribution in each part of liquid phase cool storage material HM1 substantially equal) can be show | played.

 尚、図1に示される構成の空気冷却装置10は、以上に説明したそれぞれの蓄冷容器100を内部に収容し用いることができる。 In addition, the air cooling device 10 having the configuration shown in FIG. 1 can accommodate and use each of the cold storage containers 100 described above.

 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Those in which those skilled in the art appropriately modify the design of these specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the specific examples described above and their arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. Each element included in each of the specific examples described above can be appropriately combined as long as no technical contradiction occurs.

Claims (16)

 空気冷却装置(10)に格納される蓄冷容器(100)であって、
 蓄冷材(HM)を収容するための蓄冷空間(SP)が内部に形成された本体部(110)と、
 前記本体部の内側と外側との間における伝熱を促進する伝熱促進部(112,114,114A,114B,114C,114D,114E,114F)と、を備える蓄冷容器。
A cold storage container (100) stored in an air cooling device (10),
A main body (110) in which a cold storage space (SP) for accommodating a cold storage material (HM) is formed;
A cold storage container comprising: a heat transfer promotion part (112, 114, 114A, 114B, 114C, 114D, 114E, 114F) that promotes heat transfer between the inside and the outside of the main body part.
 前記伝熱促進部は、前記本体部の内側に設けられた内部フィン(114,114C,114D,114E,114F)を含む、請求項1に記載の蓄冷容器。 The cold storage container according to claim 1, wherein the heat transfer promoting part includes internal fins (114, 114C, 114D, 114E, 114F) provided inside the main body part.  前記内部フィンは、
 前記本体部の内壁面(119)から、前記蓄冷空間の内側に向けて伸びるように形成されている、請求項2に記載の蓄冷容器。
The internal fin is
The cold storage container according to claim 2, which is formed so as to extend from the inner wall surface (119) of the main body portion toward the inside of the cold storage space.
 前記内部フィンは前記本体部と一体に形成されている、請求項3に記載の蓄冷容器。 The cold storage container according to claim 3, wherein the internal fin is formed integrally with the main body.  前記本体部は筒状に形成されており、
 前記内部フィンは、前記本体部の中心軸(AX)に対して平行な板状に形成されている、請求項3又は4に記載の蓄冷容器。
The main body is formed in a cylindrical shape,
The cold storage container according to claim 3 or 4, wherein the internal fin is formed in a plate shape parallel to a central axis (AX) of the main body.
 前記内部フィンは、
 前記本体部の周方向に沿って複数枚並ぶように形成されている、請求項5に記載の蓄冷容器。
The internal fin is
The cold storage container according to claim 5, wherein a plurality of the cold storage containers are arranged along the circumferential direction of the main body.
 前記伝熱促進部は、前記本体部の外側に設けられた外部フィン(112,112A,112B)を含む、請求項1乃至6のいずれか1項に記載の蓄冷容器。 The cold storage container according to any one of claims 1 to 6, wherein the heat transfer promoting part includes external fins (112, 112A, 112B) provided outside the main body part.  前記外部フィンは、
 前記本体部の外壁面(118)から、外方に向けて伸びるように形成されている、請求項7に記載の蓄冷容器。
The external fin is
The cold storage container according to claim 7, which is formed so as to extend outward from an outer wall surface (118) of the main body.
 前記外部フィンは前記本体部と一体に形成されている、請求項8に記載の蓄冷容器。 The cold storage container according to claim 8, wherein the external fin is formed integrally with the main body.  前記本体部は筒状に形成されており、
 前記外部フィンは、前記本体部の中心軸に対して平行な板状に形成されている、請求項8又は9に記載の蓄冷容器。
The main body is formed in a cylindrical shape,
The cold storage container according to claim 8 or 9, wherein the external fin is formed in a plate shape parallel to the central axis of the main body.
 前記外部フィンは、
 前記本体部の周方向に沿って複数枚並ぶように形成されている、請求項10に記載の蓄冷容器。
The external fin is
The cold storage container according to claim 10, wherein a plurality of the cold storage containers are arranged along a circumferential direction of the main body.
 前記外部フィンは、
 前記中心軸に沿った方向においても複数枚並ぶように形成されている、請求項11に記載の蓄冷容器。
The external fin is
The cold storage container according to claim 11, wherein a plurality of the cold storage containers are arranged in a direction along the central axis.
 前記本体部には、前記蓄冷空間への前記蓄冷材の供給、及び前記蓄冷空間からの前記蓄冷材の排出を行うための給排部(121,130)が設けられている、請求項1乃至12のいずれか1項に記載の蓄冷容器。 The said main-body part is provided with the supply / exhaust part (121,130) for supplying the said cool storage material to the said cool storage space, and discharging | emitting the said cool storage material from the said cool storage space. The cold storage container according to any one of 12.  前記空気冷却装置から蓄冷容器が取り出される際において、使用者によって把持される部分である把持部(130)が設けられている、請求項1乃至13のいずれか1項に記載の蓄冷容器。 The cold storage container according to any one of claims 1 to 13, further comprising a grip portion (130) that is a portion gripped by a user when the cold storage container is taken out of the air cooling device.  前記本体部は筒状に形成されており、
 前記本体部の中心軸に沿って見た場合における前記把持部の形状は、
 前記中心軸に沿って見た場合における前記本体部の形状よりも小さい、請求項14に記載の蓄冷容器。
The main body is formed in a cylindrical shape,
The shape of the gripping part when viewed along the central axis of the body part is
The cold storage container according to claim 14, which is smaller than the shape of the main body portion when viewed along the central axis.
 請求項1乃至15のいずれか1項に記載の蓄冷容器を備える空気冷却装置。 Air cooling device provided with the cool storage container of any one of Claims 1 thru | or 15.
PCT/JP2017/046458 2017-02-03 2017-12-25 Cold-storing receptacle and air-cooling device provided with same Ceased WO2018142814A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017018109 2017-02-03
JP2017-018109 2017-02-03
JP2017-208125 2017-10-27
JP2017208125A JP2018124048A (en) 2017-02-03 2017-10-27 Cold storage container and air cooling device including the same

Publications (1)

Publication Number Publication Date
WO2018142814A1 true WO2018142814A1 (en) 2018-08-09

Family

ID=63040764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046458 Ceased WO2018142814A1 (en) 2017-02-03 2017-12-25 Cold-storing receptacle and air-cooling device provided with same

Country Status (1)

Country Link
WO (1) WO2018142814A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1758008A (en) * 1926-10-12 1930-05-13 Mock Hugo Refrigerating unit
JPS5125246U (en) * 1974-08-16 1976-02-24
JPS58288U (en) * 1981-06-25 1983-01-05 日本軽金属株式会社 Case for cold storage body
JPS58194430U (en) * 1982-06-22 1983-12-24 株式会社東芝 cold fan
JPS598075U (en) * 1982-07-07 1984-01-19 三菱電機株式会社 Heat exchanger
JPS5937977U (en) * 1982-09-03 1984-03-10 三菱電機株式会社 Heat exchanger
JPH0352577U (en) * 1989-09-22 1991-05-22
US20010039808A1 (en) * 2000-01-05 2001-11-15 Sr. Easler Vincent Michael Reusable ice substitute in a can
JP3115995U (en) * 2005-08-22 2005-11-24 弦一郎 志水 Cold air machine
JP3168853U (en) * 2011-04-20 2011-06-30 忠彦 本吉 Simple cooler

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1758008A (en) * 1926-10-12 1930-05-13 Mock Hugo Refrigerating unit
JPS5125246U (en) * 1974-08-16 1976-02-24
JPS58288U (en) * 1981-06-25 1983-01-05 日本軽金属株式会社 Case for cold storage body
JPS58194430U (en) * 1982-06-22 1983-12-24 株式会社東芝 cold fan
JPS598075U (en) * 1982-07-07 1984-01-19 三菱電機株式会社 Heat exchanger
JPS5937977U (en) * 1982-09-03 1984-03-10 三菱電機株式会社 Heat exchanger
JPH0352577U (en) * 1989-09-22 1991-05-22
US20010039808A1 (en) * 2000-01-05 2001-11-15 Sr. Easler Vincent Michael Reusable ice substitute in a can
JP3115995U (en) * 2005-08-22 2005-11-24 弦一郎 志水 Cold air machine
JP3168853U (en) * 2011-04-20 2011-06-30 忠彦 本吉 Simple cooler

Similar Documents

Publication Publication Date Title
US9648970B2 (en) Impact-resistant portable liquid container protector with cooling and heating capability
US8516849B2 (en) Cooler and method for cooling beverage containers such as bottles and cans
KR101477325B1 (en) Liquid storage tank with internal flow control baffle and methods
US5947378A (en) Cooling drinking straw
EP3309115B1 (en) A double cooled draft beer machine
JP2018124048A (en) Cold storage container and air cooling device including the same
EP3309118B1 (en) Stand-alone beer dispenser and quick cooler
CN1439088A (en) Self-cooling liquid container
US10767915B2 (en) Smarter cooler
WO2018142814A1 (en) Cold-storing receptacle and air-cooling device provided with same
US20090136344A1 (en) Cooling module, and cooling fan device having the same
CN205919590U (en) Portable cold -storage box with fast cold function
US11647864B2 (en) Thermal liquid container system with heat loss prevention lid
CN106871575A (en) Drink cooling device and refrigerator
CN209971488U (en) Cyclone separation cooling device
CN209315462U (en) Cool down vessel
JP2018132197A (en) Air conditioner
CN204698263U (en) A kind of phase-changing and temperature-regulating system and phase-changing and temperature-regulating cup
US20110042549A1 (en) Metallic Cylinder Core Ice Mold Beverage Cooler
CN107263859A (en) A kind of 3D printer shower nozzle of temperature-adjustable
CN100556768C (en) Bottle cap for improving cooling efficiency and freezing method using the same
CN104973351A (en) Ice cream container for cold storage
JP6598311B2 (en) Bottle beverage server
WO2021216648A1 (en) Thermal liquid container system with heat loss prevention lid
CN204541632U (en) A kind of heat absorption cool-bag

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894919

Country of ref document: EP

Kind code of ref document: A1