WO2018142919A1 - Power storage device - Google Patents
Power storage device Download PDFInfo
- Publication number
- WO2018142919A1 WO2018142919A1 PCT/JP2018/001023 JP2018001023W WO2018142919A1 WO 2018142919 A1 WO2018142919 A1 WO 2018142919A1 JP 2018001023 W JP2018001023 W JP 2018001023W WO 2018142919 A1 WO2018142919 A1 WO 2018142919A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power storage
- cooling member
- storage device
- storage module
- refrigerant
- Prior art date
Links
- 238000003860 storage Methods 0.000 title claims abstract description 212
- 238000001816 cooling Methods 0.000 claims abstract description 129
- 238000002347 injection Methods 0.000 claims abstract description 42
- 239000007924 injection Substances 0.000 claims abstract description 42
- 239000003507 refrigerant Substances 0.000 claims abstract description 40
- 210000000746 body region Anatomy 0.000 claims abstract description 17
- 239000003792 electrolyte Substances 0.000 claims abstract description 4
- 239000004020 conductor Substances 0.000 claims description 54
- 239000007788 liquid Substances 0.000 claims description 41
- 230000002093 peripheral effect Effects 0.000 claims description 17
- 230000005611 electricity Effects 0.000 claims description 2
- 238000010030 laminating Methods 0.000 claims description 2
- 238000004146 energy storage Methods 0.000 claims 2
- 230000000149 penetrating effect Effects 0.000 claims 1
- 230000005465 channeling Effects 0.000 abstract 1
- 229920005989 resin Polymers 0.000 description 84
- 239000011347 resin Substances 0.000 description 84
- 230000000452 restraining effect Effects 0.000 description 20
- 238000003780 insertion Methods 0.000 description 12
- 230000037431 insertion Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- -1 nickel metal hydride Chemical class 0.000 description 12
- 230000017525 heat dissipation Effects 0.000 description 11
- 239000004743 Polypropylene Substances 0.000 description 10
- 229920001155 polypropylene Polymers 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000008151 electrolyte solution Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000002826 coolant Substances 0.000 description 6
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 239000007773 negative electrode material Substances 0.000 description 5
- 239000007774 positive electrode material Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004734 Polyphenylene sulfide Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920001955 polyphenylene ether Polymers 0.000 description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 229910000652 nickel hydride Inorganic materials 0.000 description 3
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052987 metal hydride Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/10—Multiple hybrid or EDL capacitors, e.g. arrays or modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/14—Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
- H01G11/18—Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/74—Terminals, e.g. extensions of current collectors
- H01G11/76—Terminals, e.g. extensions of current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/64—Heating or cooling; Temperature control characterised by the shape of the cells
- H01M10/647—Prismatic or flat cells, e.g. pouch cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6556—Solid parts with flow channel passages or pipes for heat exchange
- H01M10/6557—Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6561—Gases
- H01M10/6563—Gases with forced flow, e.g. by blowers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6567—Liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/103—Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/209—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/218—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
- H01M50/22—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
- H01M50/227—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/60—Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
- H01M50/609—Arrangements or processes for filling with liquid, e.g. electrolytes
- H01M50/627—Filling ports
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a power storage device.
- a bipolar battery having a plurality of stacked bipolar electrodes is known.
- Each bipolar electrode includes an electrode plate, a positive electrode provided on one surface of the electrode plate, and a negative electrode provided on the other surface of the electrode plate.
- Patent Literature 1 and Patent Literature 2 disclose a power storage device including a bipolar battery. In these power storage devices, high capacity and high output can be achieved by forming a plurality of bipolar batteries into an assembled battery.
- Patent Document 3 discloses a power storage device in which a plurality of power storage modules are electrically connected in parallel and a heat dissipation path is provided in a conductor that electrically connects adjacent power storage modules. When such a cooling member is used, it is desired to improve the heat dissipation of the power storage module by efficiently circulating the refrigerant.
- One aspect of the present invention provides a power storage device that can improve heat dissipation of a power storage module.
- a power storage device includes an electrode plate having a first surface and a second surface opposite to the first surface, a positive electrode provided on the first surface, and a negative electrode provided on the second surface. Are stored in the first direction, and a cooling member that cools the power storage module by circulation of the refrigerant.
- the power storage module includes a laminated body having a plurality of laminated bipolar electrodes, and a frame body that holds an edge portion of the electrode plate on a side surface extending in the first direction of the laminated body.
- the cooling member is arranged side by side with the stacked body in the first direction.
- the frame body covers the side surface and is provided with a main body region provided with a liquid injection port for injecting an electrolyte into the frame body, a protruding region protruding from the main body region so as to be separated from the liquid injection port in the first direction,
- the cooling member is provided with an opening for allowing the refrigerant to flow into the cooling member or for allowing the refrigerant to flow out of the cooling member.
- the direction of the liquid inlet and the direction of the opening are different from each other.
- the cooling member is arranged side by side with the stacked body in the first direction.
- the frame in the power storage module has a main body region that covers the side surface of the laminate and is provided with a liquid injection port, and a protruding region that protrudes from the main body region so as to be separated from the liquid injection port in the first direction.
- region protrudes in a 1st direction from the main body area
- a cooling member is covered with a protrusion area
- the direction of the liquid injection port provided in the main body region and the direction of the opening provided in the cooling member are different from each other.
- the opening is not covered by the protruding area.
- coolant can be distribute
- the direction in which the liquid injection port faces and the direction in which the opening faces may be orthogonal to each other.
- the opening can be further opened from the protruding region.
- the cooling member may be provided with a plurality of flow paths for circulating the refrigerant.
- the plurality of flow paths may be arranged in a second direction that intersects the first direction, and may extend in a third direction that intersects the first direction and the second direction.
- the cooling member may include a pair of plate members that sandwich the plurality of flow paths in the first direction.
- the plate member since the plate member can be brought into contact with the power storage module as a whole, it is possible to suppress application of local pressure to the power storage module.
- the cooling member may have a plate shape.
- the cooling member may be provided with a through hole that penetrates the cooling member in a direction intersecting the first direction. In this case, since the refrigerant can be circulated more efficiently inside the cooling member, the heat dissipation of the power storage module can be further improved.
- the cooling member may have conductivity.
- the power storage modules adjacent in the first direction can be electrically connected by the cooling member.
- the refrigerant may have an insulating property. In this case, it is possible to prevent a short circuit between the cooling members through the refrigerant.
- the power storage device includes a plurality of power storage modules arranged in one direction and a conductor disposed in contact with both of the power storage modules adjacent to each other.
- the power storage module includes a plurality of first electrodes and an electrode plate having a second surface opposite to the first surface, a positive electrode provided on the first surface, and a negative electrode provided on the second surface. It has a laminated body formed by laminating bipolar electrodes via separators, and a seal portion that holds the peripheral portions of the plurality of bipolar electrodes and forms the side surfaces of the laminated body.
- the conductor is formed with a flow path extending in a direction crossing one direction. The distance between the seal portions in the storage modules adjacent to each other, and the first distance of the first portion facing the end portion of the flow channel in the extending direction of the flow channel is the second distance of the second portion not facing the end portion. Longer than.
- the first distance between the seal portions in the first portion facing the channel end is longer than the second distance of the second portion not facing the channel end.
- the flow path may extend in a straight line, and the second portion is a portion that does not face the end portion and that extends along the direction in which the flow path extends. There may be.
- the flow path can be easily formed in the conductor.
- the seal portions of the power storage modules adjacent to each other may be in contact with each other.
- cooling air leakage due to circulation of cooling air in addition to the flow path can be effectively suppressed.
- the seal portions of the power storage modules adjacent to each other may be in contact with each other in an elastically deformed state.
- dimensional tolerance in the height direction of the conductor can be absorbed.
- At least one of the power storage modules adjacent to each other may have a convex portion at a portion where the seal portions are in contact with each other. In the power storage device, it can be easily elastically deformed at a portion where the seal portions are in contact with each other.
- one of the storage modules adjacent to each other has a convex portion formed in a portion where the seal portions contact each other, and the other of the storage modules adjacent to each other includes A concave portion that covers the convex portion may be formed in a portion that contacts the surface.
- dimensional tolerance in the height direction of the conductor can be absorbed.
- the extending direction of the flow path formed in the conductor may be the same in all the conductors arranged in one direction.
- the seal portion covers the outer peripheral surface of the frame-shaped first seal portion joined to the peripheral portion of the electrode plate and the first seal portion, and the first seal portion is integrated. And a second seal portion that holds the target.
- the sealing performance of the electrolyte solution in the power storage module can be improved.
- FIG. 1 is a perspective view showing a power storage device according to a first embodiment.
- FIG. 2 is a cross-sectional view taken along the line II-II in FIG. It is sectional drawing which shows the electrical storage module shown by FIG. It is a perspective view which shows the electrical storage module shown by FIG. It is the side view to which a part of electrical storage module of FIG. 4 was expanded. It is sectional drawing for demonstrating the formation method of a 2nd resin part. It is a perspective view which shows the cooling member shown by FIG. It is a side view which shows the electrical storage apparatus which concerns on a comparative example. It is the side view to which a part of electrical storage apparatus of FIG. 8 was expanded.
- FIG. 13 is a cross-sectional view seen from the stacking direction when the power storage device shown in FIG. 12 is cut along the line XIV-XIV. It is the figure which looked at the electrical storage apparatus which concerns on a modification from the direction which the edge part of the through-hole formed in the conductor can be seen in the front. It is the figure which looked at the electrical storage apparatus which concerns on a modification from the direction which the edge part of the through-hole formed in the conductor can be seen in the front. It is the figure which looked at the electrical storage apparatus which concerns on a modification from the direction which the edge part of the through-hole formed in the conductor can be seen in the front.
- FIG. 1 is a perspective view showing the power storage device according to the first embodiment.
- FIG. 2 is a sectional view taken along line II-II in FIG.
- the power storage device 10 shown in FIGS. 1 and 2 is used as a battery for various vehicles such as forklifts, hybrid vehicles, and electric vehicles.
- the power storage device 10 includes a plurality (three in the present embodiment) of power storage modules 12, a plurality (four in the present embodiment) of cooling members 14, and a restraining member 16.
- the number of power storage modules 12 and cooling members 14 included in the power storage device 10 may be one each.
- the power storage module 12 is, for example, a bipolar battery in which a plurality of bipolar electrodes 32 (see FIG. 3) are stacked in the first direction D1 (one direction).
- the power storage module 12 is a secondary battery such as a nickel hydride secondary battery or a lithium ion secondary battery, but may be an electric double layer capacitor. In the following description, a nickel metal hydride secondary battery is illustrated.
- the cooling member 14 cools the power storage module 12 by circulation of the refrigerant.
- the cooling member 14 is arranged (laminated) alternately and side by side with the stacked body 30 (see FIG. 3) of the power storage module 12 in the first direction D1.
- the cooling member 14 is disposed between two power storage modules 12 adjacent in the first direction D1, and is also disposed outside the power storage modules 12 located at both ends in the first direction D1.
- the cooling member 14 has conductivity, and is formed of a conductive material such as metal, for example.
- the cooling member 14 is electrically connected to the power storage modules 12 adjacent in the first direction D1. Thereby, the some electrical storage module 12 is connected in series in the 1st direction D1.
- a positive electrode terminal 24 is connected to the cooling member 14 located at one end, and a negative electrode terminal 26 is connected to the cooling member 14 located at the other end.
- the positive terminal 24 may be integrated with the cooling member 14 to which the positive terminal 24 is connected.
- the negative electrode terminal 26 may be integrated with the cooling member 14 to which the negative electrode terminal 26 is connected.
- the positive electrode terminal 24 and the negative electrode terminal 26 extend in a second direction D2 that intersects (here, orthogonal) the first direction D1.
- the positive and negative terminals 24 and 26 can charge and discharge the power storage device 10.
- the restraining member 16 is a member for restraining the power storage module 12 and the cooling member 14 in the first direction D1.
- the restraining member 16 includes a pair of restraining plates 16 ⁇ / b> A and 16 ⁇ / b> B, a bolt 18, and a nut 20.
- the bolt 18 and the nut 20 are connecting members that connect the restraining plates 16A and 16B.
- An insulating film 22 such as a resin film is disposed between the restraining plates 16A and 16B and the cooling member 14, for example.
- Each restraint plate 16A, 16B is comprised, for example with metals, such as iron.
- the power storage module 12, the cooling member 14, each of the restraining plates 16A and 16B, and the insulating film 22 have, for example, a rectangular shape, and each longitudinal direction is the second direction D2 and each short direction. Are arranged in the third direction D3.
- the third direction D3 is a direction that intersects (here, orthogonal) the first direction D1 and the second direction D2.
- each of the restraining plates 16A and 16B is larger than the power storage module 12, the cooling member 14, and the insulating film 22.
- the storage module 12 and the insulating film 22 are larger than the cooling member 14 when viewed from the first direction D1.
- the restraint plate 16A is provided with a plurality of insertion holes 16A1 through which the shaft portion of the bolt 18 is inserted in the first direction D1.
- the plurality of insertion holes 16A1 are located at both ends of the restraint plate 16A in the second direction D2 and both ends of the third direction D3, as viewed from the first direction D1, and outside the power storage module 12, the cooling member 14, and the insulating film 22. It is provided in the position.
- the constraining plate 16B is provided with a plurality of insertion holes 16B1 through which the shaft portion of the bolt 18 is inserted in the first direction D1.
- the plurality of insertion holes 16B1 are formed on the outer sides of the power storage module 12, the cooling member 14, and the insulating film 22 when viewed from the first direction D1 at both ends in the second direction D2 and both ends in the third direction D3 of the restraining plate 16B. It is provided in the position.
- One restraint plate 16 ⁇ / b> A is abutted against the cooling member 14 connected to the negative electrode terminal 26 via the insulating film 22, and the other restraint plate 16 ⁇ / b> B attaches the insulating film 22 to the cooling member 14 connected to the positive electrode terminal 24.
- the bolt 18 is passed through the insertion hole 16A1 and the insertion hole 16B1 sequentially from one restraint plate 16A side to the other restraint plate 16B side.
- the insulating film 22, the cooling member 14, and the power storage module 12 are sandwiched and unitized, and a restraining load is applied in the first direction D1.
- FIG. 3 is a cross-sectional view showing the power storage module shown in FIG.
- the power storage module 12 includes a stacked body 30.
- the stacked body 30 includes a plurality of bipolar electrodes 32 stacked in the first direction D1 with the separator 40 interposed therebetween.
- the bipolar electrode 32 includes an electrode plate 34, a positive electrode 36 provided on one surface (first surface) of the electrode plate 34, and a negative electrode 38 provided on the other surface (second surface) of the electrode plate 34. Including.
- the positive electrode 36 of one bipolar electrode 32 faces the negative electrode 38 of one bipolar electrode 32 adjacent in the first direction D1 with the separator 40 interposed therebetween, and the negative electrode 38 of the one bipolar electrode 32 It faces the positive electrode 36 of the other bipolar electrode 32 that is adjacent in the first direction D1 with 40 interposed therebetween.
- an electrode plate 34 (negative terminal electrode) having a negative electrode 38 disposed on the inner surface is disposed at one end of the stacked body 30, and a positive electrode 36 is disposed on the inner surface at the other end of the stacked body 30. Is disposed on the electrode plate 34 (positive terminal electrode).
- the negative electrode 38 of the negative electrode-side termination electrode faces the positive electrode 36 of the uppermost bipolar electrode 32 with the separator 40 interposed therebetween.
- the positive electrode 36 of the positive terminal electrode is opposed to the negative electrode 38 of the lowermost bipolar electrode 32 with the separator 40 interposed therebetween.
- the electrode plates 34 of these termination electrodes are connected to adjacent cooling members 14 (see FIG. 2).
- the power storage module 12 includes a frame 50 that holds the edge 34a of the electrode plate 34 on the side surface 30a of the stacked body 30 extending in the first direction D1.
- the frame body 50 is configured to surround the side surface 30 a of the stacked body 30.
- the frame 50 can include a first resin portion 53 that holds the edge portion 34a of the electrode plate 34, and a second resin portion 54 that is provided around the first resin portion 53 when viewed from the first direction D1.
- the first resin portion 53 constituting the inner wall of the frame 50 is provided from one surface (surface on which the positive electrode 36 is formed) of the electrode plate 34 of each bipolar electrode 32 to the end surface of the electrode plate 34 at the edge portion 34a. Yes. As viewed from the first direction D1, each first resin portion 53 is provided over the entire circumference of the edge portion 34a of the electrode plate 34 of each bipolar electrode 32. The first resin portions 53 adjacent in the first direction D1 are welded on the surface extending outside the other surface (surface on which the negative electrode 38 is formed) of the electrode plate 34 of each bipolar electrode 32. As a result, the edge portion 34 a of the electrode plate 34 of each bipolar electrode 32 is buried and held in the first resin portion 53.
- an internal space (space) V that is airtightly partitioned by the electrode plates 34 and 34 and the first resin portion 53 is formed between the electrode plates 34 and 34 adjacent to each other in the first direction D1.
- an electrolytic solution made of an alkaline solution such as an aqueous potassium hydroxide solution is accommodated.
- the second resin portion 54 constituting the outer wall of the frame body 50 is a cylindrical portion that extends with the first direction D1 as the axial direction.
- the second resin portion 54 extends over the entire length of the stacked body 30 in the first direction D1.
- the second resin portion 54 covers the outer surface of the first resin portion 53 extending in the first direction D1.
- the second resin portion 54 is welded to the first resin portion 53 on the inner side when viewed from the first direction D1.
- the electrode plate 34 is a rectangular metal foil made of nickel, for example.
- the edge portion 34 a of the electrode plate 34 is an uncoated region where the positive electrode active material and the negative electrode active material are not coated, and the uncoated region is buried in the first resin portion 53 constituting the inner wall of the frame body 50. It is an area to be held.
- An example of the positive electrode active material constituting the positive electrode 36 is nickel hydroxide.
- Examples of the negative electrode active material constituting the negative electrode 38 include a hydrogen storage alloy.
- the formation region of the negative electrode 38 on the other surface of the electrode plate 34 is slightly larger than the formation region of the positive electrode 36 on one surface of the electrode plate 34.
- the electrode plate 34 may be formed from a conductive resin.
- the separator 40 is formed in a sheet shape, for example.
- the material forming the separator 40 include a porous film made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), and a woven or non-woven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose, or the like. Is done.
- the separator 40 may be reinforced with a vinylidene fluoride resin compound.
- the separator 40 is not limited to a sheet shape, and may be a bag shape.
- the frame 50 (the first resin portion 53 and the second resin portion 54) is formed in a rectangular cylindrical shape by, for example, injection molding using an insulating resin.
- the resin material constituting the frame 50 include polypropylene (PP), polyphenylene sulfide (PPS), and modified polyphenylene ether (modified PPE).
- the formation of the first resin portion 53 may be performed, for example, before the stacked body 30 is formed by stacking the bipolar electrode 32 via the separator 40 or after the stacked body 30 is formed. It may be broken. Formation of the 2nd resin part 54 is performed after formation of the 1st resin part 53 and the laminated body 30, for example.
- FIG. 4 is a perspective view showing the power storage module shown in FIG.
- the power storage module 12 has a rectangular plate shape, for example, and is disposed such that the thickness direction of the power storage module 12 is the first direction D1.
- the power storage module 12 includes a pair of main surfaces 12a facing each other in the first direction D1, a pair of first side surfaces 12b facing each other in the second direction D2, and a pair of second side surfaces 12c facing each other in the third direction D3. And have.
- the first side surface 12 b and the second side surface 12 c are configured by the second resin portion 54 of the frame body 50.
- the frame 50 of the electricity storage module 12 has a main body region 51 that covers the side surface 30 a and a protruding region 52 that protrudes from the main body region 51.
- the main body region 51 includes a first resin portion 53 and a second resin portion 54.
- the main body region 51 has a pair of first side parts 51a that face each other in the second direction D2, and a pair of second side parts 51b that face each other in the third direction D3.
- a liquid injection port 50 a for injecting an electrolytic solution into the frame body 50 is provided.
- the liquid injection port 50a is provided on the outer surface of one of the first side portions 51a. Since the outer side surface of one first side portion 51a forms part of the first side surface 12b, it can be said that the liquid injection port 50a is provided on the first side surface 12b.
- the liquid injection port 50a faces the same direction as the first side surface 12b provided with the liquid injection port 50a. That is, the direction in which the liquid injection port 50a faces is the direction in which the first side surface 12b faces, and the direction from the first side surface 12b to the outside of the power storage module 12 along the second direction D2.
- the shape of the liquid injection port 50a is, for example, a rectangle, but may be another shape such as a circle.
- the liquid injection port 50a extends, for example, such that the third direction D3 is the longitudinal direction.
- the liquid injection port 50a is arranged, for example, at the center in the third direction D3 of the first side surface 12b.
- the liquid injection port 50a may be disposed at the end of the first side surface 12b in the third direction D3.
- the protruding region 52 is configured by the second resin portion 54.
- the protruding region 52 protrudes from one first side portion 51a so as to be separated from the liquid injection port 50a in the first direction D1.
- the protruding region 52 has, for example, a rectangular shape when viewed from the second direction D2.
- the protruding region 52 has an outer surface that is continuous from the outer surface of one of the first side portions 51a and forms a part of the first side surface 12b.
- the pair of protruding regions 52 are arranged so as to sandwich the liquid injection port 50a in the first direction D1.
- the protruding region 52 is provided with a length that extends beyond the entire length of the liquid injection port 50a along the third direction D3 and protrudes from both outer sides of the liquid injection port 50a.
- the liquid inlet 50a is sealed with a sealing material (not shown) after the electrolyte is injected.
- the electrolytic solution is injected, for example, while pressing a supply pipe (not shown) for supplying the electrolytic solution against a region around the injection port 50a.
- This peripheral region includes a portion adjacent to the liquid injection port 50 a on the outer side surface of one first side portion 51 a and the outer side surface of the protruding region 52.
- FIG. 5 is an enlarged side view of a part of the power storage module of FIG. 4 as viewed from the second direction.
- a portion of the second resin portion 54 constituting one first side portion 51a is provided with a single flow path 54a having a liquid injection port 50a as one end.
- the channel 54a extends in the second direction D2 (see FIG. 4).
- a portion of the first resin portion 53 that constitutes one first side portion 51a includes a plurality of internal spaces V (see FIG. 3) between the bipolar electrodes 32 adjacent in the first direction D1 and the flow paths 54a.
- a flow path 53a is provided.
- Each of the plurality of flow paths 53a extends in the second direction D2, and the plurality of flow paths 53a are arranged in the first direction D1.
- the flow path 53a is formed between the first resin parts 53 and 53 by forming a groove on one surface side of the electrode plate 34. It may be a void. This groove may be formed at the same time so as to communicate with the internal space V and the flow path 54a when the first resin portion 53 is molded, or may be formed by processing after the first resin portion 53 is molded.
- Each flow path 53a has, for example, a rectangular cross section.
- the cross-sectional shape of the flow path 54a is, for example, the same shape as the liquid injection port 50a, and spreads so as to cover the plurality of flow paths 53a.
- FIG. 6 is a cross-sectional view for explaining a method of forming the second resin portion.
- the second resin portion 54 is formed by pouring the resin material 54P of the second resin portion 54 having fluidity into the mold M.
- the mold M includes a first portion M1 that forms the outer edges of the main body region 51 and the protruding region 52 (see FIG. 5) of the frame body 50, and a second portion M2 that is a nesting for forming the flow path 54a.
- Resin material 54P flows along the third direction D3, for example.
- the resin material 54P flows between the pair of first portions M1 arranged to face each other, then collides with the second portion M2, and is divided into two along the periphery of the second portion M2.
- the resin material 54P divided into two flows between the first portion M1 and the second portion M2, respectively, and then merges to flow between the pair of first portions M1.
- the flow path of the resin material 54P is likely to be narrowed by the second portion M2 being disposed. Therefore, in order to secure the flow path of the resin material 54P, the first portion M1 is formed with a recess M1a in a portion corresponding to the second portion M2.
- the recessed portion M1a is recessed with respect to the other portions of the first portion M1 so as to be separated from the second portion M2 in the first direction D1.
- the protruding region 52 is formed by the recess M1a.
- FIG. 7 is a perspective view showing the cooling member shown in FIG.
- the cooling member 14 has a rectangular plate shape, for example, and is arranged so that the thickness direction of the cooling member 14 is the first direction D1.
- the cooling member 14 includes a pair of main surfaces 14a facing each other in the first direction D1, a pair of first side surfaces 14b facing each other in the second direction D2, and a pair of second side surfaces 14c facing each other in the third direction D3. And have.
- the cooling member 14 causes the refrigerant to flow inside the cooling member 14, thereby efficiently releasing heat from the power storage module 12 (see FIG. 1) to the outside, thereby cooling the power storage module 12.
- the refrigerant is, for example, insulative and is air, a gas such as ammonia, or a liquid such as LLC.
- the cooling member 14 is provided with a plurality of flow paths 15a for circulating the refrigerant.
- the plurality of flow paths 15a are arranged in the second direction D2.
- Each flow path 15a extends linearly in the third direction D3.
- the channel 15a has, for example, a rectangular cross section.
- the channel 15a may have a circular cross section or the like.
- the cooling member 14 includes a pair of plate members 15b that sandwich the plurality of flow paths 15a in the first direction D1, and a plurality of connection members 15c that connect the pair of plate members 15b to each other.
- the plate member 15b has, for example, a rectangular shape when viewed from the first direction D1, and has a main surface 14a as an outer surface thereof.
- the connection member 15c is, for example, a rectangular plate that extends in the first direction D1 and the third direction D3.
- the connection members 15c are arranged in the second direction D2 alternately with the flow paths 15a.
- the connection members 15c arranged at both ends in the second direction D2 function as side walls of the cooling member 14, and have first side surfaces 14b as outer surfaces thereof.
- the other connection member 15c functions as a partition that separates two adjacent flow paths.
- the opening 15d faces the same direction as the second side surface 14c provided with the opening 15d. That is, the direction in which the opening 15d faces is the direction in which the second side face 14c faces, and is the direction from the second side face 14c toward the outside of the cooling member 14 along the third direction D3. Therefore, the direction in which the opening 15d provided in one second side surface 14c faces and the direction in which the opening 15d provided in the other second side surface 14c faces are different from each other and in opposite directions.
- the direction in which the liquid injection port 50a (see FIG. 4) faces is different from the direction in which the opening 15d provided in any one of the pair of second side surfaces 14c faces.
- the direction in which the liquid injection port 50a faces and the direction in which the opening 15d faces are, for example, orthogonal to each other.
- the cooling member 14 is smaller than the power storage module 12 shown in FIG. 4 when viewed from the first direction D1, and the main surface 14a is entirely brought into contact with the electrode plate 34 inside the frame 50 of the power storage module 12.
- the main surface 14a is configured by the outer surface of the plate member 15b. Therefore, it can be said that the cooling member 14 is disposed so that the plate member 15b is brought into contact with the electrode plate 34 as a whole, for example.
- FIG. 8 is a perspective view showing a power storage device according to a comparative example.
- FIG. 9 is an enlarged side view of a part of the power storage device of FIG. In FIG. 9, the illustration of the bolt 18 is omitted.
- the power storage device 100 according to the comparative example is mainly different from the power storage device 10 according to the first embodiment in terms of a cooling member 14.
- the plurality of flow paths 15a are arranged in the third direction D3, and each flow path 15a extends linearly in the second direction D2.
- An opening 15d is provided in the first side surface 14b.
- the direction in which the liquid injection port 50a faces and the direction in which the opening 15d faces are the same. Therefore, a part of the opening 15d is covered with the protruding region 52. Thereby, since the distribution
- the direction toward the liquid injection port 50 a and the direction toward the opening 15 d are different from each other and are orthogonal to each other. Therefore, the opening 15d is not covered by the protruding region 52, and the opening 15d can be opened from the protruding region 52. For this reason, since the circulation of the refrigerant is not hindered by the protruding region 52, the refrigerant can be efficiently circulated through the opening 15d. As a result, in the power storage device 10, it is possible to suppress a decrease in cooling efficiency due to the cooling member 14, so that the heat dissipation of the power storage module 12 can be improved.
- the cooling member 14 is provided with a plurality of flow paths 15a for circulating the refrigerant.
- the flow path 15a is a through hole that penetrates the plate-like cooling member 14 in the third direction D3.
- the plurality of flow paths 15a are arranged in the second direction D2 and each extend in the third direction D3. According to such a flow path 15a, since the refrigerant can be efficiently circulated inside the cooling member 14, the heat dissipation of the power storage module 12 can be further improved.
- the cooling member 14 has a pair of plate members 15b that sandwich the plurality of flow paths 15a in the first direction D1. For this reason, since the outer surface of the plate member 15b, that is, the main surface 14a of the cooling member 14 can be brought into contact with the main surface 12a of the power storage module 12 as a whole, local pressure is applied to the power storage module 12. It is possible to suppress the addition.
- the cooling member 14 has conductivity. For this reason, the power storage modules 12 adjacent in the first direction D1 can be electrically connected by the cooling member 14. Therefore, since it is not necessary to further provide a member for electrically connecting the power storage modules 12 to each other, the power storage device 10 can be reduced in size.
- Refrigerant has insulating properties. For example, when a conductive coolant such as water is used, the cooling members 14 may be short-circuited through the coolant. In the power storage device 10, for example, an insulating refrigerant such as air is used. Therefore, it is possible to prevent a short circuit between the cooling members 14 through the refrigerant.
- the power storage device 110 shown in FIG. 10 is used as a battery for various vehicles such as forklifts, hybrid cars, and electric cars.
- the power storage module 112 is, for example, a bipolar battery. Examples of the power storage module 112 include secondary batteries such as a nickel hydride secondary battery and a lithium ion secondary battery, but may be an electric double layer capacitor. In the following description, a nickel metal hydride secondary battery is illustrated. 10 to 16 show the XYZ orthogonal coordinate system.
- the plurality of power storage modules 112 are stacked via a conductor 114 such as a metal plate to form an array 111.
- the conductor 114 is one metal body disposed between the power storage modules 112 and 112 adjacent to each other in the stacking direction (Z-axis direction; one direction), and both the power storage modules 112 and 112 adjacent to each other in the stacking direction. It arrange
- the conductor 114 is made of a metal material such as aluminum and copper, for example. When viewed from the stacking direction, the power storage module 112 and the conductor 114 have, for example, a rectangular shape.
- the conductor 114 When viewed from the stacking direction, the conductor 114 is smaller than the power storage module 112, but may be the same as or larger than the power storage module 112.
- the conductor 114 is electrically connected to the power storage module 112 adjacent in the stacking direction. Thereby, the some electrical storage module 112 is connected in series in the lamination direction.
- the conductors 114 are also arranged outside the power storage modules 112 positioned at both ends in the stacking direction of the power storage modules 112, respectively. That is, the conductor 114 is also disposed at both ends of the array body 111 in the stacking direction. In the stacking direction, a positive electrode terminal 124 is connected to the conductor 114 located at one end of the array 111, and a negative electrode 126 is connected to the conductor 114 located at the other end of the array 111.
- the positive terminal 124 may be integrated with the conductor 114 to which the positive terminal 124 is connected.
- the negative electrode terminal 126 may be integrated with the conductor 114 to which the negative electrode terminal 126 is connected.
- the positive electrode terminal 124 and the negative electrode terminal 126 extend in a direction intersecting the stacking direction (X-axis direction). The positive and negative terminals 124 and 126 can charge and discharge the power storage device 110.
- the conductor 114 also functions as a heat radiating plate for releasing the heat generated in the power storage module 112.
- the conductor 114 may have higher thermal conductivity than a contact portion (for example, the contact surface 112a) with the conductor 114 in the power storage module 112.
- a through-hole 114a extending in the direction intersecting the stacking direction (Y-axis direction) is provided inside the conductor 114.
- the through-hole 114a communicates linearly from one side surface 114d (see FIG. 14) facing each other in the conductor 114 to the other side surface 114f (see FIG. 14).
- the conductor 114 is provided with a plurality of through holes 114a.
- the plurality of through holes 114a are arranged in the stacking direction and the direction (X-axis direction) intersecting the stacking direction.
- a gaseous refrigerant such as air passes through such a through-hole 114a
- heat generated in the power storage module 112 can be efficiently released to the outside.
- the size of the conductor 114, the material of the conductor 114, the size of the through hole 114a, the number of the through holes 114a, and the like are appropriately adjusted so that the temperature of the power storage device 110 does not exceed 50 ° C., for example.
- a device that actively circulates (circulates) air through the through hole 114 a may be provided in the power storage module 112. Moreover, in this embodiment, the extending direction of the through-hole 114a formed in the conductor 114 is the same in all the conductors 114 arranged in the stacking direction.
- the power storage device 110 can include a constraining member 115 that constrains alternately stacked power storage modules 112 and conductors 114 in the stacking direction.
- the restraining member 115 includes a pair of restraining plates 116 and 117 and a connecting member (bolt 118 and nut 120) for joining the restraining plates 116 and 117 to each other.
- an insulating film 122 such as a resin film is disposed between the restraining plates 116 and 117 and the conductor 114.
- Each constraining plate 116, 117 is made of metal such as iron, for example.
- each of the restraining plates 116 and 117 and the insulating film 122 has, for example, a rectangular shape.
- the insulating film 122 is larger than the conductor 114, and the restraining plates 116 and 117 are larger than the power storage module 112.
- an insertion hole 116 a through which the shaft portion of the bolt 118 is inserted is provided at an edge of the restraining plate 116 at a position outside the power storage module 112.
- an insertion hole 117 a through which the shaft portion of the bolt 118 is inserted is provided at the edge of the restraining plate 117 at a position outside the power storage module 112.
- the insertion hole 116a and the insertion hole 117a are located at the corners of the restraint plates 116, 117.
- One constraining plate 116 is abutted against the conductor 114 connected to the negative electrode terminal 126 via the insulating film 122, and the other constraining plate 117 applies the insulating film 122 to the conductor 114 connected to the positive electrode terminal 124.
- the bolt 118 is passed through the insertion hole 116a and the insertion hole 117a sequentially from one restraint plate 116 side to the other restraint plate 117 side. 120 is screwed together. Accordingly, the insulating film 122, the conductor 114, and the power storage module 112 are sandwiched and unitized, and a restraining load is applied in the stacking direction.
- the power storage module 112 includes a stacked body 130 in which a plurality of bipolar electrodes 132 are stacked.
- the stacked body 130 When viewed from the stacking direction of the bipolar electrode 132, the stacked body 130 has, for example, a rectangular shape.
- a separator 140 may be disposed between the bipolar electrodes 132 adjacent in the stacking direction.
- the bipolar electrode 132 is provided on the electrode plate 134, the positive electrode layer 136 (positive electrode) provided on one surface (first surface) of the electrode plate 134, and the other surface (second surface) of the electrode plate 134.
- a negative electrode layer 138 negative electrode).
- the positive electrode layer 136 of one bipolar electrode 132 faces the negative electrode layer 138 of one bipolar electrode 132 adjacent in the stacking direction with the separator 140 interposed therebetween, and the negative electrode layer 138 of one bipolar electrode 132 is It faces the positive electrode layer 136 of the other bipolar electrode 132 adjacent in the stacking direction with the separator 140 interposed therebetween.
- an electrode plate 134 (negative electrode termination electrode) having a negative electrode layer 138 disposed on the inner surface is disposed at one end of the laminate 130, and a positive electrode layer 136 is disposed on the inner surface at the other end.
- An electrode plate 134 (positive terminal electrode) is disposed.
- the negative electrode layer 138 of the negative electrode side termination electrode is opposed to the positive electrode layer 136 of the uppermost bipolar electrode 132 with the separator 140 interposed therebetween.
- the positive electrode layer 136 of the positive electrode side termination electrode faces the negative electrode layer 138 of the lowermost bipolar electrode 132 with the separator 140 interposed therebetween.
- the electrode plates 134 of these termination electrodes are respectively connected to adjacent conductors 114 (see FIG. 10).
- the power storage module 112 includes a frame 150 (seal portion) that holds the peripheral edge 134a of the electrode plate 134 on the side surface 130a of the stacked body 130 that extends in the stacking direction of the bipolar electrodes 132.
- the frame 150 is configured to surround the side surface 130 a of the stacked body 130.
- the frame 150 has, for example, a rectangular shape when viewed from the stacking direction of the bipolar electrodes 132. In this case, the frame 150 is composed of four rectangular surfaces.
- the frame 150 includes a first resin portion 152 (first seal portion) that holds the peripheral portion 134a of the electrode plate 134 and a second resin portion 154 that is provided around the first resin portion 152 when viewed from the stacking direction. (Second seal part).
- the first resin portion 152 constituting the inner wall of the frame 150 is provided from one surface (surface on which the positive electrode layer 136 is formed) of the electrode plate 134 of each bipolar electrode 132 to the end surface of the electrode plate 134 in the peripheral portion 134a. ing. When viewed from the stacking direction of the bipolar electrodes 132, each first resin portion 152 is provided over the entire periphery 134 a of the electrode plate 134 of each bipolar electrode 132. The first resin portions 152 adjacent in the stacking direction are welded to each other on the surface extending outside the other surface (surface on which the negative electrode layer 138 is formed) of the electrode plate 134 of each bipolar electrode 132.
- the peripheral portion 134 a of the electrode plate 134 of each bipolar electrode 132 is buried and held in the first resin portion 152.
- the peripheral portion 134 a of the electrode plate 134 of each bipolar electrode 132 the peripheral portion 134 a of the electrode plate 134 disposed at both ends of the laminated body 130 is also held in a state of being buried in the first resin portion 152.
- the second resin portion 154 constituting the outer wall of the frame 150 is a cylindrical portion that extends over the entire length of the multilayer body 130 in the lamination direction of the bipolar electrode 132.
- the second resin portion 154 covers the outer surface of the first resin portion 152 extending in the stacking direction of the bipolar electrode 132.
- the second resin portion 154 is welded to the outer surface of the first resin portion 152 on the inner surface that extends in the stacking direction of the bipolar electrode 132.
- the electrode plate 134 is, for example, a rectangular metal foil made of nickel.
- the peripheral portion 134 a of the electrode plate 134 is an uncoated region where the positive electrode active material and the negative electrode active material are not coated, and the uncoated region is buried in the first resin portion 152 constituting the inner wall of the frame 150. It is an area to be held.
- Examples of the positive electrode active material constituting the positive electrode layer 136 include nickel hydroxide.
- Examples of the negative electrode active material constituting the negative electrode layer 138 include a hydrogen storage alloy.
- the formation region of the negative electrode layer 138 on the other surface of the electrode plate 134 is slightly larger than the formation region of the positive electrode layer 136 on one surface of the electrode plate 134.
- the electrode plate 134 may be made of a conductive resin.
- the separator 140 is formed in a sheet shape, for example.
- Examples of the material forming the separator 140 include a porous film made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), and a woven fabric and a nonwoven fabric made of polypropylene and methylcellulose.
- the separator 140 may be reinforced with a vinylidene fluoride resin compound.
- the separator 140 is not limited to a sheet shape, and may be a bag shape.
- the frame 150 (the first resin portion 152 and the second resin portion 154) is formed in a rectangular cylindrical shape by, for example, injection molding using an insulating resin.
- the resin material constituting the frame 150 include polypropylene (PP), polyphenylene sulfide (PPS), and modified polyphenylene ether (modified PPE).
- FIG. 12 is a side view of a part of the power storage device of FIG. 10 as viewed from the direction A
- FIG. 13 is a view of the power storage device of FIG. 12 from the direction in which the end portion of the through hole formed in the conductor can be seen from the front.
- FIG. 12 is the distance between the second resin portions 154 in the power storage modules 112, 112 adjacent to each other in the stacking direction, and faces the end portion 114b (end portion 114c) of the through hole 114a in the extending direction.
- the distance of the 1st part P1 to perform is set to 1st distance G11. Further, as shown in FIG.
- the first distance G11 in the first portion P1 is longer than the second distance G12 in the second portion P2 (G11> G12).
- the second resin portions 154 and 154 of the power storage modules 112 and 112 adjacent to each other in the stacking direction are in contact with each other. That is, the second distance G12 in the second portion P2 is 0 (zero).
- the height G2 of the through hole 114a may be equal to or greater than the first distance G11 in the first portion P1.
- One of the power storage modules 112 and 112 adjacent to each other in the stacking direction is formed with a convex portion 154b at a portion where the second resin portions 154 and 154 are in contact with each other, and the power storage modules 112 and 112 adjacent to each other in the stacking direction.
- a concave portion 154a that covers the convex portion 154b is formed at a portion where the second resin portions 154 and 154 contact each other.
- the one part or all part of the said convex part 154b and the recessed part 154a is mutually contacting in the state elastically deformed.
- the first distance G11 (see FIG. 12) between the second resin portions 154 and 154 in the first portion P1 facing the end portion 114b (end portion 114c) of the through hole 114a passes through. It is longer than the second distance G12 (see FIG. 13) of the second portion P2 that does not face the end portion 114b (end portion 114c) of the hole 114a. Accordingly, it is possible to suppress leakage of cooling air due to circulation of cooling air other than the through hole 114a while securing a passage for the cooling air flowing through the through hole 114a. As a result, efficient heat dissipation becomes possible.
- the second resin portions 154 and 154 of the power storage modules 112 and 112 adjacent to each other in the stacking direction are in contact with each other. Further, it is possible to effectively suppress the cooling air leakage due to the circulation of the cooling air other than the through hole 114a.
- the second resin portions 154 and 154 of the power storage modules 112 and 112 adjacent to each other in the stacking direction are in contact with each other in an elastically deformed state.
- the dimensional tolerance in the direction (Z-axis direction) can be absorbed.
- one of the power storage modules 112 and 112 adjacent to each other in the stacking direction has a convex portion 154 b at a portion where the second resin portions 154 and 154 are in contact with each other.
- a concave portion 154a that covers the convex portion 154b is formed at a portion where the second resin portions 154 and 154 are in contact with each other. Also in this case, for example, a dimensional tolerance in the height direction of the conductor 114 can be absorbed.
- the extending direction of the through holes 114a formed in the conductor 114 is the same in all the conductors 114 arranged in the stacking direction. For this reason, the workability
- the frame 150 covers the first resin portion 152 in the form of a frame joined to the peripheral edge portion 134a of the electrode plate 134 and the outer peripheral surface of the first resin portion 152, and the first And a second resin portion 154 that integrally holds the resin portion 152. For this reason, the sealing property of the electrolyte solution in the electrical storage module 112 can be improved.
- the present invention is not limited to the above embodiment.
- the power storage device 10 may further include a member that electrically connects the power storage modules 12 to each other.
- the cooling member 14 may not have conductivity. Therefore, the cooling member 14 can be made of various materials.
- the cooling member 14 is made of an insulating material, it is possible to prevent a short circuit between the cooling members 14 through the refrigerant even when a conductive refrigerant such as water is used. Even when the cooling member 14 has conductivity, for example, if the cooling member 14 and the refrigerant are electrically insulated from each other by covering the inner surface of the flow path 15a with an insulator, It is possible to prevent a short circuit between the cooling members 14.
- the liquid injection port 50a may be provided on each of the pair of first side surfaces 12b.
- a plurality of liquid injection ports 50a may be provided in one first side surface 12b and arranged in the third direction D3. According to such a plurality of liquid injection ports 50a, it is possible to shorten the time required for injection of the electrolytic solution.
- the direction in which the opening 15d faces and the direction in which the liquid injection port 50a faces need only be different from each other, and need not necessarily be orthogonal.
- the shape of the flow path 15a is not limited.
- the flow path 15a is not linear and may be bent.
- the openings 15d at both ends thereof can be concentrated on one second side face 14c, for example.
- the liquid injection port 50a may be provided on the other second side surface 14c side (that is, the other second side portion 51b).
- the direction toward the opening 15d and the direction toward the liquid injection port 50a are different from each other and are opposite to each other, and thus the opening 15d is not covered by the protruding region 52.
- coolant can be distribute
- the cooling member 14 only needs to be provided with the flow path 15a.
- the cooling member 14 does not have any one of the pair of plate members 15b and has a comb-teeth shape when viewed from the third direction D3. It may be. That is, the flow path 15a may be opened not only in the penetration direction but also in a direction intersecting the penetration direction.
- the cooling member 14 may be the same as or larger than the power storage module 12 when viewed from the first direction D1. In this case, the cooling efficiency by the cooling member 14 can be improved. Moreover, each restraint plate 16A, 16B may be the same as the electrical storage module 12, the cooling member 14, and the insulating film 22, or smaller than it, seeing from the 1st direction D1.
- both contact surfaces of the power storage modules 112 and 112 adjacent to each other in the stacking direction may be flat surfaces.
- a convex portion may be formed on at least one of the contact surfaces of the power storage modules 112 and 112 adjacent to each other in the stacking direction. In this case, the second distance G12 in the second portion P2 is 0 (zero).
- the first distance G11 in the first portion P1 is longer than the second distance G12 in the second portion P2 (G11> G12), so that the cooling air flowing through the through hole 114a Cooling air leakage due to the circulation of cooling air in addition to the flow path can be suppressed while securing the passage.
- the second distance G12 that is the distance of the second portion P2 along the extending direction of the through hole 114a has been described as an example of 0 (zero).
- the second distance G12 may be greater than 0 (zero) and smaller than the first distance G11. Even in this case, leakage of the cooling air due to the circulation of the cooling air in addition to the flow path can be suppressed while ensuring the passage of the cooling air flowing through the through hole 114a.
- the through hole 114 a formed in the conductor 114 communicates from one side surface 114 d facing each other to the other side surface 114 f in the conductor 114.
- one side surface 14e or one side surface 14g may communicate with one adjacent side surface 114f (side surface 114d).
- the through hole 114a formed in the conductor 114 is described as an example of the flow path through which the cooling air flows.
- a groove is formed on at least one surface.
- a flow path through which cooling air flows may be formed by bringing the conductor 114 into contact with the electrode plate 134 of the termination electrode.
- the power storage device 110 is described as an example of a nickel hydride secondary battery, but may be a lithium ion secondary battery.
- the positive electrode active material is, for example, a composite oxide, metallic lithium, sulfur or the like.
- the negative electrode active material include carbon such as graphite, highly oriented graphite, mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, SiOx (0.5 ⁇ x ⁇ 1.5 ) And the like, as well as boron-added carbon.
- bipolar electrodes 134 ... electrode plates, 134a ... peripheral parts, 136 ... positive electrode layer (positive electrode), 138 ... negative electrode layer (negative electrode) , 150 ... frame (seal part), 152 ... first resin part (first seal part), 154 ... second resin part (second seal part), 154a ... concave part, 154b ... convex part, G11 ... first distance , G12 ... second distance, P1 The first part, P2 ... the second part.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
A power storage device, provided with a power storage module and a cooling member for cooling the power storage module by channeling a refrigerant. The power storage module is provided with a laminate and a frame body for holding the edge part of an electrode plate on a side surface of the laminate extending in a first direction. The cooling member is disposed alongside the laminate in the first direction. The frame body has: a body region covering the side surface, the body region being provided with an injection hole for injecting an electrolyte into the frame body; and a projecting region projecting from the body region so as to be set away from the injection hole in the first direction. The cooling member is provided with an opening for allowing the refrigerant to flow into the cooling member or for allowing the refrigerant to flow out from the interior of the cooling member. The injection hole and the opening face different directions.
Description
本発明は、蓄電装置に関する。
The present invention relates to a power storage device.
積層された複数のバイポーラ電極を有するバイポーラ電池が知られている。各バイポーラ電極は、電極板と、電極板の一方の面に設けられた正極と、電極板の他方の面に設けられた負極と、を含んでいる。例えば、特許文献1及び特許文献2には、バイポーラ電池を備える蓄電装置が開示されている。これらの蓄電装置では、複数のバイポーラ電池を組電池化することで、高容量化及び高出力化が可能となる。
A bipolar battery having a plurality of stacked bipolar electrodes is known. Each bipolar electrode includes an electrode plate, a positive electrode provided on one surface of the electrode plate, and a negative electrode provided on the other surface of the electrode plate. For example, Patent Literature 1 and Patent Literature 2 disclose a power storage device including a bipolar battery. In these power storage devices, high capacity and high output can be achieved by forming a plurality of bipolar batteries into an assembled battery.
上記蓄電装置では、充放電時にバイポーラ電池において熱が発生する。そこで、バイポーラ電池を冷却するために冷却部材を用いることが考えられる。冷却部材として、例えば、冷媒を流通させることで冷却効果を得る方式の冷却部材がある。例えば、特許文献3には、複数の蓄電モジュールが電気的に並列に接続され、互いに隣り合う蓄電モジュール同士を電気的に接続する導電体に放熱路を設けた蓄電装置が開示されている。このような冷却部材を用いる場合、冷媒を効率よく流通させることにより、蓄電モジュールの放熱性を向上させることが望まれる。
In the above power storage device, heat is generated in the bipolar battery during charging and discharging. Therefore, it is conceivable to use a cooling member to cool the bipolar battery. As a cooling member, for example, there is a cooling member that obtains a cooling effect by circulating a refrigerant. For example, Patent Document 3 discloses a power storage device in which a plurality of power storage modules are electrically connected in parallel and a heat dissipation path is provided in a conductor that electrically connects adjacent power storage modules. When such a cooling member is used, it is desired to improve the heat dissipation of the power storage module by efficiently circulating the refrigerant.
本発明の一側面は、蓄電モジュールの放熱性を向上させることができる蓄電装置を提供する。
One aspect of the present invention provides a power storage device that can improve heat dissipation of a power storage module.
本発明の一側面に係る蓄電装置は、第1面及び第1面とは反対側の第2面を有する電極板と、第1面に設けられた正極と、第2面に設けられた負極と、をそれぞれ含む複数のバイポーラ電極が第1方向において積層された蓄電モジュールと、冷媒の流通により蓄電モジュールを冷却する冷却部材と、を備える。蓄電モジュールは、積層された複数のバイポーラ電極を有する積層体と、積層体の第1方向に延在する側面において電極板の縁部を保持する枠体と、を備える。冷却部材は、第1方向において積層体と並んで配置される。枠体は、側面を覆うと共に、枠体内に電解液を注入するための注液口が設けられた本体領域と、第1方向において注液口から離れるように本体領域から突出する突出領域と、を有する。冷却部材には、冷却部材の内部に冷媒を流入させるため、又は冷却部材の内部から冷媒を流出させるための開口が設けられる。注液口の向く方向及び開口の向く方向は、互いに異なっている。
A power storage device according to one aspect of the present invention includes an electrode plate having a first surface and a second surface opposite to the first surface, a positive electrode provided on the first surface, and a negative electrode provided on the second surface. Are stored in the first direction, and a cooling member that cools the power storage module by circulation of the refrigerant. The power storage module includes a laminated body having a plurality of laminated bipolar electrodes, and a frame body that holds an edge portion of the electrode plate on a side surface extending in the first direction of the laminated body. The cooling member is arranged side by side with the stacked body in the first direction. The frame body covers the side surface and is provided with a main body region provided with a liquid injection port for injecting an electrolyte into the frame body, a protruding region protruding from the main body region so as to be separated from the liquid injection port in the first direction, Have The cooling member is provided with an opening for allowing the refrigerant to flow into the cooling member or for allowing the refrigerant to flow out of the cooling member. The direction of the liquid inlet and the direction of the opening are different from each other.
本発明の一側面に係る蓄電装置では、冷却部材は、第1方向において積層体と並んで配置されている。蓄電モジュールにおける枠体は、積層体の側面を覆うと共に注液口が設けられた本体領域と、第1方向において注液口から離れるように本体領域から突出する突出領域と、を有している。このように突出領域が、積層体の側面を覆う本体領域から第1方向において突出するため、冷却部材が突出領域によって覆われる。ここで、本体領域に設けられた注液口の向く方向、及び冷却部材に設けられた開口の向く方向は、互いに異なっている。したがって、開口は突出領域によって覆われない。これにより、開口を通じて冷媒を効率よく流通させることができるので、蓄電モジュールの放熱性を向上させることができる。
In the power storage device according to one aspect of the present invention, the cooling member is arranged side by side with the stacked body in the first direction. The frame in the power storage module has a main body region that covers the side surface of the laminate and is provided with a liquid injection port, and a protruding region that protrudes from the main body region so as to be separated from the liquid injection port in the first direction. . Thus, since a protrusion area | region protrudes in a 1st direction from the main body area | region which covers the side surface of a laminated body, a cooling member is covered with a protrusion area | region. Here, the direction of the liquid injection port provided in the main body region and the direction of the opening provided in the cooling member are different from each other. Thus, the opening is not covered by the protruding area. Thereby, since a refrigerant | coolant can be distribute | circulated efficiently through opening, the heat dissipation of an electrical storage module can be improved.
本発明の一側面に係る蓄電装置において、注液口の向く方向及び開口の向く方向は、互いに直交していてもよい。この場合、開口を更に突出領域から開放された状態とすることができる。
In the power storage device according to one aspect of the present invention, the direction in which the liquid injection port faces and the direction in which the opening faces may be orthogonal to each other. In this case, the opening can be further opened from the protruding region.
本発明の一側面に係る蓄電装置において、冷却部材には、冷媒を流通させる複数の流路が設けられてもよい。複数の流路は、第1方向に交差する第2方向に配列されると共に、第1方向及び第2方向に交差する第3方向に延在していてもよい。この場合、冷却部材の内部に冷媒を更に効率よく流通させることができるので、蓄電モジュールの放熱性を更に向上させることができる。
In the power storage device according to one aspect of the present invention, the cooling member may be provided with a plurality of flow paths for circulating the refrigerant. The plurality of flow paths may be arranged in a second direction that intersects the first direction, and may extend in a third direction that intersects the first direction and the second direction. In this case, since the refrigerant can be circulated more efficiently inside the cooling member, the heat dissipation of the power storage module can be further improved.
本発明の一側面に係る蓄電装置において、冷却部材は、複数の流路を第1方向に挟む一対の板部材を有していてもよい。この場合、板部材を全体的に蓄電モジュールに当接させることができるので、蓄電モジュールに対して局所的な圧力が加わるのを抑制可能となる。
In the power storage device according to one aspect of the present invention, the cooling member may include a pair of plate members that sandwich the plurality of flow paths in the first direction. In this case, since the plate member can be brought into contact with the power storage module as a whole, it is possible to suppress application of local pressure to the power storage module.
本発明の一側面に係る蓄電装置において、冷却部材は、板状を呈してもよい。冷却部材には、冷却部材を第1方向に交差する方向において貫通する貫通孔が設けられていてもよい。この場合、冷却部材の内部に冷媒を更に効率よく流通させることができるので、蓄電モジュールの放熱性を更に向上させることができる。
In the power storage device according to one aspect of the present invention, the cooling member may have a plate shape. The cooling member may be provided with a through hole that penetrates the cooling member in a direction intersecting the first direction. In this case, since the refrigerant can be circulated more efficiently inside the cooling member, the heat dissipation of the power storage module can be further improved.
本発明の一側面に係る蓄電装置において、冷却部材は、導電性を有していてもよい。この場合、第1方向に隣り合う蓄電モジュール同士を冷却部材によって電気的に接続することができる。
In the power storage device according to one aspect of the present invention, the cooling member may have conductivity. In this case, the power storage modules adjacent in the first direction can be electrically connected by the cooling member.
本発明の一側面に係る蓄電装置において、冷媒は、絶縁性を有していてもよい。この場合、冷却部材同士の短絡が冷媒を通じて生じることを防止できる。
In the power storage device according to one aspect of the present invention, the refrigerant may have an insulating property. In this case, it is possible to prevent a short circuit between the cooling members through the refrigerant.
本発明の一側面に係る蓄電装置は、一方向に配列された複数の蓄電モジュールと、互いに隣り合う蓄電モジュールの両方に接触させた状態で配置される導電体と、を備える。蓄電モジュールは、第1面及び第1面とは反対側の第2面を有する電極板と、第1面に設けられた正極と、第2面に設けられた負極と、をそれぞれ含む複数のバイポーラ電極を、セパレータを介して積層してなる積層体と、複数のバイポーラ電極の周縁部を保持すると共に積層体の側面を形成するシール部と、を有する。導電体には、一方向に交差する方向に延在する流路が形成されている。互いに隣り合う蓄電モジュールにおけるシール部同士の距離であって、流路の延在方向における流路の端部に対向する第一部分の第一距離は、端部に対向しない第二部分の第二距離よりも長い。
The power storage device according to one aspect of the present invention includes a plurality of power storage modules arranged in one direction and a conductor disposed in contact with both of the power storage modules adjacent to each other. The power storage module includes a plurality of first electrodes and an electrode plate having a second surface opposite to the first surface, a positive electrode provided on the first surface, and a negative electrode provided on the second surface. It has a laminated body formed by laminating bipolar electrodes via separators, and a seal portion that holds the peripheral portions of the plurality of bipolar electrodes and forms the side surfaces of the laminated body. The conductor is formed with a flow path extending in a direction crossing one direction. The distance between the seal portions in the storage modules adjacent to each other, and the first distance of the first portion facing the end portion of the flow channel in the extending direction of the flow channel is the second distance of the second portion not facing the end portion. Longer than.
上記蓄電装置では、流路端部に対向する第一部分におけるシール部同士の第一距離が、流路端部に対向しない第二部分の第二距離よりも長い。これにより、上記流路を介して流通する冷却風の通り道を確保しつつ、上記流路以外に冷却風が流通することによる冷却風漏れを抑制することができる。この結果、効率的な放熱が可能となる。
In the above power storage device, the first distance between the seal portions in the first portion facing the channel end is longer than the second distance of the second portion not facing the channel end. Thereby, it is possible to suppress leakage of cooling air due to circulation of cooling air in addition to the flow channel while securing a passage of cooling air flowing through the flow channel. As a result, efficient heat dissipation becomes possible.
本発明の一側面に係る蓄電装置では、上記流路は、直線状に延在してもよく、第二部分は、端部に対向しない部分であると共に流路の延在方向に沿う部分であってもよい。上記蓄電装置では、容易に導電体に流路を形成することができる。
In the power storage device according to one aspect of the present invention, the flow path may extend in a straight line, and the second portion is a portion that does not face the end portion and that extends along the direction in which the flow path extends. There may be. In the above power storage device, the flow path can be easily formed in the conductor.
本発明の一側面に係る蓄電装置では、第二部分では、互いに隣り合う蓄電モジュールのシール部同士が互いに接触していてもよい。上記蓄電装置では、流路以外に冷却風が流通することによる冷却風漏れを効果的に抑制することができる。
In the power storage device according to one aspect of the present invention, in the second portion, the seal portions of the power storage modules adjacent to each other may be in contact with each other. In the power storage device, cooling air leakage due to circulation of cooling air in addition to the flow path can be effectively suppressed.
本発明の一側面に係る蓄電装置では、互いに隣り合う蓄電モジュールのシール部同士は、弾性変形した状態で互いに接触していてもよい。上記蓄電装置では、例えば、導電体の高さ方向における寸法公差を吸収することができる。
In the power storage device according to one aspect of the present invention, the seal portions of the power storage modules adjacent to each other may be in contact with each other in an elastically deformed state. In the power storage device, for example, dimensional tolerance in the height direction of the conductor can be absorbed.
本発明の一側面に係る蓄電装置では、互いに隣り合う蓄電モジュールの少なくとも一方には、シール部同士が接触する部分に凸部が形成されていてもよい。上記蓄電装置では、シール部同士が接触する部分において容易に弾性変形させることができる。
In the power storage device according to one aspect of the present invention, at least one of the power storage modules adjacent to each other may have a convex portion at a portion where the seal portions are in contact with each other. In the power storage device, it can be easily elastically deformed at a portion where the seal portions are in contact with each other.
本発明の一側面に係る蓄電装置では、互いに隣り合う蓄電モジュールの一方には、シール部同士が接触する部分に凸部が形成されており、互いに隣り合う蓄電モジュールの他方には、シール部同士が接触する部分に凸部を覆う凹部が形成されていてもよい。上記蓄電装置では、例えば、導電体の高さ方向における寸法公差を吸収することができる。
In the power storage device according to one aspect of the present invention, one of the storage modules adjacent to each other has a convex portion formed in a portion where the seal portions contact each other, and the other of the storage modules adjacent to each other includes A concave portion that covers the convex portion may be formed in a portion that contacts the surface. In the power storage device, for example, dimensional tolerance in the height direction of the conductor can be absorbed.
本発明の一側面に係る蓄電装置では、導電体に形成される流路の延在方向が、一方向に配列される全ての導電体において一致していてもよい。この蓄電装置では、組み付け時の作業性を向上させることができる。
In the power storage device according to one aspect of the present invention, the extending direction of the flow path formed in the conductor may be the same in all the conductors arranged in one direction. With this power storage device, workability during assembly can be improved.
本発明の一側面に係る蓄電装置では、シール部は、電極板の周縁部に接合される枠体状の第一シール部と、第一シール部の外周面を覆い、第一シール部を一体的に保持する第二シール部と、を有していてもよい。上記蓄電装置では、蓄電モジュールにおける電解液の密閉性を高めることができる。
In the power storage device according to one aspect of the present invention, the seal portion covers the outer peripheral surface of the frame-shaped first seal portion joined to the peripheral portion of the electrode plate and the first seal portion, and the first seal portion is integrated. And a second seal portion that holds the target. In the power storage device, the sealing performance of the electrolyte solution in the power storage module can be improved.
本発明の一側面によれば、蓄電モジュールの放熱性を向上させることができる蓄電装置を提供することができる。
According to one aspect of the present invention, it is possible to provide a power storage device that can improve the heat dissipation of the power storage module.
以下、添付図面を参照しながら本発明の実施形態が詳細に説明される。図面の説明において、同一又は同等の要素には同一符号が用いられ、重複する説明は省略される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are used for the same or equivalent elements, and redundant descriptions are omitted.
(第1実施形態)
図1は、第1実施形態に係る蓄電装置を示す斜視図である。図2は、図1のII-II線に沿っての断面図である。図1及び図2に示される蓄電装置10は、例えばフォークリフト、ハイブリッド自動車、及び電気自動車等の各種車両のバッテリとして用いられる。蓄電装置10は、複数(本実施形態では3つ)の蓄電モジュール12と、複数(本実施形態では4つ)の冷却部材14と、拘束部材16と、を備える。蓄電装置10が備える蓄電モジュール12及び冷却部材14の数は、それぞれ1つであってもよい。 (First embodiment)
FIG. 1 is a perspective view showing the power storage device according to the first embodiment. FIG. 2 is a sectional view taken along line II-II in FIG. Thepower storage device 10 shown in FIGS. 1 and 2 is used as a battery for various vehicles such as forklifts, hybrid vehicles, and electric vehicles. The power storage device 10 includes a plurality (three in the present embodiment) of power storage modules 12, a plurality (four in the present embodiment) of cooling members 14, and a restraining member 16. The number of power storage modules 12 and cooling members 14 included in the power storage device 10 may be one each.
図1は、第1実施形態に係る蓄電装置を示す斜視図である。図2は、図1のII-II線に沿っての断面図である。図1及び図2に示される蓄電装置10は、例えばフォークリフト、ハイブリッド自動車、及び電気自動車等の各種車両のバッテリとして用いられる。蓄電装置10は、複数(本実施形態では3つ)の蓄電モジュール12と、複数(本実施形態では4つ)の冷却部材14と、拘束部材16と、を備える。蓄電装置10が備える蓄電モジュール12及び冷却部材14の数は、それぞれ1つであってもよい。 (First embodiment)
FIG. 1 is a perspective view showing the power storage device according to the first embodiment. FIG. 2 is a sectional view taken along line II-II in FIG. The
蓄電モジュール12は、例えば複数のバイポーラ電極32(図3参照)が第1方向D1(一方向)において積層されたバイポーラ電池である。蓄電モジュール12は、例えばニッケル水素二次電池、及びリチウムイオン二次電池等の二次電池であるが、電気二重層キャパシタであってもよい。以下の説明では、ニッケル水素二次電池を例示する。
The power storage module 12 is, for example, a bipolar battery in which a plurality of bipolar electrodes 32 (see FIG. 3) are stacked in the first direction D1 (one direction). The power storage module 12 is a secondary battery such as a nickel hydride secondary battery or a lithium ion secondary battery, but may be an electric double layer capacitor. In the following description, a nickel metal hydride secondary battery is illustrated.
冷却部材14は、冷媒の流通により蓄電モジュール12を冷却する。冷却部材14は、第1方向D1において蓄電モジュール12の積層体30(図3参照)と交互に並んで配置(積層)されている。冷却部材14は、第1方向D1で隣り合う2つの蓄電モジュール12の間に配置されていると共に、第1方向D1において両端に位置する蓄電モジュール12の外側にもそれぞれ配置されている。
The cooling member 14 cools the power storage module 12 by circulation of the refrigerant. The cooling member 14 is arranged (laminated) alternately and side by side with the stacked body 30 (see FIG. 3) of the power storage module 12 in the first direction D1. The cooling member 14 is disposed between two power storage modules 12 adjacent in the first direction D1, and is also disposed outside the power storage modules 12 located at both ends in the first direction D1.
冷却部材14は、導電性を有し、例えば金属等の導電材料により形成されている。冷却部材14は、第1方向D1において隣り合う蓄電モジュール12と電気的に接続される。これにより、複数の蓄電モジュール12が第1方向D1において直列に接続される。第1方向D1において、一端に位置する冷却部材14には正極端子24が接続されており、他端に位置する冷却部材14には負極端子26が接続されている。正極端子24は、正極端子24が接続される冷却部材14と一体であってもよい。負極端子26は、負極端子26が接続される冷却部材14と一体であってもよい。正極端子24及び負極端子26は、第1方向D1に交差(ここでは、直交)する第2方向D2に延在している。これらの正極端子24及び負極端子26により、蓄電装置10の充放電を実施できる。
The cooling member 14 has conductivity, and is formed of a conductive material such as metal, for example. The cooling member 14 is electrically connected to the power storage modules 12 adjacent in the first direction D1. Thereby, the some electrical storage module 12 is connected in series in the 1st direction D1. In the first direction D1, a positive electrode terminal 24 is connected to the cooling member 14 located at one end, and a negative electrode terminal 26 is connected to the cooling member 14 located at the other end. The positive terminal 24 may be integrated with the cooling member 14 to which the positive terminal 24 is connected. The negative electrode terminal 26 may be integrated with the cooling member 14 to which the negative electrode terminal 26 is connected. The positive electrode terminal 24 and the negative electrode terminal 26 extend in a second direction D2 that intersects (here, orthogonal) the first direction D1. The positive and negative terminals 24 and 26 can charge and discharge the power storage device 10.
拘束部材16は、蓄電モジュール12及び冷却部材14を第1方向D1に拘束するための部材である。拘束部材16は、一対の拘束プレート16A,16Bと、ボルト18と、ナット20と、を備える。ボルト18及びナット20は、拘束プレート16A,16B同士を連結する連結部材である。各拘束プレート16A,16Bと冷却部材14との間には、例えば樹脂フィルム等の絶縁フィルム22が配置される。各拘束プレート16A,16Bは、例えば鉄等の金属により構成されている。
The restraining member 16 is a member for restraining the power storage module 12 and the cooling member 14 in the first direction D1. The restraining member 16 includes a pair of restraining plates 16 </ b> A and 16 </ b> B, a bolt 18, and a nut 20. The bolt 18 and the nut 20 are connecting members that connect the restraining plates 16A and 16B. An insulating film 22 such as a resin film is disposed between the restraining plates 16A and 16B and the cooling member 14, for example. Each restraint plate 16A, 16B is comprised, for example with metals, such as iron.
第1方向D1から見て、蓄電モジュール12、冷却部材14、各拘束プレート16A,16B及び絶縁フィルム22は、例えば矩形状を呈し、それぞれの長手方向が第2方向D2、及びそれぞれの短手方向が第3方向D3となるように配置されている。第3方向D3は、第1方向D1及び第2方向D2に交差(ここでは、直交)する方向である。第1方向D1から見て、各拘束プレート16A,16Bは、蓄電モジュール12、冷却部材14及び絶縁フィルム22よりも大きい。第1方向D1から見て、蓄電モジュール12及び絶縁フィルム22は、冷却部材14よりも大きい。
When viewed from the first direction D1, the power storage module 12, the cooling member 14, each of the restraining plates 16A and 16B, and the insulating film 22 have, for example, a rectangular shape, and each longitudinal direction is the second direction D2 and each short direction. Are arranged in the third direction D3. The third direction D3 is a direction that intersects (here, orthogonal) the first direction D1 and the second direction D2. As viewed from the first direction D1, each of the restraining plates 16A and 16B is larger than the power storage module 12, the cooling member 14, and the insulating film 22. The storage module 12 and the insulating film 22 are larger than the cooling member 14 when viewed from the first direction D1.
拘束プレート16Aには、ボルト18の軸部を第1方向D1に挿通させる複数の挿通孔16A1が設けられている。複数の挿通孔16A1は、拘束プレート16Aの第2方向D2の両端部及び第3方向D3の両端部において、第1方向D1から見て、蓄電モジュール12、冷却部材14及び絶縁フィルム22の外側となる位置に設けられている。同様に、拘束プレート16Bには、ボルト18の軸部を第1方向D1に挿通させる複数の挿通孔16B1が設けられている。複数の挿通孔16B1は、拘束プレート16Bの第2方向D2の両端部及び第3方向D3の両端部において、第1方向D1から見て、蓄電モジュール12、冷却部材14及び絶縁フィルム22の外側となる位置に設けられている。
The restraint plate 16A is provided with a plurality of insertion holes 16A1 through which the shaft portion of the bolt 18 is inserted in the first direction D1. The plurality of insertion holes 16A1 are located at both ends of the restraint plate 16A in the second direction D2 and both ends of the third direction D3, as viewed from the first direction D1, and outside the power storage module 12, the cooling member 14, and the insulating film 22. It is provided in the position. Similarly, the constraining plate 16B is provided with a plurality of insertion holes 16B1 through which the shaft portion of the bolt 18 is inserted in the first direction D1. The plurality of insertion holes 16B1 are formed on the outer sides of the power storage module 12, the cooling member 14, and the insulating film 22 when viewed from the first direction D1 at both ends in the second direction D2 and both ends in the third direction D3 of the restraining plate 16B. It is provided in the position.
一方の拘束プレート16Aは、負極端子26に接続された冷却部材14に絶縁フィルム22を介して突き当てられ、他方の拘束プレート16Bは、正極端子24に接続された冷却部材14に絶縁フィルム22を介して突き当てられている。ボルト18は、例えば一方の拘束プレート16A側から他方の拘束プレート16B側に向かって挿通孔16A1及び挿通孔16B1に順に通され、他方の拘束プレート16Bから突出するボルト18の先端には、ナット20が螺合されている。これにより、絶縁フィルム22、冷却部材14及び蓄電モジュール12が挟持されてユニット化されると共に、第1方向D1に拘束荷重が付加される。
One restraint plate 16 </ b> A is abutted against the cooling member 14 connected to the negative electrode terminal 26 via the insulating film 22, and the other restraint plate 16 </ b> B attaches the insulating film 22 to the cooling member 14 connected to the positive electrode terminal 24. Has been hit through. For example, the bolt 18 is passed through the insertion hole 16A1 and the insertion hole 16B1 sequentially from one restraint plate 16A side to the other restraint plate 16B side. Are screwed together. Accordingly, the insulating film 22, the cooling member 14, and the power storage module 12 are sandwiched and unitized, and a restraining load is applied in the first direction D1.
図3は、図1に示される蓄電モジュールを示す断面図である。同図に示されるように、蓄電モジュール12は、積層体30を備える。積層体30は、セパレータ40を介して第1方向D1において積層された複数のバイポーラ電極32を有する。バイポーラ電極32は、電極板34と、電極板34の一方の面(第1面)に設けられた正極36と、電極板34の他方の面(第2面)に設けられた負極38とを含む。積層体30において、一のバイポーラ電極32の正極36は、セパレータ40を挟んで第1方向D1において隣り合う一方のバイポーラ電極32の負極38と対向し、一のバイポーラ電極32の負極38は、セパレータ40を挟んで第1方向D1において隣り合う他方のバイポーラ電極32の正極36と対向している。
FIG. 3 is a cross-sectional view showing the power storage module shown in FIG. As shown in the figure, the power storage module 12 includes a stacked body 30. The stacked body 30 includes a plurality of bipolar electrodes 32 stacked in the first direction D1 with the separator 40 interposed therebetween. The bipolar electrode 32 includes an electrode plate 34, a positive electrode 36 provided on one surface (first surface) of the electrode plate 34, and a negative electrode 38 provided on the other surface (second surface) of the electrode plate 34. Including. In the laminate 30, the positive electrode 36 of one bipolar electrode 32 faces the negative electrode 38 of one bipolar electrode 32 adjacent in the first direction D1 with the separator 40 interposed therebetween, and the negative electrode 38 of the one bipolar electrode 32 It faces the positive electrode 36 of the other bipolar electrode 32 that is adjacent in the first direction D1 with 40 interposed therebetween.
第1方向D1において、積層体30の一端には、内側面に負極38が配置された電極板34(負極側終端電極)が配置され、積層体30の他端には、内側面に正極36が配置された電極板34(正極側終端電極)が配置される。負極側終端電極の負極38は、セパレータ40を介して最上層のバイポーラ電極32の正極36と対向している。正極側終端電極の正極36は、セパレータ40を介して最下層のバイポーラ電極32の負極38と対向している。これら終端電極の電極板34はそれぞれ隣り合う冷却部材14(図2参照)に接続される。
In the first direction D1, an electrode plate 34 (negative terminal electrode) having a negative electrode 38 disposed on the inner surface is disposed at one end of the stacked body 30, and a positive electrode 36 is disposed on the inner surface at the other end of the stacked body 30. Is disposed on the electrode plate 34 (positive terminal electrode). The negative electrode 38 of the negative electrode-side termination electrode faces the positive electrode 36 of the uppermost bipolar electrode 32 with the separator 40 interposed therebetween. The positive electrode 36 of the positive terminal electrode is opposed to the negative electrode 38 of the lowermost bipolar electrode 32 with the separator 40 interposed therebetween. The electrode plates 34 of these termination electrodes are connected to adjacent cooling members 14 (see FIG. 2).
蓄電モジュール12は、第1方向D1に延在する積層体30の側面30aにおいて電極板34の縁部34aを保持する枠体50を備える。枠体50は、積層体30の側面30aを取り囲むように構成されている。枠体50は、電極板34の縁部34aを保持する第1樹脂部53と、第1方向D1から見て第1樹脂部53の周囲に設けられる第2樹脂部54とを備え得る。
The power storage module 12 includes a frame 50 that holds the edge 34a of the electrode plate 34 on the side surface 30a of the stacked body 30 extending in the first direction D1. The frame body 50 is configured to surround the side surface 30 a of the stacked body 30. The frame 50 can include a first resin portion 53 that holds the edge portion 34a of the electrode plate 34, and a second resin portion 54 that is provided around the first resin portion 53 when viewed from the first direction D1.
枠体50の内壁を構成する第1樹脂部53は、各バイポーラ電極32の電極板34の一方の面(正極36が形成される面)から縁部34aにおける電極板34の端面にわたって設けられている。第1方向D1から見て、各第1樹脂部53は、各バイポーラ電極32の電極板34の縁部34a全周にわたって設けられている。第1方向D1において隣り合う第1樹脂部53同士は、各バイポーラ電極32の電極板34の他方の面(負極38が形成される面)の外側に延在する面において溶着している。その結果、第1樹脂部53には、各バイポーラ電極32の電極板34の縁部34aが埋没して保持されている。
The first resin portion 53 constituting the inner wall of the frame 50 is provided from one surface (surface on which the positive electrode 36 is formed) of the electrode plate 34 of each bipolar electrode 32 to the end surface of the electrode plate 34 at the edge portion 34a. Yes. As viewed from the first direction D1, each first resin portion 53 is provided over the entire circumference of the edge portion 34a of the electrode plate 34 of each bipolar electrode 32. The first resin portions 53 adjacent in the first direction D1 are welded on the surface extending outside the other surface (surface on which the negative electrode 38 is formed) of the electrode plate 34 of each bipolar electrode 32. As a result, the edge portion 34 a of the electrode plate 34 of each bipolar electrode 32 is buried and held in the first resin portion 53.
各バイポーラ電極32の電極板34の縁部34aと同様に、積層体30の両端に配置された電極板34の縁部34aも第1樹脂部53に埋没した状態で保持されている。これにより、第1方向D1に隣り合う電極板34,34間には、当該電極板34,34と第1樹脂部53とによって気密に仕切られた内部空間(空間)Vが形成されている。当該内部空間Vには、例えば水酸化カリウム水溶液等のアルカリ溶液からなる電解液(不図示)が収容されている。
Similarly to the edge 34 a of the electrode plate 34 of each bipolar electrode 32, the edge 34 a of the electrode plate 34 disposed at both ends of the laminated body 30 is also held in a state of being buried in the first resin portion 53. Thus, an internal space (space) V that is airtightly partitioned by the electrode plates 34 and 34 and the first resin portion 53 is formed between the electrode plates 34 and 34 adjacent to each other in the first direction D1. In the internal space V, for example, an electrolytic solution (not shown) made of an alkaline solution such as an aqueous potassium hydroxide solution is accommodated.
枠体50の外壁を構成する第2樹脂部54は、第1方向D1を軸方向として延在する筒状部である。第2樹脂部54は、第1方向D1において積層体30の全長にわたって延在する。第2樹脂部54は、第1方向D1に延在する第1樹脂部53の外側面を覆っている。第2樹脂部54は、第1方向D1から見て内側において第1樹脂部53に溶着されている。
The second resin portion 54 constituting the outer wall of the frame body 50 is a cylindrical portion that extends with the first direction D1 as the axial direction. The second resin portion 54 extends over the entire length of the stacked body 30 in the first direction D1. The second resin portion 54 covers the outer surface of the first resin portion 53 extending in the first direction D1. The second resin portion 54 is welded to the first resin portion 53 on the inner side when viewed from the first direction D1.
電極板34は、例えばニッケルからなる矩形の金属箔である。電極板34の縁部34aは、正極活物質及び負極活物質が塗工されない未塗工領域となっており、当該未塗工領域が枠体50の内壁を構成する第1樹脂部53に埋没して保持される領域となっている。正極36を構成する正極活物質としては、例えば水酸化ニッケルが挙げられる。負極38を構成する負極活物質としては、例えば水素吸蔵合金が挙げられる。電極板34の他方の面における負極38の形成領域は、電極板34の一方の面における正極36の形成領域に対して一回り大きくなっている。なお、電極板34は、導電性樹脂から形成されてもよい。
The electrode plate 34 is a rectangular metal foil made of nickel, for example. The edge portion 34 a of the electrode plate 34 is an uncoated region where the positive electrode active material and the negative electrode active material are not coated, and the uncoated region is buried in the first resin portion 53 constituting the inner wall of the frame body 50. It is an area to be held. An example of the positive electrode active material constituting the positive electrode 36 is nickel hydroxide. Examples of the negative electrode active material constituting the negative electrode 38 include a hydrogen storage alloy. The formation region of the negative electrode 38 on the other surface of the electrode plate 34 is slightly larger than the formation region of the positive electrode 36 on one surface of the electrode plate 34. The electrode plate 34 may be formed from a conductive resin.
セパレータ40は、例えばシート状に形成されている。セパレータ40を形成する材料としては、ポリエチレン(PE)及びポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、並びにポリプロピレン、ポリエチレンテレフタレート(PET)、及びメチルセルロース等からなる織布又は不織布等が例示される。また、セパレータ40は、フッ化ビニリデン樹脂化合物で補強されてもよい。なお、セパレータ40は、シート状に限られず、袋状でもよい。
The separator 40 is formed in a sheet shape, for example. Examples of the material forming the separator 40 include a porous film made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), and a woven or non-woven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose, or the like. Is done. Moreover, the separator 40 may be reinforced with a vinylidene fluoride resin compound. The separator 40 is not limited to a sheet shape, and may be a bag shape.
枠体50(第1樹脂部53及び第2樹脂部54)は、例えば絶縁性の樹脂を用いた射出成形によって矩形の筒状に形成されている。枠体50を構成する樹脂材料としては、例えばポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、又は変性ポリフェニレンエーテル(変性PPE)等が挙げられる。第1樹脂部53の形成は、例えば、バイポーラ電極32がセパレータ40を介して積層されることにより積層体30が形成される前に行われてもよいし、積層体30が形成された後に行われてもよい。第2樹脂部54の形成は、例えば、第1樹脂部53及び積層体30の形成後に行われる。
The frame 50 (the first resin portion 53 and the second resin portion 54) is formed in a rectangular cylindrical shape by, for example, injection molding using an insulating resin. Examples of the resin material constituting the frame 50 include polypropylene (PP), polyphenylene sulfide (PPS), and modified polyphenylene ether (modified PPE). The formation of the first resin portion 53 may be performed, for example, before the stacked body 30 is formed by stacking the bipolar electrode 32 via the separator 40 or after the stacked body 30 is formed. It may be broken. Formation of the 2nd resin part 54 is performed after formation of the 1st resin part 53 and the laminated body 30, for example.
図4は、図1に示される蓄電モジュールを示す斜視図である。同図に示されるように、蓄電モジュール12は、例えば矩形板状を呈し、蓄電モジュール12の厚さ方向が第1方向D1となるように配置されている。蓄電モジュール12は、第1方向D1で互いに対向する一対の主面12aと、第2方向D2で互いに対向する一対の第1側面12bと、第3方向D3で互いに対向する一対の第2側面12cと、を有している。第1側面12b及び第2側面12cは、枠体50の第2樹脂部54により構成されている。
FIG. 4 is a perspective view showing the power storage module shown in FIG. As shown in the figure, the power storage module 12 has a rectangular plate shape, for example, and is disposed such that the thickness direction of the power storage module 12 is the first direction D1. The power storage module 12 includes a pair of main surfaces 12a facing each other in the first direction D1, a pair of first side surfaces 12b facing each other in the second direction D2, and a pair of second side surfaces 12c facing each other in the third direction D3. And have. The first side surface 12 b and the second side surface 12 c are configured by the second resin portion 54 of the frame body 50.
蓄電モジュール12の枠体50は、側面30aを覆う本体領域51と、本体領域51から突出する突出領域52とを有している。本体領域51は、第1樹脂部53及び第2樹脂部54により構成されている。本体領域51は、第2方向D2で互いに対向する一対の第1側部51aと、第3方向D3で互いに対向する一対の第2側部51bと、を有している。
The frame 50 of the electricity storage module 12 has a main body region 51 that covers the side surface 30 a and a protruding region 52 that protrudes from the main body region 51. The main body region 51 includes a first resin portion 53 and a second resin portion 54. The main body region 51 has a pair of first side parts 51a that face each other in the second direction D2, and a pair of second side parts 51b that face each other in the third direction D3.
本体領域51における一方の第1側部51aには、枠体50内に電解液を注入するための注液口50aが設けられている。注液口50aは、具体的には、一方の第1側部51aの外側面に設けられている。一方の第1側部51aの外側面は、第1側面12bの一部を構成するので、注液口50aは第1側面12bに設けられていると言える。注液口50aは、注液口50aが設けられた第1側面12bと同じ方向を向いている。つまり、注液口50aの向く方向とは、第1側面12bの向く方向であって、第2方向D2に沿って第1側面12bから蓄電モジュール12の外方に向かう方向である。注液口50aの形状は例えば矩形であるが、円形等の他の形状であってもよい。注液口50aは、例えば第3方向D3が長手方向となるように延在している。注液口50aは、例えば第1側面12bの第3方向D3における中央に配置されている。注液口50aは、第1側面12bの第3方向D3における端部に配置されていてもよい。
In one of the first side portions 51 a in the main body region 51, a liquid injection port 50 a for injecting an electrolytic solution into the frame body 50 is provided. Specifically, the liquid injection port 50a is provided on the outer surface of one of the first side portions 51a. Since the outer side surface of one first side portion 51a forms part of the first side surface 12b, it can be said that the liquid injection port 50a is provided on the first side surface 12b. The liquid injection port 50a faces the same direction as the first side surface 12b provided with the liquid injection port 50a. That is, the direction in which the liquid injection port 50a faces is the direction in which the first side surface 12b faces, and the direction from the first side surface 12b to the outside of the power storage module 12 along the second direction D2. The shape of the liquid injection port 50a is, for example, a rectangle, but may be another shape such as a circle. The liquid injection port 50a extends, for example, such that the third direction D3 is the longitudinal direction. The liquid injection port 50a is arranged, for example, at the center in the third direction D3 of the first side surface 12b. The liquid injection port 50a may be disposed at the end of the first side surface 12b in the third direction D3.
突出領域52は、第2樹脂部54により構成されている。突出領域52は、第1方向D1において注液口50aから離れるように一方の第1側部51aから突出している。突出領域52は、第2方向D2から見て、例えば矩形状を呈している。突出領域52は、一方の第1側部51aの外側面から連続し、第1側面12bの一部を構成する外側面を有している。本実施形態では、一対の突出領域52が第1方向D1において注液口50aを挟むように配置されている。突出領域52は、第3方向D3に沿って注液口50aの全長を越えて注液口50aの両外側にはみ出る長さで設けられている。
The protruding region 52 is configured by the second resin portion 54. The protruding region 52 protrudes from one first side portion 51a so as to be separated from the liquid injection port 50a in the first direction D1. The protruding region 52 has, for example, a rectangular shape when viewed from the second direction D2. The protruding region 52 has an outer surface that is continuous from the outer surface of one of the first side portions 51a and forms a part of the first side surface 12b. In the present embodiment, the pair of protruding regions 52 are arranged so as to sandwich the liquid injection port 50a in the first direction D1. The protruding region 52 is provided with a length that extends beyond the entire length of the liquid injection port 50a along the third direction D3 and protrudes from both outer sides of the liquid injection port 50a.
注液口50aは、電解液の注入後にシール材(不図示)によって封止される。電解液は、例えば電解液を供給する供給管(不図示)を注液口50aの周囲領域に押し付けながら注入される。この周囲領域は、一方の第1側部51aの外側面における注液口50aに隣接する部分と突出領域52の外側面とを含む。
The liquid inlet 50a is sealed with a sealing material (not shown) after the electrolyte is injected. The electrolytic solution is injected, for example, while pressing a supply pipe (not shown) for supplying the electrolytic solution against a region around the injection port 50a. This peripheral region includes a portion adjacent to the liquid injection port 50 a on the outer side surface of one first side portion 51 a and the outer side surface of the protruding region 52.
図5は、図4の蓄電モジュールの一部を第2方向から見て拡大した側面図である。同図に示されるように、第2樹脂部54のうち一方の第1側部51aを構成する部分には、注液口50aを一端とする単一の流路54aが設けられている。流路54aは第2方向D2(図4参照)に延在している。第1樹脂部53のうち一方の第1側部51aを構成する部分には、第1方向D1において隣り合うバイポーラ電極32間の内部空間V(図3参照)及び流路54aと連通する複数の流路53aが設けられている。複数の流路53aのそれぞれは、第2方向D2に延在し、複数の流路53aは、第1方向D1に配列されている。流路53aは、例えば第1方向D1に隣り合うバイポーラ電極32の第1樹脂部53において、電極板34の一方の面側に溝を形成することによって第1樹脂部53,53間に形成された空隙であってもよい。この溝は、第1樹脂部53の成型の際、内部空間V及び流路54aと連通するように同時に成型されてもよいし、第1樹脂部53の成型後の加工によって形成されてもよい。各流路53aは、例えば断面矩形状を呈している。流路54aの断面形状は、例えば、注液口50aと同形状を呈し、複数の流路53aを覆うように広がっている。
FIG. 5 is an enlarged side view of a part of the power storage module of FIG. 4 as viewed from the second direction. As shown in the figure, a portion of the second resin portion 54 constituting one first side portion 51a is provided with a single flow path 54a having a liquid injection port 50a as one end. The channel 54a extends in the second direction D2 (see FIG. 4). A portion of the first resin portion 53 that constitutes one first side portion 51a includes a plurality of internal spaces V (see FIG. 3) between the bipolar electrodes 32 adjacent in the first direction D1 and the flow paths 54a. A flow path 53a is provided. Each of the plurality of flow paths 53a extends in the second direction D2, and the plurality of flow paths 53a are arranged in the first direction D1. For example, in the first resin part 53 of the bipolar electrode 32 adjacent in the first direction D1, the flow path 53a is formed between the first resin parts 53 and 53 by forming a groove on one surface side of the electrode plate 34. It may be a void. This groove may be formed at the same time so as to communicate with the internal space V and the flow path 54a when the first resin portion 53 is molded, or may be formed by processing after the first resin portion 53 is molded. . Each flow path 53a has, for example, a rectangular cross section. The cross-sectional shape of the flow path 54a is, for example, the same shape as the liquid injection port 50a, and spreads so as to cover the plurality of flow paths 53a.
図6は、第2樹脂部の形成方法を説明するための断面図である。同図に示されるように、モールドM内に、流動性を有する第2樹脂部54の樹脂材料54Pを流し込むことによって、第2樹脂部54が形成される。モールドMは、枠体50の本体領域51及び突出領域52(図5参照)の外縁を形成する第1部分M1と、流路54aを形成するための入れ子である第2部分M2とを有する。
FIG. 6 is a cross-sectional view for explaining a method of forming the second resin portion. As shown in the figure, the second resin portion 54 is formed by pouring the resin material 54P of the second resin portion 54 having fluidity into the mold M. The mold M includes a first portion M1 that forms the outer edges of the main body region 51 and the protruding region 52 (see FIG. 5) of the frame body 50, and a second portion M2 that is a nesting for forming the flow path 54a.
樹脂材料54Pは、例えば、第3方向D3に沿って流れる。樹脂材料54Pは、互いに対向配置された一対の第1部分M1間を流れた後、第2部分M2に衝突して、第2部分M2の周囲に沿って2つに分かれる。2つに分かれた樹脂材料54Pは、それぞれ第1部分M1と第2部分M2との間を流れた後、合流して、一対の第1部分M1間を流れる。このように、樹脂材料54Pの流路は、第2部分M2が配置されることにより狭くなり易い。そこで、樹脂材料54Pの流路確保のため、第1部分M1には、第2部分M2に対応する部分に凹部M1aが形成されている。凹部M1aは、第1方向D1において第2部分M2から離れるように、第1部分M1の他の部分に対して窪んでいる。突出領域52は、凹部M1aにより形成される。
Resin material 54P flows along the third direction D3, for example. The resin material 54P flows between the pair of first portions M1 arranged to face each other, then collides with the second portion M2, and is divided into two along the periphery of the second portion M2. The resin material 54P divided into two flows between the first portion M1 and the second portion M2, respectively, and then merges to flow between the pair of first portions M1. Thus, the flow path of the resin material 54P is likely to be narrowed by the second portion M2 being disposed. Therefore, in order to secure the flow path of the resin material 54P, the first portion M1 is formed with a recess M1a in a portion corresponding to the second portion M2. The recessed portion M1a is recessed with respect to the other portions of the first portion M1 so as to be separated from the second portion M2 in the first direction D1. The protruding region 52 is formed by the recess M1a.
図7は、図1に示される冷却部材を示す斜視図である。同図に示されるように、冷却部材14は、例えば矩形板状を呈し、冷却部材14の厚さ方向が第1方向D1となるように配置されている。冷却部材14は、第1方向D1で互いに対向する一対の主面14aと、第2方向D2で互いに対向する一対の第1側面14bと、第3方向D3で互いに対向する一対の第2側面14cと、を有している。冷却部材14は、冷却部材14の内部に冷媒を流通させることで、蓄電モジュール12(図1参照)からの熱を効率的に外部に放出し、蓄電モジュール12を冷却する。冷媒は、例えば絶縁性を有し、空気、及びアンモニア等の気体又はLLC等の液体である。
FIG. 7 is a perspective view showing the cooling member shown in FIG. As shown in the figure, the cooling member 14 has a rectangular plate shape, for example, and is arranged so that the thickness direction of the cooling member 14 is the first direction D1. The cooling member 14 includes a pair of main surfaces 14a facing each other in the first direction D1, a pair of first side surfaces 14b facing each other in the second direction D2, and a pair of second side surfaces 14c facing each other in the third direction D3. And have. The cooling member 14 causes the refrigerant to flow inside the cooling member 14, thereby efficiently releasing heat from the power storage module 12 (see FIG. 1) to the outside, thereby cooling the power storage module 12. The refrigerant is, for example, insulative and is air, a gas such as ammonia, or a liquid such as LLC.
冷却部材14には、冷媒を流通させる複数の流路15aが設けられている。複数の流路15aは、第2方向D2に配列されている。各流路15aは、第3方向D3に直線状に延在する。流路15aは、例えば、断面矩形状を呈している。流路15aは、断面円形状等を呈していてもよい。
The cooling member 14 is provided with a plurality of flow paths 15a for circulating the refrigerant. The plurality of flow paths 15a are arranged in the second direction D2. Each flow path 15a extends linearly in the third direction D3. The channel 15a has, for example, a rectangular cross section. The channel 15a may have a circular cross section or the like.
冷却部材14は、複数の流路15aを第1方向D1に挟む一対の板部材15bと、一対の板部材15b同士を接続する複数の接続部材15cと、を有している。板部材15bは、例えば、第1方向D1から見て、矩形状を呈し、その外面として主面14aを有する。接続部材15cは、例えば、第1方向D1及び第3方向D3に延在する矩形板である。接続部材15cは、流路15aと交互に第2方向D2に配列されている。第2方向D2の両端に配置された接続部材15cは、冷却部材14の側壁として機能し、その外面として第1側面14bを有する。それ以外の接続部材15cは、隣り合う2つの流路を隔てる隔壁として機能する。
The cooling member 14 includes a pair of plate members 15b that sandwich the plurality of flow paths 15a in the first direction D1, and a plurality of connection members 15c that connect the pair of plate members 15b to each other. The plate member 15b has, for example, a rectangular shape when viewed from the first direction D1, and has a main surface 14a as an outer surface thereof. The connection member 15c is, for example, a rectangular plate that extends in the first direction D1 and the third direction D3. The connection members 15c are arranged in the second direction D2 alternately with the flow paths 15a. The connection members 15c arranged at both ends in the second direction D2 function as side walls of the cooling member 14, and have first side surfaces 14b as outer surfaces thereof. The other connection member 15c functions as a partition that separates two adjacent flow paths.
第2側面14cには、冷却部材14の内部に冷媒を流入させるため、又は冷却部材14の内部から冷媒を流出させるための開口15dが設けられている。開口15dは、流路15aの両端により構成されている。冷媒は、例えば、流路15aの一端により構成される開口15dを通って冷却部材14の内部に流入した後、流路15aの他端により構成される開口15dを通って冷却部材14の内部から流出する。つまり、冷却部材14には、冷却部材14を第3方向D3において貫通する貫通孔が流路15aとして設けられている。
The second side surface 14 c is provided with an opening 15 d for allowing the refrigerant to flow into the cooling member 14 or for allowing the refrigerant to flow out of the cooling member 14. The opening 15d is configured by both ends of the flow path 15a. For example, the refrigerant flows into the inside of the cooling member 14 through the opening 15d constituted by one end of the flow path 15a, and then flows from the inside of the cooling member 14 through the opening 15d constituted by the other end of the flow path 15a. leak. That is, the cooling member 14 is provided with a through hole that penetrates the cooling member 14 in the third direction D3 as the flow path 15a.
開口15dは、その開口15dが設けられた第2側面14cと同じ方向を向いている。つまり、開口15dの向く方向とは、第2側面14cの向く方向であって、第3方向D3に沿って第2側面14cから冷却部材14の外方に向かう方向である。したがって、一方の第2側面14cに設けられた開口15dの向く方向と、他方の第2側面14cに設けられた開口15dの向く方向とは、互いに異なり、逆方向である。注液口50a(図4参照)の向く方向は、一対の第2側面14cのいずれに設けられた開口15dの向く方向とも互いに異なっている。注液口50aの向く方向、及び開口15dの向く方向は、例えば、直交している。
The opening 15d faces the same direction as the second side surface 14c provided with the opening 15d. That is, the direction in which the opening 15d faces is the direction in which the second side face 14c faces, and is the direction from the second side face 14c toward the outside of the cooling member 14 along the third direction D3. Therefore, the direction in which the opening 15d provided in one second side surface 14c faces and the direction in which the opening 15d provided in the other second side surface 14c faces are different from each other and in opposite directions. The direction in which the liquid injection port 50a (see FIG. 4) faces is different from the direction in which the opening 15d provided in any one of the pair of second side surfaces 14c faces. The direction in which the liquid injection port 50a faces and the direction in which the opening 15d faces are, for example, orthogonal to each other.
冷却部材14は、第1方向D1から見て、図4に示される蓄電モジュール12よりも小さく、蓄電モジュール12の枠体50の内側において、主面14aを全体的に電極板34に当接させるように配置されている。上述のように、主面14aは、板部材15bの外面により構成されている。したがって、冷却部材14は、例えば、板部材15bを全体的に電極板34に当接させるように配置されているとも言える。
The cooling member 14 is smaller than the power storage module 12 shown in FIG. 4 when viewed from the first direction D1, and the main surface 14a is entirely brought into contact with the electrode plate 34 inside the frame 50 of the power storage module 12. Are arranged as follows. As described above, the main surface 14a is configured by the outer surface of the plate member 15b. Therefore, it can be said that the cooling member 14 is disposed so that the plate member 15b is brought into contact with the electrode plate 34 as a whole, for example.
図8は、比較例に係る蓄電装置を示す斜視図である。図9は、図8の蓄電装置の一部を拡大した側面図である。図9では、ボルト18の図示が省略されている。図8及び図9に示されるように、比較例に係る蓄電装置100は、冷却部材14の点で、第1実施形態に係る蓄電装置10と主に相違している。蓄電装置100の冷却部材14では、複数の流路15aは第3方向D3に配列されると共に、各流路15aは第2方向D2に直線状に延在する。また、開口15dが第1側面14bに設けられている。このため、蓄電装置100では、注液口50aの向く方向及び開口15dの向く方向が同じである。したがって、開口15dの一部が突出領域52に覆われる。これにより、冷媒の流通が突出領域52によって妨げられるので、開口15dを通じて冷媒を効率よく流通させることができない。この結果、蓄電装置100では、冷却部材14による冷却効率が低下する。
FIG. 8 is a perspective view showing a power storage device according to a comparative example. FIG. 9 is an enlarged side view of a part of the power storage device of FIG. In FIG. 9, the illustration of the bolt 18 is omitted. As illustrated in FIGS. 8 and 9, the power storage device 100 according to the comparative example is mainly different from the power storage device 10 according to the first embodiment in terms of a cooling member 14. In the cooling member 14 of the power storage device 100, the plurality of flow paths 15a are arranged in the third direction D3, and each flow path 15a extends linearly in the second direction D2. An opening 15d is provided in the first side surface 14b. For this reason, in the power storage device 100, the direction in which the liquid injection port 50a faces and the direction in which the opening 15d faces are the same. Therefore, a part of the opening 15d is covered with the protruding region 52. Thereby, since the distribution | circulation of a refrigerant | coolant is prevented by the protrusion area | region 52, a refrigerant | coolant cannot be distribute | circulated efficiently through the opening 15d. As a result, in the power storage device 100, the cooling efficiency by the cooling member 14 decreases.
これに対して、図1に示されるように、蓄電装置10では、注液口50aの向く方向、及び開口15dの向く方向が互いに異なり、互いに直交している。したがって、開口15dが突出領域52によって覆われず、開口15dを突出領域52から開放された状態とすることができる。このため、冷媒の流通が突出領域52によって妨げられることがないので、開口15dを通じて冷媒を効率よく流通させることができる。この結果、蓄電装置10では、冷却部材14による冷却効率の低下を抑制可能となるので、蓄電モジュール12の放熱性を向上させることができる。
On the other hand, as shown in FIG. 1, in the power storage device 10, the direction toward the liquid injection port 50 a and the direction toward the opening 15 d are different from each other and are orthogonal to each other. Therefore, the opening 15d is not covered by the protruding region 52, and the opening 15d can be opened from the protruding region 52. For this reason, since the circulation of the refrigerant is not hindered by the protruding region 52, the refrigerant can be efficiently circulated through the opening 15d. As a result, in the power storage device 10, it is possible to suppress a decrease in cooling efficiency due to the cooling member 14, so that the heat dissipation of the power storage module 12 can be improved.
冷却部材14には、冷媒を流通させる複数の流路15aが設けられている。流路15aは、板状の冷却部材14を第3方向D3において貫通する貫通孔である。複数の流路15aは、第2方向D2に配列されると共に、それぞれ第3方向D3に延在する。このような流路15aによれば、冷却部材14の内部に冷媒を効率よく流通させることができるので、蓄電モジュール12の放熱性を更に向上させることができる。
The cooling member 14 is provided with a plurality of flow paths 15a for circulating the refrigerant. The flow path 15a is a through hole that penetrates the plate-like cooling member 14 in the third direction D3. The plurality of flow paths 15a are arranged in the second direction D2 and each extend in the third direction D3. According to such a flow path 15a, since the refrigerant can be efficiently circulated inside the cooling member 14, the heat dissipation of the power storage module 12 can be further improved.
冷却部材14は、複数の流路15aを第1方向D1に挟む一対の板部材15bを有している。このため、板部材15bの外表面、つまり、冷却部材14の主面14aを全体的に蓄電モジュール12の主面12aに当接させることができるので、蓄電モジュール12に対して局所的な圧力が加わるのを抑制可能となる。
The cooling member 14 has a pair of plate members 15b that sandwich the plurality of flow paths 15a in the first direction D1. For this reason, since the outer surface of the plate member 15b, that is, the main surface 14a of the cooling member 14 can be brought into contact with the main surface 12a of the power storage module 12 as a whole, local pressure is applied to the power storage module 12. It is possible to suppress the addition.
冷却部材14は、導電性を有している。このため、第1方向D1に隣り合う蓄電モジュール12同士を冷却部材14によって電気的に接続することができる。したがって、蓄電モジュール12同士を電気的に接続する部材を更に設ける必要がないので、蓄電装置10の小型化を図ることができる。
The cooling member 14 has conductivity. For this reason, the power storage modules 12 adjacent in the first direction D1 can be electrically connected by the cooling member 14. Therefore, since it is not necessary to further provide a member for electrically connecting the power storage modules 12 to each other, the power storage device 10 can be reduced in size.
冷媒は絶縁性を有している。例えば水等の導電性を有する冷媒を用いた場合、冷媒を通じて、冷却部材14同士の短絡が生じるおそれがある。蓄電装置10では、例えば空気等の絶縁性を有する冷媒が用いられるので、冷媒を通じて、冷却部材14同士の短絡が生じることを防止できる。
Refrigerant has insulating properties. For example, when a conductive coolant such as water is used, the cooling members 14 may be short-circuited through the coolant. In the power storage device 10, for example, an insulating refrigerant such as air is used. Therefore, it is possible to prevent a short circuit between the cooling members 14 through the refrigerant.
(第2実施形態)
図10に示される蓄電装置110は、例えばフォークリフト、ハイブリッド自動車、及び電気自動車等の各種車両のバッテリとして用いられる。蓄電モジュール112は、例えば、バイポーラ電池である。蓄電モジュール112の例には、ニッケル水素二次電池、及びリチウムイオン二次電池等の二次電池が含まれるが、電気二重層キャパシタであってもよい。以下の説明では、ニッケル水素二次電池を例示する。なお、図10~図16には、XYZ直交座標系が示される。 (Second Embodiment)
Thepower storage device 110 shown in FIG. 10 is used as a battery for various vehicles such as forklifts, hybrid cars, and electric cars. The power storage module 112 is, for example, a bipolar battery. Examples of the power storage module 112 include secondary batteries such as a nickel hydride secondary battery and a lithium ion secondary battery, but may be an electric double layer capacitor. In the following description, a nickel metal hydride secondary battery is illustrated. 10 to 16 show the XYZ orthogonal coordinate system.
図10に示される蓄電装置110は、例えばフォークリフト、ハイブリッド自動車、及び電気自動車等の各種車両のバッテリとして用いられる。蓄電モジュール112は、例えば、バイポーラ電池である。蓄電モジュール112の例には、ニッケル水素二次電池、及びリチウムイオン二次電池等の二次電池が含まれるが、電気二重層キャパシタであってもよい。以下の説明では、ニッケル水素二次電池を例示する。なお、図10~図16には、XYZ直交座標系が示される。 (Second Embodiment)
The
複数の蓄電モジュール112は、金属板等の導電体114を介して積層されて配列体111を形成している。導電体114は、積層方向(Z軸方向;一方向)において互いに隣り合う蓄電モジュール112,112の間に配置される一つの金属体であり、積層方向において互いに隣り合う蓄電モジュール112,112の両方に接触させた状態で配置される。導電体114は、例えば、アルミニウム、及び銅等の金属材料により形成されている。積層方向から見たとき、蓄電モジュール112及び導電体114は、例えば、矩形形状を有する。積層方向から見たとき、導電体114は、蓄電モジュール112よりも小さいが、蓄電モジュール112と同じかそれより大きくてもよい。導電体114は、積層方向において隣り合う蓄電モジュール112と電気的に接続される。これにより、複数の蓄電モジュール112が積層方向に直列に接続される。
The plurality of power storage modules 112 are stacked via a conductor 114 such as a metal plate to form an array 111. The conductor 114 is one metal body disposed between the power storage modules 112 and 112 adjacent to each other in the stacking direction (Z-axis direction; one direction), and both the power storage modules 112 and 112 adjacent to each other in the stacking direction. It arrange | positions in the state contacted. The conductor 114 is made of a metal material such as aluminum and copper, for example. When viewed from the stacking direction, the power storage module 112 and the conductor 114 have, for example, a rectangular shape. When viewed from the stacking direction, the conductor 114 is smaller than the power storage module 112, but may be the same as or larger than the power storage module 112. The conductor 114 is electrically connected to the power storage module 112 adjacent in the stacking direction. Thereby, the some electrical storage module 112 is connected in series in the lamination direction.
導電体114は、蓄電モジュール112の積層方向において両端に位置する蓄電モジュール112の外側にもそれぞれ配置される。すなわち、導電体114は、積層方向において、配列体111の両端にも配置されている。積層方向において、配列体111の一端に位置する導電体114には正極端子124が接続されており、配列体111の他端に位置する導電体114には負極端子126が接続されている。正極端子124は、正極端子124が接続される導電体114と一体であってもよい。負極端子126は、負極端子126が接続される導電体114と一体であってもよい。正極端子124及び負極端子126は、積層方向に交差する方向(X軸方向)に延在している。これらの正極端子124及び負極端子126により、蓄電装置110の充放電を実施できる。
The conductors 114 are also arranged outside the power storage modules 112 positioned at both ends in the stacking direction of the power storage modules 112, respectively. That is, the conductor 114 is also disposed at both ends of the array body 111 in the stacking direction. In the stacking direction, a positive electrode terminal 124 is connected to the conductor 114 located at one end of the array 111, and a negative electrode 126 is connected to the conductor 114 located at the other end of the array 111. The positive terminal 124 may be integrated with the conductor 114 to which the positive terminal 124 is connected. The negative electrode terminal 126 may be integrated with the conductor 114 to which the negative electrode terminal 126 is connected. The positive electrode terminal 124 and the negative electrode terminal 126 extend in a direction intersecting the stacking direction (X-axis direction). The positive and negative terminals 124 and 126 can charge and discharge the power storage device 110.
導電体114は、蓄電モジュール112において発生した熱を放出するための放熱板としても機能する。導電体114は、蓄電モジュール112における導電体114との接触部(例えば接触面112a)よりも高い熱伝導性を有してもよい。また、導電体114の内部には、積層方向に交差する方向(Y軸方向)に延在する貫通孔114aが設けられている。貫通孔114aは、導電体114において互いに対向する一方の側面114d(図14参照)から他方の側面114f(図14参照)まで直線状に連通する。
The conductor 114 also functions as a heat radiating plate for releasing the heat generated in the power storage module 112. The conductor 114 may have higher thermal conductivity than a contact portion (for example, the contact surface 112a) with the conductor 114 in the power storage module 112. In addition, a through-hole 114a extending in the direction intersecting the stacking direction (Y-axis direction) is provided inside the conductor 114. The through-hole 114a communicates linearly from one side surface 114d (see FIG. 14) facing each other in the conductor 114 to the other side surface 114f (see FIG. 14).
本実施形態では、導電体114には、複数の貫通孔114aが設けられている。複数の貫通孔114aは、積層方向及び積層方向に交差する方向(X軸方向)に配列されている。このような貫通孔114aに空気等の気体の冷媒が通過することにより、蓄電モジュール112において発生する熱を効率的に外部に放出できる。導電体114のサイズ、導電体114の材質、貫通孔114aのサイズ、及び貫通孔114aの数等は、例えば、蓄電装置110の温度が50℃を超えないように適宜調整される。貫通孔114aに空気を積極的に流通(循環)させる装置が、蓄電モジュール112に設けられてもよい。また、本実施形態では、導電体114に形成される貫通孔114aの延在方向が、積層方向に配列される全ての導電体114において一致している。
In the present embodiment, the conductor 114 is provided with a plurality of through holes 114a. The plurality of through holes 114a are arranged in the stacking direction and the direction (X-axis direction) intersecting the stacking direction. When a gaseous refrigerant such as air passes through such a through-hole 114a, heat generated in the power storage module 112 can be efficiently released to the outside. The size of the conductor 114, the material of the conductor 114, the size of the through hole 114a, the number of the through holes 114a, and the like are appropriately adjusted so that the temperature of the power storage device 110 does not exceed 50 ° C., for example. A device that actively circulates (circulates) air through the through hole 114 a may be provided in the power storage module 112. Moreover, in this embodiment, the extending direction of the through-hole 114a formed in the conductor 114 is the same in all the conductors 114 arranged in the stacking direction.
蓄電装置110は、交互に積層された蓄電モジュール112及び導電体114を積層方向に拘束する拘束部材115を備え得る。拘束部材115は、一対の拘束プレート116,117と、拘束プレート116,117同士を連結する連結部材(ボルト118及びナット120)と、を備える。各拘束プレート116,117と導電体114との間には、例えば、樹脂フィルム等の絶縁フィルム122が配置される。各拘束プレート116,117は、例えば、鉄等の金属によって構成されている。
The power storage device 110 can include a constraining member 115 that constrains alternately stacked power storage modules 112 and conductors 114 in the stacking direction. The restraining member 115 includes a pair of restraining plates 116 and 117 and a connecting member (bolt 118 and nut 120) for joining the restraining plates 116 and 117 to each other. For example, an insulating film 122 such as a resin film is disposed between the restraining plates 116 and 117 and the conductor 114. Each constraining plate 116, 117 is made of metal such as iron, for example.
積層方向から見たとき、各拘束プレート116,117及び絶縁フィルム122は、例えば、矩形形状を有する。絶縁フィルム122は、導電体114よりも大きく、各拘束プレート116,117は、蓄電モジュール112よりも大きい。積層方向から見たとき、拘束プレート116の縁部には、ボルト118の軸部を挿通させる挿通孔116aが蓄電モジュール112よりも外側となる位置に設けられている。同様に、積層方向から見たとき、拘束プレート117の縁部には、ボルト118の軸部を挿通させる挿通孔117aが蓄電モジュール112よりも外側となる位置に設けられている。積層方向から見たときに各拘束プレート116,117が矩形形状を有している場合、挿通孔116a及び挿通孔117aは、拘束プレート116,117の角部に位置する。
When viewed from the stacking direction, each of the restraining plates 116 and 117 and the insulating film 122 has, for example, a rectangular shape. The insulating film 122 is larger than the conductor 114, and the restraining plates 116 and 117 are larger than the power storage module 112. When viewed from the stacking direction, an insertion hole 116 a through which the shaft portion of the bolt 118 is inserted is provided at an edge of the restraining plate 116 at a position outside the power storage module 112. Similarly, when viewed from the stacking direction, an insertion hole 117 a through which the shaft portion of the bolt 118 is inserted is provided at the edge of the restraining plate 117 at a position outside the power storage module 112. When each restraint plate 116, 117 has a rectangular shape when viewed from the stacking direction, the insertion hole 116a and the insertion hole 117a are located at the corners of the restraint plates 116, 117.
一方の拘束プレート116は、負極端子126に接続された導電体114に絶縁フィルム122を介して突き当てられ、他方の拘束プレート117は、正極端子124に接続された導電体114に絶縁フィルム122を介して突き当てられている。ボルト118は、例えば、一方の拘束プレート116側から他方の拘束プレート117側に向かって挿通孔116a及び挿通孔117aに順に通され、他方の拘束プレート117から突出するボルト118の先端には、ナット120が螺合されている。これにより、絶縁フィルム122、導電体114及び蓄電モジュール112が挟持されてユニット化されると共に、積層方向に拘束荷重が付加される。
One constraining plate 116 is abutted against the conductor 114 connected to the negative electrode terminal 126 via the insulating film 122, and the other constraining plate 117 applies the insulating film 122 to the conductor 114 connected to the positive electrode terminal 124. Has been hit through. For example, the bolt 118 is passed through the insertion hole 116a and the insertion hole 117a sequentially from one restraint plate 116 side to the other restraint plate 117 side. 120 is screwed together. Accordingly, the insulating film 122, the conductor 114, and the power storage module 112 are sandwiched and unitized, and a restraining load is applied in the stacking direction.
図11に示されるように、蓄電モジュール112は、複数のバイポーラ電極132が積層された積層体130を備える。バイポーラ電極132の積層方向から見たとき、積層体130は、例えば、矩形形状を有する。積層方向において隣り合うバイポーラ電極132間にはセパレータ140が配置され得る。バイポーラ電極132は、電極板134と、電極板134の一方の面(第1面)に設けられた正極層136(正極)と、電極板134の他方の面(第2面)に設けられた負極層138(負極)と、を含む。積層体130において、一のバイポーラ電極132の正極層136は、セパレータ140を挟んで積層方向に隣り合う一方のバイポーラ電極132の負極層138と対向し、一のバイポーラ電極132の負極層138は、セパレータ140を挟んで積層方向に隣り合う他方のバイポーラ電極132の正極層136と対向している。
As shown in FIG. 11, the power storage module 112 includes a stacked body 130 in which a plurality of bipolar electrodes 132 are stacked. When viewed from the stacking direction of the bipolar electrode 132, the stacked body 130 has, for example, a rectangular shape. A separator 140 may be disposed between the bipolar electrodes 132 adjacent in the stacking direction. The bipolar electrode 132 is provided on the electrode plate 134, the positive electrode layer 136 (positive electrode) provided on one surface (first surface) of the electrode plate 134, and the other surface (second surface) of the electrode plate 134. A negative electrode layer 138 (negative electrode). In the stacked body 130, the positive electrode layer 136 of one bipolar electrode 132 faces the negative electrode layer 138 of one bipolar electrode 132 adjacent in the stacking direction with the separator 140 interposed therebetween, and the negative electrode layer 138 of one bipolar electrode 132 is It faces the positive electrode layer 136 of the other bipolar electrode 132 adjacent in the stacking direction with the separator 140 interposed therebetween.
積層方向において、積層体130の一端には、内側面に負極層138が配置された電極板134(負極側終端電極)が配置され、他端には、内側面に正極層136が配置された電極板134(正極側終端電極)が配置される。負極側終端電極の負極層138は、セパレータ140を介して最上層のバイポーラ電極132の正極層136と対向している。正極側終端電極の正極層136は、セパレータ140を介して最下層のバイポーラ電極132の負極層138と対向している。これら終端電極の電極板134はそれぞれ隣り合う導電体114(図10参照)に接続される。
In the stacking direction, an electrode plate 134 (negative electrode termination electrode) having a negative electrode layer 138 disposed on the inner surface is disposed at one end of the laminate 130, and a positive electrode layer 136 is disposed on the inner surface at the other end. An electrode plate 134 (positive terminal electrode) is disposed. The negative electrode layer 138 of the negative electrode side termination electrode is opposed to the positive electrode layer 136 of the uppermost bipolar electrode 132 with the separator 140 interposed therebetween. The positive electrode layer 136 of the positive electrode side termination electrode faces the negative electrode layer 138 of the lowermost bipolar electrode 132 with the separator 140 interposed therebetween. The electrode plates 134 of these termination electrodes are respectively connected to adjacent conductors 114 (see FIG. 10).
蓄電モジュール112は、バイポーラ電極132の積層方向に延在する積層体130の側面130aにおいて電極板134の周縁部134aを保持する枠体150(シール部)を備える。枠体150は、積層体130の側面130aを取り囲むように構成されている。枠体150は、バイポーラ電極132の積層方向から見たとき、例えば、矩形形状を有している。この場合、枠体150は四つの矩形面から構成される。枠体150は、電極板134の周縁部134aを保持する第一樹脂部152(第一シール部)と、積層方向から見たときに第一樹脂部152の周囲に設けられる第二樹脂部154(第二シール部)とを備え得る。
The power storage module 112 includes a frame 150 (seal portion) that holds the peripheral edge 134a of the electrode plate 134 on the side surface 130a of the stacked body 130 that extends in the stacking direction of the bipolar electrodes 132. The frame 150 is configured to surround the side surface 130 a of the stacked body 130. The frame 150 has, for example, a rectangular shape when viewed from the stacking direction of the bipolar electrodes 132. In this case, the frame 150 is composed of four rectangular surfaces. The frame 150 includes a first resin portion 152 (first seal portion) that holds the peripheral portion 134a of the electrode plate 134 and a second resin portion 154 that is provided around the first resin portion 152 when viewed from the stacking direction. (Second seal part).
枠体150の内壁を構成する第一樹脂部152は、各バイポーラ電極132の電極板134の一方の面(正極層136が形成される面)から周縁部134aにおける電極板134の端面にわたって設けられている。バイポーラ電極132の積層方向から見たとき、各第一樹脂部152は、各バイポーラ電極132の電極板134の周縁部134a全周にわたって設けられている。積層方向において隣り合う第一樹脂部152同士は、各バイポーラ電極132の電極板134の他方の面(負極層138が形成される面)の外側に延在する面において溶着している。その結果、第一樹脂部152には、各バイポーラ電極132の電極板134の周縁部134aが埋没して保持されている。各バイポーラ電極132の電極板134の周縁部134aと同様に、積層体130の両端に配置された電極板134の周縁部134aも第一樹脂部152に埋没した状態で保持されている。これにより、積層方向に隣り合う電極板134,134間には、当該電極板134,134と第一樹脂部152とによって気密に仕切られた内部空間Vが形成されている。当該内部空間Vには、例えば水酸化カリウム水溶液等のアルカリ溶液からなる電解液(不図示)が収容されている。
The first resin portion 152 constituting the inner wall of the frame 150 is provided from one surface (surface on which the positive electrode layer 136 is formed) of the electrode plate 134 of each bipolar electrode 132 to the end surface of the electrode plate 134 in the peripheral portion 134a. ing. When viewed from the stacking direction of the bipolar electrodes 132, each first resin portion 152 is provided over the entire periphery 134 a of the electrode plate 134 of each bipolar electrode 132. The first resin portions 152 adjacent in the stacking direction are welded to each other on the surface extending outside the other surface (surface on which the negative electrode layer 138 is formed) of the electrode plate 134 of each bipolar electrode 132. As a result, the peripheral portion 134 a of the electrode plate 134 of each bipolar electrode 132 is buried and held in the first resin portion 152. Similarly to the peripheral portion 134 a of the electrode plate 134 of each bipolar electrode 132, the peripheral portion 134 a of the electrode plate 134 disposed at both ends of the laminated body 130 is also held in a state of being buried in the first resin portion 152. Thereby, between the electrode plates 134 and 134 adjacent to each other in the stacking direction, an internal space V that is airtightly partitioned by the electrode plates 134 and 134 and the first resin portion 152 is formed. In the internal space V, for example, an electrolytic solution (not shown) made of an alkaline solution such as an aqueous potassium hydroxide solution is accommodated.
枠体150の外壁を構成する第二樹脂部154は、バイポーラ電極132の積層方向において積層体130の全長にわたって延在する筒状部である。第二樹脂部154は、バイポーラ電極132の積層方向に延在する第一樹脂部152の外側面を覆っている。第二樹脂部154は、バイポーラ電極132の積層方向に延在する内側面において第一樹脂部152の外側面に溶着されている。
The second resin portion 154 constituting the outer wall of the frame 150 is a cylindrical portion that extends over the entire length of the multilayer body 130 in the lamination direction of the bipolar electrode 132. The second resin portion 154 covers the outer surface of the first resin portion 152 extending in the stacking direction of the bipolar electrode 132. The second resin portion 154 is welded to the outer surface of the first resin portion 152 on the inner surface that extends in the stacking direction of the bipolar electrode 132.
電極板134は、例えば、ニッケルからなる矩形の金属箔である。電極板134の周縁部134aは、正極活物質及び負極活物質の塗工されない未塗工領域となっており、当該未塗工領域が枠体150の内壁を構成する第一樹脂部152に埋没して保持される領域となっている。正極層136を構成する正極活物質の例には、水酸化ニッケルが含まれる。負極層138を構成する負極活物質の例には、水素吸蔵合金が含まれる。電極板134の他方の面における負極層138の形成領域は、電極板134の一方の面における正極層136の形成領域に対して一回り大きくなっている。なお、電極板134は、導電性樹脂から形成されてもよい。
The electrode plate 134 is, for example, a rectangular metal foil made of nickel. The peripheral portion 134 a of the electrode plate 134 is an uncoated region where the positive electrode active material and the negative electrode active material are not coated, and the uncoated region is buried in the first resin portion 152 constituting the inner wall of the frame 150. It is an area to be held. Examples of the positive electrode active material constituting the positive electrode layer 136 include nickel hydroxide. Examples of the negative electrode active material constituting the negative electrode layer 138 include a hydrogen storage alloy. The formation region of the negative electrode layer 138 on the other surface of the electrode plate 134 is slightly larger than the formation region of the positive electrode layer 136 on one surface of the electrode plate 134. The electrode plate 134 may be made of a conductive resin.
セパレータ140は、例えば、シート状に形成されている。セパレータ140を形成する材料の例には、ポリエチレン(PE)及びポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、並びにポリプロピレン及びメチルセルロース等からなる織布及び不織布等が含まれる。また、セパレータ140は、フッ化ビニリデン樹脂化合物で補強されていてもよい。なお、セパレータ140は、シート状に限られず、袋状でもよい。
The separator 140 is formed in a sheet shape, for example. Examples of the material forming the separator 140 include a porous film made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), and a woven fabric and a nonwoven fabric made of polypropylene and methylcellulose. The separator 140 may be reinforced with a vinylidene fluoride resin compound. The separator 140 is not limited to a sheet shape, and may be a bag shape.
枠体150(第一樹脂部152及び第二樹脂部154)は、例えば絶縁性の樹脂を用いた射出成形によって矩形の筒状に形成されている。枠体150を構成する樹脂材料の例には、ポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、及び変性ポリフェニレンエーテル(変性PPE)等が含まれる。
The frame 150 (the first resin portion 152 and the second resin portion 154) is formed in a rectangular cylindrical shape by, for example, injection molding using an insulating resin. Examples of the resin material constituting the frame 150 include polypropylene (PP), polyphenylene sulfide (PPS), and modified polyphenylene ether (modified PPE).
次に、上述した蓄電モジュール112間の距離について、図12及び図13を用いて説明する。図12は、図10の蓄電装置の一部をA方向から見た側面図であり、図13は、図12の蓄電装置を導電体に形成された貫通孔の端部が正面に見える方向から見た図である。図12に示されるように、積層方向において互いに隣り合う蓄電モジュール112,112における第二樹脂部154同士の距離であって、延在方向における貫通孔114aの端部114b(端部114c)に対向する第一部分P1の距離を第一距離G11とする。また、図13に示されるように、積層方向において互いに隣り合う蓄電モジュール112,112における第二樹脂部154同士の距離であって、延在方向における貫通孔114aの端部114b(端部114c)に対向しておらず、貫通孔114aの延在方向に沿う第二部分P2の距離を第二距離G12とする。
Next, the distance between the above-described power storage modules 112 will be described with reference to FIGS. 12 is a side view of a part of the power storage device of FIG. 10 as viewed from the direction A, and FIG. 13 is a view of the power storage device of FIG. 12 from the direction in which the end portion of the through hole formed in the conductor can be seen from the front. FIG. As shown in FIG. 12, it is the distance between the second resin portions 154 in the power storage modules 112, 112 adjacent to each other in the stacking direction, and faces the end portion 114b (end portion 114c) of the through hole 114a in the extending direction. The distance of the 1st part P1 to perform is set to 1st distance G11. Further, as shown in FIG. 13, it is the distance between the second resin portions 154 in the power storage modules 112 and 112 adjacent to each other in the stacking direction, and the end portion 114b (end portion 114c) of the through hole 114a in the extending direction. The distance of the second portion P2 along the extending direction of the through hole 114a is defined as a second distance G12.
ここで、第一部分P1における第一距離G11は、第二部分P2における第二距離G12よりも長い(G11>G12)。図13に示されるように、本実施形態では、第二部分P2では、積層方向において互いに隣り合う蓄電モジュール112,112の第二樹脂部154,154同士が互いに接触している。すなわち、第二部分P2における第二距離G12は0(ゼロ)である。また、貫通孔114aの高さG2は、第一部分P1における第一距離G11と同等、又はそれ以上であってもよい。
Here, the first distance G11 in the first portion P1 is longer than the second distance G12 in the second portion P2 (G11> G12). As shown in FIG. 13, in the present embodiment, in the second portion P2, the second resin portions 154 and 154 of the power storage modules 112 and 112 adjacent to each other in the stacking direction are in contact with each other. That is, the second distance G12 in the second portion P2 is 0 (zero). Further, the height G2 of the through hole 114a may be equal to or greater than the first distance G11 in the first portion P1.
積層方向において互いに隣り合う蓄電モジュール112,112の一方には、第二樹脂部154,154同士が接触する部分に凸部154bが形成されており、積層方向において互いに隣り合う蓄電モジュール112,112の他方には、第二樹脂部154,154同士が接触する部分に凸部154bを覆う凹部154aが形成されている。そして、上記凸部154b及び凹部154aの一部又は全部は、弾性変形した状態で互いに接触している。
One of the power storage modules 112 and 112 adjacent to each other in the stacking direction is formed with a convex portion 154b at a portion where the second resin portions 154 and 154 are in contact with each other, and the power storage modules 112 and 112 adjacent to each other in the stacking direction. On the other side, a concave portion 154a that covers the convex portion 154b is formed at a portion where the second resin portions 154 and 154 contact each other. And the one part or all part of the said convex part 154b and the recessed part 154a is mutually contacting in the state elastically deformed.
第2実施形態の蓄電装置110では、貫通孔114aの端部114b(端部114c)に対向する第一部分P1における第二樹脂部154,154同士の第一距離G11(図12参照)が、貫通孔114aの端部114b(端部114c)に対向しない第二部分P2の第二距離G12(図13参照)よりも長い。これにより、上記貫通孔114aを介して流通する冷却風の通り道を確保しつつ、上記貫通孔114a以外に冷却風が流通することによる冷却風漏れを抑制することができる。この結果、効率的な放熱が可能となる。
In the power storage device 110 according to the second embodiment, the first distance G11 (see FIG. 12) between the second resin portions 154 and 154 in the first portion P1 facing the end portion 114b (end portion 114c) of the through hole 114a passes through. It is longer than the second distance G12 (see FIG. 13) of the second portion P2 that does not face the end portion 114b (end portion 114c) of the hole 114a. Accordingly, it is possible to suppress leakage of cooling air due to circulation of cooling air other than the through hole 114a while securing a passage for the cooling air flowing through the through hole 114a. As a result, efficient heat dissipation becomes possible.
第2実施形態の蓄電装置110における第二部分P2では、図13に示されるように、積層方向において互いに隣り合う蓄電モジュール112,112の第二樹脂部154,154同士が互いに接触しているので、貫通孔114a以外に冷却風が流通することによる冷却風漏れを効果的に抑制することができる。
In the second portion P2 of the power storage device 110 of the second embodiment, as shown in FIG. 13, the second resin portions 154 and 154 of the power storage modules 112 and 112 adjacent to each other in the stacking direction are in contact with each other. Further, it is possible to effectively suppress the cooling air leakage due to the circulation of the cooling air other than the through hole 114a.
第2実施形態の蓄電装置110では、積層方向において互いに隣り合う蓄電モジュール112,112の第二樹脂部154,154同士が、弾性変形した状態で互いに接触しているので、導電体114の高さ方向(Z軸方向)における寸法公差を吸収することができる。
In the power storage device 110 of the second embodiment, the second resin portions 154 and 154 of the power storage modules 112 and 112 adjacent to each other in the stacking direction are in contact with each other in an elastically deformed state. The dimensional tolerance in the direction (Z-axis direction) can be absorbed.
第2実施形態の蓄電装置110では、図13に示されるように、積層方向において互いに隣り合う蓄電モジュール112,112の一方には、第二樹脂部154,154同士が接触する部分に凸部154bが形成されており、積層方向において互いに隣り合う蓄電モジュール112,112の他方には、第二樹脂部154,154同士が接触する部分に凸部154bを覆う凹部154aが形成されている。この場合も、例えば、導電体114の高さ方向における寸法公差を吸収することができる。
In the power storage device 110 of the second embodiment, as illustrated in FIG. 13, one of the power storage modules 112 and 112 adjacent to each other in the stacking direction has a convex portion 154 b at a portion where the second resin portions 154 and 154 are in contact with each other. In the other of the power storage modules 112 and 112 adjacent to each other in the stacking direction, a concave portion 154a that covers the convex portion 154b is formed at a portion where the second resin portions 154 and 154 are in contact with each other. Also in this case, for example, a dimensional tolerance in the height direction of the conductor 114 can be absorbed.
第2実施形態の蓄電装置110では、導電体114に形成される貫通孔114aの延在方向が、積層方向に配列される全ての導電体114において一致している。このため、組み付け時の作業性を向上させることができる。
In the power storage device 110 of the second embodiment, the extending direction of the through holes 114a formed in the conductor 114 is the same in all the conductors 114 arranged in the stacking direction. For this reason, the workability | operativity at the time of an assembly | attachment can be improved.
第2実施形態の蓄電装置110では、枠体150は、電極板134の周縁部134aに接合される枠体状の第一樹脂部152と、第一樹脂部152の外周面を覆い、第一樹脂部152を一体的に保持する第二樹脂部154と、を有している。このため、蓄電モジュール112における電解液の密閉性を高めることができる。
In the power storage device 110 of the second embodiment, the frame 150 covers the first resin portion 152 in the form of a frame joined to the peripheral edge portion 134a of the electrode plate 134 and the outer peripheral surface of the first resin portion 152, and the first And a second resin portion 154 that integrally holds the resin portion 152. For this reason, the sealing property of the electrolyte solution in the electrical storage module 112 can be improved.
本発明は、上記実施形態に限定されない。
The present invention is not limited to the above embodiment.
例えば、蓄電装置10は、蓄電モジュール12同士を電気的に接続する部材を更に備えてもよい。この場合、冷却部材14が導電性を有していなくてもよい。したがって、冷却部材14を様々な材料で構成することができる。冷却部材14が絶縁性材料により構成されている場合、水等の導電性を有する冷媒が用いられても、冷媒を通じて、冷却部材14同士の短絡が生じることを防止できる。なお、冷却部材14が導電性を有している場合でも、例えば、流路15aの内面を絶縁体で覆うことにより、冷却部材14及び冷媒が互いに電気的に絶縁されていれば、冷媒を通じて、冷却部材14同士の短絡が生じることを防止できる。
For example, the power storage device 10 may further include a member that electrically connects the power storage modules 12 to each other. In this case, the cooling member 14 may not have conductivity. Therefore, the cooling member 14 can be made of various materials. When the cooling member 14 is made of an insulating material, it is possible to prevent a short circuit between the cooling members 14 through the refrigerant even when a conductive refrigerant such as water is used. Even when the cooling member 14 has conductivity, for example, if the cooling member 14 and the refrigerant are electrically insulated from each other by covering the inner surface of the flow path 15a with an insulator, It is possible to prevent a short circuit between the cooling members 14.
注液口50aは、一対の第1側面12bのそれぞれに設けられていてもよい。また、1つの第1側面12bに、複数の注液口50aが第3方向D3に配列されて設けられていてもよい。このような複数の注液口50aによれば、電解液の注入にかかる時間を短縮することができる。
The liquid injection port 50a may be provided on each of the pair of first side surfaces 12b. In addition, a plurality of liquid injection ports 50a may be provided in one first side surface 12b and arranged in the third direction D3. According to such a plurality of liquid injection ports 50a, it is possible to shorten the time required for injection of the electrolytic solution.
開口15dの向く方向、及び注液口50aの向く方向は、互いに異なっていればよく、必ずしも直交していなくてもよい。また、流路15aの形状は限定されない。例えば、流路15aは直線状でなく、曲がっていてもよい。例えば、中央でU字状に折れ曲がった流路15aによれば、その両端の開口15dを、例えば一方の第2側面14cに集約することができる。この場合、注液口50aは他方の第2側面14c側(つまり、他方の第2側部51b)に設けられてもよい。この場合も、開口15dの向く方向と、注液口50aの向く方向とは、互いに異なり、反対であるため、開口15dは突出領域52によって覆われない。これにより、開口15dを通じて冷媒を効率よく流通させることができる。
The direction in which the opening 15d faces and the direction in which the liquid injection port 50a faces need only be different from each other, and need not necessarily be orthogonal. Moreover, the shape of the flow path 15a is not limited. For example, the flow path 15a is not linear and may be bent. For example, according to the flow path 15a bent in a U shape at the center, the openings 15d at both ends thereof can be concentrated on one second side face 14c, for example. In this case, the liquid injection port 50a may be provided on the other second side surface 14c side (that is, the other second side portion 51b). Also in this case, the direction toward the opening 15d and the direction toward the liquid injection port 50a are different from each other and are opposite to each other, and thus the opening 15d is not covered by the protruding region 52. Thereby, a refrigerant | coolant can be distribute | circulated efficiently through opening 15d.
冷却部材14には、流路15aが設けられていればよく、例えば、冷却部材14が一対の板部材15bのうちいずれかを有さず、第3方向D3から見て、櫛歯形状を呈していてもよい。つまり、流路15aは、貫通方向だけでなく、貫通方向に交差する方向に開放されていてもよい。
The cooling member 14 only needs to be provided with the flow path 15a. For example, the cooling member 14 does not have any one of the pair of plate members 15b and has a comb-teeth shape when viewed from the third direction D3. It may be. That is, the flow path 15a may be opened not only in the penetration direction but also in a direction intersecting the penetration direction.
冷却部材14は、第1方向D1から見て、蓄電モジュール12と同じか、それよりも大きくてもよい。この場合、冷却部材14による冷却効率の向上を図ることができる。また、各拘束プレート16A,16Bは、第1方向D1から見て、蓄電モジュール12、冷却部材14及び絶縁フィルム22と同じか、それよりも小さくてもよい。
The cooling member 14 may be the same as or larger than the power storage module 12 when viewed from the first direction D1. In this case, the cooling efficiency by the cooling member 14 can be improved. Moreover, each restraint plate 16A, 16B may be the same as the electrical storage module 12, the cooling member 14, and the insulating film 22, or smaller than it, seeing from the 1st direction D1.
第2実施形態では、図13に示されるように、積層方向において互いに隣り合う蓄電モジュール112,112の一方には凸部154bが形成され、他方には凹部154aが形成されている例を挙げて説明したが、図15に示されるように、積層方向において互いに隣り合う蓄電モジュール112,112の接触面は、両方とも平坦面であってもよい。また、図示はしないが、積層方向において互いに隣り合う蓄電モジュール112,112の接触面の少なくとも一方に凸部が形成されていてもよい。この場合、第二部分P2における第二距離G12は0(ゼロ)となる。このような構成であっても、第一部分P1における第一距離G11は、第二部分P2における第二距離G12よりも長い(G11>G12)ので、上記貫通孔114aを介して流通する冷却風の通り道を確保しつつ、上記流路以外に冷却風が流通することによる冷却風漏れを抑制することができる。
In the second embodiment, as shown in FIG. 13, an example in which a convex portion 154 b is formed on one of the power storage modules 112 and 112 adjacent to each other in the stacking direction and a concave portion 154 a is formed on the other is given. Although described, as shown in FIG. 15, both contact surfaces of the power storage modules 112 and 112 adjacent to each other in the stacking direction may be flat surfaces. In addition, although not illustrated, a convex portion may be formed on at least one of the contact surfaces of the power storage modules 112 and 112 adjacent to each other in the stacking direction. In this case, the second distance G12 in the second portion P2 is 0 (zero). Even in such a configuration, the first distance G11 in the first portion P1 is longer than the second distance G12 in the second portion P2 (G11> G12), so that the cooling air flowing through the through hole 114a Cooling air leakage due to the circulation of cooling air in addition to the flow path can be suppressed while securing the passage.
第2実施形態又は変形例では、貫通孔114aの延在方向に沿う第二部分P2の距離である第二距離G12を0(ゼロ)とする例を挙げて説明したが、例えば、図16に示されるように、第二距離G12は0(ゼロ)よりも大きく、かつ第一距離G11よりも小さくてもよい。この場合であっても、上記貫通孔114aを介して流通する冷却風の通り道を確保しつつ、上記流路以外に冷却風が流通することによる冷却風漏れを抑制することができる。
In the second embodiment or the modification, the second distance G12 that is the distance of the second portion P2 along the extending direction of the through hole 114a has been described as an example of 0 (zero). For example, FIG. As shown, the second distance G12 may be greater than 0 (zero) and smaller than the first distance G11. Even in this case, leakage of the cooling air due to the circulation of the cooling air in addition to the flow path can be suppressed while ensuring the passage of the cooling air flowing through the through hole 114a.
第2実施形態又は変形例では、図14に示されるように、上記導電体114に形成された貫通孔114aは、導電体114において互いに対向する一方の側面114dから他方の側面114fまで連通している例を挙げて説明したが、例えば、一の側面14e又は一の側面14gから隣り合う一つの側面114f(側面114d)まで連通していてもよい。
In the second embodiment or the modified example, as shown in FIG. 14, the through hole 114 a formed in the conductor 114 communicates from one side surface 114 d facing each other to the other side surface 114 f in the conductor 114. However, for example, one side surface 14e or one side surface 14g may communicate with one adjacent side surface 114f (side surface 114d).
第2実施形態又は変形例では、冷却風が流通する流通路の例として導電体114に形成された貫通孔114aを例に挙げて説明したが、例えば、少なくとも一方の表面に溝が形成された導電体114を終端電極の電極板134に接触させることによって、冷却風が流通する流通路を形成してもよい。
In the second embodiment or the modification, the through hole 114a formed in the conductor 114 is described as an example of the flow path through which the cooling air flows. For example, a groove is formed on at least one surface. A flow path through which cooling air flows may be formed by bringing the conductor 114 into contact with the electrode plate 134 of the termination electrode.
また、第2実施形態又は変形例では、蓄電装置110がニッケル水素二次電池の例を挙げて説明したが、リチウムイオン二次電池であってもよい。この場合、正極活物質は、例えば複合酸化物、金属リチウム、硫黄等である。負極活物質は、例えば黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、及びソフトカーボン等のカーボン、リチウム及びナトリウム等のアルカリ金属、金属化合物、SiOx(0.5≦x≦1.5)等の金属酸化物、並びにホウ素添加炭素等である。
In the second embodiment or the modification, the power storage device 110 is described as an example of a nickel hydride secondary battery, but may be a lithium ion secondary battery. In this case, the positive electrode active material is, for example, a composite oxide, metallic lithium, sulfur or the like. Examples of the negative electrode active material include carbon such as graphite, highly oriented graphite, mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, SiOx (0.5 ≦ x ≦ 1.5 ) And the like, as well as boron-added carbon.
10…蓄電装置、12…蓄電モジュール、14…冷却部材、15a…流路(貫通孔)、15b…板部材、15d…開口、30…積層体、30a…側面、32…バイポーラ電極、34…電極板、34a…縁部、36…正極、38…負極、50…枠体、50a…注液口、51…本体領域、52…突出領域、110…蓄電装置、112…蓄電モジュール、114…導電体、114a…貫通孔、114b,114c…端部(貫通孔の端部)、132…バイポーラ電極、134…電極板、134a…周縁部、136…正極層(正極)、138…負極層(負極)、150…枠体(シール部)、152…第一樹脂部(第一シール部)、154…第二樹脂部(第二シール部)、154a…凹部、154b…凸部、G11…第一距離、G12…第二距離、P1…第一部分、P2…第二部分。
DESCRIPTION OF SYMBOLS 10 ... Power storage device, 12 ... Power storage module, 14 ... Cooling member, 15a ... Flow path (through hole), 15b ... Plate member, 15d ... Opening, 30 ... Laminated body, 30a ... Side, 32 ... Bipolar electrode, 34 ... Electrode Plate, 34a ... Edge, 36 ... Positive electrode, 38 ... Negative electrode, 50 ... Frame, 50a ... Liquid inlet, 51 ... Main body region, 52 ... Protrusion region, 110 ... Power storage device, 112 ... Power storage module, 114 ... Conductor , 114a ... through holes, 114b, 114c ... ends (ends of the through holes), 132 ... bipolar electrodes, 134 ... electrode plates, 134a ... peripheral parts, 136 ... positive electrode layer (positive electrode), 138 ... negative electrode layer (negative electrode) , 150 ... frame (seal part), 152 ... first resin part (first seal part), 154 ... second resin part (second seal part), 154a ... concave part, 154b ... convex part, G11 ... first distance , G12 ... second distance, P1 The first part, P2 ... the second part.
Claims (15)
- 第1面及び前記第1面とは反対側の第2面を有する電極板と、前記第1面に設けられた正極と、前記第2面に設けられた負極と、をそれぞれ含む複数のバイポーラ電極が第1方向において積層された蓄電モジュールと、
冷媒の流通により前記蓄電モジュールを冷却する冷却部材と、を備え、
前記蓄電モジュールは、
積層された前記複数のバイポーラ電極を有する積層体と、
前記積層体の前記第1方向に延在する側面において前記電極板の縁部を保持する枠体と、を備え、
前記冷却部材は、前記第1方向において前記積層体と並んで配置され、
前記枠体は、
前記側面を覆うと共に、前記枠体内に電解液を注入するための注液口が設けられた本体領域と、
前記第1方向において前記注液口から離れるように前記本体領域から突出する突出領域と、を有し、
前記冷却部材には、前記冷却部材の内部に冷媒を流入させるため、又は前記冷却部材の内部から冷媒を流出させるための開口が設けられ、
前記注液口の向く方向及び前記開口の向く方向は、互いに異なっている、蓄電装置。 A plurality of bipolar plates each including an electrode plate having a first surface and a second surface opposite to the first surface, a positive electrode provided on the first surface, and a negative electrode provided on the second surface A power storage module in which electrodes are stacked in the first direction;
A cooling member that cools the power storage module by circulating a refrigerant,
The power storage module is:
A laminate having the plurality of bipolar electrodes laminated;
A frame that holds an edge of the electrode plate on a side surface extending in the first direction of the laminate,
The cooling member is arranged side by side with the stacked body in the first direction,
The frame is
A main body region that covers the side surface and is provided with a liquid injection port for injecting an electrolyte into the frame,
A projecting region projecting from the main body region so as to be separated from the liquid injection port in the first direction,
The cooling member is provided with an opening for allowing the refrigerant to flow into the cooling member, or for flowing the refrigerant out of the cooling member,
The power storage device, wherein a direction in which the liquid injection port faces and a direction in which the opening faces are different from each other. - 前記注液口の向く方向及び前記開口の向く方向は、互いに直交している、請求項1に記載の蓄電装置。 The power storage device according to claim 1, wherein a direction of the liquid injection port and a direction of the opening are orthogonal to each other.
- 前記冷却部材には、冷媒を流通させる複数の流路が設けられ、
前記複数の流路は、前記第1方向に交差する第2方向に配列されると共に、前記第1方向及び前記第2方向に交差する第3方向に延在している、請求項2に記載の蓄電装置。 The cooling member is provided with a plurality of flow paths for circulating the refrigerant,
The plurality of flow paths are arranged in a second direction that intersects the first direction and extend in a third direction that intersects the first direction and the second direction. Power storage device. - 前記冷却部材は、前記複数の流路を前記第1方向に挟む一対の板部材を有している、請求項3に記載の蓄電装置。 The power storage device according to claim 3, wherein the cooling member includes a pair of plate members that sandwich the plurality of flow paths in the first direction.
- 前記冷却部材は、板状を呈し、
前記冷却部材には、前記冷却部材を前記第1方向に交差する方向において貫通する貫通孔が設けられている、請求項2に記載の蓄電装置。 The cooling member has a plate shape,
The power storage device according to claim 2, wherein the cooling member is provided with a through-hole penetrating the cooling member in a direction intersecting the first direction. - 前記冷却部材は、導電性を有している、請求項1~請求項5のいずれか一項に記載の蓄電装置。 The power storage device according to any one of claims 1 to 5, wherein the cooling member has conductivity.
- 前記冷媒は、絶縁性を有している、請求項1~請求項6のいずれか一項に記載の蓄電装置。 The power storage device according to any one of claims 1 to 6, wherein the refrigerant has an insulating property.
- 一方向に配列された複数の蓄電モジュールと、
互いに隣り合う前記蓄電モジュールの両方に接触させた状態で配置される導電体と、を備え、
前記蓄電モジュールは、
第1面及び前記第1面とは反対側の第2面を有する電極板と、前記第1面に設けられた正極と、前記第2面に設けられた負極と、をそれぞれ含む複数のバイポーラ電極を、セパレータを介して積層してなる積層体と、
前記複数のバイポーラ電極の周縁部を保持すると共に前記積層体の側面を形成するシール部と、を有し、
前記導電体には、前記一方向に交差する方向に延在する流路が形成されており、
互いに隣り合う前記蓄電モジュールにおける前記シール部同士の距離であって、前記流路の延在方向における前記流路の端部に対向する第一部分の第一距離は、前記端部に対向しない第二部分の第二距離よりも長い、蓄電装置。 A plurality of power storage modules arranged in one direction;
A conductor disposed in contact with both of the storage modules adjacent to each other, and
The power storage module is:
A plurality of bipolar plates each including an electrode plate having a first surface and a second surface opposite to the first surface, a positive electrode provided on the first surface, and a negative electrode provided on the second surface A laminate formed by laminating electrodes via separators;
And holding a peripheral portion of the plurality of bipolar electrodes and forming a side surface of the laminate,
In the conductor, a flow path extending in a direction intersecting the one direction is formed,
The distance between the seal portions in the power storage modules adjacent to each other, and the first distance of the first portion facing the end portion of the flow channel in the extending direction of the flow channel is the second distance not facing the end portion. A power storage device longer than the second distance of the portion. - 前記流路は、直線状に延在しており、前記第二部分は、前記端部に対向しない部分であると共に前記流路の延在方向に沿う部分である、請求項8に記載の蓄電装置。 The electricity storage according to claim 8, wherein the flow path extends linearly, and the second portion is a portion that does not face the end portion and that is along a direction in which the flow path extends. apparatus.
- 前記第二部分では、互いに隣り合う前記蓄電モジュールの前記シール部同士が互いに接触している、請求項8又は請求項9に記載の蓄電装置。 The power storage device according to claim 8 or 9, wherein in the second portion, the seal portions of the power storage modules adjacent to each other are in contact with each other.
- 互いに隣り合う前記蓄電モジュールの前記シール部同士は、弾性変形した状態で互いに接触している、請求項10に記載の蓄電装置。 The power storage device according to claim 10, wherein the seal portions of the power storage modules adjacent to each other are in contact with each other in an elastically deformed state.
- 互いに隣り合う前記蓄電モジュールの少なくとも一方には、前記シール部同士が接触する部分に凸部が形成されている、請求項10又は請求項11に記載の蓄電装置。 The power storage device according to claim 10 or 11, wherein at least one of the power storage modules adjacent to each other has a convex portion formed at a portion where the seal portions are in contact with each other.
- 互いに隣り合う前記蓄電モジュールの一方には、前記シール部同士が接触する部分に凸部が形成されており、互いに隣り合う前記蓄電モジュールの他方には、前記シール部同士が接触する部分に前記凸部を覆う凹部が形成されている、請求項10又は請求項11に記載の蓄電装置。 One of the energy storage modules adjacent to each other has a convex portion at a portion where the seal portions contact each other, and the other of the energy storage modules adjacent to each other has the protrusion at a portion where the seal portions contact each other. The electrical storage apparatus of Claim 10 or Claim 11 in which the recessed part which covers a part is formed.
- 前記導電体に形成される前記流路の延在方向が、前記一方向に配列される全ての前記導電体において一致している、請求項8~請求項13のいずれか一項に記載の蓄電装置。 The power storage according to any one of claims 8 to 13, wherein an extension direction of the flow path formed in the conductor is the same in all the conductors arranged in the one direction. apparatus.
- 前記シール部は、前記電極板の周縁部に接合される枠体状の第一シール部と、前記第一シール部の外周面を覆い、前記第一シール部を一体的に保持する第二シール部と、を有している、請求項8~請求項14のいずれか一項に記載の蓄電装置。 The seal portion includes a frame-shaped first seal portion joined to a peripheral portion of the electrode plate, and a second seal that covers an outer peripheral surface of the first seal portion and integrally holds the first seal portion. The power storage device according to any one of claims 8 to 14, further comprising:
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017015908A JP6828471B2 (en) | 2017-01-31 | 2017-01-31 | Power storage device |
JP2017-015512 | 2017-01-31 | ||
JP2017-015908 | 2017-01-31 | ||
JP2017015512A JP6828470B2 (en) | 2017-01-31 | 2017-01-31 | Power storage device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018142919A1 true WO2018142919A1 (en) | 2018-08-09 |
Family
ID=63040463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/001023 WO2018142919A1 (en) | 2017-01-31 | 2018-01-16 | Power storage device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018142919A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020030955A (en) * | 2018-08-22 | 2020-02-27 | 株式会社豊田自動織機 | Power storage module |
WO2020138110A1 (en) * | 2018-12-25 | 2020-07-02 | トヨタ自動車株式会社 | Bipolar battery and power storage device |
WO2020137923A1 (en) * | 2018-12-25 | 2020-07-02 | 株式会社豊田自動織機 | Power storage device |
JP2020140768A (en) * | 2019-02-26 | 2020-09-03 | 株式会社豊田自動織機 | Power storage module |
CN112290158A (en) * | 2019-07-10 | 2021-01-29 | 本田技研工业株式会社 | Electricity storage module |
WO2021095551A1 (en) * | 2019-11-13 | 2021-05-20 | 株式会社豊田自動織機 | Electrical storage device |
CN113178610A (en) * | 2020-01-24 | 2021-07-27 | 株式会社丰田自动织机 | Electricity storage device |
CN113178611A (en) * | 2020-01-24 | 2021-07-27 | 株式会社丰田自动织机 | Electricity storage device |
CN114079111A (en) * | 2020-08-11 | 2022-02-22 | 北京好风光储能技术有限公司 | Large-scale vertical energy storage battery and energy storage container |
JP2022037493A (en) * | 2020-08-25 | 2022-03-09 | 株式会社豊田自動織機 | Power storage device |
CN115956280A (en) * | 2020-09-30 | 2023-04-11 | 松下知识产权经营株式会社 | Power storage module |
US12444795B2 (en) | 2018-12-25 | 2025-10-14 | Kabushiki Kaisha Toyota Jidoshokki | Power storage device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003017127A (en) * | 2001-07-04 | 2003-01-17 | Nissan Motor Co Ltd | Battery system |
WO2007082863A1 (en) * | 2006-01-17 | 2007-07-26 | Nilar International Ab | A battery stack arrangement |
JP2007305425A (en) * | 2006-05-11 | 2007-11-22 | Toyota Motor Corp | Battery pack and vehicle |
-
2018
- 2018-01-16 WO PCT/JP2018/001023 patent/WO2018142919A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003017127A (en) * | 2001-07-04 | 2003-01-17 | Nissan Motor Co Ltd | Battery system |
WO2007082863A1 (en) * | 2006-01-17 | 2007-07-26 | Nilar International Ab | A battery stack arrangement |
JP2007305425A (en) * | 2006-05-11 | 2007-11-22 | Toyota Motor Corp | Battery pack and vehicle |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7042193B2 (en) | 2018-08-22 | 2022-03-25 | 株式会社豊田自動織機 | Power storage module |
JP2020030955A (en) * | 2018-08-22 | 2020-02-27 | 株式会社豊田自動織機 | Power storage module |
JP7152948B2 (en) | 2018-12-25 | 2022-10-13 | 株式会社豊田自動織機 | power storage device |
WO2020138110A1 (en) * | 2018-12-25 | 2020-07-02 | トヨタ自動車株式会社 | Bipolar battery and power storage device |
US12444795B2 (en) | 2018-12-25 | 2025-10-14 | Kabushiki Kaisha Toyota Jidoshokki | Power storage device |
JPWO2020138110A1 (en) * | 2018-12-25 | 2021-10-28 | トヨタ自動車株式会社 | Bipolar battery and power storage device |
CN113228390A (en) * | 2018-12-25 | 2021-08-06 | 株式会社丰田自动织机 | Electricity storage device |
JP7084498B2 (en) | 2018-12-25 | 2022-06-14 | トヨタ自動車株式会社 | Power storage device |
JP2020102412A (en) * | 2018-12-25 | 2020-07-02 | 株式会社豊田自動織機 | Power storage device |
WO2020137923A1 (en) * | 2018-12-25 | 2020-07-02 | 株式会社豊田自動織機 | Power storage device |
JP2020140768A (en) * | 2019-02-26 | 2020-09-03 | 株式会社豊田自動織機 | Power storage module |
JP7132871B2 (en) | 2019-02-26 | 2022-09-07 | 株式会社豊田自動織機 | storage module |
CN112290158A (en) * | 2019-07-10 | 2021-01-29 | 本田技研工业株式会社 | Electricity storage module |
WO2021095551A1 (en) * | 2019-11-13 | 2021-05-20 | 株式会社豊田自動織機 | Electrical storage device |
CN113178610A (en) * | 2020-01-24 | 2021-07-27 | 株式会社丰田自动织机 | Electricity storage device |
CN113178611A (en) * | 2020-01-24 | 2021-07-27 | 株式会社丰田自动织机 | Electricity storage device |
JP2021118072A (en) * | 2020-01-24 | 2021-08-10 | 株式会社豊田自動織機 | Power storage device |
US20210234187A1 (en) * | 2020-01-24 | 2021-07-29 | Kabushiki Kaisha Toyota Jidoshokki | Power storage device |
US11715843B2 (en) * | 2020-01-24 | 2023-08-01 | Kabushiki Kaisha Toyota Jidoshokki | Power storage device |
US11552359B2 (en) * | 2020-01-24 | 2023-01-10 | Kabushiki Kaisha Toyota Jidoshokki | Power storage device |
JP7430537B2 (en) | 2020-01-24 | 2024-02-13 | 株式会社豊田自動織機 | Power storage device |
CN114079111A (en) * | 2020-08-11 | 2022-02-22 | 北京好风光储能技术有限公司 | Large-scale vertical energy storage battery and energy storage container |
CN114079111B (en) * | 2020-08-11 | 2023-11-14 | 好风光储能技术(成都)有限公司 | Large vertical energy storage battery and energy storage container |
JP7491776B2 (en) | 2020-08-25 | 2024-05-28 | 株式会社豊田自動織機 | Power storage device |
JP2022037493A (en) * | 2020-08-25 | 2022-03-09 | 株式会社豊田自動織機 | Power storage device |
CN115956280A (en) * | 2020-09-30 | 2023-04-11 | 松下知识产权经营株式会社 | Power storage module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018142919A1 (en) | Power storage device | |
JP6828470B2 (en) | Power storage device | |
CN104285315B (en) | Battery modules with efficient cooling structure | |
JP6828471B2 (en) | Power storage device | |
JP2018125142A (en) | Power storage module | |
JP2023513545A (en) | Battery packs and devices containing them | |
KR101481198B1 (en) | Battery module and lithium secondary battery pack comprising the same | |
JP2023554628A (en) | Battery module and battery pack containing it | |
US12424691B2 (en) | Energy storage apparatus | |
US11158891B2 (en) | Power storage module | |
JP2019114512A (en) | Power storage device | |
JP2019185927A (en) | Power storage device | |
JP2019212440A (en) | Power storage device | |
WO2018116735A1 (en) | Electricity storage device | |
JP6693453B2 (en) | Power storage device and method of manufacturing power storage device | |
JP7031429B2 (en) | Power storage device | |
CN113196547A (en) | Electricity storage device | |
JP2020107462A (en) | Power storage device | |
JP2019079614A (en) | Power storage module, and method for manufacturing power storage module | |
CN113597655A (en) | Electricity storage device | |
JP2023554656A (en) | Battery packs and devices containing them | |
JP2018142459A (en) | Power storage device | |
JP2022143582A (en) | power storage device | |
JP2018018714A (en) | Battery module | |
JP6926509B2 (en) | Power storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18748826 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18748826 Country of ref document: EP Kind code of ref document: A1 |