[go: up one dir, main page]

WO2018145595A1 - 射频拉远单元的功率放大器的控制方法及装置 - Google Patents

射频拉远单元的功率放大器的控制方法及装置 Download PDF

Info

Publication number
WO2018145595A1
WO2018145595A1 PCT/CN2018/074790 CN2018074790W WO2018145595A1 WO 2018145595 A1 WO2018145595 A1 WO 2018145595A1 CN 2018074790 W CN2018074790 W CN 2018074790W WO 2018145595 A1 WO2018145595 A1 WO 2018145595A1
Authority
WO
WIPO (PCT)
Prior art keywords
power amplifier
time domain
control signal
domain data
data
Prior art date
Application number
PCT/CN2018/074790
Other languages
English (en)
French (fr)
Inventor
李勋
周敏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2019542664A priority Critical patent/JP6915070B2/ja
Publication of WO2018145595A1 publication Critical patent/WO2018145595A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method and apparatus for controlling a power amplifier of a radio remote unit (RRU).
  • RRU radio remote unit
  • the method and apparatus for controlling a power amplifier of a radio remote unit in the case of a radio remote unit in a communication system based on OFDM transmission, in a case where a symbol configuration information of a subframe is not required to be transmitted by a baseband, the radio remote unit determines the idle state of the link subframe symbol and controls the switching of the power amplifier.
  • a method for controlling a power amplifier of a radio remote unit comprising: a radio remote unit detecting time domain data from a baseband processing unit, and determining whether a user exists in the time domain data. And the radio remote unit controls the power amplifier of the radio remote unit to be turned on or off according to the determination result of whether the user data exists in the time domain data.
  • a storage medium storing a program for implementing a control method of a power amplifier of the above-described radio remote unit.
  • FIG. 1 is a flow chart of a symbol-based power saving scheme according to prior art
  • FIG. 2 is a flowchart of a method of controlling a power amplifier of a radio remote unit according to an embodiment of the present invention
  • FIG. 3 is a block diagram of a control device of a power amplifier of a radio remote unit according to an embodiment of the present invention
  • FIG. 5 is a flowchart of an energy saving scheme based on data detection according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of implementing an energy saving scheme based on FDD-LTE according to an embodiment of the present invention
  • FIG. 7 is a flowchart of implementing an energy saving scheme based on FDD-LTE according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of delay calculation of an energy-saving control signal based on FDD-LTE according to an embodiment of the present invention.
  • FIG. 1 is a flow chart of a symbol based power saving scheme in accordance with the prior art.
  • the symbol-based power saving scheme according to the prior art may include steps 101 to 104.
  • the BBU sends the baseband data and control information generated in step 102 to a Radio Remote Unit (RRU).
  • RRU Radio Remote Unit
  • the RRU receives the sub-frame symbol data and the useful symbol configuration bitmap information and generates a power amplifier control signal to control the switching of the power amplifier.
  • FIG. 2 is a flow chart of a method of controlling a power amplifier of an RRU according to an embodiment of the present invention.
  • the RRU detects time domain data from the baseband processing unit and determines if user data is present in the time domain data.
  • Step 101 may include: detecting, by the RRU, the time domain data, when detecting that the time length of the time domain data continues to be “0” reaches the target value, determining that the user data does not exist in the time domain data, otherwise determining that the time domain data exists User data.
  • the target value may be less than the length of time of one subframe symbol.
  • the RRU controls the power amplifier of the RRU to be turned “on” or “off” based on the determination of whether there is user data in the time domain data.
  • Step 202 may include the RRU generating an energy saving control signal for turning the power amplifier on or off according to a determination result of whether the user data exists in the time domain data, and controlling the power amplifier to be turned on or off according to the power saving control signal.
  • the RRU buffers the power saving control signal for a preset length of time and then performs a logical AND operation with the conventional control signal to obtain a power amplifier control signal, and controls the power amplifier to be turned on or off according to the power amplifier control signal.
  • the conventional control signal is a normally open signal
  • the conventional control signal is a signal associated with the time slot in which the data is received or transmitted. That is to say, in the data transmission time slot of the TDD system, the RRU's conventional control signal is an open signal, and in the data receiving time slot of the TDD system, the RRU's conventional control signal is a turn-off signal.
  • the RRU control method can implement energy saving and consumption reduction.
  • the mechanism of energy saving and consumption reduction is that the RRU analyzes the time domain data sent by the baseband, determines whether there is user data in the link, and generates corresponding power amplifier control signals. Turn off the power amplifier when there is no user data, so as to save energy and reduce consumption.
  • Step 201 to step 202 can be performed.
  • the storage medium may be a ROM/RAM, a magnetic disk, an optical disk, or the like.
  • FIG. 3 is a block diagram of a control device of a power amplifier of an RRU according to an embodiment of the present invention.
  • a control device of a power amplifier of an RRU may be disposed in an RRU, and the device may include a detection module 31 and a control module 32.
  • the detection module 31 is arranged to detect time domain data from the baseband processing unit and determine if user data is present in the time domain data. According to the embodiment of the present invention, the detecting module 31 detects the time domain data. When the time length of the time domain data continues to be “0” reaches the target value, it is determined that the user data does not exist in the time domain data, otherwise the time domain is determined. User data exists in the data.
  • the target value may be less than the length of time of one subframe symbol.
  • the control module 32 is arranged to control the power amplifier of the RRU to be turned on or off based on the determination of whether there is user data in the time domain data. According to an embodiment of the present invention, the control module 32 generates an energy saving control signal for turning on or off the power amplifier according to the determination result of whether or not the user data exists in the time domain data, and controls the power amplifier to be turned on or off according to the power saving control signal. According to an embodiment of the invention, the control module 32 buffers the energy-saving control signal for a preset time length and then performs a logical AND operation with the conventional control signal to obtain a power amplifier control signal, and controls the power amplifier to be turned on or off according to the power amplifier control signal. For FDD systems, the conventional control signal is a normally open signal; for a TDD system, the conventional control signal is a signal associated with the time slot in which the data is received or transmitted.
  • the working process of the control device of the RRU is as follows: when the detection module 31 detects that the time length of the time domain data continues to be “0” and reaches the target value, determining that there is no user data in the time domain data, the control module 32 An energy-saving control signal for turning off the power amplifier is generated based on the determination result, and the energy-saving control signal is subjected to a corresponding delay and then logically ANDed with the conventional control signal to obtain a power amplifier control signal. The power amplifier control signal is sent to the power amplifier to turn off the power amplifier.
  • the control module 32 After the power amplifier is turned off, when the detection module 31 detects non-"0" data, determining that user data exists in the time domain data, the control module 32 generates an energy saving control signal for turning on the power amplifier based on the determination result, and The energy-saving control signal performs a corresponding delay and then performs a logical AND operation with the conventional control signal to obtain a power amplifier control signal.
  • the power amplifier control signal is sent to the power amplifier to turn on the power amplifier.
  • the energy saving solution of the inventive concept includes the following two parts:
  • the energy saving scheme according to the present invention adopts an energy saving scheme based on data detection, and the RRU independently detects the time domain data, and then analyzes and generates the energy saving control signal by itself.
  • the time length in which the time domain data continues to be "0" is detected to reach the target value (ie, the detection period)
  • an energy saving control signal for turning off the power amplifier is generated; when the time domain data is not detected to be "0", the immediate opening is generated.
  • Energy-saving control signal for the power amplifier is used to control signal.
  • Figure 4 is a comparison of technical effects of two energy saving schemes based on symbols and data detection.
  • both the symbol-based and data-based detection-based power-saving schemes generate switching control on 7 OFDM symbols (Symbol1 to Symbol7) in one slot of a Long Term Evolution (LTE) signal.
  • LTE Long Term Evolution
  • the turn-off signal is generated in units of the time length of one symbol, so the symbol-based power amplifier control signal shown in FIG. 4 is in the three symbols of Symbol3, Symbol4, and Symbol6.
  • the power amplifier is turned on for the entire time range and the power amplifier is turned off for the time range of the other symbols.
  • Fig. 4 shows a case where the power amplifier is turned on when the power amplifier control signal is at a high level and the power amplifier is turned off when the power amplifier control signal is at a low level.
  • the shutdown signal is generated according to whether valid data (ie, user data) is detected, so the power amplifier control signal generated based on the data detection shown in FIG. 4 is only in Symbol3.
  • the power amplifier is turned on during the time period in which the three symbols of Symbol4, Symbol4, and Symbol6 have valid data, and the power amplifier is turned off in other time periods (including the time period of non-effect data in the three symbols of Symbol3, Symbol4, and Symbol6).
  • the power saving scheme according to the inventive concept is more precise in controlling the power amplifier, and the power amplifier is more efficient.
  • FIG. 5 is a flow chart of an energy saving scheme based on data detection according to an embodiment of the present invention.
  • the energy saving scheme based on the data detection in the FDD-LTE standard communication system includes steps 501 to 504.
  • the BBU scheduling subsystem initiates a real-time detection process to detect the current number of active users.
  • the BBU concentrates the currently active user on the partially useful user symbols according to the detection result, and simultaneously generates the scheduled subframe symbol data (ie, baseband data).
  • the BBU delivers the baseband data generated in step 502 to the RRU.
  • the RRU receives the time domain data delivered by the BBU and analyzes the data to control the switch of the power amplifier.
  • the implementation process of the energy saving mechanism in the embodiment of the present invention is simpler, and the interaction between the BBU and the RRU is not required, and the control data transmission between the BBU and the RRU is reduced. Higher reliability in systems with complex structures.
  • an energy saving module ie, a power amplifier (PA) energy saving control module
  • the module analyzes the time domain data received by the RRU and generates a power amplifier control signal.
  • PA power amplifier
  • FIG. 6 is a structural diagram of implementing an energy saving scheme based on FDD-LTE according to an embodiment of the present invention.
  • the downlink data after monitoring and scheduling by the BBU module is simultaneously sent to the IF link of the RRU and the PA energy-saving control module.
  • One link data is sent to the PA via the intermediate frequency link module and the radio frequency link module, and the other link data enters the PA energy saving control module to generate a PA control signal (ie, an energy saving control signal), and a control signal generated by the PA conventional control module. (ie, the conventional control signal) performs a logical AND operation, and then performs a switching control on the PA.
  • the PA power saving control module, the PA conventional control module, and the logic and module in FIG. 6 can collectively implement the functions of the apparatus shown in FIG.
  • the energy-saving scheme based on FDD-LTE may include steps 701 to 706.
  • the BBU scheduling subsystem starts a real-time detection process to detect the current number of active users.
  • the BBU concentrates the currently active users on the partially useful user symbols according to the detection result to form the scheduled baseband data.
  • the RRU sends the received baseband data to the PA energy saving control module, and the PA energy saving control module analyzes the time domain data, and reaches the target value when detecting that the time domain data continues to be “0” (ie, detecting At the time of the cycle, an energy-saving control signal for turning off the power amplifier is generated; when it is detected that the time domain data is not "0", an energy-saving control signal for turning on the power amplifier is immediately generated.
  • the PA power saving control module calculates a delay required to generate the power amplifier control signal (ie, a delay required to perform the power saving control signal), and sends the generated power saving control signal to the buffer module for corresponding delay and output.
  • a power amplifier control signal is generated.
  • the power amplifier control signal output from the PA power saving control module is logically ANDed with the control signal output by the PA conventional control module (ie, the conventional control signal) to generate a final power amplifier control signal.
  • control signal output by the PA conventional control module is in a fully open state.
  • step 706 the final power amplifier control signal generated in step 705 is sent to the PA to control the switching of the PA.
  • FIG. 8 is a block diagram of a FDD-LTE based control module in accordance with an embodiment of the present invention.
  • the FDD-LTE-based control module 32 may include a control signal generation sub-module and a control signal delay sub-module.
  • the control signal generation sub-module analyzes the input time domain data signal, and when detecting that the time domain data continues to be “0” for a time to reach the target value, generating an energy-saving control signal for turning off the power amplifier, when the detected data is not “ When 0", the energy-saving control signal for turning on the power amplifier is immediately generated.
  • the duration of the detection can be the detection period, and its value can be flexibly configured through registers.
  • the control signal delay sub-module delays the generated energy-saving control signal for a certain time to successfully release the control signal, so that the generated power amplifier control signal and the data can reach the PA at the same time, preventing the erroneous shutdown signal.
  • a certain delay is required, so the power amplifier needs to be turned on and turned off in advance.
  • FIG. 9 is a schematic diagram of delay calculation of an energy-saving control signal based on FDD-LTE according to an embodiment of the present invention.
  • a switching signal for controlling the power amplifier is generated according to the data detection scheme, wherein T1 represents a delay of the baseband data reaching the PA through the logical link and the RF link, T2 represents a detection period of the data, and T3 represents an energy-saving control signal.
  • the delay time, T4 represents the length of time that the power amplifier is turned off, and T5 represents the length of time that the power amplifier is turned on earlier.
  • the delay of the power-saving control signal is equal to the data link delay minus half of the data detection period, so that the length of the power amplifier being turned on and the off-close is half of the data detection period, and the data is not guaranteed. Was turned off by mistake, namely:
  • T2 is equal to the sum of T4 and T5, that is, the detection period of the data is related to the advance opening of the power amplifier and the length of the hysteresis off time. Taking into account the time taken to turn the power amplifier on and off when setting the detection period, the detection period needs to be greater than or equal to the sum of the two, and less than the length of time of one symbol.
  • a register controllable variable can also be designed to adjust the length of time for the power amplifier to be opened early and the closed to be closed, that is:
  • T6 represents the adjusted power amplifier lag off time length
  • T7 represents the adjusted power amplifier early open time length
  • represents a controllable time adjustment amount
  • the energy saving and consumption reduction scheme described in the embodiments of the present invention is applicable to all communication systems based on OFDM transmission, including but not limited to LTE and WiMAX.
  • the RRU does not need to send the useful symbol configuration bitmap information to the BBU, and can analyze the link data to determine the user status and control the power amplifier to be turned on and off, thereby decoupling from other network elements to improve reliability.
  • the control cycle can be flexibly controlled to achieve smaller power amplifier control than the symbol level granularity to achieve higher efficiency and energy saving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种射频拉远单元的功率放大器的控制方法及装置。所述方法包括:射频拉远单元检测来自基带处理单元的时域数据,并确定所述时域数据中是否存在用户数据;以及所述射频拉远单元根据所述时域数据中是否存在用户数据的确定结果来控制所述射频拉远单元的功率放大器开启或关闭。

Description

射频拉远单元的功率放大器的控制方法及装置 技术领域
本发明涉及无线通讯技术领域,特别涉及一种射频拉远单元(Radio Remote Unit,RRU)的功率放大器的控制方法及装置。
背景技术
当今移动互连时代使得无线通讯业务得到前所未有的发展,RRU的节能降耗成为无线通讯发展的重要方向。在目前已有的基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)的多种通信系统中,比如频分双工-3GPP长期演进(Frequency Division Dual-Long Term Evolution,FDD-LTE)技术、时分双工-3GPP长期演进(Time Division Dual-Long Term Evolution,TDD-LTE)技术和全球微波互连接入(Worldwide Interoperability for Microwave Access,WiMAX)等,利用基带调度子系统实时监控当前用户数来配置下行子帧有用符号,进而实时控制RRU的功率放大器的工作时间,把用户集中在部分有用的符号上,而在无用的符号时间内关闭功率放大器。
这种方案涉及各个子帧有用符号配置信息的下发,当网元过多时,各网元间的协作会变得困难,同时系统的可靠性会下降,并且这种方案只能做到子帧符号级的功率放大器的关断。
发明内容
根据本发明实施例提供的射频拉远单元的功率放大器的控制方法及装置,针对基于OFDM传输的通信系统中的射频拉远单元,在不需要基带下发子帧有用符号配置信息的情况下,由射频拉远单元自行判断链路子帧符号的空闲状态并控制功率放大器的开关。
根据本发明的一个方面,提供了一种射频拉远单元节的功率放大器的控制方法,包括:射频拉远单元检测来自基带处理单元的时域数据,并确定所述时域数据中是否存在用户数据;以及所述射频拉远 单元根据所述时域数据中是否存在用户数据的确定结果来控制所述射频拉远单元的功率放大器开启或关闭。
根据本发明的另一方面,提供了一种存储介质,其存储用于实现上述射频拉远单元的功率放大器的控制方法的程序。
根据本发明的又一方面,提供了一种射频拉远单元的功率放大器的控制装置,包括:检测模块,设置为检测来自基带处理单元的时域数据,并确定所述时域数据中是否存在用户数据;以及控制模块,设置为根据所述时域数据中是否存在用户数据的确定结果来控制所述射频拉远单元的功率放大器开启或关闭。
附图说明
图1是根据现有技术的基于符号的节能方案的流程图;
图2是根据本发明实施例的射频拉远单元的功率放大器的控制方法的流程图;
图3是根据本发明实施例的射频拉远单元的功率放大器的控制装置的框图;
图4是基于符号和基于数据检测的两种节能方案的技术效果对比图;
图5是根据本发明实施例的基于数据检测的节能方案的流程图;
图6是根据本发明实施例的基于FDD-LTE实施节能方案的结构图;
图7是根据本发明实施例的基于FDD-LTE实施节能方案的流程图;
图8是根据本发明实施例的基于FDD-LTE的控制模块的框图;以及
图9是根据本发明实施例的基于FDD-LTE的节能控制信号的延时计算的示意图。
具体实施方式
以下结合附图对本发明的优选实施例进行详细说明,应当理解, 以下所说明的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
图1是根据现有技术的基于符号的节能方案的流程图。
如图1所示,根据现有技术的基于符号的节能方案可以包括步骤101至步骤104。
在步骤101处,基带单元(Base Band Unit,BBU)调度子系统启动实时检测进程,对当前活动用户数进行检测。
在步骤102处,BBU根据检测结果将当前活动用户集中到部分有用的用户符号上,同时产生调度后的子帧符号数据(即,基带数据)和有用符号配置位图信息(即,控制信号)。
在步骤103处,BBU将在步骤102中产生的基带数据和控制信息下发给射频拉远单元(Radio Remote Unit,RRU)。
在步骤104处,RRU接收子帧符号数据和有用符号配置位图信息,并产生功放控制信号来控制功率放大器的开关。
图1所示的方案涉及各个子帧的有用符号配置位图信息的下发。当网元过多时,各网元间的协作会变得困难,同时系统的可靠性会下降。此外,图1所示的方案只能做到子帧符号级别的关断。
图2是根据本发明实施例的RRU的功率放大器的控制方法的流程图。
如图2所示,根据本发明实施例的RRU的功率放大器的控制方法可以包括步骤201和202。
在步骤201处,RRU检测来自基带处理单元的时域数据,并确定所述时域数据中是否存在用户数据。
步骤101可以包括:RRU对时域数据进行检测,当检测到时域数据持续为“0”的时间长度达到目标值时,则确定时域数据中不存在用户数据,否则确定时域数据中存在用户数据。
所述目标值可以小于一个子帧符号的时间长度。
在步骤202处,RRU根据时域数据中是否存在用户数据的确定结果来控制RRU的功率放大器开启或关闭。
步骤202可以包括:RRU根据时域数据中是否存在用户数据的确 定结果生成用于开启或关闭功率放大器的节能控制信号,并根据节能控制信号来控制功率放大器开启或关闭。
根据本发明实施例,RRU将节能控制信号缓存预设时间长度后与常规控制信号进行逻辑与运算以得到功放控制信号,并根据功放控制信号对功率放大器的开启或关闭进行控制。对于频分双工(FDD)系统,常规控制信号是常开信号;对于时分双工(TDD)系统,常规控制信号是与数据接收或发送的时隙相关的信号。也就是说,在TDD系统的数据发送时隙,RRU的常规控制信号是打开信号,在TDD系统的数据接收时隙,RRU的常规控制信号是关闭信号。
根据本发明实施例的RRU的控制方法可以实现节能降耗,节能降耗的机制是RRU对基带发送的时域数据进行分析,自行判断链路中是否有用户数据,并产生相应的功放控制信号,在无用户数据时关闭功率放大器,从而达到节能降耗的目的。
本领域普通技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述程序可以存储于计算机可读取存储介质中,在运行该程序时,可以执行步骤201至步骤202。所述存储介质可以为ROM/RAM、磁碟、光盘等。
图3是根据本发明实施例的RRU的功率放大器的控制装置的框图。
如图3所示,根据本发明实施例的RRU的功率放大器的控制装置可以设置在RRU中,并且该装置可以包括检测模块31和控制模块32。
检测模块31设置为检测来自基带处理单元的时域数据,并确定时域数据中是否存在用户数据。根据本发明实施例,检测模块31对时域数据进行检测,当检测到时域数据持续为“0”的时间长度达到目标值时,则确定时域数据中不存在用户数据,否则确定时域数据中存在用户数据。所述目标值可以小于一个子帧符号的时间长度。
控制模块32设置为根据时域数据中是否存在用户数据的确定结果来控制RRU的功率放大器开启或关闭。根据本发明实施例,控制模块32根据时域数据中是否存在用户数据的确定结果生成用于开启或 关闭功率放大器的节能控制信号,并根据节能控制信号来控制功率放大器开启或关闭。根据本发明实施例,控制模块32将所述节能控制信号缓存预设时间长度后与常规控制信号进行逻辑与运算以得到功放控制信号,并根据功放控制信号对功率放大器的开启或关闭进行控制。对于FDD系统,常规控制信号是常开信号;对于TDD系统,常规控制信号是与数据接收或发送的时隙相关的信号。
根据本发明实施例,RRU的控制装置的工作流程如下:检测模块31在检测到时域数据持续为“0”的时间长度达到目标值时,确定时域数据中不存在用户数据,控制模块32基于该确定结果生成用于关闭功率放大器的节能控制信号,并将该节能控制信号进行相应的延时后与常规控制信号进行逻辑与运算以得到功放控制信号。该功放控制信号被发送至功率放大器,从而关闭功率放大器。在功率放大器关闭之后,当检测模块31检测到非“0”数据时,确定所述时域数据中存在用户数据,控制模块32基于该确定结果生成用于打开功率放大器的节能控制信号,并将该节能控制信号进行相应的延时后与常规控制信号进行逻辑与运算以得到功放控制信号。该功放控制信号被发送至功率放大器,从而打开功率放大器。
本发明构思的节能方案包括如下两个部分:
1、节能控制信号产生方式
根据本发明的节能方案采用的是基于数据检测的节能方案,RRU独立对时域数据进行检测,然后自行分析并产生节能控制信号。当检测到时域数据持续为“0”的时间长度达到目标值(即,检测周期)时,产生关闭功率放大器的节能控制信号;当检测到时域数据不为“0”时,立即产生打开功率放大器的节能控制信号。
2、节能控制粒度
根据本发明的节能方案针对时域数据进行检测,并且当检测到无用数据(即,持续为“0”的时间长度达到目标值的时域数据)时可关闭功率放大器。目标值可以小于一个子帧符号的时间长度,因此节能控制的粒度可以小于子帧符号,控制更精确,节能效果更好。
下面将基于本发明构思的基于数据检测的节能方案和对比示例 的基于符号的节能方案的技术效果与流程进行对比分析。
图4是基于符号和基于数据检测的两种节能方案的技术效果对比图。
如图4所示,基于符号和基于数据检测的两种节能方案均在长期演进(Long Term Evolution,LTE)信号一个时隙(slot)内的7个OFDM符号(Symbol1至Symbol7)上产生开关控制。图中示出为灰色的位置表示符号具有有效数据。
在对比示例的基于符号的节能方案中,以一个符号的时间长度为单位产生关断信号,因此图4中示出的基于符号产生的功放控制信号会在Symbol3、Symbol4和Symbol6这三个符号的全部时间范围内打开功率放大器,并且在其他符号的时间范围内关闭功率放大器。图4示出了当功放控制信号为高电平时打开功率放大器并且当功放控制信号为低电平时关闭功率放大器的情况。
在基于本发明构思的基于数据检测的节能方案中,根据是否检测到有效数据(即,用户数据)来产生关断信号,因此图4中示出的基于数据检测产生的功放控制信号只在Symbol3、Symbol4和Symbol6这三个符号中具有有效数据的时间段内打开功率放大器,并且其他时间段(包括Symbol3、Symbol4和Symbol6这三个符号中的非效数据的时间段)内关闭功放。
由此可以看出,根据本发明构思的节能方案对功率放大器的控制更精确,功率放大器的效率更高。
下面以FDD-LTE制式通信系统为例,对本发明构思进行详细说明。
图5是根据本发明实施例的基于数据检测的节能方案的流程图。
如图5所示,基于数据检测的节能方案在FDD-LTE制式通信系统中的节能方案包括步骤501至步骤504。
在步骤501处,BBU调度子系统启动实时检测进程,对当前活动用户数进行检测。
在步骤502处,BBU根据检测结果将当前活动用户集中到部分有用的用户符号上,同时产生调度后的子帧符号数据(即,基带数据)。
在步骤503处,BBU将在步骤502中产生的基带数据下发给RRU。
在步骤504处,RRU接收BBU下发的时域数据,并对数据进行分析,以自行控制功率放大器的开关。
由此可以看出,本发明实施例节能机制实现流程更简单,不需要在BBU与RRU之间进行有用符号配置位图信息的交互,减少了BBU与RRU之间的控制数据传输,在网络拓扑结构复杂的系统中具有更高的可靠性。
根据本发明的实施例,可以在RRU中增加一个节能模块(即,功率放大器(Power Amplifier,PA)节能控制模块)。利用该模块对RRU接收到的时域数据进行分析并产生功放控制信号。
图6是根据本发明实施例的基于FDD-LTE实施节能方案的结构图。
如图6所示,经过BBU模块监控调度后的下行数据同时被送入RRU端的中频链路和PA节能控制模块。一条链路数据经由中频链路模块和射频链路模块被送到PA,另一条链路数据进入PA节能控制模块产生PA控制信号(即,节能控制信号),与PA常规控制模块产生的控制信号(即,常规控制信号)进行逻辑与操作,然后对PA进行开关控制。图6中的PA节能控制模块、PA常规控制模块和逻辑与模块可共同实现图3所示装置的功能。
图7是根据本发明实施例的基于FDD-LTE实施节能方案的流程图。
如图7所示,根据本发明实施例的基于FDD-LTE实施节能方案可以包括步骤701至步骤706。
在步骤701处,BBU调度子系统启动实时检测进程,对当前活动用户数进行检测。
在步骤702处,BBU根据检测结果将当前活动用户集中到部分有用的用户符号上,形成调度后的基带数据。
在步骤703处,RRU将接收到的基带数据送入PA节能控制模块,PA节能控制模块对时域数据进行分析,当检测到时域数据持续为“0”的时间达到目标值(即,检测周期)时,产生关闭功率放大器的节能 控制信号;当检测到时域数据不为“0”时,立即产生打开功率放大器的节能控制信号。
在步骤704处,PA节能控制模块计算产生功放控制信号所需延时(即,需要对节能控制信号执行的延时),并将产生的节能控制信号送入缓存模块进行相应延时后输出以产生功放控制信号。
在步骤705处,从PA节能控制模块输出的功放控制信号与PA常规控制模块输出的控制信号(即,常规控制信号)进行逻辑与操作,以生成最终的功放控制信号。
需要说明的是,对于FDD-LTE,PA常规控制模块输出的控制信号为全开状态。
在步骤706处,将步骤705中生成的最终的功放控制信号送入PA,以控制PA的开关。
图8是根据本发明实施例的基于FDD-LTE的控制模块的框图。
如图8所示,根据本发明实施例的基于FDD-LTE的控制模块32(参见图3)可以包括控制信号产生子模块和控制信号延时子模块。
控制信号产生子模块对输入的时域数据信号进行分析,当检测到时域数据持续为“0”的时间达到目标值时,产生关闭功率放大器的节能控制信号,当检测到数据为不为“0”时,立即产生打开功率放大器的节能控制信号。检测的持续时间可为检测周期,其值可以通过寄存器灵活配置。
控制信号延时子模块对产生的节能控制信号进行一定时间的延时以生成功放控制信号,从而使得生成的功放控制信号能和数据能够同时到达PA,防止错误的关闭信号。另外考虑到PA的打开和关闭需要经过一定的延时,因此功率放大器需要提前打开和滞后关闭。
图9是根据本发明实施例的基于FDD-LTE的节能控制信号的延时计算的示意图。
如图9所示,根据数据检测方案产生控制功率放大器的开关信号,其中T1表示基带数据经过逻辑链路和射频链路到达PA上的延时,T2表示数据的检测周期,T3表示节能控制信号的延时,T4表示功率放大器滞后关闭的时间长度,T5表示功率放大器提前打开的时间长 度。根据本发明实施例,节能控制信号的延时等于数据链路延时减去数据检测周期的一半,这样使得功率放大器提前打开和滞后关闭的时间长度都是数据检测周期的一半,保证数据不会被错误地关断,即:
Figure PCTCN2018074790-appb-000001
T3=T1-T5
因此,T2等于T4与T5的和,也就是说数据的检测周期与功率放大器的提前打开和滞后关闭时间长度是相关的。在设置检测周期时要将功率放大器的打开和关闭所占用的时间考虑在内,检测周期需要大于等于两者之和,且小于一个符号的时间长度。
另外考虑到功放提前打开和滞后关闭的时间长度不一定是相同的,根据本发明实施例,还可以设计一个寄存器可控的变量,以便于调整功放提前打开和滞后关闭的时间长度,即:
T6=T4-δ,
T7=T5+δ
其中:T6表示调整后的功放滞后关闭时间长度,T7表示调整后的功放提前打开时间长度,δ表示可控的时间调整量。
本发明实施例所述的节能降耗方案适用于所有基于OFDM传输的通信系统,包括但不局限于LTE和WiMAX。
根据本发明构思的节能方案具有如下有益效果:
1、RRU不需要BBU下发有用符号配置位图信息,可以自行分析链路数据,以确定用户状态,并控制功率放大器的开启和关闭,从而与其他网元解耦,提高可靠性;
2、可灵活控制检测周期,从而实现比符号级别的粒度更小的功放控制,以实现更高效率的节能降耗。
尽管上文对本发明进行了详细说明,但是本发明不限于此,本技术领域技术人员可以根据本发明的原理进行各种修改。因此,凡按照本发明原理所作的修改,都应当理解为落入本发明的保护范围。

Claims (12)

  1. 一种射频拉远单元的功率放大器的控制方法,包括:
    所述射频拉远单元检测来自基带处理单元的时域数据,并确定所述时域数据中是否存在用户数据;以及
    所述射频拉远单元根据所述时域数据中是否存在用户数据的确定结果来控制所述射频拉远单元的功率放大器开启或关闭。
  2. 根据权利要求1所述的控制方法,其中,所述射频拉远单元检测来自基带处理单元的时域数据,并确定所述时域数据中是否存在用户数据的步骤包括:
    所述射频拉远单元对所述时域数据进行检测;以及
    当检测到所述时域数据持续为“0”的时间长度达到目标值时,则确定所述时域数据中不存在用户数据,否则确定所述时域数据中存在用户数据。
  3. 根据权利要求1所述的控制方法,其中,所述射频拉远单元根据所述时域数据中是否存在用户数据的确定结果来控制所述射频拉远单元的功率放大器开启或关闭的步骤包括:
    所述射频拉远单元根据所述时域数据中是否存在用户数据的确定结果生成用于开启或关闭所述功率放大器的节能控制信号;以及
    根据所述节能控制信号来控制所述功率放大器开启或关闭。
  4. 根据权利要求3所述的控制方法,其中,根据所述节能控制信号来控制所述功率放大器开启或关闭的步骤包括:
    所述射频拉远单元将所述节能控制信号缓存预设时间长度后与常规控制信号进行逻辑与运算以得到功放控制信号;以及
    根据所述功放控制信号对所述功率放大器的开启或关闭进行控制。
  5. 根据权利要求4所述的控制方法,其中,所述常规控制信号是常开信号。
  6. 根据权利要求4所述的控制方法,其中,所述常规控制信号是与数据接收或发送的时隙相关的信号。
  7. 一种射频拉远单元的功率放大器的控制装置,包括:
    检测模块,设置为检测来自基带处理单元的时域数据,并确定所述时域数据中是否存在用户数据;以及
    控制模块,设置为根据所述时域数据中是否存在用户数据的确定结果来控制所述射频拉远单元的功率放大器开启或关闭。
  8. 根据权利要求7所述的控制装置,其中,所述检测模块进一步设置为:
    对所述时域数据进行检测,并且
    当检测到所述时域数据持续为“0”的时间长度达到目标值时,则确定所述时域数据中不存在用户数据,否则确定所述时域数据中存在用户数据。
  9. 根据权利要求7所述的控制装置,其中,所述控制模块进一步设置为:
    根据所述时域数据中是否存在用户数据的确定结果生成用于开启或关闭所述功率放大器的节能控制信号,并且
    根据所述节能控制信号来控制所述功率放大器开启或关闭。
  10. 根据权利要求9所述的控制装置,其中,所述控制模块进一步设置为:
    将所述节能控制信号缓存预设时间长度后与常规控制信号进行逻辑与运算以得到功放控制信号,并且
    根据所述功放控制信号对所述功率放大器的开启或关闭进行控 制。
  11. 根据权利要求10所述的控制装置,其中,所述常规控制信号是常开信号。
  12. 根据权利要求10所述的控制装置,其中,所述常规控制信号是与数据接收或发送的时隙相关的信号。
PCT/CN2018/074790 2017-02-07 2018-01-31 射频拉远单元的功率放大器的控制方法及装置 WO2018145595A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019542664A JP6915070B2 (ja) 2017-02-07 2018-01-31 無線遠隔手段の電力増幅器の制御方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710067420.5A CN108401278A (zh) 2017-02-07 2017-02-07 一种射频拉远单元节能降耗的方法及装置
CN201710067420.5 2017-02-07

Publications (1)

Publication Number Publication Date
WO2018145595A1 true WO2018145595A1 (zh) 2018-08-16

Family

ID=63093625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074790 WO2018145595A1 (zh) 2017-02-07 2018-01-31 射频拉远单元的功率放大器的控制方法及装置

Country Status (3)

Country Link
JP (1) JP6915070B2 (zh)
CN (1) CN108401278A (zh)
WO (1) WO2018145595A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113873618A (zh) * 2020-06-30 2021-12-31 中国移动通信集团吉林有限公司 一种基于物联网的基站节能控制方法及其系统
WO2022066068A1 (en) * 2020-09-22 2022-03-31 Telefonaktiebolaget Lm Ericsson (Publ) Radio hardware aware scheduling
WO2024001926A1 (zh) * 2022-06-27 2024-01-04 中兴通讯股份有限公司 节能装置、通信设备及其运行的方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111601369B (zh) * 2019-02-21 2021-08-27 大唐移动通信设备有限公司 一种节能控制系统及方法
CN111491391B (zh) * 2020-04-09 2022-04-01 京信网络系统股份有限公司 小区调度方法、电子设备、存储介质及分布式天线系统
CN113890573A (zh) * 2020-06-17 2022-01-04 中兴通讯股份有限公司 射频单元功率控制方法、电子设备及存储介质
CN112492667B (zh) * 2020-10-22 2022-11-11 中通服咨询设计研究院有限公司 一种基于智慧基站的数据处理方法、系统及控制器
CN113411872B (zh) * 2021-06-15 2022-12-27 深圳国人无线通信有限公司 一种基于cpri协议的节能控制方法及基站系统
CN113411871B (zh) * 2021-06-15 2022-12-27 深圳国人无线通信有限公司 一种基于cpri协议的节能控制方法及基站系统
CN113411870B (zh) * 2021-06-15 2022-05-17 深圳国人无线通信有限公司 一种基于cpri协议的节能控制方法及基站系统
CN117479274A (zh) * 2022-07-22 2024-01-30 中兴通讯股份有限公司 节能方法、系统、设备及存储介质
CN115941071B (zh) * 2022-11-23 2025-05-23 四川恒湾科技有限公司 符号关断方法、装置、o-ru和电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741774A (zh) * 2008-11-10 2010-06-16 大唐移动通信设备有限公司 Td-scdma基站系统能耗降低系统及方法
CN102651905A (zh) * 2011-02-25 2012-08-29 鼎桥通信技术有限公司 基站控制方法及移动通信系统
US9369161B1 (en) * 2014-08-12 2016-06-14 Sprint Communications Company L.P. Mitigation of radio-frequency interference at a remote radio head

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101557238A (zh) * 2008-04-07 2009-10-14 鼎桥通信技术有限公司 一种功率放大器的控制方法、装置及系统
CN106358272A (zh) * 2015-07-17 2017-01-25 中兴通讯股份有限公司 一种射频拉远单元的节电控制方法及相关设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741774A (zh) * 2008-11-10 2010-06-16 大唐移动通信设备有限公司 Td-scdma基站系统能耗降低系统及方法
CN102651905A (zh) * 2011-02-25 2012-08-29 鼎桥通信技术有限公司 基站控制方法及移动通信系统
US9369161B1 (en) * 2014-08-12 2016-06-14 Sprint Communications Company L.P. Mitigation of radio-frequency interference at a remote radio head

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113873618A (zh) * 2020-06-30 2021-12-31 中国移动通信集团吉林有限公司 一种基于物联网的基站节能控制方法及其系统
CN113873618B (zh) * 2020-06-30 2023-11-03 中国移动通信集团吉林有限公司 一种基于物联网的基站节能控制方法及其系统
WO2022066068A1 (en) * 2020-09-22 2022-03-31 Telefonaktiebolaget Lm Ericsson (Publ) Radio hardware aware scheduling
WO2024001926A1 (zh) * 2022-06-27 2024-01-04 中兴通讯股份有限公司 节能装置、通信设备及其运行的方法

Also Published As

Publication number Publication date
JP2020507287A (ja) 2020-03-05
JP6915070B2 (ja) 2021-08-04
CN108401278A (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
WO2018145595A1 (zh) 射频拉远单元的功率放大器的控制方法及装置
EP4398663A1 (en) Monitoring method and apparatus, wake-up signal transmission method and apparatus, terminal, and network-side device
US20140122689A1 (en) Dynamic adjustment of an interrupt latency threshold and a resource supporting a processor in a portable computing device
CN110012499A (zh) 用于控制SCell状态的方法及其装置
WO2020030175A1 (zh) 接收配置和控制方法、装置、终端、基站及存储介质
WO2017000791A1 (zh) 一种lte系统的节能方法及装置
CN111615191A (zh) 一种控制方法、装置及计算机可读存储介质
WO2023169397A1 (zh) 非连续接收drx参数配置方法、装置、终端及网络侧设备
CN109756955B (zh) 一种终端及其电路控制方法
CN101885969B (zh) 一种集气管压力控制方法
CN109068379B (zh) 功率放大器的控制电路、控制方法及终端
WO2020143751A1 (zh) 通信方法和通信装置
WO2022237677A1 (zh) 随机接入的处理方法、装置及终端
WO2021000308A1 (zh) 非连续接收的方法和装置
CN114387965A (zh) 防止多设备误唤醒的方法及系统
CN112671396A (zh) 动态电压频率调整系统、方法及电子设备
CN114679765A (zh) 用于直放站节能的方法、装置和介质
CN118249841A (zh) 一种基于信噪比估计的自适应跳频方法和装置
WO2024093932A1 (zh) 配置调整方法、装置、终端及网络侧设备
WO2023208181A1 (zh) 功率确定方法、终端及可读存储介质
CN114007256B (zh) 终端装置、节能反馈方法、非暂态存储介质以及程序产品
CN119072963A (zh) 适用于提高能量效率的系统和装置以及与之相关联的处理/通信方法
US7661009B2 (en) Apparatus and methods for discriminating late software commands sent to hardware
WO2023045502A1 (zh) 组网工作参数控制方法、终端及存储介质
CN115633406A (zh) 终端的控制方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18750839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18750839

Country of ref document: EP

Kind code of ref document: A1