WO2018146750A1 - Satellite relay device - Google Patents
Satellite relay device Download PDFInfo
- Publication number
- WO2018146750A1 WO2018146750A1 PCT/JP2017/004604 JP2017004604W WO2018146750A1 WO 2018146750 A1 WO2018146750 A1 WO 2018146750A1 JP 2017004604 W JP2017004604 W JP 2017004604W WO 2018146750 A1 WO2018146750 A1 WO 2018146750A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- band
- input
- command
- switch matrix
- output
- Prior art date
Links
- 239000011159 matrix material Substances 0.000 claims abstract description 131
- 230000004044 response Effects 0.000 claims description 20
- 230000009467 reduction Effects 0.000 claims description 4
- 238000010397 one-hybrid screening Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 45
- 238000012217 deletion Methods 0.000 description 27
- 230000037430 deletion Effects 0.000 description 27
- 238000010586 diagram Methods 0.000 description 18
- 230000008859 change Effects 0.000 description 13
- 230000004308 accommodation Effects 0.000 description 10
- 238000004891 communication Methods 0.000 description 10
- 101150033495 SWM2 gene Proteins 0.000 description 9
- 101100455527 Schizosaccharomyces pombe (strain 972 / ATCC 24843) lsd2 gene Proteins 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 102100033695 Anaphase-promoting complex subunit 13 Human genes 0.000 description 8
- 101000733832 Homo sapiens Anaphase-promoting complex subunit 13 Proteins 0.000 description 8
- 238000012790 confirmation Methods 0.000 description 8
- 238000012544 monitoring process Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 230000001629 suppression Effects 0.000 description 4
- 238000013507 mapping Methods 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 230000010485 coping Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 101100150907 Caenorhabditis elegans swm-1 gene Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18515—Transmission equipment in satellites or space-based relays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/204—Multiple access
- H04B7/2041—Spot beam multiple access
Definitions
- the present invention relates to a satellite repeater, and more particularly to a satellite repeater used in a satellite communication system.
- a relay satellite equipped with a digital channelizer has a function of dividing an input beam into a plurality of subchannels, mapping the output beams on a subchannel basis, combining them, and outputting the result.
- beam input and beam output beyond the input / output band planned in advance can not be performed, there has been a problem that if service traffic during the operation period changes significantly, it can not cope with input / output of these beams.
- a satellite repeater supporting multiple beams (hereinafter referred to as a multibeam satellite repeater) is configured using the maximum traffic of beams predicted during the operation period, a large-scale digital channelizer having many input / output ports There was a problem of requiring
- the input and output beams exceeding the traffic planned in advance are accommodated in the satellite relay apparatus, whereby the input / output port Even with a small number of digital channelizers, it is possible to construct a satellite repeater capable of coping with traffic variations without reducing the number of beams accommodated.
- the input / output band is determined by the maximum traffic planned in advance, and the input / output band for each beam is set below the digital channelizer input / output band.
- the digital channelizer input / output port band In order to divide the input beam band 3 GHz into six according to 500 MHz, the GW10 station occupies the input port 60 port of the digital channelizer, and even if there is a 60 beam user service area, the number of beams that can be accommodated is limited to 20 beams Be done.
- the number of satellites can be reduced, so temporary traffic fluctuation (maximum traffic utilization) can be reduced by using other beams.
- the present invention has been made to solve the above problems, and enables beam band input / output beyond the digital channelizer input band, shares the digital channelizer input / output port with all beams, and has a fixed period of time
- the satellite repeaters can input traffic exceeding the digital channelizer's input / output bandwidth without reducing the number of beams that can be accommodated by exchanging the input / output bandwidth between beams. It aims to be realized.
- a satellite repeater comprises an input-side flexible switch matrix for dividing an input beam into a plurality of frequency bands and converting the frequency to a digital channelizer input frequency, and the digital channelizer.
- An output-side flexible switch matrix is provided which combines the plurality of output signals exchanged into a continuous band.
- Satellite repeaters capable of coping with increased traffic, and even when using a digital channelizer with a small number of input / output ports, it is possible to perform large-capacity communication without reducing the number of beams accommodated. .
- FIG. 1 is a block diagram showing a configuration of a satellite relay device according to Embodiment 1;
- FIG. 2 is a diagram showing a signal flow path when an input / output band is divided / combined in a flexible switch matrix constituting a satellite relay device in FIG.
- FIG. 16 is a block diagram conceptually showing an example of beam accommodation based on average traffic on the input side of the second embodiment.
- FIG. 13 is a block diagram conceptually showing an example of beam accommodation based on the maximum traffic on the input side of the satellite relay apparatus according to Embodiment 2.
- FIG. 16 is a block diagram conceptually showing an example of beam accommodation based on average traffic on the output side of the satellite relay apparatus according to Embodiment 2.
- FIG. 16 is a block diagram conceptually showing an example of beam accommodation based on 3 GHz traffic on the output side of the satellite relay apparatus according to Embodiment 2.
- FIG. 16 is a block diagram showing a configuration of an RF channelizer that can be used instead of the combination of the tunable down converter and the BPF in the satellite relay apparatus in FIG. 1 of the third embodiment.
- FIG. 20 is a block diagram showing a satellite communication system including the satellite relay device according to Embodiment 4 and a ground device communicatively connected to the satellite relay device.
- FIG. 16 is a flowchart showing a control flow of the satellite relay device in the fourth embodiment. It is a figure which shows the control sequence of the satellite communication system in FIG. It is a sequence diagram for UL use band information acquisition in ground equipment.
- the satellite relay apparatus according to the first embodiment includes a flexible switch matrix (Flexible SW Matrix) 9, a digital channelizer (Digital CHZ) 10, and a flexible switch matrix 11. Ru.
- the satellite relay apparatus according to the first embodiment is mounted on a relay satellite as a satellite payload that constitutes a flexible payload.
- the input-side flexible switch matrix 9 includes a switch matrix unit SWM1 configured of hybrid units (HYB: Hybrid) 16 to 19 and selectors (SELECTOR) 20 to 23, and a tuner that performs frequency conversion to an arbitrary frequency.
- a digital channelizer 10 comprising a Bull down converter (Tunable DCON) 24 to 27 and a Band Pass Filter (BPF) 28 to 31 for mapping a subchannel of an arbitrary input beam to a subchannel of an arbitrary output beam. Put on the input side.
- the output-side flexible switch matrix 11 of the present invention includes tunable upconverters (Tunable UPCON) 48 to 51, frequency pass filters 52 to 55, and a selector for frequency-converting the digital channelizer output signal to an arbitrary band of the output beam.
- a switch matrix unit SWM2 is formed of 56 to 59 and hybrid units 60 to 63, and is placed on the output side of the digital channelizer 10.
- the band pass filters 28 to 31 of the flexible switch matrix 9 on the input side are included in the flexible switch matrix 9 when the band restriction and the spectrum suppression are required.
- the band pass filters 52 to 55 of the output side flexible switch matrix 11 are included in the flexible switch matrix 11 when band constraint and spectrum suppression are required.
- the output signals from any of the output ports 40 to 43 (Output Ports # 1 to # 4) of the digital channelizer 10 are received at the input ports 44 to 47, and tunable up is performed.
- the frequency is converted (up converted) by the converter (Tunable UPCON), switched through the band pass filters 52 to 55, and switched by the switch / matrix unit SWM2, and then output as arbitrary output beams 64 to 67-Beam # 1 to # 4. .
- the switch / matrix unit SWM1 is composed of hybrid units (HYB) 16 to 19 which are distributors and selectors (SELECTOR) 20 to 23.
- the switch / matrix unit SWM2 is configured of selectors (SELECTOR) 56 to 59 and hybrid units (HYB) 60 to 63.
- These switch / matrix units SWM1 and SWM2 can also be configured by a hybrid unit and a passive switch such as C-SW or T-SW.
- the command control unit A13 of the input-side flexible switch matrix 9 designates a path from the hybrid unit through the control lines A50 to A53.
- the selectors 20 to 22 in FIG. 2 respectively select paths from the hybrid unit 16 in order to divide the input signal band of Beam # 1_12 into three, and the selector 23 inputs the signal from Beam # 4_A77 without dividing it. Therefore, the path from the hybrid unit 19 is selected.
- the command control unit A13 of the flexible switch matrix (input side) 9 converts it by the control line A54 in order to divide the input frequency band of the beam 69-Beam # 1 Bandwidth into three frequency bands 70 to 72.
- the frequency "FcforBW # 1 (A90) -IF” is set, the conversion frequency “FcforBW # 2 (A91) -IF” is set at the control line A55, and the conversion frequency “FcforBW # 3 (A92)” is set at the control line A56.
- the command control unit A 15 of the flexible switch matrix (output side) 11 up-converts an output signal of IF (Intermediate Frequency) frequency into an output RF (Radio Frequency) signal and combines three bands into one band.
- the conversion frequency "FcforBW # 1 (A95) -IF” is set in the control line A58
- the conversion frequency “FcforBW # 2 (A96) -IF” is set in the control line A59
- the control line A60 Set the conversion frequency “FcforBW # 3 (A97) -IF”.
- the command control unit A 15 of the flexible switch matrix (output side) 11 performs switch setting of the selectors 56 to 59 through the control lines A 62 to A 65.
- control lines A62 to 64 paths to the hybrid unit 60 are set in selectors 56 to 58 respectively to form a path A94, and in the hybrid unit 60, an input IF band -73, an input IF band -74, and an input IF band Output beam 80-Beam # 1 Bandwidth of the continuous band which respectively becomes band BW # 1-77, band BW # 2-78, and band BW # 3-79 respectively corresponding to -75.
- the RF signal input by beam 69-Beam # 1 Bandwidth is divided into three bands, input to the input ports 36 to 38 of the digital channelizer 10 at the IF frequency, and the output port 40 to the digital channelizer 10
- the signals output from 42 are combined by the hybrid unit 60 through selectors 56 to 58, and output as a beam 80-Beam # 1 Bandwidth, which is an RF signal of the beam 64-Beam # 1.
- the wide band signal 69 input from the beam 12-Beam # 1 is all selectors Distribute to 20-23.
- the signals of the beams 12-Beam # 1 respectively selected by the selectors 20-22 designated by the control lines A50-A52 are sent to the tunable down converters 24-26.
- the center frequencies of the signal 70 of the band BW # 1, the signal 71 of the band BW # 2, and the signal 72 of the band BW # 3 obtained by dividing the band of Beam # 1 (beam 69-Beam # 1 Bandwidth) into three respectively.
- the digital channelizer 10 filters the signals that have been band-pass filters 28-30 into bands 70-72.
- the 750 MHz band signal input to beam # 1-12 is divided into three by the switch / matrix unit SWM1, and input to the tunable down converters 24 to 26, respectively.
- the tunable downconverter 24 frequency-converts an input beam with a center frequency of 20 GHz into a 750 MHz beam (conversion frequency 19.25 GHz)
- the tunable down-converter 25 frequency converts an input beam with a center frequency of 20 GHz into a 1000 MHz beam (conversion
- the tunable converter 26 frequency-converts an input beam with a center frequency of 20 GHz into a 1250 MHz beam (conversion frequency of 18.75 GHz).
- band-pass filters 28 to 30 having a center frequency of 1 GHz are used to filter in the 250 MHz band, respectively, and bands BW # 1 to BW # 3 of the 1 GHz center frequency are extracted from output ports 32 to 34, Input to the channelizer input port InputPort # 1-36 to InputPort # 3-38 in the 250 MHz band.
- the input band signal which is variable according to the user traffic can be input channel band of the digital channelizer 10 at the maximum by the number of input ports no matter which beam is input. There is an effect that the beam band that can be accommodated can be extended to the calculated beam band.
- the bandwidth BW # 1 to BW # of the IF frequency from the output ports 40 to 42 (Output Ports # 1 to # 3) of the digital channelizer 10 Three signals 73 to 75 are output.
- the signals 73 to 75 of the bands BW # 1 to BW # 3 of these IF frequencies are converted differently so as to be the signals 77 to 79 of the bands BW # 1, # 2, and # 3 of the output beam 64-Beam # 1, respectively.
- the frequency is upconverted in a tunable upconverter (Tunable UPCON) 48-50 and filtered using a band pass filter 52-54.
- the filtered beams 77 to 79 are combined by the hybrid unit 60 via selectors 56 to 58 to generate a beam 80-Beam # 1 of a continuous output frequency band.
- the 1 GHz center frequency of the 250 MHz band signal 73 output from Output Port # 1-40 of the digital channelizer 10 is frequency converted to 9.75 GHz (conversion frequency 8.75 GHz) by the tunable up converter 48, and the Output Port
- the 1 GHz center frequency of the 250 MHz band signal 74 output from # 2-41 is frequency converted to 10 GHz (conversion frequency 9 GHz) by the tunable up converter 49, and 1 GHz of the 250 MHz band signal 75 output from OutputPort # 3-42
- the center frequency is frequency converted to 10.25 GHz (conversion frequency 9.25 GHz) by the tunable up converter 50.
- these frequency converted signals are subjected to spurious suppression by the band pass filters 52 to 54 as necessary, and these signals are synthesized by the hybrid unit 60 via the switch / matrix unit SWM 2 to obtain a 10 GHz center frequency.
- Output a beam 80-Beam # 1 Bandwidth of 750 MHz.
- the band of the output beams 64 to 67-Beam # 1 to # 4 has an effect of enabling output of variable band signals up to the output port band of the digital channelizer 10 ⁇ the number of output ports.
- PF pre-select filter
- LNA Low Noise AMP
- a satellite relay apparatus constituting a flexible payload according to a second embodiment of the present invention is a satellite relay apparatus having the maximum traffic (band) of an input beam in the satellite relay apparatus provided with the flexible switch matrix of the first embodiment.
- the satellite repeater is configured with the average traffic of the input beam and the maximum traffic is required with any beam, the I / O port of the digital channelizer shared by all beams is used instead of By matching, even if a digital channelizer with a small number of input / output ports is used, the number of beams that can be accommodated can be increased.
- the flexible switch matrix and the digital channelizer port are shared.
- 60 ports of the digital channelizer's input port will be used only by GW stations, and users other than GW The number of ports allocated to the beam will be 20.
- the input / output port of the digital channelizer without real traffic or the priority If the average traffic of the GW is 1 GHz, the number of ports used by 10 GW stations is limited to 20 ports by using the I / O port of the digital channelizer used by the lower beam to accommodate the maximum traffic. In addition, 60 ports can be allocated to user beams other than the GW.
- the beam accommodation method on the input side of the second embodiment will be described with reference to FIGS. 3 and 4.
- the flexible switch matrix on the output side is omitted for simplification of the description.
- Each of these flexible switch matrices is similar in configuration to that of the first embodiment.
- a flexible switch matrix 80 on the input side accommodates, for example, 10 GW stations of 1 GHz in average traffic and 60 user beams of 500 MHz band in a flexible switch matrix 80 on the input side using an input / output 80 port digital channelizer 81 of 500 MHz band Shows the configuration of the flexible switch matrix.
- the flexible switch matrix 80 has Input Ports # 1 to # 70 at input ports and Output Ports # 1 to # 80 at output ports.
- the output ports # 1 to # 80 are connected to the input port Input ports # 1 to # 80 of the digital channelizer 81.
- the 1 GHz band of the GW BEAM # 1-82 GW is input to the input port # 1-86 of the flexible switch matrix 80.
- the GW BEAM # 1_82 input to the input port # 1-86 of the flexible switch matrix 80 is divided into two bands of 500 MHz by the flexible switch matrix 80, and the output port # 1-90 and the output port # 2 After being outputted from -91, they are inputted to the input port # 1-96 and the input port # 2-97 of the digital channelizer 81.
- the output port of the flexible switch matrix 80 on the input side is logically connected to the input port.
- GW beam # 1_82 of 3 GHz is frequency-divided (500 MHz ⁇ 6) in flexible switch matrix 80, and output from digital channelizer 81 through output ports 90, 91, 104 to 107 of flexible switch matrix 80.
- the data is input to input ports 96, 97, 111-114.
- the beams utilizing the output ports 104 to 107 of the flexible switch matrix 80 and the input ports 111 to 114 of the digital channelizer 81 can not connect the input from the beam to the channelizer 81.
- the output port of the flexible switch matrix 80 need not be a physically continuous port, but may be any port of the flexible switch matrix 80.
- a flexible switch matrix of beams which can not be used by other beams or can be interrupted.
- the output port of it is possible to input to the digital channelizer of the bandwidth above the average traffic.
- the input port of the digital channelizer 81 is allocated based on 1 GHz of GW average traffic, compared to the case of GW10 station + 20 user beam accommodation when the input port of the digital channelizer 81 is allocated based on 3 GHz of GW maximum traffic,
- the GW10 station + 60 user beams can be accommodated by adopting a method of interchanging the input port of the digital channelizer with all beams.
- the input port of the digital channelizer is shared by using the flexible switch matrix as compared with the satellite repeater using the input port of the digital channelizer at maximum traffic.
- the number of input beams can be increased.
- the output side beam accommodation method according to the second embodiment will be described with reference to FIGS. 5 and 6.
- the flexible switch matrix 200 on the output side is omitted for simplification of the description.
- the configuration of these flexible switch matrices 200 is similar to that of the flexible switch matrix 11 of the first embodiment.
- the GW output beam combines 500 MHz band signals output from the two output ports of the digital channelizer 81 by the flexible switch matrix 200 on the output side, and outputs it with a 1 GHz beam.
- Output ports Output port # 1 to # 80 (-203 to 208) of the digital channelizer 81 are connected to input ports # 1 to # 80 (-209 to 214) of the flexible switch matrix 200.
- Output ports # 1 to # 20 (-203 to 206) corresponding to 201 GWports (20 ports) in the digital channelizer 81 are subjected to frequency conversion (up conversion) by the flexible switch matrix 200 and then synthesized into a 1 GHz band. And output ports Output from ports # 1 to # 10 (-215 to 216) as GW beams of 10 stations. Also, Output Ports # 21 to # 80 (-207 to 208) corresponding to 202 Userports (60 ports) in the digital channelizer 81 are frequency converted (up converted) by the flexible switch matrix 200, and then output ports Output It is output as a 500 MHz user beam from Port # 11 to # 70 (-217 to 218).
- the output port Output Port # 1 to # 1 of the digital channelizer 81 corresponding to 201 GWports (20 ports)
- Outputs from Output Ports # 21 to # 24 (-207 to 236) corresponding to parts of 20 (-203, 219, 230 to 233, 220, 206) and 202 Userports (60 ports) are the flexible switch matrix 200.
- Port # 1 to # 24 (-209 to 240, 222, 212, and 213 to 243).
- These received signals are frequency converted (up converted) to a continuous band by the flexible switch matrix 200, and then combined into a 1 GHz band, and output ports Output Port # 1 to # 10 (-215 to 216) ) Are output as GW beams of 10 GHz stations respectively. Also, the remaining Output Ports # 25 to # 80 (-237 to 208) at 202 Userports (60 ports) of the digital channelizer 81 are frequency converted (up converted) by the flexible switch matrix 200, and then the output port Output It is output as a 500 MHz user beam from any of the ports # 11 to # 70 (-217 to 218).
- the output port of the flexible switch matrix 200 corresponding to a beam which is not used by other beams or which can be interrupted. Enables output to a digital channelizer in a band higher than traffic. Also, at this time, the output port of the digital channelizer 81 does not have to be a physically continuous port, but may be any output port.
- the output port of the digital channelizer 81 is allocated based on 1 GHz of GW average traffic, compared with the case of GW10 station + 20 user beam accommodation when the output port of the digital channelizer 81 is allocated based on 3 GHz of GW maximum traffic,
- the GW needs up to 3 GHz average traffic, it is possible to accommodate the GW10 station + 60 user beams by adopting the method of interchanging the output port of the digital channelizer with all the output beams.
- the flexible switch matrix is used to share the digital channelizer output port as compared with the satellite repeater using the digital channelizer output port for maximum traffic.
- the number of output beams can be increased.
- the number of output beams that can be accommodated can be increased without increasing the number of output ports of the digital channelizer, and it is possible to adopt an inexpensive satellite repeater configuration.
- the Jamming-resistant flexible is achieved by replacing the downconverter performing frequency conversion of the flexible switch matrix on the input side with the RF channelizer. Switches and switch matrix configurations are possible.
- the configuration of the RF channelizer is shown in FIG.
- the RF channelizer A100 shown in FIG. 7 is provided with a high pass filter HPF_A104 and a low pass filter LPF_A105 in the IF frequency band, and the frequency conversion sections A101 to A103 convert the frequency arbitrarily, thereby bandpassizing the high pass filter HPF_A104 and the low pass filter LPF_A105.
- the frequency conversion units A101 to A103 can be converted to an arbitrary frequency (tunable), so that the rejection frequency of the band pass filter can be made variable.
- the input beam A 111-in FIG. 7 can be obtained by replacing the tunable down converters 24 to 27 and the band pass filters 28 to 31 of the input side flexible switch matrix in the first embodiment and the second embodiment with an RF channelizer.
- the conversion frequency of the frequency conversion unit A102 is The operation enables suppression of the jamming wave A110.
- the RF channelizer in the flexible switch matrix of the first embodiment and the second embodiment, it is possible to suppress the jamming wave.
- the RF channelizer is also applicable to the flexible switch matrix (output side) 11.
- FIG. 8 is a diagram showing the configuration of a satellite communication system according to a fourth embodiment of the present invention.
- the satellite communication system according to the fourth embodiment includes a satellite relay device A5 equipped with a flexible switch matrix, a line control device A1 of a ground device A0 controlling the same, a ground satellite GWA2, and a ground mission control device It consists of A3 and NOC (Network Operating Center) A4.
- NOC Network Operating Center
- the ground device A0 includes a line control device A1, NOCA4, and a ground mission control device A3.
- the line control device A1 includes a traffic control unit A6 that determines and requests bandwidth variation for each beam.
- the NOC_A 4 has a traffic monitoring unit A 7 that monitors the traffic for each beam, and a command generation unit A 8 that generates a command for changing the configuration of the flexible switch matrices 9 and 11 to the satellite relay device A 5.
- the satellite relay device A5 receives a command from the command receiving antenna A10, and generates a command signal instructing the units 9 to 11 to perform the setting according to the command, and receives from the RF signal receiving antenna A11 Digital channelizer 10 for mapping and transmitting a signal to an arbitrary frequency of a desired beam, and flexible switch matrix (input side for dividing traffic to accommodate traffic exceeding the input band of digital channelizer 10 9) and a flexible switch matrix (output side) 11 for combining traffic.
- the flexible switch matrix (input side) 9 of the satellite relay device A5 is a hybrid of a command control unit A13 that changes the configuration of the flexible switch matrix according to an instruction signal from the command control device A12, a switch matrix unit SWM1, and a hybrid (HYB) 16 to 19, selectors (SELECTOR) 20 to 23, tunable down converters (Tunable DCON) 24 to 27 for converting arbitrary input RF signals to IF frequencies, and BPFs (band pass filters) 28 to And 31.
- SELECTOR selectors
- Tunable DCON tunable down converters
- BPFs band pass filters
- the digital channelizer 10 divides the input RF signal into sub-carriers by setting the configuration of the digital channelizer 10 according to an instruction signal from the command control device A12, and divides the input RF signal into sub-carriers.
- a switch unit A17 that switches subcarriers and a multiplexer unit A18 that multiplexes the divided subcarriers from the switch unit A17.
- the digital channelizer 10 cuts out an arbitrary RF signal in the input beam at the demultiplexing unit A16, the switch unit A17, and the multiplexing unit A18, and maps, ie, exchanges, in an arbitrary frequency band in the output beam.
- the flexible switch matrix (output side) 11 up-converts the IF frequency to an arbitrary RF frequency according to an instruction signal from the command control device A12 and changes the configuration of the flexible switch matrix.
- the command control unit A12 of the satellite relay device A5 instructs the command control unit A13 of the flexible switch matrix (input side) 9 to change the configuration for dividing the input beam, and the hybrid units 16 to 19 and the selector 20
- the selector of the switch matrix unit SWM1 consisting of to 27 is set.
- the command control device A12 branches the input signal into a plurality of paths by setting the conversion frequency of the tunable down converters 24 to 27, and performs frequency conversion by the tunable down converters 24 to 27, and the band pass filter 28
- the channelizer input frequency band is extracted using ⁇ 31.
- the command control device A12 of the satellite relay device A5 outputs a signal of configuration change instruction for combining output signals to the command control unit A15 of the flexible switch matrix (output side) 11, thereby enabling a tunable up-converter
- the conversion frequency setting of 48 to 51, and the setting of the switch matrix unit SWM2 including the selectors 56 to 59 and the hybrids 60 to 63 are performed.
- the signal output from the digital channelizer 10 in the IF frequency band is upconverted to an arbitrary frequency band, and the same as input multi-beam using switch matrix section SWM2 comprising selectors 56 to 59 and hybrid sections 60 to 63. Synthesize in a continuous band.
- the satellite relay apparatus A5 performs setting of the flexible switch matrices 9 and 11 in the command control apparatus A12 of the satellite relay apparatus A5 according to the request from the ground apparatus A0. Enables the input of an RF signal exceeding the channelizer input band and the output of an RF signal exceeding the channelizer output band.
- the traffic control unit A6 in the line control unit A1 of the ground apparatus A0 requests a connection setting request from the command generation unit A8 of NOC_A4 in step A41.
- step A42 the command generation unit A8 of NOC_A4 sends a connection setting request to the ground mission control device A3 in accordance with the request from the traffic control unit A6.
- step A43 the ground mission control device A3 determines whether or not all commands have been transmitted according to the connection setting request, and when all the commands have been transmitted, the process proceeds to step A44 and processing is stopped. Do. On the other hand, if all the commands have not been transmitted in step A43, a command for changing the configuration of the flexible switch matrix 9, 11 is generated in step A45, and the command control device A12 of the satellite relay device A5 is generated.
- step A46 the command control device A12 sets the configuration of each unit in the command control units A13 to A15 of each of the units 9 to 11. Then, in step A47, the command control units A13 to A15 set the configuration of each unit according to the request.
- band division of traffic exceeding the input band of the channelizer 10 and band combination of traffic exceeding the channelizer band are performed.
- the processing sequence for this will be described in the control sequence shown in FIG. 10 to FIG.
- FIG. 10 shows an initial sequence for setting the satellite relay device A5.
- the ground device A0 sets up the satellite repeater A5 in accordance with the planned satellite configuration.
- the traffic control unit A6 in the line control device A1 in the ground device A0 instructs the command generation unit A8 in the NOC_A4 as the connection setting request (A20) to the frequency band of the input / output beam and the number of band divisions.
- the command generation unit A8 of NOC_A4 is the configuration of the switch matrix units SWM1 and SWM2 of the satellite relay device A5 based on the frequency band of the input / output beam and the number of band divisions for which the connection setting request (A20) has been made.
- the conversion frequencies of to 27 and 48 to 51 are determined, and a connection setting request (A21) is notified to the ground mission control device A3.
- the ground mission control device A3 sends a SELECTOR setting command (A22) to the command control device A12 in order to set the switches of the flexible switch matrix (input side) 9.
- the command control device A12 receives the SELECTOR setting command (A22)
- the command control device A12 notifies the command control unit A13 of the flexible switch matrix (input side) 9 of the SELECTOR setting command (A23).
- the command control unit A13 performs selector setting (A24) for the selectors (SELECTOR) 20 to 27.
- the ground mission control device A3 transmits a conversion frequency setting command (A25) to the command control device A12 of the satellite relay device A5 in order to set the conversion frequency of the flexible switch matrix (input side) 9.
- the command control device A12 When receiving the conversion frequency setting command (A25), the command control device A12 notifies the command control unit A13 of the modulation frequency setting command A26, and the command control unit A13 switches the flexible switch matrix (input side) 9 Set the matrix unit SWM1.
- the command control device A13 performs the conversion frequency setting (A27) of the tunable down converters 24 to 27 by receiving the modulation frequency setting command A26.
- the ground mission control device A3 requests the channelizing information (subcarrier switching information) of the digital channelizer 10 to the command control device A12 of the satellite relay device A5 using a channelizer setting command (A28).
- the command control device A12 When receiving the request for the channelizer setting command (A28), the command control device A12 generates a channelizer setting command (A29), which is channelizing information, using the channelizer setting command (A28).
- the command control device A12 transmits the generated channelizer setting command (A29) to the command control unit A14 of the digital channelizer 10.
- the command control unit A14 performs setting (A30) of the digital channelizer 10.
- the ground mission control device A3 notifies the command control device A12 of the satellite relay device A5 of the conversion frequency setting command (A31) in order to set the conversion frequency of the flexible switch matrix (output side) 11.
- the command control device A12 sends a conversion frequency setting command (A32) for instructing the conversion frequency to the command control unit A15 of the flexible switch matrix (output side) 11.
- the command control unit A15 sets the conversion frequency of the tunable up converters 48 to 51 (A33).
- the ground mission control device A3 performs switch setting of the switch matrix unit SWM2 in order to combine the divided bands. Therefore, the ground mission control device A3 notifies the command control device A12 of the satellite relay device A5 of switch path information, that is, a SELECTOR setting command (A34).
- the command control device A12 transmits a SELECTOR setting command (A35) for instructing switch path information to the command control unit A15 of the flexible switch matrix (output side) 11, The setting (A36) of the selectors 56 to 59 is performed.
- FIG. 11 shows a UL (uplink) used band information acquisition sequence.
- the call control device A120 sends a line information notification (A150) to the traffic control unit A6.
- the traffic control unit A6 calculates a use band, that is, a line usage rate (free line rate) based on the acquired line information notification (A150).
- UL use band information can also be calculated from satellite telemetry (A 152) notified from the satellite. That is, when the terrestrial mission control device A3 acquires satellite telemetry (UL power measurement information) A152 from the command control device A12 of the satellite relay device A5, UL power measurement measured for each subcarrier by the digital channelizer 10 in the telemetry The result is notified to the traffic monitoring unit A7 of NOC_A4 by the UL power measurement information notification (A153).
- the traffic monitoring unit A 7 uses the fact that the power is measured by the use of the line, and calculates the line use status from the power measurement result.
- the traffic monitoring unit A7 sends the calculated line use status notification (A154) to the traffic control unit A6 of the line control device A1.
- the traffic control unit A6 calculates the use band of the line, that is, the use rate (free line rate) based on the line use status notification (A154).
- the traffic control unit A6 of the line control device A1 makes a band addition determination (A160), it sends a band change notification (A164) to the call control device A120, and sends a connection setting request (A20) to the command generation unit A8 of NOC_A4.
- the ground mission control device A3 When receiving the connection setting request (A21), the ground mission control device A3 sets the flexible switch matrix (input side) 9 and the digital channelizer 10, so that the selector setting command (A22), the conversion frequency setting command (A22) A25) The channelizer setting command (A28) is notified to the command control device A12 of the satellite relay device A5.
- the command control device A12 checks the setting information of the selector setting command (A22), the conversion frequency setting command (A25), and the channelizer setting command (A28), and performs satellite telemetry (setting information confirmation) It transmits to ground mission control-apparatus A3 as A161).
- the ground mission control device A3 upon acquiring satellite telemetry (setting information confirmation) (A161) from the command control device A12 of the satellite relay device A5, sends a connection setting response (A162) to the command generation unit A8.
- the command generating unit A8 When receiving the connection setting response (A162), the command generating unit A8 sends a connection setting response (A163) to the traffic control unit A6 of the line control device A1.
- the traffic control unit A6 determines that band addition has been performed (A160).
- the traffic control unit A6 of the line control device A1 sends a bandwidth change notification (A171) to the call control device A120 when it judges the removal of the bandwidth (A170).
- the call control device A120 performs the communication frequency change processing (A172) to the user using the UL band to be deleted, if necessary, and transmits a band change response (A173) to the traffic control unit A6 of the line control device A1. send.
- the traffic control unit A6 of the line control device A1 sends a connection setting request (A20) to the command generation unit A8 of NOC_A4 along with the band deletion.
- the command generation unit A8 notifies the ground mission control device A3 of a connection setting request (A21).
- the ground mission control device A3 sets the flexible switch matrix (input side) 9 and the digital channelizer 10, so that the selector setting command (A22), the conversion frequency setting command (A22) A25) and the channelizer setting command (A28) are notified to the command control device A12 of the satellite relay device A5.
- the command control device A12 checks the setting information of the selector setting command (A22), the conversion frequency setting command (A25), and the channelizer setting command (A28), and performs satellite telemetry (setting information confirmation) It transmits to ground mission control-apparatus A3 as A174.
- the ground mission control device A3 upon acquiring satellite telemetry (setting information confirmation) (A174) from the command control device A12 of the satellite relay device A5, sends a connection setting response (A175) to the command generation unit A8.
- the command generation unit A8 sends a connection setting response (A176) to the traffic control unit A6 of the line control device A1.
- the traffic control unit A6 determines that the band has been deleted (A170).
- the call control device A 120 notifies the traffic control unit A 6 of the line control device A 1 of the DL line information (band) along with the call establishment / release (A 149).
- the traffic control unit A6 of the line control device A1 calculates the line usage rate (free line rate) based on the notified DL line information notification (A150), and determines addition / deletion of the DL band.
- the determination as to the addition of the DL band is performed by the same algorithm as the determination as to the addition of the UL band, and the availability of the band is determined by comparing the use band A 140 described later with FIG.
- the call control device A120 When the call establishment / release (A149) occurs, the call control device A120 notifies the traffic control unit A6 of the line control device A1 of the line information notification (A150). The traffic control unit A6 of the line control device A1 calculates the DL use band A 151 based on the line information notification (A150).
- the traffic control unit A6 of the line control device A1 upon making the band addition determination (A160), transmits a connection setting request (A20) to the command generation unit A8 of NOC_A4.
- the command generating unit A8 sends a connection setting request (A21) to the ground mission control device A3.
- the ground mission control device A3 sets the digital channelizer 10 and the flexible switch matrix (output side) 11, so the channelizer setting command (A28), the conversion frequency setting command (A28) A31) and the selector setting command (A34) are notified to the command control device A12 of the satellite relay device A5.
- the command control device A12 upon receiving the channelizer setting command (A28), the conversion frequency setting command (A31), and the selector setting command (A34), the command control device A12 confirms the setting information and performs satellite telemetry (setting) on the confirmed setting information. As information confirmation) (A161), it transmits to ground mission control device A3.
- the command generating unit A8 When receiving the connection setting response (A162), the command generating unit A8 sends a connection setting response (A163) to the traffic control unit A6 of the line control device A1.
- the traffic control unit A6 determines that the band addition has been performed (A160), and sends a band change notification (A164) to the call control apparatus (A120).
- FIG. 16 shows a DL band deletion sequence.
- the traffic control unit A6 of the line control device A1 determines that the bandwidth is to be deleted (A170)
- the traffic control unit A6 sends a bandwidth change notification (A171) to the call control device A120.
- the call control device A120 performs the communication frequency change processing (A172) to the user using the UL band to be deleted, if necessary, and transmits a band change response (A173) to the traffic control unit A6 of the line control device A1. contact.
- the traffic control unit A6 of the line control device A1 sends a connection setting request (A20) to the command generation unit A8 of NOC_A4 along with the band deletion.
- the command generation unit A8 notifies the ground mission control device A3 of the connection setting request (A21).
- the ground mission control device A3 sets the digital channelizer 10 and the flexible switch matrix (output side) 11, so the channelizer setting command (A28), the conversion frequency setting command (A28) A31) and the selector setting command (A34) are notified to the command control device A12 of the satellite relay device A5.
- the command control device A12 confirms the setting information and performs satellite telemetry (setting) on the confirmed setting information. As information confirmation) (A174), it transmits to ground mission control device A3.
- the ground mission control device A3 upon acquiring satellite telemetry (setting information confirmation) (A174) from the command control device A12 of the satellite relay device A5, sends a connection setting response A175 to the command generation unit A8.
- the command generation unit A8 sends a connection setting response (A176) to the traffic control unit A6 of the line control device A1.
- the traffic control unit A6 determines that band addition has been performed (A170), and sends a band change notification (A173) to the call control apparatus (A120).
- connection is re-set and the flexible switch matrix 11 tunable up-converters 48 to 51 for band combination are generated. It is possible to change the selection path by setting the conversion frequency and the SELECTOR 56 to 59.
- Embodiment 5 Next, a control algorithm for frequency band division of the flexible switch matrix (input side) 9 of the satellite relay apparatus of the fifth embodiment and frequency synthesis of the flexible switch matrix (output side) 11 will be described.
- FIG. 17 shows a ground device A0 that monitors and controls traffic. Traffic control is performed by the call control device A 120, the traffic control unit A6 of the line control device A1, and the traffic monitoring unit A7 of the NOC_A4.
- the call control device A 120 When the connection is established and released, the call control device A 120 notifies the traffic control unit A 6 of information (band) of the established and released connection.
- the traffic control unit A6 calculates, based on the notified connection information, the free band and the used band of the UL band and the DL band allocated to the beam. When this is applied to the GW beam, the vacant band A122 and the used band A123 are derived from the satellite GW band A121.
- the UL free band A122 can also be derived from the reception power measurement result communicated from the ground mission control device A3.
- the traffic monitoring unit A7 of NOC_A4 derives the available bandwidth A124 and the used bandwidth A125 based on the power measurement information measured by the satellite, and notifies the traffic control unit A6 of the line control device A1.
- the traffic control unit A6 implements a band addition / deletion algorithm based on the free band information, and carries out the addition of the UL band and the change of the satellite configuration.
- FIG. 18 shows the ratio between the free band A 141 corresponding to the above-mentioned free band A 122 and the used band A 140 corresponding to the above used band A 123, and the band addition threshold A 131 and the band deletion threshold with respect to the entire band A 130 of UL beam.
- FIG. 19 shows an example of an algorithm using the ratio of the free band A 141 to the use band A 140 and the band addition threshold A 131 and the band deletion threshold A 132 described above. If the use band A 140 exceeds the band addition threshold A 131 with respect to the whole band A 130 a in STEP 1, it is determined that band addition is necessary, the band is added (doubled) in STEP 2 and the whole band becomes A 130 b, band addition threshold For example, A131 is reset to 20% of the entire band A130b, and similarly, the band deletion threshold A132 is reset to 80% of the entire band A130b.
- band addition threshold A 131 and the band deletion threshold A 132 are set to the use band ratio of DL and the use band ratio, addition of band and reduction of band can be detected, and satellite payload for band combination Enables setting of A5 output side flexible switch matrix 11
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Radio Relay Systems (AREA)
Abstract
Implemented is a flexible satellite relay device which is configured such that, when the frequency band of an input multibeam exceeds the input frequency band of a digital channelizer, in an input-side flexible switch matrix, the multibeam is converted into beams within the input frequency band of the digital channelizer by a command from ground equipment, and the beams are inputted to the digital channelizer, and in an output-side flexible switch matrix, signals exchanged by the digital channelizer are synthesized to a continuous band, and input ports and output ports for the digital channelizer can be shared among all the beams.
Description
本発明は、衛星中継装置に関し、特に衛星通信システムに用いられる衛星中継装置に関するものである。
The present invention relates to a satellite repeater, and more particularly to a satellite repeater used in a satellite communication system.
従来、衛星通信の周波数利用、衛星システムの容量増大等を実現するため、複数のアップリンクビームから複数のダウンリンクビームにデータを中継する中継衛星において、衛星中継装置にデジタルチャネライザを搭載した中継衛星が提案されている。このようなデジタルチャネライザ搭載の衛星中継装置に関する技術が、例えば、下記の特許文献1に開示されている。
Conventionally, in order to realize frequency utilization of satellite communication, increase in capacity of satellite system, etc., in a relay satellite that relays data from a plurality of uplink beams to a plurality of downlink beams, a relay having a digital channelizer mounted on a satellite relay device A satellite has been proposed. A technology related to such a satellite relay device equipped with a digital channelizer is disclosed, for example, in Patent Document 1 below.
デジタルチャネライザを搭載した中継衛星は、入力ビームを複数のサブチャネルに分割し、サブチャネル単位で出力ビームにマッピングし合成して出力する機能を有する。しかしながら、事前に計画した入出力帯域を越えるビーム入力及びビーム出力ができないことから、運用期間中のサービストラヒックが大きく変化すると、これらビームの入出力に対応できなくなるという課題があった。
A relay satellite equipped with a digital channelizer has a function of dividing an input beam into a plurality of subchannels, mapping the output beams on a subchannel basis, combining them, and outputting the result. However, since beam input and beam output beyond the input / output band planned in advance can not be performed, there has been a problem that if service traffic during the operation period changes significantly, it can not cope with input / output of these beams.
また、運用期間中に予測されるビームの最大トラヒックを用いてマルチビームに対応した衛星中継装置(以下、マルチビーム衛星中継装置)を構成すると、多くの入出力ポートを有する大規模なデジタルチャネライザを必要とするという課題があった。
In addition, if a satellite repeater supporting multiple beams (hereinafter referred to as a multibeam satellite repeater) is configured using the maximum traffic of beams predicted during the operation period, a large-scale digital channelizer having many input / output ports There was a problem of requiring
マルチビーム衛星中継装置において、上記課題に示した運用期間中に変動するサービストラヒックに対応するため、事前に計画したトラヒックを越える入力ビーム及び出力ビームを衛星中継装置に収容することにより、入出力ポート数の少ないデジタルチャネライザを用いても、収容ビーム数を減らすことなくトラヒック変動に対応し得る衛星中継装置を構築することができる。
In the multi-beam satellite relay apparatus, in order to cope with service traffic that fluctuates during the operation period shown in the above problem, the input and output beams exceeding the traffic planned in advance are accommodated in the satellite relay apparatus, whereby the input / output port Even with a small number of digital channelizers, it is possible to construct a satellite repeater capable of coping with traffic variations without reducing the number of beams accommodated.
これを具体的に説明すると、従来のデジタルチャネライザを用いた衛星通信システムでは、事前に計画された最大トラヒックで入出力帯域を決め、ビーム毎に入出力帯域をデジタルチャネライザ入出力帯域以下となるように、入力ビームの分割及び出力ビームの合成を実施する。
To explain this specifically, in the satellite communication system using the conventional digital channelizer, the input / output band is determined by the maximum traffic planned in advance, and the input / output band for each beam is set below the digital channelizer input / output band. Implement the splitting of the input beam and the combining of the output beam.
例えば、500MHzの80ポートの入出力ポートを有するデジタルチャネライザを用いて衛星中継装置を構築した場合、最大トラヒック3GHzのGW(ゲートウェイ)10局を収容しようとすると、デジタルチャネライザの入出力ポート帯域500MHzに合わせて入力ビーム帯域3GHzを6分割するため、GW10局でデジタルチャネライザの入力ポート60ポートを占有し、60ビームのユーザサービスエリアがあったとしても、収容できるビーム数は20ビームに限定される。
For example, when a satellite relay apparatus is constructed using a digital channelizer having 80 MHz input / output ports of 500 MHz, when trying to accommodate 10 GW (gateway) stations with a maximum traffic of 3 GHz, the digital channelizer input / output port band In order to divide the input beam band 3 GHz into six according to 500 MHz, the GW10 station occupies the input port 60 port of the digital channelizer, and even if there is a 60 beam user service area, the number of beams that can be accommodated is limited to 20 beams Be done.
このように、最大トラヒックでデジタルチャネライザの入出力ポートを占有してしまうと、衛星収容ビーム数を減少させてしまうことから、一時的なトラヒック変動(最大トラヒック利用)については、他のビームで利用しているデジタルチャネライザの入出力ポートを融通することで、入力ビーム数を削減することなく、事前に計画されたトラヒック以上のビーム帯域の入力を可能とする衛星中継システムが求められる。
As described above, if the I / O port of the digital channelizer is occupied with the maximum traffic, the number of satellites can be reduced, so temporary traffic fluctuation (maximum traffic utilization) can be reduced by using other beams. There is a need for a satellite relay system that can input beam bands higher than previously planned traffic without reducing the number of input beams by adapting the input and output ports of the digital channelizer used.
本発明は、上記の課題を解決するためになされたもので、デジタルチャネライザの入力帯域を超えるビーム帯域の入出力を可能とし、全ビームでデジタルチャネライザの入出力ポートを共有し、一定期間のトラヒック増大に対しては、ビーム間で入出力帯域を融通し合うことで、収容可能ビーム数を減らすことなく、デジタルチャネライザの入出力帯域を越えるトラヒックの入力を可能とする衛星中継装置を実現することを目的とする。
The present invention has been made to solve the above problems, and enables beam band input / output beyond the digital channelizer input band, shares the digital channelizer input / output port with all beams, and has a fixed period of time In order to cope with the increase in traffic, the satellite repeaters can input traffic exceeding the digital channelizer's input / output bandwidth without reducing the number of beams that can be accommodated by exchanging the input / output bandwidth between beams. It aims to be realized.
上記の目的を達成する為、本発明に係る衛星中継装置は、入力ビームを複数の周波数帯域に分割しデジタルチャネライザ入力周波数に周波数変換する入力側フレキシブル・スイッチ・マトリックスと、前記デジタルチャネライザで交換された複数の出力信号を、連続帯域に合成する出力側フレキシブル・スイッチ・マトリックスを具備している。
In order to achieve the above object, a satellite repeater according to the present invention comprises an input-side flexible switch matrix for dividing an input beam into a plurality of frequency bands and converting the frequency to a digital channelizer input frequency, and the digital channelizer. An output-side flexible switch matrix is provided which combines the plurality of output signals exchanged into a continuous band.
本発明によれば、入出力ビームの周波数帯域が事前に計画された入出力帯域を越えても地上装置からのコマンドを用いて、入力ビームの分割、及び出力ビームの合成ができることから、一時的なトラヒックの増大に対応可能な衛星中継装置を構築することができ、入出力ポート数の少ないデジタルチャネライザを用いたとしても収容ビーム数を削減することなく大容量通信を行うことが可能となる。
According to the present invention, even if the frequency band of the input and output beams exceeds the previously planned input and output bands, it is possible to divide the input beam and synthesize the output beam using commands from the ground equipment. Satellite repeaters capable of coping with increased traffic, and even when using a digital channelizer with a small number of input / output ports, it is possible to perform large-capacity communication without reducing the number of beams accommodated. .
以下、本発明に係る衛星中継装置の種々の実施の形態を、上記の添付図面を参照して詳細に説明する。
Hereinafter, various embodiments of the satellite relay device according to the present invention will be described in detail with reference to the attached drawings.
実施の形態1.
まず、本発明に係る実施の形態1による衛星中継装置の装置構成を、図1にて説明する。
図1において、本実施の形態1による衛星中継装置は、フレキシブル・スイッチ・マトリックス(Flexible SW Matrix)9と、デジタルチャネライザ(Digital CHZ)10と、フレキシブル・スイッチ・マトリックス11とを備えて構成される。本実施の形態1による衛星中継装置は、フレキシブルペイロードを構成する衛星ペイロードとして中継衛星に搭載される。Embodiment 1
First, an apparatus configuration of a satellite relay apparatus according to a first embodiment of the present invention will be described with reference to FIG.
In FIG. 1, the satellite relay apparatus according to the first embodiment includes a flexible switch matrix (Flexible SW Matrix) 9, a digital channelizer (Digital CHZ) 10, and aflexible switch matrix 11. Ru. The satellite relay apparatus according to the first embodiment is mounted on a relay satellite as a satellite payload that constitutes a flexible payload.
まず、本発明に係る実施の形態1による衛星中継装置の装置構成を、図1にて説明する。
図1において、本実施の形態1による衛星中継装置は、フレキシブル・スイッチ・マトリックス(Flexible SW Matrix)9と、デジタルチャネライザ(Digital CHZ)10と、フレキシブル・スイッチ・マトリックス11とを備えて構成される。本実施の形態1による衛星中継装置は、フレキシブルペイロードを構成する衛星ペイロードとして中継衛星に搭載される。
First, an apparatus configuration of a satellite relay apparatus according to a first embodiment of the present invention will be described with reference to FIG.
In FIG. 1, the satellite relay apparatus according to the first embodiment includes a flexible switch matrix (Flexible SW Matrix) 9, a digital channelizer (Digital CHZ) 10, and a
本発明の入力側フレキシブル・スイッチ・マトリックス9は、ハイブリッド部(HYB:Hybrid)16~19とセレクタ(SELECTOR)20~23から構成されるスイッチ・マトリックス部SWM1と、任意周波数へ周波数変換を行うチューナブルダウンコンバータ(Tunable DCON)24~27と、バンドパスフィルタ(Band Pass Filter:BPF)28~31から構成され、任意入力ビームのサブチャネルを任意出力ビームのサブチャネルへマッピングするデジタルチャネライザ10の入力側に置かれる。
The input-side flexible switch matrix 9 according to the present invention includes a switch matrix unit SWM1 configured of hybrid units (HYB: Hybrid) 16 to 19 and selectors (SELECTOR) 20 to 23, and a tuner that performs frequency conversion to an arbitrary frequency. A digital channelizer 10 comprising a Bull down converter (Tunable DCON) 24 to 27 and a Band Pass Filter (BPF) 28 to 31 for mapping a subchannel of an arbitrary input beam to a subchannel of an arbitrary output beam. Put on the input side.
本発明の出力側フレキシブル・スイッチ・マトリックス11は、デジタルチャネライザ出力信号を出力ビームの任意帯域に周波数変換するチューナブルアップコンバータ(Tunable UPCON)48~51と、バンドパスフィルタ52~55と、セレクタ56~59とハイブリッド部60~63で構成されるスイッチ・マトリックス部SWM2で構成され、デジタルチャネライザ10の出力側に置かれる。
The output-side flexible switch matrix 11 of the present invention includes tunable upconverters (Tunable UPCON) 48 to 51, frequency pass filters 52 to 55, and a selector for frequency-converting the digital channelizer output signal to an arbitrary band of the output beam. A switch matrix unit SWM2 is formed of 56 to 59 and hybrid units 60 to 63, and is placed on the output side of the digital channelizer 10.
なお、入力側フレキシブル・スイッチ・マトリックス9のバンドパスフィルタ28~31は、帯域制約・スペクトラム抑圧が必要な場合にフレキシブル・スイッチ・マトリックス9に含める。同様に、出力側フレキシブル・スイッチ・マトリックス11のバンドパスフィルタ52~55は、帯域制約・スペクトラム抑圧が必要な場合にフレキシブル・スイッチ・マトリックス11に含める。
The band pass filters 28 to 31 of the flexible switch matrix 9 on the input side are included in the flexible switch matrix 9 when the band restriction and the spectrum suppression are required. Similarly, the band pass filters 52 to 55 of the output side flexible switch matrix 11 are included in the flexible switch matrix 11 when band constraint and spectrum suppression are required.
これにより、フレキシブル・スイッチ・マトリックス9において、任意の入力ビーム12~15-Beam#1~#4をスイッチ・マトリックス部SWM1でスイッチングした後、チューナブルダウンコンバータ(Tunable DCON)24~27で周波数変換(ダウンコンバート)し、バンドパスフィルタ28~31を経て、フレキシブル・スイッチ・マトリックス9の出力ポート32~35からデジタルチャネライザ10の任意の入力ポート36~39(Input Port#1~#4)に接続することを可能とする。
Thereby, after switching arbitrary input beams 12 to 15-Beam # 1 to # 4 by the switch matrix unit SWM 1 in the flexible switch matrix 9, frequency conversion is performed by the tunable down converter (Tunable DCON) 24 to 27. (Down-convert) and pass through band pass filters 28 to 31 from output ports 32 to 35 of the flexible switch matrix 9 to arbitrary input ports 36 to 39 (input ports # 1 to # 4) of the digital channelizer 10. Make it possible to connect.
次に、フレキシブル・スイッチ・マトリックス11において、デジタルチャネライザ10の任意の出力ポート40~43(Output Port#1~#4)からの出力信号を、入力ポート44~47で受信し、チューナブルアップコンバータ(Tunable UPCON)で周波数変換(アップコンバート)し、バンドパスフィルタ52~55を経て、スイッチ・マトリックス部SWM2でスイッチングした後、任意の出力ビーム64~67-Beam#1~#4として出力する。
Next, in the flexible switch matrix 11, the output signals from any of the output ports 40 to 43 (Output Ports # 1 to # 4) of the digital channelizer 10 are received at the input ports 44 to 47, and tunable up is performed. The frequency is converted (up converted) by the converter (Tunable UPCON), switched through the band pass filters 52 to 55, and switched by the switch / matrix unit SWM2, and then output as arbitrary output beams 64 to 67-Beam # 1 to # 4. .
なお、スイッチ・マトリックス部SWM1は、分配器であるハイブリッド部(HYB)16~19と、セレクタ(SELECTOR)20~23とで構成される。また、スイッチ・マトリックス部SWM2は、セレクタ(SELECTOR)56~59とハイブリッド部(HYB)60~63とで構成される。これらのスイッチ・マトリックス部SWM1及びSWM2は、ハイブリッド部と、C-SW又はT-SWなどのパッシブスイッチとで構成することも可能である。
The switch / matrix unit SWM1 is composed of hybrid units (HYB) 16 to 19 which are distributors and selectors (SELECTOR) 20 to 23. The switch / matrix unit SWM2 is configured of selectors (SELECTOR) 56 to 59 and hybrid units (HYB) 60 to 63. These switch / matrix units SWM1 and SWM2 can also be configured by a hybrid unit and a passive switch such as C-SW or T-SW.
次に、図1に示す本実施の形態1の衛星中継装置のフレキシブル・スイッチ・マトリックス11の制御を、図2を用いて説明する。
Next, control of the flexible switch matrix 11 of the satellite relay apparatus according to the first embodiment shown in FIG. 1 will be described with reference to FIG.
入力側フレキシブル・スイッチ・マトリックス9のコマンド制御部A13は、制御ラインA50~A53にて、ハイブリッド部からのパスを指定する。図2のセレクタ20~22は、Beam#1_12の入力信号帯域を3分割するため、ハイブリッド部16からのパスをそれぞれ選択し、セレクタ23は、Beam#4_A77からの信号を分割することなく入力するためハイブリッド部19からのパスを選択する。
The command control unit A13 of the input-side flexible switch matrix 9 designates a path from the hybrid unit through the control lines A50 to A53. The selectors 20 to 22 in FIG. 2 respectively select paths from the hybrid unit 16 in order to divide the input signal band of Beam # 1_12 into three, and the selector 23 inputs the signal from Beam # 4_A77 without dividing it. Therefore, the path from the hybrid unit 19 is selected.
次に、フレキシブル・スイッチ・マトリックス(入力側)9のコマンド制御部A13は、ビーム69-Beam#1 Bandwidthの入力周波数帯域を3つの周波数帯域70~72に分割するため、制御ラインA54にて変換周波数“FcforBW#1(A90)-IF”を設定し、制御ラインA55にて変換周波数“FcforBW#2(A91)-IF”を設定し、制御ラインA56にて変換周波数“FcforBW#3(A92)-IF”を設定する。
Next, the command control unit A13 of the flexible switch matrix (input side) 9 converts it by the control line A54 in order to divide the input frequency band of the beam 69-Beam # 1 Bandwidth into three frequency bands 70 to 72. The frequency "FcforBW # 1 (A90) -IF" is set, the conversion frequency "FcforBW # 2 (A91) -IF" is set at the control line A55, and the conversion frequency "FcforBW # 3 (A92)" is set at the control line A56. Set “-IF”.
一方、フレキシブル・スイッチ・マトリックス(出力側)11のコマンド制御部A15は、IF(Intermediate Frequency)周波数の出力信号を出力RF(Radio Frequency)信号にアップコンバートし、3帯域を1帯域に合成するため、制御ラインA58にて変換周波数“FcforBW#1(A95)-IF”を設定し、制御ラインA59にて変換周波数“FcforBW#2(A96)-IF”を設定し、そして、制御ラインA60にて変換周波数“FcforBW#3(A97)-IF”を設定する。
On the other hand, the command control unit A 15 of the flexible switch matrix (output side) 11 up-converts an output signal of IF (Intermediate Frequency) frequency into an output RF (Radio Frequency) signal and combines three bands into one band. The conversion frequency "FcforBW # 1 (A95) -IF" is set in the control line A58, the conversion frequency "FcforBW # 2 (A96) -IF" is set in the control line A59, and the control line A60. Set the conversion frequency “FcforBW # 3 (A97) -IF”.
次に、フレキシブル・スイッチ・マトリックス(出力側)11のコマンド制御部A15は、制御ラインA62~A65で、セレクタ56~59のスイッチ設定を行う。制御ラインA62~64では、セレクタ56~58にそれぞれハイブリッド部60へのパスを設定してパスA94を形成し、ハイブリッド部60にて、入力IF帯域-73、入力IF帯域-74、入力IF帯域-75を、それぞれ対応した帯域BW#1-77、帯域BW#2-78、帯域BW#3-79となる連続帯域の出力ビーム80-Beam#1 Bandwidthに合成する。
Next, the command control unit A 15 of the flexible switch matrix (output side) 11 performs switch setting of the selectors 56 to 59 through the control lines A 62 to A 65. In control lines A62 to 64, paths to the hybrid unit 60 are set in selectors 56 to 58 respectively to form a path A94, and in the hybrid unit 60, an input IF band -73, an input IF band -74, and an input IF band Output beam 80-Beam # 1 Bandwidth of the continuous band which respectively becomes band BW # 1-77, band BW # 2-78, and band BW # 3-79 respectively corresponding to -75.
これにより、ビーム69-Beam#1 Bandwidthで入力されたRF信号は、3帯域に分割され、IF周波数でデジタルチャネライザ10の入力ポート36~38に入力され、デジタルチャネライザ10の出力ポート40~42から出力された信号は、セレクタ56~58を介してハイブリッド部60で合成され、ビーム64-Beam#1のRF信号であるビーム80-Beam#1 Bandwidthとして出力される。
As a result, the RF signal input by beam 69-Beam # 1 Bandwidth is divided into three bands, input to the input ports 36 to 38 of the digital channelizer 10 at the IF frequency, and the output port 40 to the digital channelizer 10 The signals output from 42 are combined by the hybrid unit 60 through selectors 56 to 58, and output as a beam 80-Beam # 1 Bandwidth, which is an RF signal of the beam 64-Beam # 1.
上記の通り、本実施の形態1に係るフレキシブル・スイッチ・マトリックスを備えた衛星中継装置を用いることで、デジタルチャネライザの入力帯域を越えるトラヒック(帯域)の入力を可能とし、デジタルチャネライザの出力帯域を越えるトラヒック(帯域)の出力を可能としている。
As described above, by using the satellite relay apparatus provided with the flexible switch matrix according to the first embodiment, it is possible to input traffic (band) exceeding the input band of the digital channelizer, and the output of the digital channelizer It enables output of traffic (band) exceeding the band.
次に、図1に示す本実施の形態1の衛星中継装置のフレキシブル・スイッチ・マトリックスの動作を、図2を用いて説明する。
Next, the operation of the flexible switch matrix of the satellite relay apparatus of the first embodiment shown in FIG. 1 will be described using FIG.
まず、デジタルチャネライザ10の入力側に在るフレキシブル・スイッチ・マトリックス9では、例えば、ビーム12-Beam#1から入力される広帯域信号69を、点線矢印で示すように、ハイブリッド部16で全セレクタ20~23に分配する。
First, in the flexible switch matrix 9 on the input side of the digital channelizer 10, for example, as indicated by a dotted arrow, the wide band signal 69 input from the beam 12-Beam # 1 is all selectors Distribute to 20-23.
そして、制御ラインA50~A52により指定されたセレクタ20~22でそれぞれ選択されたビーム12-Beam#1の信号は、チューナブルダウンコンバータ24~26に送られる。ここでは、それぞれ、Beam#1(ビーム69-Beam#1 Bandwidth)の帯域を3分割した帯域BW#1の信号70、帯域BW#2の信号71、及び帯域BW#3の信号72のセンタ周波数が、それぞれ、デジタルチャネライザ10の入力周波数であるIF周波数となるように、異なる周波数帯域にダウンコンバートされ、バンドパスフィルタ28~30で帯域70~72となるようフィルタリングした信号をデジタルチャネライザ10に入力する。
Then, the signals of the beams 12-Beam # 1 respectively selected by the selectors 20-22 designated by the control lines A50-A52 are sent to the tunable down converters 24-26. Here, the center frequencies of the signal 70 of the band BW # 1, the signal 71 of the band BW # 2, and the signal 72 of the band BW # 3 obtained by dividing the band of Beam # 1 (beam 69-Beam # 1 Bandwidth) into three respectively. Are respectively down-converted to different frequency bands so that they become IF frequencies that are input frequencies of the digital channelizer 10, and the digital channelizer 10 filters the signals that have been band-pass filters 28-30 into bands 70-72. Enter in
具体的には、例えばセンタ周波数が20GHzの750MHz帯域のビームがBeam#1-12に入力し、これをIF周波数が1GHzで250MHz帯域のビームを入力可能とするデジタルチャネライザ10に入力する場合について説明する。
Specifically, for example, when a 750 MHz band beam with a center frequency of 20 GHz is input to Beam # 1-12 and this is input to a digital channelizer 10 that enables an input of a 250 MHz band beam at an IF frequency of 1 GHz. explain.
Beam#1-12に入力された750MHz帯域の信号は、スイッチ・マトリックス部SWM1で3分割され、チューナブルダウンコンバータ24~26にそれぞれ入力される。
チューナブルダウンコンバータ24は、センタ周波数20GHzの入力ビームを750MHzビームに周波数変換し(変換周波数19.25GHz)、チューナブルダウンコンバータ25は、センタ周波数20GHzの入力ビームを1000MHzビームに周波数変換し(変換周波数19GHz)、そして、チューナブルコンバータ26は、センタ周波数20GHzの入力ビームを1250MHzビームに周波数変換(変換周波数18.75GHz)する。 The 750 MHz band signal input to beam # 1-12 is divided into three by the switch / matrix unit SWM1, and input to the tunable downconverters 24 to 26, respectively.
Thetunable downconverter 24 frequency-converts an input beam with a center frequency of 20 GHz into a 750 MHz beam (conversion frequency 19.25 GHz), and the tunable down-converter 25 frequency converts an input beam with a center frequency of 20 GHz into a 1000 MHz beam (conversion The tunable converter 26 frequency-converts an input beam with a center frequency of 20 GHz into a 1250 MHz beam (conversion frequency of 18.75 GHz).
チューナブルダウンコンバータ24は、センタ周波数20GHzの入力ビームを750MHzビームに周波数変換し(変換周波数19.25GHz)、チューナブルダウンコンバータ25は、センタ周波数20GHzの入力ビームを1000MHzビームに周波数変換し(変換周波数19GHz)、そして、チューナブルコンバータ26は、センタ周波数20GHzの入力ビームを1250MHzビームに周波数変換(変換周波数18.75GHz)する。 The 750 MHz band signal input to beam # 1-12 is divided into three by the switch / matrix unit SWM1, and input to the tunable down
The
次に、1GHzをセンタ周波数としたバンドパスフィルタ28~30を用いて、250MHz帯域でそれぞれフィルタリングすることで、1GHzセンタ周波数の帯域BW#1~帯域BW#3を出力ポート32~34から取り出し、250MHz帯域のチャネライザ入力ポートInputPort#1-36~InputPort#3-38に入力する。
これにより、例えばデジタルチャネライザ10の3倍のビーム帯域を3分割してデジタルチャネライザ10に入力させることが可能となる。 Next, band-pass filters 28 to 30 having a center frequency of 1 GHz are used to filter in the 250 MHz band, respectively, and bands BW # 1 to BW # 3 of the 1 GHz center frequency are extracted from output ports 32 to 34, Input to the channelizer input port InputPort # 1-36 to InputPort # 3-38 in the 250 MHz band.
Thus, for example, it is possible to divide the beam band three times thedigital channelizer 10 into three and input it to the digital channelizer 10.
これにより、例えばデジタルチャネライザ10の3倍のビーム帯域を3分割してデジタルチャネライザ10に入力させることが可能となる。 Next, band-
Thus, for example, it is possible to divide the beam band three times the
このように、フレキシブル・スイッチ・マトリックス9を用いることで、ユーザトラヒックにより可変となる入力帯域信号が、どのビームから入力されたとしても、最大でデジタルチャネライザ10の入力ポート帯域×入力ポート数で計算されるビーム帯域まで収容可能なビーム帯域を拡張することができるという効果がある。
As described above, by using the flexible switch matrix 9, the input band signal which is variable according to the user traffic can be input channel band of the digital channelizer 10 at the maximum by the number of input ports no matter which beam is input. There is an effect that the beam band that can be accommodated can be extended to the calculated beam band.
次に、デジタルチャネライザ10の出力側であるフレキシブル・スイッチ・マトリックス11では、デジタルチャネライザ10の出力ポート40~42(Output Port#1~#3)からIF周波数の帯域BW#1~BW#3の信号73~75が出力される。これらIF周波数の帯域BW#1~BW#3の信号73~75は、それぞれ、出力ビーム64-Beam#1の帯域BW#1,#2,#3の信号77~79となるよう、異なる変換周波数を用いてチューナブルアップコンバータ(Tunable UPCON)48~50にてアップコンバートし、バンドパスフィルタ52~54を用いてフィルタリングする。そして、このフィルタリングされたビーム77~79は、セレクタ56~58を経由して、ハイブリッド部60で合成され、連続出力周波数帯域のビーム80-Beam#1が生成される。
Next, in the flexible switch matrix 11 which is the output side of the digital channelizer 10, the bandwidth BW # 1 to BW # of the IF frequency from the output ports 40 to 42 (Output Ports # 1 to # 3) of the digital channelizer 10 Three signals 73 to 75 are output. The signals 73 to 75 of the bands BW # 1 to BW # 3 of these IF frequencies are converted differently so as to be the signals 77 to 79 of the bands BW # 1, # 2, and # 3 of the output beam 64-Beam # 1, respectively. The frequency is upconverted in a tunable upconverter (Tunable UPCON) 48-50 and filtered using a band pass filter 52-54. The filtered beams 77 to 79 are combined by the hybrid unit 60 via selectors 56 to 58 to generate a beam 80-Beam # 1 of a continuous output frequency band.
具体的には、デジタルチャネライザ10のOutputPort#1-40から出力される250MHz帯域信号73の1GHzセンタ周波数をチューナブルアップコンバータ48で9.75GHz(変換周波数8.75GHz)に周波数変換し、OutputPort#2-41から出力される250MHz帯域信号74の1GHzセンタ周波数をチューナブルアップコンバータ49で、10GHz(変換周波数9GHz)に周波数変換し、OutputPort#3-42から出力される250MHz帯域信号75の1GHzセンタ周波数をチューナブルアップコンバータ50で10.25GHz(変換周波数9.25GHz)に周波数変換する。そして、これら周波数変換された信号を、必要に応じてバンドパスフィルタ52~54でスプリアス抑圧を行い、スイッチ・マトリックス部SWM2を経由し、ハイブリッド部60でこれらの信号を合成して、10GHzセンタ周波数の帯域750MHzのビーム80-Beam#1 Bandwidthを出力する。
Specifically, the 1 GHz center frequency of the 250 MHz band signal 73 output from Output Port # 1-40 of the digital channelizer 10 is frequency converted to 9.75 GHz (conversion frequency 8.75 GHz) by the tunable up converter 48, and the Output Port The 1 GHz center frequency of the 250 MHz band signal 74 output from # 2-41 is frequency converted to 10 GHz (conversion frequency 9 GHz) by the tunable up converter 49, and 1 GHz of the 250 MHz band signal 75 output from OutputPort # 3-42 The center frequency is frequency converted to 10.25 GHz (conversion frequency 9.25 GHz) by the tunable up converter 50. Then, these frequency converted signals are subjected to spurious suppression by the band pass filters 52 to 54 as necessary, and these signals are synthesized by the hybrid unit 60 via the switch / matrix unit SWM 2 to obtain a 10 GHz center frequency. Output a beam 80-Beam # 1 Bandwidth of 750 MHz.
このように、本実施の形態1では、固定周波数帯域を持つデジタルチャネライザ10から出力された信号を合成することで、どのビームからもユーザトラヒックに応じた広帯域信号を出力することができるという効果がある。
また、出力ビーム64~67-Beam#1~#4の帯域は、最大でデジタルチャネライザ10の出力ポート帯域×出力ポート数までの可変帯域信号の出力を可能とするという効果を持つ。 As described above, in the first embodiment, by combining the signals output from thedigital channelizer 10 having a fixed frequency band, an advantage is obtained that a wide band signal according to user traffic can be output from any beam. There is.
Also, the band of the output beams 64 to 67-Beam # 1 to # 4 has an effect of enabling output of variable band signals up to the output port band of the digital channelizer 10 × the number of output ports.
また、出力ビーム64~67-Beam#1~#4の帯域は、最大でデジタルチャネライザ10の出力ポート帯域×出力ポート数までの可変帯域信号の出力を可能とするという効果を持つ。 As described above, in the first embodiment, by combining the signals output from the
Also, the band of the output beams 64 to 67-
また、本実施の形態1の衛星中継装置の前段には、PF(プレセレクトフィルタ)、及びLNA(Low Noise AMP)を有している。フレキシブル・スイッチ・マトリックスのハイブリッド部での分配によるロス増加でNFが劣化する場合は、チューナブルダウンコンバータにおいて利得を与えればよい。
In addition, a PF (pre-select filter) and an LNA (Low Noise AMP) are provided at the front stage of the satellite relay apparatus according to the first embodiment. If NF is degraded due to increased loss due to distribution in the hybrid part of the flexible switch matrix, gain may be provided in the tunable down converter.
実施の形態2.
本発明に係る実施の形態2によるフレキシブルペイロードを構成する衛星中継装置は、上記実施の形態1のフレキシブル・スイッチ・マトリックスを具備した衛星中継装置において、入力ビームの最大トラヒック(帯域)で衛星中継装置を構成するのではなく、例えば入力ビームの平均トラヒックで衛星中継装置を構成し、任意のビームで最大トラヒックが必要となった場合は、全ビームで共有するデジタルチャネライザの入出力ポートを融通し合うことで、入出力ポート数の少ないデジタルチャネライザを用いても、収容可能ビーム数を増大させることが可能となる。 Second Embodiment
A satellite relay apparatus constituting a flexible payload according to a second embodiment of the present invention is a satellite relay apparatus having the maximum traffic (band) of an input beam in the satellite relay apparatus provided with the flexible switch matrix of the first embodiment. For example, if the satellite repeater is configured with the average traffic of the input beam and the maximum traffic is required with any beam, the I / O port of the digital channelizer shared by all beams is used instead of By matching, even if a digital channelizer with a small number of input / output ports is used, the number of beams that can be accommodated can be increased.
本発明に係る実施の形態2によるフレキシブルペイロードを構成する衛星中継装置は、上記実施の形態1のフレキシブル・スイッチ・マトリックスを具備した衛星中継装置において、入力ビームの最大トラヒック(帯域)で衛星中継装置を構成するのではなく、例えば入力ビームの平均トラヒックで衛星中継装置を構成し、任意のビームで最大トラヒックが必要となった場合は、全ビームで共有するデジタルチャネライザの入出力ポートを融通し合うことで、入出力ポート数の少ないデジタルチャネライザを用いても、収容可能ビーム数を増大させることが可能となる。 Second Embodiment
A satellite relay apparatus constituting a flexible payload according to a second embodiment of the present invention is a satellite relay apparatus having the maximum traffic (band) of an input beam in the satellite relay apparatus provided with the flexible switch matrix of the first embodiment. For example, if the satellite repeater is configured with the average traffic of the input beam and the maximum traffic is required with any beam, the I / O port of the digital channelizer shared by all beams is used instead of By matching, even if a digital channelizer with a small number of input / output ports is used, the number of beams that can be accommodated can be increased.
例えば、70入力ポート×80出力ポートを持つフレキシブル・スイッチ・マトリックスと500MHz帯域×80入力ポートを持つデジタルチャネライザとを用いた衛星中継装置において、フレキシブル・スイッチ・マトリックスとデジタルチャネライザのポートを共有せずに最大トラヒックで割当てた場合、最大3GHzのトラヒック伝送を必要とするGW(Gateway)を10局収容するとGW局だけでデジタルチャネライザの入力ポートを60ポート使用してしまい、GW以外のユーザビームに割り当てられるポート数が20となってしまう。
For example, in a satellite repeater using a flexible switch matrix having 70 input ports × 80 output ports and a digital channelizer having 500 MHz band × 80 input ports, the flexible switch matrix and the digital channelizer port are shared. When allocated with maximum traffic without using 10 GW (Gateway) stations requiring traffic transmission of up to 3 GHz, 60 ports of the digital channelizer's input port will be used only by GW stations, and users other than GW The number of ports allocated to the beam will be 20.
これを最大トラヒックでビーム帯域を確保するのではなく、平均トラヒックでビーム帯域を確保し、最大トラヒックが必要となったときは、実トラヒックが流れていないデジタルチャネライザの入出力ポート、或いは優先度の低いビームが利用しているデジタルチャネライザの入出力ポートを利用し、最大トラヒックを収容するようにすることで、GWの平均トラヒックを1GHzとするとGW10局で利用するポート数を20ポートに限定することができ、更に60ポートをGW以外のユーザビームに割り振ることが可能となる。
Do not secure the beam bandwidth with the maximum traffic, secure the beam bandwidth with the average traffic, and when the maximum traffic is needed, the input / output port of the digital channelizer without real traffic or the priority If the average traffic of the GW is 1 GHz, the number of ports used by 10 GW stations is limited to 20 ports by using the I / O port of the digital channelizer used by the lower beam to accommodate the maximum traffic. In addition, 60 ports can be allocated to user beams other than the GW.
図3及び図4により、本実施の形態2の入力側のビーム収容方法を説明する。
なお、図示のフレキシブル・スイッチ・マトリックス80とデジタルチャネライザ81とで構成する衛星中継装置において、出力側のフレキシブル・スイッチ・マトリックスは、説明の簡略化のため図示を省略している。これらのフレキシブル・スイッチ・マトリックスは、いずれも構成は実施の形態1のものと同様である。 The beam accommodation method on the input side of the second embodiment will be described with reference to FIGS. 3 and 4.
In the satellite relay device configured by the illustratedflexible switch matrix 80 and the digital channelizer 81, the flexible switch matrix on the output side is omitted for simplification of the description. Each of these flexible switch matrices is similar in configuration to that of the first embodiment.
なお、図示のフレキシブル・スイッチ・マトリックス80とデジタルチャネライザ81とで構成する衛星中継装置において、出力側のフレキシブル・スイッチ・マトリックスは、説明の簡略化のため図示を省略している。これらのフレキシブル・スイッチ・マトリックスは、いずれも構成は実施の形態1のものと同様である。 The beam accommodation method on the input side of the second embodiment will be described with reference to FIGS. 3 and 4.
In the satellite relay device configured by the illustrated
図3は、500MHz帯域の入出力80ポートのデジタルチャネライザ81を用いて、入力側のフレキシブル・スイッチ・マトリックス80にて、例えば平均トラヒック1GHzのGW10局と、500MHz帯域のユーザビーム60局を収容するフレキシブル・スイッチ・マトリックスの構成を示している。
フレキシブル・スイッチ・マトリックス80は、入力ポートにInput Port#1~#70を有し、出力ポートにOutput Port#1~#80を有する。Output Port#1~#80はデジタルチャネライザ81の入力ポートInput Port#1~80に接続される。 In FIG. 3, aflexible switch matrix 80 on the input side accommodates, for example, 10 GW stations of 1 GHz in average traffic and 60 user beams of 500 MHz band in a flexible switch matrix 80 on the input side using an input / output 80 port digital channelizer 81 of 500 MHz band Shows the configuration of the flexible switch matrix.
Theflexible switch matrix 80 has Input Ports # 1 to # 70 at input ports and Output Ports # 1 to # 80 at output ports. The output ports # 1 to # 80 are connected to the input port Input ports # 1 to # 80 of the digital channelizer 81.
フレキシブル・スイッチ・マトリックス80は、入力ポートにInput Port#1~#70を有し、出力ポートにOutput Port#1~#80を有する。Output Port#1~#80はデジタルチャネライザ81の入力ポートInput Port#1~80に接続される。 In FIG. 3, a
The
例えば、GW BEAM#1-82のGWの1GHz帯域はフレキシブル・スイッチ・マトリックス80のInput Port#1-86に入力される。フレキシブル・スイッチ・マトリックス80のInput Port#1-86に入力されたGW BEAM#1_82は、フレキシブル・スイッチ・マトリックス80にて500MHzの2帯域に分割され、Output Port#1-90及びOutput Port#2-91から出力された後、デジタルチャネライザ81の入力ポート#1-96及び入力ポート#2-97に入力される。
For example, the 1 GHz band of the GW BEAM # 1-82 GW is input to the input port # 1-86 of the flexible switch matrix 80. The GW BEAM # 1_82 input to the input port # 1-86 of the flexible switch matrix 80 is divided into two bands of 500 MHz by the flexible switch matrix 80, and the output port # 1-90 and the output port # 2 After being outputted from -91, they are inputted to the input port # 1-96 and the input port # 2-97 of the digital channelizer 81.
そのため、GW最大トラヒックの3GHzで帯域分割を行うと、10局のGWでデジタルチャネライザ81の入力ポートを60ポート(=6×10)必要となるところを、GW10局で20ポート(=2×10)にすることができ、残り60ポート(=80ポート-20ポート)をユーザビームに割り当てることが可能となり、GW信号を含む全ビームの収容を可能とする。
Therefore, if bandwidth division is performed at 3 GHz of the GW maximum traffic, 20 ports (= 2 ×) are required for the GW 10 stations where 60 ports (= 6 × 10) of the input port of the digital channelizer 81 are required for 10 GWs. 10) and the remaining 60 ports (= 80 ports-20 ports) can be assigned to user beams, allowing accommodation of all beams including the GW signal.
次に、実施の形態2では、一定期間GWビームで3GHzの最大トラヒックを伝送する必要がある場合、入力側のフレキシブル・スイッチ・マトリックス80の出力ポートにおいて、入力側ポートと論理的に接続されていない空きポート、或いは、一定の期間利用停止にすることが可能な出力ポートを利用し、GWからの入力帯域をフレキシブル・スイッチ・マトリックス80で分割し、デジタルチャネライザ81へ入力することで、GWからの3GHz帯域ビームの収容を可能とする。
Next, in the second embodiment, when it is necessary to transmit maximum traffic of 3 GHz by the GW beam for a fixed period, the output port of the flexible switch matrix 80 on the input side is logically connected to the input port. By using the flexible switch matrix 80 and dividing the input band from the GW by using the free port which can not be used or the output port which can be suspended for a fixed period, and inputting it to the digital channelizer 81, Enables accommodation of 3 GHz band beams from
ここで、3GHzのGWトラヒックの収容方法を、図4の例を用いて説明する。
例えば、3GHzのGWビーム♯1_82は、フレキシブル・スイッチ・マトリックス80において、周波数分割され(500MHz×6)、フレキシブル・スイッチ・マトリックス80の出力ポート90、91,104~107を通して、デジタルチャネライザ81の入力ポート96、97、111~114に入力される。 Here, a method of accommodating 3 GHz GW traffic will be described using the example of FIG.
For example, GW beam # 1_82 of 3 GHz is frequency-divided (500 MHz × 6) inflexible switch matrix 80, and output from digital channelizer 81 through output ports 90, 91, 104 to 107 of flexible switch matrix 80. The data is input to input ports 96, 97, 111-114.
例えば、3GHzのGWビーム♯1_82は、フレキシブル・スイッチ・マトリックス80において、周波数分割され(500MHz×6)、フレキシブル・スイッチ・マトリックス80の出力ポート90、91,104~107を通して、デジタルチャネライザ81の入力ポート96、97、111~114に入力される。 Here, a method of accommodating 3 GHz GW traffic will be described using the example of FIG.
For example, GW beam # 1_82 of 3 GHz is frequency-divided (500 MHz × 6) in
このときフレキシブル・スイッチ・マトリックス80の出力ポート104~107とデジタルチャネライザ81の入力ポート111~114を利用していたビームは、ビームからの入力をチャネライザ81に接続することは出来ない。
ただし、フレキシブル・スイッチ・マトリックス80の出力ポートは、物理的に連続したポートである必要はなく、フレキシブル・スイッチ・マトリックス80の任意ポートで良い。 At this time, the beams utilizing theoutput ports 104 to 107 of the flexible switch matrix 80 and the input ports 111 to 114 of the digital channelizer 81 can not connect the input from the beam to the channelizer 81.
However, the output port of theflexible switch matrix 80 need not be a physically continuous port, but may be any port of the flexible switch matrix 80.
ただし、フレキシブル・スイッチ・マトリックス80の出力ポートは、物理的に連続したポートである必要はなく、フレキシブル・スイッチ・マトリックス80の任意ポートで良い。 At this time, the beams utilizing the
However, the output port of the
そのため、空きポート、或る一定期間使われていないGWポート、又はトラヒックの存在しないユーザポートがある場合、これらの出力ポートを利用して、分割したGW帯域をデジタルチャネライザ81に伝送することができる。
Therefore, when there are free ports, GW ports that have not been used for a certain period of time, or user ports that do not have traffic, use these output ports to transmit the divided GW band to the digital channelizer 81. it can.
このように、本実施の形態2では、任意のビームが平均トラヒック以上の帯域を必要とする場合、他のビームで利用していない、或いは利用を中断することができるビームのフレキシブル・スイッチ・マトリックスの出力ポートを利用することで、平均トラヒック以上の帯域のデジタルチャネライザへの入力を可能とする。
As described above, in the second embodiment, when any beam requires a bandwidth equal to or higher than the average traffic, a flexible switch matrix of beams which can not be used by other beams or can be interrupted. By using the output port of, it is possible to input to the digital channelizer of the bandwidth above the average traffic.
これにより、GW最大トラヒック3GHzを基にデジタルチャネライザ81の入力ポートを割当てた場合のGW10局+20ユーザビーム収容と比較して、GW平均トラヒック1GHzを基にデジタルチャネライザ81の入力ポートを割当て、最大3GHzのトラヒックをGWが必要とするとき、全てのビームでデジタルチャネライザの入力ポートを融通し合う方法を採ることで、GW10局+60ユーザビームの収容を可能とする。
Thereby, the input port of the digital channelizer 81 is allocated based on 1 GHz of GW average traffic, compared to the case of GW10 station + 20 user beam accommodation when the input port of the digital channelizer 81 is allocated based on 3 GHz of GW maximum traffic, When the GW needs traffic of up to 3 GHz, the GW10 station + 60 user beams can be accommodated by adopting a method of interchanging the input port of the digital channelizer with all beams.
このように、上記実施形態2では、最大トラヒックでデジタルチャネライザの入力ポートを利用した衛星中継装置と比較して、フレキシブル・スイッチ・マトリックスを利用しデジタルチャネライザの入力ポートを共有することで、入力ビーム数を増大させることができる。
As described above, in the second embodiment, the input port of the digital channelizer is shared by using the flexible switch matrix as compared with the satellite repeater using the input port of the digital channelizer at maximum traffic. The number of input beams can be increased.
このことから、デジタルチャネライザの入力ポート数を増やすことなく収容可能な入力ビーム数を増大させることができ、安価な衛星中継装置の構成を採ることを可能とするという効果を奏する。
From this, it is possible to increase the number of input beams that can be accommodated without increasing the number of input ports of the digital channelizer, and it is possible to adopt an inexpensive satellite repeater configuration.
次に、本実施の形態2の出力側ビーム収容方法を、図5及び図6を用いて説明する。なお、図示のデジタルチャネライザ81とフレキシブル・スイッチ・マトリックス200とで構成する衛星中継装置において、出力側のフレキシブル・スイッチ・マトリックス200は、説明の簡略化のため図示を省略している。これらのフレキシブル・スイッチ・マトリックス200の構成は実施の形態1のフレキシブル・スイッチ・マトリックス11と同様である。
Next, the output side beam accommodation method according to the second embodiment will be described with reference to FIGS. 5 and 6. In the satellite relay device configured by the illustrated digital channelizer 81 and the flexible switch matrix 200, the flexible switch matrix 200 on the output side is omitted for simplification of the description. The configuration of these flexible switch matrices 200 is similar to that of the flexible switch matrix 11 of the first embodiment.
図5に示すように、GW出力ビームは、デジタルチャネライザ81の2つの出力ポートから出力される500MHz帯域信号を、出力側のフレキシブル・スイッチ・マトリックス200で合成し、1GHzのビームで出力する。デジタルチャネライザ81の出力ポートOutput Port#1~#80(-203~208)は、フレキシブル・スイッチ・マトリックス200のInput Port#1~#80(-209~214)に接続される。
As shown in FIG. 5, the GW output beam combines 500 MHz band signals output from the two output ports of the digital channelizer 81 by the flexible switch matrix 200 on the output side, and outputs it with a 1 GHz beam. Output ports Output port # 1 to # 80 (-203 to 208) of the digital channelizer 81 are connected to input ports # 1 to # 80 (-209 to 214) of the flexible switch matrix 200.
デジタルチャネライザ81における201GWports(20ports)に対応したOutput Port#1~#20(-203~206)は、フレキシブル・スイッチ・マトリックス200にて周波数変換(アップコンバート)された後、1GHz帯域に合成され、出力ポートOutput Port#1~#10(-215~216)から10局のGWビームとしてそれぞれ出力される。
また、デジタルチャネライザ81における202Userports(60ports)に対応したOutput Port#21~#80(-207~208)は、フレキシブル・スイッチ・マトリックス200にて周波数変換(アップコンバート)された後、出力ポートOutput Port#11~#70(-217~218)から500MHzのユーザビームとしてそれぞれ出力される。Output ports # 1 to # 20 (-203 to 206) corresponding to 201 GWports (20 ports) in the digital channelizer 81 are subjected to frequency conversion (up conversion) by the flexible switch matrix 200 and then synthesized into a 1 GHz band. And output ports Output from ports # 1 to # 10 (-215 to 216) as GW beams of 10 stations.
Also, Output Ports # 21 to # 80 (-207 to 208) corresponding to 202 Userports (60 ports) in thedigital channelizer 81 are frequency converted (up converted) by the flexible switch matrix 200, and then output ports Output It is output as a 500 MHz user beam from Port # 11 to # 70 (-217 to 218).
また、デジタルチャネライザ81における202Userports(60ports)に対応したOutput Port#21~#80(-207~208)は、フレキシブル・スイッチ・マトリックス200にて周波数変換(アップコンバート)された後、出力ポートOutput Port#11~#70(-217~218)から500MHzのユーザビームとしてそれぞれ出力される。
Also, Output Ports # 21 to # 80 (-207 to 208) corresponding to 202 Userports (60 ports) in the
次に、GWビームにおいて、一時的に3GHz帯域の出力が必要となった場合、図6に示すように、例えば、201GWports(20ports)に対応したデジタルチャネライザ81の出力ポートOutput Port#1~#20(-203、219、230~233、220、206)と202Userports(60ports)の一部に対応したOutput Port#21~#24(-207~236)からの出力は、フレキシブル・スイッチ・マトリックス200の入力ポートInput Port#1~#24(-209~240、222、212、213~243)で受信される。そしてこれらの受信信号は、フレキシブル・スイッチ・マトリックス200にて連続帯域となるよう周波数変換(アップコンバート)された後、1GHz帯域に合成され、出力ポートOutput Port#1~#10(-215~216)から10局の各3GHz帯域のGWビームとしてそれぞれ出力される。
また、デジタルチャネライザ81の202Userports(60ports)における残りのOutput Port#25~#80(-237~208)は、フレキシブル・スイッチ・マトリックス200にて周波数変換(アップコンバート)された後、出力ポートOutput Port#11~#70(-217~218)の何れかから、500MHzのユーザビームとしてそれぞれ出力される。 Next, when an output of 3 GHz band is temporarily required in the GW beam, as shown in FIG. 6, for example, the output portOutput Port # 1 to # 1 of the digital channelizer 81 corresponding to 201 GWports (20 ports) Outputs from Output Ports # 21 to # 24 (-207 to 236) corresponding to parts of 20 (-203, 219, 230 to 233, 220, 206) and 202 Userports (60 ports) are the flexible switch matrix 200. Port # 1 to # 24 (-209 to 240, 222, 212, and 213 to 243). These received signals are frequency converted (up converted) to a continuous band by the flexible switch matrix 200, and then combined into a 1 GHz band, and output ports Output Port # 1 to # 10 (-215 to 216) ) Are output as GW beams of 10 GHz stations respectively.
Also, the remaining Output Ports # 25 to # 80 (-237 to 208) at 202 Userports (60 ports) of thedigital channelizer 81 are frequency converted (up converted) by the flexible switch matrix 200, and then the output port Output It is output as a 500 MHz user beam from any of the ports # 11 to # 70 (-217 to 218).
また、デジタルチャネライザ81の202Userports(60ports)における残りのOutput Port#25~#80(-237~208)は、フレキシブル・スイッチ・マトリックス200にて周波数変換(アップコンバート)された後、出力ポートOutput Port#11~#70(-217~218)の何れかから、500MHzのユーザビームとしてそれぞれ出力される。 Next, when an output of 3 GHz band is temporarily required in the GW beam, as shown in FIG. 6, for example, the output port
Also, the remaining Output Ports # 25 to # 80 (-237 to 208) at 202 Userports (60 ports) of the
このように本実施の形態3を用いることで、他のビームで利用していない、或いは利用を中断することができるビームに対応したフレキシブル・スイッチ・マトリックス200の出力ポートを利用することで、平均トラヒック以上の帯域のデジタルチャネライザへの出力を可能とする。また、この時、デジタルチャネライザ81の出力ポートは、物理的に連続したポートである必要はなく、任意の出力ポートで良い。
As described above, according to the third embodiment, it is possible to use the output port of the flexible switch matrix 200 corresponding to a beam which is not used by other beams or which can be interrupted. Enables output to a digital channelizer in a band higher than traffic. Also, at this time, the output port of the digital channelizer 81 does not have to be a physically continuous port, but may be any output port.
これにより、GW最大トラヒック3GHzを基にデジタルチャネライザ81の出力ポートを割当てた場合のGW10局+20ユーザビーム収容と比較して、GW平均トラヒック1GHzを基にデジタルチャネライザ81の出力ポートを割当て、最大3GHz平均トラヒックをGWが必要とするとき、全ての出力ビームでデジタルチャネライザの出力ポートを融通し合う方法を採ることで、GW10局+60ユーザビームの収容を可能とする。
Thereby, the output port of the digital channelizer 81 is allocated based on 1 GHz of GW average traffic, compared with the case of GW10 station + 20 user beam accommodation when the output port of the digital channelizer 81 is allocated based on 3 GHz of GW maximum traffic, When the GW needs up to 3 GHz average traffic, it is possible to accommodate the GW10 station + 60 user beams by adopting the method of interchanging the output port of the digital channelizer with all the output beams.
このように、上記実施形態2では、最大トラヒックでデジタルチャネライザの出力ポートを利用した衛星中継装置と比較して、フレキシブル・スイッチ・マトリックスを利用しデジタルチャネライザの出力ポートを共有することで、出力ビーム数を増大させることができる。
As described above, in the second embodiment, the flexible switch matrix is used to share the digital channelizer output port as compared with the satellite repeater using the digital channelizer output port for maximum traffic. The number of output beams can be increased.
このことから、デジタルチャネライザの出力ポート数を増やすことなく収容可能な出力ビーム数を増大させることができ、安価な衛星中継装置の構成を採ることを可能とするという効果を奏する。
From this, the number of output beams that can be accommodated can be increased without increasing the number of output ports of the digital channelizer, and it is possible to adopt an inexpensive satellite repeater configuration.
実施の形態3.
上記の実施の形態1及び2のフレキシブル・スイッチ・マトリックスを具備する衛星中継装置において、入力側のフレキシブル・スイッチ・マトリックスの周波数変換を行うダウンコンバータをRFチャネライザに置き換えることで、ジャミング耐性のあるフレキシブル・スイッチ・スイッチマトリックス構成が可能となる。 Third Embodiment
In the satellite relay device provided with the flexible switch matrix according to the above-described first and second embodiments, the Jamming-resistant flexible is achieved by replacing the downconverter performing frequency conversion of the flexible switch matrix on the input side with the RF channelizer. Switches and switch matrix configurations are possible.
上記の実施の形態1及び2のフレキシブル・スイッチ・マトリックスを具備する衛星中継装置において、入力側のフレキシブル・スイッチ・マトリックスの周波数変換を行うダウンコンバータをRFチャネライザに置き換えることで、ジャミング耐性のあるフレキシブル・スイッチ・スイッチマトリックス構成が可能となる。 Third Embodiment
In the satellite relay device provided with the flexible switch matrix according to the above-described first and second embodiments, the Jamming-resistant flexible is achieved by replacing the downconverter performing frequency conversion of the flexible switch matrix on the input side with the RF channelizer. Switches and switch matrix configurations are possible.
RFチャネライザの構成を図7に示す。図7のRFチャネライザA100は、IF周波数帯域にハイパスフィルタHPF_A104とローパスフィルタLPF_A105とを設け、周波数変換部A101~A103で周波数を任意に変換することで、ハイパスフィルタHPF_A104とローパスフィルタLPF_A105をバンドパスフィルタとして利用する。周波数変換部A101~A103は、任意周波数に変換することができる(チューナブル)ものであるため、バンドパスフィルタのリジェクション周波数を可変とすることができる。
The configuration of the RF channelizer is shown in FIG. The RF channelizer A100 shown in FIG. 7 is provided with a high pass filter HPF_A104 and a low pass filter LPF_A105 in the IF frequency band, and the frequency conversion sections A101 to A103 convert the frequency arbitrarily, thereby bandpassizing the high pass filter HPF_A104 and the low pass filter LPF_A105. Use as. The frequency conversion units A101 to A103 can be converted to an arbitrary frequency (tunable), so that the rejection frequency of the band pass filter can be made variable.
そこで、上記実施例1と実施例2の入力側フレキシブル・スイッチ・マトリックスのチューナブルダウンコンバータ24~27、及びバンドパスフィルタ28~31をRFチャネライザに置き換えることで、例えば図7の入力ビームA111-Beam#1にジャミング波A110が入力された状態において、RFチャネライザのハイパスフィルタHPF_A104で低域側を抑圧した後、ローパスフィルタLPF_A105で高域側を抑圧する際に、周波数変換部A102の変換周波数を操作することで、ジャミング波A110の抑圧を可能とする。
Therefore, for example, the input beam A 111-in FIG. 7 can be obtained by replacing the tunable down converters 24 to 27 and the band pass filters 28 to 31 of the input side flexible switch matrix in the first embodiment and the second embodiment with an RF channelizer. In the state where the jamming wave A110 is input to Beam # 1, after suppressing the low frequency side with the high pass filter HPF_A104 of the RF channelizer, when suppressing the high frequency side with the low pass filter LPF_A105, the conversion frequency of the frequency conversion unit A102 is The operation enables suppression of the jamming wave A110.
このように、本実施の形態1と実施の形態2のフレキシブル・スイッチ・マトリックスにRFチャネライザを具備することで、ジャミング波を抑圧することが可能となる。
なお、このRFチャネライザは、フレキシブル・スイッチ・マトリックス(出力側)11においても同様に適用可能である。 As described above, by providing the RF channelizer in the flexible switch matrix of the first embodiment and the second embodiment, it is possible to suppress the jamming wave.
The RF channelizer is also applicable to the flexible switch matrix (output side) 11.
なお、このRFチャネライザは、フレキシブル・スイッチ・マトリックス(出力側)11においても同様に適用可能である。 As described above, by providing the RF channelizer in the flexible switch matrix of the first embodiment and the second embodiment, it is possible to suppress the jamming wave.
The RF channelizer is also applicable to the flexible switch matrix (output side) 11.
実施の形態4.
次に、上記の実施形態1~3の衛星中継装置の制御方法を説明する。 Fourth Embodiment
Next, the control method of the satellite relay device according to the first to third embodiments will be described.
次に、上記の実施形態1~3の衛星中継装置の制御方法を説明する。 Fourth Embodiment
Next, the control method of the satellite relay device according to the first to third embodiments will be described.
[制御装置構成]
図8は、本発明に係る実施の形態4による衛星通信システムの構成を示す図である。
図において、実施の形態4による衛星通信システムは、フレキシブル・スイッチ・マトリックスを搭載する衛星中継装置A5と、それを制御する地上装置A0の回線制御装置A1と、地上衛星GWA2と、地上ミッション制御装置A3と、及びNOC(Network Operating Center)A4とで構成される。 [Control unit configuration]
FIG. 8 is a diagram showing the configuration of a satellite communication system according to a fourth embodiment of the present invention.
In the figure, the satellite communication system according to the fourth embodiment includes a satellite relay device A5 equipped with a flexible switch matrix, a line control device A1 of a ground device A0 controlling the same, a ground satellite GWA2, and a ground mission control device It consists of A3 and NOC (Network Operating Center) A4.
図8は、本発明に係る実施の形態4による衛星通信システムの構成を示す図である。
図において、実施の形態4による衛星通信システムは、フレキシブル・スイッチ・マトリックスを搭載する衛星中継装置A5と、それを制御する地上装置A0の回線制御装置A1と、地上衛星GWA2と、地上ミッション制御装置A3と、及びNOC(Network Operating Center)A4とで構成される。 [Control unit configuration]
FIG. 8 is a diagram showing the configuration of a satellite communication system according to a fourth embodiment of the present invention.
In the figure, the satellite communication system according to the fourth embodiment includes a satellite relay device A5 equipped with a flexible switch matrix, a line control device A1 of a ground device A0 controlling the same, a ground satellite GWA2, and a ground mission control device It consists of A3 and NOC (Network Operating Center) A4.
地上装置A0は、回線制御装置A1、NOCA4、及び地上ミッション制御装置A3から構成される。回線制御装置A1は、ビーム毎の帯域可変を判断・要求するトラヒック制御部A6を有する。NOC_A4は、ビーム毎のトラヒックを監視するトラヒック監視部A7と、衛星中継装置A5へのフレキシブル・スイッチ・マトリックス9及び11の構成変更を行うためのコマンドを生成するコマンド生成部A8を有する。
The ground device A0 includes a line control device A1, NOCA4, and a ground mission control device A3. The line control device A1 includes a traffic control unit A6 that determines and requests bandwidth variation for each beam. The NOC_A 4 has a traffic monitoring unit A 7 that monitors the traffic for each beam, and a command generation unit A 8 that generates a command for changing the configuration of the flexible switch matrices 9 and 11 to the satellite relay device A 5.
衛星中継装置A5は、コマンド受信アンテナA10からコマンドを受信し、各ユニット9~11に該コマンドに応じた設定を指示する指示信号を生成するコマンド制御装置A12と、RF信号受信アンテナA11からの受信信号を、所望ビームの任意周波数にマッピングし送信するためのデジタルチャネライザ10と、このデジタルチャネライザ10の入力帯域を越えるトラヒックを収容するため、トラヒックの分割を行うフレキシブル・スイッチ・マトリックス(入力側)9と、トラヒックの合成を行うフレキシブル・スイッチ・マトリックス(出力側)11とで構成される。
The satellite relay device A5 receives a command from the command receiving antenna A10, and generates a command signal instructing the units 9 to 11 to perform the setting according to the command, and receives from the RF signal receiving antenna A11 Digital channelizer 10 for mapping and transmitting a signal to an arbitrary frequency of a desired beam, and flexible switch matrix (input side for dividing traffic to accommodate traffic exceeding the input band of digital channelizer 10 9) and a flexible switch matrix (output side) 11 for combining traffic.
衛星中継装置A5のフレキシブル・スイッチ・マトリックス(入力側)9は、コマンド制御装置A12からの指示信号によりフレキシブル・スイッチ・マトリックスの構成変更を行うコマンド制御部A13と、スイッチ・マトリックス部SWM1と、ハイブリッド部(HYB)16~19と、セレクタ(SELECTOR)20~23と,任意の入力RF信号をIF周波数に変換するチューナブルダウンコンバータ(Tunable DCON)24~27と、BPF(バンドパスフィルタ)28~31とで構成される。
The flexible switch matrix (input side) 9 of the satellite relay device A5 is a hybrid of a command control unit A13 that changes the configuration of the flexible switch matrix according to an instruction signal from the command control device A12, a switch matrix unit SWM1, and a hybrid (HYB) 16 to 19, selectors (SELECTOR) 20 to 23, tunable down converters (Tunable DCON) 24 to 27 for converting arbitrary input RF signals to IF frequencies, and BPFs (band pass filters) 28 to And 31.
デジタルチャネライザ10は、コマンド制御装置A12からの指示信号により、デジタルチャネライザ10のコンフィギュレーションを設定するコマンド制御部A14と、入力RF信号をサブキャリアに分割する分波部A16と、この分割したサブキャリアをスイッチングするスイッチ部A17と、このスイッチ部A17からの、分割されたサブキャリアを合波する合波部A18とで構成される。
The digital channelizer 10 divides the input RF signal into sub-carriers by setting the configuration of the digital channelizer 10 according to an instruction signal from the command control device A12, and divides the input RF signal into sub-carriers. A switch unit A17 that switches subcarriers and a multiplexer unit A18 that multiplexes the divided subcarriers from the switch unit A17.
デジタルチャネライザ10は、分波部A16、スイッチ部A17、及び合波部A18にて、入力ビーム内の任意のRF信号を切り出し、出力ビーム内の任意の周波数帯域にマッピング、すなわち交換する。
The digital channelizer 10 cuts out an arbitrary RF signal in the input beam at the demultiplexing unit A16, the switch unit A17, and the multiplexing unit A18, and maps, ie, exchanges, in an arbitrary frequency band in the output beam.
フレキシブル・スイッチ・マトリックス(出力側)11は、コマンド制御装置A12からからの指示信号により、フレキシブル・スイッチ・マトリックスの構成変更を行うコマンド制御部A15と、IF周波数を任意のRF周波数にアップコンバートするチューナブルアップコンバータ(Tunable UPCON)48~51と、BPF(バンドパスフィルタ)52~55と、スイッチ・マトリックス部SWM2を形成するセレクタ(SELECTOR)56~59及びハイブリッド部(HYB)60~63とで構成される。
The flexible switch matrix (output side) 11 up-converts the IF frequency to an arbitrary RF frequency according to an instruction signal from the command control device A12 and changes the configuration of the flexible switch matrix. The tunable up-converter (Tunable UPCON) 48 to 51, the BPF (band pass filter) 52 to 55, and the selectors (SELECTOR) 56 to 59 forming the switch matrix unit SWM2 and the hybrid unit (HYB) 60 to 63 Configured
衛星中継装置A5のコマンド制御装置A12は、フレキシブル・スイッチ・マトリックス(入力側)9のコマンド制御部A13に入力ビームの分割処理を行うための構成変更を指示し、ハイブリッド部16~19とセレクタ20~27とから成るスイッチ・マトリックス部SWM1のセレクタを設定する。次に、コマンド制御装置A12は、チューナブルダウンコンバータ24~27の変換周波数を設定することで、入力信号を複数パスに分岐させ、チューナブルダウンコンバータ24~27で周波数変換し、バンドパスフィルタ28~31を用いてチャネライザ入力周波数帯域を抽出する。
The command control unit A12 of the satellite relay device A5 instructs the command control unit A13 of the flexible switch matrix (input side) 9 to change the configuration for dividing the input beam, and the hybrid units 16 to 19 and the selector 20 The selector of the switch matrix unit SWM1 consisting of to 27 is set. Next, the command control device A12 branches the input signal into a plurality of paths by setting the conversion frequency of the tunable down converters 24 to 27, and performs frequency conversion by the tunable down converters 24 to 27, and the band pass filter 28 The channelizer input frequency band is extracted using ̃31.
一方、衛星中継装置A5のコマンド制御装置A12は、フレキシブル・スイッチ・マトリックス(出力側)11のコマンド制御部A15に出力信号を合成するための構成変更指示の信号を出すことで、チューナブルアップコンバータ48~51の変換周波数設定、及び、セレクタ56~59とハイブリッド60~63から成るスイッチ・マトリックス部SWM2の設定を行う。そして、デジタルチャネライザ10からIF周波数帯域で出力された信号を任意の周波数帯域にアップコンバートし、セレクタ56~59及びハイブリッド部60~63から成るスイッチ・マトリックス部SWM2を用いて入力マルチビームと同じ連続帯域に合成する。
On the other hand, the command control device A12 of the satellite relay device A5 outputs a signal of configuration change instruction for combining output signals to the command control unit A15 of the flexible switch matrix (output side) 11, thereby enabling a tunable up-converter The conversion frequency setting of 48 to 51, and the setting of the switch matrix unit SWM2 including the selectors 56 to 59 and the hybrids 60 to 63 are performed. Then, the signal output from the digital channelizer 10 in the IF frequency band is upconverted to an arbitrary frequency band, and the same as input multi-beam using switch matrix section SWM2 comprising selectors 56 to 59 and hybrid sections 60 to 63. Synthesize in a continuous band.
このように、実施の形態1~3の衛星中継装置A5は、地上装置A0からの要求に従い、衛星中継装置A5のコマンド制御装置A12にて、フレキシブル・スイッチ・マトリックス9及び11の設定を行うことで、チャネライザ入力帯域を越えるRF信号の入力、及び、チャネライザ出力帯域を越えるRF信号の出力を可能としている。
Thus, the satellite relay apparatus A5 according to the first to third embodiments performs setting of the flexible switch matrices 9 and 11 in the command control apparatus A12 of the satellite relay apparatus A5 according to the request from the ground apparatus A0. Enables the input of an RF signal exceeding the channelizer input band and the output of an RF signal exceeding the channelizer output band.
[処理フロー]
次に、実施の形態1~3のフレキシブル・スイッチ・マトリックス9及び11の設定を行うための地上装置A0と衛星中継装置A5の処理フローを図9にて説明する。 Processing flow
Next, the processing flow of the ground apparatus A0 and the satellite relay apparatus A5 for setting the flexible switch matrices 9 and 11 according to the first to third embodiments will be described with reference to FIG.
次に、実施の形態1~3のフレキシブル・スイッチ・マトリックス9及び11の設定を行うための地上装置A0と衛星中継装置A5の処理フローを図9にて説明する。 Processing flow
Next, the processing flow of the ground apparatus A0 and the satellite relay apparatus A5 for setting the
本処理手順が開始されると(A40)、ステップA41にて地上装置A0の回線制御装置A1におけるトラヒック制御部A6は、コネクション設定要求をNOC_A4のコマンド生成部A8に要求する。
When this processing procedure is started (A40), the traffic control unit A6 in the line control unit A1 of the ground apparatus A0 requests a connection setting request from the command generation unit A8 of NOC_A4 in step A41.
次に、ステップA42にて、NOC_A4のコマンド生成部A8は、トラヒック制御部A6からの要求に従い、地上ミッション制御装置A3にコネクション設定要求を行う。
ステップA43にて、地上ミッション制御装置A3は、該コネクション設定要求に従い、全てのコマンド送信を行ったか否かを判断し、全てのコマンド送信を行った場合は、ステップA44に移行し、処理を停止する。
一方、ステップA43にて、全てのコマンドが送信されていない場合は、ステップA45でフレキシブル・スイッチ・マトリックス9、11の構成変更を行うためのコマンドを生成し、衛星中継装置A5のコマンド制御装置A12に通知する。コマンド制御装置A12は、ステップA46で、各ユニット9~11のコマンド制御部A13~A15にユニット毎のコンフィギュレーションを設定する。そして、コマンド制御部A13~A15は、ステップA47において、要求に従いユニット毎のコンフィギュレーションを設定する。 Next, in step A42, the command generation unit A8 of NOC_A4 sends a connection setting request to the ground mission control device A3 in accordance with the request from the traffic control unit A6.
In step A43, the ground mission control device A3 determines whether or not all commands have been transmitted according to the connection setting request, and when all the commands have been transmitted, the process proceeds to step A44 and processing is stopped. Do.
On the other hand, if all the commands have not been transmitted in step A43, a command for changing the configuration of the flexible switch matrix 9, 11 is generated in step A45, and the command control device A12 of the satellite relay device A5 is generated. Notify In step A46, the command control device A12 sets the configuration of each unit in the command control units A13 to A15 of each of the units 9 to 11. Then, in step A47, the command control units A13 to A15 set the configuration of each unit according to the request.
ステップA43にて、地上ミッション制御装置A3は、該コネクション設定要求に従い、全てのコマンド送信を行ったか否かを判断し、全てのコマンド送信を行った場合は、ステップA44に移行し、処理を停止する。
一方、ステップA43にて、全てのコマンドが送信されていない場合は、ステップA45でフレキシブル・スイッチ・マトリックス9、11の構成変更を行うためのコマンドを生成し、衛星中継装置A5のコマンド制御装置A12に通知する。コマンド制御装置A12は、ステップA46で、各ユニット9~11のコマンド制御部A13~A15にユニット毎のコンフィギュレーションを設定する。そして、コマンド制御部A13~A15は、ステップA47において、要求に従いユニット毎のコンフィギュレーションを設定する。 Next, in step A42, the command generation unit A8 of NOC_A4 sends a connection setting request to the ground mission control device A3 in accordance with the request from the traffic control unit A6.
In step A43, the ground mission control device A3 determines whether or not all commands have been transmitted according to the connection setting request, and when all the commands have been transmitted, the process proceeds to step A44 and processing is stopped. Do.
On the other hand, if all the commands have not been transmitted in step A43, a command for changing the configuration of the
次に、実施の形態1~3のフレキシブル・スイッチ・マトリックス9及び11を具備する衛星中継装置A5において、チャネライザ10の入力帯域を越えるトラヒックの帯域分割と、チャネライザ帯域を越えるトラヒックの帯域合成を行うための処理シーケンスを、図10~図12に示す制御シーケンスにて説明する。
Next, in the satellite relay device A5 having the flexible switch matrices 9 and 11 according to the first to third embodiments, band division of traffic exceeding the input band of the channelizer 10 and band combination of traffic exceeding the channelizer band are performed. The processing sequence for this will be described in the control sequence shown in FIG. 10 to FIG.
図10は、衛星中継装置A5を設定するための初期シーケンスである。地上装置A0は、計画された衛星コンフィギュレーションに従い衛星中継装置A5を設定する。
FIG. 10 shows an initial sequence for setting the satellite relay device A5. The ground device A0 sets up the satellite repeater A5 in accordance with the planned satellite configuration.
地上装置A0における回線制御装置A1内のトラヒック制御部A6は、NOC_A4内のコマンド生成部A8に、入出力ビームの周波数帯域と帯域分割数をコネクション設定要求(A20)として指示する。NOC_A4のコマンド生成部A8は、コネクション設定要求(A20)された入出力ビームの周波数帯域と帯域分割数を基に衛星中継装置A5のスイッチ・マトリックス部SWM1及び2の構成と、チューナブルダウンコンバータ24~27及び48~51の変換周波数を決定し、地上ミッション制御装置A3にコネクション設定要求(A21)を通知する。
The traffic control unit A6 in the line control device A1 in the ground device A0 instructs the command generation unit A8 in the NOC_A4 as the connection setting request (A20) to the frequency band of the input / output beam and the number of band divisions. The command generation unit A8 of NOC_A4 is the configuration of the switch matrix units SWM1 and SWM2 of the satellite relay device A5 based on the frequency band of the input / output beam and the number of band divisions for which the connection setting request (A20) has been made. The conversion frequencies of to 27 and 48 to 51 are determined, and a connection setting request (A21) is notified to the ground mission control device A3.
地上ミッション制御装置A3は、フレキシブル・スイッチ・マトリックス(入力側)9のスイッチを設定するため、SELECTOR設定コマンド(A22)を、コマンド制御装置A12に送る。コマンド制御装置A12は、SELECTOR設定コマンド(A22)を受けると、フレキシブル・スイッチ・マトリックス(入力側)9のコマンド制御部A13にSELECTOR設定コマンドの通知(A23)を行う。コマンド制御部A13は、SELECTOR設定コマンドの通知(A23)を受けて、セレクタ(SELECTOR)20~27について、セレクタの設定(A24)を行う。
The ground mission control device A3 sends a SELECTOR setting command (A22) to the command control device A12 in order to set the switches of the flexible switch matrix (input side) 9. When the command control device A12 receives the SELECTOR setting command (A22), the command control device A12 notifies the command control unit A13 of the flexible switch matrix (input side) 9 of the SELECTOR setting command (A23). In response to the notification (A23) of the SELECTOR setting command, the command control unit A13 performs selector setting (A24) for the selectors (SELECTOR) 20 to 27.
次に、地上ミッション制御装置A3は、フレキシブル・スイッチ・マトリックス(入力側)9の変換周波数を設定するため、変換周波数設定コマンド(A25)を衛星中継装置A5のコマンド制御装置A12に送信する。コマンド制御装置A12は、変換周波数設定コマンド(A25)を受けると、コマンド制御部A13に変調周波数設定コマンドA26を通知し、コマンド制御部A13にてフレキシブル・スイッチ・マトリックス(入力側)9のスイッチ・マトリックス部SWM1の設定を行う。コマンド制御装置A13は、変調周波数設定コマンドA26を受けることにより、チューナブルダウンコンバータ24~27の変換周波数設定(A27)を行う。
Next, the ground mission control device A3 transmits a conversion frequency setting command (A25) to the command control device A12 of the satellite relay device A5 in order to set the conversion frequency of the flexible switch matrix (input side) 9. When receiving the conversion frequency setting command (A25), the command control device A12 notifies the command control unit A13 of the modulation frequency setting command A26, and the command control unit A13 switches the flexible switch matrix (input side) 9 Set the matrix unit SWM1. The command control device A13 performs the conversion frequency setting (A27) of the tunable down converters 24 to 27 by receiving the modulation frequency setting command A26.
次に、地上ミッション制御装置A3は、デジタルチャネライザ10のチャネライジング情報(サブキャリアのスイッチング情報)を、チャネライザ設定コマンド(A28)を用いて衛星中継装置A5のコマンド制御装置A12に要求する。コマンド制御装置A12は、チャネライザ設定コマンド(A28)の要求を受けると、チャネライザ設定コマンド(A28)を用いてチャネライジング情報であるチャネライザ設定コマンド(A29)を生成する。コマンド制御装置A12は、デジタルチャネライザ10のコマンド制御部A14に生成したチャネライザ設定コマンド(A29)を伝達する。コマンド制御部A14は、チャネライザ設定コマンド(A29)を受けると、デジタルチャネライザ10の設定(A30)を実施する。
Next, the ground mission control device A3 requests the channelizing information (subcarrier switching information) of the digital channelizer 10 to the command control device A12 of the satellite relay device A5 using a channelizer setting command (A28). When receiving the request for the channelizer setting command (A28), the command control device A12 generates a channelizer setting command (A29), which is channelizing information, using the channelizer setting command (A28). The command control device A12 transmits the generated channelizer setting command (A29) to the command control unit A14 of the digital channelizer 10. When receiving the channelizer setting command (A29), the command control unit A14 performs setting (A30) of the digital channelizer 10.
次に、地上ミッション制御装置A3は、フレキシブル・スイッチ・マトリックス(出力側)11の変換周波数を設定するため、変換周波数設定コマンド(A31)を衛星中継装置A5のコマンド制御装置A12に通知する。コマンド制御装置A12は、変換周波数設定コマンド(A31)を受けると、フレキシブル・スイッチ・マトリックス(出力側)11のコマンド制御部A15に変換周波数を指示するための変換周波数設定コマンド(A32)を送る。コマンド制御部A15は、変換周波数設定コマンド(A32)を受けると、チューナブルアップコンバータ48~51の変換周波数を設定する(A33)。
Next, the ground mission control device A3 notifies the command control device A12 of the satellite relay device A5 of the conversion frequency setting command (A31) in order to set the conversion frequency of the flexible switch matrix (output side) 11. When receiving the conversion frequency setting command (A31), the command control device A12 sends a conversion frequency setting command (A32) for instructing the conversion frequency to the command control unit A15 of the flexible switch matrix (output side) 11. When receiving the conversion frequency setting command (A32), the command control unit A15 sets the conversion frequency of the tunable up converters 48 to 51 (A33).
次に、地上ミッション制御装置A3は、分割された帯域を合成するため、スイッチ・マトリックス部SWM2のスイッチ設定を行う。このため、地上ミッション制御装置A3は、衛星中継装置A5のコマンド制御装置A12にスイッチパス情報、すなわちSELECTOR設定コマンド(A34)を通知する。コマンド制御装置A12は、SELECTOR設定コマンド(A34)を受けると、フレキシブル・スイッチ・マトリックス(出力側)11のコマンド制御部A15にスイッチパス情報を指示するためのSELECTOR設定コマンド(A35)を伝達し、セレクタ56~59の設定(A36)を行う。
Next, the ground mission control device A3 performs switch setting of the switch matrix unit SWM2 in order to combine the divided bands. Therefore, the ground mission control device A3 notifies the command control device A12 of the satellite relay device A5 of switch path information, that is, a SELECTOR setting command (A34). When receiving the SELECTOR setting command (A34), the command control device A12 transmits a SELECTOR setting command (A35) for instructing switch path information to the command control unit A15 of the flexible switch matrix (output side) 11, The setting (A36) of the selectors 56 to 59 is performed.
次に、図11にUL(アップリンク)使用帯域情報取得シーケンスを示す。呼制御装置A120は、呼の確立・解放(A149)が発生すると、回線情報通知(A150)をトラヒック制御部A6に送る。トラヒック制御部A6は、回線情報通知(A150)を受けると、取得した回線情報通知(A150)を基に使用帯域、すなわち回線使用率(空き回線率)を計算する。
Next, FIG. 11 shows a UL (uplink) used band information acquisition sequence. When the call establishment / release (A149) occurs, the call control device A120 sends a line information notification (A150) to the traffic control unit A6. When receiving the line information notification (A150), the traffic control unit A6 calculates a use band, that is, a line usage rate (free line rate) based on the acquired line information notification (A150).
ここで、UL使用帯域情報は、衛星から通知される衛星テレメトリ(A152)からも計算することができる。すなわち、地上ミッション制御装置A3は、衛星中継装置A5のコマンド制御装置A12から衛星テレメトリ(UL電力測定情報)A152を取得すると、そのテレメトリにおけるデジタルチャネライザ10でサブキャリアごとに測定されたUL電力測定結果をUL電力測定情報通知(A153)でNOC_A4のトラヒック監視部A7へ通知する。トラヒック監視部A7は、回線の使用により電力が測定されることを利用して、その電力測定結果から回線使用状況を算出する。トラヒック監視部A7は、回線制御装置A1のトラヒック制御部A6に、算出した回線使用状況通知(A154)を送付する。トラヒック制御部A6は、回線使用状況通知(A154)を基に回線の使用帯域、すなわち使用率(空き回線率)を計算する。
Here, UL use band information can also be calculated from satellite telemetry (A 152) notified from the satellite. That is, when the terrestrial mission control device A3 acquires satellite telemetry (UL power measurement information) A152 from the command control device A12 of the satellite relay device A5, UL power measurement measured for each subcarrier by the digital channelizer 10 in the telemetry The result is notified to the traffic monitoring unit A7 of NOC_A4 by the UL power measurement information notification (A153). The traffic monitoring unit A 7 uses the fact that the power is measured by the use of the line, and calculates the line use status from the power measurement result. The traffic monitoring unit A7 sends the calculated line use status notification (A154) to the traffic control unit A6 of the line control device A1. The traffic control unit A6 calculates the use band of the line, that is, the use rate (free line rate) based on the line use status notification (A154).
次に、UL帯域追加シーケンスを図12にて説明する。
回線制御装置A1のトラヒック制御部A6は、帯域追加判断(A160)を行うと、呼制御装置A120に帯域変更通知(A164)を送付するとともに、NOC_A4のコマンド生成部A8にコネクション設定要求(A20)を送る。コマンド生成部A8は、トラヒック制御部A6からコネクション設定要求(A20)を受け取ると、地上ミッション制御装置A3に対してコネクション設定要求(A21)を送付する。地上ミッション制御装置A3は、コネクション設定要求(A21)を受け取ると、フレキシブル・スイッチ・マトリックス(入力側)9とデジタルチャネライザ10の設定を行うため、セレクタ設定コマンド(A22)、変換周波数設定コマンド(A25)、チャネライザ設定コマンド(A28)を衛星中継装置A5のコマンド制御装置A12に通知する。
また、コマンド制御装置A12は、セレクタ設定コマンド(A22)、変換周波数設定コマンド(A25)、及びチャネライザ設定コマンド(A28)の設定情報を確認し、確認した設定情報を衛星テレメトリ(設定情報確認)(A161)として、地上ミッション制御装置A3に送信する。地上ミッション制御装置A3は、衛星中継装置A5のコマンド制御装置A12から衛星テレメトリ(設定情報確認)(A161)を取得すると、コネクション設定応答(A162)をコマンド生成部A8に送る。コマンド生成部A8は、コネクション設定応答(A162)を受けると、回線制御装置A1のトラヒック制御部A6に、コネクション設定応答(A163)を送る。トラヒック制御部A6は、コネクション設定応答(A163)を受けると、帯域追加が行われたと判断(A160)する。 Next, the UL band addition sequence will be described with reference to FIG.
When the traffic control unit A6 of the line control device A1 makes a band addition determination (A160), it sends a band change notification (A164) to the call control device A120, and sends a connection setting request (A20) to the command generation unit A8 of NOC_A4. Send When receiving the connection setting request (A20) from the traffic control unit A6, the command generating unit A8 sends a connection setting request (A21) to the ground mission control device A3. When receiving the connection setting request (A21), the ground mission control device A3 sets the flexible switch matrix (input side) 9 and thedigital channelizer 10, so that the selector setting command (A22), the conversion frequency setting command (A22) A25) The channelizer setting command (A28) is notified to the command control device A12 of the satellite relay device A5.
In addition, the command control device A12 checks the setting information of the selector setting command (A22), the conversion frequency setting command (A25), and the channelizer setting command (A28), and performs satellite telemetry (setting information confirmation) It transmits to ground mission control-apparatus A3 as A161). The ground mission control device A3, upon acquiring satellite telemetry (setting information confirmation) (A161) from the command control device A12 of the satellite relay device A5, sends a connection setting response (A162) to the command generation unit A8. When receiving the connection setting response (A162), the command generating unit A8 sends a connection setting response (A163) to the traffic control unit A6 of the line control device A1. Upon receiving the connection setting response (A163), the traffic control unit A6 determines that band addition has been performed (A160).
回線制御装置A1のトラヒック制御部A6は、帯域追加判断(A160)を行うと、呼制御装置A120に帯域変更通知(A164)を送付するとともに、NOC_A4のコマンド生成部A8にコネクション設定要求(A20)を送る。コマンド生成部A8は、トラヒック制御部A6からコネクション設定要求(A20)を受け取ると、地上ミッション制御装置A3に対してコネクション設定要求(A21)を送付する。地上ミッション制御装置A3は、コネクション設定要求(A21)を受け取ると、フレキシブル・スイッチ・マトリックス(入力側)9とデジタルチャネライザ10の設定を行うため、セレクタ設定コマンド(A22)、変換周波数設定コマンド(A25)、チャネライザ設定コマンド(A28)を衛星中継装置A5のコマンド制御装置A12に通知する。
また、コマンド制御装置A12は、セレクタ設定コマンド(A22)、変換周波数設定コマンド(A25)、及びチャネライザ設定コマンド(A28)の設定情報を確認し、確認した設定情報を衛星テレメトリ(設定情報確認)(A161)として、地上ミッション制御装置A3に送信する。地上ミッション制御装置A3は、衛星中継装置A5のコマンド制御装置A12から衛星テレメトリ(設定情報確認)(A161)を取得すると、コネクション設定応答(A162)をコマンド生成部A8に送る。コマンド生成部A8は、コネクション設定応答(A162)を受けると、回線制御装置A1のトラヒック制御部A6に、コネクション設定応答(A163)を送る。トラヒック制御部A6は、コネクション設定応答(A163)を受けると、帯域追加が行われたと判断(A160)する。 Next, the UL band addition sequence will be described with reference to FIG.
When the traffic control unit A6 of the line control device A1 makes a band addition determination (A160), it sends a band change notification (A164) to the call control device A120, and sends a connection setting request (A20) to the command generation unit A8 of NOC_A4. Send When receiving the connection setting request (A20) from the traffic control unit A6, the command generating unit A8 sends a connection setting request (A21) to the ground mission control device A3. When receiving the connection setting request (A21), the ground mission control device A3 sets the flexible switch matrix (input side) 9 and the
In addition, the command control device A12 checks the setting information of the selector setting command (A22), the conversion frequency setting command (A25), and the channelizer setting command (A28), and performs satellite telemetry (setting information confirmation) It transmits to ground mission control-apparatus A3 as A161). The ground mission control device A3, upon acquiring satellite telemetry (setting information confirmation) (A161) from the command control device A12 of the satellite relay device A5, sends a connection setting response (A162) to the command generation unit A8. When receiving the connection setting response (A162), the command generating unit A8 sends a connection setting response (A163) to the traffic control unit A6 of the line control device A1. Upon receiving the connection setting response (A163), the traffic control unit A6 determines that band addition has been performed (A160).
次に、UL帯域削除シーケンスを図13に示す。回線制御装置A1のトラヒック制御部A6は、帯域削除の判断(A170)を行うと、呼制御装置A120に対して、帯域変更通知(A171)を送付する。呼制御装置A120は、必要に応じて、削除されるUL帯域を利用するユーザに対して通信周波数変更処置(A172)を行い、帯域変更応答(A173)を回線制御装置A1のトラヒック制御部A6に送る。
Next, a UL band deletion sequence is shown in FIG. The traffic control unit A6 of the line control device A1 sends a bandwidth change notification (A171) to the call control device A120 when it judges the removal of the bandwidth (A170). The call control device A120 performs the communication frequency change processing (A172) to the user using the UL band to be deleted, if necessary, and transmits a band change response (A173) to the traffic control unit A6 of the line control device A1. send.
回線制御装置A1のトラヒック制御部A6は、帯域削除に伴いコネクション設定要求(A20)をNOC_A4のコマンド生成部A8に通知する。このコマンド生成部A8は、地上ミッション制御装置A3にコネクション設定要求(A21)を通知する。地上ミッション制御装置A3は、コネクション設定要求(A21)を受け取ると、フレキシブル・スイッチ・マトリックス(入力側)9とデジタルチャネライザ10の設定を行うため、セレクタ設定コマンド(A22)、変換周波数設定コマンド(A25)、及びチャネライザ設定コマンド(A28)を衛星中継装置A5のコマンド制御装置A12に通知する。
また、コマンド制御装置A12は、セレクタ設定コマンド(A22)、変換周波数設定コマンド(A25)、及びチャネライザ設定コマンド(A28)の設定情報を確認し、確認した設定情報を衛星テレメトリ(設定情報確認)(A174)として、地上ミッション制御装置A3に送信する。地上ミッション制御装置A3は、衛星中継装置A5のコマンド制御装置A12から衛星テレメトリ(設定情報確認)(A174)を取得すると、コネクション設定応答(A175)をコマンド生成部A8に送る。コマンド生成部A8は、コネクション設定応答(A176)を受けると、回線制御装置A1のトラヒック制御部A6に、コネクション設定応答(A176)を送る。トラヒック制御部A6は、コネクション設定応答(A176)を受けると、帯域削除が行われたと判断(A170)する。 The traffic control unit A6 of the line control device A1 sends a connection setting request (A20) to the command generation unit A8 of NOC_A4 along with the band deletion. The command generation unit A8 notifies the ground mission control device A3 of a connection setting request (A21). When receiving the connection setting request (A21), the ground mission control device A3 sets the flexible switch matrix (input side) 9 and thedigital channelizer 10, so that the selector setting command (A22), the conversion frequency setting command (A22) A25) and the channelizer setting command (A28) are notified to the command control device A12 of the satellite relay device A5.
In addition, the command control device A12 checks the setting information of the selector setting command (A22), the conversion frequency setting command (A25), and the channelizer setting command (A28), and performs satellite telemetry (setting information confirmation) It transmits to ground mission control-apparatus A3 as A174. The ground mission control device A3, upon acquiring satellite telemetry (setting information confirmation) (A174) from the command control device A12 of the satellite relay device A5, sends a connection setting response (A175) to the command generation unit A8. When receiving the connection setting response (A176), the command generation unit A8 sends a connection setting response (A176) to the traffic control unit A6 of the line control device A1. When receiving the connection setting response (A176), the traffic control unit A6 determines that the band has been deleted (A170).
また、コマンド制御装置A12は、セレクタ設定コマンド(A22)、変換周波数設定コマンド(A25)、及びチャネライザ設定コマンド(A28)の設定情報を確認し、確認した設定情報を衛星テレメトリ(設定情報確認)(A174)として、地上ミッション制御装置A3に送信する。地上ミッション制御装置A3は、衛星中継装置A5のコマンド制御装置A12から衛星テレメトリ(設定情報確認)(A174)を取得すると、コネクション設定応答(A175)をコマンド生成部A8に送る。コマンド生成部A8は、コネクション設定応答(A176)を受けると、回線制御装置A1のトラヒック制御部A6に、コネクション設定応答(A176)を送る。トラヒック制御部A6は、コネクション設定応答(A176)を受けると、帯域削除が行われたと判断(A170)する。 The traffic control unit A6 of the line control device A1 sends a connection setting request (A20) to the command generation unit A8 of NOC_A4 along with the band deletion. The command generation unit A8 notifies the ground mission control device A3 of a connection setting request (A21). When receiving the connection setting request (A21), the ground mission control device A3 sets the flexible switch matrix (input side) 9 and the
In addition, the command control device A12 checks the setting information of the selector setting command (A22), the conversion frequency setting command (A25), and the channelizer setting command (A28), and performs satellite telemetry (setting information confirmation) It transmits to ground mission control-apparatus A3 as A174. The ground mission control device A3, upon acquiring satellite telemetry (setting information confirmation) (A174) from the command control device A12 of the satellite relay device A5, sends a connection setting response (A175) to the command generation unit A8. When receiving the connection setting response (A176), the command generation unit A8 sends a connection setting response (A176) to the traffic control unit A6 of the line control device A1. When receiving the connection setting response (A176), the traffic control unit A6 determines that the band has been deleted (A170).
このように帯域の追加・削除が発生し、UL帯域がデジタルチャネライザ帯域を越える場合、フレキシブル・スイッチ・マトリックス9の帯域分割のためのSELECTOR20~23の選択パスとチューナブルダウンコンバータ24~27の変換周波数の設定を可能とする。
In this way, when band addition / deletion occurs and the UL band exceeds the digital channelizer band, the selection paths of SELECTORs 20 to 23 for band division of flexible switch matrix 9 and tunable down converters 24 to 27 Enables setting of conversion frequency.
次に、DL(ダウンリンク)のトラヒック制御方法を図14にて説明する。呼制御装置A120は、呼の確立・解放(A149)に伴い、DL回線情報(帯域)を回線制御装置A1のトラヒック制御部A6に通知する。回線制御装置A1のトラヒック制御部A6は、通知されたDL回線情報通知(A150)を基に、回線使用率(空き回線率)を計算し、DL帯域の追加・削除を判断する。
DL帯域の追加判断は、UL帯域の追加判断と同様のアルゴリズムで実施し、図19で後述する使用帯域A140を帯域追加閾値A131及び帯域削除閾値A132と比較することで帯域の可否判断を行う。 Next, a DL (downlink) traffic control method will be described with reference to FIG. The call control device A 120 notifies the trafficcontrol unit A 6 of the line control device A 1 of the DL line information (band) along with the call establishment / release (A 149). The traffic control unit A6 of the line control device A1 calculates the line usage rate (free line rate) based on the notified DL line information notification (A150), and determines addition / deletion of the DL band.
The determination as to the addition of the DL band is performed by the same algorithm as the determination as to the addition of the UL band, and the availability of the band is determined by comparing the use band A 140 described later with FIG.
DL帯域の追加判断は、UL帯域の追加判断と同様のアルゴリズムで実施し、図19で後述する使用帯域A140を帯域追加閾値A131及び帯域削除閾値A132と比較することで帯域の可否判断を行う。 Next, a DL (downlink) traffic control method will be described with reference to FIG. The call control device A 120 notifies the traffic
The determination as to the addition of the DL band is performed by the same algorithm as the determination as to the addition of the UL band, and the availability of the band is determined by comparing the use band A 140 described later with FIG.
次に、図14についてDL使用帯域情報取得シーケンスを説明する。呼制御装置A120は、呼の確立・解放(A149)が発生すると、回線情報通知(A150)を回線制御装置A1のトラヒック制御部A6に通知する。回線制御装置A1のトラヒック制御部A6は、回線情報通知(A150)を基にDLの使用帯域A151を計算する。
Next, a DL used band information acquisition sequence will be described with reference to FIG. When the call establishment / release (A149) occurs, the call control device A120 notifies the traffic control unit A6 of the line control device A1 of the line information notification (A150). The traffic control unit A6 of the line control device A1 calculates the DL use band A 151 based on the line information notification (A150).
次に、DL帯域追加シーケンスを図15にて説明する。回線制御装置A1のトラヒック制御部A6は、帯域追加判断(A160)を行うと、NOC_A4のコマンド生成部A8にコネクション設定要求(A20)を送信する。コマンド生成部A8は、トラヒック制御部A6からコネクション設定要求(A20)を受け取ると、地上ミッション制御装置A3に対してコネクション設定要求(A21)を送付する。地上ミッション制御装置A3は、コネクション設定要求(A21)を受け取ると、デジタルチャネライザ10とフレキシブル・スイッチ・マトリックス(出力側)11の設定を行うため、チャネライザ設定コマンド(A28)、変換周波数設定コマンド(A31)、及びセレクタ設定コマンド(A34)を衛星中継装置A5のコマンド制御装置A12に通知する。
また、コマンド制御装置A12は、チャネライザ設定コマンド(A28)、変換周波数設定コマンド(A31)、及びセレクタ設定コマンド(A34)を受けると、その設定情報を確認し、確認した設定情報を衛星テレメトリ(設定情報確認)(A161)として、地上ミッション制御装置A3に送信する。地上ミッション制御装置A3は、衛星中継装置A5のコマンド制御装置A12から衛星テレメトリ(設定情報確認)(A161)を取得すると、コネクション設定応答(A162)をコマンド生成部A8に送る。コマンド生成部A8は、コネクション設定応答(A162)を受けると、回線制御装置A1のトラヒック制御部A6に、コネクション設定応答(A163)を送る。トラヒック制御部A6は、コネクション設定応答(A163)を受けると、帯域追加が行われたと判断(A160)し、呼制御装置(A120)に帯域変更通知(A164)を送る。 Next, the DL band addition sequence will be described with reference to FIG. The traffic control unit A6 of the line control device A1, upon making the band addition determination (A160), transmits a connection setting request (A20) to the command generation unit A8 of NOC_A4. When receiving the connection setting request (A20) from the traffic control unit A6, the command generating unit A8 sends a connection setting request (A21) to the ground mission control device A3. When receiving the connection setting request (A21), the ground mission control device A3 sets thedigital channelizer 10 and the flexible switch matrix (output side) 11, so the channelizer setting command (A28), the conversion frequency setting command (A28) A31) and the selector setting command (A34) are notified to the command control device A12 of the satellite relay device A5.
Also, upon receiving the channelizer setting command (A28), the conversion frequency setting command (A31), and the selector setting command (A34), the command control device A12 confirms the setting information and performs satellite telemetry (setting) on the confirmed setting information. As information confirmation) (A161), it transmits to ground mission control device A3. The ground mission control device A3, upon acquiring satellite telemetry (setting information confirmation) (A161) from the command control device A12 of the satellite relay device A5, sends a connection setting response (A162) to the command generation unit A8. When receiving the connection setting response (A162), the command generating unit A8 sends a connection setting response (A163) to the traffic control unit A6 of the line control device A1. When receiving the connection setting response (A163), the traffic control unit A6 determines that the band addition has been performed (A160), and sends a band change notification (A164) to the call control apparatus (A120).
また、コマンド制御装置A12は、チャネライザ設定コマンド(A28)、変換周波数設定コマンド(A31)、及びセレクタ設定コマンド(A34)を受けると、その設定情報を確認し、確認した設定情報を衛星テレメトリ(設定情報確認)(A161)として、地上ミッション制御装置A3に送信する。地上ミッション制御装置A3は、衛星中継装置A5のコマンド制御装置A12から衛星テレメトリ(設定情報確認)(A161)を取得すると、コネクション設定応答(A162)をコマンド生成部A8に送る。コマンド生成部A8は、コネクション設定応答(A162)を受けると、回線制御装置A1のトラヒック制御部A6に、コネクション設定応答(A163)を送る。トラヒック制御部A6は、コネクション設定応答(A163)を受けると、帯域追加が行われたと判断(A160)し、呼制御装置(A120)に帯域変更通知(A164)を送る。 Next, the DL band addition sequence will be described with reference to FIG. The traffic control unit A6 of the line control device A1, upon making the band addition determination (A160), transmits a connection setting request (A20) to the command generation unit A8 of NOC_A4. When receiving the connection setting request (A20) from the traffic control unit A6, the command generating unit A8 sends a connection setting request (A21) to the ground mission control device A3. When receiving the connection setting request (A21), the ground mission control device A3 sets the
Also, upon receiving the channelizer setting command (A28), the conversion frequency setting command (A31), and the selector setting command (A34), the command control device A12 confirms the setting information and performs satellite telemetry (setting) on the confirmed setting information. As information confirmation) (A161), it transmits to ground mission control device A3. The ground mission control device A3, upon acquiring satellite telemetry (setting information confirmation) (A161) from the command control device A12 of the satellite relay device A5, sends a connection setting response (A162) to the command generation unit A8. When receiving the connection setting response (A162), the command generating unit A8 sends a connection setting response (A163) to the traffic control unit A6 of the line control device A1. When receiving the connection setting response (A163), the traffic control unit A6 determines that the band addition has been performed (A160), and sends a band change notification (A164) to the call control apparatus (A120).
図16にDL帯域削除シーケンスを示す。回線制御装置A1のトラヒック制御部A6は、帯域削除(A170)を判断すると、呼制御装置A120に対して、帯域変更通知(A171)を送付する。呼制御装置A120は、必要に応じて、削除されるUL帯域を利用するユーザに対して通信周波数変更処置(A172)を行い、帯域変更応答(A173)を回線制御装置A1のトラヒック制御部A6に連絡する。回線制御装置A1のトラヒック制御部A6は、帯域削除に伴いコネクション設定要求(A20)をNOC_A4のコマンド生成部A8に通知する。
FIG. 16 shows a DL band deletion sequence. When the traffic control unit A6 of the line control device A1 determines that the bandwidth is to be deleted (A170), the traffic control unit A6 sends a bandwidth change notification (A171) to the call control device A120. The call control device A120 performs the communication frequency change processing (A172) to the user using the UL band to be deleted, if necessary, and transmits a band change response (A173) to the traffic control unit A6 of the line control device A1. contact. The traffic control unit A6 of the line control device A1 sends a connection setting request (A20) to the command generation unit A8 of NOC_A4 along with the band deletion.
コマンド生成部A8は、地上ミッション制御装置A3にコネクション設定要求(A21)を通知する。地上ミッション制御装置A3は、コネクション設定要求(A21)を受け取ると、デジタルチャネライザ10とフレキシブル・スイッチ・マトリックス(出力側)11の設定を行うため、チャネライザ設定コマンド(A28)、変換周波数設定コマンド(A31)、及びセレクタ設定コマンド(A34)を衛星中継装置A5のコマンド制御装置A12に通知する。
また、コマンド制御装置A12は、チャネライザ設定コマンド(A28)、変換周波数設定コマンド(A31)、及びセレクタ設定コマンド(A34)を受けると、その設定情報を確認し、確認した設定情報を衛星テレメトリ(設定情報確認)(A174)として、地上ミッション制御装置A3に送信する。地上ミッション制御装置A3は、衛星中継装置A5のコマンド制御装置A12から衛星テレメトリ(設定情報確認)(A174)を取得すると、コネクション設定応答A175をコマンド生成部A8に送る。コマンド生成部A8は、コネクション設定応答(A175)を受けると、回線制御装置A1のトラヒック制御部A6に、コネクション設定応答(A176)を送る。トラヒック制御部A6は、コネクション設定応答(A176)を受けると、帯域追加が行われたと判断(A170)し、呼制御装置(A120)に帯域変更通知(A173)を送る。 The command generation unit A8 notifies the ground mission control device A3 of the connection setting request (A21). When receiving the connection setting request (A21), the ground mission control device A3 sets thedigital channelizer 10 and the flexible switch matrix (output side) 11, so the channelizer setting command (A28), the conversion frequency setting command (A28) A31) and the selector setting command (A34) are notified to the command control device A12 of the satellite relay device A5.
Also, upon receiving the channelizer setting command (A28), the conversion frequency setting command (A31), and the selector setting command (A34), the command control device A12 confirms the setting information and performs satellite telemetry (setting) on the confirmed setting information. As information confirmation) (A174), it transmits to ground mission control device A3. The ground mission control device A3, upon acquiring satellite telemetry (setting information confirmation) (A174) from the command control device A12 of the satellite relay device A5, sends a connection setting response A175 to the command generation unit A8. When receiving the connection setting response (A175), the command generation unit A8 sends a connection setting response (A176) to the traffic control unit A6 of the line control device A1. Upon receiving the connection setting response (A176), the traffic control unit A6 determines that band addition has been performed (A170), and sends a band change notification (A173) to the call control apparatus (A120).
また、コマンド制御装置A12は、チャネライザ設定コマンド(A28)、変換周波数設定コマンド(A31)、及びセレクタ設定コマンド(A34)を受けると、その設定情報を確認し、確認した設定情報を衛星テレメトリ(設定情報確認)(A174)として、地上ミッション制御装置A3に送信する。地上ミッション制御装置A3は、衛星中継装置A5のコマンド制御装置A12から衛星テレメトリ(設定情報確認)(A174)を取得すると、コネクション設定応答A175をコマンド生成部A8に送る。コマンド生成部A8は、コネクション設定応答(A175)を受けると、回線制御装置A1のトラヒック制御部A6に、コネクション設定応答(A176)を送る。トラヒック制御部A6は、コネクション設定応答(A176)を受けると、帯域追加が行われたと判断(A170)し、呼制御装置(A120)に帯域変更通知(A173)を送る。 The command generation unit A8 notifies the ground mission control device A3 of the connection setting request (A21). When receiving the connection setting request (A21), the ground mission control device A3 sets the
Also, upon receiving the channelizer setting command (A28), the conversion frequency setting command (A31), and the selector setting command (A34), the command control device A12 confirms the setting information and performs satellite telemetry (setting) on the confirmed setting information. As information confirmation) (A174), it transmits to ground mission control device A3. The ground mission control device A3, upon acquiring satellite telemetry (setting information confirmation) (A174) from the command control device A12 of the satellite relay device A5, sends a connection setting response A175 to the command generation unit A8. When receiving the connection setting response (A175), the command generation unit A8 sends a connection setting response (A176) to the traffic control unit A6 of the line control device A1. Upon receiving the connection setting response (A176), the traffic control unit A6 determines that band addition has been performed (A170), and sends a band change notification (A173) to the call control apparatus (A120).
このように帯域の追加・削除が発生し、DL帯域がデジタルチャネライザ帯域を越える場合、コネクションの再設定がなされ、帯域合成のためのフレキシブル・スイッチ・マトリックス11のチューナブルアップコンバータ48~51の変換周波数とSELECTOR56~59の設定による選択パスの変更を可能とする。
As described above, when the addition / deletion of the band occurs and the DL band exceeds the digital channelizer band, the connection is re-set and the flexible switch matrix 11 tunable up-converters 48 to 51 for band combination are generated. It is possible to change the selection path by setting the conversion frequency and the SELECTOR 56 to 59.
実施の形態5.
次に、実施形態5の衛星中継装置のフレキシブル・スイッチ・マトリックス(入力側)9の周波数帯域分割、及びフレキシブル・スイッチ・マトリックス(出力側)11の周波数合成のための制御アルゴリズムを説明する。Embodiment 5
Next, a control algorithm for frequency band division of the flexible switch matrix (input side) 9 of the satellite relay apparatus of the fifth embodiment and frequency synthesis of the flexible switch matrix (output side) 11 will be described.
次に、実施形態5の衛星中継装置のフレキシブル・スイッチ・マトリックス(入力側)9の周波数帯域分割、及びフレキシブル・スイッチ・マトリックス(出力側)11の周波数合成のための制御アルゴリズムを説明する。
Next, a control algorithm for frequency band division of the flexible switch matrix (input side) 9 of the satellite relay apparatus of the fifth embodiment and frequency synthesis of the flexible switch matrix (output side) 11 will be described.
図17は、トラヒックを監視・制御する地上装置A0を示す。トラヒック制御は、呼制御装置A120、回線制御装置A1のトラヒック制御部A6、及びNOC_A4のトラヒック監視部A7にて実施される。
FIG. 17 shows a ground device A0 that monitors and controls traffic. Traffic control is performed by the call control device A 120, the traffic control unit A6 of the line control device A1, and the traffic monitoring unit A7 of the NOC_A4.
呼制御装置A120は、コネクションが確立・解放されると、確立・解放されたコネクションの情報(帯域)をトラヒック制御部A6に通知する。トラヒック制御部A6は、通知されたコネクション情報を基にそのビームに割り当てられたUL帯域及びDL帯域の空き帯域と使用帯域とを計算する。これをGWビームに適用した場合、衛星GW帯域A121に対して、空き帯域A122及び使用帯域A123を導出することになる。
When the connection is established and released, the call control device A 120 notifies the traffic control unit A 6 of information (band) of the established and released connection. The traffic control unit A6 calculates, based on the notified connection information, the free band and the used band of the UL band and the DL band allocated to the beam. When this is applied to the GW beam, the vacant band A122 and the used band A123 are derived from the satellite GW band A121.
また、ULの空き帯域A122は、地上ミッション制御装置A3から連絡される受信電力測定結果からも導出することができる。NOC_A4のトラヒック監視部A7は、衛星で測定された電力測定情報を基に空き帯域A124と使用帯域A125を導出し、回線制御装置A1のトラヒック制御部A6に通知する。このトラヒック制御部A6は、空き帯域情報を基に、帯域追加・削除アルゴリズムを実施し、UL帯域の追加と衛星コンフィギュレーションの変更を実施する。
The UL free band A122 can also be derived from the reception power measurement result communicated from the ground mission control device A3. The traffic monitoring unit A7 of NOC_A4 derives the available bandwidth A124 and the used bandwidth A125 based on the power measurement information measured by the satellite, and notifies the traffic control unit A6 of the line control device A1. The traffic control unit A6 implements a band addition / deletion algorithm based on the free band information, and carries out the addition of the UL band and the change of the satellite configuration.
次に衛星中継装置A5に収容されるULビームとDLビームの帯域変更のためのアルゴリズムを図18~図19を用いて説明する。
図18は、上記の空き帯域A122に対応した空き帯域A141と上記の使用帯域A123に対応した使用帯域A140との比率を示し、ULビームの全帯域A130に対して帯域追加閾値A131及び帯域削除閾値A132を設定し、UL帯域の追加・削除を判定する。例えば、ヒステリシスを考慮し、帯域追加閾値A131を全帯域の20%に設定し、帯域削除閾値A132を全帯域の80%に設定する。 Next, an algorithm for changing the band of the UL beam and the DL beam accommodated in the satellite repeater A5 will be described with reference to FIGS.
FIG. 18 shows the ratio between the free band A 141 corresponding to the above-mentioned free band A 122 and the used band A 140 corresponding to the above used band A 123, and the band addition threshold A 131 and the band deletion threshold with respect to the entire band A 130 of UL beam. Set A132, and determine UL band addition / deletion. For example, in consideration of hysteresis, the band addition threshold A131 is set to 20% of the entire band, and the band removal threshold A132 is set to 80% of the whole band.
図18は、上記の空き帯域A122に対応した空き帯域A141と上記の使用帯域A123に対応した使用帯域A140との比率を示し、ULビームの全帯域A130に対して帯域追加閾値A131及び帯域削除閾値A132を設定し、UL帯域の追加・削除を判定する。例えば、ヒステリシスを考慮し、帯域追加閾値A131を全帯域の20%に設定し、帯域削除閾値A132を全帯域の80%に設定する。 Next, an algorithm for changing the band of the UL beam and the DL beam accommodated in the satellite repeater A5 will be described with reference to FIGS.
FIG. 18 shows the ratio between the free band A 141 corresponding to the above-mentioned free band A 122 and the used band A 140 corresponding to the above used band A 123, and the band addition threshold A 131 and the band deletion threshold with respect to the entire band A 130 of UL beam. Set A132, and determine UL band addition / deletion. For example, in consideration of hysteresis, the band addition threshold A131 is set to 20% of the entire band, and the band removal threshold A132 is set to 80% of the whole band.
図19は、上記の空き帯域A141と使用帯域A140との比率、並びに帯域追加閾値A131及び帯域削除閾値A132を用いたアルゴリズムの一例を示している。
STEP1で、全帯域A130aに対して使用帯域A140が帯域追加閾値A131を越えると、帯域の追加が必要と判断し、STEP2で帯域を追加し(2倍)、全帯域がA130bとなり、帯域追加閾値A131を例えば全帯域A130bの20%に再設定し、同様に帯域削除閾値A132を全帯域A130bの80%に再設定する。
STEP3では、使用帯域A140が帯域削除閾値A132以上で且つ帯域追加閾値A131以下であることから、帯域の追加・削除制御は発生しない。
次に、STEP4では、使用帯域A140が帯域削除閾値A132以下となると、帯域を削減し(1/2倍)、帯域追加閾値A131と帯域削除閾値A132を再設定する。
実際の制御では、帯域追加・削除判定がチャタリングしないよう追加帯域と帯域追加閾値A131及び帯域削除閾値A132を決定する。 FIG. 19 shows an example of an algorithm using the ratio of the free band A 141 to the use band A 140 and the band addition threshold A 131 and the band deletion threshold A 132 described above.
If the use band A 140 exceeds the band addition threshold A 131 with respect to the whole band A 130 a inSTEP 1, it is determined that band addition is necessary, the band is added (doubled) in STEP 2 and the whole band becomes A 130 b, band addition threshold For example, A131 is reset to 20% of the entire band A130b, and similarly, the band deletion threshold A132 is reset to 80% of the entire band A130b.
InSTEP 3, since the use band A 140 is equal to or more than the band deletion threshold A 132 and equal to or less than the band addition threshold A 131, band addition / deletion control does not occur.
Next, inSTEP 4, when the use band A 140 becomes equal to or less than the band deletion threshold A 132, the band is reduced (1/2), and the band addition threshold A 131 and the band deletion threshold A 132 are reset.
In actual control, the additional band and the band addition threshold A 131 and the band deletion threshold A 132 are determined so that the band addition / deletion determination does not chatter.
STEP1で、全帯域A130aに対して使用帯域A140が帯域追加閾値A131を越えると、帯域の追加が必要と判断し、STEP2で帯域を追加し(2倍)、全帯域がA130bとなり、帯域追加閾値A131を例えば全帯域A130bの20%に再設定し、同様に帯域削除閾値A132を全帯域A130bの80%に再設定する。
STEP3では、使用帯域A140が帯域削除閾値A132以上で且つ帯域追加閾値A131以下であることから、帯域の追加・削除制御は発生しない。
次に、STEP4では、使用帯域A140が帯域削除閾値A132以下となると、帯域を削減し(1/2倍)、帯域追加閾値A131と帯域削除閾値A132を再設定する。
実際の制御では、帯域追加・削除判定がチャタリングしないよう追加帯域と帯域追加閾値A131及び帯域削除閾値A132を決定する。 FIG. 19 shows an example of an algorithm using the ratio of the free band A 141 to the use band A 140 and the band addition threshold A 131 and the band deletion threshold A 132 described above.
If the use band A 140 exceeds the band addition threshold A 131 with respect to the whole band A 130 a in
In
Next, in
In actual control, the additional band and the band addition threshold A 131 and the band deletion threshold A 132 are determined so that the band addition / deletion determination does not chatter.
これにより、ULの使用帯域比率、並びに使用帯域比率に対する帯域追加閾値A131及び帯域削除閾値A132を設定することで、帯域の追加と帯域の削減を検出することができ、帯域分割のための衛星中継装置A5の入力側フレキシブル・スイッチ・マトリックス9の設定を可能とする。
By this, by setting the band addition ratio of UL and the band addition threshold A 131 and the band deletion threshold A 132 to the used band ratio, it is possible to detect band addition and band reduction, and a satellite relay for band division. It enables setting of the input-side flexible switch matrix 9 of the device A5.
DLに対してもULと同様の制御アルゴリズムを適用することが可能であり、使用帯域率に対して帯域追加閾値A131及び帯域削除閾値A132を追加することで、帯域の追加と削除を判断することができる。
It is possible to apply a control algorithm similar to that of UL to DL as well, and determine addition and deletion of bands by adding band addition threshold A 131 and band deletion threshold A 132 to the used band rate. Can.
これにより、DLの使用帯域比率と使用帯域比率に対する帯域追加閾値A131、及び帯域削除閾値A132を設定することで、帯域の追加と帯域の削減を検出することができ、帯域合成のための衛星ペイロードA5の出力側フレキシブル・スイッチ・マトリックス11の設定を可能とする
Thus, by setting the band addition threshold A 131 and the band deletion threshold A 132 to the use band ratio of DL and the use band ratio, addition of band and reduction of band can be detected, and satellite payload for band combination Enables setting of A5 output side flexible switch matrix 11
このように、ULトラヒックの変動に伴いUL帯域の追加・削除を検出し入力側フレキシブル・スイッチ・マトリックスの設定を変更することで入力ビームの分割数を制御することを可能とし、同様に、DLトラヒックの変動に伴いDL帯域の追加・削除を検出し、出力側フレキシブル・スイッチ・マトリックスの設定を変更することで出力ビームの合成帯域を制御することを可能とする。
In this way, it is possible to control the number of splits of the input beam by detecting addition / deletion of the UL band according to the fluctuation of UL traffic and changing the setting of the flexible switch matrix on the input side. It is possible to control the combined band of the output beam by detecting addition / deletion of the DL band according to the fluctuation of traffic and changing the setting of the flexible switch matrix on the output side.
9,11 フレキシブル・スイッチ・マトリックス(Flexible SW Matrix)、10 デジタルチャネライザ(Digital CHZ)、16~19,60~63 ハイブリッド部(HYB)、20~23,56~59 セレクタ(SELECTOR)、24~27 チューナブルダウンコンバータ(Tunable DCON)、48~51 チューナブルアップコンバータ(Tunable UPCON)、28~31,52~55 BPF(バンドパスフィルタ)、A0 地上装置、A1 回線制御装置、A2 地上衛星GW(ゲートウェイ)、A3 地上ミッション制御装置、A4 NOC(ネットワークオペレーティングセンター)、A5 衛星ペイロード、A6 トラヒック制御部、A7 トラヒック監視部、A8 コマンド生成部、A9 ネットワーク、A10,A11 アンテナ、A12 コマンド制御装置、A13~A15 コマンド制御部、A16 分波部、A17 スイッチ部、A18 合波部。
9, 11 flexible switch matrix (Flexible SW Matrix), 10 digital channelizer (Digital CHZ), 16 to 19, 60 to 63 hybrid part (HYB), 20 to 23, 56 to 59 selector (SELECTOR), 24 to 27 Tunable down converter (Tunable DCON), 48 to 51 tunable up converter (Tunable UPCON), 28 to 31, 52 to 55 BPF (band pass filter), A0 ground device, A1 line controller, A2 ground satellite GW ( Gateway), A3 Terrestrial Mission Controller, A4 NOC (Network Operating Center), A5 Satellite Payload, A6 Traffic Controller, A7 Traffic Monitoring , A8 command generating unit, A9 network, A10, A11 antenna, A12 command controller, A13 ~ A15 command control unit, A16 demultiplexer, A17 switch unit, A18 multiplexing section.
Claims (10)
- 任意の周波数帯域の入力マルチビームを任意の出力帯域にマッピングするデジタルチャネライザと、
前記周波数帯域が、前記デジタルチャネライザの入力周波数帯域を越えるとき、地上装置からのコマンドにより、前記デジタルチャネライザの入力周波数帯域以内のビームに変換する入力側フレキシブル・スイッチ・マトリックスと、
前記デジタルチャネライザで交換されたビームを連続帯域として出力する出力側フレキシブル・スイッチ・マトリックスとを備えた
衛星中継装置。 A digital channelizer that maps input multibeams in any frequency band to any output band;
An input-side flexible switch matrix that converts into a beam within the input frequency band of the digital channelizer according to a command from a ground device when the frequency band exceeds the input frequency band of the digital channelizer;
A satellite repeater comprising: an output-side flexible switch matrix that outputs the beam exchanged by the digital channelizer as a continuous band. - 前記入力側フレキシブル・スイッチ・マトリックスは、
前記入力マルチビームを、前記コマンドにより設定された数に分割するスイッチ・マトリックス部と、
前記スイッチ・マトリックス部の各出力ビームの周波数帯域を、前記デジタルチャネライザの入力周波数帯域未満に低下させるチューナブルダウンコンバータと、
前記チューナブルダウンコンバータの出力周波数帯域における必要周波数帯域のみを出力するバンドパスフィルタとで構成される
請求項1に記載の衛星中継装置。 The input flexible switch matrix is
A switch matrix unit that divides the input multi-beam into a number set by the command;
A tunable down-converter for reducing the frequency band of each output beam of the switch matrix section to less than the input frequency band of the digital channelizer;
The satellite relay device according to claim 1, comprising: a band pass filter that outputs only a necessary frequency band in an output frequency band of the tunable down converter. - 前記入力側フレキシブル・スイッチ・マトリックスは、
前記入力マルチビームを、前記コマンドにより設定された数に分割するスイッチ・マトリックス部と、
前記スイッチ・マトリックス部の出力ビームの周波数帯域を前記コマンドによって前記デジタルチャネライザの入力周波数帯域未満に低下させるとともに必要周波数帯域のみを出力するRFチャネライザとで構成される
請求項1に記載の衛星中継装置。 The input flexible switch matrix is
A switch matrix unit that divides the input multi-beam into a number set by the command;
The satellite relay according to claim 1, wherein the frequency band of the output beam of the switch matrix unit is reduced to less than the input frequency band of the digital channelizer according to the command and the RF channelizer outputs only a necessary frequency band. apparatus. - 前記スイッチ・マトリックス部は、
前記入力マルチビームを分配するハイブリッド部と、
前記ハイブリッド部で分配された各ビームを前記コマンドにより指定されたときのみ選択するセレクタとで構成される
請求項2又は3に記載の衛星中継装置。 The switch matrix unit is
A hybrid unit for distributing the input multi-beams;
The satellite relay device according to claim 2 or 3, further comprising: a selector that selects each beam distributed by the hybrid unit only when designated by the command. - 前記出力側フレキシブル・スイッチ・マトリックスは、
前記デジタルチャネライザから出力されたビームの周波数帯域を、前記コマンドによって指示された周波数帯域に変換するチューナブルアップコンバータと、
前記チューナブルアップコンバータから出力されたビームにおいて必要周波数帯域のみのビームを出力するバンドパスフィルタと、
前記バンドパスフィルタから出力されたビームを合成して連続帯域に変換するスイッチ・マトリックス部とで構成される
請求項1に記載の衛星中継装置。 The output flexible switch matrix is
A tunable up-converter for converting the frequency band of the beam output from the digital channelizer into the frequency band instructed by the command;
A band pass filter for outputting a beam of only a necessary frequency band in a beam output from the tunable up converter;
The satellite relay apparatus according to claim 1, further comprising: a switch matrix unit that combines the beams output from the band pass filter and converts the combined beam into a continuous band. - 前記出力側フレキシブル・スイッチ・マトリックスは、
前記デジタルチャネライザから出力されたビームの周波数帯域を、前記コマンドによって指示された周波数帯域に変換するとともに必要周波数帯域のみのビームを出力するRFチャネライザと、
前記RFチャネライザから出力されたビームを合成して連続帯域に変換するスイッチ・マトリックス部とで構成される
請求項1に記載の衛星中継装置。 The output flexible switch matrix is
An RF channelizer that converts a frequency band of a beam output from the digital channelizer into a frequency band instructed by the command and outputs a beam of only a necessary frequency band;
The satellite relay device according to claim 1, comprising: a switch matrix unit that combines the beams output from the RF channelizer and converts the combined beam into a continuous band. - 前記スイッチ・マトリックス部は、
前記必要周波数帯域のみのビームを、前記コマンドに基づき一つのハイブリッド部へ通過させるセレクタを含み、
前記ハイブリッド部は、入力されたビームを合成する
請求項5又は6に記載の衛星中継装置。 The switch matrix unit is
A selector for passing a beam of only the required frequency band to one hybrid unit based on the command;
The satellite relay apparatus according to claim 5, wherein the hybrid unit combines the input beams. - 前記コマンドを、前記入力側フレキシブル・スイッチ・マトリックス、前記デジタルチャネライザ、及び前記出力側フレキシブル・スイッチ・マトリックスに与えるコマンド制御装置をさらに有する
請求項1から3のいずれか一項に記載の衛星中継装置。 The satellite relay according to any one of claims 1 to 3, further comprising a command control device for applying the command to the input flexible switch matrix, the digital channelizer, and the output flexible switch matrix. apparatus. - 前記地上装置は、
呼の確立があったとき、前記呼の使用帯域を計算し、前記使用帯域が衛星ペイロードの全帯域に対して追加閾値を越えたときには帯域の追加を要求し、前記使用帯域が全帯域に対して削減閾値を下回ったときには帯域の削減を要求するコネクション設定要求を発生するトラヒック制御部と、
前記コネクション設定要求を受けて、前記コマンド制御装置に前記コマンドとして、セレクタ設定コマンド、デジタルチャネライザ設定コマンド、及びコンバータ周波数帯域設定コマンドを送る地上ミッション制御装置とを含む
請求項8に記載の衛星中継装置。 The above ground device
When the call is established, the use band of the call is calculated, and when the use band exceeds an additional threshold with respect to the full band of satellite payload, an additional band is requested, and the use band with respect to the full band A traffic control unit that generates a connection setting request that requests bandwidth reduction when the value falls below the reduction threshold;
9. The satellite relay according to claim 8, further comprising: a ground mission control device for transmitting a selector setting command, a digital channelizer setting command, and a converter frequency band setting command as the command to the command control device in response to the connection setting request. apparatus. - 前記トラヒック制御部は、前記コマンド制御装置から前記地上ミッション制御装置を介して前記衛星ペイロードの周波数帯域情報を入手して前記使用帯域を計算する
請求項9に記載の衛星中継装置。 The satellite relay device according to claim 9, wherein the traffic control unit obtains frequency band information of the satellite payload from the command control device via the ground mission control device and calculates the use band.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/004604 WO2018146750A1 (en) | 2017-02-08 | 2017-02-08 | Satellite relay device |
JP2018566690A JP6656432B2 (en) | 2017-02-08 | 2017-02-08 | Satellite repeater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/004604 WO2018146750A1 (en) | 2017-02-08 | 2017-02-08 | Satellite relay device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018146750A1 true WO2018146750A1 (en) | 2018-08-16 |
Family
ID=63107294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/004604 WO2018146750A1 (en) | 2017-02-08 | 2017-02-08 | Satellite relay device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6656432B2 (en) |
WO (1) | WO2018146750A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023042712A1 (en) * | 2021-09-17 | 2023-03-23 | 三菱電機株式会社 | Artificial satellite, ground system, satellite communication system, space data center, operations device, content delivery operations device, network operations device, server operations device, space data center operations device, ground facility, low-orbit broadband constellation operations device, satellite communication method, on-demand content delivery method, and live video content delivery method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014112442A1 (en) * | 2013-01-15 | 2014-07-24 | 三菱電機株式会社 | Relay device, relay satellite, and satellite communication system |
WO2014125600A1 (en) * | 2013-02-14 | 2014-08-21 | 三菱電機株式会社 | Demultiplexing device, multiplexing device, and relay device |
WO2014170927A1 (en) * | 2013-04-18 | 2014-10-23 | 三菱電機株式会社 | Demultiplexing device, multiplexing device, and relay device |
-
2017
- 2017-02-08 WO PCT/JP2017/004604 patent/WO2018146750A1/en active Application Filing
- 2017-02-08 JP JP2018566690A patent/JP6656432B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014112442A1 (en) * | 2013-01-15 | 2014-07-24 | 三菱電機株式会社 | Relay device, relay satellite, and satellite communication system |
WO2014125600A1 (en) * | 2013-02-14 | 2014-08-21 | 三菱電機株式会社 | Demultiplexing device, multiplexing device, and relay device |
WO2014170927A1 (en) * | 2013-04-18 | 2014-10-23 | 三菱電機株式会社 | Demultiplexing device, multiplexing device, and relay device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023042712A1 (en) * | 2021-09-17 | 2023-03-23 | 三菱電機株式会社 | Artificial satellite, ground system, satellite communication system, space data center, operations device, content delivery operations device, network operations device, server operations device, space data center operations device, ground facility, low-orbit broadband constellation operations device, satellite communication method, on-demand content delivery method, and live video content delivery method |
WO2023042397A1 (en) * | 2021-09-17 | 2023-03-23 | 三菱電機株式会社 | Artificial satellite, ground system, satellite communication system, and satellite communication method |
JPWO2023042712A1 (en) * | 2021-09-17 | 2023-03-23 | ||
JP7621504B2 (en) | 2021-09-17 | 2025-01-24 | 三菱電機株式会社 | Artificial satellite, ground system, satellite communication system, and satellite communication method |
US12432615B2 (en) | 2021-09-17 | 2025-09-30 | Mitsubishi Electric Corporation | Artificial satellite, satellite communication system, space data center, business device, content distribution business device, network business device, server business device, space data center business device, ground installation, low-earth-orbit broadband constellation business device, and on-demand content distribution method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018146750A1 (en) | 2019-06-27 |
JP6656432B2 (en) | 2020-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2717493B1 (en) | Method and apparatus for routing IP packets in multi-beam satellite networks | |
US8417116B2 (en) | RoF system providing HD wireless communication service and signal control method for the same | |
US5809422A (en) | Distributed microcellular communications system | |
US9374187B2 (en) | Distributed antenna system and method | |
EP0944990B1 (en) | Cellular system with optical link between mobile telephone switching office and cell sites | |
KR101806173B1 (en) | Distributed Antenna System supporting MIMO services | |
US9356685B2 (en) | Multibeam satellite communication system and method, and satellite payload for carrying out such a method | |
WO2012147753A1 (en) | Relay satellite and satellite communication system | |
US11025337B2 (en) | Signal conversion in communications satellites | |
WO2014127317A1 (en) | Multiple-input multiple-output (mimo) communication system | |
GB2365677A (en) | Satellite communications with satellite routing according to channels assignment | |
EP2897307B1 (en) | Relay device, satellite relay device, and satellite relay method | |
DE202014010644U1 (en) | MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) COMMUNICATION SYSTEM | |
JP2003078464A (en) | Method and apparatus for dynamically allocating frequency bandwidth | |
WO2018146750A1 (en) | Satellite relay device | |
WO2014170927A1 (en) | Demultiplexing device, multiplexing device, and relay device | |
EP2658325A1 (en) | Base station apparatus, terminal apparatus and method | |
US20100297977A1 (en) | Filtering communications channels within telecommunications satellites | |
KR20190058057A (en) | Method and Apparatus for Operating In-building Relay based on mmWave | |
JP2977562B2 (en) | Satellite communication system | |
WO2020157881A1 (en) | Relay device and relay method | |
GB2334414A (en) | Satellite system with resources that are capable of being temporarily allocated to individual subscribers | |
HK1233823A1 (en) | Systems and methods for concurrent spectrum usage within actively used spectrum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17895564 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018566690 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17895564 Country of ref document: EP Kind code of ref document: A1 |