[go: up one dir, main page]

WO2018146807A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2018146807A1
WO2018146807A1 PCT/JP2017/005117 JP2017005117W WO2018146807A1 WO 2018146807 A1 WO2018146807 A1 WO 2018146807A1 JP 2017005117 W JP2017005117 W JP 2017005117W WO 2018146807 A1 WO2018146807 A1 WO 2018146807A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance
unit
emitting elements
light emitting
light
Prior art date
Application number
PCT/JP2017/005117
Other languages
French (fr)
Japanese (ja)
Inventor
洋和 田口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/005117 priority Critical patent/WO2018146807A1/en
Publication of WO2018146807A1 publication Critical patent/WO2018146807A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the present invention relates to a display device including a display unit having a light emitting element.
  • LED display device that displays an image using a plurality of LEDs (Light Emitting Diodes) is used in many applications such as outdoor and indoor advertisement display due to LED technology development and cost reduction.
  • LED display devices have been mainly used for displaying natural images and animated moving images.
  • it is also used indoors as a conference room and a monitoring application.
  • surveillance applications a personal computer image close to a still image is often displayed.
  • the luminance of the LED display surface that is, the surface on which a desired image is displayed to the observer is corrected by the reference LED (for example, a patent).
  • the reference LED is mounted on the surface opposite to the surface on which the plurality of LEDs constituting the LED display surface are mounted out of the two surfaces of the circuit board.
  • the above-mentioned reference LED that is driven in the same manner as the driving of a plurality of LEDs mounted on the display surface side deteriorates in the same manner as the LED on the display surface side.
  • the LED display device can detect the luminance of the reference LED with an optical sensor, measure the luminance reduction rate, and correct the luminance of the LED on the display surface side based on the luminance reduction rate. With this technique, the LED display device can correct the luminance variation and chromaticity variation of the LED display surface caused by the difference in the lighting time of the LED.
  • only one reference LED is mounted per circuit board on which a plurality of LEDs on the display surface side are mounted, and when the variation in the characteristics of each LED is large, the luminance variation is accurately corrected. It is difficult. Furthermore, when one of the reference LEDs is suddenly turned off due to an accidental failure or the like, it is impossible to measure the LED luminance reduction rate. For this reason, the LED display device cannot correct luminance variations on the LED display surface.
  • An LED display device in which a plurality of reference LEDs are mounted makes it possible to use the average value of the luminance of each reference LED for the above correction. That is, the LED display device can suppress adverse effects due to variations in the characteristics of the LEDs. Furthermore, even when one of the plurality of reference LEDs suddenly turns off due to an accidental failure or the like, the LED display device detects the number of the reference LEDs that have failed, and the brightness of the remaining reference LEDs that are continuously lit. It is possible to continue the correction of the luminance variation of the LED display surface by measuring. However, if the light sensor is simply arranged in front of the plurality of reference LEDs, the brightness of each reference LED detected by the light sensor is greatly different depending on the relative position between each reference LED and the light sensor.
  • each reference LED changes, that is, the light intensity with respect to the radiation angle changes with respect to the light emitted from each reference LED. For this reason, correction of luminance variation on the LED display surface is largely governed by the characteristics of the reference LED that contributes greatly to the luminance detected by the optical sensor.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a display device in which the effect of suppressing the luminance variation and chromaticity variation of the display unit is improved.
  • the display device includes a first display unit in which a plurality of first light emitting elements whose lighting is controlled by a first driving unit and a plurality of second light emitting elements whose lighting is controlled by a second driving unit.
  • the second display unit in which is arranged, the luminance measuring unit that measures the luminance of the plurality of second light emitting elements, and the lighting control of each of the plurality of first light emitting elements based on the luminance measured by the luminance measuring unit
  • a luminance correction unit that corrects luminance information included in the related signal.
  • the first driving unit controls lighting of each of the plurality of first light emitting elements based on the signal whose luminance information is corrected by the luminance correcting unit.
  • the luminance measurement unit includes a light receiving element and an integrator element.
  • the light receiving element receives the light emitted from the plurality of second light emitting elements and measures the luminance.
  • the integrator element is provided between the second display unit and the light receiving element, has a cylindrical shape whose cross section is larger than a region where the plurality of second light emitting elements are arranged, and is emitted from the plurality of second light emitting elements. The light beam is guided through the cylindrical shape to the light receiving element.
  • the present invention it is possible to provide a display device in which the effect of suppressing the luminance variation and chromaticity variation of the display unit is improved.
  • the display device can suppress the adverse effect of the characteristic variation of the light emitting element and can increase the accuracy of correcting the luminance variation.
  • FIG. 1 is a block diagram illustrating a configuration of an LED display device according to Embodiment 1.
  • FIG. 3 is a block diagram showing a processing circuit of the LED display device in Embodiment 1.
  • FIG. It is a figure which shows an example of the relationship between the 2nd cumulative lighting time of 2nd LED, and an average luminance fall rate. It is a figure which shows an example of the relationship between the 1st cumulative lighting time of 1st LED, and a luminance fall rate.
  • FIG. 3 is a schematic diagram showing an integrator element in the first embodiment.
  • FIG. 3 is a schematic diagram illustrating a cross section of a second LED display unit and a luminance measurement unit in the first embodiment.
  • FIG. 6 is a schematic diagram illustrating an example of a light distribution of first LEDs and second LEDs in Embodiment 2.
  • FIG. 6 is a schematic diagram showing a cross section of a second LED display unit and a luminance measurement unit in Embodiment 2.
  • FIG. 10 is a schematic diagram showing cross sections of a second LED display unit and a luminance measurement unit in a modification of the second embodiment.
  • FIG. 10 is a schematic diagram showing an integrator element in a third embodiment.
  • Embodiments of the display device according to the present invention will be described below.
  • the display device will be described by taking an LED display device as an example.
  • FIG. 1 is a block diagram illustrating a configuration of an LED display device 300 according to the first embodiment.
  • the LED display device 300 includes a first LED display unit 1, a second LED display unit 2, an input terminal 3, a video signal processing unit 4, a signal correction unit 5, a first drive unit 6, and a lighting time storage unit 7.
  • the luminance correction unit 18 includes a signal correction unit 5 and a correction coefficient calculation unit 12.
  • the 1st LED display part 1 and the 2nd LED display part 2 are demonstrated.
  • an LED display panel is applied to the first LED display unit 1 and the second LED display unit 2.
  • the first LED display unit 1 includes a plurality of first LEDs 1a.
  • a total of 16 first LEDs 1a of 4 vertical x 4 horizontal are arranged in a matrix.
  • the number of 1st LED1a is not restricted to this.
  • the first LED display unit 1 displays a desired image such as characters and figures.
  • the 1st LED display part 1 is driven based on the 1st drive signal output from the 1st drive part 6 mentioned later.
  • the first drive signal includes a display pattern, a drive pattern, and drive data. That is, lighting control of each first LED 1a is performed by the first drive signal output from the first drive unit 6.
  • the second LED display unit 2 has a plurality of second LEDs 2a.
  • a total of four second LEDs 2a of 2 vertical x 2 horizontal are arranged in a matrix.
  • the number of 2nd LED2a is not restricted to this, the 2nd LED display part 2 is comprised from 2 or more 2nd LED2a.
  • the second LED display unit 2 is driven based on a second drive signal output from a second drive unit 9 described later.
  • the second drive signal includes a display pattern, a drive pattern, and drive data. That is, lighting control of each second LED 2a is performed by the second drive signal output from the second drive unit 9.
  • the second LED display unit 2 performs display for the LED display device 300 to measure or predict the transition of the luminance of the first LED display unit 1.
  • the luminance reduction rate of each second LED 2a is equivalent to the luminance reduction rate of each first LED 1a. That is, the brightness reduction rate of each second LED 2a is the same as or similar to the brightness reduction rate of each first LED 1a.
  • LEDs having the same manufacturing lot are applied to the first LEDs 1a and the second LEDs 2a.
  • the first LED 1a and the second LED 2a are applied with LEDs having the same BIN code for classifying the LEDs according to luminance, wavelength, and the like.
  • Each of the first LEDs 1a and each of the second LEDs 2a have similar characteristics such as luminance and wavelength, and the luminance reduction rates of both are the same.
  • the display operation, ie, driving of the first LED display unit 1 and the display operation, ie, driving, of the second LED display unit 2 are performed in parallel.
  • 1st LED1a and 2nd LED2a are lighted on in the same environment, and it is possible to make both luminance fall rates close to each other.
  • the input terminal 3 receives a video signal from the outside.
  • the video signal processing unit 4 selects an area necessary for display based on the video signal received at the input terminal 3 and performs processing such as gamma correction.
  • the signal correction unit 5 corrects the luminance information included in the output signal of the video signal processing unit 4 using a correction coefficient input from the correction coefficient calculation unit 12 described later. By this correction, the signal correction unit 5 can substantially correct the first drive signal output from the first drive unit 6 to the first LED display unit 1, and consequently the luminance of the one or more first LEDs 1a. is there.
  • the first drive unit 6 generates a first drive signal for driving the first LED display unit 1 based on the output signal corrected by the signal correction unit 5.
  • the first drive unit 6 drives the first LED display unit 1 by outputting the first drive signal to the first LED display unit 1. That is, the 1st drive part 6 performs lighting control of each 1st LED1a.
  • the lighting time storage unit 7 stores the first cumulative lighting time of each of the first LEDs 1a.
  • the first cumulative lighting time is a time obtained by cumulatively adding times when the first LEDs 1a are turned on.
  • the signal generation unit 8 generates a signal for generating the second drive signal of the second LED display unit 2 based on the output signal corrected by the signal correction unit 5.
  • the second drive unit 9 generates a second drive signal for driving the second LED display unit 2 based on the signal generated by the signal generation unit 8.
  • the second drive unit 9 drives the second LED display unit 2 by outputting the second drive signal to the second LED display unit 2. That is, the 2nd drive part 9 performs lighting control of each 2nd LED2a.
  • the second drive unit 9 includes a detection unit (not shown).
  • a detection part determines the lighting state of each 2nd LED2a which the 2nd LED display part 2 has. For example, the detection unit detects a failure state or a normal state of each second LED 2a. And a detection part counts the number of each 2nd LED2a currently lighted normally.
  • the luminance measuring unit 100 includes a light receiving element 10 and an integrator element 20.
  • the light receiving element 10 is disposed to face the second LED display unit 2.
  • the light receiving element 10 receives the light emitted from the plurality of second LEDs 2a and measures the luminance thereof.
  • a measuring device such as a photodiode capable of measuring light having a wavelength in the visible range is applied.
  • the integrator element 20 is provided between the second LED display unit 2 and the light receiving element 10.
  • the integrator element 20 has a cylindrical shape whose cross section is larger than a region where the plurality of second LEDs 2a are arranged.
  • the integrator element 20 is, for example, a light tunnel having a cylindrical shape with a rectangular cross section.
  • the integrator element 20 has a mirror formed by depositing a reflective film on four inner walls that form a rectangular cross section. In FIG. 1, for convenience of explanation, the integrator element 20 is shown in a perspective view.
  • the integrator element 20 takes in the light emitted from the plurality of second LEDs 2a of the second LED display unit 2 into the cylindrical shape and guides it to the light receiving element 10 as a leveled light.
  • the average luminance calculation unit 13 calculates the average luminance of each second LED 2a.
  • the average luminance is obtained by dividing the luminance of at least one second LED 2a that is normally lit among the plurality of second LEDs 2a by the number of each second LED 2a that is normally lit as counted by the detection unit of the second drive unit 9. Is calculated.
  • the luminance of the at least one second LED 2a that is normally lit is measured by the luminance measuring unit 100.
  • the luminance transition storage unit 11 stores the average luminance of each second LED 2a calculated by the average luminance calculation unit 13 and the second cumulative lighting time of each second LED 2a in association with each other.
  • the second cumulative lighting time is a time obtained by cumulatively adding the times when the second LEDs 2a are turned on.
  • At least one second LED 2a among the plurality of second LEDs 2a of the second LED display unit 2 is lit. It is done at any time.
  • the correction coefficient calculation unit 12 calculates a luminance reduction rate from the first cumulative lighting time stored in the lighting time storage unit 7 and the average luminance and the second cumulative lighting time of the second LED 2a stored in the luminance transition storage unit 11. To do.
  • the correction coefficient calculation unit 12 calculates a luminance correction coefficient based on the luminance reduction rate.
  • the luminance correction unit 18 in FIG. 1 includes the signal correction unit 5 and the correction coefficient calculation unit 12 described above. That is, the luminance correction unit 18 is based on the first cumulative lighting time stored in the lighting time storage unit 7 and the average luminance and the second cumulative lighting time of the second LED 2a stored in the luminance transition storage unit 11. A correction coefficient is calculated. Then, the brightness correction unit 18 corrects the brightness information included in the output signal of the video signal processing unit 4 using the correction coefficient. As a result, the first drive signal output from the first drive unit 6 to the first LED display unit 1 and the brightness of the first LED 1a are corrected.
  • the plurality of first cumulative lighting times of the plurality of first LEDs 1a are different.
  • the second cumulative lighting time of the second LED 2a is set to the longest first cumulative lighting time among the first cumulative lighting times of the plurality of first LEDs 1a. That is, the length of the second cumulative lighting time of the second LED 2a is controlled to be equal to or longer than the length of the first cumulative lighting time of the first LED 1a.
  • the plurality of second LEDs 2 a are driven based on the same second drive signal from the second drive unit 9, whereby the plurality of second LEDs 2 a are all subjected to the same lighting control and the like. That is, the second cumulative lighting times of the plurality of second LEDs 2a are not different individually and are the same time.
  • the luminance correction unit 18 includes the longest first cumulative lighting time among the plurality of first cumulative lighting times stored in the lighting time storage unit 7 and the luminance reduction rate of the second LED 2 a stored in the luminance transition storage unit 11. The correction is performed based on the second cumulative lighting time.
  • FIG. 2 is a diagram illustrating an example of the processing circuit 90 provided in the LED display device 300.
  • the processing circuit 90 includes a memory 91 and a processor 92 that are connected to each other.
  • the functions of the video signal processing unit 4, the signal correction unit 5, the first drive unit 6, the signal generation unit 8, the second drive unit 9, the average luminance calculation unit 13, and the correction coefficient calculation unit 12 are described as a program. And stored in the memory 91.
  • the processor 92 reads out and executes the program stored in the memory 91, thereby realizing each operation of each unit described above.
  • the functions of the lighting time storage unit 7 and the luminance transition storage unit 11 are realized by the memory 91, for example.
  • the luminance transition storage unit 11 stores the average luminance calculated by the average luminance calculation unit 13 and the second cumulative lighting time of the second LED 2a in association with each other.
  • the correction coefficient calculation unit 12 of the luminance correction unit 18 reads the average luminance and the second cumulative lighting time, and calculates the luminance reduction rate.
  • FIG. 3 is a diagram illustrating an example of the relationship between the second cumulative lighting time of the second LED 2a and the luminance reduction rate.
  • the logarithmic scale is applied to the scale of the 2nd cumulative lighting time of FIG.
  • the luminance reduction rate of the second LED 2a shown in FIG. 3 is the average luminance reduction rate of the plurality of second LEDs 2a as described above.
  • the average luminance reduction rate of the second LED 2a increases. That is, the brightness of each second LED 2a decreases.
  • each first LED 1a of the first LED display unit 1 has characteristics similar to each second LED 2a to such an extent that the luminance reduction rate can be identified with the luminance reduction rate of each second LED 2a.
  • FIG. 4 is a diagram illustrating an example of the relationship between the first cumulative lighting time of the first LED 1a and the luminance reduction rate. The logarithmic scale is applied to the scale of the lighting time of FIG. 4 like FIG. Note that a total of 16 first LEDs 1a are arranged in the first LED display unit 1, but for convenience of explanation, FIG. 1 shows the brightness of each of the three representative first LEDs 1a having different first cumulative lighting times. Only the rate of decline is displayed.
  • each first LED 1a also decreases with the lighting time, like the luminance of the second LED 2a. However, since there is a difference in the first cumulative lighting time of each of the plurality of first LEDs 1a, the respective luminance reduction rates are different. If the brightness of each of the plurality of first LEDs 1a is not corrected, brightness variation occurs in the display of the first LED display unit 1.
  • the correction coefficient calculation unit 12 reads the luminance corresponding to the lighting time of the second LED 2a that is the same as or close to the lighting time of the first LED 1a stored in the lighting time storage unit 7, and calculates the luminance reduction rate.
  • the lighting time of the first LED 1a is an actual measurement time.
  • the luminance reduction rate of each second LED 2a is equal to the luminance reduction rate of each first LED 1a. Therefore, the LED display device 300 according to the first embodiment can calculate the luminance decrease rate of each first LED 1a without requiring actual measurement of the luminance of each first LED 1a.
  • the correction coefficient calculation unit 12 obtains the largest luminance reduction rate as the maximum luminance reduction rate among the plurality of calculated luminance reduction rates of the first LEDs 1a. Further, the correction coefficient calculation unit 12 refers to the lighting time storage unit 7 and the luminance transition storage unit 11, and for all the first LEDs 1a of the first LED display unit 1, a theoretical luminance reduction rate with respect to the first cumulative lighting time, A correction coefficient for each first LED 1a is obtained based on the maximum luminance reduction rate described above.
  • the luminance correction unit 18 corrects the luminance information included in the output signal of the video signal processing unit 4 using the correction coefficient for each first LED 1a. By this correction, the first drive signal is substantially corrected.
  • the LED display device 300 corrects the luminance of each of the plurality of first LEDs 1a as indicated by arrows in FIG. That is, the LED display device 300 corrects the luminance of all the first LEDs 1a to the same luminance indicated by a one-dot chain line in FIG.
  • the luminance after correction of the first LED display unit 1 is reduced as a whole as compared with the luminance before correction.
  • luminance of 1st LED1a can be unified into the brightness
  • the light receiving element 10 of the luminance measuring unit 100 is disposed so as to face the second LED display unit 2 via the integrator element 20, and the luminance of the plurality of second LEDs 2 a. Measure.
  • FIG. 5 is a schematic diagram showing the integrator element 20.
  • the integrator element 20 is composed of, for example, four rectangular mirrors 201.
  • a reflective film is formed on one surface 201 a of the mirror 201.
  • the integrator element 20 is a light tunnel 200 that is fixed so that the one surface 201a having the reflective film functions as a reflective surface when the one surface 201a is located on the inner surface and has a rectangular cross section.
  • FIG. 6 is a schematic diagram showing cross sections of the second LED display unit 2 and the luminance measurement unit 100.
  • FIG. 6 includes an illustration of a plurality of light rays emitted from the second LED 2 a included in the second LED display unit 2 as an example.
  • the plurality of light rays emitted by the second LED 2a are taken into the light tunnel 200 from the entrance 202 and propagate while repeating reflection on the reflection surface of the inner wall. Thereby, each light beam is superimposed and made uniform.
  • Each light beam exits from an exit port 203 opposite to the entrance port 202.
  • the light receiving element 10 receives the uniformed light beam and measures the luminance of the second LED 2a.
  • each second LED 2a an LED having the same manufacturing lot as that of each first LED 1a or an LED having the same BIN code for classifying the LEDs according to luminance or the like is applied to each second LED 2a. Therefore, the characteristics such as the luminance of each first LED 1a and each second LED 2a are substantially the same.
  • each second LED 2a propagates through the inside without leaking out of the light tunnel 200, and reaches the light receiving element 10 as a uniformed light beam. Therefore, the ratio which each 2nd LED2a contributes with respect to the brightness
  • the luminance measured by the luminance measuring unit 100 is a value based on the characteristics of the second LEDs 2a in which the characteristics are equally averaged. Thus, the light tunnel 200 suppresses the influence of the characteristic variation of each second LED 2a.
  • the LED display device 300 can continue correcting the brightness of each first LED 1a even when one of the plurality of second LEDs 2a is turned off due to an accidental failure or the like. This is because, as described above, the average luminance calculation unit 13 calculates the average luminance of each second LED 2a in the normal state, and the correction coefficient calculation unit 12 calculates the luminance reduction rate and the correction coefficient from the average luminance. The contribution rate of each second LED 2a is substantially the same with respect to the luminance measured by the luminance measuring unit 100. Therefore, the fact that one of the plurality of second LEDs is turned off does not affect the average luminance of each second LED 2a calculated by the average luminance calculation unit 13. The LED display device 300 can continue to accurately correct the luminance of each first LED 1a.
  • the second LED display unit 2 and the light receiving element 10 in the first embodiment are arranged adjacent to the entrance 202 and the exit 203 of the light tunnel 200, respectively. Therefore, no light other than the light emitted by each second LED 2 a is incident on the light receiving element 10 of the luminance measuring unit 100.
  • the LED display device 300 can accurately correct the luminance of each first LED 1a without being affected by surrounding stray light.
  • the LED display device 300 when there is a large variation in the characteristics of LEDs for luminance measurement or when a failure occurs, it is difficult to uniformly control the luminance and chromaticity of the entire LED display surface.
  • the LED display device 300 performs luminance measurement of the LEDs for luminance measurement via the light tunnel 200. For this reason, the LED display device 300 eliminates the influence of variations in the characteristics of LEDs for luminance measurement and the effect of luminance reduction due to failure, so that the luminance and chromaticity of the entire LED display device do not shift and are always stable and uniform. Can be controlled.
  • the display device is lit by the first display unit in which a plurality of first light emitting elements whose lighting is controlled by the first driving unit 6 and the second driving unit 9 are lit. And a second display unit on which a plurality of second light emitting elements to be controlled are arranged.
  • the plurality of first light emitting elements are a plurality of first LEDs
  • the first display unit is a first LED display unit in which a plurality of first LEDs are arranged.
  • the plurality of second light emitting elements are a plurality of second LEDs
  • the second display unit is a second LED display unit in which a plurality of second LEDs are arranged. That is, the display device in the first embodiment is the LED display device 300.
  • the LED display device 300 includes a luminance measurement unit 100 that measures the luminance of the plurality of second LEDs 2a, and a signal related to lighting control of each of the plurality of first LEDs 1a based on the luminance measured by the luminance measurement unit 100. And a luminance correction unit 18 that corrects luminance information to be corrected.
  • a signal related to the lighting control of each of the plurality of first LEDs 1 a is an output signal of the video signal processing unit 4.
  • the first driving unit 6 controls lighting of each of the plurality of first LEDs 1a based on the signal whose luminance information is corrected by the luminance correcting unit 18.
  • the luminance measuring unit 100 is provided between the light receiving element 10 that receives the light emitted from the plurality of second LEDs 2a and measures the luminance, and the second LED display unit 2 and the light receiving element 10, and has a cross section of the plurality of second LEDs 2a.
  • an integrator element 20 that guides the light emitted from the plurality of second LEDs 2a to the light receiving element 10 through the inside of the cylindrical shape.
  • the light beam emitted from each second LED 2 a reaches the light receiving element 10 without leaking out of the integrator element 20.
  • light other than the light emitted from each second LED 2a does not enter the light receiving element 10, and the influence of surrounding stray light is eliminated.
  • the light emitted from each second LED 2 a is leveled by the integrator element 2 and enters the light receiving element 10. Therefore, the LED display device 300 calculates the luminance maintenance rate of each first LED 1a after suppressing the influence of variation in characteristics of each second LED.
  • the LED display device 300 reliably measures the light rays emitted from the plurality of second LEDs 2a and calculates the luminance transition (luminance maintenance rate or luminance reduction rate) of the first LED 1a with high accuracy.
  • the LED display device 300 can suppress luminance variation and chromaticity variation of the first LED display unit 1 in a state where a desired image is displayed on the first LED display unit 1.
  • the display device (LED display device 300) includes a lighting time storage unit 7 that stores the first cumulative lighting time of each of the plurality of first light emitting elements (first LEDs 1a), and the luminance measurement unit 100. Is further provided with a luminance transition storage unit 11 that stores the luminance measured by the above and the second cumulative lighting time of the plurality of second light emitting elements (second LEDs 2a) in association with each other.
  • the brightness correction unit 18 is based on the first cumulative lighting time of each of the plurality of first LEDs 1a stored in the lighting time storage unit 7, the luminance stored in the luminance transition storage unit 11, and the second cumulative lighting time. Luminance information included in a signal related to lighting control of each of the plurality of first LEDs 1a is corrected.
  • the luminance of the first LED display unit 1 is corrected by the luminance transition (luminance maintenance rate or luminance reduction rate) corresponding to the first cumulative lighting time of each first LED 1a. Therefore, the LED display device 300 can correct the luminance of the first LED display unit 1 with high accuracy.
  • the 2nd drive part 9 with which the display apparatus (LED display apparatus 300) in this Embodiment 1 is provided determines each lighting state of several 2nd light emitting element (2nd LED2a), and each is a normal state.
  • a detection unit for counting the number of second LEDs 2a is included.
  • the LED display device 300 includes the number of normal second LEDs 2a counted by the detection unit and the luminance of at least one second LED 2a in the normal state among the plurality of second LEDs 2a measured by the luminance measurement unit 100.
  • An average luminance calculation unit 13 that calculates the average luminance of each second LED 2a is further provided.
  • the luminance transition storage unit 11 stores the average luminance calculated by the average luminance calculation unit 13 and the second cumulative lighting time in association with each other.
  • the luminance correction unit 18 includes a first cumulative lighting time of each of the plurality of first light emitting elements (first LEDs 1a) stored in the lighting time storage unit 7, an average luminance and a second cumulative value stored in the luminance transition storage unit 11. Based on the lighting time, the luminance information included in the signal related to the lighting control of each of the plurality of first LEDs 1a is corrected.
  • the LED display device 300 uses the average brightness of the remaining second LEDs 2a that are normally lit even when some of the plurality of second LEDs 2a are not lit due to accidental failure or the like.
  • the brightness correction of the first LED display unit 1 can be continued.
  • the LED display device 300 can suppress the luminance correction error due to the characteristic variation of each of the second LEDs 2a by measuring the luminance after averaging the characteristics of all the second LEDs 2a. As a result, the LED display device 300 can perform brightness correction with high accuracy.
  • the LED display device 300 does not include the average luminance calculation unit 13, the luminance measured by the luminance measurement unit 100 is stored in the luminance transition storage unit 11 as it is.
  • the block configuration of the LED display device in the second embodiment is the same as the block configuration of the LED display device 300 shown in FIG. 1 of the first embodiment.
  • the same or similar components as those in the first embodiment are denoted by the same reference numerals.
  • FIG. 7 is a schematic diagram showing an example of the light distribution of the first LED 1a and the second LED 2a.
  • the vertical direction is a radiation angle of 0 ° with respect to the light emitting surface of each of the first LED 1a and the second LED 2a. Further, the same plane as the light emitting surface has radiation angles of ⁇ 90 ° and 90 °.
  • FIG. 7 shows the luminous intensity of the light emitted by the first LED 1a and the second LED 2a at the radiation angle of ⁇ 90 ° to 90 °.
  • the light distribution Iv0 indicates the light distribution in the initial lighting of the first LED 1a and the second LED 2a.
  • the light distribution distribution Ivt is a light distribution when the cumulative lighting time is short, and the light distribution IvT is a light distribution after the cumulative lighting time is long.
  • the luminous flux In each cumulative lighting time, there is almost no difference in the amount of light per unit time emitted in all directions, that is, the luminous flux. However, as the accumulated lighting time becomes longer, the luminous intensity decreases in a small angle region and increases in a large angle region.
  • each first LED 1a has the aging characteristics shown in FIG. 7, the observer observes an image in which luminance variation or chromaticity variation occurs as the usage time of the LED display device 300 elapses. That is, when an observer observes an image from a position away from the first LED display unit 1 or from a narrow angle range near the front of the first LED display unit 1, an image displayed by the first LED 1a having a long first cumulative lighting time. Is observed to be lower than the luminance of the image displayed by the first LED 1a having a short first cumulative lighting time.
  • the LED display device 300 has a configuration in which the second LED display unit 2 and the luminance measurement unit 100 are arranged adjacent to the entrance port 202 and the exit port 203 of the light tunnel 200, respectively.
  • the light beam emitted from the second LED 2 a passes through the inside of the light tunnel 200 without entering the surroundings and enters the light receiving element 10.
  • the correction coefficient to be applied is almost the same.
  • the brightness of each first LED 1a based on these correction coefficients is corrected only at the same rate. As a result, luminance variations due to aging of the first LED display unit 1 are not eliminated.
  • FIG. 8 is a schematic diagram showing cross sections of the second LED display unit 2 and the luminance measurement unit 101 in the second embodiment.
  • FIG. 8 includes an illustration of light rays emitted from the second LED 2 a included in the second LED display unit 2.
  • the luminance measuring unit 101 includes an integrator element 20 and a light receiving element 10 as in the first embodiment.
  • the light tunnel 200 that is the integrator element 20 is provided with a predetermined gap between one end of the cylindrical shape, that is, between the incident port 202 and the second LED display unit 2.
  • the other end of the cylindrical shape, that is, the emission port 203 is provided adjacent to the light receiving element 10 without a gap.
  • a light beam having a large radiation angle that increases with the passage of the second cumulative lighting time does not contribute to the luminance of the second LED 2 a measured by the luminance measuring unit 101.
  • the luminance measurement unit 101 measures different luminances according to the second cumulative lighting time.
  • the correction coefficient calculated by the luminance correction unit 18 based on the luminance of the second LED 2a and the second cumulative lighting time is calculated as a coefficient that takes into account the aging characteristics of the light distribution of the second LED 2a and the first LED 1a. .
  • the luminance variation on the display surface of the first LED display unit 1 is eliminated.
  • the distance d shown in FIG. 8 is the distance between the entrance 202 of the light tunnel 200 and the second LED display unit 2.
  • the angle ⁇ is an angle formed by the central axis (perpendicular line) of the second LED display unit 2 and a line connecting the end of the incident port 202 and the center of the second LED display unit 2.
  • the distance d has a relationship with the angle ⁇ .
  • the distance d may be determined in consideration of the environment where the first LED display unit 1 is actually installed. That is, the distance d may be determined in consideration of the relative positional relationship between the first LED display unit 1 and the observer.
  • the vertical direction with respect to the display surface of the first LED display unit 1 is an angle of 0 °
  • the same surface as the display surface is an angle of ⁇ 90 ° or 90 °.
  • the distance d is determined so that the angle ⁇ is approximately 30 °.
  • the integrator element 20 (light tunnel 200) included in the LED display device 300 according to the second embodiment has a cylindrical end with a gap between the second LED display unit and the other end. It is provided adjacent to the light receiving element 10.
  • the LED display device 300 allows the observer to observe the first LED display unit 1 from a narrow range near the front.
  • a uniform image in which luminance variation and chromaticity variation are corrected is provided.
  • the aging characteristics show that there is almost no difference in luminous flux as the cumulative lighting time increases, the light intensity gradually decreases in the small radiation angle region, and the light intensity gradually increases in the large radiation angle region. It is effective when it is a characteristic.
  • the luminance measurement unit 102 is positioned between the incident port 202 and the second LED display unit 2 outside the cylindrical shape of the light tunnel 200. It is desirable to include a light shielding member 25 that surrounds the gap. It is desirable that the light shielding member 25 is disposed by connecting the second LED display unit 2 and the light receiving element 10 without any gap, and covers the entire cylindrical outer side of the light tunnel 200.
  • the integrator element 20 is a light tunnel 200 configured by bonding and fixing four mirrors 201 as shown in FIG.
  • the integrator element 20 is not limited thereto, and may have another configuration as long as it has a similar function.
  • FIG. 10 is a schematic diagram showing the light tunnel 205 in the third embodiment.
  • the light tunnel 205 has a cylindrical shape formed by bending a single thin plate 206 made of stainless steel.
  • One surface 206a of the thin plate 206 is a substantially mirror surface.
  • the one surface 206a is, for example, a polished surface polished by a mirror buff.
  • the inner wall of the light tunnel 205 is the one surface 206a, and the cross section of the light tunnel 205 has a rectangular shape.
  • the integrator element 20 can be configured by simple processing.
  • the light tunnel 205 is lightweight and inexpensive.
  • an example of an LED display device including a display unit in which LEDs are arranged as light emitting elements has been shown, but the present invention is not limited thereto. Even in the case of a display device including a display unit in which a self-luminous light source, for example, a plurality of solid light sources or a plurality of light sources formed by coating or vapor deposition is arranged as a light emitting element, the effects described in the above embodiments The same effect is produced.
  • the signal for correcting the luminance information by the luminance correction unit 18, that is, the signal related to the lighting control of each of the plurality of first light emitting elements, is output from the video signal processing unit 4.
  • An example of a signal has been shown, but is not limited thereto.
  • 1 1st LED display section 1a 1st LED, 2nd LED display section, 2a 2nd LED, 5 signal correction section, 6 1st drive section, 7 lighting time storage section, 8 signal generation section, 9 2nd drive section, 10 light reception Element, 11 luminance transition storage unit, 12 correction coefficient calculation unit, 13 average luminance calculation unit, 18 luminance correction unit, 20 integrator element, 100 luminance measurement unit, 300 LED display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

The purpose of the present invention is to provide a display device for which variations in display-unit luminance and chromacity can be improved. This display device comprises: a first display unit (1) having disposed therein a plurality of first light-emitting elements (1a) the lighting of which is controlled by a first driving unit (6); a second display unit (2) having disposed therein a plurality of second light-emitting elements (2a) the lighting of which is controlled by a second driving unit (9); a luminance measuring unit (100) for measuring the luminance of the plurality of second light-emitting elements (2a); and a luminance correcting unit (18) for correcting luminance information on the basis of the measured luminance, such luminance information being included in a signal associated with the lighting control of each of the first light-emitting elements (1a). The first driving unit (6) controls the lighting of each of the first light-emitting elements (1a) on the basis of the corrected signal. The luminance measuring unit (100) includes a light-receiving element (10) and an integrator element (20). The light-receiving element (10) receives the light rays emitted from the plurality of second light-emitting elements (2a) and thereby measures luminance. The integrator element (20) is disposed between the second display unit (2) and the light-receiving element (10). The cross-section of the integrator element has a cylindrical shape larger than the region in which the plurality of second light-emitting elements (2a) are disposed, and the light rays emitted from the plurality of second light-emitting elements (2a) pass through the inside of such cylindrical shape and are guided to the light-receiving element (10).

Description

表示装置Display device
 本発明は、発光素子を有する表示部を備える表示装置に関する。 The present invention relates to a display device including a display unit having a light emitting element.
 複数のLED(Light Emitting Diode:発光ダイオード)によって画像を表示するLED表示装置は、LEDの技術発展と低コスト化とにより、屋外および屋内の広告表示等の多くの用途に使用されている。具体的には、従来、LED表示装置は、自然画およびアニメーションの動画の表示に主に使用されていた。しかし近年、画素ピッチの狭ピッチ化に伴い、視認距離が短くても画質を維持することが可能になったことから、屋内での用途として、会議室や監視用途などにも使用されている。このうち監視用途においては、静止画に近いパソコン画像を表示することが多い。 2. Description of the Related Art An LED display device that displays an image using a plurality of LEDs (Light Emitting Diodes) is used in many applications such as outdoor and indoor advertisement display due to LED technology development and cost reduction. Specifically, conventionally, LED display devices have been mainly used for displaying natural images and animated moving images. However, in recent years, with the narrowing of the pixel pitch, it has become possible to maintain the image quality even when the viewing distance is short. Therefore, it is also used indoors as a conference room and a monitoring application. Of these, in surveillance applications, a personal computer image close to a still image is often displayed.
 LEDは累積点灯時間が長くなるにつれて輝度が低下するため、表示する画像の内容によって各LEDの累積点灯時間が、ひいては各LEDの輝度低下率に差が生じる。この結果、累積点灯時間の長時間化に伴い、画素の輝度ばらつきおよび色度ばらつきが発生する。 Since the luminance of the LEDs decreases as the cumulative lighting time becomes longer, a difference occurs in the cumulative lighting time of each LED and consequently the luminance reduction rate of each LED depending on the content of the displayed image. As a result, pixel luminance variations and chromaticity variations occur as the cumulative lighting time increases.
 このような輝度ばらつきおよび色度ばらつきを低減するために、LED表示面、即ち観察者に向けて所望の画像を表示する面の輝度を、基準LEDによって補正する技術が提案されている(例えば特許文献1)。その基準LEDは、回路板が有する2面のうち、LED表示面を構成する複数のLEDが実装される面とは反対側の面に実装される。 In order to reduce such luminance variation and chromaticity variation, a technique has been proposed in which the luminance of the LED display surface, that is, the surface on which a desired image is displayed to the observer is corrected by the reference LED (for example, a patent). Reference 1). The reference LED is mounted on the surface opposite to the surface on which the plurality of LEDs constituting the LED display surface are mounted out of the two surfaces of the circuit board.
特開2014-102484号公報JP 2014-102484 A
 表示面側に実装された複数のLEDの駆動と同じように駆動される上述の基準LEDは、表示面側のLEDと同様に劣化する。LED表示装置は、当該基準LEDの輝度を光センサーにより検知して輝度低下率を計測し、当該輝度低下率に基づいて表示面側のLEDの輝度を補正することができる。この技術により、LED表示装置は、LEDの点灯時間の違いに起因するLED表示面の輝度ばらつきおよび色度ばらつきを補正することが可能である。しかしながら、表示面側の複数のLEDが実装される1枚の回路板につき、1個の基準LEDしか実装されず、また、各LEDの特性のばらつきが大きい場合には精度よく輝度ばらつきを補正することは困難である。さらに、偶発故障などで、突然、1個の当該基準LEDが消灯した場合、LEDの輝度低下率の計測が不可能となる。そのため、LED表示装置は、LED表示面の輝度ばらつき等を補正できなくなる。 The above-mentioned reference LED that is driven in the same manner as the driving of a plurality of LEDs mounted on the display surface side deteriorates in the same manner as the LED on the display surface side. The LED display device can detect the luminance of the reference LED with an optical sensor, measure the luminance reduction rate, and correct the luminance of the LED on the display surface side based on the luminance reduction rate. With this technique, the LED display device can correct the luminance variation and chromaticity variation of the LED display surface caused by the difference in the lighting time of the LED. However, only one reference LED is mounted per circuit board on which a plurality of LEDs on the display surface side are mounted, and when the variation in the characteristics of each LED is large, the luminance variation is accurately corrected. It is difficult. Furthermore, when one of the reference LEDs is suddenly turned off due to an accidental failure or the like, it is impossible to measure the LED luminance reduction rate. For this reason, the LED display device cannot correct luminance variations on the LED display surface.
 複数の基準LEDを実装するLED表示装置は、各基準LEDの輝度の平均値を上記の補正に用いることを可能にする。つまり、LED表示装置は、LEDの各々の特性のばらつきによる悪影響を抑制することができる。さらに、複数の基準LEDの中の1個が偶発故障などで突然消灯した場合にも、LED表示装置はその故障した基準LEDの個数を検知し、点灯し続けている残りの基準LEDの輝度を測定して、LED表示面の輝度ばらつき等の補正を継続することができる。しかしながら、複数の基準LEDの前に光センサーを単純に配置するだけでは、各基準LEDと光センサーとの相対位置によって、光センサーが検知する各基準LEDの輝度に大きな違いが生じる。これは、各基準LEDの配光分布が変化するため、即ち、各基準LEDから放出される光線に関して放射角度に対する光度が変化するためである。そのため、光センサーに検知される輝度に対し高く寄与する基準LEDの特性によって、LED表示面の輝度ばらつき等の補正は大きく支配される。 An LED display device in which a plurality of reference LEDs are mounted makes it possible to use the average value of the luminance of each reference LED for the above correction. That is, the LED display device can suppress adverse effects due to variations in the characteristics of the LEDs. Furthermore, even when one of the plurality of reference LEDs suddenly turns off due to an accidental failure or the like, the LED display device detects the number of the reference LEDs that have failed, and the brightness of the remaining reference LEDs that are continuously lit. It is possible to continue the correction of the luminance variation of the LED display surface by measuring. However, if the light sensor is simply arranged in front of the plurality of reference LEDs, the brightness of each reference LED detected by the light sensor is greatly different depending on the relative position between each reference LED and the light sensor. This is because the light distribution of each reference LED changes, that is, the light intensity with respect to the radiation angle changes with respect to the light emitted from each reference LED. For this reason, correction of luminance variation on the LED display surface is largely governed by the characteristics of the reference LED that contributes greatly to the luminance detected by the optical sensor.
 本発明は、上記のような課題を鑑みてなされたものであり、表示部の輝度ばらつきおよび色度ばらつきの抑制効果が向上する表示装置の提供を目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a display device in which the effect of suppressing the luminance variation and chromaticity variation of the display unit is improved.
 本発明に係る表示装置は、第1駆動部により点灯が制御される複数の第1発光素子が配置された第1表示部と、第2駆動部により点灯が制御される複数の第2発光素子が配置された第2表示部と、複数の第2発光素子の輝度を測定する輝度測定部と、輝度測定部により測定される輝度に基づいて、複数の第1発光素子の各々の点灯制御に関連する信号に含まれる輝度情報を補正する輝度補正部とを備える。第1駆動部は、輝度補正部により輝度情報が補正された信号に基づいて複数の第1発光素子の各々の点灯を制御する。輝度測定部は、受光素子とインテグレータ素子とを含む。受光素子は、複数の第2発光素子から放出される光線を受光して輝度を測定する。インテグレータ素子は、第2表示部と受光素子との間に設けられ、断面が複数の第2発光素子が配置された領域よりも大きい筒形状を有し、複数の第2発光素子から放出される光線を筒形状の内部に通して受光素子に導く。 The display device according to the present invention includes a first display unit in which a plurality of first light emitting elements whose lighting is controlled by a first driving unit and a plurality of second light emitting elements whose lighting is controlled by a second driving unit. The second display unit in which is arranged, the luminance measuring unit that measures the luminance of the plurality of second light emitting elements, and the lighting control of each of the plurality of first light emitting elements based on the luminance measured by the luminance measuring unit A luminance correction unit that corrects luminance information included in the related signal. The first driving unit controls lighting of each of the plurality of first light emitting elements based on the signal whose luminance information is corrected by the luminance correcting unit. The luminance measurement unit includes a light receiving element and an integrator element. The light receiving element receives the light emitted from the plurality of second light emitting elements and measures the luminance. The integrator element is provided between the second display unit and the light receiving element, has a cylindrical shape whose cross section is larger than a region where the plurality of second light emitting elements are arranged, and is emitted from the plurality of second light emitting elements. The light beam is guided through the cylindrical shape to the light receiving element.
 本発明によれば、表示部の輝度ばらつきおよび色度ばらつきの抑制効果が向上する表示装置の提供が可能となる。特にその表示装置は、発光素子が有する特性ばらつきの悪影響を抑制し、輝度ばらつきの補正精度を高めることができる。 According to the present invention, it is possible to provide a display device in which the effect of suppressing the luminance variation and chromaticity variation of the display unit is improved. In particular, the display device can suppress the adverse effect of the characteristic variation of the light emitting element and can increase the accuracy of correcting the luminance variation.
 本発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白になる。 The objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
実施の形態1におけるLED表示装置の構成を示すブロック図である。1 is a block diagram illustrating a configuration of an LED display device according to Embodiment 1. FIG. 実施の形態1におけるLED表示装置の処理回路を示すブロック図である。3 is a block diagram showing a processing circuit of the LED display device in Embodiment 1. FIG. 第2LEDの第2累積点灯時間と平均輝度低下率との関係の一例を示す図である。It is a figure which shows an example of the relationship between the 2nd cumulative lighting time of 2nd LED, and an average luminance fall rate. 第1LEDの第1累積点灯時間と輝度低下率との関係の一例を示す図である。It is a figure which shows an example of the relationship between the 1st cumulative lighting time of 1st LED, and a luminance fall rate. 実施の形態1におけるインテグレータ素子を示す概略図である。FIG. 3 is a schematic diagram showing an integrator element in the first embodiment. 実施の形態1における第2LED表示部および輝度測定部の断面を示す模式図である。FIG. 3 is a schematic diagram illustrating a cross section of a second LED display unit and a luminance measurement unit in the first embodiment. 実施の形態2における第1LEDおよび第2LEDの配光分布の一例を示す概略図である。6 is a schematic diagram illustrating an example of a light distribution of first LEDs and second LEDs in Embodiment 2. FIG. 実施の形態2における第2LED表示部および輝度測定部の断面を示す模式図である。6 is a schematic diagram showing a cross section of a second LED display unit and a luminance measurement unit in Embodiment 2. FIG. 実施の形態2の変形例における第2LED表示部および輝度測定部の断面を示す模式図である。FIG. 10 is a schematic diagram showing cross sections of a second LED display unit and a luminance measurement unit in a modification of the second embodiment. 実施の形態3におけるインテグレータ素子を示す概略図である。FIG. 10 is a schematic diagram showing an integrator element in a third embodiment.
 本発明に係る表示装置の実施の形態を以下に説明する。各実施の形態において、表示装置はLED表示装置を例に説明する。 Embodiments of the display device according to the present invention will be described below. In each embodiment, the display device will be described by taking an LED display device as an example.
 <実施の形態1>
 図1は、実施の形態1におけるLED表示装置300の構成を示すブロック図である。LED表示装置300は、第1LED表示部1と、第2LED表示部2と、入力端子3と、映像信号処理部4と、信号補正部5と、第1駆動部6と、点灯時間記憶部7と、信号生成部8と、第2駆動部9と、輝度測定部100と、平均輝度演算部13と、輝度推移記憶部11と、補正係数演算部12とを備える。輝度補正部18は、信号補正部5および補正係数演算部12を含んでいる。
<Embodiment 1>
FIG. 1 is a block diagram illustrating a configuration of an LED display device 300 according to the first embodiment. The LED display device 300 includes a first LED display unit 1, a second LED display unit 2, an input terminal 3, a video signal processing unit 4, a signal correction unit 5, a first drive unit 6, and a lighting time storage unit 7. A signal generation unit 8, a second drive unit 9, a luminance measurement unit 100, an average luminance calculation unit 13, a luminance transition storage unit 11, and a correction coefficient calculation unit 12. The luminance correction unit 18 includes a signal correction unit 5 and a correction coefficient calculation unit 12.
 先ず第1LED表示部1および第2LED表示部2について説明する。第1LED表示部1および第2LED表示部2には、例えばLED表示パネルが適用される。 First, the 1st LED display part 1 and the 2nd LED display part 2 are demonstrated. For example, an LED display panel is applied to the first LED display unit 1 and the second LED display unit 2.
 第1LED表示部1は、複数の第1LED1aを有する。本実施の形態1においては、縦4個×横4個の合計16個の第1LED1aが、マトリクス状に配置されている。但し、第1LED1aの数はこれに限ったものではない。 The first LED display unit 1 includes a plurality of first LEDs 1a. In the first embodiment, a total of 16 first LEDs 1a of 4 vertical x 4 horizontal are arranged in a matrix. However, the number of 1st LED1a is not restricted to this.
 第1LED表示部1は、例えば文字、図形など所望の画像を表示する。第1LED表示部1は、後述する第1駆動部6から出力される第1駆動信号に基づいて駆動される。その第1駆動信号には、表示パターン、駆動パターン、駆動データが含まれている。つまり、第1駆動部6から出力される第1駆動信号により、個々の第1LED1aの点灯制御などが行われる。 The first LED display unit 1 displays a desired image such as characters and figures. The 1st LED display part 1 is driven based on the 1st drive signal output from the 1st drive part 6 mentioned later. The first drive signal includes a display pattern, a drive pattern, and drive data. That is, lighting control of each first LED 1a is performed by the first drive signal output from the first drive unit 6.
 第2LED表示部2は、複数の第2LED2aを有する。本実施の形態1においては、縦2個×横2個の合計4個の第2LED2aが、マトリクス状に配置されている。第2LED2aの数はこれに限ったものではないが、第2LED表示部2は、2以上の第2LED2aから構成される。 The second LED display unit 2 has a plurality of second LEDs 2a. In the first embodiment, a total of four second LEDs 2a of 2 vertical x 2 horizontal are arranged in a matrix. Although the number of 2nd LED2a is not restricted to this, the 2nd LED display part 2 is comprised from 2 or more 2nd LED2a.
 第2LED表示部2は、後述する第2駆動部9から出力される第2駆動信号に基づいて駆動される。第2駆動信号には、表示パターン、駆動パターン、駆動データが含まれている。つまり、その第2駆動部9から出力される第2駆動信号により、個々の第2LED2aの点灯制御などが行われる。 The second LED display unit 2 is driven based on a second drive signal output from a second drive unit 9 described later. The second drive signal includes a display pattern, a drive pattern, and drive data. That is, lighting control of each second LED 2a is performed by the second drive signal output from the second drive unit 9.
 第2LED表示部2は、LED表示装置300が第1LED表示部1の輝度の推移を計測または予測するための表示を行う。なお、輝度の推移は、例えば初期輝度を100%として現在の輝度を示す輝度の維持率、または、輝度の維持率と逆の関係である輝度の低下率(=100%-輝度の維持率)などを含む。以下では、輝度の推移に、輝度の低下率が適用されているものとして説明する。 The second LED display unit 2 performs display for the LED display device 300 to measure or predict the transition of the luminance of the first LED display unit 1. Note that the transition of luminance is, for example, the luminance maintenance rate indicating the current luminance when the initial luminance is 100%, or the luminance reduction rate that is inversely related to the luminance maintenance rate (= 100% −luminance maintenance rate). Etc. In the following description, it is assumed that the luminance decrease rate is applied to the luminance transition.
 各第2LED2aの輝度低下率と、各第1LED1aの輝度低下率とは同等である。つまり、各第2LED2aの輝度低下率が、各第1LED1aの輝度低下率と同一、または同一視できる程度に類似している。例えば、各第1LED1aおよび各第2LED2aには、製造ロットが同じLEDが適用される。または例えば、第1LED1aおよび第2LED2aには、輝度および波長などによりLEDを分類するBINコードが同じLEDが適用される。このような各第1LED1aと各第2LED2aとは、輝度および波長などの特性が類似し、両者の輝度低下率も同等である。 The luminance reduction rate of each second LED 2a is equivalent to the luminance reduction rate of each first LED 1a. That is, the brightness reduction rate of each second LED 2a is the same as or similar to the brightness reduction rate of each first LED 1a. For example, LEDs having the same manufacturing lot are applied to the first LEDs 1a and the second LEDs 2a. Alternatively, for example, the first LED 1a and the second LED 2a are applied with LEDs having the same BIN code for classifying the LEDs according to luminance, wavelength, and the like. Each of the first LEDs 1a and each of the second LEDs 2a have similar characteristics such as luminance and wavelength, and the luminance reduction rates of both are the same.
 加えて本実施の形態1では、第1LED表示部1の表示動作すなわち駆動と、第2LED表示部2の表示動作すなわち駆動とが並行して行われる。これにより、第1LED1aおよび第2LED2aが、同じような環境下で点灯され、両者の輝度低下率を互いに近付けることが可能である。 In addition, in the first embodiment, the display operation, ie, driving of the first LED display unit 1 and the display operation, ie, driving, of the second LED display unit 2 are performed in parallel. Thereby, 1st LED1a and 2nd LED2a are lighted on in the same environment, and it is possible to make both luminance fall rates close to each other.
 つづいて各構成要素と機能とを図1に示す入力端子3から順に説明する。 Next, each component and function will be described in order from the input terminal 3 shown in FIG.
 入力端子3は、外部から映像信号を受信する。映像信号処理部4は、入力端子3で受信した映像信号に基づいて、表示に必要な領域を選択したり、ガンマ補正などの処理を行ったりする。 The input terminal 3 receives a video signal from the outside. The video signal processing unit 4 selects an area necessary for display based on the video signal received at the input terminal 3 and performs processing such as gamma correction.
 信号補正部5は、後述する補正係数演算部12から入力される補正係数を用いて、映像信号処理部4の出力信号に含まれる輝度情報を補正する。この補正により、信号補正部5は、第1駆動部6から第1LED表示部1に出力される第1駆動信号を、ひいては1以上の第1LED1aの輝度を、実質的に補正することが可能である。 The signal correction unit 5 corrects the luminance information included in the output signal of the video signal processing unit 4 using a correction coefficient input from the correction coefficient calculation unit 12 described later. By this correction, the signal correction unit 5 can substantially correct the first drive signal output from the first drive unit 6 to the first LED display unit 1, and consequently the luminance of the one or more first LEDs 1a. is there.
 第1駆動部6は、信号補正部5で補正された出力信号に基づいて、第1LED表示部1を駆動するための第1駆動信号を生成する。第1駆動部6は、当該第1駆動信号を第1LED表示部1に出力することによって、第1LED表示部1を駆動する。つまり、第1駆動部6は、各第1LED1aの点灯制御を行う。 The first drive unit 6 generates a first drive signal for driving the first LED display unit 1 based on the output signal corrected by the signal correction unit 5. The first drive unit 6 drives the first LED display unit 1 by outputting the first drive signal to the first LED display unit 1. That is, the 1st drive part 6 performs lighting control of each 1st LED1a.
 点灯時間記憶部7は、第1LED1aの各々の第1累積点灯時間を記憶する。第1累積点灯時間とは、各第1LED1aが点灯された時間を累積的に加算することにより得られる時間のことである。 The lighting time storage unit 7 stores the first cumulative lighting time of each of the first LEDs 1a. The first cumulative lighting time is a time obtained by cumulatively adding times when the first LEDs 1a are turned on.
 信号生成部8は、信号補正部5で補正された出力信号に基づいて、第2LED表示部2の第2駆動信号を生成するための信号を生成する。 The signal generation unit 8 generates a signal for generating the second drive signal of the second LED display unit 2 based on the output signal corrected by the signal correction unit 5.
 第2駆動部9は、信号生成部8で生成された信号に基づいて、第2LED表示部2を駆動するための第2駆動信号を生成する。第2駆動部9は、当該第2駆動信号を第2LED表示部2に出力することによって、第2LED表示部2を駆動する。つまり、第2駆動部9は、各第2LED2aの点灯制御を行う。 The second drive unit 9 generates a second drive signal for driving the second LED display unit 2 based on the signal generated by the signal generation unit 8. The second drive unit 9 drives the second LED display unit 2 by outputting the second drive signal to the second LED display unit 2. That is, the 2nd drive part 9 performs lighting control of each 2nd LED2a.
 また、第2駆動部9は検知部(図示せず)を含む。検知部は、第2LED表示部2が有する各第2LED2aの点灯状態を判定する。例えば、検知部は、各第2LED2aの故障状態または正常状態を検知する。そして、検知部は、正常に点灯している各第2LED2aの個数を計数する。 The second drive unit 9 includes a detection unit (not shown). A detection part determines the lighting state of each 2nd LED2a which the 2nd LED display part 2 has. For example, the detection unit detects a failure state or a normal state of each second LED 2a. And a detection part counts the number of each 2nd LED2a currently lighted normally.
 輝度測定部100は、受光素子10とインテグレータ素子20とを含む。本実施の形態1では、受光素子10は、第2LED表示部2に対面して配置されている。受光素子10は、複数の第2LED2aから放出される光線を受光して、その輝度を測定する。受光素子10には、例えば可視域の波長の光を計測可能なフォトダイオードなどの計測デバイスが適用される。 The luminance measuring unit 100 includes a light receiving element 10 and an integrator element 20. In the first embodiment, the light receiving element 10 is disposed to face the second LED display unit 2. The light receiving element 10 receives the light emitted from the plurality of second LEDs 2a and measures the luminance thereof. For the light receiving element 10, for example, a measuring device such as a photodiode capable of measuring light having a wavelength in the visible range is applied.
 インテグレータ素子20は、第2LED表示部2と受光素子10との間に設けられる。インテグレータ素子20は、その断面が複数の第2LED2aが配置された領域よりも大きい筒形状を有する。詳細は後述するが、インテグレータ素子20は、例えば、断面が矩形の筒形状を有するライトトンネルである。インテグレータ素子20は、その断面の矩形を構成する4面の内壁に、反射膜が蒸着されてなるミラーを有する。なお、図1において、説明の便宜上、インテグレータ素子20は透視図にて示している。インテグレータ素子20は、第2LED表示部2の複数の第2LED2aが放出する光線を筒形状の内部に取り込み、平準化された光線として受光素子10に導く。 The integrator element 20 is provided between the second LED display unit 2 and the light receiving element 10. The integrator element 20 has a cylindrical shape whose cross section is larger than a region where the plurality of second LEDs 2a are arranged. Although details will be described later, the integrator element 20 is, for example, a light tunnel having a cylindrical shape with a rectangular cross section. The integrator element 20 has a mirror formed by depositing a reflective film on four inner walls that form a rectangular cross section. In FIG. 1, for convenience of explanation, the integrator element 20 is shown in a perspective view. The integrator element 20 takes in the light emitted from the plurality of second LEDs 2a of the second LED display unit 2 into the cylindrical shape and guides it to the light receiving element 10 as a leveled light.
 平均輝度演算部13は、各第2LED2aの平均輝度を算出する。その平均輝度は、複数の第2LED2aのうち正常に点灯している少なくとも1つの第2LED2aの輝度を、第2駆動部9の検知部が計数する正常に点灯している各第2LED2aの個数で除して算出される。その正常に点灯している少なくとも1つの第2LED2aの輝度は、上記の輝度測定部100によって測定される。 The average luminance calculation unit 13 calculates the average luminance of each second LED 2a. The average luminance is obtained by dividing the luminance of at least one second LED 2a that is normally lit among the plurality of second LEDs 2a by the number of each second LED 2a that is normally lit as counted by the detection unit of the second drive unit 9. Is calculated. The luminance of the at least one second LED 2a that is normally lit is measured by the luminance measuring unit 100.
 輝度推移記憶部11は、平均輝度演算部13で計算された各第2LED2aの平均輝度と、各第2LED2aの第2累積点灯時間とを対応付けて記憶する。ここで、第2累積点灯時間とは、各第2LED2aが点灯された時間を累積的に加算することにより得られる時間のことである。 The luminance transition storage unit 11 stores the average luminance of each second LED 2a calculated by the average luminance calculation unit 13 and the second cumulative lighting time of each second LED 2a in association with each other. Here, the second cumulative lighting time is a time obtained by cumulatively adding the times when the second LEDs 2a are turned on.
 上記の輝度測定部100による測定、平均輝度演算部13による演算、および、輝度推移記憶部11による記憶は、第2LED表示部2の複数の第2LED2aのうち少なくとも1つの第2LED2aが点灯されている間は、随時行われる。 In the measurement by the luminance measurement unit 100, the calculation by the average luminance calculation unit 13, and the storage by the luminance transition storage unit 11, at least one second LED 2a among the plurality of second LEDs 2a of the second LED display unit 2 is lit. It is done at any time.
 補正係数演算部12は、点灯時間記憶部7に記憶された第1累積点灯時間と、輝度推移記憶部11に記憶された第2LED2aの平均輝度および第2累積点灯時間とから輝度低下率を算出する。そして補正係数演算部12は、その輝度低下率に基づいて、輝度の補正係数を算出する。 The correction coefficient calculation unit 12 calculates a luminance reduction rate from the first cumulative lighting time stored in the lighting time storage unit 7 and the average luminance and the second cumulative lighting time of the second LED 2a stored in the luminance transition storage unit 11. To do. The correction coefficient calculation unit 12 calculates a luminance correction coefficient based on the luminance reduction rate.
 ここで、図1の輝度補正部18は、上述した信号補正部5および補正係数演算部12を含んでいる。すなわち、輝度補正部18は、点灯時間記憶部7に記憶された第1累積点灯時間と、輝度推移記憶部11に記憶された第2LED2aの平均輝度および第2累積点灯時間とに基づいて上述した補正係数を算出する。そして、輝度補正部18は、当該補正係数を用いて、映像信号処理部4の出力信号に含まれる輝度情報を補正する。その結果、第1駆動部6から第1LED表示部1に出力される第1駆動信号が、ひいては第1LED1aの輝度が補正される。 Here, the luminance correction unit 18 in FIG. 1 includes the signal correction unit 5 and the correction coefficient calculation unit 12 described above. That is, the luminance correction unit 18 is based on the first cumulative lighting time stored in the lighting time storage unit 7 and the average luminance and the second cumulative lighting time of the second LED 2a stored in the luminance transition storage unit 11. A correction coefficient is calculated. Then, the brightness correction unit 18 corrects the brightness information included in the output signal of the video signal processing unit 4 using the correction coefficient. As a result, the first drive signal output from the first drive unit 6 to the first LED display unit 1 and the brightness of the first LED 1a are corrected.
 なお、本実施の形態1では、複数の第1LED1aの複数の第1累積点灯時間は異なっている。第2LED2aの第2累積点灯時間は、複数の第1LED1aの第1累積点灯時間の中で最も長い第1累積点灯時間に設定される。つまり、第2LED2aの第2累積点灯時間の長さが、第1LED1aの第1累積点灯時間の長さ以上となるように制御される。また、複数の第2LED2aは、各々が第2駆動部9からの同じ第2駆動信号に基づいて駆動されることによって、複数の第2LED2aは全て同じ点灯制御などが行われる。即ち、複数の第2LED2aの第2累積点灯時間は個々で違いはなく同一の時間となる。 In the first embodiment, the plurality of first cumulative lighting times of the plurality of first LEDs 1a are different. The second cumulative lighting time of the second LED 2a is set to the longest first cumulative lighting time among the first cumulative lighting times of the plurality of first LEDs 1a. That is, the length of the second cumulative lighting time of the second LED 2a is controlled to be equal to or longer than the length of the first cumulative lighting time of the first LED 1a. Further, the plurality of second LEDs 2 a are driven based on the same second drive signal from the second drive unit 9, whereby the plurality of second LEDs 2 a are all subjected to the same lighting control and the like. That is, the second cumulative lighting times of the plurality of second LEDs 2a are not different individually and are the same time.
 そして、輝度補正部18は、点灯時間記憶部7に記憶された複数の第1累積点灯時間のうち最も長い第1累積点灯時間と、輝度推移記憶部11に記憶された第2LED2aの輝度低下率および第2累積点灯時間とに基づいて上記補正を行うように構成されている。 Then, the luminance correction unit 18 includes the longest first cumulative lighting time among the plurality of first cumulative lighting times stored in the lighting time storage unit 7 and the luminance reduction rate of the second LED 2 a stored in the luminance transition storage unit 11. The correction is performed based on the second cumulative lighting time.
 図2はLED表示装置300が備える処理回路90の一例を示す図である。処理回路90は、互いが接続されたメモリ91とプロセッサー92とを含む。上記の映像信号処理部4、信号補正部5、第1駆動部6、信号生成部8、第2駆動部9、平均輝度演算部13、および補正係数演算部12の各機能は、プログラムとして記述されメモリ91に格納される。プロセッサー92が、メモリ91に格納されたそのプログラムを読み出して実行することにより、上記の各部の各動作が実現される。また、点灯時間記憶部7および輝度推移記憶部11の機能は、例えばメモリ91によって実現される。 FIG. 2 is a diagram illustrating an example of the processing circuit 90 provided in the LED display device 300. The processing circuit 90 includes a memory 91 and a processor 92 that are connected to each other. The functions of the video signal processing unit 4, the signal correction unit 5, the first drive unit 6, the signal generation unit 8, the second drive unit 9, the average luminance calculation unit 13, and the correction coefficient calculation unit 12 are described as a program. And stored in the memory 91. The processor 92 reads out and executes the program stored in the memory 91, thereby realizing each operation of each unit described above. The functions of the lighting time storage unit 7 and the luminance transition storage unit 11 are realized by the memory 91, for example.
 次にLED表示装置300が行う輝度の補正動作について説明する。 Next, the luminance correction operation performed by the LED display device 300 will be described.
 輝度推移記憶部11には、平均輝度演算部13で算出された平均輝度と、第2LED2aの第2累積点灯時間とが対応付けられて記憶されている。輝度補正部18の補正係数演算部12は、それら平均輝度および第2累積点灯時間とを読み取り、輝度低下率を算出する。 The luminance transition storage unit 11 stores the average luminance calculated by the average luminance calculation unit 13 and the second cumulative lighting time of the second LED 2a in association with each other. The correction coefficient calculation unit 12 of the luminance correction unit 18 reads the average luminance and the second cumulative lighting time, and calculates the luminance reduction rate.
 図3は、第2LED2aの第2累積点灯時間と輝度低下率との関係の一例を示す図である。なお、図3の第2累積点灯時間の目盛には対数目盛が適用されている。図3に示される第2LED2aの輝度低下率は、前述したように、複数の第2LED2aの平均輝度の低下率である。 FIG. 3 is a diagram illustrating an example of the relationship between the second cumulative lighting time of the second LED 2a and the luminance reduction rate. In addition, the logarithmic scale is applied to the scale of the 2nd cumulative lighting time of FIG. The luminance reduction rate of the second LED 2a shown in FIG. 3 is the average luminance reduction rate of the plurality of second LEDs 2a as described above.
 図3に示されるように、点灯時間の増加とともに、第2LED2aの平均輝度低下率は大きくなる。すなわち、各第2LED2aの輝度は低下する。 As shown in FIG. 3, as the lighting time increases, the average luminance reduction rate of the second LED 2a increases. That is, the brightness of each second LED 2a decreases.
 上述したように、第1LED表示部1の各第1LED1aは、その輝度低下率が各第2LED2aの輝度低下率と同一視できる程度に各第2LED2aと類似した特性を有する。図4は、第1LED1aの第1累積点灯時間と輝度低下率との関係の一例を示す図である。図4の点灯時間の目盛には、図3と同様に対数目盛が適用されている。なお、第1LED表示部1には、合計16個の第1LED1aが配置されているが、図1には、説明の便宜上、第1累積点灯時間の異なる代表的な3個の第1LED1aの各輝度低下率のみ表示されている。 As described above, each first LED 1a of the first LED display unit 1 has characteristics similar to each second LED 2a to such an extent that the luminance reduction rate can be identified with the luminance reduction rate of each second LED 2a. FIG. 4 is a diagram illustrating an example of the relationship between the first cumulative lighting time of the first LED 1a and the luminance reduction rate. The logarithmic scale is applied to the scale of the lighting time of FIG. 4 like FIG. Note that a total of 16 first LEDs 1a are arranged in the first LED display unit 1, but for convenience of explanation, FIG. 1 shows the brightness of each of the three representative first LEDs 1a having different first cumulative lighting times. Only the rate of decline is displayed.
 図4に示されるように、各第1LED1aの輝度も、第2LED2aの輝度と同様に点灯時間とともに低下する。しかし、複数の第1LED1aの各々の第1累積点灯時間には差があるため、その個々の輝度低下率は異なる。複数の第1LED1aの各々の輝度の補正を行わなければ、第1LED表示部1の表示には輝度ばらつきが生じる。 As shown in FIG. 4, the luminance of each first LED 1a also decreases with the lighting time, like the luminance of the second LED 2a. However, since there is a difference in the first cumulative lighting time of each of the plurality of first LEDs 1a, the respective luminance reduction rates are different. If the brightness of each of the plurality of first LEDs 1a is not corrected, brightness variation occurs in the display of the first LED display unit 1.
 そこで、補正係数演算部12は、点灯時間記憶部7に記憶された第1LED1aの点灯時間と同じ、または、それに近い第2LED2aの点灯時間に対応する輝度を読み取り、輝度低下率を算出する。なお、その第1LED1aの点灯時間は実測時間である。また、上述したように、各第2LED2aの輝度低下率と、各第1LED1aの輝度低下率とは同等である。よって、本実施の形態1におけるLED表示装置300は、各第1LED1aの輝度の実測を必要とすることなく、各第1LED1aの輝度低下率を算出することが可能である。 Therefore, the correction coefficient calculation unit 12 reads the luminance corresponding to the lighting time of the second LED 2a that is the same as or close to the lighting time of the first LED 1a stored in the lighting time storage unit 7, and calculates the luminance reduction rate. The lighting time of the first LED 1a is an actual measurement time. Further, as described above, the luminance reduction rate of each second LED 2a is equal to the luminance reduction rate of each first LED 1a. Therefore, the LED display device 300 according to the first embodiment can calculate the luminance decrease rate of each first LED 1a without requiring actual measurement of the luminance of each first LED 1a.
 この際、補正係数演算部12は、算出された複数の第1LED1aの複数の輝度低下率のうち、最も大きい輝度低下率を最大輝度低下率として求める。さらに、補正係数演算部12は、点灯時間記憶部7および輝度推移記憶部11を参照し、第1LED表示部1の全ての第1LED1aについて、第1累積点灯時間に対する理論上の輝度低下率と、前述した最大輝度低下率とに基づいて、各第1LED1aに対する補正係数求める。 At this time, the correction coefficient calculation unit 12 obtains the largest luminance reduction rate as the maximum luminance reduction rate among the plurality of calculated luminance reduction rates of the first LEDs 1a. Further, the correction coefficient calculation unit 12 refers to the lighting time storage unit 7 and the luminance transition storage unit 11, and for all the first LEDs 1a of the first LED display unit 1, a theoretical luminance reduction rate with respect to the first cumulative lighting time, A correction coefficient for each first LED 1a is obtained based on the maximum luminance reduction rate described above.
 輝度補正部18は、各第1LED1aに対する補正係数を用いて、映像信号処理部4の出力信号に含まれる輝度情報を補正する。この補正により、実質的には第1駆動信号が補正される。LED表示装置300は、図4において矢印で示すように、複数の第1LED1aの各々の輝度を補正する。すなわち、LED表示装置300は、全ての第1LED1aの輝度を図4に一点鎖線で示される同一の輝度に補正する。 The luminance correction unit 18 corrects the luminance information included in the output signal of the video signal processing unit 4 using the correction coefficient for each first LED 1a. By this correction, the first drive signal is substantially corrected. The LED display device 300 corrects the luminance of each of the plurality of first LEDs 1a as indicated by arrows in FIG. That is, the LED display device 300 corrects the luminance of all the first LEDs 1a to the same luminance indicated by a one-dot chain line in FIG.
 以上のような補正を行う本実施の形態1に係わるLED表示装置300によれば、第1LED表示部1の補正後の輝度は、補正前の輝度と比べて全体的に低下するが、全ての第1LED1aの輝度を、点灯時間が最も長いLEDの輝度すなわち輝度低下率が最も大きい輝度に統一することができる。このため、第1LED表示部1全体として輝度の均一性、ホワイトバランスを保つことができ、輝度ばらつきおよび色度ばらつきを抑制することができる。 According to the LED display device 300 according to the first embodiment that performs the correction as described above, the luminance after correction of the first LED display unit 1 is reduced as a whole as compared with the luminance before correction. The brightness | luminance of 1st LED1a can be unified into the brightness | luminance of LED with the longest lighting time, ie, the brightness | luminance with the largest brightness | luminance fall rate. For this reason, brightness uniformity and white balance can be maintained as a whole of the first LED display unit 1, and brightness variations and chromaticity variations can be suppressed.
 次に、インテグレータ素子20の構成の一例を説明する。図1に示すように、本実施の形態1では、輝度測定部100の受光素子10は、インテグレータ素子20を介して第2LED表示部2に対面して配置されており、複数の第2LED2aの輝度を測定する。 Next, an example of the configuration of the integrator element 20 will be described. As shown in FIG. 1, in the first embodiment, the light receiving element 10 of the luminance measuring unit 100 is disposed so as to face the second LED display unit 2 via the integrator element 20, and the luminance of the plurality of second LEDs 2 a. Measure.
 図5は、インテグレータ素子20を示す概略図である。インテグレータ素子20は、例えば4枚の矩形状のミラー201により構成される。ミラー201の一方面201aには反射膜が形成されている。インテグレータ素子20は、その反射膜を有する一方面201aが内面に位置することで反射面として機能するように、かつ、断面が矩形となるように固定されたライトトンネル200である。 FIG. 5 is a schematic diagram showing the integrator element 20. The integrator element 20 is composed of, for example, four rectangular mirrors 201. A reflective film is formed on one surface 201 a of the mirror 201. The integrator element 20 is a light tunnel 200 that is fixed so that the one surface 201a having the reflective film functions as a reflective surface when the one surface 201a is located on the inner surface and has a rectangular cross section.
 図6は、第2LED表示部2および輝度測定部100の断面を示す模式図である。図6は、一例として、第2LED表示部2が有する第2LED2aから放出される複数の光線の図示を含む。その第2LED2aが放出する複数の光線は、入射口202からライトトンネル200の内部に取り込まれ、内壁の反射面で反射を繰返しながら伝搬する。それにより、各光線は重畳化され均一化される。そして各光線は、入射口202とは反対側の出射口203から出射する。受光素子10は、均一化された当該光線を受光し、その第2LED2aの輝度を測定する。 FIG. 6 is a schematic diagram showing cross sections of the second LED display unit 2 and the luminance measurement unit 100. FIG. 6 includes an illustration of a plurality of light rays emitted from the second LED 2 a included in the second LED display unit 2 as an example. The plurality of light rays emitted by the second LED 2a are taken into the light tunnel 200 from the entrance 202 and propagate while repeating reflection on the reflection surface of the inner wall. Thereby, each light beam is superimposed and made uniform. Each light beam exits from an exit port 203 opposite to the entrance port 202. The light receiving element 10 receives the uniformed light beam and measures the luminance of the second LED 2a.
 上述したように、各第2LED2aには、各第1LED1aと製造ロットが同じLEDが、または、輝度などによりLEDを分類するBINコードが同じLEDが適用される。よって、各第1LED1aおよび各第2LED2aの輝度などの特性はほぼ一致する。 As described above, an LED having the same manufacturing lot as that of each first LED 1a or an LED having the same BIN code for classifying the LEDs according to luminance or the like is applied to each second LED 2a. Therefore, the characteristics such as the luminance of each first LED 1a and each second LED 2a are substantially the same.
 各第2LED2aが放出する光線は、ライトトンネル200の外に漏れることなく、内部を伝搬し、均一化された光線として受光素子10に到達する。そのため、輝度測定部100が測定する輝度に対し、各第2LED2aが寄与する割合は略同じである。つまり、測定される輝度は、複数の第2LED2aのうち、特定の第2LED2aの特性に強く影響されることはない。輝度測定部100において測定される輝度は、各々の特性が同等に平均化された各第2LED2aの特性に基づいた値となる。このようにライトトンネル200は、各第2LED2aの特性ばらつきの影響を抑制する。 The light beam emitted from each second LED 2a propagates through the inside without leaking out of the light tunnel 200, and reaches the light receiving element 10 as a uniformed light beam. Therefore, the ratio which each 2nd LED2a contributes with respect to the brightness | luminance which the brightness | luminance measurement part 100 measures is substantially the same. That is, the measured luminance is not strongly influenced by the characteristics of the specific second LED 2a among the plurality of second LEDs 2a. The luminance measured by the luminance measuring unit 100 is a value based on the characteristics of the second LEDs 2a in which the characteristics are equally averaged. Thus, the light tunnel 200 suppresses the influence of the characteristic variation of each second LED 2a.
 LED表示装置300は、複数の第2LED2aの中の1個が偶発的な故障などで消灯した場合でも、各第1LED1aの輝度の補正を継続することができる。これは、上述したように、平均輝度演算部13が正常状態の各第2LED2aの平均輝度を算出し、補正係数演算部12がその平均輝度から輝度低下率と補正係数を算出するからである。輝度測定部100が測定する輝度に対し、各第2LED2aの寄与率はほぼ同じである。そのため、複数の第2LEDのうちいずれかの第2LED2aが消灯したことが、平均輝度演算部13において算出される各第2LED2aの平均輝度に影響を与えることはない。LED表示装置300は、各第1LED1aの輝度を精度よく補正し続けることができる。 The LED display device 300 can continue correcting the brightness of each first LED 1a even when one of the plurality of second LEDs 2a is turned off due to an accidental failure or the like. This is because, as described above, the average luminance calculation unit 13 calculates the average luminance of each second LED 2a in the normal state, and the correction coefficient calculation unit 12 calculates the luminance reduction rate and the correction coefficient from the average luminance. The contribution rate of each second LED 2a is substantially the same with respect to the luminance measured by the luminance measuring unit 100. Therefore, the fact that one of the plurality of second LEDs is turned off does not affect the average luminance of each second LED 2a calculated by the average luminance calculation unit 13. The LED display device 300 can continue to accurately correct the luminance of each first LED 1a.
 本実施の形態1における第2LED表示部2および受光素子10は、ライトトンネル200の入射口202および出射口203にそれぞれ隣接して配置されている。そのため、各第2LED2aが放出する光線以外の光線が、輝度測定部100の受光素子10に入射することがない。LED表示装置300は、周囲の迷光の影響を受けることなく、各第1LED1aの輝度を精度よく補正することができる。 The second LED display unit 2 and the light receiving element 10 in the first embodiment are arranged adjacent to the entrance 202 and the exit 203 of the light tunnel 200, respectively. Therefore, no light other than the light emitted by each second LED 2 a is incident on the light receiving element 10 of the luminance measuring unit 100. The LED display device 300 can accurately correct the luminance of each first LED 1a without being affected by surrounding stray light.
 従来技術では、輝度測定用のLEDの特性ばらつきが大きい場合や、故障が発生した場合には、LED表示面全体の輝度および色度を均一に制御することが難しかった。しかし、本実施の形態1におけるLED表示装置300は、輝度測定用のLEDの輝度計測をライトトンネル200を介して行う。そのため、LED表示装置300は、輝度測定用のLEDの特性ばらつきや、故障による輝度低下の影響を排除し、LED表示装置全体の輝度および色度がずれることなく、常に安定して均一になるように制御することができる。 In the prior art, when there is a large variation in the characteristics of LEDs for luminance measurement or when a failure occurs, it is difficult to uniformly control the luminance and chromaticity of the entire LED display surface. However, the LED display device 300 according to the first embodiment performs luminance measurement of the LEDs for luminance measurement via the light tunnel 200. For this reason, the LED display device 300 eliminates the influence of variations in the characteristics of LEDs for luminance measurement and the effect of luminance reduction due to failure, so that the luminance and chromaticity of the entire LED display device do not shift and are always stable and uniform. Can be controlled.
 以上をまとめると、本実施の形態1における表示装置は、第1駆動部6により点灯が制御される複数の第1発光素子が配置された第1表示部と、第2駆動部9により点灯が制御される複数の第2発光素子が配置された第2表示部とを備える。その複数の第1発光素子は複数の第1LEDであり、第1表示部は複数の第1LEDが配置された第1LED表示部である。また、複数の第2発光素子は複数の第2LEDであり、第2表示部は複数の第2LEDが配置された第2LED表示部である。すなわち、本実施の形態1における表示装置はLED表示装置300である。 In summary, the display device according to the first embodiment is lit by the first display unit in which a plurality of first light emitting elements whose lighting is controlled by the first driving unit 6 and the second driving unit 9 are lit. And a second display unit on which a plurality of second light emitting elements to be controlled are arranged. The plurality of first light emitting elements are a plurality of first LEDs, and the first display unit is a first LED display unit in which a plurality of first LEDs are arranged. The plurality of second light emitting elements are a plurality of second LEDs, and the second display unit is a second LED display unit in which a plurality of second LEDs are arranged. That is, the display device in the first embodiment is the LED display device 300.
 そのLED表示装置300は、複数の第2LED2aの輝度を測定する輝度測定部100と、輝度測定部100により測定される輝度に基づいて、複数の第1LED1aの各々の点灯制御に関連する信号に含まれる輝度情報を補正する輝度補正部18とをさらに備える。本実施の形態1においては、複数の第1LED1aの各々の点灯制御に関連する信号は、映像信号処理部4の出力信号である。 The LED display device 300 includes a luminance measurement unit 100 that measures the luminance of the plurality of second LEDs 2a, and a signal related to lighting control of each of the plurality of first LEDs 1a based on the luminance measured by the luminance measurement unit 100. And a luminance correction unit 18 that corrects luminance information to be corrected. In the first embodiment, a signal related to the lighting control of each of the plurality of first LEDs 1 a is an output signal of the video signal processing unit 4.
 第1駆動部6は、輝度補正部18により輝度情報が補正された信号に基づいて複数の第1LED1aの各々の点灯を制御する。輝度測定部100は、複数の第2LED2aから放出される光線を受光して輝度を測定する受光素子10と、第2LED表示部2と受光素子10との間に設けられ、断面が複数の第2LED2aが配置された領域よりも大きい筒形状を有し、複数の第2LED2aから放出される光線を筒形状の内部に通して受光素子10に導くインテグレータ素子20とを含む。 The first driving unit 6 controls lighting of each of the plurality of first LEDs 1a based on the signal whose luminance information is corrected by the luminance correcting unit 18. The luminance measuring unit 100 is provided between the light receiving element 10 that receives the light emitted from the plurality of second LEDs 2a and measures the luminance, and the second LED display unit 2 and the light receiving element 10, and has a cross section of the plurality of second LEDs 2a. And an integrator element 20 that guides the light emitted from the plurality of second LEDs 2a to the light receiving element 10 through the inside of the cylindrical shape.
 以上のような構成により、各第2LED2aが放出する光線は、インテグレータ素子20の外に漏れることなく受光素子10に到達する。また、各第2LED2aが放出する光線以外の光線が受光素子10に入射することがなく、周囲の迷光の影響が排除される。さらに、各第2LED2aが放出する光線はインテグレータ素子2により平準化されて受光素子10に入射する。そのため、LED表示装置300は、各第2LEDの特性のばらつきの影響を抑制したうえで各第1LED1aの輝度維持率を算出する。LED表示装置300は、複数の第2LED2aから出射する光線を確実に計測し、かつ、第1LED1aの輝度の推移(輝度維持率または輝度低下率)を高精度に算出する。LED表示装置300は、第1LED表示部1にて所望の画像を表示した状態で、第1LED表示部1の輝度ばらつきおよび色度ばらつきを抑制することができる。 With the configuration as described above, the light beam emitted from each second LED 2 a reaches the light receiving element 10 without leaking out of the integrator element 20. In addition, light other than the light emitted from each second LED 2a does not enter the light receiving element 10, and the influence of surrounding stray light is eliminated. Further, the light emitted from each second LED 2 a is leveled by the integrator element 2 and enters the light receiving element 10. Therefore, the LED display device 300 calculates the luminance maintenance rate of each first LED 1a after suppressing the influence of variation in characteristics of each second LED. The LED display device 300 reliably measures the light rays emitted from the plurality of second LEDs 2a and calculates the luminance transition (luminance maintenance rate or luminance reduction rate) of the first LED 1a with high accuracy. The LED display device 300 can suppress luminance variation and chromaticity variation of the first LED display unit 1 in a state where a desired image is displayed on the first LED display unit 1.
 また、本実施の形態1における表示装置(LED表示装置300)は、複数の第1発光素子(第1LED1a)の各々の第1累積点灯時間を記憶する点灯時間記憶部7と、輝度測定部100により測定される輝度と、複数の第2発光素子(第2LED2a)の第2累積点灯時間とを対応付けて記憶する輝度推移記憶部11とをさらに備える。輝度補正部18は、点灯時間記憶部7に記憶された複数の第1LED1aの各々の第1累積点灯時間と、輝度推移記憶部11に記憶された輝度および第2累積点灯時間とに基づいて、複数の第1LED1aの各々の点灯制御に関連する信号に含まれる輝度情報を補正する。 The display device (LED display device 300) according to the first embodiment includes a lighting time storage unit 7 that stores the first cumulative lighting time of each of the plurality of first light emitting elements (first LEDs 1a), and the luminance measurement unit 100. Is further provided with a luminance transition storage unit 11 that stores the luminance measured by the above and the second cumulative lighting time of the plurality of second light emitting elements (second LEDs 2a) in association with each other. The brightness correction unit 18 is based on the first cumulative lighting time of each of the plurality of first LEDs 1a stored in the lighting time storage unit 7, the luminance stored in the luminance transition storage unit 11, and the second cumulative lighting time. Luminance information included in a signal related to lighting control of each of the plurality of first LEDs 1a is corrected.
 以上のような構成により、第1LED表示部1の輝度は、各第1LED1aの第1累積点灯時間に対応した輝度の推移(輝度維持率または輝度低下率)により補正される。そのため、LED表示装置300は、高精度に第1LED表示部1の輝度を補正することが可能である。 With the above configuration, the luminance of the first LED display unit 1 is corrected by the luminance transition (luminance maintenance rate or luminance reduction rate) corresponding to the first cumulative lighting time of each first LED 1a. Therefore, the LED display device 300 can correct the luminance of the first LED display unit 1 with high accuracy.
 また、本実施の形態1における表示装置(LED表示装置300)が備える第2駆動部9は、複数の第2発光素子(第2LED2a)の各々の点灯状態を判定して、正常状態である各第2LED2aの個数を計数する検知部を含む。LED表示装置300は、検知部により計数される正常状態の各第2LED2aの個数と、輝度測定部100により測定される複数の第2LED2aのうち正常状態である少なくとも1つの第2LED2aの輝度とから、各第2LED2aの平均輝度を算出する平均輝度演算部13をさらに備える。輝度推移記憶部11は、平均輝度演算部13により算出される平均輝度と、第2累積点灯時間とを対応付けて記憶する。輝度補正部18は、点灯時間記憶部7に記憶された複数の第1発光素子(第1LED1a)の各々の第1累積点灯時間と、輝度推移記憶部11に記憶された平均輝度および第2累積点灯時間とに基づいて、複数の第1LED1aの各々の点灯制御に関連する信号に含まれる輝度情報を補正する。 Moreover, the 2nd drive part 9 with which the display apparatus (LED display apparatus 300) in this Embodiment 1 is provided determines each lighting state of several 2nd light emitting element (2nd LED2a), and each is a normal state. A detection unit for counting the number of second LEDs 2a is included. The LED display device 300 includes the number of normal second LEDs 2a counted by the detection unit and the luminance of at least one second LED 2a in the normal state among the plurality of second LEDs 2a measured by the luminance measurement unit 100. An average luminance calculation unit 13 that calculates the average luminance of each second LED 2a is further provided. The luminance transition storage unit 11 stores the average luminance calculated by the average luminance calculation unit 13 and the second cumulative lighting time in association with each other. The luminance correction unit 18 includes a first cumulative lighting time of each of the plurality of first light emitting elements (first LEDs 1a) stored in the lighting time storage unit 7, an average luminance and a second cumulative value stored in the luminance transition storage unit 11. Based on the lighting time, the luminance information included in the signal related to the lighting control of each of the plurality of first LEDs 1a is corrected.
 以上のような構成により、LED表示装置300は、複数の第2LED2aの一部が偶発故障等により不点灯となった場合でも、残りの正常に点灯し続けている第2LED2aの平均輝度を用いて、第1LED表示部1の輝度補正を継続することができる。また、LED表示装置300は、全ての第2LED2aの特性を平均化した上で輝度測定することにより、個々の第2LED2aが有する特性ばらつきによる輝度補正の誤差を抑えることができる。その結果、LED表示装置300は、高精度に輝度補正を行うことが可能である。なお、LED表示装置300が平均輝度演算部13を備えない場合、輝度測定部100によって測定される輝度は、そのまま輝度推移記憶部11に格納される。 With the configuration as described above, the LED display device 300 uses the average brightness of the remaining second LEDs 2a that are normally lit even when some of the plurality of second LEDs 2a are not lit due to accidental failure or the like. The brightness correction of the first LED display unit 1 can be continued. Further, the LED display device 300 can suppress the luminance correction error due to the characteristic variation of each of the second LEDs 2a by measuring the luminance after averaging the characteristics of all the second LEDs 2a. As a result, the LED display device 300 can perform brightness correction with high accuracy. When the LED display device 300 does not include the average luminance calculation unit 13, the luminance measured by the luminance measurement unit 100 is stored in the luminance transition storage unit 11 as it is.
 <実施の形態2>
 実施の形態2におけるLED表示装置のブロック構成は、実施の形態1の図1に示したLED表示装置300のブロック構成と同じである。以下、本実施の形態2におけるLED表示装置が含む構成のうち、実施の形態1と同じまたは類似する構成要素については同じ参照符号を付す。
<Embodiment 2>
The block configuration of the LED display device in the second embodiment is the same as the block configuration of the LED display device 300 shown in FIG. 1 of the first embodiment. Hereinafter, among the configurations included in the LED display device in the second embodiment, the same or similar components as those in the first embodiment are denoted by the same reference numerals.
 図7は、第1LED1aおよび第2LED2aの配光分布の一例を示す概略図である。第1LED1aおよび第2LED2aのそれぞれが有する発光面に対して、鉛直方向が放射角度0°である。また、その発光面と同一面が放射角度-90°および90°である。図7は、放射角度-90°から90°における第1LED1aおよび第2LED2aが放出する光線の光度を示している。また、図7において、配光分布Iv0は、第1LED1aおよび第2LED2aの点灯初期における配光分布を示す。配光分布Ivtは、累積点灯時間が短いときの配光分布であり、配光分布IvTは、累積点灯時間が長時間にわたった後の配光分布である。各累積点灯時間において、全ての方向に放出する単位時間あたりの光量、つまり光束にはほとんど違いはない。しかし、光度は、累積点灯時間が長くなるにつれて、放射角度が小さな角度領域において減少し、放射角度が大きな角度領域において増加している。 FIG. 7 is a schematic diagram showing an example of the light distribution of the first LED 1a and the second LED 2a. The vertical direction is a radiation angle of 0 ° with respect to the light emitting surface of each of the first LED 1a and the second LED 2a. Further, the same plane as the light emitting surface has radiation angles of −90 ° and 90 °. FIG. 7 shows the luminous intensity of the light emitted by the first LED 1a and the second LED 2a at the radiation angle of −90 ° to 90 °. In FIG. 7, the light distribution Iv0 indicates the light distribution in the initial lighting of the first LED 1a and the second LED 2a. The light distribution distribution Ivt is a light distribution when the cumulative lighting time is short, and the light distribution IvT is a light distribution after the cumulative lighting time is long. In each cumulative lighting time, there is almost no difference in the amount of light per unit time emitted in all directions, that is, the luminous flux. However, as the accumulated lighting time becomes longer, the luminous intensity decreases in a small angle region and increases in a large angle region.
 各第1LED1aの配光分布が、図7に示す経年変化特性を有する場合、LED表示装置300の使用時間の経過とともに、輝度ばらつきまたは色度ばらつきが発生した画像が観察者に観察される。即ち、観察者が、第1LED表示部1から離れた位置または第1LED表示部1の正面近くの狭い角度範囲第から画像を観察する場合、第1累積点灯時間が長い第1LED1aによって表示される画像の輝度は、第1累積点灯時間が短い第1LED1aによって表示される画像の輝度よりも低く観察される。 When the light distribution of each first LED 1a has the aging characteristics shown in FIG. 7, the observer observes an image in which luminance variation or chromaticity variation occurs as the usage time of the LED display device 300 elapses. That is, when an observer observes an image from a position away from the first LED display unit 1 or from a narrow angle range near the front of the first LED display unit 1, an image displayed by the first LED 1a having a long first cumulative lighting time. Is observed to be lower than the luminance of the image displayed by the first LED 1a having a short first cumulative lighting time.
 実施の形態1のLED表示装置300は、図6に示すように、第2LED表示部2および輝度測定部100がライトトンネル200の入射口202および出射口203にそれぞれ隣接して配置された構成を有する。そのため、第2LED2aが放出する光線は、周囲に漏れることなくライトトンネル200の内部を通過し、受光素子10に入射する。図7に示す短い累積点灯時間の配光分布Ivtと、長い累積点灯時間の配光分布IvTとでは、両者の光束にほとんど違いがない。よって、輝度測定部100において測定される両者の輝度にもほとんど違いがない。即ち、短い第2累積点灯時間を有する第2LED2aの輝度に基づき輝度補正部18にて算出される補正係数と、長い第2累積点灯時間を有する第2LED2aの輝度に基づき輝度補正部18にて算出される補正係数とは、ほぼ同じである。それら補正係数に基づく各第1LED1aの輝度は、同じ割合でしか補正されない。その結果、第1LED表示部1の経年変化による輝度ばらつきは解消されない。 As shown in FIG. 6, the LED display device 300 according to the first embodiment has a configuration in which the second LED display unit 2 and the luminance measurement unit 100 are arranged adjacent to the entrance port 202 and the exit port 203 of the light tunnel 200, respectively. Have. Therefore, the light beam emitted from the second LED 2 a passes through the inside of the light tunnel 200 without entering the surroundings and enters the light receiving element 10. The light distribution distribution Ivt with a short cumulative lighting time and the light distribution distribution IvT with a long cumulative lighting time shown in FIG. Therefore, there is almost no difference in the luminance measured by the luminance measuring unit 100. That is, the correction coefficient calculated by the luminance correction unit 18 based on the luminance of the second LED 2a having the short second cumulative lighting time and the luminance correction unit 18 calculated based on the luminance of the second LED 2a having the long second cumulative lighting time. The correction coefficient to be applied is almost the same. The brightness of each first LED 1a based on these correction coefficients is corrected only at the same rate. As a result, luminance variations due to aging of the first LED display unit 1 are not eliminated.
 図8は、実施の形態2における第2LED表示部2および輝度測定部101の断面を示す模式図である。図8には、第2LED表示部2が有する第2LED2aから放出される光線の図示を含む。輝度測定部101は、実施の形態1と同様にインテグレータ素子20と受光素子10とを含む。ただし、そのインテグレータ素子20であるライトトンネル200は、その筒形状の一端すなわち入射口202と第2LED表示部2との間には所定の隙間を有して設けられる。また、その筒形状の他端すなわち出射口203は、受光素子10に隙間なく隣接して設けられる。 FIG. 8 is a schematic diagram showing cross sections of the second LED display unit 2 and the luminance measurement unit 101 in the second embodiment. FIG. 8 includes an illustration of light rays emitted from the second LED 2 a included in the second LED display unit 2. The luminance measuring unit 101 includes an integrator element 20 and a light receiving element 10 as in the first embodiment. However, the light tunnel 200 that is the integrator element 20 is provided with a predetermined gap between one end of the cylindrical shape, that is, between the incident port 202 and the second LED display unit 2. The other end of the cylindrical shape, that is, the emission port 203 is provided adjacent to the light receiving element 10 without a gap.
 第2LED2aが放出する光線のうち、放射角度の大きな光線はライトトンネル200の内部に取り込まれず、受光素子10に入射しない。第2累積点灯時間の経過とともに増加する放射角度の大きな光線は、輝度測定部101により測定される第2LED2aの輝度には寄与しない。輝度測定部101は、第2累積点灯時間に応じた異なる輝度を測定する。 Among the light rays emitted from the second LED 2a, light rays having a large emission angle are not taken into the light tunnel 200 and do not enter the light receiving element 10. A light beam having a large radiation angle that increases with the passage of the second cumulative lighting time does not contribute to the luminance of the second LED 2 a measured by the luminance measuring unit 101. The luminance measurement unit 101 measures different luminances according to the second cumulative lighting time.
 即ち、第2LED2aの輝度および第2累積点灯時間とに基づいて輝度補正部18により算出される補正係数は、第2LED2aおよび第1LED1aの配光分布の経年変化特性を考慮された係数として算出される。当該補正係数に基づく各第1LED1aの輝度の補正により、第1LED表示部1の表示面における輝度ばらつきが解消される。 That is, the correction coefficient calculated by the luminance correction unit 18 based on the luminance of the second LED 2a and the second cumulative lighting time is calculated as a coefficient that takes into account the aging characteristics of the light distribution of the second LED 2a and the first LED 1a. . By correcting the luminance of each first LED 1a based on the correction coefficient, the luminance variation on the display surface of the first LED display unit 1 is eliminated.
 ここで、図8に示す距離dは、ライトトンネル200の入射口202と第2LED表示部2との距離である。また、角度θは、第2LED表示部2の中心軸(垂線)と、入射口202の端部と第2LED表示部2の中心とを結ぶ線とが成す角度である。距離dは、角度θと関係性を有する。その距離dは、実際に第1LED表示部1が設置される環境を考慮して決定されればよい。すなわち、その距離dは、第1LED表示部1と観察者との相対位置関係を考慮して決定されればよい。ここでは、第1LED表示部1の表示面に対する鉛直方向を角度0°とし、表示面と同一面を角度-90°または90°とする。例えば、観察者が角度-30°~30°の範囲内に位置しているのであれば、当該角度θが略30°となるように当該距離dが定められる。 Here, the distance d shown in FIG. 8 is the distance between the entrance 202 of the light tunnel 200 and the second LED display unit 2. Further, the angle θ is an angle formed by the central axis (perpendicular line) of the second LED display unit 2 and a line connecting the end of the incident port 202 and the center of the second LED display unit 2. The distance d has a relationship with the angle θ. The distance d may be determined in consideration of the environment where the first LED display unit 1 is actually installed. That is, the distance d may be determined in consideration of the relative positional relationship between the first LED display unit 1 and the observer. Here, the vertical direction with respect to the display surface of the first LED display unit 1 is an angle of 0 °, and the same surface as the display surface is an angle of −90 ° or 90 °. For example, if the observer is located within an angle range of −30 ° to 30 °, the distance d is determined so that the angle θ is approximately 30 °.
 以上のような構成により、第2LED表示部2が有する第2LED2aが放出する光線のうち、放射角度が-30~30°の光線だけがライトトンネル200の内部に取り込まれる。そして、当該放射角度内の光束の低下率、即ち輝度の低下率に基づいて各第1LED1aの輝度が補正される。これにより、角度-30°~30°の範囲内に位置する観察者に対しては、LED表示装置300の累積使用時間に関わらず、輝度ばらつきおよび色度ばらつきが抑制された画像が第1LED表示部1に提供される。 With the configuration as described above, only light rays having an emission angle of −30 to 30 ° out of the light rays emitted from the second LED 2 a of the second LED display unit 2 are taken into the light tunnel 200. And the brightness | luminance of each 1st LED1a is correct | amended based on the decreasing rate of the light beam within the said radiation angle, ie, the decreasing rate of a brightness | luminance. As a result, for an observer located within an angle range of −30 ° to 30 °, an image in which luminance variation and chromaticity variation are suppressed is displayed on the first LED regardless of the cumulative usage time of the LED display device 300. Provided to Part 1.
 以上をまとめると、本実施の形態2におけるLED表示装置300が含むインテグレータ素子20(ライトトンネル200)は、筒形状の一端が第2LED表示部との間に隙間を有し、かつ、他端が受光素子10に隣接して設けられる。 In summary, the integrator element 20 (light tunnel 200) included in the LED display device 300 according to the second embodiment has a cylindrical end with a gap between the second LED display unit and the other end. It is provided adjacent to the light receiving element 10.
 このような構成により、第1LED1aおよび第2LED2aの配光分布が、経年変化特性を有する場合においても、LED表示装置300は、正面近くの狭い範囲から第1LED表示部1を観察する観察者に対して、輝度ばらつきおよび色度ばらつきが補正された均一な画像を提供する。特に、その経年変化特性が、累積点灯時間の増加に伴い、光束にはほとんど違いがないものの、小さな放射角度領域においては光度が徐々に減少し、大きな放射角度領域においては光度が徐々に増加する特性である場合に効果的である。 With such a configuration, even when the light distribution of the first LED 1a and the second LED 2a has an aging characteristic, the LED display device 300 allows the observer to observe the first LED display unit 1 from a narrow range near the front. Thus, a uniform image in which luminance variation and chromaticity variation are corrected is provided. In particular, although the aging characteristics show that there is almost no difference in luminous flux as the cumulative lighting time increases, the light intensity gradually decreases in the small radiation angle region, and the light intensity gradually increases in the large radiation angle region. It is effective when it is a characteristic.
 (実施の形態2の変形例)
 ライトトンネル200が、第2LED表示部2と入射口202との間に隙間を設けて配置される場合、周囲の不要光が当該隙間からライトトンネル200の中に入射する可能性がある。その不要光は、受光素子10に到達して、輝度測定部101が測定する第2LED2aの輝度に影響を与える。そのため、当該不要光の侵入を防止するため、図9に示すように、輝度測定部102は、ライトトンネル200の筒形状の外側にて、入射口202と第2LED表示部2との間に位置する隙間を囲う遮光部材25を含むことが望ましい。遮光部材25は、第2LED表示部2と受光素子10とを隙間なく連結して配置され、ライトトンネル200の筒形状の外側全体を覆うことが望ましい。
(Modification of Embodiment 2)
When the light tunnel 200 is disposed with a gap between the second LED display unit 2 and the incident port 202, there is a possibility that unnecessary unnecessary light may enter the light tunnel 200 from the gap. The unnecessary light reaches the light receiving element 10 and affects the luminance of the second LED 2 a measured by the luminance measuring unit 101. Therefore, in order to prevent the intrusion of unnecessary light, as shown in FIG. 9, the luminance measurement unit 102 is positioned between the incident port 202 and the second LED display unit 2 outside the cylindrical shape of the light tunnel 200. It is desirable to include a light shielding member 25 that surrounds the gap. It is desirable that the light shielding member 25 is disposed by connecting the second LED display unit 2 and the light receiving element 10 without any gap, and covers the entire cylindrical outer side of the light tunnel 200.
 <実施の形態3>
 実施の形態1および実施の形態2において、インテグレータ素子20は、図5に示すように、4枚のミラー201を接着固定して構成されるライトトンネル200であった。しかし、インテグレータ素子20は、それらに限るものではなく、同様の機能を有していれば、他の構成であっても良い。
<Embodiment 3>
In the first embodiment and the second embodiment, the integrator element 20 is a light tunnel 200 configured by bonding and fixing four mirrors 201 as shown in FIG. However, the integrator element 20 is not limited thereto, and may have another configuration as long as it has a similar function.
 図10は、実施の形態3におけるライトトンネル205を示す概略図である。ライトトンネル205は、1枚のステンレス製の薄板206を折り曲げてなる筒形状を有する。その薄板206の一方面206aは、略鏡面である。その一方面206aは、例えば、鏡面用バフにより研磨仕上げされた研磨面である。また、ライトトンネル205の内壁がその一方面206aであり、ライトトンネル205の断面は矩形を有する。ライトトンネル205は、実施の形態1に示したライトトンネル200と同じ機能を有しながらも、簡単な加工によりインテグレータ素子20を構成することができる。またライトトンネル205は、軽量な上にコストを安価である。 FIG. 10 is a schematic diagram showing the light tunnel 205 in the third embodiment. The light tunnel 205 has a cylindrical shape formed by bending a single thin plate 206 made of stainless steel. One surface 206a of the thin plate 206 is a substantially mirror surface. The one surface 206a is, for example, a polished surface polished by a mirror buff. Moreover, the inner wall of the light tunnel 205 is the one surface 206a, and the cross section of the light tunnel 205 has a rectangular shape. Although the light tunnel 205 has the same function as the light tunnel 200 shown in the first embodiment, the integrator element 20 can be configured by simple processing. The light tunnel 205 is lightweight and inexpensive.
 以上の各実施の形態においては、発光素子としてLEDが配置された表示部を含むLED表示装置の例が示されたが、それに限られるものではない。発光素子として自発光の光源、例えば複数の固体光源または塗布もしくは蒸着により形成された複数の光源が配置された表示部を含む表示装置であっても、上記の各実施の形態に示した効果と同様の効果を奏する。 In each of the above embodiments, an example of an LED display device including a display unit in which LEDs are arranged as light emitting elements has been shown, but the present invention is not limited thereto. Even in the case of a display device including a display unit in which a self-luminous light source, for example, a plurality of solid light sources or a plurality of light sources formed by coating or vapor deposition is arranged as a light emitting element, the effects described in the above embodiments The same effect is produced.
 また、以上の各実施の形態においては、輝度補正部18が輝度情報を補正する信号すなわち複数の第1発光素子の各々の点灯制御に関連する信号は、映像信号処理部4から出力される出力信号である例が示されたが、それに限られるものではない。 Further, in each of the above embodiments, the signal for correcting the luminance information by the luminance correction unit 18, that is, the signal related to the lighting control of each of the plurality of first light emitting elements, is output from the video signal processing unit 4. An example of a signal has been shown, but is not limited thereto.
 本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 In the present invention, it is possible to freely combine the respective embodiments within the scope of the invention, and to appropriately modify and omit the respective embodiments.
 以上、本発明は詳細に説明されたが、上記した説明は、全ての局面において、例示であって、本発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 As mentioned above, although this invention was demonstrated in detail, above-mentioned description is an illustration in all the situation, Comprising: This invention is not limited to it. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
 1 第1LED表示部、1a 第1LED、2 第2LED表示部、2a 第2LED、5 信号補正部、6 第1駆動部、7 点灯時間記憶部、8 信号生成部、9 第2駆動部、10 受光素子、11 輝度推移記憶部、12 補正係数演算部、13 平均輝度演算部、18 輝度補正部、20 インテグレータ素子、100 輝度測定部、300 LED表示装置。 1 1st LED display section, 1a 1st LED, 2nd LED display section, 2a 2nd LED, 5 signal correction section, 6 1st drive section, 7 lighting time storage section, 8 signal generation section, 9 2nd drive section, 10 light reception Element, 11 luminance transition storage unit, 12 correction coefficient calculation unit, 13 average luminance calculation unit, 18 luminance correction unit, 20 integrator element, 100 luminance measurement unit, 300 LED display device.

Claims (6)

  1.  第1駆動部(6)により点灯が制御される複数の第1発光素子が配置された第1表示部と、
     第2駆動部(9)により点灯が制御される複数の第2発光素子が配置された第2表示部と、
     前記複数の第2発光素子の輝度を測定する輝度測定部(100)と、
     前記輝度測定部(100)により測定される前記輝度に基づいて、前記複数の第1発光素子の各々の点灯制御に関連する信号に含まれる輝度情報を補正する輝度補正部(18)とを備え、
     前記第1駆動部(6)は、前記輝度補正部(18)により前記輝度情報が補正された前記信号に基づいて前記複数の第1発光素子の各々の点灯を制御し、
     前記輝度測定部(100)は、
     前記複数の第2発光素子から放出される光線を受光して前記輝度を測定する受光素子(10)と、
     前記第2表示部と前記受光素子(10)との間に設けられ、断面が前記複数の第2発光素子が配置された領域よりも大きい筒形状を有し、前記複数の第2発光素子から放出される前記光線を前記筒形状の内部に通して前記受光素子(10)に導くインテグレータ素子(20)とを含む表示装置。
    A first display unit in which a plurality of first light emitting elements whose lighting is controlled by the first driving unit (6) are arranged;
    A second display unit in which a plurality of second light emitting elements whose lighting is controlled by the second driving unit (9) are arranged;
    A luminance measuring unit (100) for measuring luminance of the plurality of second light emitting elements;
    A luminance correction unit (18) for correcting luminance information included in a signal related to lighting control of each of the plurality of first light emitting elements based on the luminance measured by the luminance measurement unit (100); ,
    The first driving unit (6) controls lighting of each of the plurality of first light emitting elements based on the signal in which the luminance information is corrected by the luminance correcting unit (18),
    The brightness measuring unit (100)
    A light receiving element (10) that receives light emitted from the plurality of second light emitting elements and measures the luminance;
    Provided between the second display unit and the light receiving element (10), and having a cross-sectional shape larger than a region where the plurality of second light emitting elements are disposed, and from the plurality of second light emitting elements A display device including an integrator element (20) for guiding the emitted light through the cylindrical shape to the light receiving element (10).
  2.  前記複数の第1発光素子の各々の第1累積点灯時間を記憶する点灯時間記憶部(7)と、
     前記輝度測定部(100)により測定される前記輝度と、前記複数の第2発光素子の第2累積点灯時間とを対応付けて記憶する輝度推移記憶部(11)とをさらに備え、
     前記輝度補正部(18)は、前記点灯時間記憶部(7)に記憶された前記複数の第1発光素子の各々の前記第1累積点灯時間と、前記輝度推移記憶部(11)に記憶された前記輝度および前記第2累積点灯時間とに基づいて、前記複数の第1発光素子の各々の前記点灯制御に関連する前記信号に含まれる前記輝度情報を補正する請求項1に記載の表示装置。
    A lighting time storage unit (7) for storing a first cumulative lighting time of each of the plurality of first light emitting elements;
    A luminance transition storage unit (11) for storing the luminance measured by the luminance measurement unit (100) and the second cumulative lighting times of the plurality of second light emitting elements in association with each other;
    The luminance correction unit (18) is stored in the first cumulative lighting time of each of the plurality of first light emitting elements stored in the lighting time storage unit (7) and in the luminance transition storage unit (11). The display device according to claim 1, wherein the luminance information included in the signal related to the lighting control of each of the plurality of first light emitting elements is corrected based on the luminance and the second cumulative lighting time. .
  3.  前記第2駆動部(9)は、
     前記複数の第2発光素子の各々の点灯状態を判定して、正常状態である各前記第2発光素子の個数を計数する検知部を含み、
     前記表示装置は、
     前記検知部により計数される正常状態の各前記第2発光素子の前記個数と、前記輝度測定部(100)により測定される前記複数の第2発光素子のうち前記正常状態である少なくとも1つの前記第2発光素子の前記輝度とから、各前記第2発光素子の平均輝度を算出する平均輝度演算部(13)をさらに備え、
     輝度推移記憶部(11)は、前記平均輝度演算部(13)により算出される前記平均輝度と、前記第2累積点灯時間とを対応付けて記憶し、
     前記輝度補正部(18)は、前記点灯時間記憶部(7)に記憶された前記複数の第1発光素子の各々の前記第1累積点灯時間と、前記輝度推移記憶部(11)に記憶された前記平均輝度および前記第2累積点灯時間とに基づいて、前記複数の第1発光素子の各々の前記点灯制御に関連する前記信号に含まれる前記輝度情報を補正する請求項2に記載の表示装置。
    The second drive unit (9)
    A detector that determines a lighting state of each of the plurality of second light emitting elements and counts the number of the second light emitting elements in a normal state;
    The display device
    The number of the second light emitting elements in the normal state counted by the detection unit, and at least one of the plurality of second light emitting elements measured by the luminance measurement unit (100) in the normal state. An average luminance calculation unit (13) for calculating an average luminance of each second light emitting element from the luminance of the second light emitting element;
    The luminance transition storage unit (11) stores the average luminance calculated by the average luminance calculation unit (13) in association with the second cumulative lighting time,
    The luminance correction unit (18) is stored in the first cumulative lighting time of each of the plurality of first light emitting elements stored in the lighting time storage unit (7) and in the luminance transition storage unit (11). The display according to claim 2, wherein the luminance information included in the signal related to the lighting control of each of the plurality of first light emitting elements is corrected based on the average luminance and the second cumulative lighting time. apparatus.
  4.  前記インテグレータ素子(20)は、前記筒形状の一端が前記第2表示部との間に隙間を有し、かつ、他端が前記受光素子(10)に隣接して設けられる請求項1から請求項3のいずれか一項に記載の表示装置。 The integrator element (20) is provided with one end of the cylindrical shape having a gap between the second display unit and the other end adjacent to the light receiving element (10). Item 4. The display device according to any one of Items 3 to 3.
  5.  前記インテグレータ素子(20)の前記筒形状は、前記断面が矩形を有し、1枚の板が折り曲げられてなる請求項1から請求項4のいずれか一項に記載の表示装置。 The display device according to any one of claims 1 to 4, wherein the cylindrical shape of the integrator element (20) has a rectangular cross section and a single plate is bent.
  6.  前記複数の第1発光素子は複数の第1LED(1a)であり、
     前記第1表示部は前記複数の第1LED(1a)が配置された第1LED表示部(1)であり、
     前記複数の第2発光素子は複数の第2LED(2a)であり、
     前記第2表示部は前記複数の第2LED(2a)が配置された第2LED表示部(2)である請求項1から請求項5のいずれか一項に記載の表示装置。
    The plurality of first light emitting elements are a plurality of first LEDs (1a),
    The first display unit is a first LED display unit (1) in which the plurality of first LEDs (1a) are arranged,
    The plurality of second light emitting elements are a plurality of second LEDs (2a),
    The display device according to any one of claims 1 to 5, wherein the second display unit is a second LED display unit (2) in which the plurality of second LEDs (2a) are arranged.
PCT/JP2017/005117 2017-02-13 2017-02-13 Display device WO2018146807A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/005117 WO2018146807A1 (en) 2017-02-13 2017-02-13 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/005117 WO2018146807A1 (en) 2017-02-13 2017-02-13 Display device

Publications (1)

Publication Number Publication Date
WO2018146807A1 true WO2018146807A1 (en) 2018-08-16

Family

ID=63107368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005117 WO2018146807A1 (en) 2017-02-13 2017-02-13 Display device

Country Status (1)

Country Link
WO (1) WO2018146807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI694438B (en) * 2019-04-22 2020-05-21 大陸商北京集創北方科技股份有限公司 Method for starting automatic current limiting mechanism of display, display and information processing device adopting the method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090780A (en) * 2001-07-03 2003-03-28 Barco Nv System and method for real-time correction of light output and / or color
JP2005201962A (en) * 2004-01-13 2005-07-28 Seiko Epson Corp Electro-optical device, driving method thereof, and electronic apparatus
JP2009141302A (en) * 2007-12-05 2009-06-25 Samsung Mobile Display Co Ltd Organic electroluminescent display device and method of driving the same
US20110242074A1 (en) * 2008-09-01 2011-10-06 Tom Bert Method and system for compensating ageing effects in light emitting diode display devices
JP2013519113A (en) * 2010-02-04 2013-05-23 イグニス・イノベーション・インコーポレイテッド System and method for extracting correlation curves for organic light emitting devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090780A (en) * 2001-07-03 2003-03-28 Barco Nv System and method for real-time correction of light output and / or color
JP2005201962A (en) * 2004-01-13 2005-07-28 Seiko Epson Corp Electro-optical device, driving method thereof, and electronic apparatus
JP2009141302A (en) * 2007-12-05 2009-06-25 Samsung Mobile Display Co Ltd Organic electroluminescent display device and method of driving the same
US20110242074A1 (en) * 2008-09-01 2011-10-06 Tom Bert Method and system for compensating ageing effects in light emitting diode display devices
JP2013519113A (en) * 2010-02-04 2013-05-23 イグニス・イノベーション・インコーポレイテッド System and method for extracting correlation curves for organic light emitting devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI694438B (en) * 2019-04-22 2020-05-21 大陸商北京集創北方科技股份有限公司 Method for starting automatic current limiting mechanism of display, display and information processing device adopting the method

Similar Documents

Publication Publication Date Title
US9058769B2 (en) Method and system for compensating ageing effects in light emitting diode display devices
US9740034B2 (en) Control of directional display
KR100903699B1 (en) Method and system for real time correction of an image
CN104321686B (en) Controlling light sources of a directional backlight
JP6080429B2 (en) LIGHT SOURCE DEVICE, LIGHT SOURCE DEVICE CONTROL METHOD, AND DISPLAY DEVICE
JP6100077B2 (en) Light source device and control method thereof
US8107019B2 (en) Projection type image display device
US20130161498A1 (en) Image display apparatus
JP7413907B2 (en) Optical measuring device and optical measuring method
JP2016218238A (en) LED display device and video display device
JP5053173B2 (en) Position detection sensor
JPWO2019229971A1 (en) Display device
JPWO2011142071A1 (en) Optical system for measurement and luminance meter, color luminance meter and color meter using the same
JP2016027546A (en) Surface light source device and liquid crystal display device
JP2019120815A (en) Display device
WO2018146807A1 (en) Display device
JP6739151B2 (en) LED display device
US20110304826A1 (en) Illuminating unit and display apparatus including the same
JP2015162333A (en) Light source device and display device
CN119585674B (en) Surface shape diffusion sheet with reduced blackening, reflective screen, image display system and image display method
JP2017032889A (en) LED display device
TWI385369B (en) Measurement method and display
JP6742703B2 (en) LED display device
TW201827890A (en) Display device
US11270655B2 (en) Display apparatus and method for monitoring the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP