多层一次性可编程永久存储器单元及其制备方法Multi-layer one-time programmable permanent memory unit and preparation method thereof
技术领域Technical field
本发明涉及存储器技术。The present invention relates to memory technology.
背景技术Background technique
本发明披露的存储器装置和制备方法与海量数据存储有关。更特别地,本发明披露的存储器装置和制备方法涉及一次性可编程(OTP)永久存储器技术。The memory device and method of fabrication disclosed herein are related to mass data storage. More particularly, the memory devices and methods of fabrication disclosed herein relate to one time programmable (OTP) persistent memory technology.
包括可擦除可编程只读存储器(EPROM),电可擦除可编程只读存储器(EEPROM),闪存,NAND-快闪存储器,硬磁盘、光盘(CD)、数字通用光盘(DVD),蓝光光盘协会注册的蓝光光盘等在内的各种数字存储技术,50余年来已经广泛用于数据存储。然而,存储介质的寿命通常小于5年到10年。针对大数据存储而开发的反熔丝存储技术,因其非常昂贵且存储密度低,不能满足海量数据存储的需求。Includes Erasable Programmable Read Only Memory (EPROM), EEPROM, Flash, NAND-Flash, Hard Disk, CD, Digital Versatile Disc (DVD), Blu-ray Disc Various digital storage technologies, such as Blu-ray Discs registered by the Association, have been widely used for data storage for more than 50 years. However, the life of a storage medium is typically less than 5 to 10 years. Anti-fuse storage technology developed for big data storage, because it is very expensive and has low storage density, cannot meet the demand for massive data storage.
因此,为了海量数据存储,一直需要一种高密度、低成本的多层一次性可编程(OTP)永久存储单元,可以在恶劣的环境条件下相当长期地存储数据。此外,需要一种制备多层OTP永久存储器单元的方法,将反相掺杂的半导体层(例如多晶硅、单晶硅或非晶硅等)叠加在薄介电层的两侧,形成反熔丝可编程二极管存储阵列。Therefore, for mass data storage, there is a need for a high-density, low-cost multi-layer one-time programmable (OTP) permanent storage unit that can store data for a relatively long period of time under harsh environmental conditions. In addition, there is a need for a method of fabricating a multilayer OTP permanent memory cell in which an inversely doped semiconductor layer (eg, polysilicon, single crystal silicon, or amorphous silicon, etc.) is stacked on both sides of a thin dielectric layer to form an antifuse. Programmable diode storage array.
发明内容Summary of the invention
此部分为发明内容摘要,用简化的形式介绍本发明的基本概念,在本发明的详细说明中将进一步披露。本摘要不用于确定权利要求的标的物的范围。This section is a summary of the summary of the invention, and the basic concepts of the invention are described in a simplified form and are further disclosed in the detailed description of the invention. This abstract is not intended to identify the scope of the subject matter of the claims.
本发明披露的存储器器件涉及上述用于海量数据存储的高密度、高可靠和低成本的多层一次性可编程(OTP)永久存储器单元,该存储器可以在恶劣的环境条件下相当长期地存储数据。此外,本发明披露一种制备上述多层OTP永久存储器单元的方法,将反相掺杂的半导体材料(例如多晶硅、单晶硅等)叠加在薄介电层的两侧,形成反熔丝可编程二极管存储阵列。
The memory device disclosed by the present invention relates to the above-described high-density, high-reliability and low-cost multi-layer one-time programmable (OTP) permanent memory unit for mass data storage, which can store data for a relatively long period of time under harsh environmental conditions. . In addition, the present invention discloses a method for preparing the above-mentioned multilayer OTP permanent memory cell, in which a reverse-doped semiconductor material (for example, polysilicon, single crystal silicon, etc.) is superposed on both sides of a thin dielectric layer to form an anti-fuse. Program the diode storage array.
披露的多层一次性可编程(OTP)永久存储器单元包括至少两层彼此上下堆叠的OTP永久存储器模块和一层绝缘电介质材料。每层OTP永久存储器模块包括由反掺杂半导体材料制成的M行和N列,其中M和N是大于1的正整数。在一个实施例中,披露的多层OTP永久存储器的一次性可编程(OTP)永久存储器模块包括由导体构成的M行和N列。薄绝缘电介质材料位于每个OTP永久存储器模块的M行和N列的相交处,以及每个OTP永久存储器模块的每个M行和每个N列的顶表面或底表面。此外,薄绝缘电介质材料位于每个OTP永久存储器模块的M行和N列之间。每层OTP永久存储器模块的M行由p型半导体材料或n型半导体材料制成,而此时每层OTP永久存储器模块的N列由掺杂相反的半导体材料制成。即,如果每层OTP永久存储器模块的M行由p型半导体材料制成,则每层OTP永久存储器模块的N列由n型半导体材料制成,反之亦然。The disclosed multi-layer one-time programmable (OTP) permanent memory cell includes at least two layers of OTP permanent memory modules stacked one on top of the other and a layer of insulating dielectric material. Each layer of OTP permanent memory module includes M rows and N columns made of a counter-doped semiconductor material, where M and N are positive integers greater than one. In one embodiment, the disclosed one-time programmable (OTP) permanent memory module of a multi-layer OTP permanent memory includes M rows and N columns of conductors. A thin insulating dielectric material is located at the intersection of the M rows and N columns of each OTP permanent memory module, and the top or bottom surface of each M row and each N column of each OTP permanent memory module. In addition, a thin insulating dielectric material is located between the M rows and the N columns of each OTP permanent memory module. The M rows of each layer of OTP permanent memory modules are made of p-type semiconductor material or n-type semiconductor material, while the N columns of each layer of OTP permanent memory modules are made of oppositely doped semiconductor materials. That is, if the M rows of each layer of the OTP permanent memory module are made of a p-type semiconductor material, the N columns of each layer of the OTP permanent memory module are made of an n-type semiconductor material, and vice versa.
每一层OTP永久存储器模块都按自下而上地堆叠,在OTP永久存储器模块之间的相交处和各层OTP永久存储器模块的M行和N列之间的相交处相连接。每层OTP永久存储器模块的M行位于N列的顶部或底部。本发明披露的多层OTP永久存储器单元还包括多个OTP可编程存储器单元,它们形成在OTP永久存储器模块的M行和N列的相交处和OTP可编程永久存储器模块之间的相交处。每个OTP存储单元包括p型半导体区、n型半导体区和位于p型半导体区和n型半导体区之间的薄绝缘电介质区。每个OTP存储单元还包括至少两个连接端子,位于每个OTP存储单元的p型半导体区和n型半导体区。每个OTP存储单元的连接端子使用导电通孔(由金属或掺杂多晶硅或其它导电材料制成)彼此连接。形成每个OTP存储单元的薄绝缘电介质区的薄绝缘电介质材料的厚度的预定值,对应于每个OTP存储器单元的击穿电压。薄绝缘电介质材料,以二氧化硅(SiO2)为例,0.5纳米(nm)到4nm的厚度对应于大约3伏至10伏的击穿电压。Each layer of OTP persistent memory modules is stacked bottom-up, connected at the intersection between the OTP permanent memory modules and the intersection between the M rows and N columns of the various layers of OTP permanent memory modules. The M rows of each layer of OTP permanent memory modules are located at the top or bottom of the N columns. The multi-layered OTP persistent memory unit disclosed herein also includes a plurality of OTP programmable memory cells formed at the intersection between the intersection of M rows and N columns of the OTP permanent memory module and the OTP programmable permanent memory module. Each of the OTP memory cells includes a p-type semiconductor region, an n-type semiconductor region, and a thin insulating dielectric region between the p-type semiconductor region and the n-type semiconductor region. Each of the OTP memory cells further includes at least two connection terminals located in the p-type semiconductor region and the n-type semiconductor region of each of the OTP memory cells. The connection terminals of each OTP memory cell are connected to each other using conductive vias (made of metal or doped polysilicon or other conductive material). A predetermined value of the thickness of the thin insulating dielectric material forming the thin insulating dielectric region of each OTP memory cell corresponds to the breakdown voltage of each OTP memory cell. A thin insulating dielectric material, exemplified by silicon dioxide (SiO2), has a thickness ranging from 0.5 nanometers (nm) to 4 nm corresponding to a breakdown voltage of about 3 volts to 10 volts.
本发明还披露了一种使用平面沉积和蚀刻半导体(例如多晶硅或硅)制备多层一次性可编程(OTP)永久存储器单元的方法。本发明的方法包括使用沉积工艺或外延工艺在含有已完成存储器外围电路的晶圆片的顶部平坦表面上设置半导体材料;使用离子注入工艺或扩散工艺形成反相掺杂的p型或n型半导体材料;
使用光刻掩模工艺和蚀刻工艺去除反相掺杂半导体材料的多余部分,形成条形半导体,用以构成OTP永久存储器的M行或N列;采用平坦化工艺,用绝缘电介质材料填充已经形成为OTP永久存储器模块M行或N列的条状半导体材料;使用化学机械抛光工艺,去除填充绝缘电介质材料溢出OTP永久存储器模块M行或N列的条形半导体的过剩部分;采用热氧化工艺、低温化学气相沉积工艺或原子层沉积(ALD)工艺,在已经填充的OTP永久存储器模块M行或N列条状半导体材料的顶上,创建一层薄的绝缘电介质薄膜,如二氧化硅(SiO2);重复上述方法至预定次数,用自下垂直向上建立的每一层OTP永久存储器模块,上下对称地堆叠而形成多层OTP永久存储器单元。The present invention also discloses a method of fabricating a multilayer one-time programmable (OTP) permanent memory cell using planar deposition and etching of a semiconductor such as polysilicon or silicon. The method of the present invention includes using a deposition process or an epitaxial process to dispose a semiconductor material on a top planar surface of a wafer containing completed memory peripheral circuits; forming an inversely doped p-type or n-type semiconductor using an ion implantation process or a diffusion process Material
Removing a redundant portion of the reverse-phase doped semiconductor material using a photolithography mask process and an etching process to form a strip-shaped semiconductor for forming M rows or N columns of the OTP permanent memory; using a planarization process, filling with an insulating dielectric material has been formed a strip-shaped semiconductor material of M rows or columns of OTP permanent memory modules; using a chemical mechanical polishing process to remove excess portions of strip-shaped semiconductors filled with insulating dielectric material overflowing M rows or columns of OTP permanent memory modules; using a thermal oxidation process, A low temperature chemical vapor deposition process or an atomic layer deposition (ALD) process, creating a thin insulating dielectric film, such as silicon dioxide (SiO2), on top of the already filled OTP permanent memory module M rows or N columns of strip semiconductor material. The above method is repeated to a predetermined number of times, and each layer of OTP permanent memory modules built up from the bottom up is stacked symmetrically up and down to form a multi-layer OTP permanent memory unit.
还披露了制备多层一次性可编程(OTP)永久存储器单元的另一种方法。这种方法包括:在一个含有已完成存储器外围电路的晶圆片的顶部平坦的表面上沉积一层厚的绝缘电介质材料;使用掩蔽腐蚀工艺、等离子体刻蚀工艺,在沉积的厚绝缘电介质材料层上形成沟槽,作为OTP永久存储器模块的行或列的位置;在构建的沟槽中沉积半导体材料;使用扩散或离子注入工艺,在沉积的半导体材料中用p型或n型杂质反相掺杂;采用常规的平坦化工艺,从反相掺杂的半导体材料去除过量沉积的反相掺杂半导体材料,形成OTP永久存储器模块的M行或N列;采用热氧化工艺或热沉积工艺或使用ALD(原子层沉积)工艺,在OTP永久存储器模块的M行或N列上的创建一层绝缘电介质薄膜;重复上述方法预定次数,用自下垂直向上建立的每一层OTP永久存储器模块,对称地堆叠而形成多层OTP永久存储器单元。在所述OTP永久存储器模块的M行或N列上的薄绝缘电介质膜用作可编程的介电材料。Another method of making a multi-layer one-time programmable (OTP) permanent memory cell is also disclosed. The method includes: depositing a thick insulating dielectric material on a flat top surface of a wafer containing completed memory peripheral circuits; using a mask etching process, a plasma etching process, and depositing a thick insulating dielectric material Forming a trench on the layer as the row or column of the OTP permanent memory module; depositing a semiconductor material in the trench being constructed; using a diffusion or ion implantation process to invert the p-type or n-type impurity in the deposited semiconductor material Doping; using a conventional planarization process to remove excess deposited doped semiconductor material from the inversely doped semiconductor material to form M rows or N columns of the OTP permanent memory module; using a thermal oxidation process or a thermal deposition process or An ALD (Atomic Layer Deposition) process is used to create an insulating dielectric film on M rows or N columns of the OTP permanent memory module; the above method is repeated a predetermined number of times, using each layer of OTP permanent memory modules built up from the bottom up, Stacked symmetrically to form a multi-layer OTP permanent memory cell. A thin insulating dielectric film on the M or N columns of the OTP permanent memory module is used as a programmable dielectric material.
本发明披露的方法,使用例如“poly/薄氧化物/poly”的反熔丝机制形成多层一次性可编程(OTP)永久存储器单元,其中“poly”是指多晶硅,薄氧化物是指薄绝缘电介质材料。本文所披露的方法,例如堆叠p-poly/薄氧化物/n-poly/薄氧化物/p-poly/薄氧化物,形成垂直多层高密度存储器,其中“p-poly”是指p型掺杂多晶硅和“n-poly”是指n型掺杂多晶硅。在一个实施例中,掺杂多晶硅被硅(Si)取代。在一个实施例中,薄氧化物热生长或沉积于底部多晶硅层之上。薄氧化物也可以被其它电介质膜取代,例如氮化物或氧化物和氮化物的组合。多层OTP永久存储器单元的每一层,用其底部和顶部的反相掺杂多晶硅或硅构成
可编程的p-n结二极管,从而以低成本显著地提高了堆叠存储密度。多层OTP永久存储器单元中的多层存储器阵列,包括可编程的二极管。N沟道金属氧化物半导体(NMOS)晶体管和P沟道金属氧化物半导体(PMOS)晶体管用于编程电路、检测电路和解码电路。例如,用一个p-poly/薄氧化层/n-poly定义的可编程二极管,阻止来自偏置为未选行和未选列的反向电流。P型多晶硅和n型多晶硅还用作行和列的连接线,从而无需为增加存储密度而在每一多晶硅顶上的昂贵的金属线。The method disclosed herein forms a multilayer one-time programmable (OTP) permanent memory cell using an anti-fuse mechanism such as "poly/thin oxide/poly", where "poly" refers to polysilicon and thin oxide refers to thin Insulated dielectric material. The methods disclosed herein, such as stacking p-poly/thin oxide/n-poly/thin oxide/p-poly/thin oxide, form a vertical multilayer high density memory, where "p-poly" refers to p-type Doped polysilicon and "n-poly" refer to n-type doped polysilicon. In one embodiment, the doped polysilicon is replaced by silicon (Si). In one embodiment, the thin oxide is thermally grown or deposited over the bottom polysilicon layer. Thin oxides can also be replaced by other dielectric films, such as nitrides or combinations of oxides and nitrides. Each layer of a multi-layer OTP permanent memory cell consisting of inverted doped polysilicon or silicon at the bottom and top
Programmable p-n junction diodes significantly increase stack storage density at low cost. A multi-layer memory array in a multi-layer OTP permanent memory cell, including a programmable diode. N-channel metal oxide semiconductor (NMOS) transistors and P-channel metal oxide semiconductor (PMOS) transistors are used for programming circuits, detection circuits, and decoding circuits. For example, a programmable diode defined by a p-poly/thin oxide/n-poly block reverse current from biased to unselected and unselected columns. P-type polysilicon and n-type polysilicon are also used as row and column connections, eliminating the need for expensive metal lines on top of each polysilicon for increased storage density.
本发明披露的多层一次性可编程(OTP)永久存储器单元,是一种具有高密度低成本的OTP永久存储器单元。所制备的多层OTP永久存储器单元具有高存储密度。例如,本文所披露的方法可以在25mm*25mm面积的芯片上使用10纳米(nm)硅工艺,制备出10太字节(TB)的多层OTP永久存储器。产生的多层OTP永久存储器单元具有非常小的形状因子和永久的数据保持寿命时间,例如,大于100年。The multi-layer one-time programmable (OTP) permanent memory unit disclosed by the present invention is an OTP permanent memory unit with high density and low cost. The prepared multilayer OTP permanent memory cell has a high storage density. For example, the method disclosed herein can produce a 10 terabyte (TB) multilayer OTP permanent memory using a 10 nanometer (nm) silicon process on a 25 mm by 25 mm area chip. The resulting multi-layer OTP permanent memory cell has a very small form factor and a permanent data retention lifetime, for example, greater than 100 years.
在一个或多个实施例中,相关系统包括用于实现此处披露的方法的电路。该电路可以是硬件和/或固件的任意组合,以根据系统设计者的设计选择来配置所披露的方法。此外,根据系统设计者的设计选择可以使用各种结构元素。In one or more embodiments, the related system includes circuitry for implementing the methods disclosed herein. The circuit can be any combination of hardware and/or firmware to configure the disclosed method in accordance with the design choices of the system designer. In addition, various structural elements can be used depending on the design choice of the system designer.
附图说明DRAWINGS
本发明的上述摘要以及其后的详细描述,与附图一起阅读时可以更好地理解。为了说明本发明,本发明的示例性结构如附图所示。然而,本发明不局限于此处披露的特定方法和组件。图中用数字作参照的方法步骤或组件的描述,适用于在后续的附图中用相同数字显示的方法步骤或组件的描述。The above summary of the invention, as well as the following detailed description, In order to explain the present invention, an exemplary structure of the present invention is shown in the accompanying drawings. However, the invention is not limited to the specific methods and components disclosed herein. The description of the method steps or components in the figures, which are referenced in the figures, are applied to the description of the method steps or components in the subsequent figures.
图1举例说明了在多层一次性可编程永久存储器单元中一个单层的一次性可编程存储器模块的透视图。Figure 1 illustrates a perspective view of a single layer one time programmable memory module in a multi-layer, one time programmable permanent memory unit.
图2举例说明了由两层一次性可编程永久存储器模块层层堆叠而成的一个多层一次性可编程永久存储器单元的透视图。2 illustrates a perspective view of a multi-layer, one-time programmable permanent memory unit stacked from two layers of one-time programmable permanent memory modules.
图3举例说明了一个一次性可编程存储器单元的框图。Figure 3 illustrates a block diagram of a one-time programmable memory unit.
图4举例说明了图3所示的一次性可编程存储器单元的电路图。
FIG. 4 illustrates a circuit diagram of the one-time programmable memory cell shown in FIG.
图5举例说明了在一次性可编程永久存储器模块的行和列的相交处形成的,一次性可编程存储器单元的一个单层的一次性可编程永久存储器模块实施例的透视图。Figure 5 illustrates a perspective view of a single layer one-time programmable permanent memory module embodiment of a one-time programmable memory cell formed at the intersection of rows and columns of a one-time programmable permanent memory module.
图6举例说明了如图5所示的,在一次性可编程永久存储器模块的行列相交处形成的一次性可编程存储器单元。Figure 6 illustrates a one-time programmable memory cell formed at the intersection of rows and columns of a one-time programmable permanent memory module as shown in Figure 5.
图7举例说明了多层一次性可编程永久存储器单元的部分前视图。Figure 7 illustrates a partial front view of a multi-layer, one-time programmable permanent memory unit.
图8举例说明了如图7所示的多层一次性可编程永久存储器单元的电路图。Figure 8 illustrates a circuit diagram of a multi-layer one-time programmable permanent memory cell as shown in Figure 7.
图9举例说明了多层一次性可编程存储器单元的一个实施例的部分侧视图。Figure 9 illustrates a partial side view of one embodiment of a multi-layer disposable programmable memory cell.
图10举例说明了图9所示多层一次性可编程永久存储器单元的一个实施例的电路图。Figure 10 illustrates a circuit diagram of one embodiment of the multi-layer one-time programmable permanent memory unit of Figure 9.
图11举例说明了多层一次性可编程永久存储器单元的俯视图。Figure 11 illustrates a top view of a multi-layer disposable programmable permanent memory unit.
图12举例说明了多个一次性可编程永久存储器模块层按自下而上的方向堆叠而形成多层一次性可编程永久存储器单元的前视图。Figure 12 illustrates a front view of a plurality of one time programmable permanent memory module layers stacked in a bottom-up direction to form a multi-layer disposable programmable memory unit.
图13举例说明了前视图显示一次性可编程永久存储器模块按自下而上的方向堆叠而形成多层一次性可编程存储器单元的一个实施例的侧视图。Figure 13 illustrates a side view showing one embodiment of a one-time programmable permanent memory module stacked in a bottom-up direction to form a multi-layer disposable programmable memory cell.
图14举例说明了一个实施例的俯视图,显示彼此相邻的多个一次性可编程永久存储器模块层,行和列用相反掺杂的半导体材料构成,用导电通孔互连。Figure 14 illustrates a top view of an embodiment showing a plurality of one-time programmable permanent memory module layers adjacent to each other, the rows and columns being constructed of oppositely doped semiconductor materials interconnected by conductive vias.
图15举例说明了多层一次性可编程永久存储器单元的剖视图,显示多个一次性可编程永久存储器模块层堆叠形成的多层一次性可编程存储器单元的不同层上掺杂半导体材料行线的互连。Figure 15 illustrates a cross-sectional view of a multi-layer, one-time programmable permanent memory cell showing the doped semiconductor material lines on different layers of a multi-layer, one-time programmable memory cell formed by stacking a plurality of one-time programmable permanent memory module layers interconnection.
图16举例说明了多层一次性可编程永久存储器单元的剖视图,显示多个一次性可编程永久存储器模块层堆叠形成的多层一次性可编程存储器单元的不同层上反相掺杂半导体材料列线的互连。16 illustrates a cross-sectional view of a multi-layer, one-time programmable permanent memory cell showing different layers of inverted doped semiconductor material columns on different layers of a plurality of one-time programmable memory module stacks The interconnection of lines.
图17至19举例说明多个一次性可编程永久存储器模块堆叠形成多层一次性可编程永久存储器单元的各种实施例的存储器阵列电路的电路图。17 through 19 illustrate circuit diagrams of memory array circuits of various embodiments in which a plurality of one-time programmable permanent memory modules are stacked to form a multi-layer, one-time programmable permanent memory unit.
图20说明了使用平面沉积工艺和半导体材料蚀刻工艺制备多层一次性可编程永久存储器单元的方法。
Figure 20 illustrates a method of fabricating a multilayer one-time programmable permanent memory cell using a planar deposition process and a semiconductor material etch process.
图21说明了通过在绝缘电介质材料中建造沟槽并用半导体材料填充沟槽制备多层一次性可编程永久存储器单元的方法。Figure 21 illustrates a method of preparing a multilayer one-time programmable permanent memory cell by constructing a trench in an insulating dielectric material and filling the trench with a semiconductor material.
图22是肖特基接触实施例的局部示意图。Figure 22 is a partial schematic view of a Schottky contact embodiment.
具体实施方式detailed description
图1所示的单层OTP永久存储器模块101,构成了多层OTP存储器单元100中的一层。OTP永久存储器模块101包括反相掺杂半导体材料M行102和N列103,其中M和N是大于1的正整数。例如,图1举例说明的OTP永久存储器模块101包括至少两行102和至少两列103。OTP永久存储器模块101包括位于第一列B11和第二列B12顶部的第一行A11和第二行A12,如图1所示。M和N可以是1到1024×1204之间的任意整数。行102由p型半导体材料或n型半导体材料制成,而列103由反相的p型或n型半导体材料构成。例如,如果第一行A11和第二行A12是p型半导体材料,则第一列B11和第二列B12是n型半导体材料,反之亦然。The single layer OTP permanent memory module 101 shown in FIG. 1 constitutes one layer of the multi-layer OTP memory unit 100. The OTP permanent memory module 101 includes an inverted doped semiconductor material M row 102 and an N column 103, where M and N are positive integers greater than one. For example, the OTP persistent storage module 101 illustrated in FIG. 1 includes at least two rows 102 and at least two columns 103. The OTP permanent memory module 101 includes a first row A11 and a second row A12 at the top of the first column B11 and the second column B12, as shown in FIG. M and N can be any integer between 1 and 1024 x 1204. Row 102 is made of a p-type semiconductor material or an n-type semiconductor material, while column 103 is composed of an inverted p-type or n-type semiconductor material. For example, if the first row A11 and the second row A12 are p-type semiconductor materials, the first column B11 and the second column B12 are n-type semiconductor materials, and vice versa.
一次性可编程(OTP)永久存储器模块101的行102和列103排列成直线,使得行102和列103相互垂直相交以获得最佳结果。在一个实施例中,行102和列103采用不同构形,例如,非直线,在非垂直的方向,或弯曲的方式,等等。行102和列103的不同的构形产生不同的结果。行102可以称为字线,列103可以相应地称为位线。或者,行102称为位线,列103称为字线。Row 102 and column 103 of one-time programmable (OTP) permanent memory module 101 are arranged in a line such that row 102 and column 103 intersect perpendicularly to each other for optimal results. In one embodiment, row 102 and column 103 are in different configurations, such as non-linear, in a non-vertical direction, or in a curved manner, and the like. The different configurations of row 102 and column 103 produce different results. Row 102 may be referred to as a word line, and column 103 may be referred to as a bit line, respectively. Alternatively, row 102 is referred to as a bit line and column 103 is referred to as a word line.
一次性可编程(OTP)永久存储器模块101还包括薄绝缘电介质材料层105,例如,二氧化硅(SiO2),分别位于行102的顶面102a和列103的顶面103a。在一个实施例中(未显示),绝缘电介质材料层105(例如SiO2)位于分别位于行102的底面102b和列103的底面103b。在图1中,绝缘电介质材料105标示为阴影区域。使用蚀刻工艺除去在行102和列103的相交处104之外的过剩绝缘电介质材料105,在此后的平面化工艺中,行102和列103填充了一层绝缘电介质材料层105。在图1中,填充的绝缘电介质层标示为102a和103a阴影区上表面之上的非阴影区。
The one-time programmable (OTP) permanent memory module 101 also includes a thin layer of insulating dielectric material 105, such as silicon dioxide (SiO2), located on the top surface 102a of the row 102 and the top surface 103a of the column 103, respectively. In one embodiment (not shown), an insulating dielectric material layer 105 (e.g., SiO2) is located on the bottom surface 102b of row 102 and bottom surface 103b of column 103, respectively. In Figure 1, insulating dielectric material 105 is designated as a shaded area. The excess insulating dielectric material 105 outside the intersection 104 of row 102 and column 103 is removed using an etch process. In the subsequent planarization process, row 102 and column 103 are filled with a layer of insulating dielectric material 105. In Figure 1, the filled insulating dielectric layers are designated as non-shaded areas above the upper surface of the shaded areas 102a and 103a.
图2举例说明了一种由101和106两层OTP永久存储器模块堆叠而成的多层一次性可编程(OTP)永久存储器单元100的透视图。本发明披露的多层OTP永久存储器单元100包括至少两个层层叠置的OTP永久存储器模块101和106和绝缘电介质材料105。每层OTP永久存储器模块101和106分别包括M行102和107,分别包括N列103和108,行和列由反相掺杂半导体材料构成,其中M和N是大于1的正整数。例如,第一层OTP永久存储器模块101包括反相掺杂半导体材料构成的两行102和两列103,第二层OTP永久存储器模块106包括反相掺杂半导体材料构成的两行107和两列108。如图2所示,分别属于OTP永久存储器模块101和106的行102和107,分别位于列103和列108的顶部。在一种实施例中(未示出),分别属于OTP永久存储器模块101和106的行102和行107,分别位于列103和列108的底部。为了获得最佳的数据存储,分别属于OTP永久存储器模块101和106的行102和行107,列103和列108都是直线并且彼此垂直。2 illustrates a perspective view of a multi-layer one-time programmable (OTP) permanent memory cell 100 stacked from 101 and 106 two-layer OTP permanent memory modules. The multi-layer OTP permanent memory cell 100 disclosed herein includes at least two layers of stacked OTP permanent memory modules 101 and 106 and an insulating dielectric material 105. Each layer of OTP permanent memory modules 101 and 106 includes M rows 102 and 107, respectively, comprising N columns 103 and 108, respectively, and the rows and columns are comprised of an invertically doped semiconductor material, where M and N are positive integers greater than one. For example, the first layer of OTP permanent memory module 101 includes two rows 102 and two columns 103 of inversely doped semiconductor material, and the second layer of OTP permanent memory module 106 includes two rows 107 and two columns of inversely doped semiconductor material. 108. As shown in FIG. 2, rows 102 and 107 belonging to OTP permanent memory modules 101 and 106, respectively, are located at the top of column 103 and column 108, respectively. In one embodiment (not shown), rows 102 and 107 belonging to OTP permanent memory modules 101 and 106, respectively, are located at the bottom of column 103 and column 108, respectively. In order to obtain optimal data storage, rows 102 and 107 belonging to OTP permanent memory modules 101 and 106, respectively, column 103 and column 108 are straight and perpendicular to each other.
如图2所示,每个一次性可编程(OTP)永久存储器模块101和106按照自下而上的方向堆叠,分别属于OTP永久存储器模块101和106的行102和行107,列103和列108分别在相交处104和109相连,OTP永久存储器模块101和106之间的相交处是110。例如,第二个OTP永久存储器模块106包括第一行A21,第二行A22,第一列B21和第二列B22,模块106堆叠在第一个OTP永久存储器模块101的顶部,模块101包括第一行A11,第二行A12,第一列B11和第二列B12。绝缘电介质材料105分别位于OTP永久存储器模块101的行102与列103的相交处104,在102和103之间,位于模块106的行107与列108的相交处109,在107和108之间,还分别位于OTP永久存储器模块101的M行102的顶面102a、N列103的顶面103a,位于模块106的M行107的顶面107a、N列108的顶面108a。在一个实施例中(未显示),绝缘电介质材料105分别位于OTP永久存储器模块101、106的行102、行107与列103、108的相交处104、109,在102、103之间和107、108之间,还分别位于OTP永久存储器模块101、106的M行102、107的底面102b、107b,以及N列103、108的底面103b、108b。As shown in FIG. 2, each of the one-time programmable (OTP) persistent memory modules 101 and 106 are stacked in a bottom-up direction belonging to rows 102 and 107, columns 103 and columns of OTP permanent memory modules 101 and 106, respectively. 108 is connected at intersections 104 and 109, respectively, and the intersection between OTP permanent memory modules 101 and 106 is 110. For example, the second OTP persistent storage module 106 includes a first row A21, a second row A22, a first column B21, and a second column B22. The module 106 is stacked on top of the first OTP persistent storage module 101, and the module 101 includes One row A11, second row A12, first column B11 and second column B12. The insulating dielectric material 105 is located at the intersection 104 of the row 102 and the column 103 of the OTP permanent memory module 101, respectively, between 102 and 103, at the intersection 109 of the row 107 of the module 106 and the column 108, between 107 and 108, Also located on the top surface 102a of the M row 102 of the OTP permanent memory module 101, and the top surface 103a of the N column 103, are located on the top surface 107a of the M row 107 of the module 106, and the top surface 108a of the N column 108. In one embodiment (not shown), the insulating dielectric material 105 is located at the intersection 102 of the OTP permanent memory modules 101, 106, the intersections 104, 109 of the rows 107 and the columns 103, 108, respectively, between 102, 103 and 107, 108 are also located on the bottom surfaces 102b, 107b of the M rows 102, 107 of the OTP permanent memory modules 101, 106, and the bottom surfaces 103b, 108b of the N columns 103, 108, respectively.
一次性可编程(OTP)永久存储器模块101、106的行102、107与列103、108之间的相交处分别是104和109,以及多层OTP永久存储器单元100中OTP
永久存储器模块101和106之间的相交处是110。图1示出,OTP存储器单元分别位于A11-B11,A11-B12,A12-B12,和A12-B11相交处104。此外,OTP存储器单元也位于A11-B21,A11-B22,A12-B21,A12-B22,A21-B21,A21-B22,A22-B22,和A22-B21的相交处,如图2所示。每层OTP永久存储器模块101和106包括四OTP存储单元。例如,OTP永久存储器模块101包括四个OTP存储器单元111a,111b,111c,和111d,如图6所示。具有至少两层OTP永久存储器模块101和106的多层OTP永久存储器单元100,包括十二个OTP存储器单元。每个OTP存储器单元包括p型半导体区112,n型半导体区114和一个位于p型半导体区域112和n型半导体区114之间的薄的绝缘电介质区113,如图3所示。薄绝缘电介质区113分隔p型半导体区112和n型半导体区114。每个OTP存储单元还包括至少两个接线端子,设置于每个OTP存储器单元p型半导体区112和n型半导体区114上的116a和116b,如图6所示。每个OTP存储单元的接线端子,例如116a和116b使用导电通孔1501相互连接,例如图15-16中的金属通孔。考虑图2所示的多层OTP永久存储器单元100的行A11、A12和A21、A22,它们是p型半导体材料,分别置于n型半导体材料的列B11、B12和B21、B22的顶上。上述行p型半导体材料行A11、A12,A21,A22和n型半导体材料列B11、B12、B21、B22分别形成每个OTP存储器单元的p型半导体区域112和n型半导体区域114。The intersections between rows 102, 107 and columns 103, 108 of one-time programmable (OTP) persistent memory modules 101, 106 are 104 and 109, respectively, and OTP in multi-layer OTP persistent memory unit 100
The intersection between the persistent storage modules 101 and 106 is 110. Figure 1 shows that the OTP memory cells are located at intersections A11-B11, A11-B12, A12-B12, and A12-B11, respectively. In addition, the OTP memory unit is also located at the intersection of A11-B21, A11-B22, A12-B21, A12-B22, A21-B21, A21-B22, A22-B22, and A22-B21, as shown in FIG. Each layer of OTP permanent memory modules 101 and 106 includes four OTP memory cells. For example, the OTP persistent storage module 101 includes four OTP memory units 111a, 111b, 111c, and 111d, as shown in FIG. A multi-layer OTP permanent memory unit 100 having at least two layers of OTP persistent memory modules 101 and 106, including twelve OTP memory units. Each OTP memory cell includes a p-type semiconductor region 112, an n-type semiconductor region 114, and a thin insulating dielectric region 113 between the p-type semiconductor region 112 and the n-type semiconductor region 114, as shown in FIG. The thin insulating dielectric region 113 separates the p-type semiconductor region 112 and the n-type semiconductor region 114. Each of the OTP memory cells further includes at least two terminals, 116a and 116b disposed on each of the OTP memory cell p-type semiconductor region 112 and the n-type semiconductor region 114, as shown in FIG. The terminals of each OTP memory cell, such as 116a and 116b, are interconnected using conductive vias 1501, such as the metal vias of Figures 15-16. Consider rows A11, A12 and A21, A22 of the multilayer OTP permanent memory cell 100 shown in Figure 2, which are p-type semiconductor materials placed on top of columns B11, B12 and B21, B22 of the n-type semiconductor material, respectively. The row of p-type semiconductor material rows A11, A12, A21, A22 and n-type semiconductor material columns B11, B12, B21, B22 form a p-type semiconductor region 112 and an n-type semiconductor region 114 of each OTP memory cell, respectively.
图3举例说明了一个一次性可编程(OTP)存储单元111的框图。OTP存储单元111包括p型半导体区112、n型半导体区114和位于p型半导体区112和n型半导体区114之间的薄绝缘电介质区113。形成每个OTP存储单元111的薄绝缘电介质区113的薄绝缘电介质材料105的厚度具有对应于每个OTP存储单元的击穿电压的预定值。因为厚的电介质材料需要较高的编程电压,而太薄的介电材料会引起不需要的击穿和泄漏,所以将形成每个OTP存储器单元111中薄绝缘电介质区113的薄绝缘电介质材料105的厚度,设置为既适合于编程电压,又避免泄漏。绝缘电介质材料105,例如,二氧化硅(SiO2)的厚度约为0.5纳米(nm)至4nm,氮化硅(Si3N4)的厚度大于4nm。在一个实施例中,使用厚度小于0.5纳米的其它绝缘电介质材料。互换p型半导体区112和n型半导体区114的位置,可以将OTP存储器单元111的方向互换。
FIG. 3 illustrates a block diagram of a one-time programmable (OTP) memory unit 111. The OTP memory cell 111 includes a p-type semiconductor region 112, an n-type semiconductor region 114, and a thin insulating dielectric region 113 between the p-type semiconductor region 112 and the n-type semiconductor region 114. The thickness of the thin insulating dielectric material 105 forming the thin insulating dielectric region 113 of each OTP memory cell 111 has a predetermined value corresponding to the breakdown voltage of each OTP memory cell. Because a thick dielectric material requires a higher programming voltage, and a too thin dielectric material causes unwanted breakdown and leakage, a thin insulating dielectric material 105 that will form a thin insulating dielectric region 113 in each OTP memory cell 111 will be formed. The thickness is set to suit both the programming voltage and leakage. Insulating dielectric material 105, e.g., the thickness of the silicon dioxide (SiO2) of about 0.5 nanometers (nm) to 4nm, (Si 3 N 4) of silicon nitride is greater than a thickness of 4nm. In one embodiment, other insulating dielectric materials having a thickness of less than 0.5 nanometers are used. The positions of the p-type semiconductor region 112 and the n-type semiconductor region 114 are interchanged, and the directions of the OTP memory cells 111 can be interchanged.
图4举例说明了图3所示的一次性可编程(OTP)存储单元111的等效电路图115。OTP存储单元111电学表示为一个与可编程反熔丝电容器串联的二极管。图4所示的OTP存储器单元111的方向,对应于图3中的OTP存储器单元111按照p型半导体区112,绝缘电介质区113和n型半导体区域114顺序排列。OTP存储器单元111阻止来自其他已编程位的反向电流。FIG. 4 illustrates an equivalent circuit diagram 115 of the one-time programmable (OTP) memory cell 111 shown in FIG. OTP memory cell 111 is electrically represented as a diode in series with a programmable anti-fuse capacitor. The direction of the OTP memory cell 111 shown in FIG. 4 corresponds to the OTP memory cell 111 of FIG. 3 in the order of the p-type semiconductor region 112, the insulating dielectric region 113, and the n-type semiconductor region 114. OTP memory unit 111 blocks reverse current from other programmed bits.
图5举例说明了一个单层的一次性可编程(OTP)永久存储器模块101实施例的透视图,其相应的OTP存储器单元111a,111b,111c,和111d如图6所示,形成在OTP永久存储器模块101的行102与列103的相交处104。在该实施例中,OTP永久存储器模块101包含由导体构成的M行102和N列103,其中M和N是大于1的正整数。所述导体是诸如金属硅化物,或掺杂多晶硅,或其它导电材料。多晶硅是多晶化硅和硅化物的组合。在图5所示的一个例子中,OTP永久存储器模块101包括至少两条行102和至少两条列103。OTP永久存储器模块101的行102和列103相交于104处,形成如图6所示的多个OTP存储器单元111a,111b,111c和111d,其详细描述已经在图2中披露。图5所示的OTP永久存储器模块101的行102和列103的相交处104的阴影区,代表每个OTP存储器单元111a,111b,111c,和111d的绝缘电介质区113。Figure 5 illustrates a perspective view of an embodiment of a single layer one-time programmable (OTP) persistent memory module 101 with corresponding OTP memory cells 111a, 111b, 111c, and 111d as shown in Figure 6, formed in an OTP permanent The intersection 104 of row 102 of memory module 101 and column 103. In this embodiment, the OTP permanent memory module 101 includes M rows 102 and N columns 103 of conductors, where M and N are positive integers greater than one. The conductor is such as a metal silicide, or doped polysilicon, or other electrically conductive material. Polysilicon is a combination of polycrystalline silicon and silicide. In one example shown in FIG. 5, the OTP persistent storage module 101 includes at least two rows 102 and at least two columns 103. Row 102 and column 103 of OTP persistent memory module 101 intersect at 104, forming a plurality of OTP memory cells 111a, 111b, 111c and 111d as shown in FIG. 6, a detailed description of which has been disclosed in FIG. The shaded area of intersection 104 of row 102 and column 103 of OTP permanent memory module 101 shown in Figure 5 represents the insulating dielectric region 113 of each OTP memory cell 111a, 111b, 111c, and 111d.
图6举例说明了在图5所示的OTP永久存储器模块101的行102和列103相交处104,形成的一次性可编程(OTP)存储单元111a,111b,111c,和111d。OTP永久存储器模块101包括用导体制成的至少两行102和两列103,在四个相交处104,形成四个OTP存储器单元111a,111b,111c,和111d,在图6中显示为四个独立的块。四个OTP存储器单元111a,111b,111c和111d的顶部连接端子116a,116c和116e,116g,分别用两条行线117a和117c连接。四个OTP存储器单元111a,111b,111c和111d的底部连接端子116b,116h和116d,116f,分别用两条列线117d和117b连接。Figure 6 illustrates one-time programmable (OTP) memory cells 111a, 111b, 111c, and 111d formed at the intersection 104 of row 102 and column 103 of the OTP permanent memory module 101 shown in Figure 5. The OTP permanent memory module 101 includes at least two rows 102 and two columns 103 made of conductors. At four intersections 104, four OTP memory cells 111a, 111b, 111c, and 111d are formed, which are shown as four in FIG. Independent block. The top connection terminals 116a, 116c and 116e, 116g of the four OTP memory cells 111a, 111b, 111c and 111d are connected by two row lines 117a and 117c, respectively. The bottom connection terminals 116b, 116h and 116d, 116f of the four OTP memory cells 111a, 111b, 111c and 111d are connected by two column lines 117d and 117b, respectively.
在此后披露的图7-13和图15-19中,“l”,即L的小写,表示构成图2所示的多层OTP永久存储器单元100的一个OTP永久存储器模块(例如101或106)的层号或模块号,可以是1到1024之间的任意整数;“R”表示一层上的或一个OTP永久存储器模块(例如101或106)上的行线;“C”表示列线;“x”表示列线号;“y”表示行线号。
In Figures 7-13 and 15-19 disclosed hereinafter, "1", a lowercase L, represents an OTP persistent storage module (e.g., 101 or 106) that constitutes the multi-layer OTP persistent storage unit 100 shown in Figure 2. The layer number or module number, which may be any integer between 1 and 1024; "R" represents a row line on a layer or an OTP permanent memory module (eg 101 or 106); "C" represents a column line; "x" indicates the column line number; "y" indicates the line number.
图7举例说明了图2所示的多层一次性可编程(OTP)永久存储器单元100的部分正视图。如图7举例说明,行线层(Rl,y)位于以(Cl,x-1),(Cl,x)和(Cl,x+1)表示的列线层的顶部。(Cl,x)表示列线号为x的第一层列线。同样,(Cl,x-1)和(Cl,x+1)是在列线(Cl,x)两侧的两条列线。如图7所示,行线层是由p型半导体材料,例如p型掺杂多晶硅(p-poly)构成,此时列线层是由n型半导体材料,例如n型掺杂多晶硅(n-poly)构成。行线层(Rl,y)与列线(Cl+1,x-1),(Cl,x-1),(Cl+1,x),(Cl,x),(Cl+1,x+1),和(C1,x+1),和绝缘电介质材料105在相交处相交。当应用编程电压时,在这一层行线(R1,y)和列线(C1,x)相交处的绝缘电介质材料105被击穿,在该层的行线和列线的相交处形成p-n结二极管。p-poly和n-poly材料扩散穿过被击穿的绝缘电介质材料105,形成p-n结二极管。相邻行线和相邻列之间的距离保持在工艺设计规则中的最低值,以充分地获得好的存储密度。为了实现更好的存储密度,每一层上相邻行线和相邻列线之间的距离采用大于工艺设计规则最低值的优化值。FIG. 7 illustrates a partial front view of the multi-layer one-time programmable (OTP) permanent memory cell 100 of FIG. As illustrated in Figure 7, the row line layer (R l , y) is located at the top of the column line layer represented by (C l , x-1), (C l , x) and (C l , x+1). (C l , x) denotes the first layer of column lines whose column line number is x. Similarly, (C l , x-1) and (C l , x+1) are two column lines on either side of the column line (C l , x). As shown in FIG. 7, the row line layer is composed of a p-type semiconductor material, such as p-type doped polysilicon (p-poly), in which case the column line layer is made of an n-type semiconductor material, such as n-type doped polysilicon (n- Poly) constitutes. Line layer (R l , y) and column line (C l+1 , x-1), (C l , x-1), (C l+1 , x), (C l , x), (C l + 1, x + 1) , and (C 1, x + 1) , and an insulating dielectric material 105 intersect at an intersection. When the programming voltage is applied, the insulating dielectric material 105 at the intersection of the row line (R 1 , y) and the column line (C 1 , x) is broken down, at the intersection of the row and column lines of the layer A pn junction diode is formed. The p-poly and n-poly materials diffuse through the broken dielectric dielectric material 105 to form a pn junction diode. The distance between adjacent row lines and adjacent columns remains at the lowest value in the process design rules to adequately achieve good storage density. In order to achieve better storage density, the distance between adjacent row lines and adjacent column lines on each layer is optimized to be greater than the lowest value of the process design rule.
图8举例说明了如图7所示的多层一次性可编程(OTP)永久存储器单元存储器阵列的电路图。电路图显示在每一列线(Cl+1,x-1),(Cl,x-1),(Cl+1,x),(Cl,x),(Cl+1,x+1),(Cl,x+1)与行线(Rl,y)的相交处,由于击穿绝缘电介质材料105而形成的p-n结二极管801,如图7所详细披露。Figure 8 illustrates a circuit diagram of a multi-layer one time programmable (OTP) permanent memory cell memory array as shown in Figure 7. The circuit diagram is shown in each column line (C l+1 , x-1), (C l , x-1), (C l+1 , x), (C l , x), (C l+1 , x+ 1), at the intersection of (C l , x+1) and the row line (R l , y), the pn junction diode 801 formed by breaking through the insulating dielectric material 105 is disclosed in detail in FIG.
图9举例说明了如图2所示的多层一次性可编程(OTP)永久存储器单元100的一个实施例的部分侧视图。在该实施例中,一层OTP永久存储器模块的列线(Cl,x)放置在同一层行线(Rl,y-1),(Rl,y),(Rl,y+1)与底层行线(Rl-1,y-1),(Rl-1,y),(Rl-1,y+1)之间。行线(Rl,y)表示在第1层上序号为y。同样,(Rl,y-1)和(Rl,y+1)在行线(Rl,y)的两侧。如图9举例说明,该层顶上和底下的行线都是p型半导体材料,例如,p型掺杂多晶硅(p-poly),而该层列线是由n型半导体材料,例如,n型掺杂多晶硅(n-poly)。该层列线(Cl,x)与行线(Rl,y-1),(Rl,y),(Rl,y+1)(Rl-1,y-1),(Rl-1,y),(Rl-1,y+1),和绝缘电介质材料105在相交处相交。在应用编程电压时,在列线(C1,x)和行线(R1,y)相交处的绝缘电介质材料105被击穿,在该层的行线和列线的相交处形成p-n结二极管。p-poly材料和n-poly材料扩散穿过已被击穿的绝缘电介质材料105,形成p-n结二极管。
FIG. 9 illustrates a partial side view of one embodiment of a multi-layer one-time programmable (OTP) permanent memory unit 100 as shown in FIG. 2. In this embodiment, the column lines (Cl, x) of a layer of OTP permanent memory modules are placed in the same layer row line (R l , y-1), (R l , y), (R l , y+1) Between the underlying row lines (R l-1 , y-1), (R l-1 , y), (R l-1 , y+1). The row line (R l , y) indicates that the serial number is y on the first layer. Similarly, (R l , y-1) and (R l , y+1) are on either side of the row line (R l , y). As illustrated in FIG. 9, the top and bottom row lines of the layer are both p-type semiconductor materials, such as p-type doped polysilicon (p-poly), and the layer line is made of an n-type semiconductor material, for example, n. Type doped polysilicon (n-poly). The layer column line (C l , x) and the row line (R l , y-1), (R l , y), (R l , y+1) (R l-1 , y-1), (R L-1 , y), (R l-1 , y+1), and the insulating dielectric material 105 intersect at the intersection. Upon application of a programming voltage, the column lines (C 1, x) and row lines (R 1, y) an insulating dielectric material at the intersection 105 is broken, a pn junction at the intersection of the layer of row and column lines diode. The p-poly material and the n-poly material diffuse through the insulating dielectric material 105 that has been broken down to form a pn junction diode.
图10举例说明了图9所示的多层一次性可编程(OTP)永久存储器单元一个实施例的存储器阵列的电路图。电路图显示,在每一行线((Rl,y-1),(Rl,y),(Rl,y+1),(Rl-1,y-1),(Rl-1,y),(Rl-1,y+1)与列线(Cl,x)的相交处,由于击穿绝缘电介质材料105而形成的p-n结二极管1001,如图9所详细披露。Figure 10 illustrates a circuit diagram of a memory array of one embodiment of the multi-layer one time programmable (OTP) permanent memory cell of Figure 9. The circuit diagram shows that in each row line ((R l , y-1), (R l , y), (R l , y+1), (R l-1 , y-1), (R l-1 , y), at the intersection of (R l-1 , y+1) and the column line (C l , x), a pn junction diode 1001 formed by breaking through the insulating dielectric material 105, as disclosed in detail in FIG.
图11举例说明了一个多层一次性可编程(OTP)永久存储器单元100的俯视图。如图11所示,列线是由n型半导体材料,例如n型掺杂多晶硅(n-poly)构成,而行线是由p型半导体材料,例如p型掺杂多晶硅(p-poly)构成。在一个实施例中(未示出),列线用p-poly而行线为n-poly。OTP永久存储器模块的行线与OTP永久存储器模块的列线相交,在行线和列线的相交处形成OTP永久存储器单元。(Cl,x)表示在第1层上序号为x的列线。同样,(Cl,x-1)and(Cl,x+1)是在列线(Cl,x)两侧的两条列线。(Rl,y)表示在第1层上序号为y的行线。同样,(Rl,y-1)and(Rl,y+1)是在行线(Rl,y)两侧的两条行线。FIG. 11 illustrates a top view of a multi-layer one-time programmable (OTP) permanent memory cell 100. As shown in FIG. 11, the column lines are composed of an n-type semiconductor material such as n-type doped polysilicon (n-poly), and the row lines are composed of a p-type semiconductor material such as p-type doped polysilicon (p-poly). . In one embodiment (not shown), the column lines are p-poly and the row lines are n-poly. The row lines of the OTP permanent memory module intersect the column lines of the OTP permanent memory module, forming an OTP permanent memory cell at the intersection of the row and column lines. (C l , x) denotes a column line numbered x on the first layer. Similarly, (C l , x-1) and (C l , x+1) are two column lines on either side of the column line (C l , x). (R l , y) denotes a row line numbered y on the first layer. Similarly, (R l , y-1) and (R l , y+1) are two row lines on either side of the row line (R l , y).
图12显示多个一次性可编程(OTP)永久存储器模块按自下而上的方向堆叠,形成的多层OTP永久存储器单元100的前视图。在图12所示的OTP永久存储器模块中,列线置于行线的下方,形成多层OTP永久存储器单元100。图12所示的前视图,显示了多个OTP永久存储器模块的列线与多个OTP永久存储器模块的行线的相交处。含有行线(R1,y)和列线(C1,x)的第1(第一)层,堆叠在含有行线(R0,y)和列线(C0,x)的第0层之上。同样,含有行线(Rl+1,y)和列线(Cl+1,x)的第“1+1”层,对称地堆叠在含有行线(R1,y)和列线(C1,x)的第1层之上。以此类推而获得多层OTP永久存储器单元100。Figure 12 shows a front view of a multi-layer OTP permanent memory cell 100 formed by stacking a plurality of one-time programmable (OTP) permanent memory modules in a bottom-up direction. In the OTP permanent memory module shown in FIG. 12, the column lines are placed below the row lines to form a multi-layer OTP permanent memory cell 100. The front view shown in Figure 12 shows the intersection of the column lines of a plurality of OTP permanent memory modules with the row lines of a plurality of OTP permanent memory modules. The first (first) layer containing the row lines (R 1 , y) and the column lines (C 1 , x) stacked on the 0th line including the row lines (R 0 , y) and the column lines (C 0 , x) Above the layer. Similarly, the "1+1" layer containing the row lines (R l+1 , y) and the column lines (C l+1 , x) is symmetrically stacked with row lines (R 1 , y) and column lines ( Above the first layer of C 1 , x). The multi-layer OTP permanent memory unit 100 is obtained by analogy.
将p型半导体材料制成的行线堆叠在n型半导体材料制成的列线之上,再将列线层堆叠在行线之上,就得到一种“行/列/行/列”的对称布局,即P/N/P/N。因此,为了使一次性可编程(OTP)永久存储器单元100增加一层,需要增加一层薄绝缘电介质材料105和一层反相掺杂的半导体材料(例如多晶硅)。在OTP永久存储器单元100上,每增加一层薄绝缘电介质材料105和反掺杂半导体材料,就创建出一层新的OTP永久存储器模块。堆叠起来的许多层,也就是多个OTP永久存储器模块层,是在硅(Si)衬底1201以及作为绝缘电介质层沉积的栅极氧化物1202之上运行。逻辑和编程电路1203用来安排编程电压,将多层OTP永久存储器单元100的OTP永久存储器模块中位于行线和列线相交处的绝缘电
介质材料105击穿。例如,对多层OTP永久存储器单元100编程或读取时,一个正电压施加到存储器模块层中选定的行线和选定的列线上,使电流可以从p型半导体材料制成的行线流向n型半导体材料的列线,获得正向的p-n结电导。A row line made of a p-type semiconductor material is stacked on a column line made of an n-type semiconductor material, and a column line layer is stacked on top of the row line to obtain a "row/column/row/column" Symmetrical layout, ie P/N/P/N. Therefore, in order to add one layer to the one-time programmable (OTP) permanent memory cell 100, it is necessary to add a thin insulating dielectric material 105 and a layer of inversely doped semiconductor material (e.g., polysilicon). On the OTP permanent memory cell 100, a new layer of OTP permanent memory is created for each additional thin insulating dielectric material 105 and counter-doped semiconductor material. The stacked layers, that is, the plurality of OTP permanent memory module layers, operate over a silicon (Si) substrate 1201 and a gate oxide 1202 deposited as an insulating dielectric layer. The logic and programming circuit 1203 is configured to arrange the programming voltage to insulate the intersection of the row and column lines in the OTP permanent memory module of the multi-layer OTP permanent memory cell 100.
The dielectric material 105 breaks down. For example, when programming or reading a multi-layer OTP permanent memory cell 100, a positive voltage is applied to selected row lines and selected column lines in the memory module layer so that current can be made from p-type semiconductor material. The line flows to the column lines of the n-type semiconductor material to obtain a positive pn junction conductance.
图13举例说明了一个一次性可编程(OTP)永久存储器模块按自下而上的方向堆叠,形成多层OTP永久存储器单元100的实施例的侧视图。在图13所示的OTP永久存储器模块中,列线位于行线的下方,形成多层OTP永久存储器单元100。OTP永久存储器模块的行线和列线分别由p型半导体材料(例如硼掺杂多晶硅,p-poly或P型氧化铜)和n型半导体材料(例如,磷掺杂或砷掺杂多晶硅,n-poly,或N型氧化铟锌)构成。.图13所示的侧视图,显示出OTP永久存储器模块的列线与多个OTP永久存储器模块行线的相交处。含有行线(R1,y)和列线(C1,x)的第一(1)层,堆叠在含有行线(R0,y)和列线(C0,x)的第0层之上。同样,含有行线(Rl+1,y)和列线(Cl+1,x)的第“l”+1层(“l”是L的小写),堆叠在含有行线(Rl,y)和列线(Cl,x)的第“l”层之上,等等,从而获得多层OTP永久存储器单元100。对称堆叠起来的许多层,或者说多个OTP永久存储器模块层,在沉积有绝缘电介质层的栅氧化层1202的硅衬底1201上运行。逻辑和编程电路1203用于安排编程电压,将多层OTP永久存储器单元100的OTP永久存储器模块中位于行线和列线相交处的绝缘电介质材料105击穿。Figure 13 illustrates a side view of an embodiment of a one-time programmable (OTP) permanent memory module stacked in a bottom-up direction to form a multi-layer OTP permanent memory cell 100. In the OTP permanent memory module shown in FIG. 13, the column lines are located below the row lines to form a multi-layer OTP permanent memory cell 100. The row and column lines of the OTP permanent memory module are respectively made of a p-type semiconductor material (eg, boron doped polysilicon, p-poly or P-type copper oxide) and an n-type semiconductor material (eg, phosphorus doped or arsenic doped polysilicon, n -poly, or N-type indium zinc oxide). Figure 13 is a side elevational view showing the intersection of the column lines of the OTP permanent memory module with the row lines of the plurality of OTP permanent memory modules. The first (1) layer including the row lines (R 1 , y) and the column lines (C1, x) is stacked on the 0th layer including the row lines (R 0 , y) and the column lines (C 0 , x) on. Similarly, the "l"+1 layer containing the row lines (R l +1, y) and the column lines (C l +1, x) ("l" is a lowercase L), stacked in a row containing lines (R l , y) and the "1" layer of the column line (C l , x), and so on, thereby obtaining the multi-layer OTP permanent memory cell 100. A plurality of layers stacked symmetrically, or a plurality of OTP permanent memory module layers, are run on a silicon substrate 1201 on which a gate oxide layer 1202 of an insulating dielectric layer is deposited. The logic and programming circuit 1203 is configured to align the programming voltage to insulate the dielectric dielectric material 105 at the intersection of the row and column lines in the OTP permanent memory module of the multi-layer OTP permanent memory cell 100.
图14举例说明了一种实施例中,显示彼此层层相邻的多个一次性可编程(OTP)永久存储器模块101,106,118,和119的俯视图,其中的反相掺杂半导体材料构成的行线和列线,用导电通孔(例如金属或掺杂多晶硅孔)相互连接。使用上述导电通孔,将OTP永久存储器模块(例如101和118)的行线和列线与相邻层的OTP永久存储器模块(例如106和119)的行线和列线互连。Figure 14 illustrates a top view of a plurality of one-time programmable (OTP) permanent memory modules 101, 106, 118, and 119 showing layers adjacent to each other in an embodiment, wherein the reverse phase doped semiconductor material is formed The row and column lines are connected to each other by conductive vias such as metal or doped polysilicon holes. The row and column lines of the OTP permanent memory modules (e.g., 101 and 118) are interconnected with the row and column lines of the OTP permanent memory modules (e.g., 106 and 119) of adjacent layers using the conductive vias described above.
图15举例说明了一个多层一次性可编程(OTP)永久存储器单元,沿行线方向的剖面图,说明堆叠形成的多层OTP永久存储器单元的不同层上,掺杂半导体材料(例如p型半导体材料)的行线间的互连。导电通孔1501用于连接堆叠形成多层OTP永久存储器单元的不同层上的行线。Figure 15 illustrates a multilayer one-time programmable (OTP) permanent memory cell, in a row-wise cross-sectional view, illustrating the doped semiconductor material (e.g., p-type) on different layers of a stacked multi-layer OTP permanent memory cell Interconnection of row lines between semiconductor materials). Conductive vias 1501 are used to connect the row lines on the different layers that are stacked to form a multi-layer OTP permanent memory cell.
图16举例说明了一个多层一次性可编程(OTP)永久存储器单元,沿列线方向的剖面图,说明堆叠形成的多层OTP永久存储器单元的不同层上,掺杂半
导体材料(例如n型半导体材料)的列线间的互连。导电通孔1501用于将堆叠形成多层OTP永久存储器单元的不同层上的列线。Figure 16 illustrates a multilayer one-time programmable (OTP) permanent memory cell, sectioned along the column line, illustrating the different layers of the stacked multi-layer OTP permanent memory cell, doped half
Interconnection between column lines of a conductor material, such as an n-type semiconductor material. Conductive vias 1501 are used to form the columns on the different layers of the multi-layer OTP permanent memory cell.
图17-19说明了一次性可编程(OPT)永久存储器模块层堆叠而形成的多层OTP存储器单元100的实施例的存储器阵列的电路图。图17举例说明了一个多层OTP永久存储器单元100的存储器阵列的电路图,显示同一OTP永久存储器模块上的一层字线,即行线(Rl,y+1),(Rl,y),(Rl,y-1),连接到顶层的位线即列线(Cl+1,x-1),(Cl+1,x),(Cl+1,x+1)和底层的位线(Cl,x-1),(Cl,x),(Cl,x+1)。顶层和底层的OTP存储器单元,连接到位线Cl+1和Cl并且共享一个共同的字线Rl。17-19 illustrate circuit diagrams of memory arrays of embodiments of a multi-layer OTP memory cell 100 formed by one-time programmable (OPT) permanent memory module layer stacking. Figure 17 illustrates a circuit diagram of a memory array of a multi-layer OTP permanent memory cell 100 showing a layer of word lines, i.e., row lines (R l , y+1), (R l , y), on the same OTP permanent memory module, (R l , y-1), the bit line connected to the top layer is the column line (C l+1 , x-1), (C l+1 , x), (C l+1 , x+1) and the bottom layer Bit lines (C l , x-1), (C l , x), (C l , x+1). The top and bottom OTP memory cells are connected to bit lines C l+1 and C l and share a common word line R l .
图18举例说明了一个多层的OTP永久存储器单元100存储器阵列电路的电路图,显示一层列线(Cl,x-1),(Cl,x),(Cl,x+1),连接到相邻的顶层和底层的行线((Rl+1,y+1),(Rl,y+1),(Rl+1,y),(Rl,y),(Rl+1,y-1),(Rl,y-1)。顶层Rl+1构成的OTP存储器单元和底层Rl构成的OTP存储器单元,共享相同的位线Cl。Figure 18 illustrates a circuit diagram of a multi-layer OTP permanent memory cell 100 memory array circuit showing a column line (C l , x-1), (C l , x), (C l , x+1), Connect to adjacent top and bottom row lines ((R l+1 , y+1), (R l , y+1), (R l+1 , y), (R l , y), (R L+1 , y-1), (R l , y-1). The OTP memory unit formed by the top layer R l+1 and the OTP memory unit formed by the bottom layer R l share the same bit line C l .
图19举例说明了一个多层OTP永久存储器单元100的存储器阵列的电路图,显示三个层上的行线(Rl+1,y),(Rl,y)和(Rl-1,y)连接到相邻的四个层上的列线,即:顶层列线(Cl+1,x-1),(Cl+1,x)和(Cl+1,x+1),次顶层列线(Cl,x-1),(Cl,x)和(Cl,x+1),次底层列线(Cl-1,x-1),(Cl-1,x)和(Cl-1,x+1),底层列线(Cl-2,x-1),(Cl-2,x)和(Cl-2,x+1)。Figure 19 illustrates a circuit diagram of a memory array of a multi-layer OTP permanent memory cell 100 showing row lines (R l+1 , y), (R l , y) and (R l-1 , y on three layers ) is connected to the column lines on the adjacent four layers, namely: the top column line (C l+1 , x-1), (C l+1 , x) and (C l+1 , x+1), Sub-top column lines (C l , x-1), (C l , x) and (C l , x+1), sub-lower column lines (C l-1 , x-1), (C l-1 , x) and (C l-1 , x+1), the underlying column lines (C l-2 , x-1), (C l-2 , x) and (C l-2 , x+1).
多层一次性可编程(OTP)永久存储器单元100还包括多级解码电路(图中未示出),在图2所示的OTP永久存储器模块101和106中的至少两条M行线102或107和至少两条N列线103或108上实施。多级解码电路可以为上下堆叠的OTP永久存储器模块101和106所共享。多层存储器阵列通常包括多级解码器,例如,层解码器,段解码器,行解码器,列解码器等。含有多条行线102、107,列线103、108的多层OTP永久存储器单元100,采用多级解码器系统,例如层解码器,页解码器,段译码器,行解码器和列解码器,对行线102、107和列线103、108的地址解码,让编程和/或读取系统访问多层OTP永久存储器单元100中存储的数据。The multi-layer one-time programmable (OTP) persistent memory unit 100 further includes a multi-stage decoding circuit (not shown), at least two M rows of lines 102 in the OTP permanent memory modules 101 and 106 shown in FIG. 2 or 107 and at least two N column lines 103 or 108 are implemented. The multi-level decoding circuit can be shared by the upper and lower stacked OTP permanent memory modules 101 and 106. Multi-layer memory arrays typically include multiple stages of decoders, such as layer decoders, segment decoders, row decoders, column decoders, and the like. A multi-layer OTP permanent memory unit 100 having a plurality of row lines 102, 107, column lines 103, 108, employing a multi-stage decoder system, such as a layer decoder, a page decoder, a segment decoder, a row decoder, and a column decoding The addresses of the row lines 102, 107 and the column lines 103, 108 are decoded, allowing the programming and/or reading system to access the data stored in the multi-layer OTP persistent memory unit 100.
用下列表1至表4,举例说明如图2所示的多层一次性可编程(OTP)永久存储器单元100的工作电压表。工作电压表允许用户在多层OTP的永久存储器单元100中按照行(Rl)和列(Cl)定义的位置,进行编程和/或读取数据。编程
电压(Vpp),半编程电压(Vphf),和读取电压(Vrd)是按照多层OTP的永久存储器单元100对工艺技术,电学性能和可靠性的要求进行选择。用户可以在对多层OTP永久存储器单元100编程和(或)读取数据时,分别分配不同的电压到行线(Rl)和列线(Cl)中的选定行(SR),未选行(UR),选定列(SC)和未选列(UC),如表1至表4所示。在编程时,未选行和未选列上的Vphf(1/2Vpp)用来降低电压应力,从而避免不必要的编程或氧化层可靠性问题。此外,Rl和(或)Cl上的电压可以充电至Vphf和允许浮置,表中用“Vphf&Float”代表。The operating voltmeter of the multi-layer one-time programmable (OTP) permanent memory cell 100 as shown in FIG. 2 is exemplified by the following Tables 1 to 4. It gives the user the operating voltage according to the position of the line (R l) and columns (C l) the definition of programming and / or reading data in the persistent storage unit 100 in the multilayer OTP. The programming voltage (Vpp), the half programming voltage (Vphf), and the read voltage (Vrd) are selected in accordance with the process technology, electrical performance and reliability requirements of the multi-layer OTP permanent memory cell 100. The user can assign different voltages to the selected row (SR) of the row line (R l ) and the column line (C l ) when programming and/or reading data to the multi-layer OTP permanent memory cell 100, respectively. Line selection (UR), selected column (SC) and unselected column (UC) are shown in Tables 1 to 4. When programming, Vphf (1/2Vpp) on unselected and unselected columns is used to reduce voltage stress, thereby avoiding unnecessary programming or oxide layer reliability issues. In addition, the voltages on R l and/or C l can be charged to Vphf and allowed to float, as represented by "Vphf &Float" in the table.
上述表1举例说明图2所示的多层一次性可编程(OTP)永久存储器单元100,按照选项1的工作电压表,所对应的存储器阵列电路如图8、图10和图17-19所示。用户可以将行线(Rl)电压设定为编程电压(Vpp),将列线(Cl)电压设定为零,对多层OTP永久存储器单元100中含有选定行线(SR)和/或选定列线(SC)的OTP存储单元进行编程。用户可以将Rl的电压设置为Vpp,Cl的电压设置为半编程电压(Vphf)和浮置(用“Vphf&Float”表示),使得含有SR和/或未选列(UC)的未选OTP存储单元不编程。用户可以设置Rl的电压为零,
Cl的电压为零,编程未选行(UR)和/或选定列SC。用户可以设置Rl的电压为零,Cl的电压为Vphf&Float,编程UR和/或UC。同样,用户可以设置Rl电压为电路读取电压(Vrd)和将Cl连接至检测电路(Sensing),读取SR和/或SC。用户可以设置Rl电压为Vrd和设置Cl电压为Vrd,读取SR和/或UC。用户可以设置Rl的电压为零,和将Cl连接到检测电路(Sensing),读取UR和/或SC。用户可以将Rl设置为零电压和将Cl设置为Vrd,读取UR和/或UC。Table 1 above illustrates the multi-layer one-time programmable (OTP) permanent memory cell 100 shown in FIG. 2. According to the operating voltage meter of Option 1, the corresponding memory array circuit is as shown in FIG. 8, FIG. 10 and FIG. 17-19. Show. The user can set the row line (R l ) voltage to the programming voltage (Vpp), the column line (C l ) voltage to zero, and the selected row line (SR) to the multi-layer OTP permanent memory cell 100. / or the OTP memory cell of the selected column line (SC) is programmed. The user can set the voltage of R l to Vpp, the voltage of C l is set to half programming voltage (Vphf) and floating (represented by "Vphf &Float"), so that unselected OTP with SR and / or unselected column (UC) is selected. The storage unit is not programmed. The user can set the voltage of R l to zero, the voltage of C l to zero, programming unselected rows (UR) and/or selected columns SC. The user can set the voltage of R l to zero, the voltage of C l to Vphf & Float, and the programming UR and / or UC. Similarly, the user can set the R l voltage to the circuit read voltage (Vrd) and connect C l to the sense circuit (Sensing) to read the SR and/or SC. The user can set the R l voltage to Vrd and set the C l voltage to Vrd to read SR and/or UC. The user can set the voltage of R l to zero, and connect C l to the detection circuit (Sensing) to read UR and/or SC. The user can set R l to zero voltage and set C l to Vrd to read UR and/or UC.
上表2说明如图2所示的多层一次性可编程(OTP)永久存储器单元100,按照选项2的工作电压表,对应的存储器阵列电路如图8,图10和图17-19所示。用户可以设置行线(Rl)的电压为零,列线电压为编程电压(Vpp),对多层OTP永久存储器单元100中含有选定行线(SR)和/或选定列线(SC)的OTP存储单元进行编程。用户可以设置Rl的电压为零和Cl的电压为零,使得含有SR和/
或未选列(UC)的未选OTP存储单元不编程。用户可以设置Rl电压为半编程电压(Vphf)并且浮置(用Vphf&Float表示),设置Cl的电压为Vpp,编程未选行(UR)和/或SC。用户可以设置Rl为Vphf&Float,设置Cl为零电压,编程UR和/或UC。同样,用户可以设置Rl的电压为读取电压(Vrd)和将Cl连接至检测电路,读取SR和/或SC。用户可以设置Rl为Vrd和设置Cl为Vrd,读取SR和/或UC。用户可以设置Rl电压为零并将Cl连接到检测电路,读取UR和/或SC。用户可以设置Rl为零电压,设置Cl电压为Vrd,读取UR和/或UC。Table 2 above illustrates a multi-layer one-time programmable (OTP) permanent memory cell 100 as shown in FIG. 2. According to the operating voltage meter of option 2, the corresponding memory array circuit is as shown in FIG. 8, FIG. 10 and FIG. 17-19. . The user can set the voltage of the row line (R l ) to zero, the column line voltage to the programming voltage (Vpp), and the selected row line (SR) and/or the selected column line (SC) to the multi-layer OTP permanent memory cell 100. The OTP memory cell is programmed. The user can set the voltage of R l to zero and the voltage of C l to be zero, so that unselected OTP memory cells containing SR and / or unselected columns (UC) are not programmed. The user can set the R l voltage to a half programming voltage (Vphf) and float (indicated by Vphf & Float), set the voltage of C l to Vpp, and program unselected lines (UR) and/or SC. The user can set R l to Vphf & Float, set C l to zero voltage, and program UR and / or UC. Similarly, the user can set the voltage of R l to the read voltage (Vrd) and connect C l to the detection circuit to read SR and/or SC. The user can set R l to Vrd and set C l to Vrd to read SR and/or UC. The user can set the R l voltage to zero and connect C l to the detection circuit to read UR and/or SC. The user can set R l to zero voltage, set the C l voltage to Vrd, and read UR and / or UC.
上表3说明如图2所示的多层一次性可编程(OTP)永久存储器单元100,按照选项3的工作电压表,对应的存储器阵列电路如图8,图10和图17-19所示。用户可以设置行线(Rl)的电压为半编程电压(Vphf),列线电压为负编程电压(-Vpp),对多层OTP永久存储器单元100中含有选定行线(SR)和/或选定列线(SC)的OTP存储单元进行编程。用户可以设置Rl为Vphf,Cl为浮置(Float),
使得含有SR和/或未选列(UC)的未选OTP存储单元不编程。用户可以设定Rl电压为零,Cl的电压为负Vphf,编程未选行(UR)和/或SC。用户可以设置Rl的电压为零和Cl电压为浮置(Float),编程的UR和/或UC。同样,用户可以设置Rl电压为读取电压(Vrd)并且将Cl连接至检测电路(Sensing),读取SR和/或SC。用户可以设置Rl为Vrd和设置Cl为Vrd,读取SR和/或UC。用户可以设置Rl的电压为零和Cl电压为零,读取UR和/或SC。用户可以设置Rl为零电压和Cl为Vrd,读取UR和/或UC。Table 3 above illustrates a multi-layer one-time programmable (OTP) permanent memory cell 100 as shown in FIG. 2. According to the operating voltage meter of option 3, the corresponding memory array circuit is as shown in FIG. 8, FIG. 10 and FIG. 17-19. . The user can set the voltage of the row line (R l ) to a half programming voltage (Vphf), the column line voltage to a negative programming voltage (-Vpp), and the selected row line (SR) and/or to the multi-layer OTP permanent memory cell 100. Or select the OTP memory cell of the column line (SC) for programming. The user can set R l to Vphf and C l to be floating (Float) so that unselected OTP memory cells containing SR and/or unselected columns (UC) are not programmed. The user can set the R l voltage to zero, the voltage of C l to be negative Vphf, and the unselected line (UR) and/or SC. The user can set the voltage of R l to zero and the voltage of C l to be floating (Float), programmed UR and / or UC. Similarly, the user can set the R l voltage to the read voltage (Vrd) and connect C l to the detection circuit (Sensing) to read the SR and/or SC. The user can set R l to Vrd and set C l to Vrd to read SR and/or UC. The user can set the voltage of R l to zero and the voltage of C l to zero, reading UR and / or SC. The user can set R l to zero voltage and C l to Vrd to read UR and/or UC.
上表4说明如图2所示的多层一次性可编程(OTP)永久存储器单元100,按照选项4的工作电压表,对应的存储器阵列电路如图8,图10和图17-19所示。用户可以设置行线(Rl)电压为负的半编程电压(Vphf)和列线(Cl)电压为Vphf,对多层OTP永久存储器单元100中含有选定行(SR)和/或选定列(SC)的OTP存储单元进行编程。用户可以设置Rl电压为负Vphf和Cl电压为浮置(Float),使得含有SR和/或未选列(UC)的选定OTP存储器单元不编程。用户可以设定Rl电压为零,Cl电压为负Vphf,编程未选行(UR)和/或SC。用户
可以设置Rl电压为零和Cl电压为浮置(Float),编程UR和/或UC。同样,用户可以设置Rl的电压为读取电压(Vrd)并且将Cl连接至检测电路(Sensing),读取SR和/或SC。用户可以设置Rl电压为Vrd,Cl电压为Vrd,读取SR和/或UC。用户可以设置Rl的电压为零并将Cl连接到检测电路,读取UR和/或SC。用户可以设置Rl电压为零和Cl电压为Vrd,读取UR和/或UC。在一个实施例中,检测电路连接到行线,而不是列线。Table 4 above illustrates a multi-layer one-time programmable (OTP) permanent memory cell 100 as shown in FIG. 2. According to the operating voltage meter of option 4, the corresponding memory array circuit is as shown in FIG. 8, FIG. 10 and FIG. 17-19. . The user can set the row lines (R l) the programming voltage is negative voltage half (Vphf) and column lines (C l) voltage Vphf, 100 of the multilayered OTP persistent storage unit contains the selected row (SR) and / or is selected from The OTP memory cell of the fixed column (SC) is programmed. The user can set a negative voltage Vphf R l and C l is the voltage of the floating (Float), such that the selected OTP memory cell is not programmed and containing SR / or unselected column (UC) is. The user can set the R l voltage to zero, the C l voltage to be negative Vphf, and the unselected line (UR) and/or SC to be programmed. The user can set the R l voltage to zero and the C l voltage to float (Float), programming UR and / or UC. Similarly, the user can set the voltage of R l to the read voltage (Vrd) and connect C l to the detection circuit (Sensing) to read SR and/or SC. The user can set the R l voltage to Vrd, the C l voltage to Vrd, and read SR and/or UC. The user can set the voltage of R l to zero and connect C l to the detection circuit to read UR and / or SC. The user can set the R l voltage to zero and the C l voltage to Vrd to read UR and/or UC. In one embodiment, the detection circuit is connected to the row lines instead of the column lines.
图20所示,为一个采用平面沉积工艺和半导体材料刻蚀工艺,制备如图2所示的多层一次性可编程(OTP)永久存储器单元100的方法举例。在本发明披露的方法中,步骤2001是使用沉积工艺或外延工艺将半导体材料(例如多晶硅、硅等)设置在含有已完成存储器外围电路的晶圆片的顶部平坦表面上。存储器外围电路提供对多层OTP永久存储器单元100的访问模式。步骤2002是使用离子注入工艺或扩散工艺,以p型掺杂剂或n-型掺杂剂将半导体材料反相掺杂。步骤2003是使用光刻掩模和刻蚀工艺去除反相掺杂半导体材料的多余部分,用反相掺杂的半导体材料制备条形半导体材料,形成如图2所示的OTP永久存储器模块101中的M行102或N列103,M和N是大于1的正整数。OTP永久存储器模块101构成多层OTP永久存储器单元100中的一层。.步骤2004是在所形成的OTP永久存储器模块101中M行102或N列103条形半导体材料上,用平坦化工艺填充绝缘电介质材料105。步骤2005是使用化学和机械抛光工艺,去除溢出或填充高于M行102或N列103条形半导体材料的过量的绝缘电介质材料105。步骤2006是采用热氧化工艺,或低温化学气相沉积工艺,或原子层沉积(ALD)工艺,在已经填充的OTP永久存储器模块101的M行102或N列103的顶上,形成一层薄的绝缘电介质薄膜。步骤2007是重复上述的方法至预定次数,按自下垂直向上的方向创建每一层OTP永久存储器模块106(如图2所示),对称地堆叠OTP永久存储器模块106,产生多层OTP永久存储器单元100。多个OTP存储器单元,例如图6中的111a,111b,111c,和111d,形成在OTP永久存储器模块101的M行102或N列103的相交处104,以及OTP永久存储器模块101与位于其上的另一层OTP永久存储器模块106的相交处110。在最顶层的OTP永久存储器模块106之上创建另一层薄绝缘电介质膜并且堆叠反相
掺杂的半导体材料(p型半导体材料或n型半导体材料)的M行或N列,如此不断重复,可以提高多层OTP永久存储器单元100中的OTP存储单元,例如111a,111b,111c和111d的存储容量。Figure 20 shows an example of a method for preparing a multilayer one-time programmable (OTP) permanent memory cell 100 as shown in Figure 2 using a planar deposition process and a semiconductor material etch process. In the method disclosed herein, step 2001 is to place a semiconductor material (eg, polysilicon, silicon, etc.) on a top planar surface of a wafer containing completed memory peripheral circuitry using a deposition process or an epitaxial process. The memory peripheral circuitry provides access to the multi-layer OTP persistent memory unit 100. Step 2002 is to inversely dope the semiconductor material with a p-type dopant or an n-type dopant using an ion implantation process or a diffusion process. Step 2003 is to remove excess portions of the reverse-phase doped semiconductor material using a photolithography mask and an etching process, and to form a strip-shaped semiconductor material using the reverse-phase doped semiconductor material to form an OTP permanent memory module 101 as shown in FIG. M row 102 or N column 103, M and N are positive integers greater than one. The OTP permanent memory module 101 constitutes one of the layers of the multi-layer OTP permanent memory unit 100. Step 2004 is to fill the insulating dielectric material 105 with a planarization process on the M rows 102 or N columns 103 strip of semiconductor material in the formed OTP permanent memory module 101. Step 2005 is to remove excess insulating dielectric material 105 that overflows or fills the strip of semiconductor material above M rows 102 or N columns 103 using chemical and mechanical polishing processes. Step 2006 is to form a thin layer on top of the M row 102 or the N column 103 of the already filled OTP permanent memory module 101 by a thermal oxidation process, or a low temperature chemical vapor deposition process, or an atomic layer deposition (ALD) process. Insulated dielectric film. Step 2007 is to repeat the above method to a predetermined number of times, creating each layer of OTP permanent memory module 106 (shown in FIG. 2) from the lower vertical direction, symmetrically stacking the OTP permanent memory module 106, and generating a multi-layer OTP permanent memory. Unit 100. A plurality of OTP memory cells, such as 111a, 111b, 111c, and 111d in FIG. 6, are formed at the intersection 104 of the M row 102 or the N column 103 of the OTP persistent memory module 101, and the OTP persistent memory module 101 is located thereon The intersection of another layer of OTP permanent memory modules 106 is 110. Create another thin insulating dielectric film on top of the topmost OTP permanent memory module 106 and stack in reverse
The M rows or N columns of the doped semiconductor material (p-type semiconductor material or n-type semiconductor material) are so repeated that the OTP memory cells in the multi-layer OTP permanent memory cell 100 can be improved, such as 111a, 111b, 111c, and 111d. Storage capacity.
图21所示,为一个在绝缘电介质材料上构造沟槽并用半导体材料填充沟槽,制备如图2所示的多层一次性可编程(OTP)永久存储器单元100的方法举例。在本发明披露的方法中,步骤2101是,在含有已完成存储器外围电路的晶圆片的顶部平坦表面上沉积厚绝缘电介质材料层。步骤2102是使用掩蔽蚀刻工艺在淀积的厚绝缘电介质材料上构造沟槽,用来定位一层永久存储器模块的行线或列线。步骤2103是将半导体材料沉积在建造的沟槽上。步骤2104是,使用扩散工艺或离子注入工艺,将沉积的半导体材料用p型或n-型掺杂剂反相掺杂。在一个实施例中,原位沉积方法用于实现高浓度掺杂,步骤2103和步骤2104合并为单一步骤。步骤2105是,使用常见的平坦化工艺,去除过量沉积的反相掺杂的半导体材料,形成OTP永久存储器模块101的M行102或N列103,其中M和N是大于1的正整数。然后是步骤2106,将厚绝缘电介质材料层沉积在晶片的顶部平面表面上。步骤2107使用掩膜蚀刻工艺在厚绝缘的介电材料上构造沟槽,用于定位OTP永久存储器模块的行或列。蚀刻过程一直达到最后沉积的半导体材料后终止。步骤2108是,使用热氧化工艺或热沉积工艺或原子层沉积(ALD)工艺,在OTP永久存储器模块101的M行102或N列103上创建薄绝缘电介质膜。如图2所示,在OTP永久存储器模块101的每个M行102或N列103上的薄绝缘电介质膜,用作可编程的介电材料。步骤2109是重复上述的2103,2104,2105,2106,2107和2108方法至预定次数,按自下垂直向上的方向创建如图2所示的每一层OTP永久存储器模块106,对称地堆叠OTP永久存储器模块106,产生多层OTP永久存储器单元100。产生的OTP存储单元,例如图6所示的111a,111b,111c和111d的存储容量可以提高,其详细描述披露于图20。Figure 21 shows an example of a method for fabricating a multilayer one-time programmable (OTP) permanent memory cell 100 as shown in Figure 2 for a trench formed on an insulating dielectric material and filling the trench with a semiconductor material. In the method disclosed herein, step 2101 is to deposit a layer of thick insulating dielectric material on the top planar surface of the wafer containing the completed memory peripheral circuitry. Step 2102 is to use a mask etch process to construct trenches on the deposited thick insulating dielectric material for locating a row or column of a layer of permanent memory modules. Step 2103 is to deposit a semiconductor material on the trench being constructed. Step 2104 is to inversely dope the deposited semiconductor material with a p-type or n-type dopant using a diffusion process or an ion implantation process. In one embodiment, the in situ deposition method is used to achieve high concentration doping, and steps 2103 and 2104 are combined into a single step. Step 2105 is to remove the over-deposited reverse-doped semiconductor material using a common planarization process to form M rows 102 or N columns 103 of the OTP permanent memory module 101, where M and N are positive integers greater than one. Following step 2106, a layer of thick insulating dielectric material is deposited on the top planar surface of the wafer. Step 2107 uses a mask etch process to construct trenches on the thick insulating dielectric material for locating rows or columns of OTP permanent memory modules. The etching process is terminated after reaching the last deposited semiconductor material. Step 2108 is to create a thin insulating dielectric film on M row 102 or N column 103 of OTP permanent memory module 101 using a thermal oxidation process or a thermal deposition process or an atomic layer deposition (ALD) process. As shown in FIG. 2, a thin insulating dielectric film on each M row 102 or N column 103 of the OTP permanent memory module 101 is used as a programmable dielectric material. Step 2109 is to repeat the above-mentioned 2103, 2104, 2105, 2106, 2107, and 2108 methods to a predetermined number of times, and create each layer of the OTP permanent memory module 106 as shown in FIG. 2 in a direction from the lower vertical direction, symmetrically stacking the OTP permanent. The memory module 106 generates a multi-layer OTP permanent memory unit 100. The storage capacity of the generated OTP memory cells, such as 111a, 111b, 111c, and 111d shown in FIG. 6, can be improved, and a detailed description thereof is disclosed in FIG.
一种关于肖特基接触的实施例:An example of a Schottky contact:
多层一次性可编程永久性存储器单元,含有:
A multi-layer, one-time programmable permanent memory unit containing:
至少两层一次性可编程永久存储器模块,一层堆叠在另一层的上面;所述至少两层一次性可编程永久存储器模块的每一层,包含M个行线和N个列线,其中M和N是大于1正整数;At least two layers of one-time programmable permanent memory modules, one layer stacked on top of another layer; each of the at least two layers of one-time programmable permanent memory modules comprising M row lines and N column lines, wherein M and N are greater than 1 positive integer;
在每一个交叉点处,行线M和列线N的材料分别为符合在该交叉点处产生肖特基接触所需的两种材料,例如,行线材料为可用与形成肖特基管的金属,例如Al、Ag、Au、Pt,列线N材料为N型半导体材料,如N-Poly、N-Si、N-IZO(N型氧化铟锌)等。在行线M和列线N的材料交叉点之间是可用于本专利中提到的可用于反熔丝的薄介质如SiO2或其他材料。At each intersection, the material of row line M and column line N are respectively required to conform to the two materials required to create a Schottky contact at the intersection, for example, the row line material is available and forms a Schottky tube. Metals such as Al, Ag, Au, Pt, and columnar N materials are N-type semiconductor materials such as N-Poly, N-Si, N-IZO (N-type indium zinc oxide) and the like. Between the material intersections of row line M and column line N is a thin medium such as SiO 2 or other material that can be used for the antifuse mentioned in this patent.
具体的说,对于某一特定的行线和列线的交叉点处,其结构为“行线材料-绝缘介质-列线材料”,前述“行线和列线的材料分别为符合在该交叉点处产生肖特基接触所需的两种材料”即指在绝缘介质击穿的情况下,行线材料和列线材料应能够构成肖特基接触。图22展示其结构。其中,2201为可用于形成肖特基接触的金属,例如Al、Ag、Au、Pt,2202为薄介质层,2203为N型半导体材料,如N-Poly、N-Si、N-IZO(N型氧化铟锌)等。Specifically, for the intersection of a particular row and column line, the structure is "row line material - insulating medium - column line material", and the foregoing "row line and column line materials are respectively in accordance with the intersection The two materials required to create a Schottky contact at the point means that the line material and the line material should be capable of forming a Schottky contact in the event of breakdown of the dielectric. Figure 22 shows the structure. Wherein, 2201 is a metal that can be used to form a Schottky contact, such as Al, Ag, Au, Pt, 2202 is a thin dielectric layer, and 2203 is an N-type semiconductor material, such as N-Poly, N-Si, N-IZO (N Type indium zinc oxide).
上述已经提供的例子,仅仅是为了解释的目的,并不对本文所披露的如图2所示的多层一次性可编程(OTP)永久存储器单元100及其制备方法构成任何限制。虽然多层OTP永久存储器单元100和方法已用各种实施例描述,对这些实施例所采用的描述语句和说明语句,不应理解为限制性语句。此外,虽然采用了特定的方式、材料和实施例来描述多层OTP永久存储器单元100及其制备方法,多层的OTP永久存储器单元100及其制备方法并不局限于本文所披露的资料,而是延伸到所有功能相当的结构、方法和应用,如所附权利要求的范围。熟练且善学的技术人员,可能会对其进行许多修改和更改,而并不脱离本文披露的多层OTP永久存储器单元100及其制备方法的范围和精髓。
The examples have been provided above for illustrative purposes only and do not pose any limitation to the multilayer one-time programmable (OTP) permanent memory cell 100 and its method of fabrication as disclosed herein as disclosed herein. Although the multi-layered OTP persistent memory unit 100 and method have been described in terms of various embodiments, the description and description of the embodiments are not to be construed as limiting. Moreover, although a particular manner, materials, and embodiments are employed to describe the multi-layer OTP permanent memory cell 100 and its method of fabrication, the multi-layered OTP permanent memory cell 100 and methods of making the same are not limited to the disclosures herein. It is intended to extend to all functionally equivalent structures, methods and applications, such as the scope of the appended claims. Skilled and skilled artisan, many modifications and changes may be made thereto without departing from the scope and spirit of the multi-layered OTP permanent memory unit 100 disclosed herein and its method of preparation.