WO2018150666A1 - 無線基地局及び無線通信方法 - Google Patents
無線基地局及び無線通信方法 Download PDFInfo
- Publication number
- WO2018150666A1 WO2018150666A1 PCT/JP2017/041584 JP2017041584W WO2018150666A1 WO 2018150666 A1 WO2018150666 A1 WO 2018150666A1 JP 2017041584 W JP2017041584 W JP 2017041584W WO 2018150666 A1 WO2018150666 A1 WO 2018150666A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base station
- radio base
- user terminal
- unit
- precoding
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims description 44
- 230000005540 biological transmission Effects 0.000 claims abstract description 49
- 239000011159 matrix material Substances 0.000 description 98
- 238000012545 processing Methods 0.000 description 33
- 230000008569 process Effects 0.000 description 25
- 238000000926 separation method Methods 0.000 description 14
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 230000008054 signal transmission Effects 0.000 description 6
- 230000011664 signaling Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0452—Multi-user MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/15—Setup of multiple wireless link connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/06—Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
Definitions
- the present invention relates to a radio base station and a radio communication method.
- LTE Long Term Evolution
- LTE successor systems for example, LTE-A (LTE-Advanced), FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + ( 5G (plus) and New-RAT (Radio Access Technology) are also being considered.
- a large number of antenna elements for example, 100 elements or more
- a high frequency band for example, 5 GHz or more
- massive MIMO Multiple Input Multiple Output
- precoding / postcoding digital precoding / postcoding
- BF beamforming
- Massive MIMO base station a base station using Massive MIMO
- One aspect of the present invention is to provide a radio base station and a radio communication method capable of appropriately performing beam control in a multi-site environment.
- a radio base station provides a channel between the radio base station and the user terminal in a radio communication system that performs MIMO transmission between a plurality of radio base stations and at least one user terminal.
- a precoding unit that applies precoding based on the indicated channel information to a data signal; and a communication unit that transmits the precoded data signal, wherein the first radio base station among the plurality of radio base stations
- the precoding in includes at least a channel between the first radio base station and a first user terminal connected to a second radio base station other than the first radio base station Applied based on channel information.
- beam control can be appropriately performed in a multi-site environment.
- FIG. 1 is a diagram illustrating a configuration example of a wireless communication system according to a first embodiment.
- 3 is a block diagram illustrating a configuration example of a radio base station according to Embodiment 1.
- FIG. 3 is a block diagram illustrating a configuration example of a user terminal according to Embodiment 1.
- FIG. 6 is a flowchart illustrating an operation example of the radio base station according to the first embodiment. 6 is a diagram illustrating a configuration example of a radio communication system according to Embodiment 2.
- FIG. 7 is a flowchart illustrating an operation example of a radio base station according to the second embodiment. 6 is a diagram illustrating a configuration example of a radio communication system according to Embodiment 3.
- FIG. 10 is a flowchart showing an operation example of the radio base station according to the third embodiment. It is a figure which shows an example of the hardware constitutions of the radio base station and user terminal which concern on this invention.
- MU-MIMO Multi-User-MIMO
- precoding / postcoding is performed with BF in Massive MIMO. That is, in the radio communication system according to the present invention, precoding / postcoding and beamforming are performed in MU-MIMO transmission performed between a radio base station and a plurality of user terminals.
- precoding is described separately for precoding for inter-user interference (Inter-User: IUI) and pre-coding for inter-stream interference (Inter-Stream Interference: ISI) in each user terminal, Precoding for inter-user interference and pre-coding / post-coding for inter-stream interference in each user terminal are performed.
- IUI inter-user interference
- ISI Inter-Stream Interference
- the received signal r received at each user terminal is expressed by the following equation (1).
- W represents a BF weight
- P IUI represents Represents a precoding matrix for inter-user interference
- P ISI represents a pre-coding matrix for inter-stream interference
- z is Represents noise.
- Equation (1) As shown in Equation (1), among precoding (for example, block diagonalization), the channel between user terminals is orthogonalized by precoding processing (P IUI ) for interuser interference, and interuser interference is avoided. Has been.
- a signal y obtained by performing post-coding on the received signal r received at each user terminal is expressed by the following equation (2).
- the channel between the streams of each user terminal is orthogonalized by the precoding matrix P ISI and the post coding matrix B ISI , and inter-stream interference is avoided.
- precoding matrix P IUI , P ISI
- post coding matrix B ISI
- singular value decomposition singular Value Decomposition
- channel information channel matrix
- the precoding process and the beam forming process are processes for a plurality of user terminals connected to one radio base station. That is, the above process is a process in a site formed by a single Massive MIMO base station.
- FIG. 1 shows a configuration example of a radio communication system according to the present embodiment.
- the radio communication system includes a plurality of radio base stations 10 and at least one user terminal 20.
- the radio base station 10 is, for example, a Massive MIMO base station.
- Each user terminal 20 is connected (accessed) to at least one radio base station 10.
- user terminals 20-1 to 20-3 are connected to the radio base station 10A
- user terminals 20-4 to 20-6 are connected to the radio base station 10B.
- FIG. 2 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment.
- the radio base station 10 shown in FIG. 2 includes a discovery signal generation unit 101, a candidate weight multiplication unit 102, a reference signal generation unit 103, a connection destination selection unit 104, an inter-base station communication unit 105, and a weight selection unit 106. And a determination unit 107, a precoding matrix generation unit 108, a data generation unit 109, a precoding unit 110, a beamforming unit 111, a communication unit 112, and an antenna 113.
- description of components eg, IFFT processing unit, CP adding unit
- OFDM Orthogonal Frequency Division Multiplexing
- Discovery signal generation unit 101 generates a discovery signal (reference signal) for determining a BF weight (W). For example, the discovery signal generation unit 101 generates at least the same number of discovery signals as the number of BF weight candidates. Discovery signal generation section 101 outputs the generated discovery signal to candidate weight multiplication section 102.
- the candidate weight multiplication unit 102 multiplies the discovery signal input from the discovery signal generation unit 101 by the BF weight candidate, and outputs the discovery signal after the multiplication of the BF weight candidate to the communication unit 112.
- the reference signal generation unit 103 generates a reference signal used for channel estimation and outputs it to the beamforming unit 111.
- the connection destination selection unit 104 selects the user terminal 20 connected to the own station from the plurality of radio base stations 10 based on the candidate weight information fed back from each user terminal 20.
- the candidate weight information is, for example, SNR (Signal to Noise Ratio) or received power for the discovery signal multiplied by the candidate weight.
- the connection destination selection unit 104 selects, for each user terminal 20, the radio base station 10 that generates the BF weight that maximizes the candidate weight information (reception power) as the connection destination radio base station of the user terminal 20. To do.
- the connection destination selection unit 104 may notify the connection destination information indicating the connection destination wireless base station 10 of the user terminal 20 to, for example, the user terminal 20 connected to the own station (not shown).
- Each user terminal 20 performs a connection operation to the radio base station 10 indicated in the connection destination information.
- the connection destination selection unit 104 may notify the connection destination information indicating the connection destination wireless base station 10 of the user terminal 20 to other wireless base stations 10 via the inter-base station communication unit 105, for example. .
- the connection destination selection unit 104 may specify the user terminal 20 connected to the own station based on the connection destination information notified from another radio base station 10 via the inter-base station communication unit 105.
- the inter-base station communication unit 105 communicates with another radio base station 10 or a control station (also referred to as a central control station) that controls the plurality of radio base stations 10 via a backhaul, for example. I do.
- the weight selection unit 106 selects a BF weight (W) to be used for beamforming from the BF weight candidates based on the candidate weight information fed back from each user terminal 20 and outputs the BF weight (W) to the beamforming unit 111.
- the weight selection unit 106 may select the L BF weights so that they do not overlap each other in the descending order of the SNR (or received power) indicated in the candidate weight information.
- the determination unit 107 determines whether or not to perform extended precoding based on the candidate weight information fed back from each user terminal 20. For example, the determination unit 107, based on the connection destination information input from the connection destination selection unit 104, the user terminal 20 other than the user terminal 20 connected to the own station (that is, the user terminal 20 that is not connected to the own station). ). Then, the determination unit 107 determines to perform the extended precoding when the user terminal 20 that is not connected to the own station includes the user terminal 20 whose SNR indicated by the candidate weight information is less than the predetermined threshold ⁇ . To do.
- the determination unit 107 does not perform the extended precoding when there is no user terminal 20 whose SNR indicated by the candidate weight information is less than the predetermined threshold ⁇ among the user terminals 20 not connected to the own station. Then, it is determined that normal precoding is performed. The determination unit 107 outputs the determination result to the precoding matrix generation unit 108.
- normal precoding is precoding applied based on a channel estimation value fed back from the user terminal 20 connected to a single radio base station 10.
- the extended precoding includes a channel between a certain radio base station 10 and a user terminal 20 connected to the radio base station 10, and other radio base stations other than the radio base station 10 and the radio base station 10. 10 and precoding applied based on a channel estimation value including a channel between the user terminal 20 and the user terminal 20 having an SNR less than a predetermined threshold ⁇ .
- a precoding matrix generated based on a channel estimation value indicating a channel between a single radio base station 10 and a user terminal 20 connected to the radio base station 10 is referred to as “normal”. Is called a precoding matrix.
- extended precoding the channel between the radio base station 10 and the user terminal 20 connected to the radio base station 10 and the user terminal 20 connected to the radio base station and another radio base station 10 are also used.
- a precoding matrix generated on the basis of a channel estimation value including a plurality of channels is referred to as an “extended precoding matrix”.
- the precoding matrix generation unit 108 generates a normal precoding matrix or an extended precoding matrix using the channel estimation value fed back from the user terminal 20 based on the determination result input from the determination unit 107.
- the channel estimation value is, for example, channel information (HW) indicating an equivalent channel matrix including a BF weight (W).
- the precoding matrix generation unit 108 includes a precoding matrix (P IUI ) for removing interference (inter-user interference) between a plurality of user terminals 20 multiplexed in MU-MIMO, and each user.
- a precoding matrix (P ISI ) for removing interference between streams (inter-stream interference) at the terminal 20 is generated.
- the precoding matrix generation unit 108 generates an extended precoding matrix for removing interference from the own station with respect to the user terminal 20 connected to a radio base station other than the own station.
- the precoding matrix generation unit 108 generates the generated precoding matrix (P IUI , P ISI ). Hereinafter, they may be collectively expressed as “P”) to the precoding unit 110.
- the data generation unit 109 generates data (downlink signals) for a plurality of user terminals 20.
- FIG. 2 shows the configuration of the data generation unit 109 for one user terminal 20 (i-th user terminal 20).
- the radio base station 10 includes a plurality (N U pieces) data generating unit 109 against each of the user terminal 20 of the.
- the data generation unit 109 includes an encoding unit 191 and a modulation unit 192.
- the encoding unit 191 and the modulation unit 192 are respectively provided corresponding to the number of streams (M i ) for the user terminal i.
- Each encoding unit 191 encodes data signals of M i streams, and each modulation unit 192 modulates each encoded data signal and outputs the modulated data signal to the precoding unit 110.
- the coding rate and the modulation scheme in each encoding unit 191 and each modulation unit 192 may be different for each stream.
- the precoding unit 110 multiplies the data signal input from the data generation unit 109 by the precoding matrix (P), and outputs the precoded data signal to the beamforming unit 111.
- the precoding unit 110 applies precoding to an M stream data signal to generate L (number of beams, for example, L> M) signals.
- the beamforming unit 111 multiplies the reference signal input from the reference signal generation unit 103 by the BF weight W input from the weight selection unit 106, and uses the reference signal after BF weight multiplication as the communication unit. To 112. By this processing, each user terminal 20 uses the reference signal multiplied by the BF weight (W) determined based on the candidate weight information (SNR), and the equivalent channel information (HW) including the BF weight. Estimation is possible.
- the beamforming unit 111 multiplies the data signal input from the precoding unit 110 by the BF weight (W) input from the weight selection unit 106 during data transmission, and the data after the BF weight multiplication
- the signal ( NT signals) is output to the communication unit 112.
- Communication units 112-1 to 112- NT are provided corresponding to NT antennas 113 (antenna elements), respectively.
- Each communication unit 112 performs transmission processing such as D / A conversion and up-conversion on the input signal, multiplexes the signal after transmission processing by, for example, time, frequency, or code, and N T pieces Each is transmitted from the antenna 113.
- each communication unit 112 transmits the discovery signal input from the candidate weight multiplication unit 102 to each user terminal 20 via the antenna 113.
- the communication unit 112 transmits the reference signal input from the beamforming unit 111 to each user terminal 20 via the antenna 113 in channel estimation.
- the communication unit 112 transmits a stream signal input from the beamforming unit 111 to each user terminal 20 via the antenna 113 during data transmission.
- FIG. 3 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
- the user terminal 20 illustrated in FIG. 3 includes an antenna 201, a communication unit 202, a candidate weight information measurement unit 203, a channel estimation unit 204, a post coding matrix generation unit 205, a post coding unit 206, and a data reception unit 207. And the structure including is taken.
- FIG. 3 shows the configuration of the i-th user terminal 20 as an example. Also, in FIG. 3, description of a configuration unit (for example, a CP removal unit, an FFT processing unit) for receiving the OFDM signal in the user terminal 20 is omitted. Further, the signal waveform of the signal received by the user terminal 20 is not limited to a waveform based on OFDM modulation.
- a configuration unit for example, a CP removal unit, an FFT processing unit
- the communication units 202-1 to 202-N Ri are provided corresponding to the N Ri antennas 201, respectively.
- Each communication unit 202 performs reception processing such as down-conversion and A / D conversion on the reception signal received via the antenna 201.
- the received signal includes, for example, a discovery signal, a reference signal, or a data signal.
- the communication unit 202 outputs the discovery signal to the candidate weight information measurement unit 203, outputs the reference signal to the channel estimation unit 204, and outputs the data signal to the post coding unit 206.
- the candidate weight information measurement unit 203 measures candidate weight information (for example, SNR or received power) using the discovery signal input from the communication unit 202. Each discovery signal is multiplied by a BF weight candidate. Therefore, candidate weight information measurement section 203 measures the SNR or received power when each BF weight candidate is used. Candidate weight information indicating the measured SNR or received power is fed back to the radio base station 10 via the communication unit 202, for example.
- candidate weight information for example, SNR or received power
- the channel estimation unit 204 estimates a channel estimation value (channel information) indicating a channel between the radio base station 10 and the user terminal 20 using the reference signal input from the communication unit 202.
- the reference signal is multiplied by a BF weight (W) in the radio base station 10 (beamforming unit 111). Therefore, the channel estimation unit 204 estimates equivalent channel information (equivalent channel matrix HW) including the BF weight.
- the estimated channel information (HW) is fed back to the radio base station 10 (precoding matrix generation unit 108) via the communication unit 202, for example. Further, the channel estimation unit 204 outputs the estimated channel information to the post coding matrix generation unit 205.
- the post-coding matrix generation unit 205 uses the channel information (HW) input from the channel estimation unit 204 to generate a post-coding matrix (B ISI ).
- the post-coding matrix generation unit 205 outputs the generated post-coding matrix to the post-coding unit 206.
- the post-coding matrix generation unit 205 may generate a post-coding matrix using channel information HWP estimated using a pre-coding matrix (enhanced pre-coding matrix) and a reference signal multiplied by a BF weight.
- the post-coding unit 206 performs post-coding on the data signal input from the communication unit 202 using the post-coding matrix (B ISI ) input from the post-coding matrix generation unit 205.
- the post coding unit 206 outputs the post-coded data signal to the data receiving unit 207.
- the data reception unit 207 performs reception processing (including demodulation processing and decoding processing) on the data signal input from the post-coding unit 206 to obtain a plurality of streams for the i-th user terminal 20.
- the data reception unit 207 includes a demodulation unit 271 and a decoding unit 272.
- the demodulator 271 and the decoder 272 are provided corresponding to the number of streams (M i ) for the i-th user terminal 20.
- Each demodulator 271 demodulates the data signals of M i streams, and each decoder 272 decodes the demodulated data signals to obtain M i streams. Note that the coding rate and the modulation scheme in each demodulator 271 and each decoder 272 may be different for each stream.
- the radio communication system includes AP radio base stations 10 and (AP ⁇ N U ) user terminals 20.
- FIG. 4 is a flowchart showing the operation of the radio base station 10 according to the present embodiment.
- the radio base station 10 selects one candidate from a plurality of BF weight (W) candidates (ST101). Then, the radio base station 10 transmits a discovery signal obtained by multiplying the selected BF weight (W) candidate to the user terminal 20 (ST102). When the radio base station 10 has not transmitted discovery signals corresponding to all candidates of the plurality of BF weights (W) (ST103: No), the process returns to the processing of ST101 and ST102, and other BF weights (W) A discovery signal multiplied by the candidate is transmitted.
- the discovery signal multiplied by the candidate for the BF weight is not precoded and transmitted to all antennas 201 of all user terminals 20.
- the discovery signal may be allocated to a radio resource (subcarrier) within one symbol (for example, one OFDM symbol) by frequency multiplexing or time multiplexing to a plurality of symbols.
- the discovery signal may be transmitted in a time / frequency / code multiplex manner between the plurality of radio base stations 10. In this way, the radio base station 10 can efficiently select a BF weight, which will be described later, by a method in which discovery signals are multiplexed and transmitted on radio resources.
- the reception signal (reception signal vector) of the discovery signal transmitted from the i-th radio base station 10 in each user terminal 20 is expressed by the following equation (3).
- Each user terminal 20 measures candidate weight information (for example, SNR or received power) using the received signal (discovery signal) shown in Expression (3), and feeds it back to the radio base station 10.
- candidate weight information for example, SNR or received power
- the radio base station 10 transmits discovery signals corresponding to all candidates for the BF weight (W) (ST103: Yes), and then uses the candidate weight information fed back from each user terminal 20 to A connection-destination radio base station 10 is selected (ST104).
- the radio base station 10 follows the maximum received power standard shown in the following equation (4), and the BF weight w i, x with the maximum received power (
- the radio base station 10A is selected as the connection destination of the user terminals 20-1 to 20-3, and the radio base station is selected as the connection destination of the user terminals 20-4 to 20-6. 10B is selected.
- the radio base station 10 selects a BF weight (W) to be used for beamforming from BF weight candidates based on the candidate weight information used when the connection destination of the user terminal 20 is selected (ST104) ( (ST105).
- W a BF weight
- the radio base station 10 may select L BF weights in order of decreasing SNR or received power indicated in the candidate weight information so as not to overlap each other.
- a BF weight vector W i opt composed of L BF weights of the i-th radio base station 10 is expressed by the following equation (5).
- radio base station 10 uses candidate weight information fed back from each user terminal 20 to use other user terminals 20 (that is, other radio terminals) other than user terminal 20 connected to the own station selected in ST104.
- a SIR Signal to Interference power Ratio
- the i-th radio base station 10 calculates SIR j for the j-th user terminal 20 according to the following equation (6).
- the numerator component of Equation (6) represents the received power of the signal of the i-th radio base station 10 (that is, the desired signal of the j-th user terminal 20), and the denominator component of Equation (6) is The received power of a signal (that is, an interference signal for the j-th user terminal 20) of another radio base station 10 (k ( ⁇ i) -th radio base station 10) other than the i-th radio base station 10 is To express.
- the radio base station 10 determines whether or not to perform the extended precoding based on whether or not there is a user terminal 20 whose SIR calculated in ST106 is less than the threshold ⁇ (ST107).
- the maximum for the jth user terminal 20 is The kth ( ⁇ i) radio base station 10 that causes interference may be determined to generate an extended precoding matrix.
- the radio base station 10 that generates the extended precoding matrix is not limited to the radio base station 10 that causes the maximum interference with the j-th user terminal 20, but also gives it to the j-th user terminal 20.
- the predetermined number of radio base stations 10 may be in order of increasing interference, or all radio base stations 10 that cause interference to the j-th user terminal 20 may be used.
- the reference signal is multiplied by the BF weight (W k opt ) selected in ST105, and the BF weight is multiplied.
- the transmitted reference signal is transmitted to the user terminal 20 (ST108).
- the user terminal 20 estimates channel information (HW) using the received reference signal, and feeds back the estimated channel information HW (channel estimation value) to the radio base station 10. In addition, the user terminal 20 generates a post-coding matrix using the estimated channel information HW.
- HW channel information
- Radio base station 10 generates an extended precoding matrix (P opt ) using channel information HW fed back from user terminal 20 (ST109).
- P opt extended precoding matrix
- the k-th radio base station 10 is connected to the channel of the (kN U ) th to ((k + 1) N U ⁇ 1) user terminals 20 connected to the own station.
- Channel information (equivalent channel matrix) H k composed of information HW and channel information HW of the j-th user terminal 20 connected to the i-th radio base station 10 and having an SIR less than the threshold ⁇ .
- An extended precoding matrix P k opt is calculated using ext W k ext .
- the k-th radio base station 10 receives interference from the k-th radio base station 10 in addition to the channel information of the user terminal 20 connected to the k-th radio base station 10.
- the extended precoding matrix P k opt is calculated in consideration of channel information for the k-th radio base station 10 of the j-th user terminal 20 connected to the i-th radio base station 10.
- the k-th radio base station 10 uses the equivalent channel matrix shown in Equation (7) to perform extended precoding for removing interference from the k-th radio base station 10 to the j-th user terminal 20.
- a matrix P k opt is generated.
- the extended precoding in the k-th radio base station 10 is the channel between the k-th radio base station 10 and the user terminal 20 connected to the k-th radio base station 10, and the k-th radio base station 10. Including a channel between the user terminal 20 connected to the other radio base station 10 (i-th radio base station 10) other than the k-th radio base station 10 and the k-th radio base station 10 Applied based on information.
- the radio base station 10 multiplies the stream signal (information) by the extended precoding matrix (P k opt ) and the BF weight (W k opt ), and transmits the stream signal to the user terminal 20. (ST110). At this time, the radio base station 10 considers channel information when generating the extended precoding matrix, and signals to the user terminals 20 connected to other radio base stations 10 (user terminals 20 having an SIR less than the threshold ⁇ ). Do not send.
- the received signal r k ext received by the (kN U ) th to ((k + 1) N U ⁇ 1) th user terminals 20 connected to the kth radio base station 10 is given by the following equation (8): ).
- the data multiplied by the extended precoding matrix (P k opt ) is transmitted while avoiding interference with the j-th user terminal 20.
- the user terminal 20 multiplies the received stream signal by a post-coding matrix (B ISI ) and demodulates the stream signal (data) (not shown).
- B ISI post-coding matrix
- inter-stream interference is suppressed.
- the radio base station 10 determines not to perform the extended precoding (ST107: No)
- the reference signal is multiplied by the BF weight (W k opt ) selected in ST105, and BF
- the reference signal multiplied by the weight is transmitted to the user terminal 20 (ST111).
- the user terminal 20 estimates channel information (HW) using the received reference signal, and feeds back the estimated channel information HW (channel estimation value) to the radio base station 10.
- the user terminal 20 generates a post-coding matrix using the estimated channel information HW.
- the radio base station 10 generates a normal precoding matrix (P) using the channel information HW fed back from the user terminal 20 (ST112). For example, the k-th radio base station 10 receives the channel information of the (kN U ) th to ((k + 1) N U ⁇ 1) -th user terminals 20 connected to the k-th radio base station 10.
- a precoding matrix P is calculated using channel information (equivalent channel matrix) HW composed of HWs.
- the radio base station 10 multiplies the stream signal (information) by the precoding matrix (P) and the BF weight (W k opt ), and transmits the stream signal to the user terminal 20 (ST113). .
- the SIR of the user terminal 20-3 with respect to the radio base station 10A is less than the threshold ⁇ , and the interference given by the radio base station 10B to the user terminal 20-3 is maximum.
- the SIRs of all the user terminals 20-4 to 20-6 for the radio base station 10B are equal to or greater than the threshold ⁇ .
- the radio base station 10A determines not to perform the extended precoding. That is, the radio base station 10A generates a normal precoding matrix using the channel information HW of the user terminals 20-1 to 20-3 connected to the radio base station 10A. That is, as shown in FIG. 1, the space separation group A, which is a target group when performing precoding (space separation) in the radio base station 10A, includes user terminals 20-1 to 20-1 connected to the radio base station 10A. 20-3 included.
- the radio base station 10B determines to execute the extended precoding. That is, the radio base station 10B, in addition to the channel information HW of the user terminals 20-4 to 20-6 connected to the radio base station 10B, the channel information of the user terminal 20-3 connected to the radio base station 10A.
- An extended precoding matrix is generated using HW. That is, as shown in FIG. 1, the group (spatial separation group B) to be precoded (space separation) in the radio base station 10B is the user terminals 20-4 to 20-4 connected to the radio base station 10B.
- a user terminal 20 that receives interference from the radio base station 10B is included.
- the user terminal 20-3 shown in FIG. 1 is included in both the space separation group A and the space separation group B. For this reason, channel information of the user terminal 20-3 connected to the radio base station 10A and receiving a large amount of interference from the radio base station 10B is used for generating a precoding matrix in both the radio base station 10A and the radio base station 10B.
- the radio base station 10A generates a precoding matrix for removing interference (ISI or IUI) with respect to the stream for the user terminal 20-3, and the radio base station 10B causes interference with the user terminal 20-3.
- the extended precoding for removing the signal component is generated.
- the user terminal 20-3 can efficiently receive the stream from the radio base station 10A while suppressing the interference from the radio base station 10B.
- extended precoding in the radio base station 10B among the plurality of radio base stations 10 illustrated in FIG. 1 is performed by the user terminals connected to the radio base station 10B and the radio base station 10B.
- a channel including a channel between 20-4 to 20-6 and a channel between the radio base station 10B and the user terminal 20-3 connected to the radio base station 10A other than the radio base station 10B Applied based on information.
- the spatial separation processing for the user terminal 20 is performed at each site, so that interference between sites can be reduced. That is, in the present embodiment, the radio base station 10A and the radio base station 10B perform space separation processing in cooperation with the user terminal 20-3 connected to the radio base station 10A.
- parameters used as a reference when selecting a BF weight or a connection destination of the user terminal 20 are not limited to SNR or received power, but are measured using a discovery signal multiplied by a BF weight candidate. Any candidate weight information (for example, reception correlation) may be used.
- candidate weight information for example, received power of a BF weight candidate
- a discovery signal transmitted from radio base station 10 to user terminal 20 For example, the reference signal is transmitted from the user terminal 20 to the radio base station 10, and the reference signal received by the radio base station 10 is used to select the BF weight, the user The connection destination of the terminal 20 may be selected or a precoding matrix may be generated.
- This process eliminates the need for feedback of discovery signals, candidate weight information, and channel information (HW). Therefore, the use of radio resources in the channel estimation process can be reduced.
- connection destination of the user terminal 20 is selected based on the maximum received power norm for the plurality of radio base stations 10 as shown in Expression (4).
- the present embodiment is not limited to this, and the connection destination selection of the user terminal 20 may be performed using another method. Further, in the present embodiment, the connection destination selection of the user terminal 20 may be performed based on other norms such as the maximum received power to interference power ratio norms, without being limited to the maximum received power norms.
- each radio base station 10 selects a BF weight based on the maximum received power standard.
- the present embodiment is not limited to this, and the BF weight may be selected based on another standard such as the maximum reception-to-interference power ratio standard.
- the radio base station 10 calculates an extended precoding matrix using an equivalent channel matrix including channel information of the plurality of user terminals 20. May be. By this processing, it is possible to reduce interference with each user terminal 20 having an SIR less than the threshold ⁇ using the extended precoding matrix.
- the radio base station 10 may apply the extended precoding to the user terminals 20 whose SIR is lower x% among the plurality of user terminals 20. By this process, the radio base station 10 can reliably reduce interference with the user terminals 20 having the SIR of lower x%.
- the present embodiment is not limited to this, and when the user data can be transmitted between the plurality of radio base stations 10 in the backhaul, the radio base station 10 has the user terminal 20 with which the own station is causing interference.
- the user data may be received from the other radio base station 10 that is the connection destination of the user terminal, and the user data may be transmitted to the user terminal 20. That is, at this time, the radio base station 10 that interferes with the user terminal 20 generates an extended precoding matrix for removing interference with the user data for the user terminal 20. Through this process, it is possible to improve the throughput while suppressing interference with the user terminal 20.
- the criterion for executing the extended precoding is not limited to this, and may be another parameter representing the interference state between sites.
- radio base station and the user terminal according to the present embodiment have the same basic configuration as that of the radio base station 10 and the user terminal 20 according to the first embodiment, and will be described with reference to FIGS.
- FIG. 5 shows a configuration example of the wireless communication system according to the present embodiment.
- the radio communication system includes a plurality of radio base stations 10 (for example, Massive MIMO base stations) and at least one user terminal 20 as in the first embodiment.
- Each user terminal 20 is connected to at least one radio base station 10.
- user terminals 20-1 to 20-3 are connected to the radio base station 10A
- user terminals 20-3 to 20-5 are connected to the radio base station 10B. That is, the user terminal 20-3 is connected to both the radio base station 10A and the radio base station 10B.
- FIG. 6 is a flowchart showing the operation of the radio base station 10 according to the present embodiment.
- the same processes as those in the first embodiment (FIG. 4) are denoted by the same reference numerals, and the description thereof is omitted.
- the radio base station 10 (the connection destination selection unit 104 and the weight selection unit 106) transmits a discovery signal corresponding to all candidates for the BF weight (W) (ST103: Yes), and is fed back from each user terminal 20 Using the candidate weight information (reception power or SNR), the radio base station 10 to which each user terminal 20 is connected and the BF weight are selected (ST201). At this time, the radio base station 10 selects the connection destination and BF weight of the user terminal 20 based on the maximum received power norm combining candidate weight information for the plurality of radio base stations 10. For example, each radio base station 10 may receive candidate weight information for other radio base stations 10 from the other radio base stations 10 via the inter-base station communication unit 105.
- the i-th radio base station 10 has, for example, the maximum received power (
- User terminal (j) and BF weight (x) are selected.
- the i-th radio base station 10 determines the i-th radio base station 10 as the connection destination of the j opt- th user terminal 20 selected according to the equation (9). Further, the i-th radio base station 10 uses the BF weight ( wi, xopt ) selected according to the equation (9) as the i-th radio base station 10 as shown in the following equation (10).
- each radio base station 10 selects L beams (a combination of the user terminal (j) and the BF weight (x)) with the maximum received power.
- the radio base station 10 may select L BF weights in descending order of received power and user terminals 20 corresponding to the BF weights so as not to overlap.
- a BF weight vector W i opt composed of L BF weights of the i-th radio base station 10 is expressed by the following equation (11).
- the user terminals 20 selected in the plurality of radio base stations 10 are irradiated with beams from the plurality of radio base stations 10 and data is transmitted.
- the radio base station 10A selects the user terminals 20-1 to 20-3 as the user terminals 20 connected to the radio base station 10A, and the radio base station 10B User terminals 20-3 to 20-5 are selected as user terminals 20 connected to the base station 10B. That is, the user terminal 20-3 is connected to both the radio base station 10A and the radio base station 10B.
- radio base station 10 determines whether or not to perform cooperative precoding based on the connection destination of user terminal 20 selected in ST201 (ST202).
- cooperative precoding is performed between each of the plurality of radio base stations 10 connected to the user terminal 20 and the user terminal 20 with respect to the user terminal 20 connected to the plurality of radio base stations 10.
- This is precoding performed by applying an equivalent channel matrix composed of channel estimation values.
- a precoding matrix generated using a channel estimation value between each of the plurality of radio base stations 10 connected to the user terminal 20 and the user terminal 20 is referred to as a “cooperative precoding matrix”.
- each radio base station 10 determines to perform cooperative precoding on the user terminal 20.
- each radio base station 10 may receive information indicating the user terminal 20 connected to the other radio base station 10 from the other radio base station 10 via the inter-base station communication unit 105.
- the radio base station 10 ⁇ / b> A and the radio base station 10 ⁇ / b> B determine that cooperative precoding is to be performed because the user terminal 20-3 is connected to both.
- precoding matrix generation unit 108 determines to perform cooperative precoding (ST202: Yes)
- the channel information HW fed back from the user terminal 20 in ST108 is used to generate a cooperative precoding matrix.
- Generate ST203
- the radio base station 10 includes, among the precoding matrices, a precoding matrix (P IUI ) for inter-user interference suppression, the radio base station 10, and a user terminal 20 connected to the radio base station 10. Based on the channel information between the precoding matrices, a precoding matrix (P IUI ) for inter-user interference suppression, the radio base station 10, and a user terminal 20 connected to the radio base station 10. Based on the channel information between the precoding matrices, a precoding matrix (P IUI ) for inter-user interference suppression, the radio base station 10, and a user terminal 20 connected to the radio base station 10. Based on the channel information between the precoding matrices, a precoding matrix (P IUI ) for inter-user interference suppression, the radio base station 10, and a user terminal 20 connected to the radio base station 10. Based on the channel information between the precoding matrices, a precoding matrix (P IUI ) for inter-user interference suppression, the radio base station 10, and a user terminal 20 connected to the radio base station 10. Based on
- the radio base station 10 uses a user terminal 20 and a plurality of radio base stations 10 to which the user terminal 20 is connected as a precoding matrix (P ISI ) for inter-stream interference suppression among the precoding matrices. It is calculated based on channel information between itself (including its own station).
- P ISI precoding matrix
- the i # 1 radio base station 10 and the i # 2 radio base station 10 When the j-th user terminal 20 is connected to the i # 1 radio base station 10 and the i # 2 radio base station 10, the i # 1 radio base station 10 and Each of the i # 2 radio base stations 10 generates a linked precoding matrix (P ISI ) for the j th user terminal 20 using the channel information H 1 to i cmp shown in the following equation (12). .
- P ISI linked precoding matrix
- H 1 to i # 1, j represent channel information between the i # 1 radio base station 10 and the jth user terminal 20
- H 1 to i # 2, j are The channel information between the i # 2 radio base station 10 and the j th user terminal 20 is shown.
- each radio base station 10 transmits a plurality of radio terminals transmitted from each of the radio base stations 10 to the user terminal 20 with respect to the user terminals 20 connected to the radio base stations 10 including the own station.
- a cooperative precoding matrix (P ISI ) for removing interference between streams is generated.
- each of the radio base station 10A and the radio base station 10B includes channel information between the radio base station 10A and the user terminal 20-3, and between the radio base station 10B and the user terminal 20-3.
- the channel information including the channel information (for example, Expression (12)) the cooperative precoding matrix (P ISI ) is generated. That is, as shown in FIG. 5, the user terminal 20- is assigned to both the group (spatial separation group A) to be precoded (space separation) in the radio base station 10A and the space separation group B of the radio base station 10B. 3 is included.
- the radio base station 10A and the radio base station 10B shown in FIG. 5 transmit data multiplied by the precoding matrix (P IUI , P ISI ) to the user terminal 20-3.
- the user terminal 20-3 multiplies the received stream signal by a post-coding matrix (B ISI ), and demodulates the stream signal (data).
- B ISI post-coding matrix
- inter-stream interference is suppressed for all of the stream from the radio base station 10A and the stream from the radio base station 10B. Will be.
- the user terminal 20-3 can efficiently receive the data irradiated with the beams from the plurality of radio base stations 10A and 10B while suppressing inter-stream interference from the plurality of radio base stations 10A and 10B.
- the parameters used as the reference when selecting the BF weight or the connection destination of the user terminal 20 are not limited to the SNR or the received power, as in the first embodiment, and are multiplied by the BF weight candidate. Any candidate weight information (for example, reception correlation) measured using the discovery signal may be used.
- candidate weight information for example, received power of a BF weight candidate
- a discovery signal transmitted from radio base station 10 to user terminal 20 For example, the reference signal is transmitted from the user terminal 20 to the radio base station 10, and the reference signal received by the radio base station 10 is used to select the BF weight, the user The connection destination of the terminal 20 may be selected or a precoding matrix may be generated.
- This process eliminates the need for feedback of discovery signals, candidate weight information, and channel information (HW). Therefore, the use of radio resources in the channel estimation process can be reduced.
- connection destination selection and the BF weight selection of the user terminal 20 are performed based on the maximum received power norm for the plurality of radio base stations 10 as shown in the equation (9).
- the present embodiment is not limited to this, and the connection destination selection and BF weight selection of the user terminal 20 may be performed using other methods. Further, in the present embodiment, the connection destination selection and the BF weight selection of the user terminal 20 may be performed based on other norms such as the maximum reception to interference power ratio norms, without being limited to the maximum received power norms. .
- the plurality of radio base stations 10 may improve the transmission speed by processing of multiplexing and transmitting different data streams as streams to be transmitted to one user terminal 20, The quality may be improved by a process of diversity transmission of the same stream.
- the cooperation precoding matrix ( PISI ) which considered the inter-stream interference in the said user terminal 20 is produced
- the present embodiment is not limited to this, and the user terminal 20 connected to a plurality of radio base stations 10 considers the entire precoding matrix, that is, inter-user interference in addition to P ISI .
- the precoding matrix (P IUI ) may be generated using channel information (for example, see Equation (12)) between the user terminal 20 and each of the plurality of radio base stations 10.
- radio base station and the user terminal according to the present embodiment have the same basic configuration as that of the radio base station 10 and the user terminal 20 according to the first embodiment, and will be described with reference to FIGS.
- FIG. 7A and 7B show a configuration example of the wireless communication system according to the present embodiment.
- the radio communication system includes a plurality of radio base stations 10 (for example, Massive MIMO base stations), at least one user terminal 20, and a control station 30.
- Each user terminal 20 is connected to at least one radio base station 10.
- user terminals 20-1 to 20-3 are connected to the radio base station 10A
- user terminals 20-4 to 20-5 are connected to the radio base station 10B.
- control station 30 is connected to a plurality of radio base stations 10.
- the control station 30 monitors the data transmission amount of each radio base station 10. Then, for example, the control station 30 forms a beam at a peripheral site with respect to the radio base station 10 whose data transmission amount is less than the predetermined threshold T (that is, the radio base station 10 with remaining resources that can be allocated). Instruct. Note that the same processing as that of the control station 30 may be performed by any of the plurality of radio base stations 10.
- the control station 30 detects that the data transmission amount of the radio base station 10B is less than the threshold value T. Therefore, the control station 30 instructs the radio base station 10B to change the BF weight in order to form a beam at the site of the adjacent radio base station 10A (details will be described later). For example, here, the control station 30 instructs the radio base station 10B to form a beam for the user terminal 20-3 connected to the radio base station 10A.
- the radio base station 10B forms a beam for the user terminal 20-3 connected to the radio base station 10A. That is, the user terminal 20-3 is connected to both the radio base station 10A and the radio base station 10B.
- the beam control for the user terminal 20-3 in the radio base station 10A and the radio base station 10B is the same as the process described in the second embodiment, for example, and thus detailed description thereof is omitted here.
- This process makes it possible to effectively use the remaining resources in the radio base station 10B and improve the system throughput.
- FIG. 8 is a flowchart showing operations of the radio base station 10 and the control station 30 according to the present embodiment.
- the same processes as those in the first embodiment (FIG. 4) or the second embodiment (FIG. 6) are denoted by the same reference numerals, and the description thereof is omitted.
- each radio base station 10 first performs a beamforming process and a precoding process in a site formed by each radio base station 10. That is, each radio base station 10 selects a BF weight in ST105, calculates a precoding matrix in ST112, and communicates with the user terminal 20 connected to the radio base station 10 (ST113).
- the control station 30 monitors the transmission amount of the plurality of radio base stations 10 ( ST302). Then, the control station 30 determines whether or not there is a radio base station 10 whose monitored data transmission amount is less than the threshold T (ST303).
- the control station 30 continues monitoring the data transmission amount (ST302, ST303) without performing anything for the radio base station 10 whose data transmission amount is equal to or greater than the threshold T (ST303: No). That is, the radio base station 10 whose data transmission amount is equal to or greater than the threshold value T continues to perform the processes of ST111, ST112, and ST113.
- the control station 30 instructs the radio base station 10 whose data transmission amount is less than the threshold T (ST303: Yes) to change the BF weight in order to form a beam at the peripheral site.
- the radio base station 10 changes the BF weight (ST304). Then, for example, as in Embodiment 2, the radio base station 10 generates a cooperative precoding matrix (ST203), and transmits data (information) to the user terminal 20 (ST113).
- the i-th radio base station 10 then forms the l add in the peripheral site (here, the site formed by the k-th radio base station 10) in accordance with the maximum received power standard shown in the following equation (14). Select the number beam. For example, the i-th radio base station 10 may newly form L Ind beams selected according to Equation (14).
- the i-th radio base station 10 deletes a beam (in this case, a beam selected according to the minimum received power criterion shown in Expression (13)) that has less influence on the data transmission within the site of the own station. .
- the i-th radio base station 10 changes to a beam that is highly efficient for data transmission in the peripheral site (here, a beam selected according to the maximum received power criterion shown in Expression (14)).
- a link precoding matrix (P ISI ) is generated using channel information (for example, Equation (12)) with the user terminal 20-3 (ST203 shown in FIG. 8).
- the site where the i-th radio base station 10 forms a beam is a site where the data transmission amount is larger among the sites around the site formed by the i-th radio base station 10 (that is, more resources are required). May be selected, or may be a site selected based on other norms. For example, data transmitted from the i-th radio base station 10 to the j-th user terminal 20 is transferred from the k-th radio base station 10 via the inter-base station communication unit 105 (backhaul). May be.
- the plurality of radio base stations 10 connect their own usable resources (beams) to other radio base stations 10 according to the resource usage status (for example, deviation in data transmission amount). Therefore, it is possible to perform beam control by efficiently using resources of all sites.
- radio base station 10 transitions to discovery signal transmission (ST101), and uses BF weights based on candidate weight information measured using discovery signals in ST304. It may be changed.
- the radio base station 10 can change the BF weight using the candidate weight information (SNR or received power) reflecting the current channel state, so that the BF weight can be deleted and selected with high accuracy.
- the beam transmission (BF weight change) process of the radio base station 10 whose data transmission amount is less than the threshold T is used to change the data other than the radio base station 10.
- a beam for the user terminal 20 connected to another radio base station 10 is formed. That is, the radio base station 10 with a data transmission amount less than the threshold T is connected to the radio base station 10 and another radio base station 10 other than the radio base station 10 by beam forming (BF weight change) processing. Connected to a user terminal.
- the radio base station 10 with a small data transmission amount irradiates a beam to a site formed by the radio base station 10 with a large data transmission amount to transmit data.
- This processing enables appropriate beam control at all sites in a multi-site environment, thereby improving the efficiency of MU-MIMO transmission.
- the usage resource amount of the radio base station 10 is not limited to the data transmission amount, but the usage status of resources in each radio base station 10 or the usage resource amount between the radio base stations 10 Other parameters representing bias, etc. may be used. Another parameter may be, for example, the number of streams transmitted by the radio base station 10 or a difference in data transmission amount between the radio base stations 10.
- a standard based on received power is used when changing (deleting and adding) a BF weight as shown in Expression (13) and Expression (14).
- the present embodiment is not limited to this, and for example, the BF weight may be changed using another standard based on the reception-to-interference power.
- channel estimation values may be acquired without using reference signals in channel estimation. That is, in channel estimation, channel information indicating an equivalent channel matrix (HW) including a BF weight may be acquired.
- HW equivalent channel matrix
- the operations in the two radio base stations 10 have been described as shown in FIG. 1, FIG. 5, and FIG.
- the present invention is not limited to this, and the same operation as in the above embodiment is possible even in a multi-site environment including three or more radio base stations 10.
- each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
- a wireless base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the wireless communication method of the present invention.
- FIG. 9 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
- the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
- the term “apparatus” can be read as a circuit, a device, a unit, or the like.
- the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
- processor 1001 may be implemented by one or more chips.
- Each function in the radio base station 10 and the user terminal 20 is obtained by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004, or This is realized by controlling data reading and / or writing in the memory 1002 and the storage 1003.
- predetermined software program
- the processor 1001 performs computation and communication by the communication device 1004, or This is realized by controlling data reading and / or writing in the memory 1002 and the storage 1003.
- the processor 1001 controls the entire computer by operating an operating system, for example.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
- CPU central processing unit
- the discovery signal generation unit 101, candidate weight multiplication unit 102, reference signal generation unit 103, connection destination selection unit 104, weight selection unit 106, determination unit 107, precoding matrix generation unit 108, data generation unit 109, pre-processing described above Coding section 110, beam forming section 111, candidate weight information measurement section 203, channel estimation section 204, post coding matrix generation section 205, post coding section 206, data reception section 207, etc. may be realized by processor 1001.
- the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
- a program program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
- the functional blocks constituting the radio base station 10 and the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks are similarly realized. May be.
- the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
- the processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
- the memory 1002 is a computer-readable recording medium and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
- the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the embodiment of the present invention.
- the storage 1003 is a computer-readable recording medium such as an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
- the storage 1003 may be referred to as an auxiliary storage device.
- the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
- the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
- a network device a network controller
- a network card a communication module
- the communication units 112 and 202, the antennas 113 and 201, the inter-base station communication unit 105, and the like described above may be realized by the communication device 1004.
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
- the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
- the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
- DSP digital signal processor
- ASIC Application Specific Integrated Circuit
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof.
- RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
- Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
- LTE Long Term Evolution
- LTE-A Long Term Evolution-Advanced
- SUPER 3G IMT-Advanced
- 4G 5G
- FRA Full Radio Access
- W-CDMA Wideband
- GSM registered trademark
- CDMA2000 Code Division Multiple Access 2000
- UMB User Mobile Broadband
- IEEE 802.11 Wi-Fi
- IEEE 802.16 WiMAX
- IEEE 802.20 UWB (Ultra-WideBand
- the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
- the specific operation assumed to be performed by the base station (radio base station) in this specification may be performed by the upper node in some cases.
- various operations performed for communication with a terminal may be performed by the base station and / or other network nodes other than the base station (e.g., It is obvious that this can be performed by MME (Mobility Management Entity) or S-GW (Serving Gateway).
- MME Mobility Management Entity
- S-GW Serving Gateway
- Information, signals, and the like can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
- Input / output information and the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
- the determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
- software, instructions, etc. may be transmitted / received via a transmission medium.
- software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
- wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
- DSL digital subscriber line
- wireless technology such as infrared, wireless and microwave.
- Information, signal Information, signals, etc. described herein may be represented using any of a variety of different technologies.
- data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
- the channel and / or symbol may be a signal.
- the signal may be a message.
- the component carrier (CC) may be called a carrier frequency, a cell, or the like.
- radio resource may be indicated by an index.
- a base station can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, indoor small base station RRH: Remote Radio Head) can also provide communication services.
- the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “cell”, and “sector” may be used interchangeably herein.
- a base station may also be referred to in terms such as a fixed station, NodeB, eNodeB (eNB), access point, femtocell, small cell, and the like.
- a user terminal is a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile by a person skilled in the art It may also be referred to as a terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, UE (User Equipment), or some other appropriate terminology.
- determining may encompass a wide variety of actions. “Judgment” and “determination” are, for example, judgment, calculation, calculation, processing, derivation, investigating, looking up (eg, table , Searching in a database or another data structure), considering ascertaining as “determining”, “deciding”, and the like.
- determination and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as “determined” or "determined”.
- determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
- connection means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements.
- the coupling or connection between the elements may be physical, logical, or a combination thereof.
- the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples
- electromagnetic energy such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
- the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot depending on an applied standard.
- the correction RS may be referred to as TRS (Tracking ⁇ RS), PC-RS (Phase Compensation RS), PTRS (Phase Tracking RS), or Additional RS.
- the demodulation RS and the correction RS may be called differently corresponding to each. Further, the demodulation RS and the correction RS may be defined by the same name (for example, the demodulation RS).
- the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
- the radio frame may be composed of one or a plurality of frames in the time domain.
- One or more frames in the time domain may be referred to as subframes, time units, etc.
- a subframe may further be composed of one or more slots in the time domain.
- the slot may be further configured with one or a plurality of symbols (OFDM (Orthogonal-Frequency-Division-Multiplexing) symbol, SC-FDMA (Single-Carrier-Frequency-Division-Multiple-Access) symbol, etc.) in the time domain.
- OFDM Orthogonal-Frequency-Division-Multiplexing
- SC-FDMA Single-Carrier-Frequency-Division-Multiple-Access
- the radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting a signal. Radio frames, subframes, slots, minislots, and symbols may be called differently corresponding to each.
- the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each mobile station) to each mobile station.
- the minimum scheduling time unit may be called TTI (Transmission Time Interval), and one minislot may be called TTI.
- one subframe may be called a TTI
- a plurality of consecutive subframes may be called a TTI
- one slot may be called a TTI
- the resource unit is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. In the time domain of the resource unit, it may include one or a plurality of symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource units.
- the resource unit may also be called a resource block (RB: Resource Block), a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, a scheduling unit, a frequency unit, or a subband. Further, the resource unit may be composed of one or a plurality of REs.
- 1 RE may be any resource (for example, the smallest resource unit) smaller than a resource unit serving as a resource allocation unit, and is not limited to the name RE.
- the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, the number of minislots included in the subframe, the symbols and resource blocks included in the slots, The number and the number of subcarriers included in the resource block can be variously changed.
- notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
- One embodiment of the present invention is useful for a mobile communication system.
- DESCRIPTION OF SYMBOLS 10 Radio base station 20 User terminal 30 Control station 101 Discovery signal generation part 102 Candidate weight multiplication part 103 Reference signal generation part 104 Connection destination selection part 105 Inter-base station communication part 106 Weight selection part 107 Determination part 108 Precoding matrix generation part 109 Data generation unit 110 Precoding unit 111 Beamforming unit 112, 202 Communication unit 113, 201 Antenna 191 Encoding unit 192 Modulation unit 203 Candidate weight information measurement unit 204 Channel estimation unit 205 Post coding matrix generation unit 206 Post coding unit 207 Data reception Unit 271 demodulation unit 272 decoding unit
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
複数の無線基地局と少なくとも1つのユーザ端末20との間においてMIMO伝送を行う無線通信システムにおいて、無線基地局10は、無線基地局10とユーザ端末との間のチャネルを示すチャネル情報に基づくプリコーディングをデータ信号に適用するプリコーディング部110と、プリコーディングされたデータ信号を送信する通信部112と、を具備する。複数の無線基地局のうち第1の無線基地局におけるプリコーディングは、少なくとも、第1の無線基地局と、第1の無線基地局以外の第2の無線基地局に接続している第1のユーザ端末との間のチャネルを含むチャネル情報に基づいて適用される。
Description
本発明は、無線基地局及び無線通信方法に関する。
UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(5G plus)、New-RAT(Radio Access Technology)などと呼ばれる)も検討されている。
将来の無線通信システム(例えば、5G)では、信号伝送の更なる高速化及び干渉低減を図るために、高周波数帯(例えば、5GHz以上)において多数のアンテナ素子(例えば、100素子以上)を用いる大規模(Massive)MIMO(Multiple Input Multiple Output)を用いることが検討されている。
MIMOにおいてビーム又はストリームを制御する技術として、デジタルプリコーディング/ポストコーディング(以下、単にプリコーディング/ポストコーディングと呼ぶこともある)と、ビームフォーミング(BF)とを組み合わせる方法がある(例えば、非特許文献1を参照)。
T.Obara et al.: "Joint Processing of Analog Fixed Beamforming and CSI-based Precoding for Super High Bit Rate Massive MIMO Transmission Using Higher Frequency Bands," IEICE Transactions on Communications VOL. E98-B, NO. 8 August 2015
しかしながら、Massive MIMOを用いる基地局(以下、Massive MIMO基地局と呼ぶこともある)が形成するサイト(セルと呼ぶこともある)が複数個存在する環境(マルチサイト環境)におけるビーム制御については十分に検討がなされていない。
本発明の一態様は、マルチサイト環境において適切にビーム制御できる無線基地局及び無線通信方法を提供することである。
本発明の一態様に係る無線基地局は、複数の無線基地局と少なくとも1つのユーザ端末との間においてMIMO伝送を行う無線通信システムにおいて、前記無線基地局と前記ユーザ端末との間のチャネルを示すチャネル情報に基づくプリコーディングをデータ信号に適用するプリコーディング部と、前記プリコーディングされたデータ信号を送信する通信部と、を具備し、前記複数の無線基地局のうち第1の無線基地局における前記プリコーディングは、少なくとも、前記第1の無線基地局と、前記第1の無線基地局以外の第2の無線基地局に接続している第1のユーザ端末との間のチャネルを含む前記チャネル情報に基づいて適用される。
本発明の一態様によれば、マルチサイト環境において適切にビーム制御できる。
以下、本発明の各実施の形態について、図面を参照して詳細に説明する。
以下では、複数のユーザ端末に対してストリームを分配して多重送信するMU-MIMO(Multi-User MIMO)伝送を行う場合について説明する。また、以下では、Massive MIMOにおいて、BFとプリコーディング/ポストコーディングを行う場合について説明する。すなわち、本発明に係る無線通信システムでは、無線基地局と複数のユーザ端末との間において行うMU-MIMO伝送において、プリコーディング/ポストコーディングと、ビームフォーミングとが行われる。
また、以下では、プリコーディングを、ユーザ間干渉(Inter-User Interference:IUI)に対するプリコーディング、及び、各ユーザ端末におけるストリーム間干渉(Inter-Stream Interference:ISI)に対するプリコーディングに分けて記載し、ユーザ間干渉に対するプリコーディング、及び、各ユーザ端末におけるストリーム間干渉に対するプリコーディング/ポストコーディングが行われる。
一例として、無線基地局がNT個のアンテナ素子を有し、NU個のユーザ端末との間の下りリンクにおいてMassive MIMO伝送を行うことを想定する。また、第i(i=1~NU)番のユーザ端末のアンテナ素子数をNRi個とし、ストリーム数をMi個とする。
ここで、Hi(i=0~NU-1)はMU-MIMO伝送において多重された第i番のユーザ端末のチャネル情報(チャネル行列)を表し、WはBFウェイトを表し、PIUIはユーザ間干渉に対するプリコーディング行列を表し、PISIはストリーム間干渉に対するプリコーディング行列を表し、di(i=0~NU-1)は第i番のユーザ端末向けのストリームを表し、zは雑音を表す。
式(1)に示すように、プリコーディング(例えば、ブロック対角化)のうち、ユーザ間干渉に対するプリコーディング処理(PIUI)により、ユーザ端末間のチャネルが直交化され、ユーザ間干渉が回避されている。
式(2)において、Bi
ISI(i=0~NU-1)は第i番のユーザ端末向けのストリーム間干渉に対するポストコーディング行列を表す。式(2)に示すように、プリコーディング行列PISI及びポストコーディング行列BISIによって、各ユーザ端末のストリーム間のチャネルが直交化され、ストリーム間干渉が回避されている。
なお、プリコーディング行列(PIUI,PISI)及びポストコーディング行列(BISI)は、例えば、無線基地局とユーザ端末との間のチャネル情報(チャネル行列)を用いて特異値分解(Singular Value Decomposition:SVD)を行うことにより算出されてもよい。
上記プリコーディング処理及びビームフォーミング処理は、1つの無線基地局に接続している複数のユーザ端末に対する処理である。つまり、上記処理は、単一のMassive MIMO基地局が形成するサイト内における処理である。
一方で、今後、高周波数帯通信の効率化及び品質維持のためには、複数のMassive MIMO基地局の各々が形成するサイト(マルチサイト)でのプリコーディング処理及びビームフォーミング処理等のビーム制御を検討する必要がある。
そこで、以下の実施の形態では、マルチサイト環境において適切にビーム制御を行う方法について説明する。
(実施の形態1)
<無線通信システム>
図1は、本実施の形態に係る無線通信システムの構成例を示す。
<無線通信システム>
図1は、本実施の形態に係る無線通信システムの構成例を示す。
本実施の形態に係る無線通信システムは、複数の無線基地局10、及び、少なくとも1つのユーザ端末20を備える。無線基地局10は、例えば、Massive MIMO基地局である。
また、各ユーザ端末20は、少なくとも1つの無線基地局10に接続(アクセス)している。図1に示す一例では、ユーザ端末20-1~20-3は無線基地局10Aに接続し、ユーザ端末20-4~20-6は無線基地局10Bに接続している。
<無線基地局>
図2は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。図2に示す無線基地局10は、ディスカバリ信号生成部101と、候補ウェイト乗算部102と、参照信号生成部103と、接続先選択部104と、基地局間通信部105と、ウェイト選択部106と、判定部107と、プリコーディング行列生成部108と、データ生成部109と、プリコーディング部110と、ビームフォーミング部111と、通信部112と、アンテナ113と、を含む構成を採る。
図2は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。図2に示す無線基地局10は、ディスカバリ信号生成部101と、候補ウェイト乗算部102と、参照信号生成部103と、接続先選択部104と、基地局間通信部105と、ウェイト選択部106と、判定部107と、プリコーディング行列生成部108と、データ生成部109と、プリコーディング部110と、ビームフォーミング部111と、通信部112と、アンテナ113と、を含む構成を採る。
なお、図2では、無線基地局10におけるOFDM(Orthogonal Frequency Division Multiplexing)信号を生成するための構成部(例えば、IFFT処理部、CP付加部)等の記載を省略している。また、無線基地局10から送信される信号の信号波形はOFDM変調に基づく波形に限定されない。
ディスカバリ信号生成部101は、BFウェイト(W)を決定するためのディスカバリ信号(参照信号)を生成する。例えば、ディスカバリ信号生成部101は、少なくとも、BFウェイトの候補数と同数のディスカバリ信号を生成する。ディスカバリ信号生成部101は、生成したディスカバリ信号を候補ウェイト乗算部102へ出力する。
候補ウェイト乗算部102は、ディスカバリ信号生成部101から入力されるディスカバリ信号に対して、BFウェイトの候補をそれぞれ乗算し、BFウェイト候補を乗算した後のディスカバリ信号を通信部112へ出力する。
参照信号生成部103は、チャネル推定に使用される参照信号を生成し、ビームフォーミング部111に出力する。
接続先選択部104は、各ユーザ端末20からフィードバックされる候補ウェイト情報に基づいて、複数の無線基地局10のうち、自局に接続されるユーザ端末20を選択する。候補ウェイト情報は、例えば、候補ウェイトが乗算されたディスカバリ信号に対するSNR(Signal to Noise Ratio)又は受信電力等である。
例えば、接続先選択部104は、各ユーザ端末20について、候補ウェイト情報(受信電力)が最大となるBFウェイトを生成する無線基地局10を、当該ユーザ端末20の接続先の無線基地局として選択する。接続先選択部104は、ユーザ端末20の接続先の無線基地局10を示す接続先情報を、例えば、自局に接続しているユーザ端末20へ通知してもよい(図示せず)。各ユーザ端末20は、接続先情報に示される無線基地局10への接続動作を行う。また、接続先選択部104は、例えば、ユーザ端末20の接続先の無線基地局10を示す接続先情報を、基地局間通信部105を介して他の無線基地局10へ通知してもよい。または、接続先選択部104は、基地局間通信部105を介して他の無線基地局10から通知される接続先情報に基づいて、自局に接続するユーザ端末20を特定してもよい。
基地局間通信部105は、例えば、バックホールを介して、他の無線基地局10又は、複数の無線基地局10を制御する制御局(中央制御局と呼ぶこともある)との間において通信を行う。
ウェイト選択部106は、各ユーザ端末20からフィードバックされる候補ウェイト情報に基づいて、BFウェイト候補の中から、ビームフォーミングに使用するBFウェイト(W)を選択し、ビームフォーミング部111へ出力する。例えば、ウェイト選択部106は、候補ウェイト情報に示されるSNR(又は受信電力)の高い順にL個のBFウェイトを互いに重複しないように選択してもよい。
判定部107は、各ユーザ端末20からフィードバックされる候補ウェイト情報に基づいて、拡張プリコーディングを実行するか否かを判定する。例えば、判定部107は、接続先選択部104から入力される接続先情報に基づいて、自局に接続されるユーザ端末20以外のユーザ端末20(つまり、自局に接続していないユーザ端末20)を特定する。そして、判定部107は、自局に接続していないユーザ端末20の中に、候補ウェイト情報に示されるSNRが所定の閾値σ未満のユーザ端末20が存在する場合、拡張プリコーディングを実行すると判定する。一方、判定部107は、自局に接続していないユーザ端末20の中に、候補ウェイト情報に示されるSNRが所定の閾値σ未満のユーザ端末20が存在しない場合、拡張プリコーディングを実行せずに、通常のプリコーディングを実行すると判定する。判定部107は、判定結果をプリコーディング行列生成部108に出力する。
なお、通常のプリコーディングは、単一の無線基地局10に接続するユーザ端末20からフィードバックされるチャネル推定値に基づいて適用されるプリコーディングである。一方、拡張プリコーディングは、或る無線基地局10と当該無線基地局10に接続するユーザ端末20との間のチャネルと、当該無線基地局10と当該無線基地局10以外の他の無線基地局10に接続されている、SNRが所定の閾値σ未満のユーザ端末20との間のチャネルとを含むチャネル推定値に基づいて適用されるプリコーディングである。
以下では、通常のプリコーディングにおいて、単一の無線基地局10と当該無線基地局10に接続するユーザ端末20との間のチャネルを示すチャネル推定値に基づいて生成されるプリコーディング行列を「通常のプリコーディング行列」と呼ぶ。また、拡張プリコーディングにおいて、無線基地局10と当該無線基地局10に接続するユーザ端末20との間のチャネルと、当該無線基地局と他の無線基地局10に接続するユーザ端末20との間のチャネルとを含むチャネル推定値に基づいて生成されるプリコーディング行列を「拡張プリコーディング行列」と呼ぶ。
プリコーディング行列生成部108は、判定部107から入力される判定結果に基づいて、ユーザ端末20からフィードバックされるチャネル推定値を用いて、通常のプリコーディング行列又は拡張プリコーディング行列を生成する。なお、チャネル推定値は、例えば、BFウェイト(W)を含む等価チャネル行列を示すチャネル情報(HW)である。
具体的には、プリコーディング行列生成部108は、MU-MIMOにおいて多重される複数のユーザ端末20間の干渉(ユーザ間干渉)を除去するためのプリコーディング行列(PIUI)、及び、各ユーザ端末20における複数のストリーム間の干渉(ストリーム間干渉)を除去するためのプリコーディング行列(PISI)をそれぞれ生成する。また、プリコーディング行列生成部108は、自局以外の無線基地局に接続されているユーザ端末20に対する自局からの干渉を除去するための拡張プリコーディング行列を生成する。
プリコーディング行列生成部108は、生成したプリコーディング行列(PIUI、PISI)。以下、まとめて「P」と表すこともある)をプリコーディング部110へ出力する。
データ生成部109は、複数のユーザ端末20向けのデータ(下りリンク信号)を生成する。なお、図2では、1つのユーザ端末20(第i番のユーザ端末20)に対するデータ生成部109の構成を示している。しかし、無線基地局10は、複数(NU個)のユーザ端末20にそれぞれ対するデータ生成部109を有している。
また、データ生成部109は、符号化部191と変調部192とを備える。符号化部191及び変調部192は、ユーザ端末iに対するストリーム数(Mi個)に対応してそれぞれ備えられる。各符号化部191は、Mi個のストリームのデータ信号をそれぞれ符号化し、各変調部192は、符号化後のデータ信号をそれぞれ変調し、変調後のデータ信号をプリコーディング部110に出力する。なお、各符号化部191及び各変調部192における符号化率、変調方式は、ストリーム毎に異なってもよい。
プリコーディング部110は、データ生成部109から入力されるデータ信号に対してプリコーディング行列(P)を乗算し、プリコーディング後のデータ信号をビームフォーミング部111へ出力する。例えば、プリコーディング部110は、Mストリームのデータ信号に対してプリコーディングを適用して、L(ビーム数。例えば、L>M)個の信号を生成する。
ビームフォーミング部111は、チャネル推定において、参照信号生成部103から入力される参照信号に対して、ウェイト選択部106から入力されるBFウェイトWを乗算し、BFウェイト乗算後の参照信号を通信部112へ出力する。この処理により、各ユーザ端末20は、候補ウェイト情報(SNR)に基づいて決定されたBFウェイト(W)が乗算された参照信号を用いて、BFウェイトを含む等価的なチャネル情報(HW)の推定が可能となる。
また、ビームフォーミング部111は、データ送信時において、プリコーディング部110から入力されるデータ信号に対して、ウェイト選択部106から入力されるBFウェイト(W)を乗算し、BFウェイト乗算後のデータ信号(NT個の信号)を通信部112へ出力する。
通信部112-1~112-NTは、NT個のアンテナ113(アンテナ素子)にそれぞれ対応して備えられる。各通信部112は、入力される信号に対して、D/A変換、アップコンバート等の送信処理を行い、送信処理後の信号を、例えば、時間、周波数又は符号によって多重し、NT個のアンテナ113からそれぞれ送信する。具体的には、各通信部112は、候補ウェイト乗算部102から入力されるディスカバリ信号を、アンテナ113を介して各ユーザ端末20へ送信する。また、通信部112は、チャネル推定において、ビームフォーミング部111から入力される参照信号を、アンテナ113を介して各ユーザ端末20へ送信する。また、通信部112は、データ送信時において、ビームフォーミング部111から入力されるストリームの信号を、アンテナ113を介して各ユーザ端末20へ送信する。
<ユーザ端末>
図3は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。図3に示すユーザ端末20は、アンテナ201と、通信部202と、候補ウェイト情報測定部203と、チャネル推定部204と、ポストコーディング行列生成部205と、ポストコーディング部206と、データ受信部207と、を含む構成を採る。
図3は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。図3に示すユーザ端末20は、アンテナ201と、通信部202と、候補ウェイト情報測定部203と、チャネル推定部204と、ポストコーディング行列生成部205と、ポストコーディング部206と、データ受信部207と、を含む構成を採る。
なお、図3は、第i番のユーザ端末20の構成を一例として示す。また、図3では、ユーザ端末20におけるOFDM信号を受信するための構成部(例えば、CP除去部、FFT処理部)等の記載を省略している。また、ユーザ端末20が受信する信号の信号波形はOFDM変調に基づく波形に限定されない。
通信部202-1~202-NRiは、NRi個のアンテナ201にそれぞれ対応して備えられる。各通信部202は、アンテナ201を介して受信した受信信号に対して、ダウンコンバート、A/D変換等の受信処理を行う。ここで、受信信号には、例えば、ディスカバリ信号、参照信号、又はデータ信号が含まれる。通信部202は、ディスカバリ信号を候補ウェイト情報測定部203へ出力し、参照信号をチャネル推定部204へ出力し、データ信号をポストコーディング部206へ出力する。
候補ウェイト情報測定部203は、通信部202から入力されるディスカバリ信号を用いて候補ウェイト情報(例えば、SNR又は受信電力)を測定する。ディスカバリ信号には、BFウェイト候補がそれぞれ乗算されている。よって、候補ウェイト情報測定部203は、各BFウェイト候補が用いられた場合のSNR又は受信電力が測定される。測定されたSNR又は受信電力を示す候補ウェイト情報は、例えば、通信部202を介して無線基地局10へフィードバックされる。
チャネル推定部204は、通信部202から入力される参照信号を用いて、無線基地局10とユーザ端末20との間のチャネルを示すチャネル推定値(チャネル情報)を推定する。参照信号には、無線基地局10(ビームフォーミング部111)においてBFウェイト(W)が乗算されている。よって、チャネル推定部204では、BFウェイトを含む等価的なチャネル情報(等価チャネル行列HW)が推定される。推定されたチャネル情報(HW)は、例えば、通信部202を介して無線基地局10(プリコーディング行列生成部108)へフィードバックされる。また、チャネル推定部204は、推定されたチャネル情報をポストコーディング行列生成部205へ出力する。
ポストコーディング行列生成部205は、チャネル推定部204から入力されるチャネル情報(HW)を用いて、ポストコーディング行列(BISI)を生成する。ポストコーディング行列生成部205は、生成したポストコーディング行列をポストコーディング部206へ出力する。なお、ポストコーディング行列生成部205は、プリコーディング行列(拡張プリコーディング行列)及びBFウェイトが乗算された参照信号を用いて推定されるチャネル情報HWPを用いてポストコーディング行列を生成してもよい。
ポストコーディング部206は、ポストコーディング行列生成部205から入力されるポストコーディング行列(BISI)を用いて、通信部202から入力されるデータ信号に対してポストコーディングを行う。ポストコーディング部206は、ポストコーディング後のデータ信号をデータ受信部207へ出力する。
データ受信部207は、ポストコーディング部206から入力されるデータ信号に対して受信処理(復調処理及び復号処理を含む)を行い、第i番のユーザ端末20に対する複数のストリームを得る。データ受信部207は、復調部271と復号部272とを備える。復調部271及び復号部272は、第i番のユーザ端末20に対するストリーム数(Mi個)に対応して備えられる。各復調部271は、Mi個のストリームのデータ信号を復調し、各復号部272は、復調後のデータ信号を復号し、Mi個のストリームを得る。なお、各復調部271及び各復号部272における符号化率、変調方式は、ストリーム毎に異なってもよい。
<無線基地局10及びユーザ端末20の動作>
次に、上述した無線基地局10及びユーザ端末20の動作について詳細に説明する。
次に、上述した無線基地局10及びユーザ端末20の動作について詳細に説明する。
なお、以下の説明では、無線通信システムは、AP個の無線基地局10と、(AP×NU)個のユーザ端末20とを含む。
図4は、本実施の形態に係る無線基地局10の動作を示すフローチャートである。
まず、無線基地局10は、複数のBFウェイト(W)の候補の中から1つの候補を選択する(ST101)。そして、無線基地局10は、選択したBFウェイト(W)の候補を乗算したディスカバリ信号をユーザ端末20へ送信する(ST102)。無線基地局10は、複数のBFウェイト(W)の全ての候補に対応するディスカバリ信号を送信していない場合(ST103:No)、ST101及びST102の処理に戻り、BFウェイト(W)の他の候補を乗算したディスカバリ信号を送信する。
BFウェイトの候補が乗算されたディスカバリ信号は、プリコーディングされず、全てのユーザ端末20の全てのアンテナ201に送信される。ディスカバリ信号は、例えば、1シンボル(例えば1OFDMシンボル)内の無線リソース(サブキャリア)に周波数多重、又は、複数のシンボルに時間多重して割り当てられてもよい。また、ディスカバリ信号は、複数の無線基地局10間において時間/周波数/符号多重されて送信されてもよい。このように、ディスカバリ信号が無線リソースに多重して送信される方法により、無線基地局10は、後述するBFウェイトを効率良く選択できる。
式(1)において、ri,j(j=0~NAP-1NU-1)は、第j番のユーザ端末20における第i番の無線基地局10からの受信信号を表し、Hi,j(j=0~NAP-1NU-1)は、第j番のユーザ端末20と第i番の無線基地局10との間のチャネル情報(チャネル行列)を表し、wi,xは、第i番の無線基地局10における第x番のBFウェイト候補(ベクトル)を表し、pはディスカバリ信号を表し、ziは第i番の無線基地局10に対応する雑音を表す。
各ユーザ端末20は、式(3)に示す受信信号(ディスカバリ信号)を用いて、候補ウェイト情報(例えば、SNR又は受信電力)を測定し、無線基地局10へフィードバックする。
無線基地局10は、BFウェイト(W)の全ての候補に対応するディスカバリ信号を送信した後(ST103:Yes)、各ユーザ端末20からフィードバックされた候補ウェイト情報を用いて、各ユーザ端末20の接続先の無線基地局10を選択する(ST104)。例えば、無線基地局10は、次式(4)に示す最大受信電力規範に従って、受信電力(||Hi,jwi,xp+zi||2)が最大となるBFウェイトwi,xを生成する無線基地局10(第ij
opt番の無線基地局10)を、第j番のユーザ端末20の接続先として選択する。
例えば、図1に示す無線通信システムの一例では、ユーザ端末20-1~20-3の接続先として無線基地局10Aが選択され、ユーザ端末20-4~20-6の接続先として無線基地局10Bが選択される。
次に、無線基地局10は、ユーザ端末20の接続先選択時(ST104)に用いた候補ウェイト情報に基づいて、BFウェイト候補の中から、ビームフォーミングに使用するBFウェイト(W)を選択(決定)する(ST105)。無線基地局10は、例えば、候補ウェイト情報に示されるSNR又は受信電力の高い順にL個のBFウェイトを互いに重複しないように選択してもよい。例えば、第i番の無線基地局10のL個のBFウェイトから構成されるBFウェイトベクトルWi
optは次式(5)で表される。
次に、無線基地局10は、各ユーザ端末20からフィードバックされる候補ウェイト情報を用いて、ST104において選択した自局に接続されるユーザ端末20以外の他のユーザ端末20(つまり、他の無線基地局10に接続しているユーザ端末20)の受信対サイト干渉電力比を示すSIR(Signal to Interference power Ratio)を算出する。例えば、第i番の無線基地局10は、第j番のユーザ端末20に対するSIRjを次式(6)に従って算出する。
すなわち、式(6)の分子成分は、第i番の無線基地局10の信号(つまり、第j番のユーザ端末20の所望信号)の受信電力を表し、式(6)の分母成分は、第i番の無線基地局10以外の他の無線基地局10(第k(≠i)番の無線基地局10)の信号(つまり、第j番のユーザ端末20に対する干渉信号)の受信電力を表す。
次に、無線基地局10は、ST106において算出したSIRが閾値σ未満であるユーザ端末20が存在するか否かに基づいて、拡張プリコーディングを実行するか否かを判断する(ST107)。
例えば、式(6)において、第i番の無線基地局10に接続している第j番のユーザ端末20に対するSIRが閾値σ未満である場合、第j番のユーザ端末20に対して最大の干渉となる第k(≠i)番の無線基地局10は、拡張プリコーディング行列を生成すると判断してもよい。なお、拡張プリコーディング行列を生成する無線基地局10は、第j番のユーザ端末20に対して最大の干渉となる無線基地局10のみに限らず、第j番のユーザ端末20に対して与える干渉が大きい順に所定数の無線基地局10でもよく、第j番のユーザ端末20に対して干渉を与える全ての無線基地局10でもよい。
第k番の無線基地局10は、拡張プリコーディングを実行すると判断した場合(ST107:Yes)、参照信号に対して、ST105において選択したBFウェイト(Wk
opt)を乗算し、BFウェイトが乗算された参照信号をユーザ端末20へ送信する(ST108)。
ユーザ端末20は、受信した参照信号を用いて、チャネル情報(HW)の推定を行い、推定したチャネル情報HW(チャネル推定値)を無線基地局10へフィードバックする。また、ユーザ端末20は、推定したチャネル情報HWを用いてポストコーディング行列を生成する。
無線基地局10は、ユーザ端末20からフィードバックされたチャネル情報HWを用いて、拡張プリコーディング行列(Popt)を生成する(ST109)。例えば、次式(7)に従って、第k番の無線基地局10は、自局に接続している第(kNU)番~第((k+1)NU-1)番のユーザ端末20のチャネル情報HWと、第i番の無線基地局10に接続している、SIRが閾値σ未満となる第j番のユーザ端末20のチャネル情報HWとから構成されるチャネル情報(等価チャネル行列)Hk
extWk
extを用いて、拡張プリコーディング行列Pk
optを算出する。
すなわち、第k番の無線基地局10は、第k番の無線基地局10に接続しているユーザ端末20のチャネル情報に加え、第k番の無線基地局10から干渉を受けている、第i番の無線基地局10に接続している第j番のユーザ端末20の第k番の無線基地局10に対するチャネル情報を考慮して、拡張プリコーディング行列Pk
optを算出する。第k番の無線基地局10は、式(7)に示す等価チャネル行列を用いて、第k番の無線基地局10からの第j番のユーザ端末20に対する干渉を除去するための拡張プリコーディング行列Pk
optを生成する。
つまり、第k番の無線基地局10における拡張プリコーディングは、第k番の無線基地局10と第k番の無線基地局10に接続しているユーザ端末20との間のチャネルと、第k番の無線基地局10と第k番の無線基地局10以外の他の無線基地局10(第i番の無線基地局10)に接続しているユーザ端末20との間のチャネルとを含むチャネル情報に基づいて適用される。
そして、無線基地局10は、ストリームの信号(情報)に対して、拡張プリコーディング行列(Pk
opt)及びBFウェイト(Wk
opt)を乗算して、ストリームの信号をユーザ端末20へ送信する(ST110)。この際、無線基地局10は、拡張プリコーディング行列生成の際にチャネル情報を考慮した、他の無線基地局10に接続しているユーザ端末20(SIRが閾値σ未満のユーザ端末20)に対する信号を送信しない。
式(8)に示すように、第k番の無線基地局10は、第k番の無線基地局10から干渉を受けている第j番のユーザ端末20に対してデータを送信していない(つまり、dk,j=0)。
また、拡張プリコーディング行列(Pk
opt)が乗算されたデータは、第j番のユーザ端末20に対する干渉を回避して送信されることになる。ユーザ端末20は、受信したストリームの信号に対して、ポストコーディング行列(BISI)を乗算して、ストリームの信号(データ)を復調する(図示せず)。プリコーディング行列(PISI)及びポストコーディング行列(BISI)が乗算されたデータでは、ストリーム間干渉が抑圧されることになる。
一方、図4において、無線基地局10は、拡張プリコーディングを実行しないと判断した場合(ST107:No)、参照信号に対して、ST105において選択したBFウェイト(Wk
opt)を乗算し、BFウェイトが乗算された参照信号をユーザ端末20へ送信する(ST111)。ユーザ端末20は、受信した参照信号を用いて、チャネル情報(HW)の推定を行い、推定したチャネル情報HW(チャネル推定値)を無線基地局10へフィードバックする。また、ユーザ端末20は、推定したチャネル情報HWを用いてポストコーディング行列を生成する。
無線基地局10は、ユーザ端末20からフィードバックされたチャネル情報HWを用いて、通常のプリコーディング行列(P)を生成する(ST112)。例えば、第k番の無線基地局10は、第k番の無線基地局10に接続している第(kNU)番~第((k+1)NU-1)番のユーザ端末20のチャネル情報HWから構成されるチャネル情報(等価チャネル行列)HWを用いて、プリコーディング行列Pを算出する。
そして、無線基地局10は、ストリームの信号(情報)に対して、プリコーディング行列(P)及びBFウェイト(Wk
opt)を乗算して、ストリームの信号をユーザ端末20へ送信する(ST113)。
一例として、図1に示す無線通信システムにおいて、無線基地局10Aに対するユーザ端末20-3のSIRが閾値σ未満であり、ユーザ端末20-3に対して無線基地局10Bが与える干渉が最大である場合について説明する。また、無線基地局10Bに対するユーザ端末20-4~20-6全てのSIRは閾値σ以上であるとする。
この場合、無線基地局10Aは、拡張プリコーディングを実行しないと判断する。すなわち、無線基地局10Aは、無線基地局10Aに接続しているユーザ端末20-1~20-3のチャネル情報HWを用いて通常のプリコーディング行列を生成する。つまり、図1に示すように、無線基地局10Aにおいてプリコーディング(空間分離)する際の対象となるグループである空間分離グループAは、無線基地局10Aに接続しているユーザ端末20-1~20-3を含む。
一方、無線基地局10Bは、拡張プリコーディングを実行すると判断する。すなわち、無線基地局10Bは、無線基地局10Bに接続しているユーザ端末20-4~20-6のチャネル情報HWに加え、無線基地局10Aに接続しているユーザ端末20-3のチャネル情報HWを用いて拡張プリコーディング行列を生成する。つまり、図1に示すように、無線基地局10Bにおいてプリコーディング(空間分離)する際の対象となるグループ(空間分離グループB)は、無線基地局10Bに接続しているユーザ端末20-4~20-6に加え、無線基地局10Bから干渉を受けるユーザ端末20を含む。
つまり、図1に示すユーザ端末20-3は、空間分離グループA及び空間分離グループBの双方に含まれる。このため、無線基地局10Aに接続され、無線基地局10Bから受ける干渉が大きいユーザ端末20-3のチャネル情報は、無線基地局10A及び無線基地局10Bの双方におけるプリコーディング行列生成に用いられる。この際、無線基地局10Aではユーザ端末20-3向けのストリームに対する干渉(ISI又はIUI)を除去するためのプリコーディング行列が生成され、無線基地局10Bではユーザ端末20-3に対して干渉となる信号成分を除去するための拡張プリコーディングが生成される。
この処理により、ユーザ端末20-3は、無線基地局10Bからの干渉を抑圧しつつ、無線基地局10Aからのストリームを効率良く受信できる。
<本実施の形態の効果>
このように、本実施の形態では、例えば、図1に示す複数の無線基地局10のうち無線基地局10Bにおける拡張プリコーディングは、無線基地局10Bと無線基地局10Bに接続しているユーザ端末20-4~20-6との間のチャネルと、無線基地局10Bと無線基地局10B以外の他の無線基地局10Aに接続しているユーザ端末20-3との間のチャネルとを含むチャネル情報に基づいて適用される。
このように、本実施の形態では、例えば、図1に示す複数の無線基地局10のうち無線基地局10Bにおける拡張プリコーディングは、無線基地局10Bと無線基地局10Bに接続しているユーザ端末20-4~20-6との間のチャネルと、無線基地局10Bと無線基地局10B以外の他の無線基地局10Aに接続しているユーザ端末20-3との間のチャネルとを含むチャネル情報に基づいて適用される。
つまり、複数の無線基地局10が形成する複数のサイト間の干渉を考慮して、ユーザ端末20に対する空間分離処理が各サイトにおいて重複して行われるので、サイト間の干渉を低減できる。すなわち、本実施の形態では、無線基地局10Aに接続しているユーザ端末20-3に対して、無線基地局10Aと無線基地局10Bとが協調して空間分離処理を行う。
よって、本実施の形態によれば、マルチサイト環境において適切にビーム制御できるので、MU-MIMO伝送の効率を向上できる。
<実施の形態1の変形例>
なお、本実施の形態において、BFウェイト選択又はユーザ端末20の接続先選択時の基準として用いられるパラメータはSNR又は受信電力に限定されず、BFウェイト候補が乗算されたディスカバリ信号を用いて測定される何らかの候補ウェイト情報(例えば、受信相関等)であればよい。
なお、本実施の形態において、BFウェイト選択又はユーザ端末20の接続先選択時の基準として用いられるパラメータはSNR又は受信電力に限定されず、BFウェイト候補が乗算されたディスカバリ信号を用いて測定される何らかの候補ウェイト情報(例えば、受信相関等)であればよい。
また、本実施の形態では、無線基地局10からユーザ端末20へ送信されるディスカバリ信号を用いて候補ウェイト情報(例えば、BFウェイト候補の受信電力)を測定する場合について説明した。しかし、本実施の形態は、これに限定されず、例えば、ユーザ端末20から無線基地局10へ参照信号を送信し、無線基地局10が受信した参照信号を用いて、BFウェイトの選択、ユーザ端末20の接続先選択、又は、プリコーディング行列の生成を行ってもよい。この処理により、ディスカバリ信号、候補ウェイト情報及びチャネル情報(HW)のフィードバックが不要となる。よって、チャネル推定処理における無線リソースの使用を削減できる。
また、本実施の形態では、式(4)に示すように複数の無線基地局10について最大受信電力規範に基づいてユーザ端末20の接続先選択が行われる場合について説明した。しかし、本実施の形態は、これに限定されず、他の方法を用いてユーザ端末20の接続先選択が行われてもよい。また、本実施の形態では、最大受信電力規範に限定されず、最大受信対干渉電力比規範等の他の規範に基づいてユーザ端末20の接続先選択が行われてもよい。
また、本実施の形態では、各無線基地局10において最大受信電力規範に基づいてBFウェイトを選択する場合について説明した。しかし、本実施の形態は、これに限定されず、最大受信対干渉電力比規範等の他の規範に基づいてBFウェイトが選択されてもよい。
また、本実施の形態において、式(8)では、SIRが閾値σ未満となるユーザ端末20が1つである場合について一例として説明した。しかし、SIRが閾値σ未満となるユーザ端末20が複数存在する場合には、無線基地局10は、当該複数のユーザ端末20のチャネル情報を含めた等価チャネル行列を用いて拡張プリコーディング行列を算出してもよい。この処理により、拡張プリコーディング行列を用いてSIRが閾値σ未満となる各ユーザ端末20に対する干渉を低減できる。
また、本実施の形態では、無線基地局10が拡張プリコーディングを実行するか否かを判断する際に、ユーザ端末20のSIRが閾値σ未満であるか否かを判定する場合について説明した。しかし、本実施の形態は、これに限定されず、他の規範に基づいて拡張プリコーディング行列を実行するか否かを判断してもよい。例えば、無線基地局10は、複数のユーザ端末20のうち、SIRが下位x%のユーザ端末20について拡張プリコーディングを適用してもよい。この処理により、無線基地局10は、SIRが下位x%のユーザ端末20に対して、干渉を確実に低減できる。
また、本実施の形態では、ユーザ端末20に対して干渉を与える無線基地局10(拡張プリコーディングを実行する無線基地局10)が、当該ユーザ端末20に対するユーザデータを送信しない場合(例えば、式(8)においてdk,j=0)について説明した。しかし、本実施の形態は、これに限定されず、バックホールにおいて複数の無線基地局10の間においてユーザデータを伝送できる場合、無線基地局10は、自局が干渉を与えているユーザ端末20の接続先である他の無線基地局10からユーザデータを受信し、当該ユーザ端末20に対してユーザデータを送信してもよい。つまり、この際、ユーザ端末20に対して干渉を与える無線基地局10は、当該ユーザ端末20向けのユーザデータに対する干渉を除去するための拡張プリコーディング行列を生成する。この処理により、ユーザ端末20に対して、干渉を抑圧しつつ、スループットを向上できる。
また、本実施の形態では、拡張プリコーディング実行の判断基準として、SIRを用いる場合について説明した。しかし、拡張プリコーディング実行の判断基準は、これに限定されず、サイト間における干渉状況を表す他のパラメータでもよい。
(実施の形態2)
実施の形態1では、複数のサイトの影響を受ける空間に対する空間分離処理について説明した。これに対して、本実施の形態では、複数のサイトの影響を受ける空間において複数の無線基地局からビームを照射してデータ伝送を行う場合について説明する。
実施の形態1では、複数のサイトの影響を受ける空間に対する空間分離処理について説明した。これに対して、本実施の形態では、複数のサイトの影響を受ける空間において複数の無線基地局からビームを照射してデータ伝送を行う場合について説明する。
なお、本実施の形態に係る無線基地局及びユーザ端末は、実施の形態1に係る無線基地局10及びユーザ端末20と基本構成が共通するので、図2及び図3を援用して説明する。
図5は、本実施の形態に係る無線通信システムの構成例を示す。
本実施の形態に係る無線通信システムは、実施の形態1と同様、複数の無線基地局10(例えば、Massive MIMO基地局)、及び、少なくとも1つのユーザ端末20を備える。各ユーザ端末20は、少なくとも1つの無線基地局10に接続している。図5に示す一例では、ユーザ端末20-1~20-3は無線基地局10Aに接続し、ユーザ端末20-3~20-5は無線基地局10Bに接続している。すなわち、ユーザ端末20-3は、無線基地局10A及び無線基地局10Bの双方に接続している。
図6は、本実施の形態に係る無線基地局10の動作を示すフローチャートである。なお、図6において、実施の形態1(図4)と同様の処理には同一の符号を付し、その説明を省略する。
無線基地局10(接続先選択部104及びウェイト選択部106)は、BFウェイト(W)の全ての候補に対応するディスカバリ信号を送信した後(ST103:Yes)、各ユーザ端末20からフィードバックされた候補ウェイト情報(受信電力又はSNR)を用いて、各ユーザ端末20の接続先の無線基地局10、及び、BFウェイトを選択する(ST201)。この際、無線基地局10は、複数の無線基地局10に対する候補ウェイト情報を合わせた最大受信電力規範に基づいて、ユーザ端末20の接続先及びBFウェイトを選択する。例えば、各無線基地局10は、他の無線基地局10に対する候補ウェイト情報を、基地局間通信部105を介して他の無線基地局10から受信してもよい。
例えば、第i番の無線基地局10は、式(9)に従って選択された第jopt番のユーザ端末20の接続先を第i番の無線基地局10に決定する。また、第i番の無線基地局10は、式(9)に従って選択されたBFウェイト(wi,xopt)を、次式(10)に示すように、第i番の無線基地局10の第l番のBFウェイトwi,lに決定する(例えば、l=1~L)。
すなわち、各無線基地局10は、受信電力が最大となるビーム(ユーザ端末(j)及びBFウェイト(x)の組み合わせ)をL個選択する。無線基地局10は、例えば、受信電力の高い順にL個のBFウェイトと、各BFウェイトに対応するユーザ端末20を重複しないように選択してもよい。例えば、第i番の無線基地局10のL個のBFウェイトから構成されるBFウェイトベクトルWi
optは次式(11)で表される。
この結果、複数の無線基地局10において選択されたユーザ端末20は、当該複数の無線基地局10からビームが照射され、データが送信されることになる。
例えば、図5に示す無線通信システムの一例では、無線基地局10Aは、無線基地局10Aに接続するユーザ端末20としてユーザ端末20-1~20-3を選択し、無線基地局10Bは、無線基地局10Bに接続するユーザ端末20としてユーザ端末20-3~20-5を選択する。つまり、ユーザ端末20-3は、無線基地局10A及び無線基地局10Bの双方に接続される。
次に、無線基地局10(判定部107)は、ST201において選択されたユーザ端末20の接続先に基づいて、連携プリコーディングを実行するか否かを判断する(ST202)。
ここで、連携プリコーディングは、複数の無線基地局10に接続するユーザ端末20に対して、当該ユーザ端末20と接続している複数の無線基地局10の各々と、当該ユーザ端末20との間のチャネル推定値で構成される等価チャネル行列を適用して実行されるプリコーディングである。以下、ユーザ端末20と接続している複数の無線基地局10の各々と、当該ユーザ端末20との間のチャネル推定値を用いて生成されるプリコーディング行列を「連携プリコーディング行列」と呼ぶ。
具体的には、無線基地局10は、自局に接続しているユーザ端末20が他の無線基地局10にも接続している場合、当該ユーザ端末20に対して連携プリコーディングを実行すると判断する。例えば、各無線基地局10は、他の無線基地局10に接続しているユーザ端末20を示す情報を、基地局間通信部105を介して他の無線基地局10から受信してもよい。例えば、図5では、無線基地局10A及び無線基地局10Bは、ユーザ端末20-3が双方に接続されているので、連携プリコーディングを実行すると判断する。
無線基地局10(プリコーディング行列生成部108)は、連携プリコーディングを実行すると判断した場合(ST202:Yes)、ST108においてユーザ端末20からフィードバックされたチャネル情報HWを用いて、連携プリコーディング行列を生成する(ST203)。
具体的には、無線基地局10は、プリコーディング行列のうち、ユーザ間干渉抑圧のためのプリコーディング行列(PIUI)を、無線基地局10と、無線基地局10に接続するユーザ端末20との間のチャネル情報に基づいて算出する。
一方、無線基地局10は、プリコーディング行列のうち、ストリーム間干渉抑圧のためのプリコーディング行列(PISI)を、ユーザ端末20と、当該ユーザ端末20が接続している複数の無線基地局10(自局を含む)との間のチャネル情報に基づいて算出する。
例えば、第j番のユーザ端末20が、第i#1番の無線基地局10及び第i#2番の無線基地局10に接続している場合、第i#1番の無線基地局10及び第i#2番の無線基地局10の各々は、次式(12)に示すチャネル情報H~
i
cmpを用いて、第j番のユーザ端末20に対する連携プリコーディング行列(PISI)を生成する。
式(12)において、H~
i#1,jは、第i#1番の無線基地局10と第j番のユーザ端末20との間のチャネル情報を示し、H~
i#2,jは、第i#2番の無線基地局10と第j番のユーザ端末20との間のチャネル情報を示す。
すなわち、各無線基地局10は、自局を含めて複数の無線基地局10と接続しているユーザ端末20に対して、当該複数の無線基地局10の各々からユーザ端末20へ送信される複数のストリーム間の干渉を除去するための連携プリコーディング行列(PISI)を生成する。
例えば、図5では、無線基地局10A及び無線基地局10Bの各々は、無線基地局10Aとユーザ端末20-3との間のチャネル情報と、無線基地局10Bとユーザ端末20-3との間のチャネル情報と、を含むチャネル情報(例えば、式(12))を用いて連携プリコーディング行列(PISI)を生成する。つまり、図5に示すように、無線基地局10Aにおいてプリコーディング(空間分離)する際の対象となるグループ(空間分離グループA)及び無線基地局10Bの空間分離グループBの双方にユーザ端末20-3が含まれる。
そして、図5に示す無線基地局10A及び無線基地局10Bは、ユーザ端末20-3に対してプリコーディング行列(PIUI,PISI)が乗算されたデータを送信する。ユーザ端末20-3は、受信したストリームの信号に対して、ポストコーディング行列(BISI)を乗算して、ストリームの信号(データ)を復調する。連携プリコーディング行列(PISI)及びポストコーディング行列(BISI)が乗算されたデータでは、無線基地局10Aからのストリーム及び無線基地局10Bからのストリームの全てに対して、ストリーム間干渉が抑圧されることになる。
この処理により、ユーザ端末20-3は、複数の無線基地局10A,10Bからのストリーム間干渉を抑圧しつつ、複数の無線基地局10A,10Bからビーム照射されたデータを効率良く受信できる。
<本実施の形態の効果>
このように、本実施の形態では、複数の無線基地局10にユーザ端末20が接続される場合、複数の無線基地局10における連携プリコーディングは、複数の無線基地局10から送信される複数のストリーム間の干渉を除去するために適用される。
このように、本実施の形態では、複数の無線基地局10にユーザ端末20が接続される場合、複数の無線基地局10における連携プリコーディングは、複数の無線基地局10から送信される複数のストリーム間の干渉を除去するために適用される。
つまり、1つのユーザ端末20に対して複数の無線基地局10が協調してビームを照射し、データを伝送する場合に、複数の無線基地局10からそれぞれ送信されるストリーム間の干渉を考慮して、ユーザ端末20に対する空間分離処理が行われるので、ストリーム間の干渉を低減できる。
よって、本実施の形態によれば、マルチサイト環境において適切にビーム制御できるので、MU-MIMO伝送の効率を向上できる。
<実施の形態2の変形例>
なお、本実施の形態において、BFウェイト選択又はユーザ端末20の接続先選択時の基準として用いられるパラメータは、実施の形態1と同様、SNR又は受信電力に限定されず、BFウェイト候補が乗算されたディスカバリ信号を用いて測定される何らかの候補ウェイト情報(例えば、受信相関等)であればよい。
なお、本実施の形態において、BFウェイト選択又はユーザ端末20の接続先選択時の基準として用いられるパラメータは、実施の形態1と同様、SNR又は受信電力に限定されず、BFウェイト候補が乗算されたディスカバリ信号を用いて測定される何らかの候補ウェイト情報(例えば、受信相関等)であればよい。
また、本実施の形態では、無線基地局10からユーザ端末20へ送信されるディスカバリ信号を用いて候補ウェイト情報(例えば、BFウェイト候補の受信電力)を測定する場合について説明した。しかし、本実施の形態は、これに限定されず、例えば、ユーザ端末20から無線基地局10へ参照信号を送信し、無線基地局10が受信した参照信号を用いて、BFウェイトの選択、ユーザ端末20の接続先選択、又は、プリコーディング行列の生成を行ってもよい。この処理により、ディスカバリ信号、候補ウェイト情報及びチャネル情報(HW)のフィードバックが不要となる。よって、チャネル推定処理における無線リソースの使用を削減できる。
また、本実施の形態では、式(9)に示すように複数の無線基地局10について最大受信電力規範に基づいてユーザ端末20の接続先選択及びBFウェイトの選択が行われる場合について説明した。しかし、本実施の形態は、これに限定されず、他の方法を用いてユーザ端末20の接続先選択及びBFウェイトの選択が行われてもよい。また、本実施の形態では、最大受信電力規範に限定されず、最大受信対干渉電力比規範等の他の規範に基づいてユーザ端末20の接続先選択及びBFウェイトの選択が行われてもよい。
また、本実施の形態では、複数の無線基地局10は、1つのユーザ端末20に対して送信するストリームとして、異なるデータストリームを多重して送信する処理により伝送速度の向上を図ってもよく、同一ストリームをダイバーシチ送信する処理により品質向上を図ってもよい。
また、本実施の形態では、複数の無線基地局10に接続しているユーザ端末20に対して、当該ユーザ端末20内のストリーム間干渉を考慮した連携プリコーディング行列(PISI)を生成する場合について説明した。しかし、本実施の形態は、これに限定されず、複数の無線基地局10に接続しているユーザ端末20に対して、プリコーディング行列全体、つまり、PISIに加えてユーザ間干渉を考慮したプリコーディング行列(PIUI)について、当該ユーザ端末20と、複数の無線基地局10の各々との間のチャネル情報(例えば、式(12)を参照)を用いて生成してもよい。
(実施の形態3)
本実施の形態では、複数のサイト間のデータ伝送量の偏りに応じたビームフォーミング制御について説明する。
本実施の形態では、複数のサイト間のデータ伝送量の偏りに応じたビームフォーミング制御について説明する。
なお、本実施の形態に係る無線基地局及びユーザ端末は、実施の形態1に係る無線基地局10及びユーザ端末20と基本構成が共通するので、図2及び図3を援用して説明する。
図7A及び図7Bは、本実施の形態に係る無線通信システムの構成例を示す。
本実施の形態に係る無線通信システムは、複数の無線基地局10(例えば、Massive MIMO基地局)、少なくとも1つのユーザ端末20、及び、制御局30を備える。各ユーザ端末20は、少なくとも1つの無線基地局10に接続している。図5に示す一例では、ユーザ端末20-1~20-3は無線基地局10Aに接続し、ユーザ端末20-4~20-5は無線基地局10Bに接続している。
また、制御局30は、複数の無線基地局10に接続している。制御局30は、各無線基地局10のデータ伝送量をモニタリングする。そして、制御局30は、例えば、データ伝送量が所定の閾値T未満である無線基地局10(つまり、割当可能なリソースが余っている無線基地局10)に対して、周辺サイトへビームの形成を指示する。なお、制御局30と同様の処理は、複数の無線基地局10の何れかによって行われてもよい。
例えば、図7Aでは、制御局30は、無線基地局10Bのデータ伝送量が閾値T未満であることを検出する。そこで、制御局30は、無線基地局10Bに対して、隣接する無線基地局10Aのサイトへビームを形成させるために、BFウェイトの変更を指示する(詳細は後述する)。例えば、ここでは、制御局30は、無線基地局10Bに対して、無線基地局10Aに接続しているユーザ端末20-3に対するビームの形成を指示する。
この処理により、図7Bに示すように、無線基地局10Bは、無線基地局10Aに接続されたユーザ端末20-3に対するビームを形成する。つまり、ユーザ端末20-3は、無線基地局10A及び無線基地局10Bの双方に接続される。なお、無線基地局10A及び無線基地局10Bにおけるユーザ端末20-3に対するビーム制御は、例えば、実施の形態2において説明した処理と同様であるので、ここでは詳細な説明を省略する。
この処理により、無線基地局10Bにおいて余っているリソースを有効に利用し、システムスループットを向上できる。
図8は、本実施の形態に係る無線基地局10及び制御局30の動作を示すフローチャートである。なお、図8において、実施の形態1(図4)又は実施の形態2(図6)と同様の処理には同一の符号を付し、その説明を省略する。
図8において、各無線基地局10は、まず、各無線基地局10が形成するサイト内においてビームフォーミング処理及びプリコーディング処理を行う。すなわち、各無線基地局10は、ST105においてBFウェイトを選択し、ST112においてプリコーディング行列を算出して、当該無線基地局10に接続しているユーザ端末20と通信を行っている(ST113)。
無線基地局10がユーザ端末20に対して送信するデータ(情報)を全て送信した場合(ST301:Yes)、図8に示す処理が終了する。
一方、無線基地局10がユーザ端末20に対して送信するデータ(情報)を全て送信していない場合(ST301:No)、制御局30は、複数の無線基地局10の伝送量をモニタリングする(ST302)。そして、制御局30は、モニタリングしたデータ伝送量が閾値T未満となる無線基地局10が存在するか否かを判断する(ST303)。
制御局30は、データ伝送量が閾値T以上(ST303:No)である無線基地局10に対して、何も行わずに、データ伝送量のモニタリング(ST302、ST303)を継続する。つまり、データ伝送量が閾値T以上である無線基地局10は、ST111、ST112、ST113の処理を引き続き行う。
一方、制御局30は、データ伝送量が閾値T未満(ST303:Yes)である無線基地局10に対して、周辺サイトへビームを形成させるためにBFウェイトの変更を指示する。BFウェイト変更指示を受けた無線基地局10は、BFウェイトを変更する(ST304)。そして、無線基地局10は、例えば、実施の形態2と同様、連携プリコーディング行列を生成し(ST203)、ユーザ端末20に対してデータ(情報)を送信する(ST113)。
以下、第i番の無線基地局10がBFウェイトを変更する方法の一例について説明する。
具体的には、第i番の無線基地局10は、現在選択しているL本(l=1~L)のビームのうち、次式(13)に示す最小受信電力規範に従って第ldel番のビームを選択する。第i番の無線基地局10は、例えば、式(13)に従って選択されたLInd本のビームを削除してもよい。
そして、第i番の無線基地局10は、次式(14)に示す最大受信電力規範に従って、周辺サイト(ここでは、第k番の無線基地局10が形成するサイト)に形成する第ladd番のビームを選択する。第i番の無線基地局10は、例えば、式(14)に従って選択されたLInd本のビームを新たに形成してもよい。
つまり、第i番の無線基地局10は、自局のサイト内のデータ伝送に対する削除の影響が少ないビーム(ここでは、式(13)に示す最小受信電力規範によって選択されるビーム)を削除する。また、第i番の無線基地局10は、周辺サイト内のデータ伝送に対して効率が高いビーム(ここでは、式(14)に示す最大受信電力規範によって選択されるビーム)に変更する。
そして、第i番の無線基地局10及び第k番の無線基地局10は、例えば、実施の形態2と同様にして、第j番のユーザ端末20に対して、双方の無線基地局10とユーザ端末20-3との間のチャネル情報(例えば、式(12))を用いて連携プリコーディング行列(PISI)を生成する(図8に示すST203)。
なお、第i番の無線基地局10がビームを形成するサイトは、第i番の無線基地局10が形成するサイトの周辺サイトのうち、データ伝送量がより大きいサイト(つまり、リソースをより必要とするサイト)が選択されてもよく、他の規範に基づいて選択されるサイトでもよい。また、例えば、第i番の無線基地局10が第j番のユーザ端末20へ送信するデータは、第k番の無線基地局10から基地局間通信部105(バックホール)を介して転送されてもよい。
こうすることで、複数の無線基地局10は、リソースの使用状況(例えば、データ伝送量の偏り)に応じて、自局の使用可能なリソース(ビーム)を、他の無線基地局10に接続されているユーザ端末20へ割り当てられるので、全サイトのリソースを効率良く使用してビーム制御できる。
なお、図8に示すフローチャートにおいて、ST302においてデータ伝送量の判定を行った後(及びBFウェイトの変更後)に、参照信号の送信(ST111又はST305)へ遷移する場合について説明した。しかし、無線基地局10は、ST302においてデータ伝送量の判定を行った後に、ディスカバリ信号の送信(ST101)へ遷移し、ST304においてディスカバリ信号を用いて測定された候補ウェイト情報に基づいてBFウェイトを変更してもよい。この処理により、無線基地局10は、現時点のチャネル状況を反映した候補ウェイト情報(SNR又は受信電力)を用いてBFウェイトを変更できるので、BFウェイトの削除及び選択を精度良くできる。
<本実施の形態の効果>
このように、本実施の形態では、複数の無線基地局10のうち、データ伝送量が閾値T未満の無線基地局10のビームフォーミング(BFウェイトの変更)処理により、当該無線基地局10以外の他の無線基地局10に接続しているユーザ端末20に対するビームが形成される。すなわち、データ伝送量が閾値T未満の無線基地局10のビームフォーミング(BFウェイトの変更)処理により、当該無線基地局10と、当該無線基地局10以外の他の無線基地局10に接続しているユーザ端末とが接続される。
このように、本実施の形態では、複数の無線基地局10のうち、データ伝送量が閾値T未満の無線基地局10のビームフォーミング(BFウェイトの変更)処理により、当該無線基地局10以外の他の無線基地局10に接続しているユーザ端末20に対するビームが形成される。すなわち、データ伝送量が閾値T未満の無線基地局10のビームフォーミング(BFウェイトの変更)処理により、当該無線基地局10と、当該無線基地局10以外の他の無線基地局10に接続しているユーザ端末とが接続される。
つまり、複数の無線基地局10において、データ伝送量が少ない無線基地局10が、データ伝送量が多い無線基地局10が形成するサイトへ協調してビームを照射し、データを伝送する。この処理により、マルチサイト環境において全サイトにおいて適切にビーム制御できるので、MU-MIMO伝送の効率を向上できる。
また、複数の無線基地局10において1つのユーザ端末20へのデータ伝送を協調して行う場合、実施の形態2と同様、複数の無線基地局10からそれぞれ送信されるストリーム間の干渉を考慮して、ユーザ端末20に対する空間分離処理が行われるので、ストリーム間の干渉を低減できる。
<実施の形態3の変形例>
なお、本実施の形態では、制御局30がモニタリングする各無線基地局10の使用リソース量として、データ伝送量を用いる場合について説明した。しかし、本実施の形態では、無線基地局10の使用リソース量としては、データ伝送量に限定されず、各無線基地局10におけるリソースの使用状況、又は、無線基地局10間の使用リソース量の偏り、等を表す他のパラメータでもよい。他のパラメータとして、例えば、無線基地局10が送信しているストリーム数でもよく、無線基地局10間のデータ伝送量の差でもよい。
なお、本実施の形態では、制御局30がモニタリングする各無線基地局10の使用リソース量として、データ伝送量を用いる場合について説明した。しかし、本実施の形態では、無線基地局10の使用リソース量としては、データ伝送量に限定されず、各無線基地局10におけるリソースの使用状況、又は、無線基地局10間の使用リソース量の偏り、等を表す他のパラメータでもよい。他のパラメータとして、例えば、無線基地局10が送信しているストリーム数でもよく、無線基地局10間のデータ伝送量の差でもよい。
また、本実施の形態では、式(13)、式(14)に示すようにBFウェイトの変更(削除及び追加)の際に受信電力に基づく規範を用いる場合について説明した。しかし、本実施の形態は、これに限定されず、例えば、受信対干渉電力に基づく他の規範を用いてBFウェイトが変更されてもよい。
以上、各実施の形態について説明した。
なお、上記実施の形態では、参照信号を用いてチャネル推定を行う場合について説明した。しかし、チャネル推定において、参照信号を使用しないでチャネル推定値(チャネル情報)を取得してもよい。すなわち、チャネル推定では、BFウェイトを含む等価チャネル行列(HW)を示すチャネル情報が取得されればよい。
また、上記実施の形態では、図1、図5、図7に示すように、2つの無線基地局10における動作について説明した。しかし、これに限定されず、3つ以上の無線基地局10を含むマルチサイト環境においても上記実施の形態と同様の動作が可能である。
(ハードウェア構成)
なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
例えば、本発明の一実施の形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図9は、本発明の一実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、一以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、一以上のチップで実装されてもよい。
無線基地局10及びユーザ端末20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、又は、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のディスカバリ信号生成部101、候補ウェイト乗算部102、参照信号生成部103、接続先選択部104、ウェイト選択部106、判定部107、プリコーディング行列生成部108、データ生成部109、プリコーディング部110、ビームフォーミング部111、候補ウェイト情報測定部203、チャネル推定部204、ポストコーディング行列生成部205、ポストコーディング部206、データ受信部207などは、プロセッサ1001で実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、無線基地局10及びユーザ端末20を構成する少なくとも一部の機能ブロックは、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の通信部112、202、アンテナ113、201、基地局間通信部105などは、通信装置1004で実現されてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(情報の通知、シグナリング)
また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
(適応システム)
本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
(処理手順等)
本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
(基地局の操作)
本明細書において基地局(無線基地局)によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局および/または基地局以外の他のネットワークノード(例えば、MME(Mobility Management Entity)またはS-GW(Serving Gateway)などが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。
本明細書において基地局(無線基地局)によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局および/または基地局以外の他のネットワークノード(例えば、MME(Mobility Management Entity)またはS-GW(Serving Gateway)などが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。
(入出力の方向)
情報及び信号等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)に出力され得る。複数のネットワークノードを介して入出力されてもよい。
情報及び信号等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)に出力され得る。複数のネットワークノードを介して入出力されてもよい。
(入出力された情報等の扱い)
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置に送信されてもよい。
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置に送信されてもよい。
(判定方法)
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
(ソフトウェア)
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
(情報、信号)
本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。
(「システム」、「ネットワーク」)
本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
(パラメータ、チャネルの名称)
また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
(基地局)
基地局(無線基地局)は、1つまたは複数(例えば、3つ)の(セクタとも呼ばれる)セルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」、「eNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
基地局(無線基地局)は、1つまたは複数(例えば、3つ)の(セクタとも呼ばれる)セルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」、「eNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
(端末)
ユーザ端末は、当業者によって、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、UE(User Equipment)、またはいくつかの他の適切な用語で呼ばれる場合もある。
ユーザ端末は、当業者によって、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、UE(User Equipment)、またはいくつかの他の適切な用語で呼ばれる場合もある。
(用語の意味、解釈)
本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。
参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。また、補正用RSは、TRS(Tracking RS)、PC-RS(Phase Compensation RS)、PTRS(Phase Tracking RS)、Additional RSと呼ばれてもよい。また、復調用RS及び補正用RSは、それぞれに対応する別の呼び方であってもよい。また、復調用RS及び補正用RSは同じ名称(例えば復調RS)で規定されてもよい。
本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
上記の各装置の構成における「部」を、「手段」、「回路」、「デバイス」等に置き換えてもよい。
「含む(including)」、「含んでいる(comprising)」、およびそれらの変形が、本明細書あるいは請求の範囲で使用されている限り、これら用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
無線フレームは時間領域において1つまたは複数のフレームで構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレーム、タイムユニット等と呼ばれてもよい。サブフレームは更に時間領域において1つまたは複数のスロットで構成されてもよい。スロットはさらに時間領域において1つまたは複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier-Frequency Division Multiple Access)シンボル等)で構成されてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット、およびシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット、およびシンボルは、それぞれに対応する別の呼び方であってもよい。
例えば、LTEシステムでは、基地局が各移動局に無線リソース(各移動局において使用することが可能な周波数帯域幅、送信電力等)を割り当てるスケジューリングを行う。スケジューリングの最小時間単位をTTI(Transmission Time Interval)と呼んでもよいし、1ミニスロットをTTIと呼んでもよい。
例えば、1サブフレームをTTIと呼んでもよいし、複数の連続したサブフレームをTTIと呼んでもよいし、1スロットをTTIと呼んでもよい。
リソースユニットは、時間領域および周波数領域のリソース割当単位であり、周波数領域では1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。また、リソースユニットの時間領域では、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つまたは複数のリソースユニットで構成されてもよい。また、リソースユニットは、リソースブロック(RB:Resource Block)、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペア、スケジューリングユニット、周波数ユニット、サブバンドと呼ばれてもよい。また、リソースユニットは、1つ又は複数のREで構成されてもよい。例えば、1REは、リソース割当単位となるリソースユニットより小さい単位のリソース(例えば、最小のリソース単位)であればよく、REという呼称に限定されない。
上述した無線フレームの構造は例示に過ぎず、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、サブフレームに含まれるミニスロットの数、スロットに含まれるシンボルおよびリソースブロックの数、および、リソースブロックに含まれるサブキャリアの数は様々に変更することができる。
本開示の全体において、例えば、英語でのa, an, 及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
(態様のバリエーション等)
本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
本特許出願は2017年2月15日に出願した日本国特許出願第2017-026241号に基づきその優先権を主張するものであり、日本国特許出願第2017-026241号の全内容を本願に援用する。
本発明の一態様は、移動通信システムに有用である。
10 無線基地局
20 ユーザ端末
30 制御局
101 ディスカバリ信号生成部
102 候補ウェイト乗算部
103 参照信号生成部
104 接続先選択部
105 基地局間通信部
106 ウェイト選択部
107 判定部
108 プリコーディング行列生成部
109 データ生成部
110 プリコーディング部
111 ビームフォーミング部
112,202 通信部
113,201 アンテナ
191 符号化部
192 変調部
203 候補ウェイト情報測定部
204 チャネル推定部
205 ポストコーディング行列生成部
206 ポストコーディング部
207 データ受信部
271 復調部
272 復号部
20 ユーザ端末
30 制御局
101 ディスカバリ信号生成部
102 候補ウェイト乗算部
103 参照信号生成部
104 接続先選択部
105 基地局間通信部
106 ウェイト選択部
107 判定部
108 プリコーディング行列生成部
109 データ生成部
110 プリコーディング部
111 ビームフォーミング部
112,202 通信部
113,201 アンテナ
191 符号化部
192 変調部
203 候補ウェイト情報測定部
204 チャネル推定部
205 ポストコーディング行列生成部
206 ポストコーディング部
207 データ受信部
271 復調部
272 復号部
Claims (5)
- 複数の無線基地局と少なくとも1つのユーザ端末との間においてMIMO伝送を行う無線通信システムにおいて、
前記無線基地局と前記ユーザ端末との間のチャネルを示すチャネル情報に基づくプリコーディングをデータ信号に適用するプリコーディング部と、
前記プリコーディングされたデータ信号を送信する通信部と、
を具備し、
前記複数の無線基地局のうち第1の無線基地局における前記プリコーディングは、少なくとも、前記第1の無線基地局と、前記第1の無線基地局以外の第2の無線基地局に接続している第1のユーザ端末との間のチャネルを含む前記チャネル情報に基づいて適用される、
無線基地局。 - 前記複数の無線基地局のうち第1の無線基地局における前記プリコーディングは、前記第1の無線基地局と前記第1の無線基地局に接続している第2のユーザ端末との間のチャネルと、前記第1の無線基地局と前記第1のユーザ端末との間のチャネルとを含む前記チャネル情報に基づいて適用される、
請求項1に記載の無線基地局。 - 前記第1のユーザ端末が前記第1の無線基地局及び前記第2の無線基地局の双方に接続される場合、
前記第1のユーザ端末に対する前記プリコーディングは、前記第1の無線基地局と前記第1のユーザ端末との間のチャネルと、前記第2の無線基地局と前記第1のユーザ端末との間のチャネルと、を含む前記チャネル情報に基づいて適用される、
請求項1に記載の無線基地局。 - 前記複数の無線基地局のうち、使用するリソース量が閾値未満の無線基地局のビームフォーミングにより、当該無線基地局以外の他の無線基地局に接続している前記ユーザ端末に対するビームが形成される、
請求項1~3の何れかに記載の無線基地局。 - 複数の無線基地局と少なくとも1つのユーザ端末との間においてMIMO伝送を行う無線通信システムにおいて、
前記無線基地局と前記ユーザ端末との間のチャネルを示すチャネル情報に基づくプリコーディングをデータ信号に適用し、
前記プリコーディングされたデータ信号を送信し、
前記複数の無線基地局のうち第1の無線基地局における前記プリコーディングは、少なくとも、前記第1の無線基地局と、前記第1の無線基地局以外の第2の無線基地局に接続している第1のユーザ端末との間のチャネルを含む前記チャネル情報に基づいて適用される、
無線通信方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/486,041 US11387872B2 (en) | 2017-02-15 | 2017-11-20 | Wireless base station and wireless communication method |
EP17896429.2A EP3584953A4 (en) | 2017-02-15 | 2017-11-20 | WIRELESS BASE STATION, AND WIRELESS COMMUNICATION PROCESS |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017026241A JP2018133700A (ja) | 2017-02-15 | 2017-02-15 | 無線基地局及び無線通信方法 |
JP2017-026241 | 2017-02-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018150666A1 true WO2018150666A1 (ja) | 2018-08-23 |
Family
ID=63170146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/041584 WO2018150666A1 (ja) | 2017-02-15 | 2017-11-20 | 無線基地局及び無線通信方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11387872B2 (ja) |
EP (1) | EP3584953A4 (ja) |
JP (1) | JP2018133700A (ja) |
WO (1) | WO2018150666A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7010168B2 (ja) * | 2018-07-31 | 2022-01-26 | 日本電信電話株式会社 | 無線通信システム、通信方法および送信局装置 |
US12166549B2 (en) | 2019-08-20 | 2024-12-10 | Nippon Telegraph And Telephone Corporation | Wireless communication system, wireless communication method and receiving station device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011530893A (ja) * | 2008-08-07 | 2011-12-22 | クゥアルコム・インコーポレイテッド | 無線通信システムにおいてマルチユーザ及びシングルユーザmimoをサポートするための方法及び装置 |
JP2013009024A (ja) * | 2011-06-22 | 2013-01-10 | Kddi Corp | 無線通信システム、基地局制御装置、及び基地局制御方法 |
JP2017026241A (ja) | 2015-07-24 | 2017-02-02 | 株式会社ノーリツ | エネルギー量表示装置、並びに、給湯システム |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9077413B2 (en) * | 2010-06-15 | 2015-07-07 | Futurewei Technologies, Inc. | System and method for transparent coordinated beam-forming |
JP5462144B2 (ja) * | 2010-12-10 | 2014-04-02 | 株式会社Nttドコモ | 無線中継局装置、無線基地局装置及び無線通信方法 |
US8768393B2 (en) * | 2011-06-30 | 2014-07-01 | Intel Corporation | Method and apparatus for interference mitigation in wireless systems |
EP2677825B1 (en) * | 2012-06-21 | 2014-08-06 | Alcatel Lucent | Apparatus, Base Station Transceiver, Method, and Computer Program for assigning a Radio Resource |
JP2014154916A (ja) * | 2013-02-05 | 2014-08-25 | Sharp Corp | 基地局装置、端末装置、通信システム、送信方法及び通信方法 |
TW201438419A (zh) * | 2013-03-06 | 2014-10-01 | Interdigital Patent Holdings | 無線網路中干擾管理及干擾對齊 |
JP5449602B2 (ja) * | 2013-07-09 | 2014-03-19 | 京セラ株式会社 | 無線通信システム及び無線端末 |
US9872242B2 (en) * | 2014-01-31 | 2018-01-16 | Qualcomm Incorporated | Joint transmission of CSI-RS for channel state feedback and transmission point selection |
US20160277942A1 (en) * | 2015-03-17 | 2016-09-22 | Qualcomm Incorporated | Load-aware channel state reference signal transmission |
CN104780032B (zh) * | 2015-04-14 | 2018-01-26 | 大唐移动通信设备有限公司 | 一种自适应的下行CoMP传输方法和装置 |
-
2017
- 2017-02-15 JP JP2017026241A patent/JP2018133700A/ja active Pending
- 2017-11-20 EP EP17896429.2A patent/EP3584953A4/en active Pending
- 2017-11-20 US US16/486,041 patent/US11387872B2/en active Active
- 2017-11-20 WO PCT/JP2017/041584 patent/WO2018150666A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011530893A (ja) * | 2008-08-07 | 2011-12-22 | クゥアルコム・インコーポレイテッド | 無線通信システムにおいてマルチユーザ及びシングルユーザmimoをサポートするための方法及び装置 |
JP2013009024A (ja) * | 2011-06-22 | 2013-01-10 | Kddi Corp | 無線通信システム、基地局制御装置、及び基地局制御方法 |
JP2017026241A (ja) | 2015-07-24 | 2017-02-02 | 株式会社ノーリツ | エネルギー量表示装置、並びに、給湯システム |
Non-Patent Citations (2)
Title |
---|
See also references of EP3584953A4 |
T.OBARA ET AL.: "Joint Processing of Analog Fixed Beamforming and CSI-based Precoding for Super High Bit Rate Massive MIMO Transmission Using Higher Frequency Bands", IEICE TRANSACTIONS ON COMMUNICATIONS, vol. E98-B, no. 8, August 2015 (2015-08-01) |
Also Published As
Publication number | Publication date |
---|---|
US11387872B2 (en) | 2022-07-12 |
JP2018133700A (ja) | 2018-08-23 |
EP3584953A4 (en) | 2021-03-03 |
EP3584953A1 (en) | 2019-12-25 |
US20200052745A1 (en) | 2020-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6441970B2 (ja) | ユーザ端末及び無線通信方法 | |
JP7005190B2 (ja) | 信号処理装置、無線装置、フロントホールマルチプレクサ、ビーム制御方法、および信号合成方法 | |
US10917160B2 (en) | Wireless base station, and wireless communication method | |
WO2017135302A1 (ja) | 基地局、ユーザ装置、プリコーディング行列適用方法、及びプリコーディング行列取得方法 | |
WO2017135295A1 (ja) | 基地局、ユーザ装置、電力比適用方法、及びチャネル状態情報送信方法 | |
WO2018159226A1 (ja) | 無線基地局およびスケジューリング方法 | |
WO2018150666A1 (ja) | 無線基地局及び無線通信方法 | |
WO2018154937A1 (ja) | 無線基地局及び無線通信方法 | |
WO2020003475A1 (ja) | ユーザ端末及び無線通信方法 | |
US10985810B2 (en) | User terminal, wireless base station, and wireless communication method | |
JP7141183B2 (ja) | 基地局及び基地局による通信制御方法 | |
JP6967358B2 (ja) | 無線基地局および送信電力制御方法 | |
WO2019182134A1 (ja) | 基地局及び送信方法 | |
WO2018159242A1 (ja) | 無線端末、送信電力制御方法、および無線基地局 | |
JPWO2018147060A1 (ja) | 基地局及びユーザ装置 | |
JP7296489B2 (ja) | 通信ユニット、フロントホールマルチプレクサ、通信システム、及び通信方法 | |
JP7390283B2 (ja) | 基地局及び基地局による送信方法 | |
WO2019203244A1 (ja) | 基地局装置、及び、通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17896429 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017896429 Country of ref document: EP Effective date: 20190916 |