[go: up one dir, main page]

WO2018150753A1 - Geopolymer composition, and mortar and concrete using same - Google Patents

Geopolymer composition, and mortar and concrete using same Download PDF

Info

Publication number
WO2018150753A1
WO2018150753A1 PCT/JP2017/047066 JP2017047066W WO2018150753A1 WO 2018150753 A1 WO2018150753 A1 WO 2018150753A1 JP 2017047066 W JP2017047066 W JP 2017047066W WO 2018150753 A1 WO2018150753 A1 WO 2018150753A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
geopolymer composition
fly ash
mass
expansion material
Prior art date
Application number
PCT/JP2017/047066
Other languages
French (fr)
Japanese (ja)
Inventor
将貴 宇城
盛岡 実
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to CN201780082859.3A priority Critical patent/CN110167901A/en
Priority to AU2017399309A priority patent/AU2017399309B2/en
Priority to MYPI2019004514A priority patent/MY196681A/en
Publication of WO2018150753A1 publication Critical patent/WO2018150753A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/04Alkali metal or ammonium silicate cements ; Alkyl silicate cements; Silica sol cements; Soluble silicate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators or shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators or shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a geopolymer composition, and mortar and concrete using the same.
  • fly ash cement which is a mixture of Portland cement and fly ash, which is industrial waste
  • Class A exceeding 5% and exceeding 10%
  • B type over 10% and 20% or less
  • C type over 20% and 30% or less
  • Fly ash is fine ash recovered from exhaust gas by a dust collector among coal ash by-produced during coal combustion in a coal-fired power plant or the like. Fly ash is mainly composed of silica (SiO 2 ) and alumina (Al 2 O 3 ), and is standardized to JIS A6201 based on particle size and flow value. Has been used.
  • the main raw material in the mixed cement is Portland cement, and it has been practically problematic to increase the mixing ratio of fly ash in the fly ash cement to more than 30% from the viewpoint of strength.
  • Fly ash is overwhelmingly used as a raw material for concrete. Therefore, there has been a demand for a technique for producing concrete that does not use cement and uses a large amount of fly ash.
  • the geopolymer method is a technique for making artificial rock by joining powders called active fillers using a condensation polymer of silicic acid as a binder. Generally, it is produced by reacting an active filler powder with an alkali silicate solution (water glass or the like).
  • Non-Patent Document 2 a geopolymer cured by a condensation polymer has a large drying shrinkage due to the dissipation of water compared to general concrete cured by a hydration reaction. There has been a problem that cracks are likely to occur.
  • Patent Document 3 also describes that a highly durable geopolymer can be obtained by using an active filler containing various calcium compounds, but the effect of the type of calcium compound on strength development and length change. Is not listed.
  • Patent Document 4 Although it has been shown that the addition of calcium aluminates as a curing accelerator improves the strength of the geopolymer, there is no description of the results of the change in length.
  • Patent Document 5 by using a geopolymer additive comprising a composition containing a salt of a specific aliphatic oxycarboxylic acid, curing excellent in workability and appearance without impairing fluidity and strength development. Although it shows that the body can be obtained, the effect on the length change is not described.
  • Patent Document 6 mentions an expansion material as a stimulant, and although it shows an effect of improving strength development and neutralization resistance, it shows a reduction in drying shrinkage and an improvement in aesthetics. It has not been.
  • a pozzolanic material such as fly ash is contained in the hydraulic composition in an amount of 15% by mass or less, and cannot be used in large quantities with fly ash as a main component.
  • the present invention has an object to provide a geopolymer composition that exhibits good strength development and expandability when used as a cured product, has a small drying shrinkage, and has a good appearance when used as a cured product.
  • a geopolymer composition comprising an active filler containing fly ash and blast furnace slag, an alkaline solution containing sodium silicate and / or sodium hydroxide, and a cement mineral expansion material.
  • a content of the fly ash is 70 to 90 parts by mass with respect to a total of 100 parts by mass of the fly ash and the blast furnace slag.
  • the cement mineral expansion material is an ettringite expansion material, a lime expansion material, or a lime / ettringite expansion material.
  • the cement mineral expansive material includes free lime, Auin and anhydrous gypsum, the free lime is 30 to 70 parts by mass, the Auin is 5 to 30 parts by mass, and the anhydrous gypsum is 15 to 40 parts by mass.
  • a mortar comprising the geopolymer composition according to any one of [1] to [5] above and a fine aggregate.
  • a concrete comprising the geopolymer composition according to any one of the above [1] to [5], a fine aggregate, and a coarse aggregate.
  • the present invention it is possible to provide a geopolymer composition that exhibits good strength development and expandability when used as a cured product, has small drying shrinkage, and has a good appearance when used as a cured product.
  • Geopolymer composition An embodiment of the geopolymer composition of the present invention includes an active filler containing fly ash and blast furnace slag, an alkaline solution containing sodium silicate and / or sodium hydroxide, and a cement mineral-based expansion material. Including.
  • expansion occurs with improvement in strength due to crystals caused by an expansion material such as calcium hydroxide and ettringite produced by a hydration reaction of a cement mineral expansion material.
  • an expansion material such as calcium hydroxide and ettringite produced by a hydration reaction of a cement mineral expansion material.
  • active filler As the active filler contained in the geopolymer composition of the present embodiment, fly ash and blast furnace slag are used. If one of these is not contained, sufficient strength may not be exhibited or sufficient workability may not be obtained.
  • Fly ash used for the active filler is fine ash recovered from the exhaust gas by a dust collector among coal ash produced as a by-product during coal combustion in a coal-fired power plant or the like.
  • Silica (SiO 2 ) and alumina (Al 2 O 3 ) are the main components, and in JIS A 6201, they are specified as I to IV types based on the particle size and flow value.
  • the specifications of fly ash are not particularly limited, but type I and type II are preferred because of their fine particle size and high reactivity.
  • the blast furnace slag used for the active filler is by-produced when producing pig iron in the blast furnace and conforms to JIS A 6206 mainly composed of CaO, SiO 2 , Al 2 O 3 , and MgO.
  • the content of fly ash with respect to 100 parts by mass in total of fly ash and blast furnace slag is preferably 70 to 90 parts by mass, and more preferably 75 to 85 parts.
  • 70 parts or more fluidity can be maintained well and sufficient workability can be easily obtained.
  • 90 parts or less strength development property and expansion amount can be further increased.
  • active fillers such as municipal waste incineration ash molten slag other than fly ash and blast furnace slag, sewage sludge molten slag, rice husk ash, clinker ass, fluidized bed coal ash, silica fume, metakaolin, and volcanic ash may be included as active fillers. Good.
  • the total amount of these other active fillers is preferably 30% or less and more preferably 15% or less in the total amount of the active fillers.
  • cement mineral expansion material Commercially available products can be used as the cement mineral expansion material, including ettringite, ettringite / lime, lime, etc. Ettringite / lime expansion materials have better strength development, aesthetics, and expansibility. It is preferable from the viewpoint.
  • free lime, Auin and anhydrous gypsum are the main constituent compound compositions, and 10 to 80 parts (preferably 30 to 70 parts) of free lime out of 100 parts in total of free lime, Auin and anhydrous gypsum, Auin Is preferably 15 to 45 parts (preferably 5 to 30 parts) and 10 to 50 parts (preferably 15 to 40 parts) of anhydrous gypsum, and / or a mixture of heat treated products.
  • the blending ratio of the cement mineral expansion material with respect to 100 parts of the active filler is preferably 5 to 15 parts, more preferably 8 to 12 parts. When it is 5 parts or more, it is possible to increase the strength development and the amount of expansion, and when it is 15 parts or less, the expansion does not become excessive, and sufficient workability is easily obtained.
  • the alkaline solution is a solution in which the active filler, the expansion material and the aggregate are kneaded.
  • the alkaline solution include sodium silicate solution (water glass), potassium silicate solution, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution and the like. These 1 type (s) or 2 or more types can be used. In particular, the combined use of a sodium silicate solution and an aqueous sodium hydroxide solution is preferred.
  • various types of admixtures and admixtures can be added to the geopolymer composition in the present embodiment as long as the effects of the present invention are not impaired.
  • examples thereof include a fluidizing agent, a shrinkage reducing agent, a rust preventive agent, a waterproofing material, a setting retarder, an antifoaming agent, a dust reducing agent, a pigment, and calcium carbonate powder.
  • the geopolymer composition in the present embodiment is prepared, for example, by mixing predetermined amounts of active filler, alkaline solution, cement-based expansion material, and various additives simultaneously or sequentially as necessary, and kneading with a kneader as appropriate. It can.
  • the kneading apparatus is not particularly limited, and examples thereof include a forced biaxial mixer used for kneading concrete.
  • the geopolymer composition in this embodiment may exist as a part of raw material.
  • An embodiment according to the mortar of the present invention includes the geopolymer composition of the present invention and a fine aggregate. Moreover, embodiment which concerns on the concrete of this invention contains the geopolymer composition of this invention, a fine aggregate, and a coarse aggregate.
  • the various aggregates are not particularly limited as long as they are generally used for ordinary mortar and concrete. Examples include natural aggregates such as river gravel, mountain gravel, sea gravel, crushed stone, and volcanic gravel lightweight aggregates, and artificial aggregates such as slag aggregates, artificial lightweight aggregates, and heavy aggregates.
  • the blending amount of the fine aggregate in the preparation of the mortar is preferably 50 to 500 parts, more preferably 100 to 300 parts with respect to 100 parts of the geopolymer composition.
  • the blending amount of the fine aggregate and the coarse aggregate at the time of producing the concrete is preferably 200 to 1000 parts, more preferably 300 to 600 parts with respect to 100 parts of the geopolymer composition.
  • the cured product of mortar or concrete of this embodiment exhibits various characteristics resulting from the geopolymer composition of the present invention during the curing, and the appearance after curing is almost entirely white. Do not have a good aesthetic.
  • Powder composed of active filler and expansion material (see Experimental Examples 1 to 3 for composition and ratio): 600 parts by weight, sodium silicate solution diluted twice with water: 100 parts by weight, aqueous sodium hydroxide solution: 100 parts by weight, water : 100 parts by mass, fine aggregate: 1350 parts by mass were prepared in a room at 20 ° C., sealed up to 1 day of age, and demolded.
  • Example 1 With respect to 100 parts of the active filler having the composition shown in Table 2, the expansion material D was 10 parts, and the mortar was prepared according to (Production of Geopolymer Mortar), and the compression strength and the rate of change in length were measured. For comparison, mortars prepared without using blast furnace slag or fly ash or without using an expanding material were also evaluated.
  • the use of the geopolymer composition included in the present invention consisting of fly ash and blast furnace slag, an expansion material, and an alkaline solution provides excellent strength development and aesthetics, expandability, and drying. It can be seen that a mortar using the geopolymer composition with reduced shrinkage is obtained.
  • Example 2 80 parts of fly ash in 100 parts of active filler was used.
  • Mortar was prepared according to (Production of geopolymer mortar) with 10 parts of the expansion material shown in Table 3 with respect to 100 parts of active filler, and the compressive strength and the rate of change in length were measured.
  • Example 3 80 parts of fly ash in 100 parts of active filler was used.
  • Mortar was prepared according to (Production of geopolymer mortar) as a ratio shown in Table 4 with respect to 100 parts of the active filler, and the compressive strength and the rate of change in length were measured.
  • the mortar using the geopolymer composition which is excellent in strength development and aesthetics, has expansibility, and has reduced drying shrinkage by making the amount of the expansion material used relative to the active filler a predetermined ratio. It turns out that it is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Provided is a geopolymer composition comprising: an active filler containing fly ash and a blast furnace slag; an alkaline solution containing a sodium silicate and/or a sodium hydroxide; and a cement mineral-based expanding material.

Description

ジオポリマー組成物、並びにそれを用いたモルタル及びコンクリートGeopolymer composition, and mortar and concrete using the same

 本発明は、ジオポリマー組成物、並びにそれを用いたモルタル及びコンクリートに関する。 The present invention relates to a geopolymer composition, and mortar and concrete using the same.

 近年、二酸化炭素(CO)排出による地球温暖化が急速に進行し、社会問題化している。その中で、コンクリートは建設材料の一つとして使用され、その生産量は膨大なものである。コンクリートの主原料であるセメントの世界総生産量は28.4億トンであり(2008年)、セメントの製造においては、石灰石の化学分解と熱エネルギーの使用によって、大量の二酸化炭素が排出されている。日本では1トンのセメントを製造すると、0.725トンの二酸化炭素が発生し、セメント産業の二酸化炭素排出量は全国の総排出量の4%を占める(2008年)。したがって、コンクリートの製造においてセメントの使用量を削減することは、地球温暖化問題の解決及び持続可能な社会の構築に対して、極めて重要な取り組みであるといえる。 In recent years, global warming due to carbon dioxide (CO 2 ) emission has rapidly progressed and has become a social problem. Among them, concrete is used as a construction material, and its production volume is enormous. The world's total production of cement, the main raw material for concrete, is 2.84 billion tons (2008), and in the production of cement, a large amount of carbon dioxide is emitted by chemical decomposition of limestone and the use of thermal energy. Yes. If 1 ton of cement is produced in Japan, 0.725 ton of carbon dioxide is generated, and the carbon dioxide emissions of the cement industry account for 4% of the total nationwide emissions (2008). Therefore, it can be said that reducing the amount of cement used in the production of concrete is an extremely important approach to solving the global warming problem and building a sustainable society.

 そのため、CO排出量の低減と産業廃棄物の有効活用を目的に、ポルトランドセメントに産業廃棄物であるフライアッシュを混合したフライアッシュセメントが、JIS R 5213においてA種(5%を超え10%以下)、B種(10%を超え20%以下)、C種(20%を超え30%以下)と規格され、生産されている。 Therefore, for the purpose of reducing CO 2 emissions and effective utilization of industrial waste, fly ash cement, which is a mixture of Portland cement and fly ash, which is industrial waste, is Class A (exceeding 5% and exceeding 10%) in JIS R 5213. ), B type (over 10% and 20% or less), and C type (over 20% and 30% or less).

 フライアッシュは、石炭火力発電所等で石炭燃焼の際に副生する石炭灰のうち、集塵器で排ガス中から回収される微細な灰である。フライアッシュは、シリカ(SiO)、アルミナ(Al)を主成分とし、JIS A6201において、粒度やフロー値に基づきI~IV種に規格化され、セメントの混合材やコンクリートの混和材に利用されている。 Fly ash is fine ash recovered from exhaust gas by a dust collector among coal ash by-produced during coal combustion in a coal-fired power plant or the like. Fly ash is mainly composed of silica (SiO 2 ) and alumina (Al 2 O 3 ), and is standardized to JIS A6201 based on particle size and flow value. Has been used.

 しかしながら、混合セメントにおける主原料はポルトランドセメントであり、従来の技術では、強度の観点からフライアッシュセメント中のフライアッシュ混合比率を30%よりも大きくすることは実用的に問題があった。また、フライアッシュはコンクリートの原料としての利用が圧倒的に多い。そこで、セメントを使用せず、フライアッシュの使用量の多いコンクリートを製造する技術が望まれてきた。 However, the main raw material in the mixed cement is Portland cement, and it has been practically problematic to increase the mixing ratio of fly ash in the fly ash cement to more than 30% from the viewpoint of strength. Fly ash is overwhelmingly used as a raw material for concrete. Therefore, there has been a demand for a technique for producing concrete that does not use cement and uses a large amount of fly ash.

 かかる状況から、CO排出量の低減と産業廃棄物の有効活用を目的に、ポルトランドセメントを使わずにコンクリートを作製する技術として、ケイ酸の縮重合体をバインダーとして利用し、粉末同士を接合して人工の岩石を製造する技術であるジオポリマー法が注目されている。 Under such circumstances, as a technology for producing concrete without using Portland cement for the purpose of reducing CO 2 emissions and effective utilization of industrial waste, a polycondensation polymer of silicic acid is used as a binder and the powders are joined together. Thus, the geopolymer method, which is a technique for producing artificial rocks, has attracted attention.

 ジオポリマー法は、珪酸の縮重合体をバインダーとして利用し、活性フィラーと呼ばれる粉末同士を接合して人工の岩石を造る技術である。一般には、活性フィラー粉末と珪酸アルカリ溶液(水ガラス等)を反応させることによって作製される。 The geopolymer method is a technique for making artificial rock by joining powders called active fillers using a condensation polymer of silicic acid as a binder. Generally, it is produced by reacting an active filler powder with an alkali silicate solution (water glass or the like).

 この活性フィラーにフライアッシュを用いたジオポリマーの作製技術がいくつか提案されているが、ジオポリマーは強度発現性が悪く、一般的には蒸気養生を必須とするものであった(例えば、特許文献1参照)。そこで、強度発現性や緻密性を高めるために、高炉スラグとフライアッシュを混合使用する検討例がいくつか報告されている(例えば、特許文献2、特許文献3、非特許文献1、及び非特許文献2参照)。また、フライアッシュ、アルカリ溶液及び骨材を含有するジオポリマー組成物に、カルシウムアルミネート類を有効成分として含有する硬化促進剤が添加されるジオポリマー組成物の硬化促進方法(例えば、特許文献4参照)や、特定の添加剤により流動性や強度発現性を損なうことなく、作業性や美観を改善する方法(例えば、特許文献5参照)が提案されている。また、特許文献6のように多量の高炉スラグに、石灰石微粉末を組み合わせ、刺激剤としてカルシウムイオンを溶出する速度が異なる二種類以上の刺激剤を使用する水硬性組成物が提案されている。 Several geopolymer production techniques using fly ash for this active filler have been proposed, but the geopolymer has poor strength development and generally requires steam curing (for example, patents) Reference 1). In view of this, in order to enhance strength development and denseness, several examples of studies using a mixture of blast furnace slag and fly ash have been reported (for example, Patent Document 2, Patent Document 3, Non-Patent Document 1, and Non-Patent Document). Reference 2). Moreover, the hardening acceleration | stimulation method of the geopolymer composition by which the hardening accelerator which contains calcium aluminate as an active ingredient is added to the geopolymer composition containing fly ash, an alkaline solution, and an aggregate (for example, patent document 4). And a method for improving workability and aesthetics without impairing fluidity and strength development with a specific additive (for example, see Patent Document 5). Moreover, the hydraulic composition which uses 2 or more types of irritation | stimulation agents from which the speed | rate which elutes calcium ion as a irritation | stimulation agent is combined as a irritation | stimulation agent in combination with a lot of blast furnace slag like patent document 6 is proposed.

特開平8-301639号公報JP-A-8-301039 特開平8-301638号公報JP-A-8-301638 特開2015-157731号公報JP2015-157731A 特開2016-33104号公報JP 2016-33104 A 特開2016-79046号公報JP 2016-79046 A 特開2014-148434号公報JP 2014-148434 A

一宮一夫ほか,フライアッシュベースのジオポリマーの配合ならびに高温抵抗性,コンクリート工学年次論文集,Vol.36,No.1,2014Kazuo Ichinomiya et al., Fly ash-based geopolymer formulation and high temperature resistance, concrete engineering annual papers, Vol. 36, no. 1,2014 河尻留奈ほか、ジオポリマーの基礎物性と構造利用に関する基礎的研究、コンクリート工学年次論文集,Vol.33,No.1,2011Rina Kawajiri et al., Basic research on geophysical properties and structural utilization of geopolymers, Annual report on concrete engineering, Vol. 33, no. 1,2111

 しかしながら、非特許文献2にあるように縮重合体によって硬化するジオポリマーは、水和反応によって硬化する一般のコンクリートと比較して水の散逸による乾燥収縮が大きく、コンクリートの劣化因子の進入経路となるひび割れが発生しやすいという課題があった。 However, as described in Non-Patent Document 2, a geopolymer cured by a condensation polymer has a large drying shrinkage due to the dissipation of water compared to general concrete cured by a hydration reaction. There has been a problem that cracks are likely to occur.

 特許文献3においても、種々のカルシウム化合物を含んだ活性フィラーを用いることで高耐久なジオポリマーが得られると記載されているものの、カルシウム化合物の種類が強度発現性や長さ変化に与える影響については記載されていない。 Patent Document 3 also describes that a highly durable geopolymer can be obtained by using an active filler containing various calcium compounds, but the effect of the type of calcium compound on strength development and length change. Is not listed.

 特許文献4においても、カルシウムアルミネート類を硬化促進剤として添加することでジオポリマーの強度発現性が向上することが示されているものの、長さ変化についての実施結果は記載が無い。 Even in Patent Document 4, although it has been shown that the addition of calcium aluminates as a curing accelerator improves the strength of the geopolymer, there is no description of the results of the change in length.

 特許文献5においても、特定の脂肪族オキシカルボン酸の塩を含む組成物からなるジオポリマー用添加剤を用いることで、流動性や強度発現性を損なうことなく、作業性や外観に優れた硬化体が得られることを示しているものの、長さ変化に与える影響については記載されていない。 Also in Patent Document 5, by using a geopolymer additive comprising a composition containing a salt of a specific aliphatic oxycarboxylic acid, curing excellent in workability and appearance without impairing fluidity and strength development. Although it shows that the body can be obtained, the effect on the length change is not described.

 また、特許文献6では、刺激剤として膨張材が挙げられているが、強度発現や中性化抵抗性を改善する効果が示されているものの、乾燥収縮量の低減や美観の改善については示されていない。加えて、フライアッシュのようなポゾラン物質は水硬性組成物中に15質量%以下含有することとなっており、フライアッシュを主成分として大量に使用することはできない。また、刺激剤により高炉スラグの水和を促進する発明であり、縮重合により硬化するジオポリマーとは異なるものである。 In addition, Patent Document 6 mentions an expansion material as a stimulant, and although it shows an effect of improving strength development and neutralization resistance, it shows a reduction in drying shrinkage and an improvement in aesthetics. It has not been. In addition, a pozzolanic material such as fly ash is contained in the hydraulic composition in an amount of 15% by mass or less, and cannot be used in large quantities with fly ash as a main component. Moreover, it is an invention that promotes hydration of blast furnace slag with a stimulant, and is different from a geopolymer that is cured by condensation polymerization.

 上述したように、強度発現性を改善したジオポリマー技術については、種々の技術が提案されているが、強度発現性とともに、乾燥収縮量の低減や美観の改善(白華の抑制)、膨張性に優れたジオポリマー組成物が示されていないのが現状である。 As described above, various technologies have been proposed for the geopolymer technology with improved strength development. However, along with strength development, reduction of drying shrinkage, improvement of aesthetics (inhibition of white flower), and expandability. The present situation is that no excellent geopolymer composition is shown.

 以上から、本発明は、硬化体とする際に、良好な強度発現性と膨張性を示し、乾燥収縮が小さく、硬化体とした際の美観も良好なジオポリマー組成物を提供することを目的とする。 From the above, the present invention has an object to provide a geopolymer composition that exhibits good strength development and expandability when used as a cured product, has a small drying shrinkage, and has a good appearance when used as a cured product. And

 すなわち、本発明は下記のとおりである。
[1] フライアッシュ及び高炉スラグを含む活性フィラーと、珪酸ナトリウム及び/又は水酸化ナトリウムを含むアルカリ溶液と、セメント鉱物系膨張材と、を含むジオポリマー組成物。
[2] 前記フライアッシュ及び前記高炉スラグの合計100質量部に対する前記フライアッシュの含有量が70~90質量部である[1]に記載のジオポリマー組成物。
[3] 前記セメント鉱物系膨張材が、エトリンガイト系膨張材、石灰系膨張材、石灰・エトリンガイト系膨張材である[1]又は[2]に記載のジオポリマー組成物。
[4] 前記セメント鉱物系膨張材が、遊離石灰、アウイン及び無水セッコウを含み、前記遊離石灰が30~70質量部、前記アウインが5~30質量部、前記無水セッコウが15~40質量部である[1]~[3]のいずれかに記載のジオポリマー組成物。
[5] 前記活性フィラー100質量部に対する前記セメント鉱物系膨張材の含有量が5~15質量部である[1]~[4]のいずれかに記載のジオポリマー組成物。
[6] 上記[1]~[5]のいずれかに記載のジオポリマー組成物と、細骨材とを含むモルタル。
[7] 上記[1]~[5]のいずれかに記載のジオポリマー組成物と、細骨材と、粗骨材とを含むコンクリート。
That is, the present invention is as follows.
[1] A geopolymer composition comprising an active filler containing fly ash and blast furnace slag, an alkaline solution containing sodium silicate and / or sodium hydroxide, and a cement mineral expansion material.
[2] The geopolymer composition according to [1], wherein a content of the fly ash is 70 to 90 parts by mass with respect to a total of 100 parts by mass of the fly ash and the blast furnace slag.
[3] The geopolymer composition according to [1] or [2], wherein the cement mineral expansion material is an ettringite expansion material, a lime expansion material, or a lime / ettringite expansion material.
[4] The cement mineral expansive material includes free lime, Auin and anhydrous gypsum, the free lime is 30 to 70 parts by mass, the Auin is 5 to 30 parts by mass, and the anhydrous gypsum is 15 to 40 parts by mass. The geopolymer composition according to any one of [1] to [3].
[5] The geopolymer composition according to any one of [1] to [4], wherein a content of the cement mineral expansion material is 5 to 15 parts by mass with respect to 100 parts by mass of the active filler.
[6] A mortar comprising the geopolymer composition according to any one of [1] to [5] above and a fine aggregate.
[7] A concrete comprising the geopolymer composition according to any one of the above [1] to [5], a fine aggregate, and a coarse aggregate.

 本発明によれば、硬化体とする際に、良好な強度発現性と膨張性を示し、乾燥収縮が小さく、硬化体とした際の美観も良好なジオポリマー組成物を提供することができる。 According to the present invention, it is possible to provide a geopolymer composition that exhibits good strength development and expandability when used as a cured product, has small drying shrinkage, and has a good appearance when used as a cured product.

 以下、本発明の実施形態を詳細に説明するが、本発明は当該実施形態に限定されるものではない。なお、本明細書における「部」や「%」は特に規定しない限り質量基準とする。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to the embodiments. In the present specification, “part” and “%” are based on mass unless otherwise specified.

[1]ジオポリマー組成物
 本発明のジオポリマー組成物に係る実施形態は、フライアッシュ及び高炉スラグを含む活性フィラーと、珪酸ナトリウム及び/又は水酸化ナトリウムを含むアルカリ溶液と、セメント鉱物系膨張材とを含む。
[1] Geopolymer composition An embodiment of the geopolymer composition of the present invention includes an active filler containing fly ash and blast furnace slag, an alkaline solution containing sodium silicate and / or sodium hydroxide, and a cement mineral-based expansion material. Including.

 本実施形態のジオポリマー組成物においては、セメント鉱物系膨張材の水和反応により生成する水酸化カルシウムやエトリンガイトのような膨張材に起因する結晶により、強度の向上とともに膨張が起こる。この結果、良好な強度発現、膨張性、乾燥収縮の低減といった効果が得られると考えられ、最終的に、優れた耐久性が得られる。また、本実施形態に係るセメント鉱物系膨張材と活性フィラーとの複合的な効果により、良好な美観(白華の少ない外観)が得られると考えられる。 In the geopolymer composition of the present embodiment, expansion occurs with improvement in strength due to crystals caused by an expansion material such as calcium hydroxide and ettringite produced by a hydration reaction of a cement mineral expansion material. As a result, it is considered that effects such as good strength development, expandability, and reduction in drying shrinkage are obtained, and finally excellent durability is obtained. Moreover, it is thought that a favorable aesthetic appearance (appearance with less white flower) can be obtained due to the combined effect of the cement mineral expansion material and the active filler according to the present embodiment.

(活性フィラー)
 本実施形態のジオポリマー組成物に含まれる活性フィラーとしては、フライアッシュ及び高炉スラグが用いられる。これら一方が含有されていないと、十分な強度を発現させることができない場合や、十分な作業性が得られない場合がある。
(Active filler)
As the active filler contained in the geopolymer composition of the present embodiment, fly ash and blast furnace slag are used. If one of these is not contained, sufficient strength may not be exhibited or sufficient workability may not be obtained.

 活性フィラーに用いるフライアッシュは、石炭火力発電所等で石炭燃焼の際に副生する石炭灰のうち、集塵器で排ガス中から回収される微細な灰である。シリカ(SiO)、アルミナ(Al)を主成分とし、JIS A 6201において、粒度やフロー値に基づきI~IV種に規格されている。フライアッシュの規格は特に限定されるものではないが、その粒度が細かく反応性に富むI種、II種が好ましい。 Fly ash used for the active filler is fine ash recovered from the exhaust gas by a dust collector among coal ash produced as a by-product during coal combustion in a coal-fired power plant or the like. Silica (SiO 2 ) and alumina (Al 2 O 3 ) are the main components, and in JIS A 6201, they are specified as I to IV types based on the particle size and flow value. The specifications of fly ash are not particularly limited, but type I and type II are preferred because of their fine particle size and high reactivity.

 活性フィラーに用いる高炉スラグは、高炉で銑鉄を生成する際に副生し、CaO、SiO、Al、MgOを主成分としたJIS A 6206に準ずるものである。 The blast furnace slag used for the active filler is by-produced when producing pig iron in the blast furnace and conforms to JIS A 6206 mainly composed of CaO, SiO 2 , Al 2 O 3 , and MgO.

 フライアッシュ及び高炉スラグの合計100質量部に対するフライアッシュの含有量は70~90質量部であることが好ましく、75~85部であることがより好ましい。70部以上であることで、流動性を良好に維持でき十分な作業性が得られやすい。また、フライアッシュの有効利用拡大という観点からも好ましい。90部以下であることで、強度発現性や膨張量をより大きくすることができる。 The content of fly ash with respect to 100 parts by mass in total of fly ash and blast furnace slag is preferably 70 to 90 parts by mass, and more preferably 75 to 85 parts. By being 70 parts or more, fluidity can be maintained well and sufficient workability can be easily obtained. Moreover, it is preferable also from a viewpoint of effective utilization expansion of fly ash. By being 90 parts or less, strength development property and expansion amount can be further increased.

 活性フィラーとして、フライアッシュ及び高炉スラグ以外の都市ゴミ焼却灰溶融スラグ、下水汚泥溶融スラグ、もみ殻灰、クリンカアッシ、流動床石炭灰、シリカフューム、メタカオリン、火山灰といったその他の活性フィラーを含有してもよい。これらその他の活性フィラーの合計量は、活性フィラー全量中、30%以下であることが好ましく、15%以下であることがより好ましい。 Other active fillers such as municipal waste incineration ash molten slag other than fly ash and blast furnace slag, sewage sludge molten slag, rice husk ash, clinker ass, fluidized bed coal ash, silica fume, metakaolin, and volcanic ash may be included as active fillers. Good. The total amount of these other active fillers is preferably 30% or less and more preferably 15% or less in the total amount of the active fillers.

(セメント鉱物系膨張材)
 セメント鉱物系膨張材には、市販品が使用可能であり、エトリンガイト系、エトリンガイト・石灰系、石灰系等が挙げられ、エトリンガイト・石灰系膨張材がより良好な強度発現性と美観、膨張性の観点から好ましい。具体的には、遊離石灰、アウイン及び無水セッコウを主要な構成化合物組成とし、遊離石灰、アウイン及び無水セッコウの合計100部中、遊離石灰が10~80部(好ましくは30~70部)、アウインが15~45部(好ましくは5~30部)、無水セッコウが10~50部(好ましくは15~40部)である熱処理物、及び/又は熱処理物の混合物が好ましい。
(Cement mineral expansion material)
Commercially available products can be used as the cement mineral expansion material, including ettringite, ettringite / lime, lime, etc. Ettringite / lime expansion materials have better strength development, aesthetics, and expansibility. It is preferable from the viewpoint. Specifically, free lime, Auin and anhydrous gypsum are the main constituent compound compositions, and 10 to 80 parts (preferably 30 to 70 parts) of free lime out of 100 parts in total of free lime, Auin and anhydrous gypsum, Auin Is preferably 15 to 45 parts (preferably 5 to 30 parts) and 10 to 50 parts (preferably 15 to 40 parts) of anhydrous gypsum, and / or a mixture of heat treated products.

 活性フィラー100部に対するセメント鉱物系膨張材の配合割合は、5~15部であることが好ましく、8~12部であることがより好ましい。5部以上であることで強度発現性や膨張量を大きくすることが可能で、15部以下とすることで膨張が過大となりすぎず、十分な作業性が得られやすい。 The blending ratio of the cement mineral expansion material with respect to 100 parts of the active filler is preferably 5 to 15 parts, more preferably 8 to 12 parts. When it is 5 parts or more, it is possible to increase the strength development and the amount of expansion, and when it is 15 parts or less, the expansion does not become excessive, and sufficient workability is easily obtained.

(アルカリ溶液)
 アルカリ溶液は、活性フィラー、膨張材及び骨材を練り混ぜる溶液である。アルカリ溶液としては、珪酸ナトリウム溶液(水ガラス)、珪酸カリウム溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液等が挙げられる。これら1種または2種以上を用いることができる。特に、珪酸ナトリウム溶液と水酸化ナトリウム水溶液の併用が好ましい。
(Alkaline solution)
The alkaline solution is a solution in which the active filler, the expansion material and the aggregate are kneaded. Examples of the alkaline solution include sodium silicate solution (water glass), potassium silicate solution, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution and the like. These 1 type (s) or 2 or more types can be used. In particular, the combined use of a sodium silicate solution and an aqueous sodium hydroxide solution is preferred.

 本実施形態におけるジオポリマー組成物には、上記以外に、本発明の作用効果を損ねない範囲において、各種の混和剤や混和材を添加することができる。例えば、流動化剤、収縮低減剤、防錆剤、防水材、凝結遅延剤、消泡剤、粉塵低減剤、顔料、炭酸カルシウム粉末等が挙げられる。 In addition to the above, various types of admixtures and admixtures can be added to the geopolymer composition in the present embodiment as long as the effects of the present invention are not impaired. Examples thereof include a fluidizing agent, a shrinkage reducing agent, a rust preventive agent, a waterproofing material, a setting retarder, an antifoaming agent, a dust reducing agent, a pigment, and calcium carbonate powder.

 本実施形態におけるジオポリマー組成物は、例えば、活性フィラー、アルカリ溶液、及びセメント系膨張材、必要に応じて各種添加剤を同時若しくは順次所定量配合し、適宜、混練装置によって混練することによって作製できる。混練装置は特に限定されるものではなく、例えば、コンクリートを混練するために使用される強制二軸ミキサ等が挙げられる。
 また、モルタルやコンクリートを作製する際に、原料の一部として本実施形態におけるジオポリマー組成物が存在する場合もある。
The geopolymer composition in the present embodiment is prepared, for example, by mixing predetermined amounts of active filler, alkaline solution, cement-based expansion material, and various additives simultaneously or sequentially as necessary, and kneading with a kneader as appropriate. it can. The kneading apparatus is not particularly limited, and examples thereof include a forced biaxial mixer used for kneading concrete.
Moreover, when producing mortar and concrete, the geopolymer composition in this embodiment may exist as a part of raw material.

[2]モルタル及びコンクリート
 本発明のモルタルに係る実施形態は、本発明のジオポリマー組成物と、細骨材とを含む。また、本発明のコンクリートに係る実施形態は、本発明のジオポリマー組成物と、細骨材と、粗骨材とを含む。各種骨材としては、通常のモルタル、コンクリートに一般的に使用されるものであれば特に制限されるものではない。例えば、川砂利、山砂利、海砂利、砕石、火山礫軽量骨材等の天然骨材、スラグ骨材、人工軽量骨材、重量骨材等の人工骨材が挙げられる。
[2] Mortar and Concrete An embodiment according to the mortar of the present invention includes the geopolymer composition of the present invention and a fine aggregate. Moreover, embodiment which concerns on the concrete of this invention contains the geopolymer composition of this invention, a fine aggregate, and a coarse aggregate. The various aggregates are not particularly limited as long as they are generally used for ordinary mortar and concrete. Examples include natural aggregates such as river gravel, mountain gravel, sea gravel, crushed stone, and volcanic gravel lightweight aggregates, and artificial aggregates such as slag aggregates, artificial lightweight aggregates, and heavy aggregates.

 モルタル作製の際の細骨材の配合量は、ジオポリマー組成物100部に対して、50~500部であることが好ましく、100~300部であることがより好ましい。 The blending amount of the fine aggregate in the preparation of the mortar is preferably 50 to 500 parts, more preferably 100 to 300 parts with respect to 100 parts of the geopolymer composition.

 コンクリート作製の際の細骨材及び粗骨材の配合量は、ジオポリマー組成物100部に対して、200~1000部であることが好ましく、300~600部であることがより好ましい。 The blending amount of the fine aggregate and the coarse aggregate at the time of producing the concrete is preferably 200 to 1000 parts, more preferably 300 to 600 parts with respect to 100 parts of the geopolymer composition.

 本実施形態のモルタル又はコンクリートの硬化体は、その硬化の際に、本発明のジオポリマー組成物に起因する各種特性が発揮され、かつ、硬化後の外観としては、表面に白華がほとんど発生しない良好な美観を有する。 The cured product of mortar or concrete of this embodiment exhibits various characteristics resulting from the geopolymer composition of the present invention during the curing, and the appearance after curing is almost entirely white. Do not have a good aesthetic.

 以下、実施例、比較例を挙げてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the contents will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these.

(原材料)
(1)フライアッシュ:フライアッシュII種(JIS A 6201に準拠)
(2)高炉スラグ:高炉スラグ微粉末6000(JIS A 6206に準拠)
(3)珪酸ナトリウム溶液:珪酸ナトリウム溶液1号、試薬(関東化学(株)社製)
(4)水酸化ナトリウム水溶液:48%水酸化ナトリウム水溶液、試薬(関東化学(株)
社製)
(5)骨材:細骨材(JIS砂)
(6)水:水道水
(7)CaO原料:炭酸カルシウム(石灰石微粉末)、100メッシュ、市販品
(8)Al原料:ボーキサイト、90μm篩通過率100%、市販品
(9)CaSO原料:二水石膏、市販品
(raw materials)
(1) Fly ash: Fly ash type II (conforms to JIS A 6201)
(2) Blast furnace slag: blast furnace slag fine powder 6000 (conforms to JIS A 6206)
(3) Sodium silicate solution: Sodium silicate solution No. 1, reagent (manufactured by Kanto Chemical Co., Inc.)
(4) Aqueous sodium hydroxide solution: 48% aqueous sodium hydroxide solution, reagent (Kanto Chemical Co., Inc.)
(Made by company)
(5) Aggregate: Fine aggregate (JIS sand)
(6) Water: Tap water (7) CaO raw material: Calcium carbonate (limestone fine powder), 100 mesh, commercial product (8) Al 2 O 3 raw material: bauxite, 90 μm sieve passage rate 100%, commercial product (9) CaSO 4 raw materials: dihydrate gypsum, commercial product

(膨張材A~G)
 上記(原材料)に記載のCaO原料、Al原料、及びCaSO原料を、熱処理後の鉱物が下記表1に示す所定の組成となるように混合した。この混合物を、電気炉を用いて1350℃で0.5時間熱処理し、得られた熱処理物をボールミルでブレーン比表面積3,500cm/gに粉砕し、膨張材A~Gを調製した。
 なお、ブレーン比表面積は、JIS R 5201「セメント物理試験方法」に準拠して、ブレーン空気透過装置を使用して測定した値である。
(Expandable materials A to G)
The CaO raw material, the Al 2 O 3 raw material, and the CaSO 4 raw material described in the above (raw materials) were mixed so that the mineral after the heat treatment had a predetermined composition shown in Table 1 below. This mixture was heat-treated at 1350 ° C. for 0.5 hours using an electric furnace, and the obtained heat-treated product was pulverized with a ball mill to a Blaine specific surface area of 3,500 cm 2 / g to prepare expansion materials A to G.
In addition, a brane specific surface area is the value measured using the brane air permeation | transmission apparatus based on JISR5201 "cement physical test method".

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

(ジオポリマーモルタルの作製)
 活性フィラーと膨張材からなる粉末(組成及び比率は実験例1~3参照):600質量部、水で2倍に希釈した珪酸ナトリウム溶液:100質量部、水酸化ナトリウム水溶液:100質量部、水:100質量部、細骨材:1350質量部を配合したものを、20℃の室内で調製して、材齢1日まで封緘養生を行い脱型した。
(Preparation of geopolymer mortar)
Powder composed of active filler and expansion material (see Experimental Examples 1 to 3 for composition and ratio): 600 parts by weight, sodium silicate solution diluted twice with water: 100 parts by weight, aqueous sodium hydroxide solution: 100 parts by weight, water : 100 parts by mass, fine aggregate: 1350 parts by mass were prepared in a room at 20 ° C., sealed up to 1 day of age, and demolded.

(測定方法)
(1)圧縮強度:JIS R 5201に準じて4×4×16cmの試験体を作製し、所定の材齢まで水中養生を行い、圧縮強度を測定した。
(Measuring method)
(1) Compressive strength: A 4 × 4 × 16 cm specimen was prepared according to JIS R 5201, cured under water until a predetermined age, and the compressive strength was measured.

(2)長さ変化率、乾燥収縮率:JIS A 6202 付属書1 膨張材のモルタルによる膨張性試験方法に準じ材齢養生7日までの水中(20℃)養生における長さ変化率を測定し、材齢7日を基長として、7日から28日までの気中(20℃、60RH%)養生における乾燥収縮率を測定した。
 なお、長さ変化率及び乾燥収縮率における「-」は収縮を表し、符合のないものは膨張を表す。
 また、長さ変化率が同一条件において大きいほど、所定の膨張量を得るための膨張材添加量が少なくなるため経済的であり、好ましい。さらに、乾燥収縮はひび割れ発生の原因となるため、収縮量は小さいことが好ましい。
(2) Length change rate, drying shrinkage rate: JIS A 6202 appendix 1 Measure the rate of change in length in water (20 ° C) curing up to 7 days of age curing according to the expansibility test method with mortar of expanding material. The drying shrinkage rate in the air (20 ° C., 60 RH%) curing from 7 to 28 days was measured with the material age of 7 days as the base length.
In the length change rate and the drying shrinkage rate, “−” represents shrinkage, and those without a sign represent expansion.
Further, it is more preferable that the rate of change in length is larger under the same conditions because the amount of expansion material added for obtaining a predetermined expansion amount is reduced, which is more economical. Furthermore, since drying shrinkage causes cracking, it is preferable that the amount of shrinkage is small.

(3)外観(美観):脱型後、材齢7日まで温度20℃、湿度60%にて気中養生を行い、乾燥した供試体表面を観察し、以下の基準にて評価した。
 ◎;供試体表面に白華が全く観察されない。
 ○;供試体表面に白華がわずかに観察される(表面積の約2%未満)。
 ×;供試体表面に白華が目立って観察される(表面積の2%以上)。
(3) Appearance (aesthetic appearance): After demolding, air curing was performed at a temperature of 20 ° C. and a humidity of 60% until the age of 7 days, and the surface of the dried specimen was observed and evaluated according to the following criteria.
A: No white flower is observed on the surface of the specimen.
○: Slight whiteness is observed on the surface of the specimen (less than about 2% of the surface area).
X: White flower is conspicuously observed on the surface of the specimen (2% or more of the surface area).

(実験例1)
 表2に示す配合の活性フィラー100部に対して膨張材Dを10部とし、(ジオポリマーモルタルの作製)に準拠してモルタルを調製し、圧縮強度と長さ変化率を測定した。また、比較として、高炉スラグ若しくはフライアッシュを使用せず、又は、膨張材を使用せずに調製したモルタルについても評価を行った。
(Experimental example 1)
With respect to 100 parts of the active filler having the composition shown in Table 2, the expansion material D was 10 parts, and the mortar was prepared according to (Production of Geopolymer Mortar), and the compression strength and the rate of change in length were measured. For comparison, mortars prepared without using blast furnace slag or fly ash or without using an expanding material were also evaluated.

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 表2より、フライアッシュ及び高炉スラグからなる活性フィラー、膨張材、アルカリ溶液からなる本発明に含まれるジオポリマー組成物を用いることで、強度発現性や美観に優れ、膨張性を有し、乾燥収縮が低減された、ジオポリマー組成物を用いたモルタルが得られることがわかる。 From Table 2, the use of the geopolymer composition included in the present invention consisting of fly ash and blast furnace slag, an expansion material, and an alkaline solution provides excellent strength development and aesthetics, expandability, and drying. It can be seen that a mortar using the geopolymer composition with reduced shrinkage is obtained.

(実験例2)
 活性フィラー100部中のフライアッシュを80部とした。活性フィラー100部に対して表3に示す膨張材を10部として、(ジオポリマーモルタルの作製)に準拠してモルタルを調製し、圧縮強度と長さ変化率を測定した。
(Experimental example 2)
80 parts of fly ash in 100 parts of active filler was used. Mortar was prepared according to (Production of geopolymer mortar) with 10 parts of the expansion material shown in Table 3 with respect to 100 parts of active filler, and the compressive strength and the rate of change in length were measured.

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

 表3より、所定の鉱物組成を持つ膨張材を用いることで、より強度発現性や美観に優れ、膨張性を有し、乾燥収縮が低減されたモルタルが得られることがわかる。 From Table 3, it can be seen that by using an expanding material having a predetermined mineral composition, a mortar having more excellent strength development and aesthetics, expandability, and reduced drying shrinkage can be obtained.

(実験例3)
 活性フィラー100部中のフライアッシュを80部とした。活性フィラー100部に対して膨張材Dを表4に示す割合として、(ジオポリマーモルタルの作製)に準拠してモルタルを調製し、圧縮強度と長さ変化率を測定した。
(Experimental example 3)
80 parts of fly ash in 100 parts of active filler was used. Mortar was prepared according to (Production of geopolymer mortar) as a ratio shown in Table 4 with respect to 100 parts of the active filler, and the compressive strength and the rate of change in length were measured.

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

 表4より、活性フィラーに対する膨張材の使用量を所定の割合とすることで、強度発現性や美観に優れ、膨張性を有し、乾燥収縮が低減されたジオポリマー組成物を用いたモルタルが得られることがわかる。 From Table 4, the mortar using the geopolymer composition which is excellent in strength development and aesthetics, has expansibility, and has reduced drying shrinkage by making the amount of the expansion material used relative to the active filler a predetermined ratio. It turns out that it is obtained.

 本発明によれば、強度発現性や美観に優れ、膨張性を有するだけでなく、乾燥収縮の小さいジオポリマー組成物を用いたモルタル、コンクリートを提供することができ、土木、建築分野において、好適に使用できる。 According to the present invention, it is possible to provide mortar and concrete using a geopolymer composition that is excellent in strength development and aesthetics, has not only expansibility but also small drying shrinkage, and is suitable in the civil engineering and construction fields. Can be used for

Claims (7)

 フライアッシュ及び高炉スラグを含む活性フィラーと、珪酸ナトリウム及び/又は水酸化ナトリウムを含むアルカリ溶液と、セメント鉱物系膨張材と、を含むジオポリマー組成物。 A geopolymer composition comprising an active filler containing fly ash and blast furnace slag, an alkaline solution containing sodium silicate and / or sodium hydroxide, and a cement mineral-based expansion material.  前記フライアッシュ及び前記高炉スラグの合計100質量部に対する前記フライアッシュの含有量が70~90質量部である請求項1に記載のジオポリマー組成物。 The geopolymer composition according to claim 1, wherein a content of the fly ash is 70 to 90 parts by mass with respect to a total of 100 parts by mass of the fly ash and the blast furnace slag.  前記セメント鉱物系膨張材が、エトリンガイト系膨張材、石灰系膨張材、石灰・エトリンガイト系膨張材である請求項1又は2に記載のジオポリマー組成物。 The geopolymer composition according to claim 1 or 2, wherein the cement mineral expansion material is an ettringite expansion material, a lime expansion material, or a lime / ettringite expansion material.  前記セメント鉱物系膨張材が、遊離石灰、アウイン及び無水セッコウを含み、前記遊離石灰が30~70質量部、前記アウインが5~30質量部、前記無水セッコウが15~40質量部である請求項1~3のいずれか1項に記載のジオポリマー組成物。 The cement mineral-based expansion material includes free lime, Auin and anhydrous gypsum, wherein the free lime is 30 to 70 parts by mass, the Auin is 5 to 30 parts by mass, and the anhydrous gypsum is 15 to 40 parts by mass. The geopolymer composition according to any one of 1 to 3.  前記活性フィラー100質量部に対する前記セメント鉱物系膨張材の含有量が5~15質量部である請求項1~4のいずれか1項に記載のジオポリマー組成物。 The geopolymer composition according to any one of claims 1 to 4, wherein a content of the cement mineral expansion material is 5 to 15 parts by mass with respect to 100 parts by mass of the active filler.  請求項1~5のいずれか1項に記載のジオポリマー組成物と、細骨材とを含むモルタル。 A mortar comprising the geopolymer composition according to any one of claims 1 to 5 and a fine aggregate.  請求項1~5のいずれか1項に記載のジオポリマー組成物と、細骨材と、粗骨材とを含むコンクリート。
 
A concrete comprising the geopolymer composition according to any one of claims 1 to 5, a fine aggregate, and a coarse aggregate.
PCT/JP2017/047066 2017-02-14 2017-12-27 Geopolymer composition, and mortar and concrete using same WO2018150753A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780082859.3A CN110167901A (en) 2017-02-14 2017-12-27 Geopolymer compositions and the mortar and concrete for using it
AU2017399309A AU2017399309B2 (en) 2017-02-14 2017-12-27 Geopolymer composition, and mortar and concrete using same
MYPI2019004514A MY196681A (en) 2017-02-14 2017-12-27 Geopolymer Composition, and Mortar and Concrete Using Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-025354 2017-02-14
JP2017025354A JP2020055696A (en) 2017-02-14 2017-02-14 Geopolymer composition, and mortar and concrete using the same

Publications (1)

Publication Number Publication Date
WO2018150753A1 true WO2018150753A1 (en) 2018-08-23

Family

ID=63169748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047066 WO2018150753A1 (en) 2017-02-14 2017-12-27 Geopolymer composition, and mortar and concrete using same

Country Status (5)

Country Link
JP (1) JP2020055696A (en)
CN (1) CN110167901A (en)
AU (1) AU2017399309B2 (en)
MY (1) MY196681A (en)
WO (1) WO2018150753A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773028A (en) * 2021-08-17 2021-12-10 湖南大学 Geopolymer concrete and preparation method thereof
CN114573293A (en) * 2022-03-05 2022-06-03 山东恒建新材料技术有限公司 Highway base layer mixture and low-carbon construction method
CN115215597A (en) * 2022-08-25 2022-10-21 同济大学 Shield slag slurry alkali-activated regenerated mortar and preparation method and application thereof
JP2023184407A (en) * 2022-06-16 2023-12-28 株式会社鴻池組 Ground improvement material and its manufacturing method
US12240785B2 (en) 2018-12-10 2025-03-04 Imertech Sas Geopolymer foam composition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110510966B (en) * 2019-09-29 2021-12-31 中国建筑第五工程局有限公司 High-strength residue soil baking-free product and preparation method thereof
JP2021178761A (en) * 2020-05-15 2021-11-18 清水建設株式会社 Geopolymer composition, method for producing geopolymer composition, and method for producing geopolymer-hardened body
JP7686466B2 (en) * 2021-06-16 2025-06-02 株式会社竹中工務店 Geopolymer composition and hardened geopolymer
JPWO2023100915A1 (en) * 2021-12-02 2023-06-08
CN116217191B (en) * 2023-03-22 2024-09-20 西京学院 Cold region desert sand composite alkali-activated anti-freezing mortar and preparation and construction methods thereof
CN118324377B (en) * 2024-06-17 2024-11-01 中国科学院生态环境研究中心 Treatment method and cleaning agent for polymer-containing oil sludge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327398A (en) * 1999-05-20 2000-11-28 Toagosei Co Ltd Hardenable composition
JP2008201592A (en) * 2007-02-16 2008-09-04 Denki Kagaku Kogyo Kk Expandable material, cement composition, and cement concrete using the same
JP2012211453A (en) * 2011-03-31 2012-11-01 Nishimatsu Constr Co Ltd Composite segment and shield tunnel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4386503B2 (en) * 1999-08-25 2009-12-16 電気化学工業株式会社 Cement admixture and cement composition
CN105645813B (en) * 2016-01-22 2018-08-10 河南城建学院 A kind of reinforced cementitious additive of bridge floor and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327398A (en) * 1999-05-20 2000-11-28 Toagosei Co Ltd Hardenable composition
JP2008201592A (en) * 2007-02-16 2008-09-04 Denki Kagaku Kogyo Kk Expandable material, cement composition, and cement concrete using the same
JP2012211453A (en) * 2011-03-31 2012-11-01 Nishimatsu Constr Co Ltd Composite segment and shield tunnel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12240785B2 (en) 2018-12-10 2025-03-04 Imertech Sas Geopolymer foam composition
CN113773028A (en) * 2021-08-17 2021-12-10 湖南大学 Geopolymer concrete and preparation method thereof
CN114573293A (en) * 2022-03-05 2022-06-03 山东恒建新材料技术有限公司 Highway base layer mixture and low-carbon construction method
JP2023184407A (en) * 2022-06-16 2023-12-28 株式会社鴻池組 Ground improvement material and its manufacturing method
JP7427210B2 (en) 2022-06-16 2024-02-05 株式会社鴻池組 Ground improvement material and its manufacturing method
CN115215597A (en) * 2022-08-25 2022-10-21 同济大学 Shield slag slurry alkali-activated regenerated mortar and preparation method and application thereof

Also Published As

Publication number Publication date
CN110167901A (en) 2019-08-23
AU2017399309A1 (en) 2019-07-25
MY196681A (en) 2023-04-29
JP2020055696A (en) 2020-04-09
AU2017399309B2 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
WO2018150753A1 (en) Geopolymer composition, and mortar and concrete using same
JP5091519B2 (en) Geopolymer composition and method for producing the same
KR101930109B1 (en) Cementitious binders containing pozzolanic materials
JP5818579B2 (en) Neutralization suppression type early strong cement composition
JP6137850B2 (en) Hydraulic composition
KR101410797B1 (en) Mortar compound for floor using non-sintering inorganic binder
AU2022263634A1 (en) Binder composition comprising pozzolanic material and fine filler
WO2011135584A2 (en) Geopolymer concrete
JP7542130B2 (en) Cement admixture, cement composition, and method for producing concrete product
CN103874671A (en) Method for manufacturing rapid-hardening agent and concrete product
CN117580812A (en) Cement admixture, method for producing cement admixture, and cement composition
KR101345203B1 (en) Low alkali non-cement concrete composition with tannin and block unit comprising the same
JP2003206167A (en) Cement admixture and cement composition
JP7662661B2 (en) Activation system for activating ground granulated blast furnace slag, comprising an alkali metal salt and calcium and/or magnesium carbonate, and a binder comprising the same for preparing a mortar or concrete composition
KR101111635B1 (en) Low alkali concrete composition with tannin and block unit comprising the same
WO2017089899A1 (en) Chemically activated cement using industrial waste
JP7083637B2 (en) Concrete and its manufacturing method
KR101111634B1 (en) Low alkali concrete composition with green tea and block unit comprising the same
KR101345200B1 (en) Low alkali non-cement concrete composition with green tea and block unit comprising the same
JP2020152610A (en) Expansive admixture, cement composition, and, concrete
JP7260998B2 (en) Expansive composition, cement composition and cement-concrete
KR101345198B1 (en) Low alkali concrete composition with green tea and block unit comprising the same
JP2023028439A (en) Cement admixture and cement composition
JP2007186359A (en) Cement composition
JP2002068794A (en) Cement admixture and cement composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017399309

Country of ref document: AU

Date of ref document: 20171227

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP