WO2018150701A1 - Combustion burner and boiler with same - Google Patents
Combustion burner and boiler with same Download PDFInfo
- Publication number
- WO2018150701A1 WO2018150701A1 PCT/JP2017/044416 JP2017044416W WO2018150701A1 WO 2018150701 A1 WO2018150701 A1 WO 2018150701A1 JP 2017044416 W JP2017044416 W JP 2017044416W WO 2018150701 A1 WO2018150701 A1 WO 2018150701A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- furnace
- secondary air
- channel
- fuel gas
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C5/00—Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
- F23C5/08—Disposition of burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D1/00—Burners for combustion of pulverulent fuel
Definitions
- the present disclosure relates to a combustion burner applied to a boiler for generating steam for power generation or factory use, and a boiler including the same.
- a solid fuel burning burner which includes a fuel burner for charging pulverized coal and primary air into the furnace, and a secondary port for fuel burner for injecting secondary air from the outer periphery of the fuel burner (for example, a patent) Reference 1).
- the solid fuel fired burner of Patent Document 1 includes a pair of secondary air inlet ports disposed above and below the secondary port for the fuel burner.
- the solid fuel fired burner of Patent Document 1 secondary air is supplied from above and below of the fuel burner secondary port. Therefore, the upper and lower portions of the flame formed by the fuel burner are regions where the amount of air for fuel is relatively large.
- the solid fuel fired burner of Patent Document 1 does not have a secondary air inlet port on the left and right of the secondary port for fuel burner. Therefore, the right and left sides of the flame formed by the fuel burner become regions where the amount of air for fuel is relatively small.
- the boiler provided with the solid fuel burning burner of Patent Document 1 adopts a swirling combustion system in which the solid fuel burning burner is disposed at four corner portions. Therefore, the flame of the solid fuel fired burner on the upstream side in the swirling direction may interfere with the flame of the solid fuel fired burner on the downstream side, thereby inhibiting the combustion and deteriorating the combustion characteristics.
- the present disclosure solves the above-mentioned problems, and provides a combustion burner capable of suppressing corrosion of a furnace wall due to generation of hydrogen sulfide and interference by flames of other adjacent combustion burners, and a boiler including the same.
- the purpose is
- a combustion burner of the present disclosure includes a fuel gas flow that extends in a tubular shape along an axis and supplies a fuel gas obtained by mixing a fuel obtained by grinding a carbon-containing solid fuel and primary air to a furnace.
- a fuel nozzle forming a passage, a secondary air nozzle forming a secondary air flow path extending cylindrically along the axis and supplying secondary air to the furnace from the outside of the fuel nozzle, the secondary And a pair of secondary air supply ports disposed above and below the air nozzle and supplying secondary air to the furnace, wherein the fuel gas passage and the secondary air passage are orthogonal to the axis.
- the cross-section is a flow passage having a rectangular shape, and the sum of the flow passage widths of the openings to the furnace of the secondary air flow passage located on the right and left of the fuel gas flow passage is the fuel gas flow passage.
- Said secondary sky located above and below Greater than the sum of the channel width of the opening into the furnace of the channel.
- the flow rate of the secondary air supplied to the furnace from the right and left of the fuel gas flow path where the secondary air inlet port is not disposed is increased, and the right or left furnace of the combustion burner is Hydrogen sulfide (H 2 S) produced in the area adjacent to the wall is reduced. This suppresses the corrosion of the furnace wall due to the generation of hydrogen sulfide.
- a combustion burner capable of suppressing the corrosion of the furnace wall due to the generation of hydrogen sulfide and the interference by the flame of another adjacent combustion burner, and a boiler provided with the same.
- FIG. 7 It is a schematic block diagram showing the pulverized coal burning boiler to which the combustion burner of one embodiment of this indication was applied. It is a top view showing the combustion burner in the pulverized coal burning boiler shown in FIG. It is a partial longitudinal cross-sectional view of the combustion burner shown in FIG. It is the front view which saw the combustion burner shown in FIG. 2 from the furnace. It is a front view which shows the flow-path width
- a pulverized coal burning boiler to which a combustion burner according to some embodiments of the present disclosure is applied uses pulverized coal obtained by pulverizing coal as a carbon-containing solid fuel, burns the pulverized coal by the combustion burner, and is generated by this combustion It is a boiler capable of recovering heat.
- the pulverized coal burning boiler 10 of the present embodiment is a conventional boiler, and has a furnace 11, a combustion apparatus 12 and a flue 13.
- the furnace 11 has a hollow shape of a square cylinder and is installed along the vertical direction, and the combustion apparatus 12 is provided at the lower part of the furnace wall constituting the furnace 11.
- the combustion device 12 has a plurality of combustion burners 100A, 100B, 100C, 100D, 100E mounted on the furnace wall.
- the combustion burners 100A, 100B, 100C, 100D, 100E are provided as a set of four arranged along the circumferential direction centering on the vertical direction in which the furnace 11 extends. , 5 sets (5 stages) are arranged along the vertical direction. Although five sets are used here, six sets or any other number of sets can be used.
- each combustion burner 100A, 100B, 100C, 100D, 100E is a pulverized coal machine (mill; pulverizer) 31, 32, 33, 34, 35 via pulverized coal supply pipes 26, 27, 28, 29, 30.
- the pulverized coal machine 31, 32, 33, 34, 35 is not shown, but the pulverizing table is rotatably supported within the housing with a rotational axis along the vertical direction, and is opposed to the upper side of the pulverizing table A plurality of grinding rollers are rotatably supported in association with the rotation of the grinding table.
- the pulverized coal which has been pulverized to a predetermined size and classified by the transport air (primary air) is pulverized by the pulverized coal supply pipe 26,
- the combustion burners 100A, 100B, 100C, 100D, and 100E are supplied from 27, 28, 29, and 30, respectively.
- a wind box 36 is provided at the mounting position of each of the combustion burners 100A, 100B, 100C, 100D and 100E, and one end of an air duct (secondary air supply pipe) 37 is attached to the wind box 36.
- a blower 38 is attached to the other end of the air duct 37.
- the furnace 11 is provided with an additional air nozzle 39 vertically above the mounting position of each of the combustion burners 100A, 100B, 100C, 100D, 100E.
- the additional air nozzle 39 is connected to an end of a branched air duct 40 branched from the air duct 37.
- the combustion air (secondary air) sent by the blower 38 is supplied from the air duct 37 to the air box 36 and is supplied from the air box 36 to the combustion burners 100A, 100B, 100C, 100D, 100E.
- the combustion air (additional air) sent by the blower 38 can be supplied from the branch air duct 40 to the additional air nozzle 39.
- each combustion burner 100 A, 100 B, 100 C, 100 D, 100 E mixes the pulverized fuel mixture (fuel gas) in which the pulverized coal and the transport air (primary air) are mixed into the furnace 11.
- combustion air can be blown into the furnace 11.
- the combustion apparatus 12 can form a flame by igniting the pulverized fuel mixture with an ignition torch (not shown).
- a flue 13 is connected to the upper part in the vertical direction, and to this flue 13, a superheater (super heater) 41, which is a heat exchanger for recovering heat of combustion gas as a convection heat transfer portion, 42, reheaters 43, 44 and economizers 45, 46, 47 are provided, and heat exchange is performed between the combustion gas generated by the combustion in the furnace 11 and water or steam.
- superheater (super heater) 41 which is a heat exchanger for recovering heat of combustion gas as a convection heat transfer portion, 42, reheaters 43, 44 and economizers 45, 46, 47 are provided, and heat exchange is performed between the combustion gas generated by the combustion in the furnace 11 and water or steam.
- the flue 13 is connected to an exhaust gas pipe 48 through which the combustion gas subjected to heat exchange is discharged as exhaust gas downstream of the gas flow.
- the exhaust gas pipe 48 is provided with an air heater 49 between it and the air duct 37, and performs heat exchange between the air flowing through the air duct 37 and the exhaust gas flowing through the exhaust gas pipe 48, and the combustion burners 100A, 100B, 100C, The temperature of combustion air supplied to 100D and 100E can be raised.
- the exhaust gas pipe 48 is provided with a NOx removal device, an electrostatic precipitator, an induction fan, a desulfurization device, and a chimney at the downstream end.
- the pulverized coal machine 31, 32, 33, 34, 35 is driven, the pulverized coal produced together with the transfer air (primary air) is supplied with pulverized coal supply pipes (fuel supply pipes) 26, 27, 28, 29, The combustion burners 100A, 100B, 100C, 100D and 100E are supplied through 30.
- the heated combustion air (secondary air) is supplied from the air duct 37 to the combustion burners 100A, 100B, 100C, 100D, 100E through the air box 36, and from the branch air duct 40 to the additional air nozzle Supplied to 39
- the temperature of the transport air (primary air) is low so that the pulverized coal does not ignite, and the combustion air (secondary air) is heated by the air heater 49, so the temperature is higher than the primary air and the pulverized fuel mixture .
- the combustion burners 100A, 100B, 100C, 100D, 100E blow the pulverized fuel mixture (fuel gas) in which the pulverized coal and the conveying air are mixed into the furnace 11 and also blows the combustion air into the furnace 11,
- the flame can be formed by ignition.
- the additional air nozzle 39 can perform combustion control to blow additional air into the furnace 11 and optimize the amount of air to the pulverized coal.
- the pulverized fuel mixture and the combustion air are burned to generate a flame, and when the flame is generated in the region in the lower portion in the vertical direction in the furnace 11, the combustion gas (exhaust gas) rises in the furnace 11 And is discharged to the flue 13.
- the combustion burners 100A, 100B, 100C, 100D, and 100E blow the pulverized coal mixture and the combustion air (secondary air) into the combustion area of the furnace 11, and ignite at this time to generate a flame swirling flow in the combustion area. Is formed. Then, the flame swirling flow rises while swirling and reaches the reduction region.
- the additional air nozzle 39 blows additional air vertically above the reduction region in the furnace 11. In the furnace 11, the inside is maintained in a reducing atmosphere by setting the amount of supplied air to be less than the theoretical amount of air with respect to the supplied amount of pulverized coal.
- NOx generated by the combustion of the pulverized coal is reduced by the furnace 11, and after that, additional air (additional air) is supplied to complete the oxidation combustion of the pulverized coal, and the amount of NOx generated by the combustion of the pulverized coal is Reduced.
- the water supplied from the water supply pump (not shown) is preheated by the economizer 45, 46, 47 and then supplied to the steam drum (not shown) and supplied to each water pipe (not shown) of the furnace wall. While being heated, it is heated to become saturated steam and fed to the steam drum. Furthermore, the saturated steam of the steam drum is introduced into the superheaters 41 and 42 and is overheated by the combustion gas. The superheated steam generated by the superheaters 41 and 42 is supplied to a turbine (not shown) of the power plant. Further, the steam taken out in the middle of the expansion process of the steam supplied by the turbine is introduced into the reheaters 43 and 44, and is again overheated, returned to the turbine and expanded, and the turbine is rotationally driven.
- the furnace 11 was demonstrated as a drum type (steam drum), it is not limited to this structure.
- the exhaust gas that has passed through the economizers 45, 46, 47 of the flue 13 is removed by the exhaust gas pipe 48 with a denitration device (not shown) by the supplied ammonia and catalyst to remove harmful substances such as NOx.
- a denitration device not shown
- the particulate matter is removed by the electrostatic precipitator and the sulfur content is removed by the desulfurization apparatus, it is discharged to the atmosphere from the chimney.
- combustion burners 100A, 100B, 100C, 100D, and 100E constituting the combustion apparatus 12 are positioned at the uppermost stage because they have substantially the same configuration. Only the combustion burner 100A will be described.
- the combustion burner 100A is comprised from combustion burner 100Aa, 100Ab, 100Ac, 100Ad provided in the four wall surfaces which form the furnace 11, as shown in FIG.
- the combustion burners 100Aa, 100Ab, 100Ac, 100Ad are connected to the branch pipes 26a, 26b, 26c, 26d branched from the pulverized coal supply pipe 26, and the branch pipes 37a, 37b, 37c branched from the air duct 37. , 37d are linked.
- the combustion burners 100Aa, 100Ab, 100Ac, 100Ad on the respective wall surfaces of the furnace 11 center the furnace 11 on the pulverized fuel mixture in which the pulverized coal and the transfer air (primary air) are mixed.
- a slight declination is provided, and at the same time, combustion air (secondary air) is blown to the outside of the pulverized fuel mixture.
- four flames F1, F2, F3, F4 can be formed, and the flames F1, F2, F3, F4 can be formed.
- each combustion burner 100Aa, 100Ab, 100Ac, 100Ad may be arrange
- the combustion burner 100A of this embodiment includes a fuel nozzle 110, a secondary air nozzle 120, and a pair of secondary air supply ports 130A and 130B. And.
- the longitudinal sectional view of FIG. 3 is a cross-sectional view of the combustion burner 100A shown in FIG.
- the fuel nozzle 110 is a member formed to extend in a tubular shape along the axis X1.
- the fuel nozzle 110 forms a fuel gas channel 111 for supplying the pulverized fuel mixture supplied from the pulverized coal supply pipe 26 to the furnace 11 therein.
- the fuel gas flow channel 111 is a flow channel having a rectangular cross section orthogonal to the axis X1.
- the shape of the opening at which the fuel nozzle 110 faces the furnace 11 is a shape extending straight in the same direction as the gas flow direction of the pulverized fuel mixture. As shown in FIG. 3, the height in the vertical direction of the fuel nozzle 110 is constant at H1. This is to prevent the pulverized coal contained in the pulverized fuel mixture from being led to the outer peripheral side with respect to the central axis (axis line X1) of the fuel gas passage 111.
- the secondary air nozzle 120 is a member which is formed so as to extend in a cylindrical shape along the axis X 1 and is disposed so as to surround the outside with respect to the axis X 1 of the fuel nozzle 110.
- the secondary air nozzle 120 forms an annular secondary air flow passage 121 for supplying secondary air to the furnace 11 between the inner peripheral surface thereof and the outer peripheral surface of the fuel nozzle 110.
- the secondary air passage 121 has a rectangular cross section orthogonal to the axis X1.
- the secondary air nozzle 120 supplies the secondary air supplied from the air box 36 to the furnace 11 via the secondary air passage 121.
- the height in the vertical direction of the secondary air nozzle 120 is fixed to H2 on the base end side, and is lowered from H2 to H3 on the tip end side.
- the secondary air supply port 130 ⁇ / b> A is disposed above the secondary air nozzle 120 in the vertical direction, and supplies secondary air to the furnace 11.
- the secondary air supply port 130 B is disposed below the secondary air nozzle 120 in the vertical direction, and supplies secondary air to the furnace 11.
- the secondary air supply ports 130A and 130B supply the furnace 11 with the secondary air supplied from the air box 36.
- the heights of the secondary air supply ports 130A and 130B are fixed at H4 on the base end side and are lowered from H4 to H5 at the front end side.
- FIG. 5 is a front view showing the flow passage width of the opening to the furnace 11 of the secondary air flow passage 121 of the combustion burner 100A shown in FIG.
- W 1 is the horizontal width of the opening of the fuel nozzle 110
- W 2 is the horizontal width of the opening of the secondary air nozzle 120.
- the channel width of the opening to the furnace 11 of the secondary air channel 121 located to the right of the fuel gas channel 111 is Wr
- the secondary air stream located to the left of the fuel gas channel 111 The channel width of the opening to the furnace 11 of the channel 121 is W1.
- the channel width of the opening to the furnace 11 of the secondary air channel 121 located above the fuel gas channel 111 is taken as Hu
- the secondary air channel 121 located below the fuel gas channel 111 is Hu.
- the channel width of the opening to the furnace 11 is Hd.
- the fuel gas channel 111 and the secondary air channel 121 are formed so that the following conditional expression (1) holds between Wr, Wl, Hu, and Hd. Hu + Hd ⁇ Wr + Wl (1)
- the sum of the channel widths of the openings to the furnace 11 of the secondary air channel 121 located on the right and left of the fuel gas channel 111 is located above and below the fuel gas channel 111. It is the condition that it is larger than the sum total of the channel width of the opening to furnace 11 of secondary air channel 121 which carries out.
- the fuel gas channel 111 and the secondary air channel 121 may be formed such that Wr and Wl have the same channel width.
- the flow channel width Wr of the secondary air flow channel 121 located on the right of the fuel gas flow channel 111 and the flow channel width Wl of the secondary air flow channel 121 located on the left of the fuel gas flow channel 111 are made to coincide with each other.
- the fuel gas channel 111 and the secondary air channel 121 may be formed such that Wr and Wl have different channel widths.
- the furnace wall is disposed on the left of the fuel gas passage 111, and from the right of the fuel gas passage 111 Interference from the flame of the other combustion burner 100A on the upstream side of the swirling flow is received.
- the channel width of the opening to the furnace 11 of the secondary air channel 121 located to the right and left of the fuel gas channel 111 is located above and below the fuel gas channel 111 2
- the condition is that it is 1.5 times or more and 6 times or less the channel width of the opening of the next air channel 121 to the furnace 11.
- the channel width of the opening of the secondary air channel 121 located on the right and left of the fuel gas channel 111 is set to the upper and lower sides of the fuel gas channel 111. It can be made sufficiently larger than the flow passage width of the opening of the secondary air flow passage 121 located at
- FIG. 6 is a front view showing the channel width of the opening of the secondary air channel of the combustion burner of the comparative example.
- the shape of the fuel nozzle 110 is the same in both the combustion burner 100A of the present embodiment and the combustion burner of the comparative example.
- the shape of the opening where the fuel nozzle 110 faces the furnace 11 is a rectangular shape having a width W1 and a height H1.
- the shape of the secondary air nozzle 120 is different.
- the heights of the openings of the secondary air nozzle 120 of the present embodiment and the opening of the secondary air nozzle 120a of the comparative example are the same at H3.
- the width W3 of the secondary air nozzle 120a of the comparative example is narrower than the width W2 of the secondary air nozzle 120 of the present embodiment.
- the passage width Wra of the opening to the furnace 11 of the secondary air passage 121 a located on the right of the fuel gas passage 111 and the secondary air flow located on the left of the fuel gas passage 111 The sum of the passage width Wla of the opening to the furnace 11 of the passage 121a and the passage width Hu of the opening to the furnace 11 of the secondary air passage 121 located above the fuel gas passage 111 and the fuel gas flow
- the sum of the flow passage widths Hd of the openings to the furnace 11 of the secondary air flow passage 121 located below the passage 111 is equal.
- the sum (Wr + Wl) of the channel widths of the openings to the furnace 11 of the secondary air channel 121 located on the right and left of the fuel gas channel 111 of the present embodiment is the fuel of the comparative example. It is larger than the total (Wra + Wla) of the flow passage width of the opening to the furnace 11 of the secondary air flow passage 121a located on the right and left of the gas flow passage 111.
- the fuel gas passage 111 and the fuel gas passage 111 of the present embodiment so that the following conditional expression (3) holds. It is desirable to form the secondary air flow passage 121.
- This condition is the sum of the area of the opening to the furnace 11 of the secondary air flow passage 121 located on the right and left of the fuel gas flow passage 111 of this embodiment (Wr + Wl) ⁇ H3 from the fuel gas of the comparative example
- the flow rate of the secondary air supplied to the secondary air passage 121 is increased.
- the same amount of secondary air as the flow rate is reduced from the secondary air supply ports 130A and 130B. This is because the secondary air supplied to the secondary air flow path 121 and the secondary air supplied to the secondary air supply ports 130A and 130B are connected to the air box 36 which is the same supply source. It is.
- the flow of the opening to the furnace 11 of the secondary air flow path 121 located on the right and left of the fuel gas flow path 111 for supplying the pulverized fuel mixture to the furnace 11 The total of the channel widths is larger than the total of the channel widths of the openings to the furnace 11 of the secondary air channels 121 located above and below the fuel gas channel 111. Therefore, the flow rate of the secondary air supplied to the furnace 11 from the right side and the left side of the fuel gas flow path 111 where the secondary air supply ports 130A and 130B are not disposed is increased, and the right or left side of the combustion burner 100A. Hydrogen sulfide (H 2 S) produced in the area adjacent to the furnace wall is reduced.
- H 2 S Hydrogen sulfide
- the combustion burner 100A of the present embodiment suppresses the corrosion of the furnace wall due to the generation of hydrogen sulfide. Further, according to the combustion burner 100A of the present embodiment, the flow rate of the secondary air supplied to the furnace 11 from the right side and the left side of the fuel gas flow path 111 where the secondary air supply ports 130A and 130B are not disposed is increased. It is possible to suppress the interference of flames of other adjacent combustion burners.
- the sum of the flow passage widths of the openings to the furnace 11 of the secondary air flow passage 121 located on the right and left of the fuel gas flow passage 111 is the fuel gas flow It is desirable that the total width of the flow passage width of the opening to the furnace 11 of the secondary air flow passage 121 located above and below the passage 111 be 1.5 times or more and 6 times or less.
- the total of the channel widths of the openings of the secondary air channel 121 located to the right and left of the fuel gas channel 111 is the opening of the secondary air channel 121 located above and below the fuel gas channel 111
- corrosion of the furnace wall due to generation of hydrogen sulfide in the area adjacent to the furnace wall and interference by flames of other adjacent combustion burners can be made more surely. It can be suppressed.
- a flame holder may be disposed inside the tip of the fuel nozzle 110 facing the furnace 11.
- the flame holder is formed of, for example, one or more plate-like members extending along the vertical direction. By arranging the flame holder, the ignition performance and flame holding performance of the pulverized fuel mixture can be enhanced.
- the combustion burner 100A shown in FIGS. 7 and 8 is a modification in which three flame stabilizers 112 are disposed inside the tip of the fuel nozzle 110.
- the flame holder 112 is provided with an expanding member whose width in the horizontal direction is gradually expanded toward the furnace on the tip side (furnace side) of the plate member extending in the vertical direction.
- the ignition position is near the flame center of the combustion burner, so generation of NOx can be suppressed even if the amount of air in the secondary air flow passage 121 is increased. it can.
- consumption of oxygen in the secondary air supplied from the secondary air flow path 121 is also gradual, and corrosion suppression of the furnace wall due to the generation of hydrogen sulfide in the region adjacent to the furnace wall can be maintained.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion Of Fluid Fuel (AREA)
- Air Supply (AREA)
Abstract
Description
本開示は、発電用または工場用などのために蒸気を生成するためのボイラに適用される燃焼バーナ及びこれを備えたボイラに関するものである。 The present disclosure relates to a combustion burner applied to a boiler for generating steam for power generation or factory use, and a boiler including the same.
従来、微粉炭及び一次空気を炉内へ投入する燃料バーナと、燃料バーナの外周から2次空気を噴射する燃料バーナ用2次ポートとを備える固体燃料焚きバーナが知られている(例えば、特許文献1参照)。特許文献1の固体燃料焚きバーナは、燃料バーナ用2次ポートの上下に配置された一対の2次空気投入ポートを備えている。 Conventionally, a solid fuel burning burner is known which includes a fuel burner for charging pulverized coal and primary air into the furnace, and a secondary port for fuel burner for injecting secondary air from the outer periphery of the fuel burner (for example, a patent) Reference 1). The solid fuel fired burner of Patent Document 1 includes a pair of secondary air inlet ports disposed above and below the secondary port for the fuel burner.
特許文献1の固体燃料焚きバーナでは、燃料バーナ用2次ポートの上下から2次空気が供給される。そのため、燃料バーナにより形成される火炎の上方および下方は、燃料に対する空気量が比較的多い領域となる。
一方、特許文献1の固体燃料焚きバーナは、燃料バーナ用2次ポートの左右に2次空気投入ポートを備えていない。そのため、燃料バーナにより形成される火炎の右方および左方は、燃料に対する空気量が比較的少ない領域となる。
In the solid fuel fired burner of Patent Document 1, secondary air is supplied from above and below of the fuel burner secondary port. Therefore, the upper and lower portions of the flame formed by the fuel burner are regions where the amount of air for fuel is relatively large.
On the other hand, the solid fuel fired burner of Patent Document 1 does not have a secondary air inlet port on the left and right of the secondary port for fuel burner. Therefore, the right and left sides of the flame formed by the fuel burner become regions where the amount of air for fuel is relatively small.
特許文献1の固体燃料焚きバーナでは、燃料バーナにより形成される火炎の右方および左方が燃料に対する空気量が比較的少ない還元雰囲気の領域となった場合、隣接する火炉壁に腐食が生じやすいという問題がある。これは、還元雰囲気の領域において、微粉炭中の硫黄分(S分)が硫化水素(H2S)へ転換して火炉壁へ接触するからである。 In the solid fuel fired burner of Patent Document 1, when the flame formed by the fuel burner becomes a region of a reducing atmosphere with a relatively small amount of air to fuel, corrosion tends to occur on the adjacent furnace wall. There is a problem of This is because the sulfur content (S content) in the pulverized coal is converted to hydrogen sulfide (H 2 S) and contacts the furnace wall in the area of reducing atmosphere.
また、特許文献1の固体燃料焚きバーナを備えるボイラは、固体燃料焚きバーナが4箇所のコーナー部に配置される旋回燃焼方式を採用している。そのため、旋回方向の上流側の固体燃料焚きバーナの火炎が下流側の固体燃料焚きバーナの火炎に干渉し、燃焼が阻害されて燃焼特性が悪化してしまう可能性がある。 Moreover, the boiler provided with the solid fuel burning burner of Patent Document 1 adopts a swirling combustion system in which the solid fuel burning burner is disposed at four corner portions. Therefore, the flame of the solid fuel fired burner on the upstream side in the swirling direction may interfere with the flame of the solid fuel fired burner on the downstream side, thereby inhibiting the combustion and deteriorating the combustion characteristics.
本開示は、上述した課題を解決するものであり、硫化水素の発生による火炉壁の腐食、および隣接する他の燃焼バーナの火炎による干渉を抑制可能な燃焼バーナ及びこれを備えたボイラを提供することを目的とする。 The present disclosure solves the above-mentioned problems, and provides a combustion burner capable of suppressing corrosion of a furnace wall due to generation of hydrogen sulfide and interference by flames of other adjacent combustion burners, and a boiler including the same. The purpose is
上記の目的を達成するための本開示の燃焼バーナは、軸線に沿って筒状に延びるとともに炭素含有固体燃料を粉砕した燃料と1次空気とを混合した燃料ガスを火炉へ供給する燃料ガス流路を形成する燃料ノズルと、前記軸線に沿って筒状に延びるとともに前記燃料ノズルの外側から前記火炉へ2次空気を供給する2次空気流路を形成する2次空気ノズルと、前記2次空気ノズルの上方および下方に配置され、前記火炉へ2次空気を供給する一対の2次空気供給ポートと、を備え、前記燃料ガス流路および前記2次空気流路が、前記軸線に直交する断面が矩形状の流路であり、前記燃料ガス流路の右方および左方に位置する前記2次空気流路の前記火炉への開口部の流路幅の合計が、前記燃料ガス流路の上方および下方に位置する前記2次空気流路の前記火炉への開口部の流路幅の合計よりも大きい。 In order to achieve the above object, a combustion burner of the present disclosure includes a fuel gas flow that extends in a tubular shape along an axis and supplies a fuel gas obtained by mixing a fuel obtained by grinding a carbon-containing solid fuel and primary air to a furnace. A fuel nozzle forming a passage, a secondary air nozzle forming a secondary air flow path extending cylindrically along the axis and supplying secondary air to the furnace from the outside of the fuel nozzle, the secondary And a pair of secondary air supply ports disposed above and below the air nozzle and supplying secondary air to the furnace, wherein the fuel gas passage and the secondary air passage are orthogonal to the axis. The cross-section is a flow passage having a rectangular shape, and the sum of the flow passage widths of the openings to the furnace of the secondary air flow passage located on the right and left of the fuel gas flow passage is the fuel gas flow passage. Said secondary sky located above and below Greater than the sum of the channel width of the opening into the furnace of the channel.
上記の構成によれば、2次空気投入ポートが配置されない燃料ガス流路の右方および左方から火炉へ供給される2次空気の流量が増加し、燃焼バーナの右方または左方の火炉壁に隣接する領域で生成される硫化水素(H2S)が減少する。これにより、硫化水素の発生による火炉壁の腐食が抑制される。 According to the above configuration, the flow rate of the secondary air supplied to the furnace from the right and left of the fuel gas flow path where the secondary air inlet port is not disposed is increased, and the right or left furnace of the combustion burner is Hydrogen sulfide (H 2 S) produced in the area adjacent to the wall is reduced. This suppresses the corrosion of the furnace wall due to the generation of hydrogen sulfide.
本開示によれば、硫化水素の発生による火炉壁の腐食、および隣接する他の燃焼バーナの火炎による干渉を抑制可能な燃焼バーナ及びこれを備えたボイラを提供することができる。 According to the present disclosure, it is possible to provide a combustion burner capable of suppressing the corrosion of the furnace wall due to the generation of hydrogen sulfide and the interference by the flame of another adjacent combustion burner, and a boiler provided with the same.
以下に添付図面を参照して、本開示の燃焼バーナの好適な実施例を詳細に説明する。なお、この実施例により本開示が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。 Hereinafter, preferred embodiments of the combustion burner of the present disclosure will be described in detail with reference to the accompanying drawings. Note that the present disclosure is not limited by the embodiments, and in the case where there are a plurality of embodiments, the present disclosure also includes those configured by combining the respective embodiments.
本開示の幾つかの実施形態における燃焼バーナが適用された微粉炭焚きボイラは、炭素含有固体燃料として石炭を粉砕した微粉炭を用い、この微粉炭を燃焼バーナにより燃焼させ、この燃焼により発生した熱を回収することが可能なボイラである。 A pulverized coal burning boiler to which a combustion burner according to some embodiments of the present disclosure is applied uses pulverized coal obtained by pulverizing coal as a carbon-containing solid fuel, burns the pulverized coal by the combustion burner, and is generated by this combustion It is a boiler capable of recovering heat.
図1に示すように、本実施形態の微粉炭焚きボイラ10は、コンベンショナルボイラであって、火炉11と燃焼装置12と煙道13を有している。火炉11は、四角筒の中空形状をなして鉛直方向に沿って設置され、この火炉11を構成する火炉壁の下部に燃焼装置12が設けられている。
As shown in FIG. 1, the pulverized
燃焼装置12は、火炉壁に装着された複数の燃焼バーナ100A,100B,100C,100D,100Eを有している。本実施例にて、この燃焼バーナ100A,100B,100C,100D,100Eは、火炉11が延びる鉛直方向を中心軸とした周方向に沿って4個均等間隔で配設されたものが1セットとして、鉛直方向に沿って5セット(5段)配置されている。なお、ここでは5セットとしたが、6セットあるいはその他の任意のセット数とすることができる。
The
そして、各燃焼バーナ100A,100B,100C,100D,100Eは、微粉炭供給管26,27,28,29,30を介して微粉炭機(ミル;粉砕機)31,32,33,34,35に連結されている。この微粉炭機31,32,33,34,35は、図示しないが、ハウジング内に鉛直方向に沿った回転軸心をもって粉砕テーブルが駆動回転可能に支持され、この粉砕テーブルの上方に対向して複数の粉砕ローラが粉砕テーブルの回転に連動して回転可能に支持されて構成されている。従って、石炭が複数の粉砕ローラと粉砕テーブルとの間に投入されると、ここで所定の大きさまで粉砕され、搬送用空気(1次空気)により分級された微粉炭が微粉炭供給管26,27,28,29,30から燃焼バーナ100A,100B,100C,100D,100Eに供給される。
And each
また、火炉11は、各燃焼バーナ100A,100B,100C,100D,100Eの装着位置に風箱36が設けられており、この風箱36に空気ダクト(2次空気供給管)37の一端部が連結されており、この空気ダクト37には、他端部に送風機38が装着されている。更に、火炉11は、各燃焼バーナ100A,100B,100C,100D,100Eの装着位置より鉛直方向上方にアディショナル空気ノズル39が設けられている。このアディショナル空気ノズル39には、空気ダクト37から分岐した分岐空気ダクト40の端部が連結されている。従って、送風機38により送られた燃焼用空気(2次空気)を、空気ダクト37から風箱36に供給し、この風箱36から各燃焼バーナ100A,100B,100C,100D,100Eに供給することができると共に、送風機38により送られた燃焼用空気(追加空気)を分岐空気ダクト40からアディショナル空気ノズル39に供給することができる。
In the
そのため、燃焼装置12にて、各燃焼バーナ100A,100B,100C,100D,100Eは、微粉炭と搬送用空気(1次空気)とを混合した微粉燃料混合気(燃料ガス)を火炉11内に吹き込み可能であると共に、燃焼用空気を火炉11内に吹き込み可能となっている。燃焼装置12は、点火トーチ(図示略)により微粉燃料混合気に点火することで、火炎を形成することができる。
Therefore, in the
火炉11は、鉛直方向上部に煙道13が連結されており、この煙道13に、対流伝熱部として燃焼ガスの熱を回収するための熱交換器である過熱器(スーパーヒータ)41,42、再熱器43,44及び節炭器(エコノマイザ)45,46,47が設けられており、火炉11での燃焼で発生した燃焼ガスと水や蒸気との間で熱交換が行われる。
In the
煙道13は、そのガス流れ下流側に熱交換を行った燃焼ガスが排ガスとして排出される排ガス管48が連結されている。この排ガス管48は、空気ダクト37との間にエアヒータ49が設けられ、空気ダクト37を流れる空気と、排ガス管48を流れる排ガスとの間で熱交換を行い、燃焼バーナ100A,100B,100C,100D,100Eに供給する燃焼用空気を昇温することができる。なお、排ガス管48は、図示しないが、脱硝装置、電気集塵機、誘引送風機、脱硫装置が設けられ、下流端部に煙突が設けられている。
The
従って、微粉炭機31,32,33,34,35が駆動すると、生成された微粉炭が搬送用空気(1次空気)と共に微粉炭供給管(燃料供給管)26,27,28,29,30を通して燃焼バーナ100A,100B,100C,100D,100Eに供給される。また、加熱された燃焼用空気(2次空気)が空気ダクト37から風箱36を介して各燃焼バーナ100A,100B,100C,100D,100Eに供給される共に、分岐空気ダクト40からアディショナル空気ノズル39に供給される。搬送用空気(1次空気)は微粉炭が着火しないよう温度が低く、燃焼用空気(2次空気)はエアヒータ49で加熱されているので、1次空気および微粉燃料混合気よりも温度が高い。
Therefore, when the pulverized
すると、燃焼バーナ100A,100B,100C,100D,100Eは、微粉炭と搬送用空気とが混合した微粉燃料混合気(燃料ガス)を火炉11に吹き込むと共に燃焼用空気を火炉11に吹き込み、このときに着火することで火炎を形成することができる。また、アディショナル空気ノズル39は、追加空気を火炉11に吹き込み、微粉炭に対する空気の量を適正化させる燃焼制御を行うことができる。この火炉11では、微粉燃料混合気と燃焼用空気とが燃焼して火炎が生じ、この火炉11内の鉛直方向下部の領域で火炎が生じると、燃焼ガス(排ガス)がこの火炉11内を上昇し、煙道13に排出される。
Then, the
即ち、燃焼バーナ100A,100B,100C,100D,100Eは、微粉炭混合気と燃焼用空気(2次空気)を火炉11における燃焼領域に吹き込み、このときに着火することで燃焼領域に火炎旋回流が形成される。そして、この火炎旋回流は、旋回しながら上昇して還元領域に至る。アディショナル空気ノズル39は、追加空気を火炉11における還元領域の鉛直上方に吹き込む。この火炉11では、空気の供給量が微粉炭の供給量に対して理論空気量未満となるように設定されることで、内部が還元雰囲気に保持される。そして、微粉炭の燃焼により発生したNOxが火炉11で還元され、その後、追加空気(アディショナルエア)が供給されることで微粉炭の酸化燃焼が完結され、微粉炭の燃焼によるNOxの発生量が低減される。
That is, the
このとき、給水ポンプ(図示略)から供給された水は、節炭器45,46,47によって予熱された後、蒸気ドラム(図示略)に供給され火炉壁の各水管(図示略)に供給される間に加熱されて飽和蒸気となり、蒸気ドラムに送り込まれる。更に、蒸気ドラムの飽和蒸気は過熱器41,42に導入され、燃焼ガスによって過熱される。過熱器41,42で生成された過熱蒸気は、発電プラントのタービン(図示略)に供給される。また、タービンでの供給した水蒸気の膨張過程の中途で取り出した蒸気は、再熱器43,44に導入され、再度過熱されてタービンに戻され膨張して、タービンが回転駆動する。なお、火炉11をドラム型(蒸気ドラム)として説明したが、この構造に限定されるものではない。
At this time, the water supplied from the water supply pump (not shown) is preheated by the
その後、煙道13の節炭器45,46,47を通過した排ガスは、排ガス管48にて、脱硝装置(図示略)にて、供給したアンモニアと触媒によりNOxなどの有害物質が除去され、電気集塵機で粒子状物質が除去され、脱硫装置により硫黄分が除去された後、煙突から大気中に排出される。
After that, the exhaust gas that has passed through the
ここで、燃焼装置12について詳細に説明するが、この燃焼装置12を構成する各燃焼バーナ100A,100B,100C,100D,100Eは、ほぼ同様の構成をなしていることから、最上段に位置する燃焼バーナ100Aについてのみ説明する。
Here, although the
燃焼バーナ100Aは、図2に示すように、火炉11を形成する4つの壁面に設けられる燃焼バーナ100Aa,100Ab,100Ac,100Adから構成されている。各燃焼バーナ100Aa,100Ab,100Ac,100Adは、微粉炭供給管26から分岐した各分岐管26a,26b,26c,26dが連結されると共に、空気ダクト37から分岐した各分岐管37a,37b,37c,37dが連結されている。
The
従って、火炉11の各壁面にある各燃焼バーナ100Aa,100Ab,100Ac,100Adは、火炉11に対して、微粉炭と搬送用空気(1次空気)が混合した微粉燃料混合気を火炉11中心に対して僅かな偏角を設けて吹き込むと共に、その微粉燃料混合気の外側に燃焼用空気(2次空気)を吹き込む。そして、各燃焼バーナ100Aa,100Ab,100Ac,100Adからの微粉燃料混合気に着火することで、4つの火炎F1,F2,F3,F4を形成することができ、この火炎F1,F2,F3,F4は、火炉11の上方から見て(図2にて)反時計回り方向に旋回する火炎旋回流となる。ここでは、反時計回り方向に旋回するものとしたが、時計回りに旋回する火炎旋回流となるように各燃焼バーナ100Aa,100Ab,100Ac,100Adを配置してもよい。
Therefore, the combustion burners 100Aa, 100Ab, 100Ac, 100Ad on the respective wall surfaces of the
次に、燃焼バーナ100Aについて詳細に説明する。
図3の部分縦断面図および図4に正面図に示すように、本実施形態の燃焼バーナ100Aは、燃料ノズル110と、2次空気ノズル120と、一対の2次空気供給ポート130A,130Bと、を備える。なお、図3の縦断面図は、図4に示す燃焼バーナ100AのI-I矢視断面図となっている。
Next, the
As shown in the partial longitudinal sectional view of FIG. 3 and the front view of FIG. 4, the
燃料ノズル110は、軸線X1に沿って筒状に延びるように形成される部材である。燃料ノズル110は、その内部に微粉炭供給管26から供給される微粉燃料混合気を火炉11へ供給する燃料ガス流路111を形成する。燃料ガス流路111は、軸線X1に直交する断面が矩形状の流路となっている。
The
燃料ノズル110が火炉11に面する開口部分の形状は、微粉燃料混合気のガス流通方向と同方向に直管状に延びる形状となっている。図3に示すように、燃料ノズル110の鉛直方向の高さは、H1で一定となっている。これは、微粉燃料混合気に含まれる微粉炭が燃料ガス流路111の中心軸(軸線X1)に対して外周側へ導かれることを抑制するためである。
The shape of the opening at which the
2次空気ノズル120は、軸線X1に沿って筒状に延びるように形成されるとともに燃料ノズル110の軸線X1に対して外側を取り囲むように配置される部材である。2次空気ノズル120は、その内周面と燃料ノズル110の外周面との間に火炉11へ2次空気を供給する環状の2次空気流路121を形成する。2次空気流路121は、軸線X1に直交する断面が矩形状の流路となっている。
The
2次空気ノズル120は、風箱36から供給される2次空気を、2次空気流路121を介して火炉11へ供給する。2次空気ノズル120の鉛直方向の高さは、基端側がH2で一定であり、先端側でH2からH3まで低くなる形状となっている。
The
2次空気供給ポート130Aは、2次空気ノズル120の鉛直方向の上方に配置され、火炉11へ2次空気を供給するものである。2次空気供給ポート130Bは、2次空気ノズル120の鉛直方向の下方に配置され、火炉11へ2次空気を供給するものである。2次空気供給ポート130A,130Bは、風箱36から供給される2次空気を火炉11へ供給する。2次空気供給ポート130A,130Bの高さは、基端側がH4で一定であり、先端側でH4からH5まで低くなる形状となっている。
The secondary air supply port 130 </ b> A is disposed above the
次に、2次空気流路121の火炉11への開口部の流路幅について説明する。図5は、図4に示す燃焼バーナ100Aの2次空気流路121の火炉11への開口部の流路幅を示す正面図である。ここで、W1は燃料ノズル110の開口部の水平方向の幅であり、W2は2次空気ノズル120の開口部の水平方向の幅である。
Next, the flow passage width of the opening of the secondary
ここで、燃料ガス流路111の右方に位置する2次空気流路121の火炉11への開口部の流路幅をWrとし、燃料ガス流路111の左方に位置する2次空気流路121の火炉11への開口部の流路幅をWlとする。また、燃料ガス流路111の上方に位置する2次空気流路121の火炉11への開口部の流路幅をHuとし、燃料ガス流路111の下方に位置する2次空気流路121の火炉11への開口部の流路幅をHdとする。
Here, the channel width of the opening to the
そして、本実施形態においては、Wr,Wl,Hu,Hdの間に以下の条件式(1)が成り立つように燃料ガス流路111および2次空気流路121を形成する。
Hu+Hd<Wr+Wl (1)
この条件は、燃料ガス流路111の右方および左方に位置する2次空気流路121の火炉11への開口部の流路幅の合計が、燃料ガス流路111の上方および下方に位置する2次空気流路121の火炉11への開口部の流路幅の合計よりも大きいという条件である。条件式(1)が成り立つようにすることで、2次空気供給ポート130A,130Bが配置されない燃料ガス流路111の右方および左方から火炉へ供給される2次空気の流量が増加する。
Then, in the present embodiment, the
Hu + Hd <Wr + Wl (1)
In this condition, the sum of the channel widths of the openings to the
ここで、WrとWlとが同じ流路幅となるように燃料ガス流路111および2次空気流路121を形成してもよい。燃料ガス流路111の右方に位置する2次空気流路121の流路幅Wrと燃料ガス流路111の左方に位置する2次空気流路121の流路幅Wlとを一致させることにより、火炉壁に隣接する領域での硫化水素の発生による火炉壁の腐食と、隣接する他の燃焼バーナの火炎による干渉とをそれぞれ適切に抑制することができる。
Here, the
また、WrとWlとが異なる流路幅となるように燃料ガス流路111および2次空気流路121を形成してもよい。図2に示すように、本実施形態の燃焼バーナ100Aは、燃焼バーナ100Aを火炉11からみた場合、燃料ガス流路111の左方に火炉壁が配置され、燃料ガス流路111の右方から旋回流の上流側の他の燃焼バーナ100Aの火炎による干渉を受ける。
Further, the
そのため、火炎の干渉よりも硫化水素の発生による火炉壁の腐食の影響が大きい場合には、WlをWrよりも広くするのが望ましい。燃料ガス流路111の左方に位置する2次空気流路121から供給される2次空気を増加することで、硫化水素の発生による火炉壁の腐食を抑制することができる。
Therefore, if the influence of the corrosion of the furnace wall due to the generation of hydrogen sulfide is greater than the interference of the flame, it is desirable to make Wl wider than Wr. By increasing the secondary air supplied from the secondary
また、硫化水素の発生による火炉壁の腐食よりも火炎の干渉の影響が大きい場合には、WrをWlよりも広くするのが望ましい。燃料ガス流路111の右方に位置する2次空気流路121から供給される2次空気を増加することで、旋回流の上流側の他の燃焼バーナ100Aの火炎による干渉を抑制することができる。
Also, if the influence of the flame interference is greater than the corrosion of the furnace wall due to the generation of hydrogen sulfide, it is desirable to make Wr wider than Wl. By increasing secondary air supplied from the secondary
また、本実施形態においては、更に以下の条件式(2)が成り立つように燃料ガス流路111および2次空気流路121を形成するのが望ましい。
1.5≦(Wr+Wl)/(Hu+Hd)≦6 (2)
この条件は、燃料ガス流路111の右方および左方に位置する2次空気流路121の火炉11への開口部の流路幅が、燃料ガス流路111の上方および下方に位置する2次空気流路121の火炉11への開口部の流路幅の1.5倍以上かつ6倍以下であるという条件である。条件式(2)が成り立つようにすることで、燃料ガス流路111の右方および左方に位置する2次空気流路121の開口部の流路幅を燃料ガス流路111の上方および下方に位置する2次空気流路121の開口部の流路幅よりも十分に大きくすることができる。
Further, in the present embodiment, it is desirable to form the
1.5 ≦ (Wr + Wl) / (Hu + Hd) ≦ 6 (2)
Under these conditions, the channel width of the opening to the
ここで、比較例の燃焼バーナについて説明する。図6は、比較例の燃焼バーナの2次空気流路の開口部の流路幅を示す正面図である。
本実施形態の燃焼バーナ100Aと比較例の燃焼バーナの双方において、燃料ノズル110の形状は同一である。燃料ノズル110が火炉11に面する開口部の形状は、幅W1で高さH1の矩形状となっている。
Here, the combustion burner of the comparative example will be described. FIG. 6 is a front view showing the channel width of the opening of the secondary air channel of the combustion burner of the comparative example.
The shape of the
本実施形態の燃焼バーナ100Aと比較例の燃焼バーナは、2次空気ノズル120の形状が異なっている。本実施形態の2次空気ノズル120と比較例の2次空気ノズル120aの開口部の高さはH3で同一である。一方、比較例の2次空気ノズル120aの幅W3は、本実施形態の2次空気ノズル120の幅W2よりも狭い。比較例においては、燃料ガス流路111の右方に位置する2次空気流路121aの火炉11への開口部の流路幅Wraと燃料ガス流路111の左方に位置する2次空気流路121aの火炉11への開口部の流路幅Wlaの合計と、燃料ガス流路111の上方に位置する2次空気流路121の火炉11への開口部の流路幅Huと燃料ガス流路111の下方に位置する2次空気流路121の火炉11への開口部の流路幅Hdの合計とが等しい。
In the
このように、本実施形態の燃料ガス流路111の右方および左方に位置する2次空気流路121の火炉11への開口部の流路幅の合計(Wr+Wl)は、比較例の燃料ガス流路111の右方および左方に位置する2次空気流路121aの火炉11への開口部の流路幅の合計(Wra+Wla)よりも大きい。
Thus, the sum (Wr + Wl) of the channel widths of the openings to the
ここで、送風機38により送風される2次空気を火炉11へ送風する開口部の総面積をSとした場合、以下の条件式(3)が成り立つように本実施形態の燃料ガス流路111および2次空気流路121を形成するのが望ましい。
2≦[(Wr+Wl-Wra-Wla)・H3/S]・100≦10 (3)
この条件は、本実施形態の燃料ガス流路111の右方および左方に位置する2次空気流路121の火炉11への開口部の面積の合計(Wr+Wl)・H3から比較例の燃料ガス流路111の右方および左方に位置する2次空気流路121aの火炉11への開口部の面積の合計(Wra+Wla)・H3を減算した値を、2次空気を火炉11へ送風する開口部の総面積の2%以上かつ10%以下とする条件である。
Here, assuming that the total area of the opening for blowing the secondary air blown by the
2 ≦ [(Wr + Wl−Wra−Wla) · H3 / S] · 100 ≦ 10 (3)
This condition is the sum of the area of the opening to the
なお、送風機38により送風される2次空気を火炉11へ送風する開口部の総面積Sを一定とした場合、2次空気流路121に供給される2次空気の流量を増加させると、増加させた流量と同量の2次空気が2次空気供給ポート130A,130Bから減少する。これは、2次空気流路121に供給される2次空気と2次空気供給ポート130A,130Bに供給される2次空気とは、同一の供給源である風箱36に接続されているためである。
When the total area S of the openings for blowing the secondary air blown by the
以上説明した本実施形態の燃焼バーナ100Aが奏する作用および効果について説明する。
The operation and effect of the
本実施形態の燃焼バーナ100Aによれば、微粉燃料混合気を火炉11へ供給する燃料ガス流路111の右方および左方に位置する2次空気流路121の火炉11への開口部の流路幅の合計が、燃料ガス流路111の上方および下方に位置する2次空気流路121の火炉11への開口部の流路幅の合計よりも大きい。そのため、2次空気供給ポート130A,130Bが配置されない燃料ガス流路111の右方および左方から火炉11へ供給される2次空気の流量が増加し、燃焼バーナ100Aの右方または左方の火炉壁に隣接する領域で生成される硫化水素(H2S)が減少する。これにより、硫化水素の発生による火炉壁の腐食が抑制される。また、本実施形態の燃焼バーナ100Aによれば、2次空気供給ポート130A,130Bが配置されない燃料ガス流路111の右方および左方から火炉11へ供給される2次空気の流量が増加し、隣接する他の燃焼バーナの火炎による干渉を抑制することができる。
According to the
また、本実施形態の燃焼バーナ100Aにおいては、燃料ガス流路111の右方および左方に位置する2次空気流路121の火炉11への開口部の流路幅の合計が、燃料ガス流路111の上方および下方に位置する2次空気流路121の火炉11への開口部の流路幅の合計の1.5倍以上かつ6倍以下とするのが望ましい。
Further, in the
燃料ガス流路111の右方および左方に位置する2次空気流路121の開口部の流路幅の合計を燃料ガス流路111の上方および下方に位置する2次空気流路121の開口部の流路幅の合計よりも十分に大きくすることにより、火炉壁に隣接する領域での硫化水素の発生による火炉壁の腐食と、隣接する他の燃焼バーナの火炎による干渉とをより確実に抑制することができる。
The total of the channel widths of the openings of the
<他の実施形態>
本実施形態の燃焼バーナ100Aにおいては、火炉11に面する燃料ノズル110の先端の内部に保炎器を配置してもよい。保炎器は、例えば、鉛直方向に沿って延びる単数または複数の板状部材により形成される。保炎器を配置することにより、微粉燃料混合気の着火性能及び保炎性能を高めることができる。図7及び図8に示す燃焼バーナ100Aは、燃料ノズル110の先端の内部に3つの保炎器112を配置した変形例である。保炎器112は、鉛直方向に延びる板状部材の先端側(火炉側)に火炉に向けて漸次水平方向の幅が拡大する拡大部材を設けたものである。
Other Embodiments
In the
燃料ノズル110の内部に保炎器112を配置すると着火位置が燃焼バーナの火炎中心付近となることから、2次空気流路121の空気量を増加させても、NOxの発生を抑制することができる。また、2次空気流路121から供給される2次空気内の酸素の消費も緩やかとなり、火炉壁に隣接する領域での硫化水素の発生による火炉壁の腐食抑制を維持することができる。
When the
10 微粉炭焚きボイラ
11 火炉
12 燃焼装置
26,27,28,29,30 微粉炭供給管(燃料供給管)
31,32,33,34,35 微粉炭機(粉砕機)
36 風箱
37 空気ダクト(2次空気供給管)
38 送風機
49 エアヒータ(熱交換器)
100A,100B,100C,100D,100E 燃焼バーナ
110 燃料ノズル
111 燃料ガス流路
112 保炎器
120 2次空気ノズル
121 2次空気流路130A,130B 2次空気供給ポート
DESCRIPTION OF
31, 32, 33, 34, 35 Pulverized coal machine (crusher)
36
38
100A, 100B, 100C, 100D,
Claims (4)
前記軸線に沿って筒状に延びるとともに前記燃料ノズルの外側から前記火炉へ2次空気を供給する2次空気流路を形成する2次空気ノズルと、
前記2次空気ノズルの上方および下方に配置され、前記火炉へ2次空気を供給する一対の2次空気供給ポートと、を備え、
前記燃料ガス流路および前記2次空気流路が、前記軸線に直交する断面が矩形状の流路であり、
前記燃料ガス流路の右方および左方に位置する前記2次空気流路の前記火炉への開口部の流路幅の合計が、前記燃料ガス流路の上方および下方に位置する前記2次空気流路の前記火炉への開口部の流路幅の合計よりも大きい燃焼バーナ。 A fuel nozzle that forms a fuel gas flow path that extends in a cylindrical shape along an axis and supplies a fuel gas obtained by mixing a fuel obtained by grinding a carbon-containing solid fuel and primary air to a furnace;
A secondary air nozzle extending in a cylindrical shape along the axis and forming a secondary air flow path for supplying secondary air to the furnace from the outside of the fuel nozzle;
And a pair of secondary air supply ports disposed above and below the secondary air nozzle and supplying secondary air to the furnace.
The fuel gas flow channel and the secondary air flow channel are flow channels each having a rectangular cross section orthogonal to the axis,
The sum of the channel widths of the opening to the furnace of the secondary air channel located on the right and left of the fuel gas channel is the secondary located above and below the fuel gas channel A combustion burner which is larger than the sum of the flow passage widths of the openings to the furnace of the air flow passage.
該火炉の前記4つの壁面のそれぞれに対して設置された請求項1または請求項2に記載の燃焼バーナと、を備え、
前記燃焼バーナが、前記火炉の中心に対して偏角を設けて前記燃料ガスを吹き込み、前記火炉の中心回りに旋回する旋回流を形成するボイラ。 A furnace installed along the vertical direction and formed by four wall surfaces,
The combustion burner according to claim 1 or 2, installed for each of the four wall surfaces of the furnace.
A boiler, wherein the combustion burner blows the fuel gas at an angle with respect to the center of the furnace to form a swirling flow that swirls around the center of the furnace.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017028084A JP7139095B2 (en) | 2017-02-17 | 2017-02-17 | boiler |
JP2017-028084 | 2017-02-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018150701A1 true WO2018150701A1 (en) | 2018-08-23 |
Family
ID=63169426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/044416 Ceased WO2018150701A1 (en) | 2017-02-17 | 2017-12-11 | Combustion burner and boiler with same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7139095B2 (en) |
WO (1) | WO2018150701A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023050754A (en) * | 2021-09-30 | 2023-04-11 | 三菱重工パワーインダストリー株式会社 | Gas burner and combustion equipment |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1566177A (en) * | 1923-06-25 | 1925-12-15 | William H Whitaker | Pulverized-fuel burner |
US5545031A (en) * | 1994-12-30 | 1996-08-13 | Combustion Tec, Inc. | Method and apparatus for injecting fuel and oxidant into a combustion burner |
JPH08226615A (en) * | 1995-02-22 | 1996-09-03 | Mitsubishi Heavy Ind Ltd | Pulverized coal fired burner |
WO2008038426A1 (en) * | 2006-09-27 | 2008-04-03 | Babcock-Hitachi Kabushiki Kaisha | Burner, and combustion equipment and boiler comprising burner |
JP2009204256A (en) * | 2008-02-28 | 2009-09-10 | Mitsubishi Heavy Ind Ltd | Pulverized coal burner |
WO2011074281A1 (en) * | 2009-12-17 | 2011-06-23 | 三菱重工業株式会社 | Solid fuel burner and solid fuel boiler |
JP2013174370A (en) * | 2012-02-23 | 2013-09-05 | Mitsubishi Heavy Ind Ltd | Burner exclusive for biomass burning |
JP2015102298A (en) * | 2013-11-26 | 2015-06-04 | 三菱日立パワーシステムズ株式会社 | Boiler |
WO2016158079A1 (en) * | 2015-03-31 | 2016-10-06 | 三菱日立パワーシステムズ株式会社 | Combustion burner and boiler |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5629901B2 (en) | 2013-07-22 | 2014-11-26 | 三菱日立パワーシステムズ株式会社 | Solid fuel fired burner and solid fuel fired boiler |
JP5799443B2 (en) * | 2014-09-11 | 2015-10-28 | 三菱日立パワーシステムズ株式会社 | Fuel burner, solid fuel fired burner, and solid fuel fired boiler |
-
2017
- 2017-02-17 JP JP2017028084A patent/JP7139095B2/en active Active
- 2017-12-11 WO PCT/JP2017/044416 patent/WO2018150701A1/en not_active Ceased
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1566177A (en) * | 1923-06-25 | 1925-12-15 | William H Whitaker | Pulverized-fuel burner |
US5545031A (en) * | 1994-12-30 | 1996-08-13 | Combustion Tec, Inc. | Method and apparatus for injecting fuel and oxidant into a combustion burner |
JPH08226615A (en) * | 1995-02-22 | 1996-09-03 | Mitsubishi Heavy Ind Ltd | Pulverized coal fired burner |
WO2008038426A1 (en) * | 2006-09-27 | 2008-04-03 | Babcock-Hitachi Kabushiki Kaisha | Burner, and combustion equipment and boiler comprising burner |
JP2009204256A (en) * | 2008-02-28 | 2009-09-10 | Mitsubishi Heavy Ind Ltd | Pulverized coal burner |
WO2011074281A1 (en) * | 2009-12-17 | 2011-06-23 | 三菱重工業株式会社 | Solid fuel burner and solid fuel boiler |
JP2013174370A (en) * | 2012-02-23 | 2013-09-05 | Mitsubishi Heavy Ind Ltd | Burner exclusive for biomass burning |
JP2015102298A (en) * | 2013-11-26 | 2015-06-04 | 三菱日立パワーシステムズ株式会社 | Boiler |
WO2016158079A1 (en) * | 2015-03-31 | 2016-10-06 | 三菱日立パワーシステムズ株式会社 | Combustion burner and boiler |
Also Published As
Publication number | Publication date |
---|---|
JP2018132277A (en) | 2018-08-23 |
JP7139095B2 (en) | 2022-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2998651B1 (en) | Boiler and method for operating boiler | |
CN107429911B (en) | Burner and boiler | |
JP2012122653A (en) | Combustion burner | |
JP5901737B2 (en) | Burning burner | |
JP5670804B2 (en) | Burning burner | |
TWI850917B (en) | Burner, boiler equipped with the same, and burner operation method | |
JP5854620B2 (en) | Boiler and boiler operation method | |
US10605455B2 (en) | Combustion burner and boiler | |
JP6879771B2 (en) | Combustion burner and boiler equipped with it | |
JP5763389B2 (en) | Burning burner | |
WO2018150701A1 (en) | Combustion burner and boiler with same | |
JP6188658B2 (en) | Combustion burner and boiler | |
JP2019517658A (en) | Method for burning fuel and boiler | |
JP6925811B2 (en) | Combustion burner, boiler equipped with it, and combustion method | |
JP6058077B2 (en) | Burning burner | |
JP6246709B2 (en) | Combustion burner and boiler | |
WO2016031540A1 (en) | Combustion burner and boiler | |
JP2017146077A (en) | Boiler | |
TWI858471B (en) | Burners and boilers | |
WO2024262596A1 (en) | Burner, boiler provided with same, and method for operating burner | |
JP2015096790A (en) | Boiler and combustion burner | |
JP2015096789A (en) | Boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17896550 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17896550 Country of ref document: EP Kind code of ref document: A1 |