[go: up one dir, main page]

WO2018151453A1 - Method for producing super absorbent polymer - Google Patents

Method for producing super absorbent polymer Download PDF

Info

Publication number
WO2018151453A1
WO2018151453A1 PCT/KR2018/001599 KR2018001599W WO2018151453A1 WO 2018151453 A1 WO2018151453 A1 WO 2018151453A1 KR 2018001599 W KR2018001599 W KR 2018001599W WO 2018151453 A1 WO2018151453 A1 WO 2018151453A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer mixture
aqueous monomer
polymerization
oxygen
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2018/001599
Other languages
French (fr)
Korean (ko)
Other versions
WO2018151453A8 (en
Inventor
김준규
오재훈
조영빈
장태환
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180014095A external-priority patent/KR102075735B1/en
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Priority to EP18754418.4A priority Critical patent/EP3553092B1/en
Priority to US16/338,913 priority patent/US10894245B2/en
Priority to CN201880003985.XA priority patent/CN109843934B/en
Priority to JP2019517066A priority patent/JP6828145B2/en
Publication of WO2018151453A1 publication Critical patent/WO2018151453A1/en
Publication of WO2018151453A8 publication Critical patent/WO2018151453A8/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents

Definitions

  • the present invention relates to a method for producing a super absorbent polymer having excellent water absorption performance, and more particularly, to a method for producing a super absorbent polymer, which can effectively inhibit the polymerization reaction from starting in a pipe prior to the addition of the polymerization reactor. It is about.
  • Superabsorbent polymer (Super Absorbent Polymer, SAP) is a synthetic polymer material with a can absorb about 500 to 1000 times the water of its own weight, features, developers every SAM (. Super Absorbency Material), AG ( They are named differently, such as Absorbent Gel Material.
  • Such super absorbent polymers have been put into practical use as physiological devices, and are currently used in sanitary products such as paper diapers for children, horticultural soil repair agents, civil engineering, building index materials, seedling sheets, freshness retainers in the food distribution field, and It is widely used as a material for steaming.
  • these super-absorbent resins are widely used in the field of sanitary materials such as diapers and sanitary napkins. Within this sanitary material, the superabsorbent resin is generally included in the state spread in the peel.
  • the content of pulp is reduced, or more so-called pulpless diapers, in which no pil is used at all. Development is underway. As such, the content of pulp may be reduced, or In this case, relatively high absorbent polymers are included in a high proportion, and such superabsorbent polymer particles are inevitably included in the hygienic material in multiple layers.
  • the superabsorbent resin basically needs to exhibit high absorption performance and absorption rate. .
  • Such superabsorbent water paper is made by the method of drying, pulverizing and classifying a hydrogel polymer prepared by cross-polymerizing a monomer containing a salt thereof, or by surface crosslinking again. .
  • an appropriate kind of polymerization initiator or polymerization inhibitor is used, and the progress of polymerization reaction is controlled through the reaction conditions of reaction, and in particular, in order to activate the polymerization, present in the monomer mixture. It is known to remove dissolved oxygen before adding to the polymerization reactor.
  • the water-soluble ethylenically unsaturated carboxylic acid black has to raise the temperature of the neutralized neutralized liquid in order to obtain its salt, in which case the polymerization is initiated in a transfer line such as a pipe rather than a polymerization reactor.
  • a transfer line such as a pipe rather than a polymerization reactor.
  • the polymerization proceeds at a high temperature, it is possible to reduce the amount of polymerization and initiator to be used and to initiate and suppress the polymerization reaction, compared to conventional polymerization methods. It is to provide a method for producing a super absorbent polymer which can be efficiently controlled.
  • a gas containing oxygen in an aqueous monomer mixture comprising a water-soluble ethylenically unsaturated monomer having a neutralized acidic group, a crosslinking agent, and a polymerization inhibitor which inhibits polymerization of the water-soluble ethylenically unsaturated monomer in the presence of oxygen.
  • the polymerization can be carried out at a high temperature, and the amount of the polymerization initiator can be reduced in the polymerization process rather than the conventional polymerization method, and the initiation and suppression of the polymerization reaction can be efficiently controlled. .
  • first and second are used to describe various components, which terms are used only for the purpose of distinguishing one component from other components.
  • Oxygen is added to an aqueous monomer mixture comprising a water-soluble ethylenically unsaturated monomer having a neutralized acidic group, a crosslinking agent, and a polymerization inhibitor that inhibits polymerization of the water-soluble ethylenically unsaturated monomer in the presence of oxygen.
  • a gas comprising;
  • Step D) in the polymerization reactor, crosslinking polymerization of the water-soluble ethylenically unsaturated monomer to form a hydrogel polymer comprising the first crosslinked polymer.
  • Step D) is a step of forming a hydrogel polymer, which is a step of crosslinking and polymerizing an aqueous monomer mixture comprising a water-soluble ethylenically unsaturated monomer having at least a part of which is neutralized with a crosslinking agent and a polymerization initiator.
  • the water-soluble ethylenically unsaturated monomer constituting the first crosslinked polymer may be any monomer commonly used in the preparation of superabsorbent polymers.
  • the water-soluble ethylenically unsaturated monomer may be a compound represented by Formula 1:
  • R1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond
  • M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.
  • the monomer may be at least one selected from the group consisting of acrylic acid, methacrylic acid, and monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts of these acids. like this.
  • acrylic acid or its salt is used as the water-soluble ethylenically unsaturated monomer, it is advantageous to obtain a superabsorbent polymer having improved water absorption.
  • the monomers include maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2-
  • the water-soluble ethylenically unsaturated monomer has an acidic group, at least a portion of the acidic group may be neutralized.
  • those which have been partially neutralized with an alkali substance such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like can be used.
  • the neutralization degree of the monomer may be from about 40 to about 95 mol%, or from about 40 to about 80 mol%, or from about 45 to about 75 mole 0/0. If the degree of neutralization is too high, polymerization of the monomer may be difficult to proceed due to precipitation of the neutralized monomer. On the contrary, if the degree of neutralization is too low, the absorbing power of the polymer may not be greatly reduced and may exhibit properties such as elastic rubber that is difficult to handle.
  • the present invention is not necessarily limited to the above range, and the range of the degree of neutralization may vary depending on the physical properties of the final superabsorbent polymer.
  • the concentration of the aqueous monomer common compound may be appropriately adjusted in consideration of the polymerization time and banung conditions, preferably from 20 to 90% by weight, or 40 to 65 weight 0/0 days Can you-.
  • This concentration range may be advantageous in order to control the grinding efficiency during the grinding of the polymer to be described later, while eliminating the need to remove unreacted monomers after polymerization by using the gel effect phenomenon appearing in the polymerization reaction of a high concentration aqueous solution.
  • the concentration of the monomer is too low, the yield of the super absorbent polymer may be lowered.
  • the concentration of the monomer is too high, some of the monomers may precipitate or process problems may occur, such as when the pulverized efficiency of the polymerized hydrogel polymer is pulverized, and the physical properties of the super absorbent polymer may be reduced.
  • Common ethylenically unsaturated monomers such as acrylic acid and methacrylic acid, generally contain a polymerization inhibitor in order to prevent polymerization from occurring during storage or transportation.
  • Hydroquinone ether-based compounds are commonly used, and specific examples thereof include monomethyl ether of hydroquinone (MEHQ).
  • Polymerization inhibitors are ethylenically unsaturated monomers In contrast, from about lOppmw to about 300ppmw is used, preferably in a content of about 50ppmw to about 250ppmw, or about 150ppmw to about 220ppmw.
  • a polymerization inhibitor Since such a polymerization inhibitor has a polymerization inhibitory effect of an ethylenically unsaturated monomer in the presence of oxygen, it is necessary to maintain a partial pressure of oxygen with a polymerization inhibitor at a constant or higher during the transport or storage of the ethylenically unsaturated monomer. It is necessary to remove the oxygen present in the monomer before starting the polymer polymerization.
  • a thermal polymerization initiator or a photopolymerization initiator may be used depending on the polymerization method.
  • a thermal polymerization initiator is additionally used. Can be.
  • photopolymerization initiator examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenylglyoxylate, and benzyldimethyl ketal (for example, benzoin ether).
  • benzoin ether dialkyl acetophenone, hydroxyl alkylketone, phenylglyoxylate, and benzyldimethyl ketal (for example, benzoin ether).
  • One or more compounds selected from the group consisting of benzyl dimethyl ketal, acyl phosphine, and alpha-aminoketone can be used.
  • acylphosphine commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide can be used. .
  • thermal polymerization initiators At least one thermal polymerization initiator compound selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide, and ascorbic acid may be used.
  • sodium persulfate Na2S208
  • potassium persulfate Pitassium persulfate
  • Ammonium ammonium persulfate
  • NH4 2S208 ammonium persulfate
  • azo-based initiators include 2,2-azobis- (2-amidinopropane) dihydrochloride (2,2-azobis (2-amidinopropane) dihydrochloride), 2,2-azobis- ( ⁇ , ⁇ -dimethylene) isobutyramidine dihydrochloride (2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride), 2-
  • the polymerization initiator may be added at a concentration of about 0.001 to about 1 part by weight based on 100 parts by weight of the monomer. If the concentration of the polymerization initiator is too low, the polymerization rate may be slow and a large amount of residual monomer may be extracted in the final product, and if the concentration of the polymerization initiator is too high, the polymer chain forming the network may be shortened.
  • the thermal polymerization initiator may be present in an amount of about 0.01 to about 0.5 parts by weight based on 100 parts by weight of the ethylenically unsaturated monomer in the present invention.
  • the amount of the thermal polymerization initiator to be used may be The physical properties of the base resin may be affected, and in particular, the water-soluble component content of the base resin may be increased. In addition, when the thermal polymerization initiator is used too little, the efficiency of the hydrogel polymerization may be lowered, and various physical properties of the superabsorbent polymer to be finally produced may be lowered. Is about 0.05 to about 100 parts by weight of the ethylenically unsaturated monomer 0.5 parts by weight can be used.
  • the above-mentioned polymerization initiators may be used in a form initially contained in the aqueous monomer mixture of step A), including a water-soluble ethylenically unsaturated monomer, a crosslinking agent, and a polymerization inhibitor, to remove oxygen from the aqueous monomer mixture.
  • C) may be used in the form of a separate input just before or immediately after the step.
  • the polymerization reaction can be carried out in the presence of a crosslinking agent.
  • the crosslinking agent may be any compound as long as it allows the introduction of a crosslink in the polymerization of the water-soluble ethylenically unsaturated monomer.
  • the crosslinking agent is ⁇ , ⁇ '- methylenebisacrylamide, trimethyl propane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, propylene glycol di (meth) Acrylate, polypropylene glycol (meth) acrylate, butanediol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate: nucleic acid diol di (meth) acrylic Rate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri (meth) acrylate, penta Erys tetraacrylate, triarylamine, ethylene glycol diglycidyl ether, prop
  • two polyethyleneglycol diacrylates with different molecular weights are used.
  • a crosslinking agent may be added in an amount of about 0.001 to about 1 part by weight based on 100 parts by weight of the water-soluble ethylenically unsaturated monomer. That is, the crosslinking agent is too small If included, the absorption rate of the resin may be lowered and the gel strength may be weakened, which is undesirable. On the contrary, when the crosslinking agent is used too much, the absorbency of the superabsorbent polymer is lowered, which may be undesirable as an absorber.
  • reaction material in such a polymerization reaction may be prepared in the form of an aqueous monomer mixture in which raw materials such as the monomers described above are dissolved in a solvent.
  • a solvent any solvent that can be used may be used without limitation as long as it can dissolve the above-described raw materials.
  • solvent water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol ethylene glycol monobutyl ether, propylene glycol monomethyl ether propylene glycol monomethyl ether acetate methylethyl Ketones, acetone, methyl amyl ketone cyclonucanonone, cyclopentanone, diethylene glycol monomethyl ether diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carbitle, methyl cellosolve acetate, ⁇ , ⁇ -Dimethylacetic acid, or mixtures thereof, and the like can be used.
  • the formation of the hydrogel polymer through polymerization of the aqueous monomer mixture may be performed by a conventional thermal polymerization method.
  • the aqueous monomer mixture may be introduced into a reactor such as a kneader equipped with a stirring shaft, and hot water may be supplied thereto, or the reactor may be heated to thermally polymerize to obtain a hydrogel polymer.
  • the hydrous gel phase polymer discharged to the reactor outlet according to the form of the stirring shaft provided in the reaction vessel may be obtained from particles of several millimeters to several centimeters.
  • the hydrous gel polymer obtained may be obtained in various forms depending on the concentration and the injection speed of the monomer in the injected aqueous monomer mixture, and the hydrogel polymer having a particle size of about 2 to about 50 mm is usually obtained. Can be.
  • the polymerization reaction is added to the polymerization reactor in a state where the temperature of the aqueous monomer mixture further comprising a thickening liquid or various additives is added thereto.
  • the aqueous monomer mixture may be transferred and introduced into the polymerization reactor via a transfer line at a temperature condition of about 40 to about 90 ° C.
  • the polymerization reaction may be started early in the transfer line, which may cause process troubles such as clogging of the pipe.
  • Solubility of water, such as oxygen, in water is very sensitive to silver and pressure, as well as the nature of the gas molecules themselves, such as polarity.
  • oxygen accounts for about 21%, and under this atmospheric composition, at about 20 ° C, about 1 atmosphere, the saturated dissolved oxygen amount per liter of distilled water is about 8.84 mg, but about 40 ° C At 1 atm, the saturated dissolved oxygen content per liter of distilled water is about 6.59 mg.
  • the neutralizing liquid or various additives is further included in the process of producing a super absorbent polymer as in the present application. It becomes an aqueous monomer mixture condition, and by interaction with other components dissolved in water, the solubility of oxygen itself is generally lower than the above range.
  • the saturated dissolved oxygen amount per 1 liter of the aqueous monomer mixture is about 7.5 to about 8 mg at about 20 ° C, about 1 atmosphere, and about 40 ° C, at 1 atmosphere, The amount of saturated dissolved oxygen for 1 liter of the monomer mixture is greatly lowered to about 3.0 to about 4 mg.
  • a gas containing oxygen is optionally injected into a thickening liquid containing the polymerization inhibitor described above, or an aqueous monomer mixture containing such a neutralizing liquid and various additives, and an aqueous monomer mixture in which a gas containing oxygen is injected.
  • the injected oxygen By increasing the activity of the polymerization inhibitor may serve to control the polymerization reaction does not occur during the transfer process.
  • the dissolved oxygen ratio represented by Equation 1 below is greater than about 1.0, about 2.5 or less, preferably about 1.5 or more and 2.5 or less, more preferably, about 1.7 or more Oxygen or a gas containing oxygen (atmosphere, etc.) may be injected to satisfy the range of 2.3 or less.
  • D01 is the amount of dissolved oxygen (mg / L) in the aqueous monomer mixture, measured immediately before injecting the gas containing oxygen into the aqueous monomer mixture,
  • D02 is the amount of dissolved oxygen (mg / L) in the aqueous monomer mixture measured immediately after injecting the gas containing oxygen into the aqueous monomer mixture. .
  • the atmosphere containing oxygen or oxygen is injected into the neutralizing liquid or the aqueous monomer mixture containing the neutralizing liquid and various additives, thereby polymerizing the aqueous monomer mixture having a large increase in the amount of dissolved oxygen.
  • the process shock such as clogging of the pipe.
  • the oxygen-injected aqueous monomer mixture is directly introduced into the polymerization reactor, a polymerization reaction proceeding in the polymerization reactor is suppressed and a reaction efficiency may decrease.
  • the inert gas means a gas which is not reactive to the monomer and various additive components contained in the above-mentioned aqueous monomer mixture, and specifically ,.
  • Group 18 gases such as helium (He), neon (Ne), argon (Ar), carbon monoxide (CO), Carbon dioxide (C0 2 ), nitrogen (N 2 ) and the like may be included, and one or more of these may be used in combination.
  • the inert gas may be injected in the same direction or in the opposite direction as the aqueous monomer mixture to remove oxygen, mixed with the aqueous monomer mixture by a valve, a mixer, or a bubble column, and then discharged. Oxygen contained in the mixture can be removed.
  • the inert gas is preferably injected in the same direction as the aqueous monomer mixture, and may be introduced together with the polymerization reactor. Through this process, oxygen dissolved in the aqueous monomer mixture can be effectively removed.
  • the dissolved oxygen ratio represented by Equation 2 may be about 0.01 or more, or about 0.05 or more, and about 0.2 or less, preferably about 15 or less.
  • the dissolved oxygen ratio represented by the following equation (3) is about ⁇ to about
  • 0.5 preferably about 0.1 or more, or about 0.2 or more, about 0.5 or less, or about 0.4 or less, preferably about 0.3 or less.
  • Equation 1 D01 and D02 are as defined in Equation 1,
  • D03 is the amount of dissolved oxygen in the aqueous monomer mixture (mg / L) measured immediately after removing oxygen from the aqueous monomer mixture.
  • the conventional water content of the hydrogel polymer obtained by the above method may be about 40 to about 80% by weight.
  • water content means the content of water to account for the total weight of the hydrogel polymer minus the weight of the polymer in the dry state. Specifically, In the process of raising the temperature of the polymer through infrared heating and drying, it is defined as a calculated value by measuring the weight loss due to evaporation of water in the polymer.
  • Step E) is a step of drying, pulverizing and classifying the hydrogel polymer prepared by the above-described method to form a base resin powder, wherein the base resin powder and the super absorbent polymer obtained therefrom have a particle diameter of about 150 to about 850. Manufactured and provided to have suitable.
  • the base resin powder and the superabsorbent polymer obtained therefrom have a particle size of about 150 to about 850 mm 3, and the fine powder having a particle size of less than about 150 is less than about 3% by weight.
  • the final superabsorbent polymer prepared may express the above-described physical properties better. On the other hand, it will be described in more detail with respect to the progress of the drying, grinding and classification as follows.
  • the pulverizer used is not limited in configuration, but specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting machine Includes any one selected from the group of grinding machines consisting of cutter mills, disc mills, shred crushers, crushers, choppers and disc cutters Although it is possible, it is not limited to the above-mentioned example.
  • the particle diameter of the hydrogel filler is about 2 mm to about 10 mm. It can be ground as much as possible.
  • the drying temperature of the drying step may be about 50 to about 250 o C. If the drying temperature is less than about 50 o C, the drying time may be too long and the physical properties of the superabsorbent polymer to be finally formed may be lowered.
  • the drying temperature exceeds about 250 o C, only the polymer surface is dried excessively, Fine powder may be generated in a subsequent grinding step, and there is a fear that the physical properties of the superabsorbent polymer to be finally formed are reduced. More preferably, the drying may proceed at a temperature of about 150 to about 200 ° C, more preferably at a temperature of about 160 to about 190 ° C. On the other hand, in the case of drying time may be performed for about 20 minutes to about 15 hours in consideration of process efficiency, but is not limited thereto. As long as it is conventionally used in the drying process, can be selected and used without limitation of the configuration.
  • the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
  • the water content of the polymer after such a drying step may be about 0.05 to about 10 weight 0 /.
  • the step of pulverizing the dried polymer obtained through this drying step is carried out.
  • the polymer powder obtained after the grinding step may have a particle diameter of about 150 to about 850.
  • the grinder used to grind to such a particle size is specifically, a ball mill, a pin mill, a hammer mill, a screw mill, a mill, a roll mill, a disk.
  • a mill or a jog mill may be used, but is not limited to the example described above.
  • a separate process of classifying the polymer powder obtained after grinding according to the particle diameter may be performed.
  • the polymer having a particle size of about 150 to about 850 may be classified and commercialized through a surface crosslinking reaction step to be described later only for the polymer powder having such a particle size.
  • the step F) is a step of crosslinking the surface of the base resin prepared in the step E), and in the presence of a surface crosslinking solution, heat treating the base resin powder to crosslink the surface to form superabsorbent resin particles.
  • the surface crosslinking solution is ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, ethylene glycol, Diethylene glycol, propylene glycol, triethylene glycol, tetraethylene glycol, propane diol, dipropylene glycol, ' polypropylene glycol, glycerin, polyglycerol, butanediol, heptanediol, nucleic acid die, trimethylolpropane, pentaerythritol , Sorbbi, may include one or more surface crosslinking agents selected from the group consisting of calcium hydroxide, magnesium hydroxide, aluminum hydroxide, iron hydroxide, calcium chloride, magnesium chloride, aluminum chloride, and iron chloride.
  • ethylene glycol diglycidyl ether can be used.
  • the said surface crosslinking agent about 1 weight part or less with respect to 100 weight part of said base resins.
  • the amount of the surface crosslinking agent used means the total amount thereof when two or more kinds of the surface crosslinking agents are used.
  • the surface crosslinking agent may be used in an amount of about 0.
  • the surface crosslinking solution is water, methanol, ethanol, isopropyl alcohol ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol ethylene glycol monobutyl ether, propylene glycol monomethyl ether propylene glycol monomethyl Ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone cyclonucleanone, cyclopentanone, diethylene glycol monomethyl ether diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carbyl, methyl cellosolve acetate
  • ⁇ , ⁇ -dimethylacetamide may further comprise at least one solvent selected from the group consisting of.
  • water is included.
  • the solvent may be used in about 0.5 to about 10 parts by weight based on 100 parts by weight of the base resin powder.
  • the surface crosslinking liquid may further include aluminum sulfate.
  • the aluminum sulfate may be included in about 0.02 to about 1.5 parts by weight based on 100 parts by weight of the base resin powder.
  • the surface crosslinking liquid may further include an inorganic filler.
  • the inorganic filler may include silica, aluminum oxide, or silicate.
  • the inorganic filler may be included in an amount of about 0.01 to about 0.5 parts by weight based on 100 parts by weight of the base resin powder.
  • the surface crosslinking liquid may further include a thickener.
  • the thickener may be used one or more selected from polysaccharides and hydroxy containing polymers.
  • the polysaccharide gum thickener and cellulose thickener may be used.
  • examples of the gum-based thickener xanthan gum (xanthan gum), Arabic gum (arabic gum), karaya gums (karaya gum), bit i raegeo kaenseu gum (tragacanth gum), Gatti gum (ghatti gum), guar Guar gum, locust bean gum, silylium seed gum, and the like.
  • cellulose-based thickeners include hydroxypropylmethylcellulose, carboxy, and the like.
  • Methyl cellulose, Methylcellose, hydroxymethylcellose, hydroxyethylcellose, hydroxypropylcellose ', hydroxyethylmethylcellose, hydroxymethylpropylcellose, hydroxyethylhydroxypropylcell Rhose, ethyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, etc. are mentioned.
  • specific examples of the hydroxy-containing polymers include polyethylene glycol and polyvinyl alcohol.
  • the surface crosslinking solution and the base resin are put into a reaction tank and mixed, a method of spraying a surface crosslinking solution onto the base resin, and the base resin and the surface crosslinking to a mixer which is continuously operated.
  • the method of supplying and mixing a liquid continuously, etc. can be used.
  • the surface crosslinking may be performed at a temperature of about 100 to about 250 ° C., and may be continuously performed after the drying and grinding step of proceeding at a relatively high temperature. At this time.
  • the surface crosslinking reaction may proceed for about 1 to about 120 minutes, or about 1 to about 100 minutes, or about 10 to about 60 minutes.
  • the polymer particles may be damaged during excessive reaction and thus the physical properties may be deteriorated.
  • the super-absorbent resin according to the present invention centrifugation beam SAT (CRC) for 30 minutes for saline solution (0.9 weight 0/0 aqueous sodium chloride solution) is not less than 30g / g.
  • the measuring method of the centrifugal water holding capacity is specified in the following Examples.
  • the centrifugal water holding capacity is 3 (). 5g / g or more, or 31g / g or more.
  • the super absorbent polymer according to the present invention has a pressurized absorption capacity (0.7 AUP) of 1 g or more for 1 hour under 0.7 psi with respect to physiological saline solution (0.9 weight 0 /. Sodium chloride aqueous solution).
  • the measuring method of the said pressure absorbing power is specified more in the following example.
  • the 0.7 AUP is at least 20 g / g, or at least 8.0 g / g.
  • the superabsorbent polymer according to the present invention has a proportion of particles having a particle diameter of about 150 to about 850 / ⁇ of about 90% or more.
  • In-line Homogenizer (Megatron MT 3000, 4 inlets and 1 outlet) is installed at the upper inlet of single-axis kneader (listed by LIST) that can continuously inject and discharge. , 0.2% ascorbic acid 30g per minute and 0.7% hydrogen peroxide solution 30g per minute, respectively, injecting nitrogen gas into another inlet at a rate of 20L per minute, and rotating the homogenizer at 6,000rpm per minute to mix the solution and gas. The mixed solution and gas inside the homogenizer were introduced into the kneader through the outlet. After adding the neutralizing solution to the kneader, a gel was formed inside the kneader and foaming occurred.
  • the gel was subdivided and discharged out of the kneader by the force given from the rotating body inside, and the size of the gel was 5 mm to 50 mm. This was chopped using a Meat Chopper to further refine the average gel size to 5 mm.
  • the amount of initiator is 100 ascorbic acid and hydrogen peroxide solution described in the above example, and the relative amount is described.
  • Comparative Example 2 0 40 100 Polymer at the outlet of the atmospheric DMS

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention relates to a method for producing a super absorbent polymer having excellent absorption properties, and more specifically relates to a production method of a super absorbent polymer wherein trouble with a process may be prevented by effectively suppressing the initiation of a polymerization reaction in a pipe prior to the introduction into a polymerization reactor.

Description

【발명의 명칭】  [Name of invention]

고흡수성 수지의 제조 방법  Manufacturing method of super absorbent polymer

[가술분야] [Art Field]

관련 출원 (들ᅵ과의 상호 인용  Cross citation with related application (s)

본 출원은 2017년 2월 16일자 한국 특허 출원 제 10-2017-0021051호 및 2018년 2월 5일자 한국 특허 출원 제 10-2018-0014095호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 우수한 흡수 성능을 가지는 고흡수성 수지의 제조 방법에 대한 것으로, 더 구체적으로는, 중합 반웅기 투입 이전, 배관에서 중합 반응이 개시되는 것을 효과적으로 억제할 수 있는, 고흡수성 수지의 제조 방법에 관한 것이다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0021051 dated February 16, 2017 and Korean Patent Application No. 10-2018-0014095 dated February 5, 2018. All content disclosed in the literature is included as part of this specification. The present invention relates to a method for producing a super absorbent polymer having excellent water absorption performance, and more particularly, to a method for producing a super absorbent polymer, which can effectively inhibit the polymerization reaction from starting in a pipe prior to the addition of the polymerization reactor. It is about.

【배경기술】 Background Art

고흡수성 수지 (Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수' 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(.Super Absorbency Material), AG (Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다. Superabsorbent polymer (Super Absorbent Polymer, SAP) is a synthetic polymer material with a can absorb about 500 to 1000 times the water of its own weight, features, developers every SAM (. Super Absorbency Material), AG ( They are named differently, such as Absorbent Gel Material. Such super absorbent polymers have been put into practical use as physiological devices, and are currently used in sanitary products such as paper diapers for children, horticultural soil repair agents, civil engineering, building index materials, seedling sheets, freshness retainers in the food distribution field, and It is widely used as a material for steaming.

가징 · 많은 경우에, 이러한 고흡수성 수지는 기저귀나 생리대 등 위생재 분야에서 널리 사용되고 있다. 이러한 위생재 내에서, 상기 고흡수성 수지는 필프 내에 퍼진 상태로 포함되는 것이 일반적이다. 그런데, 최근 들어서는, 보다 얇은 두께의 기저귀 등 위생재를 제공하기 위한 노력이 계속되고 있으며, 그 일환으로서 펄프의 함량이 감소되거나, 더 나아가 필프가 전혀 사용되지 않는 소위 펄프리스 (pulpless) 기저귀 등의 개발이 적극적으로 진행되고 있다. 이와 같이, 펄프의 함량이 감소되거나, 펄프가 사용되지 않은 위생재의 경우, 상대적으로 고흡수성 수지가 높은 비율로 포함되며, 이러한 고흡수성 수지 입자들이 위생재 내에 불가피하게 다층으로 포함된다. 이렇게 다층으로 포함되는 전체적인 고흡수성 수지 입자들이 보다 효율적으로 소변 등의 액체를 흡수하기 위해서는, 상기 고흡수성 수지가 기본적으로 높은 흡수 성능 및 흡수 속도를 나타낼 필요가 있다. . Gajing, in many cases, these super-absorbent resins are widely used in the field of sanitary materials such as diapers and sanitary napkins. Within this sanitary material, the superabsorbent resin is generally included in the state spread in the peel. However, in recent years, efforts have been made to provide sanitary materials such as thinner diapers, and as a part thereof, the content of pulp is reduced, or more so-called pulpless diapers, in which no pil is used at all. Development is underway. As such, the content of pulp may be reduced, or In this case, relatively high absorbent polymers are included in a high proportion, and such superabsorbent polymer particles are inevitably included in the hygienic material in multiple layers. In order for the overall superabsorbent polymer particles contained in the multilayer to absorb the liquid such as urine more efficiently, the superabsorbent resin basically needs to exhibit high absorption performance and absorption rate. .

이러한 고흡수성 수:지는, 수용성 에틸렌계 불포화 카르복시산 흑은 그 염을 포함하는 단량체를 가교 중합하여 제조된 함수겔 중합체를 건조, 분쇄 및 분급하는 방법에 의해 만들어지거나, 혹은, 이를 다시 표면 가교하여 만들어진다.  Such superabsorbent water: paper is made by the method of drying, pulverizing and classifying a hydrogel polymer prepared by cross-polymerizing a monomer containing a salt thereof, or by surface crosslinking again. .

상술한 단량체를 가교 중합할 때에는, 적절한 종류의 중합 개시제, 혹은 중합 억제제를 사용하고, 반웅의 공정 조건 등을 통해 중합 반웅의 진행 정도를 조절하게 되는데, 특히, 중합 활성화를 위하여, 단량체 혼합물에 존재하는 용존 산소를 중합 반응기에 투입하기 전에 제거하는 등의 방법이 알려져 있다.  In the crosslinking polymerization of the above-mentioned monomers, an appropriate kind of polymerization initiator or polymerization inhibitor is used, and the progress of polymerization reaction is controlled through the reaction conditions of reaction, and in particular, in order to activate the polymerization, present in the monomer mixture. It is known to remove dissolved oxygen before adding to the polymerization reactor.

또한, 최종 제조되는 고흡수성 수지의 우수한 물성을 위하여, 반웅의 개시나 억제 등을 정확히 조절할 필요가 있는데, 라디칼 반응의 특성 상, 이것이 매우 어려우며, 사용하는 중합 개시제 혹은 중합 억제제의 양에 따라, 고흡수성 수지의 물성이 저하되는 문제점이 있다.  In addition, for the excellent physical properties of the final superabsorbent polymer, it is necessary to precisely control the initiation or suppression of reaction, which is very difficult due to the nature of the radical reaction, depending on the amount of polymerization initiator or polymerization inhibitor used, There is a problem that the physical properties of the water absorbent resin are lowered.

특히, 적은 양의 중합 개시제를 사용하기 위해서는, 수용성 에틸렌계 불포화 카르복시산 흑은 이의 염을 얻기 위해 중화한 중화액의 온도를 높여야 하는데, 이 경우, 증합 반응기가 아닌 배관 등의 이송 라인에서 중합이 개시되어, 연속 운전이 어려운 단점이 존재한다.  In particular, in order to use a small amount of the polymerization initiator, the water-soluble ethylenically unsaturated carboxylic acid black has to raise the temperature of the neutralized neutralized liquid in order to obtain its salt, in which case the polymerization is initiated in a transfer line such as a pipe rather than a polymerization reactor. There is a disadvantage that continuous operation is difficult.

따라서, 중합 개시제의 사용량을 줄여, 고온에서 중합을 진행하면서도, 중합 반웅의 개시 및 억제를 효율적으로 제어하기 .위한 연구가 필요한 실정이다.  Therefore, research is needed to efficiently control the initiation and suppression of the polymerization reaction while reducing the amount of the polymerization initiator and proceeding the polymerization at a high temperature.

【발명의 상세한 설명】 [Detailed Description of the Invention]

【기술적 과제】  [Technical problem]

본 발명은 고온에서 중합올 진행할 때, 기존의 중합 방법보다 중합 ,개시제의 사용량을 줄일 수 있으면서도, 중합 반응의 개시 및 억제를 효율적으로 제어할 수 있는, 고흡수성 수지의 제조 방법올 제공하고자 한다. In the present invention, when the polymerization proceeds at a high temperature, it is possible to reduce the amount of polymerization and initiator to be used and to initiate and suppress the polymerization reaction, compared to conventional polymerization methods. It is to provide a method for producing a super absorbent polymer which can be efficiently controlled.

【기술적 해결방법】 Technical Solution

보 시쇠으  Seeing

S O  S O

A) 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체, 가교제, 및 산소 존재 하에 상기 수용성 에틸렌계 불포화 단량체의 중합을 억제하는 중합 억제제를 포함하는, 수성 단량체 흔합물에 산소를 포함하는 기체를 주입하는 단계;  A) A gas containing oxygen in an aqueous monomer mixture comprising a water-soluble ethylenically unsaturated monomer having a neutralized acidic group, a crosslinking agent, and a polymerization inhibitor which inhibits polymerization of the water-soluble ethylenically unsaturated monomer in the presence of oxygen. Injecting;

B) 상기 산소를 포함하는 기체가 주입된 수성 단량체 흔합물을 중합 반웅기로 이송하는 단계 ; · B) transferring the aqueous monomer mixture injected with the gas containing oxygen to a polymerization reactor; ·

C) 상기 산소를 포함하는 기체가 주입된 수성 단량체 흔합물이 중합 반응기로 투입되기 직전.수성 단량체 혼합물로부터 산소를 제거하는 단계; 및 C) immediately before the aqueous monomer mixture into which the oxygen-containing gas is injected is introduced into the polymerization reactor. Removing oxygen from the aqueous monomer mixture; And

D) 중합 반응기 내에서, 수용성 에틸렌계 불포화 단량체를 가교 중합하여, 제 1 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계를 포함하는, D) in the polymerization reactor, crosslinking polymerizing the water-soluble ethylenically unsaturated monomer to form a hydrogel polymer comprising the first crosslinked polymer,

고흡수성 수지의 제조 방법을 제공한다-.  Provided is a method for producing a super absorbent polymer.

【발명의 효과】 【Effects of the Invention】

본 발명의 고흡수성 수지 제조 방법에 따르면, 고온에서 중합을 진행할 수 있고, 중합 과정에서 기존의 중합 방법 보다 중합 개시제의 사용량을 줄일 수.있으면서도, 중합 반응의 개시 및 억제를 효율적으로 제어할 수 있다.  According to the superabsorbent polymer production method of the present invention, the polymerization can be carried out at a high temperature, and the amount of the polymerization initiator can be reduced in the polymerization process rather than the conventional polymerization method, and the initiation and suppression of the polymerization reaction can be efficiently controlled. .

【발명의 실시를 위한 형태】 [Form for implementation of invention]

본 발명의 고흡수성 수지의 제조 방법은,  Method for producing a super absorbent polymer of the present invention,

A) 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체, 가교제, 및 산소 존재 하에 상기 수용성 에틸렌계 불포화 단량체의 중합을 억제하는 중합억제제를 포함하는, 수성 단량체 흔합물에 ' 산소를 포함하는 기체를 주입하는 단계; A) at least a water-soluble ethylenically unsaturated monomer, a crosslinking agent, and the presence of oxygen for containing a polymerization inhibitor to inhibit the polymerization of the water-soluble ethylenically unsaturated monomer, the aqueous monomer common compounds, gas containing oxygen part having a neutralized acid Injecting;

B) 상기 산소를 포함하는 기체가 주입된 수성 단량체 흔합물을 중합 반응기로 이송하는 단계; C) 상기 산소를 포함하는 기체가 주입된 수성 단량체 흔합물이 중합 반웅기로 투입되기 직전 수성 단량체 흔합물로부터 산소를 제거하는 단계; 및B) transferring the aqueous monomer mixture injected with the gas containing oxygen to a polymerization reactor; C) removing oxygen from the aqueous monomer mixture immediately before the aqueous monomer mixture into which the gas containing oxygen is injected is introduced into a polymerization reactor; And

D) 중합 반응기 내에서, 수용성 에틸렌계 불포화 단량체를 가교 중합하여, 제 1 가교 증합체를 포함하는 함수겔 중합체를 형성하는 단계를 포함한다. 본 발명에서, 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. D) in the polymerization reactor, cross-polymerizing the water-soluble ethylenically unsaturated monomer to form a hydrogel polymer comprising the first crosslinked polymer. In the present invention, terms such as first and second are used to describe various components, which terms are used only for the purpose of distinguishing one component from other components.

또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.  Also, the terminology used herein is for the purpose of describing example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise", "comprise" or "have" are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It is to be understood that the present invention does not exclude the possibility of adding or presenting numbers, steps, components, or a combination thereof.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 이하, 본 발명의 고흡수성 수지 제조 방법을, 단계 별로 상세히 설명한다. 본 발명의 일 측면에 따른 고흡수성 수지의 제조 방법은,  As the invention allows for various changes and numerous modifications, particular embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to a particular disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. Hereinafter, the superabsorbent polymer production method of the present invention will be described in detail step by step. Method for producing a super absorbent polymer according to an aspect of the present invention,

A) 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체, 가교제, 및 산소 존재 하에 상기 수용성 에틸렌계 불포화 단량체의 중합을 억제하는 중합 억제제를 포함하는, 수성 단량체 흔합물에 산소를 포함하는 기체를 주입하는 단계; A) Oxygen is added to an aqueous monomer mixture comprising a water-soluble ethylenically unsaturated monomer having a neutralized acidic group, a crosslinking agent, and a polymerization inhibitor that inhibits polymerization of the water-soluble ethylenically unsaturated monomer in the presence of oxygen. Injecting a gas comprising;

B) 상기 산소를 포함하는 기체가 주입된 수성 단량체 흔합물을 중합 반응기로 이송하는 단계;  B) transferring the aqueous monomer mixture injected with the gas containing oxygen to a polymerization reactor;

C) 상기 산소를 포함하는 기체가 주입된 수성 단량체 흔합물이 중합 반웅기로 투입되기 직전 수성 단량체 혼합물로부터 산소를 제거하는 단계; 및 C) removing oxygen from the aqueous monomer mixture immediately before the aqueous monomer mixture into which the gas containing oxygen is injected is introduced into a polymerization reactor; And

D) 중합 반응기 내에서, 수용성 에틸렌계 불포화 단량체를 가교 중합하여, 제 1 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계를 포함한다. 상기 단계 D)는, 함수겔 중합체를 형성하는 단계로서, 가교제, 중합 개시제와 함께, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 포함하는 수성 단량체 흔합물을 가교 중합하는 단계이다. D) in the polymerization reactor, crosslinking polymerization of the water-soluble ethylenically unsaturated monomer to form a hydrogel polymer comprising the first crosslinked polymer. Step D) is a step of forming a hydrogel polymer, which is a step of crosslinking and polymerizing an aqueous monomer mixture comprising a water-soluble ethylenically unsaturated monomer having at least a part of which is neutralized with a crosslinking agent and a polymerization initiator.

상기 제 1 가교 중합체를 구성하는 수용성 에틸렌계 불포화 단량체는 고흡수성 수지의 제조에 통상적으로 사용되는 임의의 단량체일 수 있다. 비제한적인 예로, 상기 수용성 에틸렌계 불포화 단량체는 하기 화학식 1로 표시되는 화합물일 수 있다:  The water-soluble ethylenically unsaturated monomer constituting the first crosslinked polymer may be any monomer commonly used in the preparation of superabsorbent polymers. As a non-limiting example, the water-soluble ethylenically unsaturated monomer may be a compound represented by Formula 1:

[화학식 1]  [Formula 1]

R1-COOM1  R1-COOM1

상기 화학식 1에서,  In Chemical Formula 1,

R1는 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고, R1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond,

M l는 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다. 바람직하게는, 상기 단량체는 아크릴산, 메타크릴산, 및 이들 산의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 이처럼. 수용성 에틸렌계 불포화 단량체로 아크릴산 또는 그 염을 사용할 경우 흡수성이 향상된 고흡수성 수지를 얻을 수 있어 유리하다. 이 밖에도 상기 단량체로는 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2- 아크릴로일에탄 술폰산, 2—메타아크릴로일에탄술폰산, 2-M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt. Preferably, the monomer may be at least one selected from the group consisting of acrylic acid, methacrylic acid, and monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts of these acids. like this. When acrylic acid or its salt is used as the water-soluble ethylenically unsaturated monomer, it is advantageous to obtain a superabsorbent polymer having improved water absorption. In addition, the monomers include maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2-

(메트)아크릴로일프로판술폰산 또는 2- (메타)아크릴아미드 -2-메틸 프로판 술폰산, (메트)아크릴아미드, N-치환 (메트)아크릴레이트, 2-히드록시에틸 (메트)아크릴레이트, 2-히드록시프로필 (메트)아크릴레이트, 메특시폴리에틸렌글리콜 . (메트)아크릴레이트, 폴리에틸렌 글리콜(Meth) acryloylpropanesulfonic acid or 2- (meth) acrylamide-2-methyl propane sulfonic acid, (meth) acrylamide, N-substituted (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2 -Hydroxypropyl (meth) acrylate, Mesopolyethylene glycol . (Meth) acrylate, polyethylene glycol

(메트)아크릴레이트, (Ν,Ν)-디메틸아미노에틸 (메트)아크릴레이트, (Ν,Ν)- 디메틸아미노프로필 (메트)아크릴아미드 등이 사용될 수 있다. (Meth) acrylate, (Ν, Ν) -dimethylaminoethyl (meth) acrylate, (Ν, Ν) -dimethylaminopropyl (meth) acrylamide and the like can be used.

여기서, 상기 수용성 에틸렌계 불포화 단량체는 산성기를 가지며, 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 알칼리 물질로 부분적으로 중화시킨 것이 사용될 수 있다.  Here, the water-soluble ethylenically unsaturated monomer has an acidic group, at least a portion of the acidic group may be neutralized. Preferably, those which have been partially neutralized with an alkali substance such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like can be used.

이때, 상기 단량체의 중화도는 약 40 내지 약 95몰 %, 또는 약 40 내지 약 80몰%, 또는 약 45 내지 약 75몰0 /0일 수 있다. 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려을 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다. 그러나, 본 발명이 반드시 상기 범위에 한정되는 것은 아니며, 상기 중화도의 범위는 최종 고흡수성 수지의 물성에 따라 달라질 수 있다. In this case, the neutralization degree of the monomer may be from about 40 to about 95 mol%, or from about 40 to about 80 mol%, or from about 45 to about 75 mole 0/0. If the degree of neutralization is too high, polymerization of the monomer may be difficult to proceed due to precipitation of the neutralized monomer. On the contrary, if the degree of neutralization is too low, the absorbing power of the polymer may not be greatly reduced and may exhibit properties such as elastic rubber that is difficult to handle. However, the present invention is not necessarily limited to the above range, and the range of the degree of neutralization may vary depending on the physical properties of the final superabsorbent polymer.

또한, 상기 수성 단량체 흔합물 중 상기 수용성 에틸텐계 불포화 단량체의 농도는 중합 시간 및 반웅 조건 등을 고려하여 적절히 조절될 수 있으며, 바람직하게는 20 내지 90 중량 %, 또는 40 내지 65 중량0 /0일 수 있디-. 이러한 농도 범위는 고농도 수용액의 중합 반응에서 나타나는 겔 효과 현상을 이용하여 중합 후 미반응 단량체를 제거할 필요가 없도록 하면서도, 후술할 중합체의 분쇄시 분쇄 효율을 조절하기 위해 유리할 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮아질 수 있다. 반대로, 상기 단량체의 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄시 분쇄 효율이 떨어지는 등 공정상 문제가 생길 수 있고, 고흡수성 수지의 물성이 저하될 수 있다. 아크릴산, 메타아크릴산 등 통상의 에틸렌계 불포화 단량체는 저장 또는 운송 중에 중합이 발생하는 것을 방지하기 위하여 중합 억제제를 포함하고 있는 것이 일반적이다. 하이드로퀴논 에테르계 화합물이 일반적으로 많이 사용되며, 구체적인 예로, 모노메틸 에테르 하이드로퀴논 (MEHQ, Monomethyl ether of Hydroquinone)등을 들 수 있다. 중합 억제제는 에틸렌계 불포화 단량체 대비 약 lOppmw 내지 약 300ppmw가 사용되며, 바람직하게는 약 50ppmw 내지 약 250ppmw, 또는 약 150ppmw 내지 약 220ppmw의 함량으로 사용된다. In addition, the concentration of the aqueous monomer common compound The water-soluble ethyl butene unsaturated monomer may be appropriately adjusted in consideration of the polymerization time and banung conditions, preferably from 20 to 90% by weight, or 40 to 65 weight 0/0 days Can you-. This concentration range may be advantageous in order to control the grinding efficiency during the grinding of the polymer to be described later, while eliminating the need to remove unreacted monomers after polymerization by using the gel effect phenomenon appearing in the polymerization reaction of a high concentration aqueous solution. However, when the concentration of the monomer is too low, the yield of the super absorbent polymer may be lowered. On the contrary, when the concentration of the monomer is too high, some of the monomers may precipitate or process problems may occur, such as when the pulverized efficiency of the polymerized hydrogel polymer is pulverized, and the physical properties of the super absorbent polymer may be reduced. Common ethylenically unsaturated monomers, such as acrylic acid and methacrylic acid, generally contain a polymerization inhibitor in order to prevent polymerization from occurring during storage or transportation. Hydroquinone ether-based compounds are commonly used, and specific examples thereof include monomethyl ether of hydroquinone (MEHQ). Polymerization inhibitors are ethylenically unsaturated monomers In contrast, from about lOppmw to about 300ppmw is used, preferably in a content of about 50ppmw to about 250ppmw, or about 150ppmw to about 220ppmw.

이러한 중합 억제제는, 산소가 존재하는 상태에서 에틸렌계 불포화 단량체의 중합 억제 효과를 나타내기 때문에, 에틸렌계 불포화 단량체의 이송 혹은, 보관 중에서, 중합 억제제와 함께 산소의 분압을 일정 이상으로 유지시킬 필요가 있으며, 고분자 중합을 시작하기 전에는 단량체 내에 존재하는 산소를 제거할 필요가 있다. 상기 중합 개시제로는 증합 방법에 따라 열 중합 개시제 또는 광 중합 개시제 등이 사용될 수 있다. 다만, 광 중합 방법에 의하더라도, 자외선 조사 등에 의해 일정량의 열이 발생하고, 또한 발열 반웅인 중합 반웅의 진행에 따라 어느 정도의 열이 발생하므로, 광 증합의 경우에도 열 중합 개시제가 추가로 사용될 수 있다.  Since such a polymerization inhibitor has a polymerization inhibitory effect of an ethylenically unsaturated monomer in the presence of oxygen, it is necessary to maintain a partial pressure of oxygen with a polymerization inhibitor at a constant or higher during the transport or storage of the ethylenically unsaturated monomer. It is necessary to remove the oxygen present in the monomer before starting the polymer polymerization. As the polymerization initiator, a thermal polymerization initiator or a photopolymerization initiator may be used depending on the polymerization method. However, even with the photopolymerization method, since a certain amount of heat is generated by ultraviolet irradiation or the like, and a certain amount of heat is generated in accordance with the progress of the polymerization reaction, which is an exothermic reaction, a thermal polymerization initiator is additionally used. Can be.

상기 광 중합 개시제로는, 예를 들어, 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone), 하이드록실 알킬케톤 (hydroxyl alkylketone), 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (benzyl dimethyl ketal), 아실포스핀 (acyl phosphine), 및 알파 -아미노케톤 (α- aminoketone)으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 그 중 아실포스핀의 구체 예로서, 상용하는 lucirin TPO, 즉, 2,4,6- 트리메틸 -벤조일-트리메틸 포스핀 옥사이드 (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)가 사용될 수 있다. 보다 다양한 광 중합 개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)"의 1 15 페이지에 개시되어 있으며, 이를 참조할 수 있다. 그리고, 상기 열 중합 개시제로는, 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산으로 이루어진 군에서 선택된 하나 이상의 열 중합 개시제 화합물이 사용될 수 있다.  Examples of the photopolymerization initiator include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenylglyoxylate, and benzyldimethyl ketal (for example, benzoin ether). One or more compounds selected from the group consisting of benzyl dimethyl ketal, acyl phosphine, and alpha-aminoketone can be used. As specific examples of acylphosphine, commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide can be used. . A wider variety of photopolymerization initiators is disclosed in Reinhold Schwalm's book, "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)", page 15. As the thermal polymerization initiator, at least one thermal polymerization initiator compound selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide, and ascorbic acid may be used.

구체적으로, 과황산염계 개시제로는 과황산나트륨 (Sodium persulfate; Na2S208), 과황산칼륨 (Potassium persulfate; 2S208), 과황산암모늄 (Ammonium persulfate; (NH4)2S208) 등을 예로 들 수 있다. Specifically, as the persulfate-based initiator, sodium persulfate (Na2S208), potassium persulfate (Potassium persulfate; 2S208), ammonium persulfate (Ammonium) persulfate; (NH4) 2S208) etc. are mentioned.

또한, 아조 (Azo)계 개시제로는 2,2-아조비스 -(2- 아미디노프로판)이염산염 (2,2-azobis(2-amidinopropane) dihydrochloride), 2,2- 아조비스 -(Ν,Ν-디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2,2-azobis- (N,N-dimethylene)isobutyramidine dihydrochloride), 2- In addition, azo-based initiators include 2,2-azobis- (2-amidinopropane) dihydrochloride (2,2-azobis (2-amidinopropane) dihydrochloride), 2,2-azobis- (Ν, Ν-dimethylene) isobutyramidine dihydrochloride (2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride), 2-

(카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2,2-아조비스 [2-(2- 이미다졸린 -2-일)프로판] 디하이드로클로라이드 (2,2-azobis[2-(2-imidazolin-2- yl)propane] dihydrochloride), 4,4-아조비스 -(4-시아노발레릭 산) (4,4-azobis-(4- cyanovaleric acid)) 등을 예로 들 수 있다. (Carbamoylazo) isobutyronitrile ( 2- (carbamoylazo) isobutylonitril), 2,2-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (2,2-azobis [ 2- (2-imidazolin-2-yl) propane] dihydrochloride), 4,4-azobis- (4-cyanovaleric acid) (4,4-azobis- (4-cyanovaleric acid)) Can be.

보다 다양한 열 중합 개시제에 대해서는 Odian 저서인 "Principle of For a more varied thermal polymerization initiator, see Odian, "Principle of

Polymerization(Wiley, 1981년)"의 203 페이지에 개시되어 있으며, 이를 참조할 수 있다. 상기 중합 개시제는 상기 단량체 100중량부에 대하여 약 0.001 내지 약 1중량부의 농도로 첨가될 수 있다. 즉, 상기 중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고 최종 제품에 잔존 모노머가 다량으로 추출될 수 있어 바람직하지 않다. 반대로, 상기 중합 개시제의 농도가 지나치게 높을 경우 네트워크를 이루는 고분자 체인이 짧아져 수가용 성분의 함량이 높아지고 가압 흡수능이 낮아지는 등 수지의 물성이 저하될 수 있어 바람직하지 않다. 특히, 본 발명에서 상기 열 중합 개시제는 상기 에틸렌계 불포화 단량체 100증량부 대비 약 0.01 내지 약 0.5중량부로 사용할 수 있다. 상기 열 중합 개시제의 사용량은 이후 공정을 통해 제조되는 베이스 수지의 물성에 영향을 줄 수 있으며, 특히 상기 베이스 수지의 수가용 성분 함량에 영향을 준다. 수가용 성분 함량이 높아지면, 최종 제조되는 고흡수성 수지의 물성이 나빠지며, 특히 가압하 흡수능 (AUP)와 통액성이 나빠지게 된다. 또한, 상기 열 중합 개시제가 너무 적게 사용되는 경우, 함수겔 중합의 효율이 떨어져 최종 제조되는 고흡수성 수지의 각종 물성이 저하될 수 있다. 바람직하게는, 상기 열 중합 개시제는 상기 에틸렌계 불포화 단량체 100중량부 대비 약 0.05 내지 약 0.5중량부로 사용할 수 있다. 상술한 중합 개시제들은, 수용성 에틸렌계 불포화 단량체, 가교제, 및 중합 억제제를 포함하는, 상기 A) 단계의 수성 단량체 흔합물에 처음부터 포함되는 형태로 사용될 수도 있고, 상기 수성 단량체 흔합물로부터 산소를 제거하는 C) 단계 직 전, 또는 직후에 별도로 투입하는 형태로 사용될 수도 있다. Polymerization (Wiley, 1981) ", which may be referred to. The polymerization initiator may be added at a concentration of about 0.001 to about 1 part by weight based on 100 parts by weight of the monomer. If the concentration of the polymerization initiator is too low, the polymerization rate may be slow and a large amount of residual monomer may be extracted in the final product, and if the concentration of the polymerization initiator is too high, the polymer chain forming the network may be shortened. In particular, the thermal polymerization initiator may be present in an amount of about 0.01 to about 0.5 parts by weight based on 100 parts by weight of the ethylenically unsaturated monomer in the present invention. The amount of the thermal polymerization initiator to be used may be The physical properties of the base resin may be affected, and in particular, the water-soluble component content of the base resin may be increased. In addition, when the thermal polymerization initiator is used too little, the efficiency of the hydrogel polymerization may be lowered, and various physical properties of the superabsorbent polymer to be finally produced may be lowered. Is about 0.05 to about 100 parts by weight of the ethylenically unsaturated monomer 0.5 parts by weight can be used. The above-mentioned polymerization initiators may be used in a form initially contained in the aqueous monomer mixture of step A), including a water-soluble ethylenically unsaturated monomer, a crosslinking agent, and a polymerization inhibitor, to remove oxygen from the aqueous monomer mixture. C) may be used in the form of a separate input just before or immediately after the step.

특히, 상술한 열 중합 개시제를 사용하는 경우, 산소와의 상호작용 측면을 고려하였을 때, 상기 C) 단계에서 수성 단량체 혼합물로부터 산소를 제거한 이후, 상기 D) 단계 이전에 별도로 투입하는 것이 바람직할 수 있다. 또한, 상기 중합 반웅은, 가교제의 존재 하에 수행할 수 있다. 상기 가교제는 상기 수용성 에틸렌계 불포화 단량체의 중합 시 가교 결합의 도입을 가능케 하는 것이라면 어떠한 화합물도 사용 가능하다. 비제한적인 예로, 상기 가교제는 Ν,Ν'-메틸렌비스아크릴아미드, 트리메틸를프로판 트리 (메트)아크릴레이트, 에틸렌글리콜 다이 (메트)아크릴레이트, 폴리에틸렌글리콜 (메트)아크릴레이트, 프로필렌글리콜 다이 (메트)아크릴레이트, 폴리프로필렌글리콜 (메트)아크릴레이트, 부탄다이올다이 (메트)아크릴레이트, 부틸렌글리콜다이 (메트)아크릴레이트, 다이에틸렌글리콜 다이 (메트)아크릴레이트: 핵산다이올다이 (메트)아크릴레이트, 트리에틸렌글리콜 다이 (메트)아크릴레이트, 트리프로필렌글리콜 다이 (메트)아크릴레이트, 테트라에틸렌글리콜 다이 (메트)아크릴레이트, 다이펜타에리스리를 펜타아크릴레이트, 글리세린 트리 (메트)아크릴레이트, 펜타에리스를 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린, 또는 에틸렌카보네이트와 같은 다관능성 가교제가 단독 사용 또는 2 이상 병용될 수 있으며, 이에 제한되는 것은 아니다. 바람직하게는, 분자량이 서로 상이한 폴리에틸렌글리콜 디아크릴레이트 2종을 사용한다. 이러한 가교제는 상기 수용성 에틸렌계 불포화 단량체 100중량부 대비 약 0.001 내지 약 1중량부로 첨가될 수 있다. 즉, 상기 가교제가 지나치게 적게 포함되는 경우, 수지의 흡수 속도가 낮아지고 겔 강도가 약해질 수 있어 바람직하지 않다. 반대로, 상기 가교제가 지나치게 많이 사용되는 경우 고흡수성 수지의 흡수력이 낮아져 흡수체로서는 바람직하지 않게 될 수 있다. 그리고, 이러한 증합 반응에서의 반응 물질은 전술한 단량체 등의 원료 물질이 용매에 용해된, 수성 단량체 흔합물 형태로 준비될 수 있다. 이때 사용 가능한 용매로는 전술한 원료 물질들을 용해시킬 수 있는 것이라면 그 구성의 한정 없이 사용될 수 있다. 예를 들어, 상기 용매로는 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디올, 프로필렌글리콜 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르 프로필렌글리콜모노메틸에테르아세테이트 메틸에틸케톤, 아세톤, 메틸아밀케톤 시클로핵사논, ' 시클로펜타논, 디에틸렌글리콜모노메틸에테르 디에틸렌글리콜에틸에테르, 를루엔, 자일렌, 부티로락톤, 카르비틀, 메틸셀로솔브아세테이트, Ν,Ν-디메틸아세트아口 , 또는 이들의 혼합물 등이 사용될 수 있다. 그리고, 상기 수성 단량체 혼합물의 중합을 통한 함수겔상 중합체의 형성은 통상적인 열 중합 방법으로 수행할 수 있다. 예를 들어, 니더 (kneader)와 같은 교반축을 가진' 반웅기에서 진행될 수 있다. 이 경우, 교반축이 구비된 니더와 같은 반응기에 상기 수성 단량체 흔합물을 투입하고, 여기에 열풍을 공급하거나 반응기를 가열하여 열 중합함으로써 함수겔상 중합체를 얻을 수 있다. 이때, 반웅기에 구비된 교반축의 형태에 따라 반응기 배출구로 배출되는 함수겔상 중합체는 수 밀리미터 내지 수 센티미터의 입자로 얻어질 수 있다. 구체적으로, 얻어지는 함수겔상 중합체는 주입되는 수성 단량체 흔합물 중 단량체의 농도 및 주입속도 등에 따라 다양한 형태로 얻어질 수 있는데, 통상 (중량 평균) 입경이 약 2 내지 약 50mm인 함수겔상 중합체가 얻어질 수 있다. 한편, 상술한 바와 같이, 베이스 수지 및 최종 제조되는 고흡수성 수지의 물성을 향상시키기 위해서는, 중합 반웅에서 상대적으로 적은 양의 중합 개시제를 사용하는 것이 바람직한데, 이 경우, 중합 효율을 향상시키기 위해서, 상기 수용성 에틸렌계 불포화 단량체에 포함된 산성기 중 적어도 일부를 증화한 이후, 증화액, 혹은 여기에 각종 첨가제 등을 더 포함하는 수성 단량체 흔합물의 온도가 높은 상태에서 중합 반웅기에 투입하게 된다. In particular, in the case of using the above-described thermal polymerization initiator, in consideration of the interaction with oxygen, it may be preferable to separate the oxygen from the aqueous monomer mixture in the step C), and then separately added before the step D). have. In addition, the polymerization reaction can be carried out in the presence of a crosslinking agent. The crosslinking agent may be any compound as long as it allows the introduction of a crosslink in the polymerization of the water-soluble ethylenically unsaturated monomer. As a non-limiting example, the crosslinking agent is Ν, Ν'- methylenebisacrylamide, trimethyl propane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, propylene glycol di (meth) Acrylate, polypropylene glycol (meth) acrylate, butanediol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate: nucleic acid diol di (meth) acrylic Rate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri (meth) acrylate, penta Erys tetraacrylate, triarylamine, ethylene glycol diglycidyl ether, propylene Multifunctional crosslinking agents such as glycols, glycerin, or ethylene carbonate may be used alone or in combination of two or more, but are not limited thereto. Preferably, two polyethyleneglycol diacrylates with different molecular weights are used. Such a crosslinking agent may be added in an amount of about 0.001 to about 1 part by weight based on 100 parts by weight of the water-soluble ethylenically unsaturated monomer. That is, the crosslinking agent is too small If included, the absorption rate of the resin may be lowered and the gel strength may be weakened, which is undesirable. On the contrary, when the crosslinking agent is used too much, the absorbency of the superabsorbent polymer is lowered, which may be undesirable as an absorber. In addition, the reaction material in such a polymerization reaction may be prepared in the form of an aqueous monomer mixture in which raw materials such as the monomers described above are dissolved in a solvent. In this case, any solvent that can be used may be used without limitation as long as it can dissolve the above-described raw materials. For example, as the solvent, water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol ethylene glycol monobutyl ether, propylene glycol monomethyl ether propylene glycol monomethyl ether acetate methylethyl Ketones, acetone, methyl amyl ketone cyclonucanonone, cyclopentanone, diethylene glycol monomethyl ether diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carbitle, methyl cellosolve acetate, Ν, Ν -Dimethylacetic acid, or mixtures thereof, and the like can be used. In addition, the formation of the hydrogel polymer through polymerization of the aqueous monomer mixture may be performed by a conventional thermal polymerization method. For example, a "can take place in a half unggi with stirring axis, such as a kneader (kneader). In this case, the aqueous monomer mixture may be introduced into a reactor such as a kneader equipped with a stirring shaft, and hot water may be supplied thereto, or the reactor may be heated to thermally polymerize to obtain a hydrogel polymer. At this time, the hydrous gel phase polymer discharged to the reactor outlet according to the form of the stirring shaft provided in the reaction vessel may be obtained from particles of several millimeters to several centimeters. Specifically, the hydrous gel polymer obtained may be obtained in various forms depending on the concentration and the injection speed of the monomer in the injected aqueous monomer mixture, and the hydrogel polymer having a particle size of about 2 to about 50 mm is usually obtained. Can be. On the other hand, as described above, in order to improve the physical properties of the base resin and the final superabsorbent polymer to be produced, it is preferable to use a relatively small amount of polymerization initiator in the polymerization reaction, in this case, to improve the polymerization efficiency To this end, after at least a portion of the acidic groups contained in the water-soluble ethylenically unsaturated monomer is thickened, the polymerization reaction is added to the polymerization reactor in a state where the temperature of the aqueous monomer mixture further comprising a thickening liquid or various additives is added thereto. .

예를 들어, 상기 수성 단량체 흔합물은, 약 40 내지 약 90°C의 온도 조건에서 이송 라인을 통해 중합 반응기로 이송 및 투입될 수 있다.  For example, the aqueous monomer mixture may be transferred and introduced into the polymerization reactor via a transfer line at a temperature condition of about 40 to about 90 ° C.

그러나 이와 같이 중합 반응의 효율 향상을 위해 중화액의 온도를 높여 중합 반응기에 투입하게 되면, 이송 라인 등에서 중합 반웅이 조기 개시될 수 있으며, 이로 인해 배관 막힘 등, 공정 트러블이 발생할 수 있는 문제점이 있다. 산소와 같은 기체의 물에 대한 용해도는, 극성 등 기체 분자 자체의 성질과 더불어, 은도 및 압력에 따라 매우 민감하게 달라지게 된다.  However, when the temperature of the neutralizing liquid is added to the polymerization reactor in order to improve the efficiency of the polymerization reaction, the polymerization reaction may be started early in the transfer line, which may cause process troubles such as clogging of the pipe. . Solubility of water, such as oxygen, in water is very sensitive to silver and pressure, as well as the nature of the gas molecules themselves, such as polarity.

구체적으로, 일반적인 대기 조성에서, 산소는 약 21 %를 차지하고 있는데, 이러한 대기 조성 하에, 약 20 °C , 약 1기압에서, 증류수 1리터에 대한 포화 용존 산소량은 약 8.84mg이지만, 약 40 °C , 1기압에서, 증류수 1리터 대한 포화 용존 산소량은 약 6.59mg으로, 낮아지게 된다. 또한, 본원과 같이 고흡수성 수지를 제조하는 공정에서는 증류수 조건이 아니라, 상술한 수용성 에틸렌계 불포화 단량체에 포함된 산성기 중 적어도 일부를 중화한 이후, 중화액, 혹은 여기에 각종 첨가제 등을 더 포함하는 수성 단량체 흔합물 조건이 되는데, 물 속에 용해된 다른 성분들과의 상호작용에 의해, 산소 자체의 용해도는 상기 범위보다 더 낮아지는 것이 일반적이다.  Specifically, in a typical atmospheric composition, oxygen accounts for about 21%, and under this atmospheric composition, at about 20 ° C, about 1 atmosphere, the saturated dissolved oxygen amount per liter of distilled water is about 8.84 mg, but about 40 ° C At 1 atm, the saturated dissolved oxygen content per liter of distilled water is about 6.59 mg. In addition, in the process of producing a super absorbent polymer as in the present application, after neutralizing at least a part of the acid groups included in the above-described water-soluble ethylenically unsaturated monomers, the neutralizing liquid or various additives is further included. It becomes an aqueous monomer mixture condition, and by interaction with other components dissolved in water, the solubility of oxygen itself is generally lower than the above range.

예를 들어, 상기 수성 단량체 흔합물의 경우, 약 20 °C , 약 1기압에서, 수성 단량체 혼합물 1리터에 대한 포화 용존 산소량은 약 7.5 내지 약 8mg 정도이며, 약 40 °C , 1기압에서, 수성 단량체 흔합물 1리터에 대한 포화 용존 산소량은 약 3.0 내지 약 4mg 정도로 크게 낮아지는 것이다.  For example, in the case of the aqueous monomer mixture, the saturated dissolved oxygen amount per 1 liter of the aqueous monomer mixture is about 7.5 to about 8 mg at about 20 ° C, about 1 atmosphere, and about 40 ° C, at 1 atmosphere, The amount of saturated dissolved oxygen for 1 liter of the monomer mixture is greatly lowered to about 3.0 to about 4 mg.

그런데, 이러한 조건에서는, 수성 단량체 혼합물 중의 산소 량이 충분치 않아, 중합 억제제가 제 역할을 하기 매우 어려우며, 이에 따라 중합 반웅이 조기 개시될 수 있는 것이다.  However, under these conditions, the amount of oxygen in the aqueous monomer mixture is not sufficient, and it is very difficult for the polymerization inhibitor to function properly, and thus the polymerization reaction can be started early.

이에 본 발명에서는 상술한 중합 억제제가 포함된 증화액, 또는 이러한 중화액 및 각종 첨가제를 포함하는 수성 단량체 혼합물에 산소를 포함하는 기체를 임의로 주입하고, 산소를 포함하는 기체가 주입된 수성 단량체 흔합물을 중합 반응기로 이송하는 방법을 이용한다. 이 경우, 주입된 산소는 중합 억제제의 활성을 높여 이송 과정 중에 중합 반응이 일어나지 않도록 제어하는 역할을 할 수 있다. Accordingly, in the present invention, a gas containing oxygen is optionally injected into a thickening liquid containing the polymerization inhibitor described above, or an aqueous monomer mixture containing such a neutralizing liquid and various additives, and an aqueous monomer mixture in which a gas containing oxygen is injected. To a polymerization reactor. In this case, the injected oxygen By increasing the activity of the polymerization inhibitor may serve to control the polymerization reaction does not occur during the transfer process.

구체적으로, 상기 A) 단계에서는, 하기 수학식 1로 표시되는 용존 산소 비율이 약 1.0보다 크고, 약 2.5 이하인 범위, 바람직하게는 약 1.5 이상 약 2.5 이하인 범위, 더욱 바람직하게는, 약 1.7 이상 약 2.3 이하인 범위를 만족하도록 산소 혹은 산소를 포함하는 기체 (대기 등)를 주입할 수 있다.  Specifically, in the step A), the dissolved oxygen ratio represented by Equation 1 below is greater than about 1.0, about 2.5 or less, preferably about 1.5 or more and 2.5 or less, more preferably, about 1.7 or more Oxygen or a gas containing oxygen (atmosphere, etc.) may be injected to satisfy the range of 2.3 or less.

[수학식 1]  [Equation 1]

D02/D01  D02 / D01

상기 수학식 1에서,  In Equation 1,

D01는, 상기 수성 단량체 혼합물에 산소 포함하는 기체를 주입하기 직전에 측정한, 수성 단량체 혼합물 내 용존 산소량 (mg/L)이고,  D01 is the amount of dissolved oxygen (mg / L) in the aqueous monomer mixture, measured immediately before injecting the gas containing oxygen into the aqueous monomer mixture,

D02는, 상기 수성 단량체 혼합물에 산소 포함하는 기체를 주입한 직후에 측정한, 수성 단량체 흔합물 내 용존 산소량 (mg/L)이다. .  D02 is the amount of dissolved oxygen (mg / L) in the aqueous monomer mixture measured immediately after injecting the gas containing oxygen into the aqueous monomer mixture. .

상기와 같이, 본 발명에서는 상술한 중화액, 또는 중화액 및 각종 첨가제를 포함하는 수성 단량체 흔합물에 산소 또는 산소를 포함하는 대기를 주입하고, 이에 따라 용존 산소량이 크게 증가한 수성 단량체 흔합물을 중합 반응기로 이송함에 따라, 이송 라인 내에서 중합 반웅이 진행되는 것을 매우 효과적으로 억제할 수 있으며, 배관 막힘 등, 공정 트러블을 예방할 수 있게 된다. 다만, 상기와 같이, 산소가 주입된 수성 단량체 흔합물이 중합 반웅기로 직접 유입되는 경우, 중합 반응기 내에서 진행되는 중합 반응이 억제 되어, 반응 효율이 저하되는 문제점이 발생할 수 있다. As described above, in the present invention, the atmosphere containing oxygen or oxygen is injected into the neutralizing liquid or the aqueous monomer mixture containing the neutralizing liquid and various additives, thereby polymerizing the aqueous monomer mixture having a large increase in the amount of dissolved oxygen. By transferring to the reactor, it is possible to effectively inhibit the progress of the polymerization reaction in the transfer line, it is possible to prevent the process shock , such as clogging of the pipe. However, as described above, when the oxygen-injected aqueous monomer mixture is directly introduced into the polymerization reactor, a polymerization reaction proceeding in the polymerization reactor is suppressed and a reaction efficiency may decrease.

따라서, 상기 산소를 포함하는 기체가 주입된 수성 단량체 흔합물이 중합 반웅기로 투입되기 직전 수성 단량체 흔합물로부터 산소를 제거할 필요가 있으며, 예를 들어, 상기 산소가 주입되어 있던 수성 단량체 혼합물에 불활성 가스를 주입하여 산소를 제거할 수 있다.  Therefore, it is necessary to remove oxygen from the aqueous monomer mixture immediately before the aqueous monomer mixture into which the oxygen-containing gas is injected is introduced into the polymerization reactor, and, for example, inert to the aqueous monomer mixture into which the oxygen is injected. Gas can be injected to remove oxygen.

상기 불활성 가스라 함은, 상술한 수성 단량체 흔합물 내에 포함된, 단량체 및 각종 첨가 성분에 대해 반응성이 없는 가스를 의미하며, 구체적으로,. 헬륨 (He), 네온 (Ne), 아르곤 (Ar), 등의 18족 기체, 일산화탄소 (CO), 이산화탄소 (C02), 및 질소 (N2) 등올 포함할 수 있고, 이 중 1 이상을 흔합하여 사용할 수도 있다. The inert gas means a gas which is not reactive to the monomer and various additive components contained in the above-mentioned aqueous monomer mixture, and specifically ,. Group 18 gases such as helium (He), neon (Ne), argon (Ar), carbon monoxide (CO), Carbon dioxide (C0 2 ), nitrogen (N 2 ) and the like may be included, and one or more of these may be used in combination.

상기 불활성 가스는, 상기 수성 단량체 흔합물과 같은 방향 혹은 반대 방향으로 주입하여 산소를 제거할 수 있으며, 밸브, 믹서, 또는 버불 컬럼 등에 의해 수성 단량체 흔합물과 혼합된 후, 배출되면서, 수성 단량체 흔합물에 포함된 산소를 제거할 수 있다.  The inert gas may be injected in the same direction or in the opposite direction as the aqueous monomer mixture to remove oxygen, mixed with the aqueous monomer mixture by a valve, a mixer, or a bubble column, and then discharged. Oxygen contained in the mixture can be removed.

상기 불활성 가스는, 바람직하게는, 상기 수성 단량체 흔합물과 같은 방향으로 주입되어, 중합 반웅기로 함께 투입될 수도 있다. 이러한 과정을 통해, 상기 수성 단량체 흔합물에 녹아 있던 산소가 효과적으로 제거될 수 있다.  The inert gas is preferably injected in the same direction as the aqueous monomer mixture, and may be introduced together with the polymerization reactor. Through this process, oxygen dissolved in the aqueous monomer mixture can be effectively removed.

구체적으로, 하기 수학식 2로 표시되는 용존 산소 비율이 약 0.01 이상, 혹은 약 0.05 이상일 수 있고, 약 0.2 이하, 바람직하게는 약 으 15이하일 수 있다.  Specifically, the dissolved oxygen ratio represented by Equation 2 may be about 0.01 or more, or about 0.05 or more, and about 0.2 or less, preferably about 15 or less.

그리고, 하기 수학식 3으로 표시되는 용존 산소 비율이 약 οι 내지 약 Then, the dissolved oxygen ratio represented by the following equation (3) is about οι to about

0.5, 바람직하게는 약 0.1 이상, 혹은 약 0.2 이상에서, 약 0.5 이하, 또는 약 0.4 이하, 바람직하게는 약 0.3 이하의 범위를 만족할 수 있게 된다. 0.5, preferably about 0.1 or more, or about 0.2 or more, about 0.5 or less, or about 0.4 or less, preferably about 0.3 or less.

[수학식 2] - D03/D02  Equation 2-D03 / D02

[수학식 3]  [Equation 3]

D03/D01  D03 / D01

상기 수학식 2 및 3에서, D01 및 D02는, 상기 수학식 1에서 정의한 바와 같으며,  In Equations 2 and 3, D01 and D02 are as defined in Equation 1,

D03는, 상기 수성 단량체 흔합물로부터 산소를 제거한 직후 측정한, 수성 단량체 흔합물 내 용존 산소량 (mg/L)이다. 한편, 상기와 같은 방법으로 얻어진 함수겔 중합체의 통상 함수율은 약 40 내지 약 80중량 %일 수 있다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상은에서 약 180°C까지 온도를 상승시킨 뒤 180°C에서 유지하는 방식으로 총 건조시간은 온도 상승 단계 약 5분을 포함하여 약 20분으로 설정하여, 함수율을 측정한다. 상기 단계 E)는, 상술한 방법에 의해 제조된 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계로서, 베이스 수지 분말 및 이로부터 얻어지는 고흡수성 수지는 약 150 내지 약 850 의 입경을 갖도록 제조 및 제공됨아 적절하다. D03 is the amount of dissolved oxygen in the aqueous monomer mixture (mg / L) measured immediately after removing oxygen from the aqueous monomer mixture. On the other hand, the conventional water content of the hydrogel polymer obtained by the above method may be about 40 to about 80% by weight. On the other hand, throughout the present specification, "water content" means the content of water to account for the total weight of the hydrogel polymer minus the weight of the polymer in the dry state. Specifically, In the process of raising the temperature of the polymer through infrared heating and drying, it is defined as a calculated value by measuring the weight loss due to evaporation of water in the polymer. At this time, the drying condition is to increase the temperature up to about 180 ° C from phase silver and maintained at 180 ° C. The total drying time is set to about 20 minutes, including about 5 minutes of the temperature rise step, the moisture content is measured. Step E) is a step of drying, pulverizing and classifying the hydrogel polymer prepared by the above-described method to form a base resin powder, wherein the base resin powder and the super absorbent polymer obtained therefrom have a particle diameter of about 150 to about 850. Manufactured and provided to have suitable.

보다 구체적으로, 상기 베이스 수지 분말 및 이로부터 얻어지는 고흡수성 수지의 적어도 약 95중량% 이상이 약 150 내지 약 850卿의 입경을 가지며, 약 150 미만의 입경을 갖는 미분이 약 3중량 % 미만으로 될 수 있다. 이와 같이 상기 베이스 수지 분말 및 고흡수성 수지의 입경 분포가 바람직한 범위로 조절됨에 따라, 최종 제조된 고흡수성 수지가 이미 상술한 물성을 보다 잘 발현할 수 있다. 한편, 상기 건조, 분쇄 및 분급의 진행 방법에 대해 보다 구체적으로 설명하면 다음과 같다.  More specifically, at least about 95% by weight or more of the base resin powder and the superabsorbent polymer obtained therefrom have a particle size of about 150 to about 850 mm 3, and the fine powder having a particle size of less than about 150 is less than about 3% by weight. Can be. As such, as the particle size distribution of the base resin powder and the super absorbent polymer is adjusted to a preferred range, the final superabsorbent polymer prepared may express the above-described physical properties better. On the other hand, it will be described in more detail with respect to the progress of the drying, grinding and classification as follows.

 ―

먼저, 함수겔상 중합체를 건조함에 있어서는, 필요에 따라서 상기 건조 단계의 효율을 높이기 위해 건조 전에 조분쇄하는 단계를 더 거칠 수 있다. 이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기 (Vertical pulverizer), 터보 커터 (Turbo cutter), 터보 글라인더 (Turbo grinder), 회전 절단식 분쇄기 (Rotary cutter mill), 절단식 분쇄기 (Cutter mill), 원판 분쇄기 (Disc mill), 조각 파쇄기 (Shred crusher), 파쇄기 (Crusher), 초퍼 (chopper) 및 원판식 절단기 (Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다. 이때 조분쇄 단계는 함수겔 충합체의 입경이 약 2mm 내지 약 10mm로 되도록 분쇄할 수 있다. 입경이 약 2mm 미만으로 분쇄하는 것은 함수겔 증합체의 높은 함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 응집되는 현상이 나타날 수도 있다. 한편, 입경이 약 10mm 초과로 분쇄하는 경우, 추후 이루어지는 건조 단계의 효율 증대 효과가 미미할 수 있다. ' 상기와 같이 조분쇄되거나, 혹은 조분쇄 단계를 거치지 않은 중합 직후의 함수겔 중합체에 대해 건조를 수행한다. 이때 상기 건조 단계의 건조 온도는 약 50 내지 약 250oC일 수 있다. 건조 온도가 약 50oC 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있고, 건조 온도가 약 250oC를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있으며, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 보다 바람직하게 상기 건조는 약 150 내지 약 200°C의 온도에서, 더욱 바람직하게는 약 160 내지 약 190°C의 온도에서 진행될 수 있다. 한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 약 20분 내지 약 15시간 동안 진행될 수 있으나, 이에 한정되지는 않는다. 상기 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 약 0.05 내지 약 10중량0 /。일 수 있다. 다음에, 이와 같은 건조 단계를 거쳐 얻어진 건조된 중합체를 분쇄하는 단계를 수행한다. 분쇄 단계 후 얻어지는 중합체 분말은 입경이 약 150 내지 약 850 일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 볼 밀 (ball mill), 핀 밀 (pin mill), 해머 밀 (hammer mill), 스크류 밀 (screw mill), 를 밀 (roll mill), 디스크 밀 (disc mill) 또는 조그 밀 (jog mill) 등을 사용할 수 있으나, 상술한 예에 한정되는 것은 아니다. 그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있다. 바람직하게는 입경이 약 150 내지 약 850 인 중합체를 분급하여, 이와 같은 입경을 가진 중합체 분말에 대해서만 후술할 표면 가교 반응 단계를 거쳐 제품화할 수 있다. 상기 단계 F)는, 상기 단계 E)에서 제조한 베이스 수지의 표면을 가교하는 단계로서, 표면 가교액의 존재 하에, 상기 베이스 수지 분말을 열처리하여 표면 가교하고 고흡수성 수지 입자를 형성하는 단계이다. 상기 표면 가교액은 에틸렌글리콜 디글리시딜에테르, 폴리에틸렌글리콜 디글리시딜 에테로, 글리세를 폴리글리시딜 에테르, 프로필렌글리콜 디글리시딜 에테르, 폴리프로필렌 글리콜 디글리시딜 에테르, 에틸렌글리콜, 다이에틸렌글리콜, 프로필렌글리콜, 트리에틸렌 글리콜, 테트라 에틸렌 글리콜, 프로판 다이올, 다이프로필렌글리콜, ' 폴리프로필렌글리콜, 글리세린, 폴리글리세린, 부탄다이을, 헵탄다이올, 핵산다이을, 트리메틸롤프로판, 펜타에리스리콜, 소르비를, 칼슘 수산화물, 마그네슘 수산화물, 알루미늄 수산화물, 철 수산화물, 칼슘 염화물, 마그네슘 염화물, 알루미늄 염화물, 및 철 염화물로 이루어진 군에서 선택된 1종 이상의 표면 가교제를 포함하는 것일 수 있다. 바람직하게는, 에틸렌글리콜 디글리시딜 에테르를 사용할 수 있다. 이때, 상기 표면 가교제는, 상기 베이스 수지 100중량부에 대하여 약 1중량부 이하로 사용하는 것이 바람직하다. 여기서, 상기 표면 가교제의 사용량은 상기 표면 가교제가 2종 이상 사용되는 경우에는 이의 총량을 의미한다. 상기 표면 가교제 사용량이 약 1중량부를 초과할 경우에는 과도한 표면 가교가 진행되어 고흡수성 수지의 각종 물성 특히 건조도가 나빠질 수 있다. 또한, 상기 표면 가교제는, 상기 베이스 수지 100중량부에 대하여 약 0.이중량부 이상, 약 0.02중량부 이상, 약 으03중량부 이상, 약 0.04중량부 이상, 또는 약 0.05중량부 이상 사용하는 것이 바람직하다. 또한, 상기 표면 가교액은 물, 메탄올, 에탄올, 이소프로필알콜 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1 ,4-부탄디올, 프로필렌글리콜 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르 디에틸렌글리콜에틸에테르, 를루엔, 크실렌, 부틸로락톤, 카르비를, 메틸셀로솔브아세테이트 및 Ν,Ν-디메틸아세트아미드로 이루어진 군에서 선택된 1종 이상의 용매를 더 포함할 수 있다. 바람직하게는, 물을 포함한다. 상기 용매는 상기 베이스 수지 분말 100증량부 대비 약 0.5 내지 약 10중량부로 사용할 수 있다. 또한, 상기 표면 가교액은 알루미늄 황산염을 추가로 포함할 수 있다. 상기 알루미늄 황산염은 상기 베이스 수지 분말의 100중량부를 기준으로, 약 0.02 내지 약 1.5중량부로 포함될 수 있다. 또한, 상기 표면 가교액은 무기 충전제를 더 포함할 수 있다. 상기 무기 충전제로는 실리카, 알루미늄 옥사이드, 또는 실리케이트를 포함할 수 았다. 상기 무기 충전제는 상기 베이스 수지 분말의 100중량부를 기준으로, 약 0.01 내지 약 0.5증량부로 포함될 수 있다. 또한, 상기 표면 가교액은 증점제를 추가로 포함할 수도 있다. 이렇게 증점제 존재 하에 베이스 수지 분말의 표면을 추가로 가교하면 분쇄 후에도 물성 저하를 최소화할 수 있다. 구체적으로, 상기 증점제로는 다당류 및 히드록시 함유 고분자 중 선택된 1 종 이상이 사용될 수 있다. 상기 다당류로는 검 계열 증점제와 셀를로오스 계열 증점제 등이 사용될 수 있다. 상기 검 계열 증점제의 구체적인 예로는, 잔탄 검 (xanthan gum), 아라빅 검 (arabic gum), 카라야 검 (karaya gum), 트래거캔스 검 (tragacanth gum), 가티 검 (ghatti gum), 구아 검 (guar gum), 로커스트 빈 검 (locust bean gum) 및 사일리움 씨드 검 (psyllium seed gum) 등을 들 수 있고, 상기 셀를로오스 계열 증점제의 구체적인 예로는, 히드록시프로필메틸셀를로오스, 카르복시메틸셀를로오스, 메틸셀를로오스, 히드록시메틸셀를로오스, 히드록시에틸셀를로오스, 히드록시프로필셀를로오스', 히드록시에틸메틸셀를로오스, 히드록시메틸프로필셀를로오스, 히드록시에틸히드록시프로필셀를로오스, 에틸히드록시에틸셀를로오스 및 메틸히드록시프로필셀를로오스 등을 들 수 있다. 한편, 상기 히드록시 함유 고분자의 구체적인 예로는 폴리에틸렌글리콜 및 폴리비닐알코을 등을 들 수 있다. 한편, 상기 표면 가교를 수행하기 위해서는, 상기 표면 가교액과 상기 베이스 수지를 반응조에 넣고 흔합하는 방법, 상기 베이스 수지에 표면 가교 용액을 분사하는 방법, 연속적으로 운전되는 믹서에 상기 베이스 수지와 표면 가교액을 연속적으로 공급하여 흔합하는 방법 등이 이용될 수 있다. 그리고, 상기 표면 가교는 약 100 내지 약 250oC의 온도 하에서 진행될 수 있으며, 비교적 고온으로 진행되는 상기 건조 및 분쇄 단계 이후에 연속적으로 이루어질 수 있다. 이때. 상기 표면 가교 반웅은 약 1 내지 약 120분, 또는 약 1 내지 약 100분, 또는 약 10 내지 약 60분 동안 진행될 수 있다. 즉, 최소 한도의 표면 가교 반웅을 유도하면서도 과도한 반응시 중합체 입자가 손상되어 물성이 저하되는 것을 방지하기 위하여 전술한 표면 가교 반응의 조건으로 진행될 수 있다. 상술한 바와 같은 본 발명의 제조 방법으로 제조된 고흡수성 우수한 흡수 성능을 가질 수 있다. 구체적으로, 본 발명에 따른 고흡수성 수지는, 생리 식염수 (0.9중량0 /0 염화 나트륨 수용액)에 대한 30분 동안의 원심분리 보수능 (CRC)이 30g/g 이상이다. 상기 원심분리 보수능의 측정 방법은, 이하 실시예에서 보다 구체화한다. 바람직하게는, 상기 원심분리 보수능은 3().5g/g 이상, 또는 31g/g 이상이다ᅳ 또한 상기 원심분리 보수능은 그 값이 높을수록 우수하여 실질적인 상한의 제한은 없으나, 일례로 , 35g/g 이하, 34g/g 이하, 또는 33g/g 이하이다. 또한, 바람직하게는, 본 발명에 따른 고흡수성 수지는, 생리 식염수 (0.9중량0 /。 염화 나트륨 수용액)에 대한 0.7psi 하에서 1시간 동안의 가압 흡수능 (0.7 AUP)이 15g/g 이상이다. 상기 가압 흡수능의 측정 방법은, 이하 실시예에서 보다 구체화한다. 바람직하게는, 상기 0.7 AUP는 20g/g 이상, 또는 8.0g/g 이상이다. 또한, 상기 가압 흡수능은 그 값이 높을수록 우수하여 실질적인 상한의 제한은 없으나, 일례로 40g/g 이하, 35g/g 이하, 또는 30g/g 이하이다. 또한, 본 발명에 따른 고흡수성 수지는 약 150 내지 약 850/ΛΠ의 입경을 갖는 입자의 비율이 약 90% 이상이다. 이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만,.이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다. First, in drying the hydrogel polymer, coarsely pulverizing before drying in order to increase the efficiency of the drying step, if necessary. At this time, the pulverizer used is not limited in configuration, but specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting machine Includes any one selected from the group of grinding machines consisting of cutter mills, disc mills, shred crushers, crushers, choppers and disc cutters Although it is possible, it is not limited to the above-mentioned example. At this time, in the coarse grinding step, the particle diameter of the hydrogel filler is about 2 mm to about 10 mm. It can be ground as much as possible. Grinding to a particle diameter of less than about 2 mm is not technically easy due to the high water content of the hydrogel polymer, and may also cause agglomeration between the crushed particles. On the other hand, when the particle size is pulverized more than about 10mm, the effect of increasing the efficiency of the subsequent drying step may be insignificant. The drying is carried out for the hydrogel polymer immediately after polymerization as described above or not subjected to the coarse grinding step. At this time, the drying temperature of the drying step may be about 50 to about 250 o C. If the drying temperature is less than about 50 o C, the drying time may be too long and the physical properties of the superabsorbent polymer to be finally formed may be lowered. If the drying temperature exceeds about 250 o C, only the polymer surface is dried excessively, Fine powder may be generated in a subsequent grinding step, and there is a fear that the physical properties of the superabsorbent polymer to be finally formed are reduced. More preferably, the drying may proceed at a temperature of about 150 to about 200 ° C, more preferably at a temperature of about 160 to about 190 ° C. On the other hand, in the case of drying time may be performed for about 20 minutes to about 15 hours in consideration of process efficiency, but is not limited thereto. As long as it is conventionally used in the drying process, can be selected and used without limitation of the configuration. Specifically, the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation. The water content of the polymer after such a drying step may be about 0.05 to about 10 weight 0 /. Next, the step of pulverizing the dried polymer obtained through this drying step is carried out. The polymer powder obtained after the grinding step may have a particle diameter of about 150 to about 850. The grinder used to grind to such a particle size is specifically, a ball mill, a pin mill, a hammer mill, a screw mill, a mill, a roll mill, a disk. A mill or a jog mill may be used, but is not limited to the example described above. In addition, in order to manage the physical properties of the super absorbent polymer powder to be finalized after such a grinding step, a separate process of classifying the polymer powder obtained after grinding according to the particle diameter may be performed. Preferably, the polymer having a particle size of about 150 to about 850 may be classified and commercialized through a surface crosslinking reaction step to be described later only for the polymer powder having such a particle size. The step F) is a step of crosslinking the surface of the base resin prepared in the step E), and in the presence of a surface crosslinking solution, heat treating the base resin powder to crosslink the surface to form superabsorbent resin particles. The surface crosslinking solution is ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, ethylene glycol, Diethylene glycol, propylene glycol, triethylene glycol, tetraethylene glycol, propane diol, dipropylene glycol, ' polypropylene glycol, glycerin, polyglycerol, butanediol, heptanediol, nucleic acid die, trimethylolpropane, pentaerythritol , Sorbbi, may include one or more surface crosslinking agents selected from the group consisting of calcium hydroxide, magnesium hydroxide, aluminum hydroxide, iron hydroxide, calcium chloride, magnesium chloride, aluminum chloride, and iron chloride. Preferably, ethylene glycol diglycidyl ether can be used. At this time, it is preferable to use the said surface crosslinking agent about 1 weight part or less with respect to 100 weight part of said base resins. Here, the amount of the surface crosslinking agent used means the total amount thereof when two or more kinds of the surface crosslinking agents are used. When the amount of the surface crosslinking agent exceeds about 1 part by weight, excessive surface crosslinking may proceed to deteriorate various physical properties of the superabsorbent polymer, in particular, dryness. The surface crosslinking agent may be used in an amount of about 0. 2 parts by weight, about 0.02 parts by weight, about 03 parts by weight, about 0.04 parts by weight, or about 0.05 parts by weight or more based on 100 parts by weight of the base resin. desirable. In addition, the surface crosslinking solution is water, methanol, ethanol, isopropyl alcohol ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol ethylene glycol monobutyl ether, propylene glycol monomethyl ether propylene glycol monomethyl Ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone cyclonucleanone, cyclopentanone, diethylene glycol monomethyl ether diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carbyl, methyl cellosolve acetate And Ν, Ν-dimethylacetamide may further comprise at least one solvent selected from the group consisting of. Preferably, water is included. The solvent may be used in about 0.5 to about 10 parts by weight based on 100 parts by weight of the base resin powder. In addition, the surface crosslinking liquid may further include aluminum sulfate. The aluminum sulfate may be included in about 0.02 to about 1.5 parts by weight based on 100 parts by weight of the base resin powder. In addition, the surface crosslinking liquid may further include an inorganic filler. The inorganic filler may include silica, aluminum oxide, or silicate. The inorganic filler may be included in an amount of about 0.01 to about 0.5 parts by weight based on 100 parts by weight of the base resin powder. In addition, the surface crosslinking liquid may further include a thickener. Thus further crosslinking the surface of the base resin powder in the presence of a thickener can minimize the decrease in physical properties after grinding. Specifically, the thickener may be used one or more selected from polysaccharides and hydroxy containing polymers. As the polysaccharide, gum thickener and cellulose thickener may be used. Examples of the gum-based thickener, xanthan gum (xanthan gum), Arabic gum (arabic gum), karaya gums (karaya gum), bit i raegeo kaenseu gum (tragacanth gum), Gatti gum (ghatti gum), guar Guar gum, locust bean gum, silylium seed gum, and the like. Specific examples of the cellulose-based thickeners include hydroxypropylmethylcellulose, carboxy, and the like. Methyl cellulose, Methylcellose, hydroxymethylcellose, hydroxyethylcellose, hydroxypropylcellose ', hydroxyethylmethylcellose, hydroxymethylpropylcellose, hydroxyethylhydroxypropylcell Rhose, ethyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, etc. are mentioned. On the other hand, specific examples of the hydroxy-containing polymers include polyethylene glycol and polyvinyl alcohol. On the other hand, in order to perform the surface crosslinking, the surface crosslinking solution and the base resin are put into a reaction tank and mixed, a method of spraying a surface crosslinking solution onto the base resin, and the base resin and the surface crosslinking to a mixer which is continuously operated. The method of supplying and mixing a liquid continuously, etc. can be used. In addition, the surface crosslinking may be performed at a temperature of about 100 to about 250 ° C., and may be continuously performed after the drying and grinding step of proceeding at a relatively high temperature. At this time. The surface crosslinking reaction may proceed for about 1 to about 120 minutes, or about 1 to about 100 minutes, or about 10 to about 60 minutes. That is, in order to induce a minimum surface crosslinking reaction, the polymer particles may be damaged during excessive reaction and thus the physical properties may be deteriorated. As described above, it is possible to have a superabsorbent excellent absorption performance produced by the production method of the present invention. Specifically, the super-absorbent resin according to the present invention, centrifugation beam SAT (CRC) for 30 minutes for saline solution (0.9 weight 0/0 aqueous sodium chloride solution) is not less than 30g / g. The measuring method of the centrifugal water holding capacity is specified in the following Examples. Preferably, the centrifugal water holding capacity is 3 (). 5g / g or more, or 31g / g or more. In addition, the higher the value, the better the centrifugal water holding capacity, and there is no limit of a practical upper limit. 35 g / g or less, 34 g / g or less, or 33 g / g or less. Further, preferably, the super absorbent polymer according to the present invention has a pressurized absorption capacity (0.7 AUP) of 1 g or more for 1 hour under 0.7 psi with respect to physiological saline solution (0.9 weight 0 /. Sodium chloride aqueous solution). The measuring method of the said pressure absorbing power is specified more in the following example. Preferably, the 0.7 AUP is at least 20 g / g, or at least 8.0 g / g. Further, the higher the pressure absorbing capacity is, the better the value is, and there is no limit to the practical upper limit. In addition, the superabsorbent polymer according to the present invention has a proportion of particles having a particle diameter of about 150 to about 850 / ΛΠ of about 90% or more. Hereinafter, the operation and effects of the invention will be described in more detail with reference to specific examples of the invention. However,. These embodiments are presented by way of example only, and the scope of the invention is not defined thereby.

<실시예 > <Example>

온도 제어가 가능한 20L 용량의 SUS 재질의 용기에 교반을 진행하면서 모노메틸에테르 하이드로퀴논 함량이 lOOppmw인 아크릴산 4500g과 24%로 희석된 NaOH 8147 g을 천천히 투ᅵ입하였다. 중화액의 온도가 45°C에 도달하였을 때 메틸렌비스아크릴 아마이드 (MAAA) 5g을 아크릴산 500g에 용해시켜 투입하고 계속 교반하였다. 여기에 에어 디퓨저 (air diff iser)를 용기 바닥에 설치하고, 분당 50L 의 속도로 산소를 포함한 기체를 투입하면서, 30분간 교반하였다. While stirring with a 20 L SUS container with temperature control, 4500 g of acrylic acid having a monomethylether hydroquinone content of 100 ppm and 10147 NaOH diluted with 24% were slowly introduced. When the temperature of the neutralizing solution reached 45 ° C. 5 g of methylene bisacrylamide (MAAA) was dissolved in 500 g of acrylic acid, and the stirring was continued. Here an air diffuser (air iser diff) to the container floor, and input to a gas containing oxygen at a rate of 50L per minute, the mixture was stirred for 30 minutes i.

연속 주입과 배출이 가능한 단일축 니더 (LIST사 제조) 상부의 주입구에 In-line Homogenizer(Megatron MT 3000, 4개의 주입구와 1개의 배출구 구비)를 설치하고, 기어펌프를 사용하여 중화액을 분당 800g, 0.2% 아스코빅산을 분당 30g과 0.7% 과산화수소용액을 분당 30g 각각 주입구에 투입하였으며, 또 다른 주입구에 질소가스를 분당 20L의 속도로 주입하고, Homogenizer를 분당 6,000rpm으로 회전시켜 용액과 기체를 흔합하였다ᅳ Homogenizer 내부에서 흔합된 용액과 기체는 배출구를 통하여 니더 내부로 투입되었다. 중화액을 니더에 투입한 이후 니더 내부에서 겔이 성되고 발포가 발생하였다. 내부에 회전체에서 주어지는 웅력에 의하여 겔이 세분화되어 니더 밖으로 배출되었으며, 겔의 크기는 5mm 내지 50mm 였다. 이를 미트 초퍼 (Meat Chopper)를 이용하여 초핑을 실시하여 평균 겔 크기를 5mm 수준으로 더욱 세분화하였다. In-line Homogenizer (Megatron MT 3000, 4 inlets and 1 outlet) is installed at the upper inlet of single-axis kneader (listed by LIST) that can continuously inject and discharge. , 0.2% ascorbic acid 30g per minute and 0.7% hydrogen peroxide solution 30g per minute, respectively, injecting nitrogen gas into another inlet at a rate of 20L per minute, and rotating the homogenizer at 6,000rpm per minute to mix the solution and gas. The mixed solution and gas inside the homogenizer were introduced into the kneader through the outlet. After adding the neutralizing solution to the kneader, a gel was formed inside the kneader and foaming occurred. The gel was subdivided and discharged out of the kneader by the force given from the rotating body inside, and the size of the gel was 5 mm to 50 mm. This was chopped using a Meat Chopper to further refine the average gel size to 5 mm.

이를 상하로 풍향 전이가 가능한 오븐에서 건조하였다. 185°C의 핫 에어 (hot air)를 15분은 하방에서 상방으로, 5분은 상방에서 하방으로 흐르게 하여 균일하게 건조하였으며, 건조 후 건조체의 함수량은 2% 이하가 되도록 조절하였다. 이를 분쇄기로 분쇄한 다음, 표준망체 (#20, #30, #50, #100)와 Sieve Shaker를 사용하여 10분간 분급하여 입자크기 150 내지 850 인 중합체를 얻었고, 이러한 방법으로 베이스 수지 분말을 얻었다.  It was dried in an oven capable of transferring wind direction up and down. The hot air at 185 ° C. was heated uniformly by flowing from downward to upward for 15 minutes and upward from downward for 5 minutes. After drying, the moisture content of the dried body was adjusted to be 2% or less. The resultant was pulverized with a grinder and then classified for 10 minutes using standard meshes (# 20, # 30, # 50, # 100) and Sieve Shaker to obtain a polymer having a particle size of 150 to 850. In this way, a base resin powder was obtained. .

이후, 상기 제조한 베이스 수지 100중량부에, 표면 가교액 (물 4중량부, 메탄올 3중량부, 에틸렌글리콜 _ 디글리시딜 에테르 (EX-810) 0.15중량부, 프로필렌글리콜 (PG) 0.3중량부, 알루미늄 설페이트 18 수화물 (aluminum sulfate 18 hydrate) 0.15중량부, 및 품드실리카 (Aerosil 200) 0.1중량부)을 고르게 혼합한 후, 140°C에서 30분 동안 표면 가교 반응을 진행하였다. 반웅이 완료된 수지를 표준망체를 사용하여 150 urn 내지 850 m 입자를 얻었다 실시예 및 비교예의 공정 조건을 하기 표 1에 정리하였다.  Then, 100 parts by weight of the prepared base resin, surface crosslinking liquid (4 parts by weight of water, 3 parts by weight of methanol, 0.15 parts by weight of ethylene glycol _ diglycidyl ether (EX-810), 0.3 parts by weight of propylene glycol (PG) After the addition, evenly mixed with aluminum sulfate 18 hydrate (0.15 parts by weight of aluminum sulfate, 0.1 parts by weight of aluminum silica (Aerosil 200)), the surface cross-linking reaction was carried out for 30 minutes at 140 ° C. The reaction was completed using a standard network to obtain 150 urn to 850 m particles. The process conditions of Examples and Comparative Examples are summarized in Table 1 below.

(개시제의 양은, 상기 실시예에서 기재한 아스코빅산과 과산화 수소 용액을 100으로 하고, 상대적인 양을기재하였다.)  (The amount of initiator is 100 ascorbic acid and hydrogen peroxide solution described in the above example, and the relative amount is described.)

【표 1】  Table 1

Figure imgf000021_0001
DMS 배출구에 중합물 발생
Figure imgf000021_0001
Polymerization at DMS outlet

이송 시작 3분 후, 비교예 2 0 40 100 대기 DMS 배출구에 중합물 발생  3 minutes after the start of the transfer, Comparative Example 2 0 40 100 Polymer at the outlet of the atmospheric DMS

이송 시작 2분 후, 비교예 3 200 60 50 미투입 DMS 배출구에 중합물.  2 minutes after the start of the transfer, Comparative Example 3 Polymer at 200 60 50 unloaded DMS outlet.

발생  Occur

이송 시작 직 후, DMS 비교예 4 200 80 20 미투입  DMS comparative example 4 200 80 20

배출구에 중합물 발생 상기 실시예 1 내지 3에서, 산소를 포함한 기체 투입 직전 (D01), 산소를 포함한 기체 투입 직후 (D02), 질소 주입에 의해 산소를 제거한 직후 (D03), 용존 산소량을 측정하여 하기 표 2에 정리하였다. ' Polymerization at the Outlet In Examples 1 to 3, immediately before the gas injection with oxygen (D01), immediately after the gas injection with oxygen (D02), immediately after the oxygen was removed by nitrogen injection (D03), the amount of dissolved oxygen was measured and It summarized in Table 2. '

[표 2】 TABLE 2

Figure imgf000022_0002
Figure imgf000022_0002

상기 실시예 및 비교예에서 제조된 Prepared in the Examples and Comparative Examples

물성을 하기 표 3에 정리하였다. .  Physical properties are summarized in Table 3 below. .

Figure imgf000022_0001
실시예 2 38 34 24
Figure imgf000022_0001
Example 2 38 34 24

실시예 3 37 33 26  Example 3 37 33 26

비교예 1 40 34 22  Comparative Example 1 40 34 22

비교예 2 37 33 24  Comparative Example 2 37 33 24

비교예 3 38 34 24  Comparative Example 3 38 34 24

비교예 4 _ _  Comparative Example 4 _ _

상기 표 1을 참조하면, 본원 실시예의 경우, 산소의 주입에 의해, DMS 배출구에 아무런 문제가 발생하지 않고, 연속 공정에서 트러블이 발생하지 않는 것을 확인할 수 있는 데 비해, 비교예의 경우, 이송 시작 이후에, DMS 배출구에 중합물이 생성되어, 공정 트러블이 발생하는 것을 명확히 확인할 수 있다. Referring to Table 1, in the present embodiment, it can be confirmed that no problem occurs in the DMS outlet by the injection of oxygen, and no trouble occurs in the continuous process, whereas in the comparative example, after the start of the transfer In the DMS outlet, a polymer is produced, and it can be clearly confirmed that a process trouble occurs.

특히, 비교예 4의 경우, 이송 시작 직 후, DMS 배출구에 문제가 발생하여, 공정을 전혀 진행할 수 없었으며, 연속 공정에 의한 흡수성 수지 제조가 불가능함을 확인할 수 있었다ᅳ  In particular, in the case of Comparative Example 4, immediately after the start of the transfer, there was a problem in the DMS outlet, the process was not able to proceed at all, it was confirmed that the water-absorbent resin production by the continuous process is impossible

한편, 본원 실시예에 따라 제조한 베이스 수지 및 고흡수성 수지는, 보수능 및 가압하 흡수능이 모두 양호한 것을 확인할 수 있었다.  On the other hand, it was confirmed that the base resin and the super absorbent polymer produced in accordance with the Examples of the present invention had both good water retention capacity and water absorption under pressure.

Claims

【청구의 범위】 [Range of request] 【청구항 1】  [Claim 1] A) 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체, 가교제, 및 산소 존재 하에 상기 수용성 에틸렌계 불포화 단량체의 중합을 억제하는 중합 억제제를 포함하는, 수성 단량체 흔합물에 산소를 포함하는 기체를 주입하는 단계;  A) A gas containing oxygen in an aqueous monomer mixture comprising a water-soluble ethylenically unsaturated monomer having a neutralized acidic group, a crosslinking agent, and a polymerization inhibitor which inhibits polymerization of the water-soluble ethylenically unsaturated monomer in the presence of oxygen. Injecting; B) 상기 산소를 포함하는 기체가 주입된 수성 단량체 흔합물을 중합 반웅기로 이송하는 단계;  B) transferring the aqueous monomer mixture injected with the gas containing oxygen to a polymerization reactor; C) 상기 산소를 포함하는 기체가 주입된 수성 단량체 흔합물이 중합 반웅기로 투입되기 직전 수성 단량체 흔합물로부터 산소를 제거하는 단계; 및 C) removing oxygen from the aqueous monomer mixture immediately before the aqueous monomer mixture into which the gas containing oxygen is injected is introduced into a polymerization reactor; And D) 중합 반응기 내에서, 수용성 에틸렌계 불포화 단량체를 가교 중합하여, 제 1 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계를 포함하는, D) crosslinking polymerization of the water-soluble ethylenically unsaturated monomer in the polymerization reactor to form a hydrogel polymer comprising the first crosslinked polymer, 고흡수성 수지의 제조 방법.  Method for producing a super absorbent polymer. 【청구항 2】. [Claim 2]. 제 1항에 있어서,  The method of claim 1, E) 상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및 .  E) drying, grinding and classifying the hydrogel polymer to form a base resin powder; And. F) 표면 가교액의 존재 하에, 상기 베이스 수지 분말을 열처리하여 표면 가교하고, 고흡수성 수지 입자를 형성하는 단계를 포함하는,  F) heat treating the base resin powder in the presence of a surface crosslinking liquid to crosslink the surface, and to form superabsorbent polymer particles; 고흡수성 수지의 제조 방법. ' . Method for producing a super absorbent polymer. ' 【청구항 3】 [Claim 3] 제 1항에 있어서,  The method of claim 1, 상기 수성 단량체 흔합물은, 40 °C 내지 90°C의 온도 조건에서 중합 반응기로 이송 및 투입되는, 고홉수성 수지의 제조 방법. The aqueous monomer mixture is transferred to a polymerization reactor at a temperature of 40 ° C to 90 ° C, and introduced, a method of producing a high hop water resin. 【청구항 4】 [Claim 4] 제 1항에 있어서, 상기 A) 단계는, 하기 수학식 1로 표시되는 용존 산소 비율이 1.0보다 크고, 2.5 이하가 되도록 진행되는, . The method of claim 1, The step A), the dissolved oxygen ratio represented by the following formula 1 is greater than 1.0, proceeds to be 2.5 or less. ' 고흡수성 수지의 제조 방법:  Manufacturing method of super absorbent polymer: [수학식 1]  [Equation 1] D02/D01  D02 / D01 상기 수학식 1에서,  In Equation 1, D01는, 상기 수성 단량체 흔합물에 산소를 포함하는 기체를 주입하기 직전에 측정한, 수성 단량체 흔합물 내 용존 산소량 (mg/L)이고,  D01 is the amount of dissolved oxygen in the aqueous monomer mixture (mg / L) measured immediately before injecting the gas containing oxygen into the aqueous monomer mixture, D02는, 상기 수성 단량체 흔합물에 산소를 포함하는 기체를 주입한 직후에 측정한, 수성 단량체 흔합물 내 용존 산소량 (mg/L)이다.  D02 is the amount of dissolved oxygen in the aqueous monomer mixture (mg / L) measured immediately after injecting the gas containing oxygen into the aqueous monomer mixture. 【청구항 5】 [Claim 5] 제 1항에 있어서,  The method of claim 1, 상기 C) 단계에서는, 상기 수성 단량체 흔합물에 불활성 가스를 주입하여 산소를 제거하는, 고흡수성 수지의 제조 방법 .  In the step C), injecting an inert gas into the aqueous monomer mixture to remove oxygen, the method of producing a super absorbent polymer. 【청구항 6】 [Claim 6] 제 1항에 있어서,  The method of claim 1, 상기 C) 단계는, 하기 수학식 2로 표시되는 용존 산소 비율이 0.01 내지 0.5 가 되도록 진행되는,  Step C) is performed so that the dissolved oxygen ratio represented by Equation 2 is 0.01 to 0.5, 고흡수성 수지의 제조 방법:  Manufacturing method of super absorbent polymer: [수학식 2]  [Equation 2] D03/D02  D03 / D02 상기 수학식 2에서,  In Equation 2, D02는, 상기 수성 단량체 흔합물에 산소를 포함하는 기체를 주입한 직후에 측정한, 수성 단량체 흔합물 내 용존 산소량 (mg/L)이며,  D02 is the amount of dissolved oxygen in the aqueous monomer mixture (mg / L) measured immediately after injecting a gas containing oxygen into the aqueous monomer mixture, D03는, 상기 수성 단량체 흔합물로부터 산소를 제거한 직후 측정한, 수성 단량체 흔합물 내 용존 산소량 (mg/L)이다.  D03 is the amount of dissolved oxygen in the aqueous monomer mixture (mg / L) measured immediately after removing oxygen from the aqueous monomer mixture. 【청구항 7] 제 1항에 있어서, [Claim 7] The method of claim 1, 상기 C) 단계 이후 D) 단계 이전에, 상기 수성 단량체 혼합물에 열 중합 개시제를 투입하는 단계를 더 포함하는,  After the step C) and before the step D), further comprising the step of adding a thermal polymerization initiator to the aqueous monomer mixture, 고흡수성 수지의 제조 방법.  Method for producing a super absorbent polymer. 【청구항 8】 [Claim 8] 제 1항에 있어서,  The method of claim 1, 상기 중합 억제제는, 상기 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체 100 중량부에 대하여 lOppmw 내지 300ppmw로 포함되는, 고흡수성 수지의 제조 방법.  The polymerization inhibitor is a method of producing a super absorbent polymer, wherein at least a part of lOppmw to 300ppmw based on 100 parts by weight of the water-soluble ethylenically unsaturated monomer having a neutralized acid group. 【청구항 9】 [Claim 9] 제 1항에 있어서,  The method of claim 1, 상기 고흡수성 수지는, 원심분리 보수능 (CRC)이 30g/g 이상이고, 가압 홉수능 (AUP, 0.7psi) 15g/g이상인, 고흡수성 수지의 제조 방법.  The superabsorbent polymer has a centrifugal water retention capacity (CRC) of 30 g / g or more and a pressurized hop water capacity (AUP, 0.7 psi) of 15 g / g or more.
PCT/KR2018/001599 2017-02-16 2018-02-06 Method for producing super absorbent polymer Ceased WO2018151453A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18754418.4A EP3553092B1 (en) 2017-02-16 2018-02-06 Method for producing super absorbent polymer
US16/338,913 US10894245B2 (en) 2017-02-16 2018-02-06 Method for preparing superabsorbent polymer
CN201880003985.XA CN109843934B (en) 2017-02-16 2018-02-06 Method for preparing superabsorbent polymer
JP2019517066A JP6828145B2 (en) 2017-02-16 2018-02-06 Manufacturing method of highly water-absorbent resin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0021051 2017-02-16
KR20170021051 2017-02-16
KR10-2018-0014095 2018-02-05
KR1020180014095A KR102075735B1 (en) 2017-02-16 2018-02-05 Method of preparation for super absorbent polymer

Publications (2)

Publication Number Publication Date
WO2018151453A1 true WO2018151453A1 (en) 2018-08-23
WO2018151453A8 WO2018151453A8 (en) 2018-09-20

Family

ID=63169531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001599 Ceased WO2018151453A1 (en) 2017-02-16 2018-02-06 Method for producing super absorbent polymer

Country Status (1)

Country Link
WO (1) WO2018151453A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543922A (en) * 2006-07-19 2009-12-10 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing water-absorbing polymer particles having high permeability by polymerization
JP2009543915A (en) * 2006-07-19 2009-12-10 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing post-crosslinked water-absorbing polymer particles having high absorbency by polymerization of droplets of monomer solution
JP2014205856A (en) * 2006-07-19 2014-10-30 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Water-absorbent polymer particles with high permeability
JP2014240501A (en) * 2006-07-19 2014-12-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing water-absorbing polymer particle having high permeability by polymerization of droplets of monomer solution
KR20160149238A (en) * 2014-04-25 2016-12-27 송원산업 주식회사 Monomer preparation with over-neutralization for production of water-absorbent polymer particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543922A (en) * 2006-07-19 2009-12-10 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing water-absorbing polymer particles having high permeability by polymerization
JP2009543915A (en) * 2006-07-19 2009-12-10 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing post-crosslinked water-absorbing polymer particles having high absorbency by polymerization of droplets of monomer solution
JP2014205856A (en) * 2006-07-19 2014-10-30 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Water-absorbent polymer particles with high permeability
JP2014240501A (en) * 2006-07-19 2014-12-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing water-absorbing polymer particle having high permeability by polymerization of droplets of monomer solution
KR20160149238A (en) * 2014-04-25 2016-12-27 송원산업 주식회사 Monomer preparation with over-neutralization for production of water-absorbent polymer particles

Also Published As

Publication number Publication date
WO2018151453A8 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP6806903B2 (en) Manufacturing method of highly water-absorbent resin
US11020725B2 (en) Method of preparing superabsorbent polymer
US9975979B2 (en) Method of preparing superabsorbent polymer
US10144809B2 (en) Method for preparing super absorbent polymer and super absorbent polymer prepared thereby
CN108884235B (en) Superabsorbent polymer and method for making the same
WO2015190878A1 (en) Method for manufacturing high absorbency resin and high absorbency resin manufactured through same
KR20180067940A (en) Super absorbent polymer and preparation method thereof
KR102316433B1 (en) Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
CN108779263B (en) Superabsorbent polymer and method for making same
KR101880218B1 (en) Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
KR102620072B1 (en) Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
KR102675086B1 (en) Super absorbent polymer and preparation method thereof
KR102513981B1 (en) Method of preparation for super absorbent polymer
CN111511810B (en) Method for producing superabsorbent polymers
US10450428B2 (en) Method for preparing superabsorbent polymer
WO2018151453A1 (en) Method for producing super absorbent polymer
KR102075735B1 (en) Method of preparation for super absorbent polymer
KR20200090672A (en) Preparation method of super absorbent polymer
KR102614036B1 (en) Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
KR102616889B1 (en) Method for preparation of super absorbent polymer
JP7371956B2 (en) Manufacturing method of super absorbent resin
CN114867770A (en) Method for preparing super absorbent polymer
WO2017099423A1 (en) Method for preparing super-absorbent resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517066

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018754418

Country of ref document: EP

Effective date: 20190321