[go: up one dir, main page]

WO2018153935A1 - Procédé pour préparer des polymères thermoréticulables dans une extrudeuse planétaire - Google Patents

Procédé pour préparer des polymères thermoréticulables dans une extrudeuse planétaire Download PDF

Info

Publication number
WO2018153935A1
WO2018153935A1 PCT/EP2018/054308 EP2018054308W WO2018153935A1 WO 2018153935 A1 WO2018153935 A1 WO 2018153935A1 EP 2018054308 W EP2018054308 W EP 2018054308W WO 2018153935 A1 WO2018153935 A1 WO 2018153935A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymers
roll cylinder
roll
plasticized
plasticized polymers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2018/054308
Other languages
German (de)
English (en)
Inventor
Klaus Massow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tesa SE
Original Assignee
Tesa SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesa SE filed Critical Tesa SE
Priority to US16/487,928 priority Critical patent/US11186011B2/en
Priority to EP18711016.8A priority patent/EP3585590B1/fr
Priority to ES18711016T priority patent/ES2855025T3/es
Publication of WO2018153935A1 publication Critical patent/WO2018153935A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/485Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws with three or more shafts provided with screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • B29B7/426Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix with consecutive casings or screws, e.g. for charging, discharging, mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/487Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws with consecutive casings or screws, e.g. for feeding, discharging, mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/86Component parts, details or accessories; Auxiliary operations for working at sub- or superatmospheric pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/94Liquid charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/041Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/14Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
    • B29C48/144Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration at the plasticising zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/252Drive or actuation means; Transmission means; Screw supporting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/29Feeding the extrusion material to the extruder in liquid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/297Feeding the extrusion material to the extruder at several locations, e.g. using several hoppers or using a separate additive feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/35Extrusion nozzles or dies with rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/38Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in the same barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/435Sub-screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/435Sub-screws
    • B29C48/44Planetary screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • B29B7/847Removing of gaseous components before or after mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0227Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using pressure vessels, e.g. autoclaves, vulcanising pans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/002Combinations of extrusion moulding with other shaping operations combined with surface shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • B29C48/767Venting, drying means; Degassing means in the extruder apparatus in screw extruders through a degassing opening of a barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/84Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders by heating or cooling the feeding screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/84Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders by heating or cooling the feeding screws
    • B29C48/85Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials

Definitions

  • the invention relates to a method for the production of thermally crosslinkable polymers in a planetary roller extruder.
  • Extruders are used in particular for plastics processing.
  • the plastic is usually used in the form of granules and plasticized by the extruder and discharged through a nozzle that brings the plasticized plastic in a desired shape.
  • plastification is understood to mean the conversion of powdery or granular plastics by temperature and pressure, that is to say a reduction in the viscosity of the material.
  • the plastics are heated above their specific melting temperatures, so that they form a hot, homogeneous plastic mass. If the plastic is then plasticized, it can be formed in the further process to, for example, pipes, plates, films or injection-molded parts. Even a coating on a substrate such as a carrier material is possible.
  • plastification is the addition of plasticizers (plasticizers, plasticizers, plasticizers, plasticizers) to plastics, ie chemical substances that influence the elasticity of the material.
  • the task of the extruder is to homogenize the melt. In most cases, additives and additives must be incorporated into the plastic matrix. In this case, the extruder has the task of evenly distributing additives and additives.
  • Planetary roller extruders were first used in the processing of thermoplastics such as PVC, where they were mainly used for feeding the follower units such as calenders or rolling mills. Its advantages of the large surface renewal for material and heat exchange, with which the energy introduced by friction can be dissipated quickly and effectively, as well as the low residence time and the narrow residence time spectrum has lately been extended, inter alia, to compounding processes which include a require particularly temperature-controlled driving.
  • planetary roller extruders are available in various designs and sizes. Depending on the desired throughput, the diameters of the roll cylinders are typically between 70 mm and 400 mm.
  • planetary roller extruders usually have a filling part and a compounding part.
  • the filling part consists of a screw conveyor to which the polymers to be plasticized and optionally at least a portion of further solid components are continuously metered.
  • the screw conveyor then transfers the material to the compounding section. If required, additional solids can be added within the compounding part, which preferably takes place via lateral screw feeders, which convey the material into the planetary roller extruder via openings in the shell of the roll cylinders and prevent the exit of the already plasticized polymers.
  • liquid formulation components usually does not take place via the filling part of the planetary roller extruder, but only downstream in the compounding part, since the liquids often adversely affect the plasticization process of the polymers.
  • the addition of the Liquid components can be effected via openings between the roll cylinders or via a special bore in the shell of a roll cylinder.
  • the area of the filling part with the screw is preferably cooled in order to avoid caking of materials on the screw.
  • the material is placed directly between the central and planetary spindles.
  • the compounding part consists of a driven central spindle and a plurality of planetary spindles, which rotate around the central spindle within one or more roll cylinders with internal helical teeth.
  • the speed of the central spindle and thus the rotational speed of the planetary spindles can be varied and is thus an important parameter for controlling the compounding process.
  • the surrounding housing has a double jacket in contemporary training.
  • the inner shell is formed by a bush, which is provided with the internal toothing. Between the inner and outer sheath, the important cooling of the planetary roller extruder is provided.
  • the planetary spindles require no guidance in the circumferential direction.
  • the toothing ensures that the spacing of the planetary spindles in the circumferential direction remains the same. It can be spoken of an own leadership.
  • the materials are circulated between central and planetary spindles or between planetary spindles and helical gearing of the roller part, so that the dispersion of the materials into a homogeneous compound takes place under the influence of shear energy and external tempering.
  • the number of rotating in each roller cylinder planetary spindles can be varied and thus adapted to the requirements of the process.
  • the number of spindles influences the free volume within the planetary roller extruder, the dwell time of the material in the process and also determines the area size for the heat and material exchange.
  • the number of planetary spindles has an influence on the compounding result via the shear energy introduced. With a constant roll diameter, it can be combined with Larger number of spindles achieve a better homogenization and dispersing performance or a larger product throughput.
  • the maximum number of planetary spindles that can be installed between the central spindle and the roll cylinder depends on the diameter of the roll cylinder and the diameter of the planetary spindles used.
  • the roll cylinders can be equipped with a larger number of planetary spindles.
  • Planetary roller extruders have an extremely large plasticizing effect in relation to the other extruders mentioned. This opens up the possibility of processing raw materials that are not or only insufficiently usable in the other extruders. However, planetary roller extruders can also be used to significantly increase production capacity.
  • melt gaseous components can occur, which are undesirable or adversely affect the quality of the product to be produced in the further processing.
  • constituents may be, for example, water, air or (residual) solvent.
  • Some polymers or fillers absorb water. Either these polymers or fillers must be pre-dried, or the steam produced in the extruder must be removed.
  • Gaseous components which are initially desirable and undesirable in the further processing operation may be organic solvents, water, air, reaction accelerators or reaction inhibitors or inert gases such as nitrogen, argon or carbon dioxide. As far as not complete chemical conversion of these gases takes place residues remain with monomeric, oligomeric degradation products and decomposition products.
  • the proportion of volatile liquid constituents in plasticized polymers can often be up to 3 to 4 wt .-%, but may not be more than 0.1 wt .-% in extruded polymers usually.
  • degassing For degassing different devices are offered. In most cases, the degassing is carried out on the extruder. First, a degassing zone is defined on the extruder, which is usually at the end of the process length immediately before the exit of the polymers from the extruder.
  • a disadvantage of this degassing is that even easily volatile liquid components, which should actually remain in a defined amount in the polymers, such as crosslinkers, plasticizers, etc., can be removed from the polymers in an undefined manner by the unwanted evaporation.
  • various solutions are offered. All solutions are based on the fact that the dissolved in the melt volatiles are released by pressure reduction. The pressure drop may be at ambient pressure or at an underlying pressure. Inevitably, the gas then dissolves from the melt. The gas bubbles can then be removed.
  • the degassing usually takes place between the primary extruder and the secondary extruder.
  • the degassing zone is a relatively sensitive zone. Here it is important to achieve the best possible separation of gas and polymer melt and to prevent leakage of the plasticized materials.
  • degassing takes place in the planetary roller extruder in the area of the thrust rings. Degassing at this position is, however, only sufficiently effective for a few materials: materials with higher viscosities, as is the case with most plasticized polymers, can usually not be degassed or degassed in the desired manner and completeness, since they are often shortest in duration Time comes to seal the degassing opening with material, which can then even lead to a complete loss of degassing capability.
  • Planetary roller extruders are modularly composed of individual roller cylinders.
  • Each module consists of a common central spindle to all modules, around the central spindle rotating planetary spindles and a housing. Number and type of planetary spindles can be different in each module and be adapted to the specific process task of the module.
  • the housings of the modules are provided with flanges at the ends, via which the modules can be coupled together.
  • the end faces of the modules are interconnected via intermediate rings, which are available in different versions. For example, there are intermediate rings, which reduce the free cross-section at the end of a roll cylinder and thus influence the residence time in the upstream roll cylinder and thus can influence the dispersing process, for example. There are also embodiments of intermediate rings that do not affect the conveying characteristics of the material within the planetary roller extruder.
  • the intermediate rings are selected so that they have at desired degassing via at least one radial bore through which the gaseous components can escape.
  • baffle plates are provided at the same time in the region of the intermediate rings designed as thrust rings, so that the melt, after passing through the baffle plate, is reduced from a zone of higher pressure into a zone Pressure passes.
  • the zone of lower pressure lies in the conveying direction of the extruder behind the baffle plate.
  • the lower pressure is achieved by a zone of low pressure effect. This can be achieved, for example, by interrupting the teeth of the planetary spindles.
  • An area without pressure effect can be achieved in that the planetary spindles in the zone have no teeth or that a volume expansion arises because the planetary spindles start at some distance from the baffle plate.
  • a variant for degassing proposes, according to DE 198 56 235 A1, to degas the melt alone or additionally backwards.
  • the backward degassing takes place in that a gas take-off takes place before in the compression zone of the filling part, a gas passage preventing material compression takes place.
  • the distance of the gas compression preventing material compression backward degassing for example, in the feed direction of the material to 80 cm distance from the material feeder.
  • the backward degassing also implies that the gas being released flows back through the material intake or the backward degassing takes place on the extruder in the axial direction and conveying direction before the feedstock is discharged.
  • the backward degassing is carried out in the context of a multi-stage degassing and forms the backward degassing in the task of the feedstock the first degassing step, in which in particular air is withdrawn.
  • the degassing may be sufficient if only openings are present through which the gas or air can escape.
  • the degassing can also be strengthened by applying a suction.
  • the extruder is formed in the region of the gas guide as a planetary roller extruder section.
  • the planetary roller extruder section offers particularly favorable gas passages between the revolving planetary spindles.
  • the degassing may be sufficient if only openings are present through which the gas or air can escape.
  • the degassing can also be strengthened by applying a suction.
  • Object of the present invention is to overcome the disadvantages of the previous process for the preparation of thermally crosslinkable polymers, so that thermal crosslinking agents and other vaporizable liquids in a defined amount can be incorporated into those plasticized polymers, that an in-line coating without further process steps is possible , And so that the plasticized polymers come almost bubble-free from the mixing unit.
  • the invention relates to a process for the preparation of thermally crosslinkable polymers in a planetary roller extruder, comprising the following steps: a) The planetary roller extruder has a filling part and a compounding part, which is formed by a rolling cylinder region which comprises at least two, preferably at least three coupled roll cylinders, the planetary spindles are driven by a single common central spindle. b) The polymers are fed to the planetary roller extruder in a plasticized state. c) The plasticized polymers are fed into the first roll cylinder, within the first half of the first roll cylinder.
  • the filling part of the planetary roller extruder is supplied with vacuum.
  • the jacket of the second roll cylinder has an opening, via which the plasticized polymers are freed from air and optionally further volatile components by means of a vacuum.
  • the jacket of the second roll cylinder of the at least three roll cylinders or the jacket of a downstream subsequent roll cylinder has an opening, for example the third roll cylinder over which the plasticized polymers by means of vacuum of air and optionally further Volatile components are released.
  • the flow temperatures of the central spindle and the under vacuum at least two roll cylinders are set so that the polymers to be degassed remain in the plastic state.
  • one or more liquids such as thermal crosslinkers, crosslinking accelerators, dye solutions or dye dispersions are preferably added continuously to the plasticized polymers, ie into the second roll cylinder or into one or more of the optionally present roll cylinders or into the intermediate rings between second and third third roll cylinder or between third and fourth roll cylinder etc.
  • the mixture of plasticized polymers and liquids are cooled in the roller cylinder region, in which the liquids are incorporated into the plasticized polymers, so that after the mixture leaves the planetary roller extruder, no evaporation of the liquids preferably homogeneously mixed in the plasticized polymers takes place.
  • the length of the roll cylinder region, in which a degassing of the plasticized polymers by means of vacuum, is between more than 50% and 80%, preferably between 60% and 70% of the length of the entire roll cylinder region.
  • the mixture of plasticized polymers and modifying liquids is preferably supplied to a coating unit without further additional treatment, more preferably inline, that is without intermediate filling or transfer with subsequent remelting.
  • step d) the filling part of the planetary roller extruder is subjected to a vacuum, with the aid of which the plasticized polymers entering downstream of the filling part are at least partially freed from air and optionally further volatile constituents. That is, the air or other volatiles migrate upstream against the mass flow.
  • At least one opening is additionally already present in the shell opening of the first roll cylinder, via which the plasticized polymers are freed from air and optionally further volatile components by means of a vacuum.
  • the degassing takes place in the filling part or the jacket opening of the first roll cylinder, by applying a pressure of less than 50 mbar, preferably a pressure of less than 10 mbar at the outlet on the filling part or on the shell opening of the first roll cylinder.
  • the opening in the jacket of the second roll cylinder is equipped with a product hold-down mechanism which prevents the plasticized polymers from escaping from the planetary roller extruder.
  • the product lightening work is carried out as a pair of intermeshing twin-screw, over the free flanks of air and optionally other volatiles are removed from the plasticized polymers under the influence of heat and vacuum.
  • the downstream of the degassing in the second roll cylinder to the plasticized polymers metered one or more liquids are continuously added and mixed as homogeneously as possible in the plasticized polymers by means of central spindle and planetary spindles. If more than two roll cylinders are present, the liquids can also be added to them.
  • Homogeneous in the sense of the present invention means mesoscopically and macroscopically homogeneous as well as direction-independent in the properties.
  • the feeding of the liquids into the plasticized polymers takes place in an intermediate ring which lies between the second and the preferably used third roll cylinder and which has at least one radial bore for the purpose of feeding the modifying liquids.
  • the feeding of the modifying liquids in the planetary roller extruder via one or more holes in the shell of a roll cylinder, the bores are preferably in a range within the first half of the roll cylinder.
  • the feeding of the plasticized polymers into the planetary roller extruder takes place through an opening in the wall of the first roll cylinder jacket.
  • the feeding of the plasticized polymers into the planetary roller extruder can take place via an intermediate ring which is located between the filling part and the first roll cylinder and which has at least one radial bore for the purpose of feeding the plasticized polymers.
  • the feeding of the plasticized polymers into the planetary roller extruder takes place by means of a melt pump, by means of a single- or multi-screw extruder or by means of a barrel or tank melt unit.
  • the exit of the mixture from the planetary roller extruder takes place by means of a melt pump coupled to the end of the roll cylinder region.
  • the heat exchange in the planetary roller extruder preferably takes place via the central spindle and / or the roll cylinders, which are operated via heating / cooling devices with tempering medium.
  • thermodynamic reasons water or pressurized water is preferred for thermodynamic reasons, but the process is not limited thereto.
  • An inventive planetary roller extruder is shown in a particularly advantageous embodiment in Figure 4.
  • the coating unit is a calender or a nozzle, through which or through which the mixture is applied to a carrier material.
  • the coating of the adhesives prepared by preference with a multi-roll applicator.
  • These can be commissioned works consisting of at least two rolls with at least one nip up to five rolls with three nips.
  • coating units such as calenders (I, F, L calenders), so that the preferred adhesive is formed to the desired thickness when passing through one or more nips.
  • the preferred 4-roll applicator is formed by a metering roll, a doctor blade which determines the thickness of the layer on the substrate and which is arranged parallel to the metering roll, and a transfer roll which is located below the metering roll. On the lay-on roller, which forms a second nip together with the transfer roller, the mass and the web-shaped material are brought together.
  • the coating can be carried out in a synchronous or countercurrent process.
  • the forming unit can also be formed by a gap which results between a roller and a stationary doctor blade.
  • the fixed squeegee may be a knife blade or a fixed (half) roller.
  • the inventive method is characterized in that the mixtures of plasticized polymers and preferably used as a liquid thermal crosslinkers and / or crosslinking accelerators in the roll cylinder area in which the thermal crosslinking or crosslinking accelerators are incorporated into the plasticized polymers are cooled so that the The time from which the mixture begins to crosslink (gelation) is at least doubled compared to the time that the plasticized polymers have in the roller cylinder area, in which they are freed of air and any volatile constituents under vacuum.
  • the plasticized polymers are polymers from the group of non-thermoplastic elastomers, thermoplastic synthetic rubbers, polyacrylates, polyurethanes, polyepoxides and mixtures in any ratios thereof. Further preferably, the plasticized polymers are blended with, for example, tackifying resins, fillers, plasticizers, oils, thixotropic agents and optionally further additives.
  • thermal crosslinking and / or crosslinking accelerators are used as the liquid in particular.
  • the mixtures coming from the planetary roller extruder are self-adhesive adhesives or curable structural adhesives.
  • Adhesive tape rolls from the ⁇ CX ⁇ range of the company tesa are particularly preferred.
  • Such adhesive tapes comprise a carrier layer, which is also referred to as a hard phase.
  • the hard phase polymer base is preferably selected from the group consisting of polyvinyl chlorides (PVC), polyethylene terephthalates (PET), polyurethanes, polyolefins, polybutylene terephthalates (PBT), polycarbonates, polymethyl methacrylates (PMMA), polyvinyl butyrals (PVB), ionomers, and mixtures of two or more the polymers listed above.
  • the polymer base of the hard phase is particularly preferably selected from the group consisting of polyvinyl chlorides, polyethylene terephthalates, polyurethanes, polyolefins and mixtures of two or more of the polymers listed above.
  • the hard phase is essentially a polymer film whose polymer base is selected from the above materials.
  • a "polymer film” is understood to mean a thin, flat, flexible, windable web whose material base is essentially formed by one or
  • polyurethanes in a broad sense polymeric substances in which repeating units are linked together by urethane groups -NH-CO-O-.
  • Polyolefins are polymers which, based on the amount of substance, contain at least 50% repeat units of the general structure - [- CH 2 -CR 1 R 2 -] n - wherein R 1 is a hydrogen atom and R 2 is a hydrogen atom or a linear or branched, saturated aliphatic or cycloaliphatic group.
  • R 1 is a hydrogen atom
  • R 2 is a hydrogen atom or a linear or branched, saturated aliphatic or cycloaliphatic group.
  • polymer base of the hard phase comprises polyolefins, these are particularly preferably polyethylenes, in particular ultrahigh molecular weight polyethylenes (UHMWPE).
  • UHMWPE ultrahigh molecular weight polyethylenes
  • polymer base is understood to mean the polymer or polymers which make up the largest proportion by weight of all polymers present in the respective layer or phase.
  • the thickness of the hard phase is in particular ⁇ 150 ⁇ .
  • the thickness of the hard phase 10 to 150 ⁇ , more preferably 30 to 120 ⁇ and in particular 50 to 100 ⁇ , for example 70 to 85 ⁇ .
  • the term "thickness" is understood to mean the extent of the respective layer or phase along the z-ordinate of an imaginary coordinate system in which the plane spanned by the machine direction and the cross direction to the machine direction forms the xy plane.
  • the thickness of the hard phase is determined in accordance with DIN EN ISO 4593.
  • the thickness measurement of the hard phase is carried out in accordance with DIN EN ISO 4593.
  • Such adhesive tapes may further comprise a soft phase comprising a polymeric foam, a viscoelastic composition and / or an elastomeric composition.
  • the polymer base of the soft phase is preferably selected from polyolefins, polyacrylates, polyurethanes and mixtures of two or more of the polymers listed above.
  • the adhesive tape consists only of a soft phase.
  • a “polymeric foam” is meant a structure of gas-filled spherical or polyhedron-shaped cells delimited by liquid, semi-liquid, highly viscous or solid cell stems, and the main constituent of the cell stems is a polymer or a mixture of several polymers.
  • a “viscoelastic composition” is understood to mean a material which, in addition to features of pure elasticity (return to the initial state after external mechanical action), also exhibits characteristics of a viscous liquid, for example the occurrence of internal friction during deformation considered.
  • an “elastomeric mass” is meant a material having rubbery behavior and can be repeatedly stretched at 20 ° C to at least twice its length and immediately resumes its initial dimension after cancellation of the compulsion required for the elongation.
  • polyacrylates is understood as meaning polymers whose molar-based monomer base comprises at least 50% of acrylic acid, methacrylic acid, acrylic acid esters and / or methacrylic acid esters, acrylic esters and / or methacrylic acid esters are contained at least partly in general and preferably at least 50%.
  • a "polyacrylate” is understood to mean a polymer which can be obtained by free-radical polymerization of acrylic and / or methylacrylic monomers and optionally further copolymerizable monomers.
  • the polymer base of the soft phase is particularly preferably selected from polyolefins, polyacrylates and mixtures of two or more of the polymers listed above. If polyolefins belong to the polymer base of the soft phase, these are preferably selected from polyethylenes, ethylene-vinyl acetate copolymers (EVA) and mixtures of polyethylenes and ethylene-vinyl acetate copolymers (PE / EVA blends).
  • EVA ethylene-vinyl acetate copolymers
  • PE / EVA blends ethylene-vinyl acetate copolymers
  • the polyethylenes may be different types of polyethylene, for example HDPE, LDPE, LLDPE, blends of these types of polyethylene and / or mixtures thereof.
  • the soft phase comprises a foam and a pressure-sensitive adhesive layer disposed above and below the foamed layer, wherein the polymer base of the foam is one or more polyolefin (s) and the polymer base of the pressure-sensitive adhesive layers is one or more polyacrylates.
  • the polymer base of the foam consists of one or a plurality of polyethylene (s), ethylene-vinyl acetate copolymer (s) and mixtures of one or more polyethylene (s) and / or ethylene-vinyl acetate copolymer (s).
  • the polymer base of the foam consists of one or more polyethylene (s).
  • the polyolefin-based foam itself is not or only very slightly tacky.
  • the bond with the hard phase or the substrate is therefore advantageously effected by the pressure-sensitive adhesive layers.
  • the foaming of the polyolefin-based starting material of the foam is preferably caused by added propellant gas in the sense of physical foaming and / or by a chemical foaming agent, for example by azodicarboxylic acid diamine.
  • the soft phase is a pressure-sensitive adhesive polymer foam whose polymer base consists of one or more polyacrylates.
  • Pressure-sensitive adhesive foam means that the foam itself is a pressure-sensitive adhesive and thus does not require the application of an additional pressure-sensitive adhesive layer, which is advantageous because fewer layers must be joined during the manufacturing process and the risk of detachment phenomena and other undesirable phenomena at the layer boundaries is reduced.
  • Self-adhesive compositions also referred to as pressure-sensitive adhesives
  • pressure-sensitive adhesives are in the sense of the invention in particular those polymeric compositions which are permanently tacky and tacky at the application temperature (unless otherwise defined, at room temperature), optionally by suitable addition with further components such as adhesive resins, and at a plurality of Adhere surfaces to contact, in particular immediately adhere (a so-called "tack".) They are able, even at the application temperature without activation by solvents or by heat - but usually by the influence of a more or less high pressure - to adequately wet a substrate to be bonded, so that adequate interactions can form between the compound and the substrate for adhesion, for which the influencing parameters include pressure and contact time Among other things, the PSAs are based in particular on their viscoelastic properties.
  • weak or strongly adherent Adhesives are produced; furthermore, those which can be glued only once and permanently, so that the bond can not be released without destroying the adhesive and / or the substrates, or those which are easy to redetach and, if necessary, can be glued multiple times.
  • Pressure-sensitive adhesives can in principle be produced on the basis of polymers of different chemical nature.
  • the pressure-sensitive adhesive properties are influenced inter alia by the nature and the proportions of the monomers used in the polymerization of the polymers on which the PSA is based, their average molecular weight and molecular weight distribution, and by the nature and amount of the PSA additives such as tackifier resins, plasticizers and the like.
  • the monomers on which the PSA-based polymers are based, as well as the optional further components of the PSA are chosen such that the PSA has a glass transition temperature (according to DIN 53765) below the application temperature (ie usually below room temperature ) exhibit.
  • suitable cohesion-increasing measures such as, for example, crosslinking reactions (formation of bridge-forming linkages between the macromolecules)
  • the temperature range in which a polymer composition has pressure-sensitive adhesive properties can be increased and / or shifted.
  • the scope of the PSAs can thus be optimized by adjusting the flowability and cohesion of the mass.
  • a PSA is permanently tacky at room temperature, so it has a sufficiently low viscosity and high tack, so that it wets the surface of the respective Klebegrunds already at low pressure.
  • the adhesiveness of the adhesive is based on its adhesive properties and the removability on their cohesive properties.
  • the polyacrylates are preferably obtainable by at least partial incorporation of functional monomers crosslinkable with epoxide groups. Particular preference is given to monomers having acid groups (especially carboxylic acid, sulfonic acid or phosphonic acid groups) and / or hydroxyl groups and / or acid anhydride groups and / or epoxide groups and / or amine groups; particular preference is given to monomers containing carboxylic acid groups. It is complete particularly advantageous if the polyacrylates have copolymerized acrylic acid and / or methacrylic acid. All of these groups have a crosslinking ability with epoxy groups, whereby the polyacrylates is advantageously accessible to thermal crosslinking with incorporated epoxides.
  • monomers which can be used as comonomers for the polyacrylates, in addition to acrylic acid and / or methacrylic acid esters having up to 30 carbon atoms for example, vinyl esters of carboxylic acids containing up to 20 carbon atoms, vinyl aromatics having up to 20 carbon atoms, ethylenic unsaturated nitriles, vinyl halides, vinyl ethers of alcohols containing 1 to 10 carbon atoms, aliphatic hydrocarbons having 2 to 8 carbon atoms and 1 or 2 double bonds or mixtures of these monomers.
  • the properties of the polyacrylate in question can be influenced in particular by varying the glass transition temperature of the polymer by different weight proportions of the individual monomers.
  • the polyacrylates may preferably be recycled to the following monomer composition: a) acrylic acid esters and / or methacrylic acid esters of the following formula
  • R ' H or CH 3 and R "is an alkyl radical having 4 to 14 C atoms,
  • component (a) optionally further acrylates and / or methacrylates and / or olefinically unsaturated monomers which are copolymerizable with component (a).
  • the polyacrylates are based on a monomer composition in which the monomers of component (a) in an amount of 45 to 99 wt .-%, the monomers of component (b) in an amount of 1 to 15 wt .-% and the monomers of the component (c) are contained in a proportion of 0 to 40 wt .-% (the data are based on the monomer mixture for the "base polymer", ie without additives of any additives to the finished polymer, such as resins, etc.) Case, the polymerization product has a glass transition temperature ⁇ 15 ° C (DMA at low frequencies) and pressure-sensitive adhesive properties.
  • the monomers of component (a) are, in particular, plasticizing and / or nonpolar monomers.
  • Preferably used as monomers (a) are acrylic and methacrylic esters with alkyl groups consisting of 4 to 14 C atoms, more preferably 4 to 9 C atoms.
  • Examples of such monomers are n-butyl acrylate, n-butyl methacrylate, n-pentyl acrylate, n-pentyl methacrylate, n-amyl acrylate, n-hexyl acrylate, n-hexyl methacrylate, n-heptyl acrylate, n-octyl acrylate, n-octyl methacrylate, n-nonyl acrylate, isobutyl acrylate , Isooctyl acrylate, isooctyl methacrylate, and their branched isomers, such as 2 ethylhexyl acrylate or 2 ethylhexyl methacrylate.
  • component (b) preference is given to using monomers having functional groups which are selected from the group comprising: hydroxyl, carboxy, sulfonic or phosphonic acid groups, acid anhydrides, epoxides, amines.
  • monomers of component (b) are acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, aconitic acid, dimethylacrylic acid, ⁇ -acryloyloxypropionic acid, trichloroacrylic acid, vinylacetic acid, vinylphosphonic acid, itaconic acid, maleic anhydride, hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, 6 Hydroxyhexyl methacrylate, allyl alcohol, glycidyl acrylate, glycidyl methacrylate.
  • component (c) all vinylically functionalized compounds which are copolymerizable with component (a) and / or component (b) can be used as component (c).
  • the monomers of component (c) can serve to adjust the properties of the resulting PSA.
  • Exemplary monomers of component (c) are:
  • Macromonomers such as 2-polystyrene ethyl methacrylate (molecular weight M w from 4000 to 13000 g / mol), poly (methyl methacrylate) ethyl methacrylate (M w from 2000 to 8000 g / mol).
  • Monomers of component (c) may advantageously also be chosen such that they contain functional groups which promote a subsequent radiation-chemical crosslinking (for example by electron beams, UV).
  • Suitable copolymerizable photoinitiators are, for example, benzoin acrylate and acrylate-functionalized benzophenone derivatives.
  • Monomers that undergo crosslinking For example, tetrahydrofurfuryl acrylate, N-tert-butylacrylamide, and allyl acrylate.
  • polyacrylates is understood in the context of the invention to be synonymous with “poly (meth) acrylates"
  • poly (meth) acrylates can be carried out by methods familiar to the person skilled in the art, in particular advantageously by conventional free-radical polymerizations or controlled free-radical polymerizations.
  • the polyacrylates can be prepared by copolymerization of the monomeric components using the usual polymerization initiators and optionally regulators, being polymerized at the usual temperatures in bulk, in emulsion, for example in water or liquid hydrocarbons, or in solution.
  • the polyacrylates are preferably prepared by polymerization of the monomers in solvents, in particular in solvents having a boiling range of from 50 to 150 ° C., preferably from 60 to 120 ° C., using the customary amounts of polymerization initiators, generally from 0.01 to 5, in particular at 0.1 to 2 wt .-% (based on the total weight of the monomers) are prepared.
  • radical sources are peroxides, hydroperoxides and azo compounds, for example dibenzoyl peroxide, cumene hydroperoxide, cyclohexanone peroxide, di-t-butyl peroxide, cyclohexylsulfonyl acetyl peroxide, diisopropyl percarbonate, t-butyl peroctoate, benzpinacol.
  • the free-radical initiator used is 2,2'-azobis (2-methylbutyronitrile) (Vazo® 67 TM from DuPont) or 2,2'-azobis (2-methylpropionitrile) (2,2'-azobisisobutyronitrile; AIBN Vazo® 64 TM from DuPont).
  • Suitable solvents for the preparation of the polyacrylates are alcohols such as methanol, ethanol, n- and iso-propanol, n- and iso-butanol, preferably isopropanol and / or isobutanol, and hydrocarbons such as toluene and in particular gasoline having a boiling range of 60 to 120 ° C. in question.
  • alcohols such as methanol, ethanol, n- and iso-propanol, n- and iso-butanol, preferably isopropanol and / or isobutanol
  • hydrocarbons such as toluene and in particular gasoline having a boiling range of 60 to 120 ° C. in question.
  • ketones such as, preferably, acetone, methyl ethyl ketone, methyl isobutyl ketone and esters, such as ethyl acetate, and mixtures of solvents of the type mentioned, with mixtures containing isopropanol, in particular in amounts of from 2 to 15% by weight, preferably from 3 to 10% by weight. , based on the solvent mixture used, are preferred.
  • a concentration takes place, and the further processing of the polyacrylates takes place essentially solvent-free.
  • the concentration of the polymer can be done in the absence of crosslinker and accelerator substances.
  • the polymers can be converted into a compounder after the concentration step.
  • concentration and the compounding can also take place in the same reactor.
  • the weight-average molecular weights Mw of the polyacrylates are preferably in a range of 20,000 to 2,000,000 g / mol; more preferably in a range of 100,000 to 1,000,000 g / mol, most preferably in a range of 150,000 to 500,000 g / mol (the data of the average molecular weight Mw and the polydispersity PD in this document refer to the determination by gel permeation chromatography
  • the THF was used with 0.1% by volume of trifluoroacetic acid and the measurement was carried out at 25 ° C.
  • the precolumn used was PSS-SDV, 5 ⁇ m, 10 3 ⁇ , ID 8.0 mm ⁇ 50 mm Columns PSS-SDV, 5 [Jim, 10 3 ⁇ , 10 5 ⁇ and 10 6 ⁇ each used with ID 8.0 mm ⁇ 300 mm
  • the sample concentration was 4 g / l, the flow rate 1, 0 ml per minute was measured against PMMA standards.
  • the weight average molecular weight M w is determined by gel permeation chromatography (GPC).
  • the eluent used is THF with 0.1% by volume of trifluoroacetic acid. The measurement takes place at 25 ° C.
  • PSS-SDV, 5 ⁇ , 10 3 A, ID 8.0 mm ⁇ 50 mm is used as precolumn.
  • the columns PSS-SDV, 5 ⁇ , 10 3 ⁇ and 10 5 ⁇ and 10 6 ⁇ each with ID 8.0 mm x 300 mm are used.
  • the sample concentration is 4 g / l
  • the flow rate is 1, 0 ml per minute.
  • the polyacrylate preferably has a K value of from 30 to 90, more preferably from 40 to 70, measured in toluene (1% solution, 21 ° C).
  • the K value according to Fikentscher is a measure of the molecular weight and the viscosity of the polymer.
  • Particularly suitable are polyacrylates which have a narrow molecular weight distribution (polydispersity PD ⁇ 4).
  • Narrowly distributed poly (meth) acrylates can be advantageously prepared by anionic polymerization or by controlled radical polymerization, the latter being particularly well suited. Examples of such polyacrylates prepared by the RAFT process are described in US 6,765,078 B2 and US 6,720,399 B2. Also via N-Oxyle can be prepared corresponding polyacrylates, as described for example in EP 1 31 1 555 B1.
  • ATRP Atom Transfer Radical Polymerization
  • monofunctional or difunctional secondary or tertiary halides as initiator and to abstraction of the halide (s) Cu, Ni, Fe -, Pd, Pt, Ru, Os, Rh, Co, Ir, Ag or Au complexes are used.
  • the different possibilities of ATRP are described in US Pat. Nos. 5,945,491, 5,854,364 and 5,789,487.
  • the monomers for the preparation of the polyacrylates preferably contain proportionally functional groups which are suitable for entering into linking reactions with epoxide groups. This advantageously allows thermal crosslinking of the polyacrylates by reaction with epoxides.
  • linking reactions are meant in particular addition and substitution reactions.
  • the epoxide group-containing substances are preferably multifunctional epoxides, ie those having at least two epoxide groups; Accordingly, it is preferable in total to an indirect linkage of the blocks carrying the functional groups.
  • the polyacrylate or the polyacrylates are preferably crosslinked by linking reactions - in particular in the sense of addition or substitution reactions - of functional groups contained in them with thermal crosslinkers. It is possible to use all thermal crosslinkers which lead to rapid postcrosslinking of the polymer to the desired degree of crosslinking at temperatures lower than the processing temperature, in particular at room temperature.
  • thermal crosslinkers which lead to rapid postcrosslinking of the polymer to the desired degree of crosslinking at temperatures lower than the processing temperature, in particular at room temperature.
  • a combination of polymers comprising carboxyl, amine and / or hydroxyl groups and isocyanates as crosslinking agents is possible, in particular the aliphatic or amine-deactivated trimerized isocyanates described in EP 1 791 922 A1.
  • Suitable isocyanates are in particular trimerized derivatives of MDI [4,4-methylene di (phenyl isocyanate)], HDI [hexamethylene diisocyanate, 1,6-hexylene diisocyanate] and / or IPDI [isophorone diisocyanate, 5-isocyanato-1-isocyanatomethyl-1, 3, 3-trimethylcyclohexane], for example the types Desmodur® N3600 and XP2410 (in each case BAYER AG: aliphatic polyisocyanates, low-viscosity HDI trimers). Also suitable is the surface-deactivated dispersion of micronized trimerized IPDI BUEJ 339®, now HF9® (BAYER AG).
  • isocyanates such as Desmodur VL 50 (polyisocyanates based on MDI, Bayer AG), Basonat F200WD (aliphatic polyisocyanate, BASF AG), Basonat HW100 (water-emulsifiable polyfunctional isocyanate based on HDI, BASF AG), Basonat HA 300 (allophanate-modified polyisocyanate based on isocyanurate, HDI-based, BASF) or Bayhydur VPLS2150 / 1 (hydrophilic modified IPDI, Bayer AG).
  • Desmodur VL 50 polyisocyanates based on MDI, Bayer AG
  • Basonat F200WD aliphatic polyisocyanate, BASF AG
  • Basonat HW100 water-emulsifiable polyfunctional isocyanate based on HDI, BASF AG
  • Basonat HA 300 allophanate-modified polyisocyanate based on isocyanurate, HDI-based, BASF
  • the thermal crosslinker for example the trimerized isocyanate, is preferably used at from 0.1 to 5% by weight, in particular from 0.2 to 1% by weight, based on the total amount of the polymer to be crosslinked.
  • the thermal crosslinker preferably comprises at least one substance containing epoxide groups.
  • the epoxide group-containing substances are in particular multifunctional epoxides, ie those having at least two epoxide groups; accordingly, there is an overall indirect linkage of the functional groups carrying building blocks.
  • the epoxide group-containing substances can be both aromatic and aliphatic compounds.
  • Highly suitable multifunctional epoxides are oligomers of epichlorohydrin, polyether polyhydric alcohols (especially ethylene, propylene and butylene glycols, polyglycols, thiodiglycols, glycerol, pentaerythritol, sorbitol, polyvinyl alcohol, polyallylalcohol and the like), epoxy ethers of polyhydric phenols [especially resorcinol, hydroquinone, bis - (4-hydroxyphenyl) -methane, bis (4-hydroxy-3-methylphenyl) -methane, bis (4-hydroxy-3,5-dibromophenyl) -methane, bis- (4-hydroxy-3,5- difluorophenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) -propane, 2 , 2-bis (4-
  • Very suitable ethers are, for example, 1,4-butanediol diglycidyl ether, polyglycerol-3-glycidyl ether, cyclohexanedimethanol diglycidyl ether, glycerol triglycidyl ether, neopentylglycol diglycidyl ether, pentaerythritol tetraglycidyl ether, 1,3-hexanediol diglycidyl ether, polypropylene glycol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, bisphenol ether.
  • a diglycidyl ether and bisphenol F diglycidyl ether are particularly preferred.
  • a crosslinking agent accelerator system (“crosslinking system”) described, for example, in EP 1 978 069 A1, in order to obtain better control over both the processing time, crosslinking kinetics and the degree of crosslinking
  • the crosslinker-accelerator system comprises at least
  • An accelerator is particularly preferably amines (formally considered as substitution products of ammonia, these substituents are in the following formulas represented by "R” and include in particular alkyl and / or aryl radicals and / or other organic radicals), more preferably those amines which have no or only minor R 4 with the building blocks of the polymers to be crosslinked to enter into action.
  • both primary (NRh), secondary (NR2H) and tertiary amines (NR3) can be selected as accelerators, of course also those which have a plurality of primary and / or secondary and / or tertiary amine groups.
  • particularly preferred accelerators are tertiary amines such as triethylamine, triethylenediamine, benzyldimethylamine, dimethylamino-methylphenol, 2,4,6-tris- (N, N-dimethylaminomethyl) -phenol, N, N'-bis (3- (dimethyl-amino ) propyl) urea.
  • multifunctional amines such as diamines, triamines and / or tetramines can also be used as accelerators.
  • diethylenetriamine, triethylenetetramine, trimethylhexamethylenediamine are excellent.
  • amino alcohols are preferably used as accelerators.
  • Secondary and / or tertiary amino alcohols are particularly preferably used, wherein in the case of several amine functionalities per molecule, preferably at least one, preferably all amine functionalities are secondary and / or tertiary.
  • Preferred amino alcohol accelerators may be triethanolamine, N, N-bis (2-hydroxypropyl) ethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, 2-aminocyclohexanol, bis (2-hydroxycyclohexyl) methylamine, 2- (diisopropylamino) ethanol, 2- Dibutylamino) ethanol, N-butyldiethanolamine, N-butylethanolamine, 2- [bis (2- hydroxyethyl) amino] -2- (hydroxymethyl) -1,3-propanediol, 1 - [bis (2-hydroxyethyl) amino] -2-propanol, triisopropanolamine, 2- (dimethylamino) ethanol, 2- (diethylamino) ethanol, 2 - (2-dimethylaminoethoxy) ethanol, N, N, N'-trimethyl-N'-hydroxyethylbisaminoethylether,
  • accelerators are pyridine, imidazoles (such as 2-methylimidazole) and 1,8-diazabicyclo [5.4.0] undec-7-ene. Cycloaliphatic polyamines can also be used as accelerators. Also suitable are phosphate-based accelerators, such as phosphines and / or phosphonium compounds, for example triphenylphosphine or tetraphenylphosphonium tetraphenylborate.
  • a polymer foam having an adhesive pressure per se with a polymer base consisting of polyacrylate (s) is also coated on top and / or underside with a pressure-sensitive adhesive, wherein the polymer base of this pressure-sensitive adhesive preferably also consists of polyacrylates.
  • a pressure-sensitive adhesive preferably also consists of polyacrylates.
  • other or otherwise pretreated adhesive layers ie for example pressure-sensitive adhesive layers and / or heat-activatable layers based on polymers other than poly (meth) acrylates, can be laminated to the foamed layer.
  • Suitable base polymers are natural rubbers, synthetic rubbers, acrylate block copolymers, vinylaromatic block copolymers, in particular styrene block copolymers, EVA, polyolefins, polyurethanes, polyvinyl ethers and silicones.
  • these layers contain no appreciable proportions of migratable constituents that are so well compatible with the material of the foamed layer that they diffuse in a significant amount in the foamed layer and change the properties there.
  • the soft phase of the adhesive tape may contain at least one tackifying resin.
  • tackifier resin the skilled person understands a resin-based substance which increases the tackiness.
  • hydrogenated and unhydrogenated hydrocarbon resins and polyterpene resins can be used as adhesive resins in the case of the self-adhesive composition as main component.
  • hydrogenated polymers of the Dicyclopentadiene for example Escorez 5300 series; Exxon Chemicals
  • hydrogenated polymers of preferably Cs and Cg aromatics for example Regalite and Regalrez series, Eastman Inc. or Arkon P series, Arakawa.
  • Cs and Cg aromatics for example Regalite and Regalrez series, Eastman Inc. or Arkon P series, Arakawa.
  • Cs and Cg aromatics for example Regalite and Regalrez series, Eastman Inc. or Arkon P series, Arakawa.
  • partially hydrogenated polymers of Cs and Cg aromatics for example Regalite and Regalrez series, Eastman Inc.
  • Arkon M Arakawa
  • hydrogenated polyterpene resins for example Clearon M, Yasuhara
  • hydrogenated Cs / Cg polymers for example ECR-373; Exxon Chemicals
  • aromatically modified, selectively hydrogenated dicyclopentadiene derivatives e.g., Escorez 5600 series; Exxon Chemicals.
  • the aforementioned adhesive resins can be used both alone and in admixture.
  • non-hydrogenated hydrocarbon resins non-hydrogenated analogs of the hydrogenated resins described above may also be used.
  • rosin-based resins for example, foral, foralyn
  • rosin-based resins for example, foral, foralyn
  • the rosins mentioned above include, for example, natural rosin, polymerized rosin, partially hydrogenated rosin, fully hydrogenated rosin, esterified products of these rosins (such as glycerol esters, pentaerythritol esters, ethylene glycol esters and methyl esters) and rosin derivatives (such as disproportionating rosin, fumaric acid-modified rosin, and lime modified rosin).
  • Adhesive resins preferred according to the invention are (partially) hydrogenated hydrocarbon resins based on Cs, Cs / Cg or Cg and also polyterpene resins based on ⁇ -pinene and / or ⁇ -pinene and / or ⁇ -limonene and terpene-phenol resins.
  • terpene-phenolic resins in particular only terpene-phenolic resins, without the use of other types of resin.
  • the PSA may contain additives such as fillers, dyes or anti-aging agents (antiozonants, light stabilizers, etc.) for adjusting optical and adhesive properties.
  • additives to the adhesive are typically used:
  • Sunscreens such as UV absorbers or sterically hindered amines
  • the fillers may be reinforcing or non-reinforcing.
  • silicas sinosilicas
  • calcium carbonates calcium carbonates
  • zinc oxides titanium dioxides
  • aluminum oxides aluminum oxide hydroxides.
  • concentration of the additives which influence the optical and adhesive properties is preferably up to 20% by weight, more preferably up to 15% by weight.
  • the soft phase of the adhesive tape may contain one or more additives.
  • the additive (s) may be in one or more layers of the soft phase.
  • the soft phase preferably comprises a polymer foam, and the polymer foam contains partially or fully expanded microballoons, in particular if the polymer base of the polymer foam comprises one or more polyacrylates and very particularly preferably if the polymer base of the polymer foam consists of one or more polyacrylate (s). consists.
  • Microballoons are elastic hollow spheres which have a thermoplastic polymer shell; They are therefore also referred to as expandable polymeric microspheres or hollow microspheres. These balls are filled with low-boiling liquids or liquefied gas. Find as cover material in particular polyacrylonitrile, polyvinyldichloride (PVDC), polyvinyl chloride (PVC), polyamides or polyacrylates use.
  • a low-boiling liquid in particular lower alkanes for example isobutane or isopentane are suitable, which are included as a liquefied gas under pressure in the polymer shell.
  • the outer polymer shell by a physical action on the microballoons, for example by a heat - especially by heat or heat generated, for example, by ultrasound or microwave radiation - softened on the one hand, the outer polymer shell, at the same time, the liquid propellant located in the shell is in its gaseous state.
  • pressure and temperature also known as critical pairing - the microballoons expand irreversibly and expand three-dimensionally. The expansion is completed when the internal and external pressures equalize. As the polymeric shell is preserved, this results in a closed-cell foam.
  • microballon types are commercially available, such as Akzo Nobel's Expancel DU (dry unexpanded) grades, which are essentially sized (6 to 45 ⁇ m diameter unexpanded state) and their starting temperature needed for expansion (75 ° C to 220 ° C) differentiate.
  • unexpanded microballoon types are also obtainable as an aqueous dispersion having a solids or microballoon fraction of about 40 to 45% by weight, moreover also as polymer-bound microballoons (masterbatches), for example in ethylvinyl acetate having a microballoon concentration of about 65% by weight. %.
  • masterbatches polymer-bound microballoons
  • microballoon slurry systems are available, in which the microballoons are present with a solids content of 60 to 80 wt .-% as an aqueous dispersion.
  • Both the microballoon dispersions, the microballoon slurries and the masterbatches are suitable, like the DU types, for foaming a polymer foam contained in the soft phase of the adhesive tape.
  • the polymer foam particularly preferably contains microballoons which, in the unexpanded state at 25 ° C., have a diameter of from 3 ⁇ m to 40 ⁇ m, in particular from 5 ⁇ m to 20 ⁇ m, and / or after expansion have a diameter of from 10 ⁇ m to 200 ⁇ m, in particular 15 ⁇ to 90 ⁇ , have.
  • the polymer foam contains up to 30 wt .-% microballoons, in particular between 0.5 wt .-% and 10 wt .-%, each based on the total mass of the polymer foam.
  • the polymer foam of the soft phase of the adhesive tape - if it comprises a polymer foam - is preferably characterized by the substantial absence of open-cell cavities.
  • the polymer foam has a proportion of voids without their own polymer shell, ie of open-cell cavities, of not more than 2% by volume, in particular not more than 0.5% by volume.
  • the polymer foam is thus preferably a closed-cell foam.
  • a pressure-sensitive adhesive containing expanded polymeric microspheres may also contain partially incomplete or non-expanded microspheres. In the process, rather, a distribution of different expansion states occurs.
  • expanded microballoons include fully or partially expanded microballoons.
  • Unexpanded microballoons may additionally be present.
  • An expandable hollow microspheres containing polymer composition may additionally contain non-expandable hollow microspheres.
  • the decisive factor is that almost all caverns containing gas are closed by a permanently impermeable membrane, regardless of whether this membrane consists of an elastic and thermoplastically expansible polymer mixture or of elastic and / or - in the range of possible temperatures in plastics processing - non- thermoplastic glass.
  • PSA also suitable for the PSA are - regardless of other additives - solid polymer beads such as PMMA beads, glass bubbles, glass beads, phenolic resin beads, ceramic hollow beads, ceramic solid beads and / or full carbon carbon beads ("Carbon Micro Balloons”), preferably the components mentioned are not in the Pressure-sensitive adhesive included.
  • solid polymer beads such as PMMA beads, glass bubbles, glass beads, phenolic resin beads, ceramic hollow beads, ceramic solid beads and / or full carbon carbon beads
  • Carbon Micro Balloons preferably the components mentioned are not in the Pressure-sensitive adhesive included.
  • the foamed PSA is a syntactic foam.
  • the cavities are separated from each other and the substances in the cavities (gas, air) through a membrane of the separated surrounding matrix.
  • the material is much stronger than conventional foams with unreinforced gas inclusions.
  • the soft phase of the adhesive tape also powdered and / or granular fillers, dyes and pigments, especially abrasive and reinforcing fillers such as chalks (CaCOs), titanium dioxides, zinc oxides and carbon blacks also in high proportions, that is from 0.1 to 50 wt .-%, based on the total mass of the soft phase.
  • abrasive and reinforcing fillers such as chalks (CaCOs), titanium dioxides, zinc oxides and carbon blacks also in high proportions, that is from 0.1 to 50 wt .-%, based on the total mass of the soft phase.
  • flame retardant fillers such as ammonium polyphosphate; electrically conductive fillers such as carbon black, carbon fibers and / or silver-coated beads; thermally conductive materials such as boron nitride, alumina, silicon carbide; ferromagnetic additives such as iron (III) oxides; further additives for increasing the volume, such as, for example, blowing agents, glass full spheres, glass hollow spheres, carbonized microspheres, hollow phenolic microspheres, microspheres of other materials; Silicic acid, silicates, organically renewable raw materials such as wood flour, organic and / or inorganic nanoparticles, fibers; Anti-aging agents, light stabilizers, antiozonants and / or compounding agents may be included in the soft phase.
  • thermally conductive materials such as boron nitride, alumina, silicon carbide
  • ferromagnetic additives such as iron (III) oxides
  • further additives for increasing the volume such as, for example, blowing agents,
  • anti-aging agents it is possible to use both primary, for example 4-methoxyphenol or Irganox® 1076, and secondary anti-aging agents, for example Irgafos® TNPP or Irgafos® 168 from BASF, if appropriate also in combination with one another.
  • Primary for example 4-methoxyphenol or Irganox® 1076
  • secondary anti-aging agents for example Irgafos® TNPP or Irgafos® 168 from BASF, if appropriate also in combination with one another.
  • Phenothiazine (C radical scavenger) and hydroquinone methyl ether in the presence of oxygen and oxygen itself can be used as further anti-aging agents.
  • the thickness of the soft phase is preferably 200 to 1800 ⁇ , more preferably 300 to 1500 ⁇ , in particular 400 to 1000 ⁇ .
  • the thickness of the soft phase is determined according to ISO 1923.
  • the combination of hard and soft phase or also provided in the hard and / or soft phase layers to each other to the adhesive tape can be done for example by lamination, lamination or coextrusion. It is possible that hard and soft phases are directly, that is, directly, interconnected. It is likewise possible for one or more adhesion-promoting layer (s) to be arranged between hard and soft phase.
  • the tape may also contain additional layers. Preferably, at least one of the layers to be bonded together, more preferred are several of the layers to be joined together, and most preferably all of the layers to be interconnected with corona (with air or nitrogen), plasma (air, nitrogen or other reactive gases or reactive compounds which can be used as aerosol) or flame pretreatment methods.
  • a functional layer is preferably applied, which has, for example, release properties or UV stabilizing properties.
  • This functional layer preferably consists of a film with a thickness of ⁇ 20 ⁇ m, particularly preferably of ⁇ 10 ⁇ m, in particular of ⁇ 8 ⁇ m, for example of ⁇ 5 ⁇ m or a lacquer with a thickness of ⁇ 10 ⁇ m, particularly preferably of ⁇ 6 ⁇ m , in particular of ⁇ 3 ⁇ , for example of ⁇ 1, 5 ⁇ .
  • Both the film and the paint preferably contain a UV absorber, and / or the polymer base of the film or the paint contains UV-absorbing and / or UV-repellent groups.
  • Films can be applied to the backside of the hard phase by lamination, lamination or coextrusion.
  • the film is preferably a metallized film.
  • the polymer base of the film is preferably selected from the group consisting of polyarylenes, polyvinyl chlorides (PVC), polyethylene terephthalates (PET), polyurethanes, polyolefins, polybutylene terephthalates (PBT), polycarbonates, polymethyl methacrylates (PMMA), polyvinyl butyrals (PVB), ionomers and mixtures of two or more of the polymers listed above.
  • "Main ingredient” here means "ingredient with the largest weight fraction based on the total weight of the film.”
  • all listed materials of the film preferably have a high content of UV stabilizers.
  • the adhesive tape is in a sequence directed to the substrate of a functional layer (as described above); a hard phase and a soft phase consisting of a pressure-sensitive adhesive layer, a polymer foam whose polymer base consists of one or more polyolefins, and a further pressure-sensitive adhesive layer.
  • the lower pressure-sensitive adhesive layer may be covered with a release liner, but this is not expected to be adhesive tape.
  • the adhesive tape is in a sequence directed to the substrate of a functional layer (as described above); a hard phase and a pressure sensitive soft phase whose polymer base consists of one or more polyacrylates.
  • the bottom, that is, the side facing the substrate, the soft phase may be covered with a release liner, but this is not expected to be the adhesive tape.
  • the adhesive tapes are preferably foamed acrylate compositions, in particular of the type described above, which may additionally have one (or more) intermediate carriers.
  • the adhesive may comprise rubber, in particular natural rubber.
  • the adhesive may comprise synthetic rubbers such as, for example, synthetic rubber or the synthetic rubbers from the group of random copolymerized styrene-butadiene rubbers (SBR), butadiene rubbers (BR), synthetic polyisoprenes (IR), butyl rubbers (NR), halogenated butyl rubbers (XI IR), polyacrylates, acrylate rubbers (ACM), polybutadienes (PB), ethylene-vinyl acetate copolymers (EVA) and polyurethanes and / or their blends, either individually or in any admixture with natural rubber contain.
  • SBR random copolymerized styrene-butadiene rubbers
  • BR butadiene rubbers
  • IR synthetic polyisoprenes
  • NR butyl rubbers
  • XI IR halogenated butyl rubbers
  • polyacrylates acrylate rubbers
  • ACM acrylate rubbers
  • the particularly preferred natural rubber or natural rubbers can in principle be selected from all available qualities such as Crepe, RSS, ADS, TSR or CV types, depending on the required level of purity and viscosity.
  • thermoplastic elastomers such as synthetic rubbers
  • SIS styrene-isoprene-styrene
  • SBS styrene-butadiene-styrene
  • the base polymer of the PSA consists of natural rubber, more preferably, in addition to natural rubber, no further elastomeric polymer is present in the PSA.
  • the pressure-sensitive adhesive is a composition of natural rubber, one or more adhesive resin (s), preferably anti-aging agent (s) and expanded polymeric microspheres, which is a preferred embodiment.
  • adhesive resin preferably anti-aging agent (s) and expanded polymeric microspheres
  • the later explained fillers and / or dyes may optionally be present in small amounts.
  • the pressure-sensitive adhesive is used in adhesive tapes.
  • adhesive tapes in the context of the invention are all on one or both sides coated with the adhesive according to the invention coated flat or band-shaped support structures are understood, so in addition to classical bands also labels, sections, diecuts (stamped coated with adhesive mass carrier structure), two-dimensionally extended structures (for example Films) and the like, also multi-layer arrangements.
  • adheresive tape also includes so-called “transfer tapes”, that is, an adhesive tape without a carrier.
  • transfer adhesive tape the adhesive is applied before application between flexible liners, which are provided with a release layer and / or have anti-adhesive properties.
  • a liner is first removed, the adhesive is applied and then the second liner is removed.
  • a liner (release paper, release film) is not part of an adhesive tape or label, but only an aid for their production, storage or for further processing by punching.
  • a liner is not firmly bonded to an adhesive layer.
  • double-sided adhesive tapes are preferred in which the support, in particular the carrier film, is provided on both sides with the PSA according to the invention.
  • the tape can be provided in fixed lengths such as by the meter or as an endless product on rolls (Archimedean spiral).
  • support materials for the pressure-sensitive adhesive tape the usual and familiar to those skilled carrier materials such as paper, fabric, non-woven or films of, for example, polyester such as polyethylene terephthalate (PET), polyethylene, polypropylene, stretched polypropylene, polyvinyl chloride used.
  • polyester such as polyethylene terephthalate (PET)
  • PET polyethylene terephthalate
  • polyethylene polyethylene
  • polypropylene polypropylene
  • stretched polypropylene polyvinyl chloride
  • support materials which are not or only very weakly extensible such as BOPP and in particular PET.
  • polyethylene terephthalate polyamide, polyimide or mono- or biaxially stretched polypropylene are used. Also possible is the use of multilayer laminates or coextrudates.
  • the film is single-layered.
  • reagent for etching the film trichloroacetic acid (C C -COOH) or trichloroacetic acid in combination with inert crystalline compounds, preferably silicon compounds, particularly preferably [SiO 2] x.
  • the purpose of the inert crystalline compounds is to be incorporated into the surface of the PET film to enhance roughness and surface energy.
  • the thickness of the film according to a preferred embodiment is between 5 and 250 ⁇ m, preferably between 6 and 120 ⁇ m, in particular between 12 and 100 ⁇ m, very particularly between 12 and 50 ⁇ m.
  • the film consists of polyethylene terephthalate and has a thickness between 12 and 50 ⁇ .
  • the carrier films may also contain other additives such as UV protectants or halogen-free flame retardants.
  • additives and other components which improve the film-forming properties, reduce the tendency to form crystalline segments and / or specifically improve or even worsen the mechanical properties.
  • the support material may be equipped on one or preferably both sides with the PSA according to the invention.
  • the adhesive tape provided on both sides with the pressure-sensitive adhesive of the invention, at least one layer forms the pressure-sensitive adhesive of the invention.
  • the pressure-sensitive adhesive tape is formed by partially or completely applying the adhesive to the carrier.
  • the coating can also take the form of one or more strips in the longitudinal direction (machine direction), optionally in the transverse direction, but in particular it is full-surface.
  • the adhesives can be applied in the manner of a grid dot by means of screen printing, whereby the dots of adhesive can also be distributed differently and / or differently, by webs connected in the longitudinal and transverse direction by gravure printing, by screen printing or by flexographic printing.
  • the adhesive may be in dome form (made by screen printing) or in another pattern such as mesh, stripes, zigzag lines. Furthermore, it can also be sprayed on, for example, which results in a more or less irregular application pattern.
  • an adhesion promoter a so-called primer layer, between the carrier and the adhesive or a physical pretreatment of the carrier surface to improve the adhesion of the adhesive to the carrier.
  • the known dispersion and solvent systems can be used, for example, based on isoprene- or butadiene-containing rubber, acrylate rubber, polyvinyl, polyvinylidene and / or cyclic rubber.
  • Isocyanates or epoxy resins as additives improve the adhesion and in part also increase the shear strength of the pressure-sensitive adhesive.
  • the adhesion promoter can also be applied by means of a coextrusion layer on one side of the carrier film. For example, flame treatment, corona or plasma or coextrusion layers are suitable as physical surface treatments.
  • the backing material in the case of a single-sided adhesive tape
  • the backing material can be subjected to an antiadhesive physical treatment or coating on the reverse or top side, ie the adhesive mass side, in particular with a release agent or release (optionally blended with other polymers).
  • stearyl compounds for example polyvinyl stearyl carbamate, stearyl compounds of transition metals such as Cr or Zr, ureas of polyethyleneimine and stearyl isocyanate or polysiloxanes.
  • the term stearyl is synonymous with all straight or branched alkyls or alkenyls having a C number of at least 10, such as Example octadecyl.
  • Suitable release agents further include surfactant release systems based on long-chain alkyl groups such as stearylsulfosuccinates or stearylsulfosuccinamates, but also polymers which may be selected from the group consisting of polyvinyl stearyl carbamates such as Escoat 20 from Mayzo, Polyethyleniminstearylcarbamiden, chromium complexes of C14 to C28 Fatty acids and stearyl copolymers, as described for example in DE 28 45 541 A. Also suitable are release agents based on acrylic polymers with perfluorinated alkyl groups, silicones, for example based on poly (dimethyl-siloxanes) or fluorosilicone compounds.
  • surfactant release systems based on long-chain alkyl groups such as stearylsulfosuccinates or stearylsulfosuccinamates, but also polymers which may be selected from the group consisting of polyvinyl ste
  • the carrier material can be pre- or post-treated.
  • Common pretreatments are hydrophobing, corona pretreatments such as Is -Corona or plasma pretreatments, common post-treatments are calendering, tempering, laminating, stamping and covering.
  • the adhesive tape may also be laminated with a commercially available release film or paper which is usually coated from a base material of polyethylene, polypropylene, polyester or paper coated on one or both sides with polysiloxane.
  • FIG. 1 shows a one-sided pressure-sensitive adhesive tape
  • FIG. 2 shows a double-sided pressure-sensitive adhesive tape
  • FIG. 3 shows a carrier-free pressure-sensitive adhesive tape (transfer adhesive tape).
  • FIG. 1 shows a single-sided pressure-sensitive adhesive tape 1.
  • the pressure-sensitive adhesive tape 1 has an adhesive layer 2 which has been produced by coating one of the previously described pressure-sensitive adhesive onto a carrier 3.
  • a release film which covers the adhesive layer 2 before using the pressure-sensitive adhesive tape 1 and protects. The release film is then removed from the adhesive layer 2 prior to use.
  • the product structure shown in FIG. 2 shows a pressure-sensitive adhesive tape 1 with a carrier 3, which is coated on both sides with a pressure-sensitive adhesive and thus has two adhesive layers 2.
  • At least one adhesive layer 2 is preferably covered with a release film.
  • this one release film may optionally also cover the second adhesive layer 2. But it can also be provided more separation films.
  • the carrier film is provided with one or more coatings. Furthermore, only one side of the pressure-sensitive adhesive tape can be provided with the inventive PSA and on the other side another PSA can be used.
  • the product structure shown in Figure 3 shows a pressure-sensitive adhesive tape 1 in the form of a transfer adhesive tape, that is, a carrier-free pressure-sensitive adhesive tape 1.
  • the pressure-sensitive adhesive is coated on one side on a release film 4 and thus forms a pressure-sensitive adhesive layer 2.
  • this pressure-sensitive adhesive layer 2 is still covered on its second side with a further release film.
  • the release liners are then removed.
  • release films for example, release papers or the like can be used. In this case, however, the surface roughness of the release paper should be reduced in order to realize the smoothest possible PSA side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

L'invention concerne un procédé pour la préparation de polymères thermoréticulables dans une extrudeuse planétaire PWE, présentant entre autres les étapes de procédé suivantes, selon lesquelles : la PWE présente notamment une partie de remplissage et une partie de compoundage, qui est formée par une zone de cylindres de laminage, qui est formée par au moins deux, de préférence au moins trois, cylindres de laminage accouplés, dont les axes planétaires sont entraînés par un axe central commun unique ; les polymères sont introduits dans la PWE dans un état plastifié ; la partie de remplissage de la PWE est soumise à l'action du vide ; les températures de départ de l'axe central et desdits au moins deux cylindres de laminage sous vide sont réglées de manière telle que les polymères à dégazer restent dans un état plastifié ; en aval du dégazage, au moyen d'un vide, un ou plusieurs liquides, tels que des réticulants thermique, des accélérateurs de réticulation, des solutions de colorant ou des dispersions de colorant, sont dosés de préférence en continu dans les polymères plastifiés ; et le mélange est introduit directement dans un appareil de revêtement.
PCT/EP2018/054308 2017-02-24 2018-02-21 Procédé pour préparer des polymères thermoréticulables dans une extrudeuse planétaire Ceased WO2018153935A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/487,928 US11186011B2 (en) 2017-02-24 2018-02-21 Method for producing thermally crosslinkable polymers in a planetary roller extruder
EP18711016.8A EP3585590B1 (fr) 2017-02-24 2018-02-21 Procédé pour préparer des polymères thermoréticulables dans une extrudeuse à rouleaux planétaires
ES18711016T ES2855025T3 (es) 2017-02-24 2018-02-21 Procedimiento para la producción de polímeros reticulables térmicamente en una extrusora de rodillos planetarios

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017203062.3 2017-02-24
DE102017203062.3A DE102017203062A1 (de) 2017-02-24 2017-02-24 Verfahren zur Herstellung von thermisch vernetzbaren Polymeren in einem Planetwalzenextruder

Publications (1)

Publication Number Publication Date
WO2018153935A1 true WO2018153935A1 (fr) 2018-08-30

Family

ID=61628292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/054308 Ceased WO2018153935A1 (fr) 2017-02-24 2018-02-21 Procédé pour préparer des polymères thermoréticulables dans une extrudeuse planétaire

Country Status (5)

Country Link
US (1) US11186011B2 (fr)
EP (1) EP3585590B1 (fr)
DE (1) DE102017203062A1 (fr)
ES (1) ES2855025T3 (fr)
WO (1) WO2018153935A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020038961A1 (fr) * 2018-08-23 2020-02-27 Tesa Se Procédé de production d'un adhésif sensible à la pression à l'aide d'une première extrudeuse planétaire et d'une seconde extrudeuse planétaire de dégazage agencée en aval
US11266960B2 (en) 2018-06-01 2022-03-08 Entex Rust & Mitschke Gmbh Mixing of extrudable plastics with small amounts of other substances
EP3714020B1 (fr) * 2017-11-24 2023-09-06 Tesa Se Fabrication d'une masse autoadhésive à base de caoutchouc acrylonitrile-butadiène

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018211617A1 (de) * 2018-07-12 2020-02-27 Tesa Se Herstellung einer Haftklebemasse auf Basis von festem EPDM-Kautschuk
CN114932651B (zh) * 2022-05-05 2024-10-22 夏尊娥 一种胶带定型用胶带冷却工艺、系统

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2845541A1 (de) 1978-10-19 1980-06-04 Beiersdorf Ag Verfahren zur herstellung von klebstoffabweisenden beschichtungen auf flaechigem, blatt- oder bahnfoermigem material
DE19548136A1 (de) * 1995-12-21 1997-06-26 Gefinex Jackon Gmbh Verfahren zur Herstellung von Polymeren und deren Verwendung
US5789487A (en) 1996-07-10 1998-08-04 Carnegie-Mellon University Preparation of novel homo- and copolymers using atom transfer radical polymerization
US5854364A (en) 1996-12-26 1998-12-29 Elf Atochem S.A. Process for the controlled radical polymerization or copolymerization of (meth)acrylic, vinyl, vinylidene and diene monomers, and (co)polymers obtained
DE19806609A1 (de) * 1998-02-18 1999-08-19 Beiersdorf Ag Verfahren zur kontinuierlichen, lösungsmittel- und mastikationsfreien Herstellung von druckempfindlichen Selbstklebemassen auf Basis von nicht-thermoplastischen Elastomeren sowie deren Beschichtung zur Herstellung von selbstklebenden Artikeln
DE19856235A1 (de) 1998-11-20 2000-05-31 Rust & Mitschke Entex Extruder mit Entgasung
EP1077091A2 (fr) * 1999-08-18 2001-02-21 Beiersdorf Aktiengesellschaft Procédé pour produire en continu, sans solvant ni mastication des matières autocollantes à base d'élastomères non thermoplastiques et leur application pour produire des articles autocollants
DE19939077A1 (de) * 1999-08-18 2001-02-22 Beiersdorf Ag Verfahren zur kontinuierlichen, lösungsmittel- und mastikationsfreien Herstellung von druckempfindlichen Selbstklebemassen auf Basis von nicht-thermoplastischen Elastomeren sowie deren Beschichtung zur Herstellung von selbstklebenden Artikeln
DE19939075A1 (de) * 1999-08-18 2001-02-22 Beiersdorf Ag Selbstklebendes Abdeckband unter Verwendung eines bahnförmigen Trägers auf Papier- oder Vliesbasis und einer lösungsmittelfrei und mastikationsfrei hergestellten und beschichteten druckempfindlichen Selbstklebemasse auf Basis nicht thermoplastischer Elastomere
DE10054854A1 (de) 1999-12-11 2001-08-09 Rust & Mitschke Entex Extruder mit Entgasung
US6720399B2 (en) 2001-10-05 2004-04-13 Tesa Ag UV-crosslinkable acrylic hotmelt PSAs with narrow molecular weight distribution
US6765078B2 (en) 2000-06-20 2004-07-20 Tesa Ag Method for producing polyacrylates
EP1311555B1 (fr) 2000-07-28 2005-03-30 tesa AG Materiaux adhesifs de contact acrylate presentant une faible repartition moleculaire
EP1791922A1 (fr) 2004-09-09 2007-06-06 tesa AG Procede pour produire une bande adhesive presentant une couche d'adhesif fusible acrylate thermoreticule
US20070173622A1 (en) * 2006-01-24 2007-07-26 Central Products Company Continuous Bulk Polymerization In A Planetary Roller Extruder
EP1978069A1 (fr) 2007-04-05 2008-10-08 Tesa AG Polyacrylate réticulable thermiquement et son procédé de fabrication
DE102011112081A1 (de) * 2011-05-11 2015-08-20 Entex Rust & Mitschke Gmbh Verfahren zur Verarbeitung von Elasten

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19939078A1 (de) * 1999-08-18 2001-02-22 Beiersdorf Ag Verwendung von Isocyanaten bei der Herstellung von hochviskosen selbstklebenden Massen
DE102005005446A1 (de) * 2005-02-04 2006-08-10 Grünenthal GmbH Bruchfeste Darreichungsformen mit retardierter Freisetzung
WO2005049750A2 (fr) * 2003-11-24 2005-06-02 Central Products Company Procede de preparation d'adhesif a l'aide d'une extrudeuse planetaire
CA2667114C (fr) 2006-11-15 2014-10-07 Entex Rust & Mitschke Gmbh Melange de matiere plastique avec des particules de bois
US9193106B2 (en) 2006-11-15 2015-11-24 Entex Rust & Mitschke Gmbh Blend of plastics with wood particles
DE102009009775B4 (de) 2008-02-22 2019-05-09 Entex Rust & Mitschke Gmbh Planetwalzenextruder mit gestückelten Planetwalzenspindeln
US9926426B2 (en) 2010-01-31 2018-03-27 Entex Rust & Mitschke Gmbh Non-chemical, mechanical procedure for the devulcanization of scrap rubber and/or elastomers and apparatus therefor
DE102010006476A1 (de) 2010-01-31 2011-08-04 Entex Rust & Mitschke GmbH, 44805 Devulkanisieren von Altgummi
US20130203943A1 (en) * 2010-03-24 2013-08-08 Lanxess International Sa Process for the production of water and solvent-free halobutyl rubbers
DE102010062669A1 (de) * 2010-12-08 2012-06-14 Tesa Se Verfahren zur Herstellung geschäumter Polymermassen, geschäumte Polymermassen und Klebeband damit
EP2705101B1 (fr) * 2011-05-06 2019-09-11 tesa SE Ruban adhésif double face comportant une première face externe autoadhésive et une deuxième face externe thermoactivable
US10112334B2 (en) * 2012-03-20 2018-10-30 Firestone Building Products Co., LLC System and method for continuously manufacturing cured membranes
DE102012008170A1 (de) * 2012-04-26 2013-10-31 Entex Rust & Mitschke Gmbh Planetwalzenextruder mit Planetspindeln und Anlaufring
DE102012212883A1 (de) 2012-07-23 2014-05-15 Tesa Se Geschäumtes Klebeband zur Verklebung auf unpolaren Oberflächen
EP2906406B1 (fr) 2012-10-11 2019-07-17 Entex Rust & Mitschke GmbH Extrudeuse pour le traitement de polymères ayant la tendance à l'adhérence
TWI649180B (zh) * 2013-04-04 2019-02-01 艾朗希歐德意志有限公司 用於自含彈性體媒介移除揮發性組份之方法及為此目的之去揮發物設備
DE102013208445A1 (de) 2013-05-08 2014-11-13 Tesa Se Verfahren zum Herstellen einer syntaktisch geschäumten Polymermasse, vorzugsweise einer druckempfindlichen Klebemasse, Vorrichtung zur Durchführung des Verfahrens, Extrudat und Selbstklebeband
DE102013224774A1 (de) 2013-12-03 2015-06-03 Tesa Se Mehrschichtiges Produkt
DE102015001167A1 (de) 2015-02-02 2016-08-04 Entex Rust & Mitschke Gmbh Entgasen bei der Extrusion von Kunststoffen
DE102015008406A1 (de) 2015-07-02 2017-04-13 Entex Rust & Mitschke Gmbh Verfahren zur Bearbeitung von Produkten im Extruder
DE102015010460A1 (de) 2015-08-16 2017-03-02 Entex Rust & Mitschke Gmbh Starter für das Devulkanisieren von Altgummi
DE102015012435A1 (de) 2015-09-27 2017-03-30 Entex Rust & Mitschke Gmbh Planetwalzenextruder
DE102016007290A1 (de) 2016-06-16 2017-12-21 Entex Rust & Mitschke Gmbh Starter für das Devulkanisieren von Altgummi
DE102016218964A1 (de) * 2016-09-30 2018-04-05 Tesa Se Hydroxyl-funktionalisiertes Polybutadien-Polyurethan-Hotmelt-Prepolymer
DE102017004563A1 (de) 2017-03-05 2018-09-06 Entex Rust & Mitschke Gmbh Entgasen beim Extrudieren von Polymeren
DE102017003681A1 (de) 2017-04-17 2018-10-18 Entex Rust & Mitschke Gmbh Kühlen beim Extrudieren von Schmelze
DE102017006638A1 (de) 2017-07-13 2019-01-17 Entex Rust & Mitschke Gmbh Füllteilmodul in Planetwalzenextruderbauweise

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2845541A1 (de) 1978-10-19 1980-06-04 Beiersdorf Ag Verfahren zur herstellung von klebstoffabweisenden beschichtungen auf flaechigem, blatt- oder bahnfoermigem material
DE19548136A1 (de) * 1995-12-21 1997-06-26 Gefinex Jackon Gmbh Verfahren zur Herstellung von Polymeren und deren Verwendung
US5789487A (en) 1996-07-10 1998-08-04 Carnegie-Mellon University Preparation of novel homo- and copolymers using atom transfer radical polymerization
US5945491A (en) 1996-07-10 1999-08-31 Carnegie-Mellon University Preparation of novel homo- and copolymers using atom transfer radical polymerization
US5854364A (en) 1996-12-26 1998-12-29 Elf Atochem S.A. Process for the controlled radical polymerization or copolymerization of (meth)acrylic, vinyl, vinylidene and diene monomers, and (co)polymers obtained
DE19806609A1 (de) * 1998-02-18 1999-08-19 Beiersdorf Ag Verfahren zur kontinuierlichen, lösungsmittel- und mastikationsfreien Herstellung von druckempfindlichen Selbstklebemassen auf Basis von nicht-thermoplastischen Elastomeren sowie deren Beschichtung zur Herstellung von selbstklebenden Artikeln
DE19856235A1 (de) 1998-11-20 2000-05-31 Rust & Mitschke Entex Extruder mit Entgasung
DE19939077A1 (de) * 1999-08-18 2001-02-22 Beiersdorf Ag Verfahren zur kontinuierlichen, lösungsmittel- und mastikationsfreien Herstellung von druckempfindlichen Selbstklebemassen auf Basis von nicht-thermoplastischen Elastomeren sowie deren Beschichtung zur Herstellung von selbstklebenden Artikeln
EP1077091A2 (fr) * 1999-08-18 2001-02-21 Beiersdorf Aktiengesellschaft Procédé pour produire en continu, sans solvant ni mastication des matières autocollantes à base d'élastomères non thermoplastiques et leur application pour produire des articles autocollants
DE19939075A1 (de) * 1999-08-18 2001-02-22 Beiersdorf Ag Selbstklebendes Abdeckband unter Verwendung eines bahnförmigen Trägers auf Papier- oder Vliesbasis und einer lösungsmittelfrei und mastikationsfrei hergestellten und beschichteten druckempfindlichen Selbstklebemasse auf Basis nicht thermoplastischer Elastomere
DE10054854A1 (de) 1999-12-11 2001-08-09 Rust & Mitschke Entex Extruder mit Entgasung
US6765078B2 (en) 2000-06-20 2004-07-20 Tesa Ag Method for producing polyacrylates
EP1311555B1 (fr) 2000-07-28 2005-03-30 tesa AG Materiaux adhesifs de contact acrylate presentant une faible repartition moleculaire
US6720399B2 (en) 2001-10-05 2004-04-13 Tesa Ag UV-crosslinkable acrylic hotmelt PSAs with narrow molecular weight distribution
EP1791922A1 (fr) 2004-09-09 2007-06-06 tesa AG Procede pour produire une bande adhesive presentant une couche d'adhesif fusible acrylate thermoreticule
US20070173622A1 (en) * 2006-01-24 2007-07-26 Central Products Company Continuous Bulk Polymerization In A Planetary Roller Extruder
EP1978069A1 (fr) 2007-04-05 2008-10-08 Tesa AG Polyacrylate réticulable thermiquement et son procédé de fabrication
DE102011112081A1 (de) * 2011-05-11 2015-08-20 Entex Rust & Mitschke Gmbh Verfahren zur Verarbeitung von Elasten

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3714020B1 (fr) * 2017-11-24 2023-09-06 Tesa Se Fabrication d'une masse autoadhésive à base de caoutchouc acrylonitrile-butadiène
US11266960B2 (en) 2018-06-01 2022-03-08 Entex Rust & Mitschke Gmbh Mixing of extrudable plastics with small amounts of other substances
WO2020038961A1 (fr) * 2018-08-23 2020-02-27 Tesa Se Procédé de production d'un adhésif sensible à la pression à l'aide d'une première extrudeuse planétaire et d'une seconde extrudeuse planétaire de dégazage agencée en aval

Also Published As

Publication number Publication date
DE102017203062A1 (de) 2018-08-30
EP3585590A1 (fr) 2020-01-01
US20200055214A1 (en) 2020-02-20
EP3585590B1 (fr) 2021-01-27
US11186011B2 (en) 2021-11-30
ES2855025T3 (es) 2021-09-23

Similar Documents

Publication Publication Date Title
EP3585590B1 (fr) Procédé pour préparer des polymères thermoréticulables dans une extrudeuse à rouleaux planétaires
EP3417029B1 (fr) Bande autoadhésive
DE102012212883A1 (de) Geschäumtes Klebeband zur Verklebung auf unpolaren Oberflächen
EP2677012A2 (fr) Bande adhésive résistante à la chaleur
EP1791922A1 (fr) Procede pour produire une bande adhesive presentant une couche d'adhesif fusible acrylate thermoreticule
EP3633002A2 (fr) Procédé d'application de pièces estampées sur des surfaces ainsi que procédé d'essai correspondant
DE102013215296A1 (de) Haftklebemasse
WO2019038142A1 (fr) Procédé d'obtention de polymères fondus réticulables thermiquement par concentration de solutions polymères et mélange simultané de celles-ci à des liquides modificateurs dans une extrudeuse planétaire
EP3484633B1 (fr) Réduction de la pégosité des bords latéraux d'un rouleau de ruban adhésif
EP2684927A2 (fr) Bande de protection d'arêtes
EP2765168B1 (fr) Bande adhésive expansée
EP3672772B1 (fr) Procédé d'incorporation de matières solides pour l'obtention de polymères thermosensibles dans une extrudeuse planétaire
EP3568446A1 (fr) Procédé pour coller des profilés sur des surfaces de substrat
DE102017212854A1 (de) Bahnförmige, mit Mikroballons geschäumte Haftklebmasse
EP3636720B1 (fr) Utilisation d'une composition alcoolisée épaissie destinée à l'adhésion verticale sans bulle d'air des substrats ainsi que procédé de jointure verticale de deux substrats
DE102017006622A1 (de) Optimierung des Schneidens von Mutterrollen
DE102018214254A1 (de) Latentreaktives Klebeprodukt
EP3700993B1 (fr) Encapsulation au plasma des bords de rubans adhesifs
DE102021201684A1 (de) Mehrschichtiges Klebeband mit geschäumten Nachstrichmassen zur Verbesserung der Kälteschlagbeständigkeit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18711016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018711016

Country of ref document: EP

Effective date: 20190924