[go: up one dir, main page]

WO2018155175A1 - Secondary battery production method - Google Patents

Secondary battery production method Download PDF

Info

Publication number
WO2018155175A1
WO2018155175A1 PCT/JP2018/004078 JP2018004078W WO2018155175A1 WO 2018155175 A1 WO2018155175 A1 WO 2018155175A1 JP 2018004078 W JP2018004078 W JP 2018004078W WO 2018155175 A1 WO2018155175 A1 WO 2018155175A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
electrode
electrode precursor
secondary battery
pressing
Prior art date
Application number
PCT/JP2018/004078
Other languages
French (fr)
Japanese (ja)
Inventor
佳介 島田
徹 川合
昌史 樋口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018155175A1 publication Critical patent/WO2018155175A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a secondary battery.
  • it is related with the manufacturing method of the secondary battery which has an electrode winding body comprised from a positive electrode and a negative electrode.
  • Secondary batteries are so-called “storage batteries” that can be repeatedly charged and discharged, and are used in various applications.
  • secondary batteries are used in mobile devices such as mobile phones, smartphones, and notebook computers.
  • the secondary battery includes at least a positive electrode, a negative electrode, and a separator between them.
  • the positive electrode is composed of a positive electrode material layer and a positive electrode current collector
  • the negative electrode is composed of a negative electrode material layer and a negative electrode current collector.
  • a secondary battery has a laminated structure in which electrode constituent layers composed of a positive electrode and a negative electrode sandwiching a separator are stacked on each other.
  • the inventor of the present application has found that there is a problem to be overcome in the conventional method of manufacturing a secondary battery, and has found that it is necessary to take measures for that. Specifically, the present inventors have found that there are the following problems.
  • an electrode assembly is formed by laminating a positive electrode, a negative electrode, and an electrode constituent layer including a separator between them, but if the lamination is undesirably shifted, the secondary battery cannot be improved. End up.
  • the “winding deviation” increases between the positive electrode and the negative electrode, lithium is likely to be deposited from the negative electrode in the secondary battery. Lithium deposition may cause a larger capacity reduction with repeated charging and discharging during battery use, and may cause heat generation and / or ignition due to overcharging. That is, the winding deviation in the electrode assembly is one of important design items to be considered in the production of the secondary battery.
  • Winding deviation becomes more severe in the production of a secondary battery having a winding structure, particularly when the secondary battery has a unique shape.
  • a secondary battery having a unique shape as an external shape for example, when manufacturing a “non-rectangular” or “step-shaped” secondary battery
  • the present invention has been made in view of such problems. That is, the main object of the present invention is to provide a method of manufacturing a secondary battery that can be more appropriately dealt with in terms of winding deviation.
  • the present invention has achieved the “invention of a method for manufacturing a secondary battery” in which the above-described main object is achieved.
  • the manufacturing method according to the present invention includes: A method for producing a secondary battery having an electrode winding body composed of a positive electrode and a negative electrode, An electrode precursor is formed by winding an electrode precursor laminate composed of a laminate of a positive electrode precursor and a negative electrode precursor via a separator, In such winding, the electrode precursor laminate is subjected to pressing, and a pressing heater is used for the pressing.
  • the method for manufacturing a secondary battery according to the present invention can suitably cope with winding deviation. Specifically, since a “pressing heater” is used for pressing the electrode precursor laminate during winding, interlayer bonding in the electrode precursor laminate is more suitable. That is, since both the “pressing action” and the “warming action” are given to the electrode precursor laminate by the press heater, the electrode material of the obtained electrode winding body and the separator are more suitably joined. Winding deviation is prevented more effectively.
  • the present invention can improve the quality of the secondary battery more suitably.
  • the present invention can improve the quality of the product more suitably.
  • the direction of “thickness” described directly or indirectly in the present specification is based on the stacking direction of the electrode materials constituting the secondary battery.
  • the direction of “thickness” corresponds to the thickness direction of the secondary battery.
  • the “plan view” used in the present specification is based on a sketch when the object is viewed from the upper side or the lower side along the thickness direction.
  • the “sectional view” is based on a virtual cross section of an object obtained by cutting along the thickness direction of the secondary battery.
  • vertical direction and horizontal direction used directly or indirectly in the present specification correspond to the vertical direction and horizontal direction in the drawing, respectively.
  • the same symbols or symbols indicate the same members / parts or the same meaning.
  • the downward direction in the vertical direction corresponds to the “down direction” and the reverse direction corresponds to the “up direction”.
  • a secondary battery In the present invention, a secondary battery is provided.
  • the “secondary battery” in the present specification refers to a battery that can be repeatedly charged and discharged. Therefore, the secondary battery obtained by the manufacturing method of the present invention is not excessively bound by its name, and for example, “electric storage device” can also be included in the object.
  • a secondary battery having a winding structure has a structure in which an electrode material and a separator are wound.
  • a secondary battery has an electrode winding body in which an electrode constituent layer including a positive electrode, a negative electrode, and a separator is laminated.
  • FIG. 1 illustrates the concept of an electrode winding body. As shown in the drawing, the positive electrode 1 and the negative electrode 2 overlap with each other via a separator 3 to form an electrode constituent layer 5, and the electrode constituent layer 5 is wound to form an electrode winding body.
  • an electrode winding body is enclosed in an exterior body together with an electrolyte (for example, a nonaqueous electrolyte).
  • the positive electrode is composed of at least a positive electrode material layer and a positive electrode current collector.
  • a positive electrode material layer is provided on at least one surface of the positive electrode current collector, and the positive electrode material layer contains a positive electrode active material as an electrode active material.
  • each of the positive electrodes in the electrode winding body may be provided with a positive electrode material layer on both surfaces of the positive electrode current collector, or may be provided with a positive electrode material layer only on one surface of the positive electrode current collector. .
  • the negative electrode is composed of at least a negative electrode material layer and a negative electrode current collector.
  • a negative electrode material layer is provided on at least one surface of the negative electrode current collector, and the negative electrode material layer contains a negative electrode active material as an electrode active material.
  • each of the negative electrodes in the electrode winding body may be provided with a negative electrode material layer on both surfaces of the negative electrode current collector, or may be provided with a negative electrode material layer only on one surface of the negative electrode current collector. .
  • the electrode active materials contained in the positive electrode and the negative electrode are materials directly involved in the transfer of electrons in the secondary battery, and are the main materials of the positive and negative electrodes responsible for charge / discharge, that is, the battery reaction. is there. More specifically, ions are brought into the electrolyte due to the “positive electrode active material included in the positive electrode material layer” and the “negative electrode active material included in the negative electrode material layer”, and the ions are interposed between the positive electrode and the negative electrode. Then, the electrons are transferred and the electrons are delivered and charged and discharged.
  • the positive electrode material layer and the negative electrode material layer are particularly preferably layers capable of occluding and releasing lithium ions.
  • the secondary battery according to the present invention corresponds to a so-called “lithium ion battery”, and the positive electrode and the negative electrode have layers capable of occluding and releasing lithium ions.
  • the positive electrode active material of the positive electrode material layer is made of, for example, a granular material, and it is preferable that a binder is included in the positive electrode material layer for more sufficient contact between the particles and shape retention. Furthermore, a conductive additive may be included in the positive electrode material layer in order to facilitate the transmission of electrons that promote the battery reaction.
  • the negative electrode active material of the negative electrode material layer is also composed of, for example, a granular material, and it is preferable that a binder is included for more sufficient contact between the particles and shape retention, and transmission of electrons that promote the battery reaction.
  • the conductive support agent may be contained in the negative electrode material layer.
  • the positive electrode material layer and the negative electrode material layer can also be referred to as “positive electrode composite material layer” and “negative electrode composite material layer”, respectively.
  • the positive electrode active material is preferably a material that contributes to occlusion and release of lithium ions.
  • the positive electrode active material is preferably, for example, a lithium-containing composite oxide.
  • the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese, and iron. That is, in the positive electrode material layer of the secondary battery obtained by the production method of the present invention, such a lithium transition metal composite oxide is preferably contained as the positive electrode active material.
  • the positive electrode active material may be lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, or a part of those transition metals replaced with another metal.
  • the positive electrode active material contained in a positive electrode material layer may be lithium cobaltate.
  • the binder that can be included in the positive electrode material layer is not particularly limited, but includes polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and Mention may be made of at least one selected from the group consisting of polytetrafluoroethylene and the like.
  • the conductive auxiliary agent that can be included in the positive electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth.
  • the binder of the positive electrode material layer may be polyvinylidene fluoride
  • the conductive additive of the positive electrode material layer may be carbon black.
  • the binder and conductive support agent of a positive electrode material layer may be a combination of polyvinylidene fluoride and carbon black.
  • the negative electrode active material is preferably a material that contributes to occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, or lithium alloys.
  • Examples of various carbon materials of the negative electrode active material include graphite (natural graphite, artificial graphite), hard carbon, soft carbon, diamond-like carbon, and the like.
  • graphite is preferable in that it has high electron conductivity and excellent adhesion to the negative electrode current collector.
  • Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and the like.
  • the lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium.
  • Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn It may be a binary, ternary or higher alloy of a metal such as La and lithium.
  • a binary, ternary or higher alloy of a metal such as La and lithium.
  • Such an oxide is preferably amorphous in its structural form. This is because deterioration due to non-uniformity such as crystal grain boundaries or defects is less likely to be caused.
  • the negative electrode active material of a negative electrode material layer may be artificial graphite.
  • the binder that can be included in the negative electrode material layer is not particularly limited, but is at least one selected from the group consisting of styrene butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin, and polyamideimide resin. Can be mentioned.
  • the binder contained in the negative electrode material layer may be styrene butadiene rubber.
  • the conductive auxiliary agent that can be included in the negative electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth.
  • Examples thereof include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives.
  • the component resulting from the thickener component for example, carboxymethylcellulose used at the time of battery manufacture may be contained in the negative electrode material layer.
  • the negative electrode active material and the binder in the negative electrode material layer may be a combination of artificial graphite and styrene butadiene rubber.
  • the positive electrode current collector and the negative electrode current collector used for the positive electrode and the negative electrode are members that contribute to collecting and supplying electrons generated in the active material due to the battery reaction.
  • a current collector may be a sheet-like metal member and may have a porous or perforated form.
  • the current collector may be a metal foil, a punching metal, a net or an expanded metal.
  • the positive electrode current collector used for the positive electrode is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil.
  • the negative electrode current collector used for the negative electrode is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and may be, for example, a copper foil.
  • the separator used for the positive electrode and the negative electrode is a member provided from the viewpoint of preventing short circuit due to contact between the positive electrode and the negative electrode and maintaining the electrolyte.
  • the separator can be said to be a member that allows ions to pass while preventing electronic contact between the positive electrode and the negative electrode.
  • the separator is a porous or microporous insulating member and has a film form due to its small thickness.
  • a polyolefin microporous film may be used as the separator.
  • the microporous membrane used as the separator may include, for example, only polyethylene (PE) or only polypropylene (PP) as the polyolefin.
  • the separator may be a laminate composed of “a microporous membrane made of PE” and “a microporous membrane made of PP”.
  • the surface of the separator may be covered with an inorganic particle coat layer, an adhesive layer, or the like.
  • the surface of the separator may have adhesiveness.
  • the separator is not particularly limited by its name, and may be a solid electrolyte, a gel electrolyte, insulating inorganic particles or the like having the same function.
  • an electrode winding body including an electrode constituent layer including at least a positive electrode, a negative electrode, and a separator is enclosed in an outer package together with an electrolyte.
  • the electrolyte is preferably a “non-aqueous” electrolyte such as an organic electrolyte or an organic solvent (that is, the electrolyte is a non-aqueous electrolyte). preferable).
  • the electrolyte metal ions released from the electrodes (positive electrode and negative electrode) exist, and therefore, the electrolyte assists the movement of the metal ions in the battery reaction.
  • a non-aqueous electrolyte is an electrolyte containing a solvent and a solute.
  • a solvent containing at least carbonate is preferable.
  • Such carbonates may be cyclic carbonates and / or chain carbonates.
  • examples of the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC). be able to.
  • chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dipropyl carbonate (DPC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • the combination of cyclic carbonate and chain carbonate may be used as a non-aqueous electrolyte, for example, the mixture of ethylene carbonate and diethyl carbonate is used.
  • a Li salt such as LiPF 6 and / or LiBF 4 is preferably used as LiPF 6 and / or LiBF 4 is preferably used.
  • the outer package of the secondary battery wraps around the electrode winding body in which the electrode constituent layers including the positive electrode, the negative electrode, and the separator are laminated, but may be in the form of a hard case or in the form of a soft case. Also good.
  • the exterior body may be a hard case type corresponding to a so-called “metal can” or a soft case type corresponding to a “pouch” made of a so-called laminate film.
  • the production method of the present invention is characterized by a method for producing an electrode winding body.
  • it has a feature in a winding method when obtaining an electrode precursor laminate comprising a laminate of a positive electrode precursor and a negative electrode precursor via a separator.
  • the electrode precursor laminate 10 is pressed during winding, and a pressing heater 50 is used for the pressing.
  • the wound object is pressed with a pressure heater so that an external load is applied to the wound object at the time of winding.
  • the pressing heater is not only a pressing source but also a heating source, not only an external load can be applied but also heat can be supplied to the wound object through the pressing of the pressing heater.
  • the “positive electrode precursor” refers to the positive electrode before the electrode winding body is obtained, and is therefore at least composed of a positive electrode material layer and a positive electrode current collector.
  • the “negative electrode precursor” refers to the negative electrode before the electrode winding body is obtained, and is therefore at least composed of the negative electrode material layer and the negative electrode current collector. .
  • a pressure heat treatment is performed in which the electrode precursor laminate is subjected to both pressing and heating by pressing with a pressing heater. More specifically, the electrode precursor laminate is pressed from the outside to the inside (core side) due to the “pressing element” of the pressing heater, and the electrode due to the “heater element” of the pressing heater. Heat is transferred to the precursor laminate from the outside to the inside (core side). That is, heating is performed while pressing the electrode precursor laminate with a press heater.
  • interlayer bonding of the electrode precursor laminated body becomes more suitable. That is, when both the “pressing action” and the “heating action” are applied to the electrode precursor laminate with a press heater, the “between the separator and the cathode precursor” and the “separator and anode precursor” forming the electrode precursor laminate Are more suitably joined (eg, they are more fully joined together). This means that the electrode material of the electrode winding body and the separator are more suitably joined, so that “winding deviation” is more effectively prevented.
  • an adhesive layer is preferably positioned between at least one of the positive electrode precursor and the negative electrode precursor and the separator. That is, an adhesive layer may be provided between one of the positive electrode precursor and the negative electrode precursor and the separator, or both between the positive electrode precursor and the separator and between the negative electrode precursor and the separator. An adhesive layer may be provided.
  • the adhesive layer is positioned between at least one of the positive electrode precursor and the negative electrode precursor and the separator in the electrode precursor laminate, “between the separator and the positive electrode precursor” and “between the separator and the negative electrode precursor” At least one of these can be more suitably joined, and winding slippage can be prevented more effectively.
  • Particularly preferred is to obtain an electrode precursor laminate in which an adhesive layer is provided between each of the positive electrode precursor and the negative electrode precursor and the separator, whereby “between the separator and the positive electrode precursor” and “separator And “a negative electrode precursor” are more suitably bonded.
  • the adhesive layer may be provided in advance on the main surface of the separator and / or the electrode material layer (positive electrode material layer / negative electrode material layer).
  • the adhesive layer is provided in advance on the main surface of the separator.
  • Such an adhesive layer may be provided on at least one of the two main surfaces of the separator.
  • an adhesive layer may be provided in advance on both main surfaces of the separator, whereby an electrode precursor laminate in which the adhesive layer is positioned between each of the positive electrode precursor and the negative electrode precursor and the separator. Can be obtained more suitably.
  • the adhesive itself constituting the adhesive layer in the present invention may be used for a conventional secondary battery.
  • the adhesive bond layer has an insulation characteristic, for example, may comprise polyvinylidene fluoride (PVDF) or an acrylic resin (such as alumina as necessary). An inorganic filler may be added).
  • PVDF polyvinylidene fluoride
  • acrylic resin such as alumina as necessary
  • An inorganic filler may be added).
  • the adhesive layer preferably contains a so-called “hot melt type” adhesive. In the production method of the present invention, both the “pressing action” and the “warming action” of the pressure heater can be acted to bring out the adhesive effect of the adhesive layer more effectively.
  • an adhesive layer that is, an adhesive film layer
  • a thin layer can be positioned between at least one of the positive electrode precursor and the negative electrode precursor and the separator.
  • the “pressing heater” in the present invention refers to a heater that can apply pressure in a broad sense, and in a narrow sense, “pressing action” and “warming” against a wound object. It refers to a battery manufacturing tool capable of providing both of “operation”. Such a pressure heater can give both “pressing action” and “heating action” to the electrode precursor laminate by contacting the wound electrode precursor laminate so as to press from the outside. .
  • the pressing heater 50 may have a paired form as shown in FIGS. 3 and 4. That is, the pressing heater 50 used in the manufacturing method of the present invention may be configured by two sub pressing heaters (50A, 50B) arranged to face each other so as to form a pair. Thereby, an electrode precursor laminated body can be pressed from two outer sides which the electrode precursor laminated body at the time of winding opposes. For example, the electrode precursor laminate may be flattened by the pressing action of the pressing heater 50. That is, the three-dimensional shape (overall three-dimensional shape) of the electrode winding body may be flattened by pressing from the outside to the opposing main surfaces of the electrode precursor laminate.
  • the external shape of the finally obtained secondary battery can be “flat”, that is, “plate” or “thin plate”. Therefore, the “flat shape” is at least preferable for a restricted battery installation space in a housing such as a mobile device.
  • the term “flat” means that at least the thickness dimension is smaller than the other dimensions (particularly the dimension forming a plan view shape) in the electrode winding body or the secondary battery, Means that the overall appearance of the electrode winding body or battery is “plate-like” or “thin plate-like”.
  • the pressure heater used in the manufacturing method of the present invention preferably has a drive mechanism (drive source) to provide a “pressing action”.
  • the body portion of the pressure heater can be moved and driven toward the electrode precursor laminate so that pressure can be applied to the electrode precursor laminate at the time of winding.
  • the pressure heater preferably has a heat source to provide a “warming action”.
  • the body 10 for example, a cylindrical body
  • the press heater may be provided with a coil heater or a band heater in its body, or a high-temperature medium such as high-temperature water or steam is supplied into the inside of the body of the press heater. It may be.
  • the winding of the electrode precursor laminate itself may be performed using a winding core 70.
  • the separator 3 ′, the positive electrode precursor 1 ′, and the negative electrode precursor 2 ′ are provided to the winding core 70, respectively, while the separator 3 ′, the positive electrode precursor 1 ′, and the negative electrode are rotated with respect to the rotating winding core 70.
  • the electrode precursor laminate 10 can be formed while rotating by causing the precursors 2 'to be wound around each other.
  • the pressure heaters 50 50A, 50B
  • the pressure heaters 50 are arranged so as to form a pair with the winding core 70 interposed therebetween.
  • the winding core 70 may have, for example, a flat plate shape, and in one aspect, may include two flat plate members.
  • the electrode precursor laminate 10 When winding is performed using a winding core, the electrode precursor laminate 10 is sandwiched between the inner winding core 70 and the outer pressing heater 50 (50A, 50B) as shown in FIGS. It is preferable to perform a pressure heat treatment throughout.
  • the winding core is a metal core (that is, when the winding core has heat transfer properties)
  • a heat transfer path is suitably formed between the winding core and the heater.
  • the electrode precursor laminate is heated more efficiently.
  • winding is performed using a metal winding core (for example, a metal core having a rectangular cross section).
  • the pressure heater has a roller form.
  • the form of the pressure heater 50 used in the manufacturing method of the present invention may be a pair of rollers as shown in FIG. 4 (for example, the pressure heater is composed of a pair of cylindrical sub-rollers. May be) That is, this mode corresponds to the pressing heater being a roller heater.
  • the electrode precursor laminate is pressed from the outside by such a roller heater, and the electrode precursor laminate is more suitably subjected to pressure heat treatment.
  • a roller body for example, a cylindrical roller body, may be configured to be able to be driven and moved in a wide and narrow manner with respect to each other (that is, a gap formed between the sub roller 50A and the sub roller 50B).
  • the roller body is preferably made of a rigid material such as metal. Moreover, you may give peelability processing to the trunk
  • the electrode precursor laminate is sandwiched between the core (a core having a flat main surface) and the roller and pressed on the main surface of the core, thereby opposing both mains of the electrode precursor laminate.
  • the surface is flattened, and the three-dimensional shape of the electrode winding body can be made “flat”.
  • the range in which the interlayer is fixed by the pressure heater having the roller form corresponds to the straight portion of the electrode winding body.
  • pressure heat treatment is performed from the beginning of winding of the electrode precursor laminate. That is, as shown in FIG. 6, the electrode precursor laminate is subjected to both pressurization and heating from the start point of the winding process of the electrode precursor laminate. This means that the pressure heat treatment is performed from the first bent portion of the electrode precursor laminate.
  • both the “pressing action” and the “warming action” are applied to the entire wound body obtained (when viewed in cross-section, from the center inside to the surface outside). Can be more effective.
  • winding start means “polymerization of positive electrode precursor layer and separator”, “polymerization of negative electrode precursor layer and separator” and / or “positive electrode precursor layer, separator and negative electrode precursor”. Substantially means the point in time when the “polymerization with the layer” is first made. If it catches simply, “winding start” means the time of winding in which the winding center part of an electrode winding body will be formed.
  • the pressure heat treatment started from the beginning of winding may be performed until the end of winding of the electrode precursor laminate. That is, the pressure heat treatment may be continuously performed during the winding process of the electrode precursor laminate.
  • pressurization heat treatment is sequentially performed so that the electrode precursor laminate is subjected to both pressurization and heating in each rotation of winding. That is, pressing and heating are performed at any rotation in winding (that is, for each rotation) (see FIG. 7).
  • the electrode precursor laminate is subjected to pressure heat treatment in each rotation of winding simply refers to any rotation of the electrode precursor laminate. It means a mode in which both opposing surfaces of the electrode precursor laminate are pressed.
  • the pressure heat treatment is uniformly applied to the entire electrode winding body (particularly, the entire electrode winding body in a cross-sectional view). be able to.
  • the “pressing action” and the “heating action” can be applied evenly not only to the surface side of the electrode winding body but also to a deep portion near the winding center. This means that the interlayer bonding is more uniform in the entire electrode winding body, and winding deviation can be prevented more effectively.
  • the bonding state of each layer of the electrode winding body can be made substantially more uniform by sequential pressure heat treatment in each winding.
  • winding deviation is more effectively prevented.
  • “between the separator and the positive electrode precursor” and “separator and negative electrode precursor” forming the electrode precursor laminate are provided.
  • the “between” is more preferably joined, and winding slippage can be more effectively prevented.
  • the prevention of winding deviation is particularly effective when a secondary battery having a unique shape is manufactured.
  • an electrode winding body having an unusual shape such as “non-rectangular shape” or “step shape” as an external shape (that is, when manufacturing a secondary battery having such an unusual shape)
  • an electrode constituting the battery Since the shape of the constituent layer (the shape in plan view) becomes fine, the allowable range for winding deviation is generally narrow and severe.
  • the press heater is used in the present invention, even such severe lamination conditions / winding conditions can be suitably dealt with, and such a narrow allowable range can be dealt with.
  • the positive electrode precursor 1 ′, the negative electrode precursor 2 ′, and the separator 3 ′ before winding are in plan view. It has a “comb shape”.
  • the positive electrode precursor 1 ′, the negative electrode precursor 2 ′, and the separator 3 ′ before winding are planar. It has a “comb shape” in view. Since both are “comb shape”, the electrode precursor laminate 10 has a narrow portion 11 and a wide portion 12 in a plan view, and is a relatively refined shape.
  • the “narrow part” means a local part of the electrode precursor laminate having a relatively reduced width dimension in plan view, while the “wide part” means a relatively width dimension in plan view.
  • Substantially means the dimension of the electrode precursor laminate in the direction perpendicular to the body dimensions). That is, the positive electrode precursor 1 ′, the negative electrode precursor 2 ′, and the separator 3 ′ before winding are not constant in width, and have a locally reduced form or a locally increased form. ing.
  • a plurality of “narrow portions” and “wide portions” are provided, and “narrow portions” and “wide portions” are provided. It is preferable that they are alternately continuous.
  • a plurality of “narrow portions” in each of the positive electrode precursor 1 ′, the negative electrode precursor 2 ′, and the separator 3 ′, a plurality of “narrow portions” have substantially the same shape and the same size as each other.
  • the “wide portions” of each have substantially the same shape and size.
  • the positive electrode precursor 1 ′, the negative electrode precursor 2 ′, and the separator 3 ′ before winding are preferably configured such that their width dimensions are periodically reduced or increased (more specifically, The width of the electrode precursor stack is periodically reduced or increased when viewed along the direction of the electrode precursor stack where the dimensions are gradually reduced due to winding. Is preferred).
  • the electrode precursor laminate 10 having such a “comb-tooth shape” is applied to the winding (in particular, it is wound so as to be largely bent at the “bending point” shown in FIGS. 8 and 9).
  • the desired "non-rectangular shape" or “step shape” can be obtained.
  • the positive electrode precursor 1 ′ and the negative electrode precursor 2 ′ attached to the winding have a comb-tooth shape in a plan view and a wound body including a non-rectangular shape or a step shape is obtained as an electrode winding body
  • Due to the finer shape of the “comb shape” higher lamination accuracy is required. That is, when the positive electrode precursor 1 ′ and the negative electrode precursor 2 ′ are overlapped with each other via the separator 3 ′, it is necessary to accurately match the “comb shape” between them. Specifically, it is necessary to align the plurality of narrow portions 11 and the plurality of wide portions 12 in the “comb-tooth shape” with high accuracy without deviation from each other.
  • the winding deviation due to the pressure heater can be reduced, so that the “comb shape” can be more accurately aligned.
  • the manufacturing method of the present invention can suitably cope with “production of electrode winding bodies of“ non-rectangular shape ”and“ step shape ”” having a narrower tolerance for winding deviation. Suitable for mass production of peculiar shaped secondary batteries.
  • non-rectangular shape refers to a shape in which the electrode shape in plan view (or “the shape of the electrode winding body”, hereinafter the same) is not included in the rectangular concept such as a square and a rectangle. It refers to a shape that is partly missing from such a square or rectangle. Accordingly, in a broad sense, “non-rectangular shape” refers to a shape in which the electrode shape in plan view as viewed from above in the thickness direction is not square or rectangular, and in a narrow sense, the electrode shape in plan view is square or rectangular. It is pointed out that it has a shape partially cut away from the base (preferably a shape in which a corner portion of a square or a rectangle of the base is cut out).
  • the “non-rectangular shape” is based on a square / rectangular shape of the electrode in plan view, and a square, rectangular, semi-circular, semi-elliptical, circular / It may be a shape obtained by cutting out a part of an ellipse or a combination thereof from the base shape (particularly a shape obtained by cutting out a corner portion of the base shape) (see FIG. 10).
  • the mode shown in FIG. 10 illustrates a “non-rectangular shape” obtained by cutting a sub-rectangle or sub-square smaller in size from a rectangular or square base shape from the corner portion of the base shape. .
  • the “step shape” as used in the present invention is broadly defined as a stepped battery outer shape brought about by different height levels of the main surface of the battery (or “main surface of the electrode winding body”). In a narrow sense, it refers to a “staircase” shape composed of a relatively low level battery low surface and a relatively high level battery high surface.
  • the manufacturing method of the present invention can be embodied in various modes. This will be described in detail below.
  • the pressing force of the pressing heater may be adjusted to a pressure that is effective for the pressure heat treatment.
  • a “pressurizing action” is given to the electrode precursor laminate at the time of winding while giving a “pressurizing action”, but the pressing force is more effective for such processing. be able to.
  • the pressing force of the pressing heater against the electrode precursor laminate may be a constant pressure condition.
  • the pressing force of the pressure heater applied to the electrode precursor laminate may be made substantially constant from the beginning of winding of the electrode precursor laminate to the end of winding.
  • the “pressing action” can be applied evenly not only to the surface side of the electrode winding body but also to a deep portion near the winding center.
  • the “constant pressure” is not particularly limited to a strictly constant pressure, and refers to a pressure value fluctuation value within a range of ⁇ 10% during the winding process.
  • the pressing force of the pressing heater with respect to the electrode precursor laminate may be in the range of 0.2 MPa to 2 MPa. That is, the pressure exerted on the electrode precursor laminate during winding by the pressure heater may be in the range of 0.2 MPa to 2 MPa (that is, about 2 kgf / cm 2 to about 20 kgf / cm 2 ).
  • the set value of the pressing force in the pressing heater may be set to such a value, for example, a pressure-sensitive sensor provided in the pressing heater, which receives a pressure received as a reaction from the electrode precursor laminate at the time of winding.
  • the pressure value of the pressure sensitive sensor for detection may be 0.2 MPa or more and 2 MPa or less.
  • the pressing force of the pressing heater in the present invention broadly means an external force exerted on the electrode precursor laminate at the time of winding, but in a narrow sense, the pressing heater is an electrode at the time of winding. It means the pressure received as a reaction from the precursor laminate.
  • the preferable pressing force is equivalent to a restraining force exerted on the electrode precursor laminate by the pressing heater, preferably 0.2 MPa or more and 2 MPa or less when the pressing heater has a roller form.
  • a restraining force exerted on the electrode precursor laminate by the pressing heater preferably 0.2 MPa or more and 2 MPa or less when the pressing heater has a roller form.
  • the temperature of the pressure heater may be adjusted to a temperature that is effective for the pressure heat treatment.
  • the “heating action” is given, but the temperature is more effective for such processing. be able to.
  • the temperature of the pressure heater may be in the range of 50 ° C. or more and 200 ° C. or less. That is, the temperature exerted on the electrode precursor laminate at the time of winding by the press heater may be 50 ° C. or more and 200 ° C. or less. More preferably, the temperature of the pressing heater is set to 70 ° C. or more and 150 ° C. or less, and further preferably, the temperature of the pressing heater is set to 70 ° C. or more and 100 ° C. or less. For simplicity, the set value of the temperature in the pressure heater may be set to such a value. For example, the temperature of the pressing heater itself during winding is 50 ° C. or higher and 200 ° C. or lower, preferably 70 ° C. or higher and 150 ° C. or lower, and more preferably 70 ° C. or higher and 100 ° C. or lower.
  • the pressure heat treatment can be performed more effectively.
  • the temperature of the press heater is particularly lower than 50 ° C., it becomes impossible to extract the adhesive effect of the adhesive layer of the electrode precursor laminate more effectively.
  • the temperature of the press heater is particularly higher than 200 ° C.
  • the body separator is likely to be adversely affected. For example, when the separator has a microporous membrane shape, when the temperature of the pressure heater exceeds 200 ° C., the “holes” of the separator tend to shrink (they tend to shrink when finally cooled). It becomes easy.
  • the temperature of the pressure heater in the present invention broadly means the temperature of the pressure heater itself, but in a narrow sense, the temperature of the surface in contact with the electrode precursor laminate in the pressure heater, In short, it means the temperature of the local portion in the electrode precursor laminate in contact with the pressure heater.
  • a local portion that is difficult to press such as a so-called “R portion”
  • the entire electrode winding body can be uniformly subjected to the pressure heat treatment when viewed macroscopically by the heater function of the pressure heater.
  • the secondary battery according to the present invention can be used in various fields where power storage is assumed.
  • secondary batteries are used in the electrical / information / communication field where mobile devices are used (for example, mobile phones, smartphones, notebook computers and digital cameras, activities, arm computers, and electronic paper).
  • Equipment field household / small industrial applications (for example, power tools, golf carts, household / nursing / industrial robot fields), large industrial applications (for example, forklifts, elevators, bay harbor crane fields), transportation systems Fields (for example, fields such as hybrid vehicles, electric vehicles, buses, trains, electric assist bicycles, electric motorcycles), power system applications (for example, fields such as various power generation, road conditioners, smart grids, general home-installed power storage systems) IoT field, space and deep sea applications (eg space exploration) , It can be used, such as in the field), such as diving research vessel.
  • Industrial applications for example, power tools, golf carts, household / nursing / industrial robot fields
  • large industrial applications for example, forklifts, elevators, bay harbor crane fields
  • transportation systems Fields for example, fields such as hybrid vehicles, electric vehicles, buses, trains, electric assist bicycles, electric motorcycles
  • power system applications for example, fields such as various power generation, road conditioners, smart grids, general home-installed power storage systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a secondary battery production method which is capable of more suitably coping with winding misalignment. The secondary battery production method according to the present invention is for producing a secondary battery having a wound electrode body comprising a positive electrode and a negative electrode, wherein the wound electrode body is formed by winding an electrode precursor laminated body comprising a laminate formed by stacking a positive electrode precursor and a negative electrode precursor with a separator interposed therebetween. During winding, the electrode precursor laminated body is subjected to pressing, and a pressure heater is used for that purpose.

Description

二次電池の製造方法Manufacturing method of secondary battery
 本発明は二次電池の製造方法に関する。特に、正極と負極とから構成される電極巻回体を有する二次電池の製造方法に関する。 The present invention relates to a method for manufacturing a secondary battery. In particular, it is related with the manufacturing method of the secondary battery which has an electrode winding body comprised from a positive electrode and a negative electrode.
 二次電池は、いわゆる“蓄電池”ゆえ充電および放電の繰り返しが可能であり、様々な用途に用いられている。例えば、携帯電話、スマートフォンおよびノートパソコンなどのモバイル機器に二次電池が用いられている。 Secondary batteries are so-called “storage batteries” that can be repeatedly charged and discharged, and are used in various applications. For example, secondary batteries are used in mobile devices such as mobile phones, smartphones, and notebook computers.
 二次電池は、正極、負極およびそれらの間のセパレータから少なくとも構成されている。正極は正極材層および正極集電体から構成され、負極は負極材層および負極集電体から構成されている。二次電池は、セパレータを挟み込んだ正極および負極から成る電極構成層が互いに積み重なった積層構造を有している。 The secondary battery includes at least a positive electrode, a negative electrode, and a separator between them. The positive electrode is composed of a positive electrode material layer and a positive electrode current collector, and the negative electrode is composed of a negative electrode material layer and a negative electrode current collector. A secondary battery has a laminated structure in which electrode constituent layers composed of a positive electrode and a negative electrode sandwiching a separator are stacked on each other.
特表2015-536036号公報Special table 2015-536036 gazette
 本願発明者は、従前の二次電池の製法では克服すべき課題があることに気付き、そのための対策を取る必要性を見出した。具体的には以下の課題があることを本願発明者は見出した。 The inventor of the present application has found that there is a problem to be overcome in the conventional method of manufacturing a secondary battery, and has found that it is necessary to take measures for that. Specifically, the present inventors have found that there are the following problems.
 二次電池の製造では、正極、負極およびそれらの間にセパレータを含む電極構成層が積層されて電極組立体が形成されるが、積層が非所望にずれると二次電池の良品化を図れなくなってしまう。例えば、正極と負極との間で“巻きずれ”が大きくなると、二次電池において負極からリチウムが析出し易くなってしまう。リチウム析出は、電池使用時の充電および放電の繰り返しに伴ってより大きな容量低下を引き起こしたり、過充電に起因して発熱および/または発火を引き起こしたりする虞がある。つまり、電極組立体における巻きずれは二次電池の製造で考慮すべき重要な設計事項の1つである。 In the production of a secondary battery, an electrode assembly is formed by laminating a positive electrode, a negative electrode, and an electrode constituent layer including a separator between them, but if the lamination is undesirably shifted, the secondary battery cannot be improved. End up. For example, when the “winding deviation” increases between the positive electrode and the negative electrode, lithium is likely to be deposited from the negative electrode in the secondary battery. Lithium deposition may cause a larger capacity reduction with repeated charging and discharging during battery use, and may cause heat generation and / or ignition due to overcharging. That is, the winding deviation in the electrode assembly is one of important design items to be considered in the production of the secondary battery.
 巻きずれは、巻回構造を有する二次電池の製造において、特に二次電池を特異な形状とする場合により厳密なものとなる。具体的には、外観形状として特異な形状の二次電池を製造する場合(例えば“非矩形状”または“段差形状”の二次電池を製造する場合)、電池を構成する電極構成層の形状(特に平面視形状)がより精細となるので、巻きずれに対する許容範囲が狭くなってしまう。 Winding deviation becomes more severe in the production of a secondary battery having a winding structure, particularly when the secondary battery has a unique shape. Specifically, when manufacturing a secondary battery having a unique shape as an external shape (for example, when manufacturing a “non-rectangular” or “step-shaped” secondary battery), the shape of the electrode constituent layers constituting the battery Since (especially the shape in plan view) becomes finer, the allowable range for winding deviation becomes narrow.
 本発明はかかる課題に鑑みて為されたものである。即ち、本発明の主たる目的は、巻きずれの点でより好適に対処できる二次電池の製造方法を提供することである。 The present invention has been made in view of such problems. That is, the main object of the present invention is to provide a method of manufacturing a secondary battery that can be more appropriately dealt with in terms of winding deviation.
 本願発明者は、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記課題の解決を試みた。その結果、上記主たる目的が達成された「二次電池の製造方法の発明」に至った。 The inventor of the present application tried to solve the above-mentioned problem by addressing in a new direction rather than responding on the extension of the prior art. As a result, the present invention has achieved the “invention of a method for manufacturing a secondary battery” in which the above-described main object is achieved.
 本発明に係る製造方法は、
 正極と負極とから構成される電極巻回体を有する二次電池を製造する方法であって、
 セパレータを介した正極前駆体と負極前駆体との積層から成る電極前駆積層体を巻回して電極巻回体を形成しており、
 かかる巻回においては電極前駆積層体を押圧に付し、その押圧のために押圧ヒータを用いることを特徴とする。
The manufacturing method according to the present invention includes:
A method for producing a secondary battery having an electrode winding body composed of a positive electrode and a negative electrode,
An electrode precursor is formed by winding an electrode precursor laminate composed of a laminate of a positive electrode precursor and a negative electrode precursor via a separator,
In such winding, the electrode precursor laminate is subjected to pressing, and a pressing heater is used for the pressing.
 本発明に係る二次電池の製造方法は、巻きずれにより好適に対処できる。具体的には、巻回時の電極前駆積層体の押圧に“押圧ヒータ”を用いるので、電極前駆積層体における層間接合がより好適になる。つまり、押圧ヒータで電極前駆積層体に“押圧作用”と“加温作用”との双方を与えるので、得られる電極巻回体の電極材とセパレータとの間がより好適に接合することになり、巻きずれがより効果的に防止される。 The method for manufacturing a secondary battery according to the present invention can suitably cope with winding deviation. Specifically, since a “pressing heater” is used for pressing the electrode precursor laminate during winding, interlayer bonding in the electrode precursor laminate is more suitable. That is, since both the “pressing action” and the “warming action” are given to the electrode precursor laminate by the press heater, the electrode material of the obtained electrode winding body and the separator are more suitably joined. Winding deviation is prevented more effectively.
 巻きずれの防止に起因して、本発明では、二次電池の良品化をより好適に図ることができる。特に巻きずれに対する許容範囲がより狭い「特異な形状の二次電池」の製造であっても、本発明は良品化をより好適に図ることができる。 Due to the prevention of winding deviation, the present invention can improve the quality of the secondary battery more suitably. In particular, even in the manufacture of a “uniquely shaped secondary battery” that has a narrower allowable range for winding deviation, the present invention can improve the quality of the product more suitably.
電極構成層の概念を例示的に示した模式的断面図Schematic cross-sectional view exemplarily showing the concept of electrode configuration layers 本発明の一実施形態に係る製造方法に関連するプロセス態様を示した模式的断面図Typical sectional drawing which showed the process aspect relevant to the manufacturing method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る製造方法に関連するプロセス態様を示した別の模式的断面図Another typical sectional view showing a process mode relevant to a manufacturing method concerning one embodiment of the present invention 本発明の一実施形態に係る製造方法に関連するプロセス態様を示した模式的斜視図The typical perspective view which showed the process aspect relevant to the manufacturing method which concerns on one Embodiment of this invention. より広範に押圧される態様を模式的に示した断面図Cross-sectional view schematically showing a mode of being pressed more widely 電極前駆積層体の巻き始めから加圧熱処理を行う態様を模式的に示した断面図Sectional drawing which showed the aspect which performs a pressure heat treatment from the winding start of an electrode precursor laminated body typically 各回転ごとに逐次的に加圧熱処理を行う態様を模式的に示した断面図Sectional drawing which showed the aspect which performs a pressure heat treatment sequentially for every rotation “非矩形状”の電極巻回体を得る態様を示した模式図Schematic showing how to obtain a “non-rectangular” electrode winding body “段差形状”の電極巻回体を得る態様を示した模式図Schematic showing how to obtain a “step-shaped” wound electrode body “非矩形状”を説明するための模式図Schematic diagram for explaining “non-rectangular shape”
 以下では、本発明の一実施形態に係る二次電池の製造方法をより詳細に説明する。必要に応じて図面を参照して説明を行うものの、図面における各種の要素は、あくまでも本発明の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比などは実物と異なり得る。 Hereinafter, a method for manufacturing a secondary battery according to an embodiment of the present invention will be described in more detail. Although the description will be made with reference to the drawings as necessary, the various elements in the drawings are merely schematically and exemplarily shown for the purpose of understanding the present invention, and the appearance and size ratio are different from the actual ones. obtain.
 本明細書で直接的または間接的に説明される“厚み”の方向は、二次電池を構成する電極材の積層方向に基づいている。例えば扁平状電池などの「板状に厚みを有する二次電池」でいえば、“厚み”の方向は、かかる二次電池の板厚方向に相当する。本明細書で用いる「平面視」とは、かかる厚みの方向に沿って対象物を上側または下側からみた場合の見取図に基づいている。また、本明細書において「断面視」は、二次電池の厚み方向に沿って切り取って得られる対象物の仮想断面に基づいている。 The direction of “thickness” described directly or indirectly in the present specification is based on the stacking direction of the electrode materials constituting the secondary battery. For example, in the case of a “secondary battery having a plate-like thickness” such as a flat battery, the direction of “thickness” corresponds to the thickness direction of the secondary battery. The “plan view” used in the present specification is based on a sketch when the object is viewed from the upper side or the lower side along the thickness direction. Further, in the present specification, the “sectional view” is based on a virtual cross section of an object obtained by cutting along the thickness direction of the secondary battery.
 さらに、本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材・部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」に相当し、その逆向きが「上方向」に相当すると捉えることができる。 Furthermore, “vertical direction” and “horizontal direction” used directly or indirectly in the present specification correspond to the vertical direction and horizontal direction in the drawing, respectively. Unless otherwise specified, the same symbols or symbols indicate the same members / parts or the same meaning. In a preferable aspect, it can be understood that the downward direction in the vertical direction (that is, the direction in which gravity works) corresponds to the “down direction” and the reverse direction corresponds to the “up direction”.
[二次電池の基本構成]
 本発明では二次電池が提供される。本明細書でいう「二次電池」とは、充電・放電の繰り返しが可能な電池のことを指している。従って、本発明の製造方法で得られる二次電池は、その名称に過度に拘泥されるものでなく、例えば“蓄電デバイス”なども対象に含まれ得る。
[Basic configuration of secondary battery]
In the present invention, a secondary battery is provided. The “secondary battery” in the present specification refers to a battery that can be repeatedly charged and discharged. Therefore, the secondary battery obtained by the manufacturing method of the present invention is not excessively bound by its name, and for example, “electric storage device” can also be included in the object.
 巻回構造を有する二次電池は、電極材とセパレーターとが巻回した構造を有している。具体的には、かかる二次電池は、正極、負極及びセパレータを含む電極構成層が積層から成る電極巻回体を有して成る。図1には電極巻回体の概念を例示している。図示されるように、正極1と負極2とはセパレータ3を介して重なって電極構成層5を成しており、かかる電極構成層5が巻回して電極巻回体が構成されている。二次電池においてはこのような電極巻回体が電解質(例えば非水電解質)と共に外装体に封入されている。 A secondary battery having a winding structure has a structure in which an electrode material and a separator are wound. Specifically, such a secondary battery has an electrode winding body in which an electrode constituent layer including a positive electrode, a negative electrode, and a separator is laminated. FIG. 1 illustrates the concept of an electrode winding body. As shown in the drawing, the positive electrode 1 and the negative electrode 2 overlap with each other via a separator 3 to form an electrode constituent layer 5, and the electrode constituent layer 5 is wound to form an electrode winding body. In a secondary battery, such an electrode winding body is enclosed in an exterior body together with an electrolyte (for example, a nonaqueous electrolyte).
 正極は、少なくとも正極材層および正極集電体から構成されている。正極では正極集電体の少なくとも片面に正極材層が設けられており、正極材層には電極活物質として正極活物質が含まれている。例えば、電極巻回体における正極は、それぞれ、正極集電体の両面に正極材層が設けられていてよいし、あるいは、正極集電体の片面にのみ正極材層が設けられていてもよい。 The positive electrode is composed of at least a positive electrode material layer and a positive electrode current collector. In the positive electrode, a positive electrode material layer is provided on at least one surface of the positive electrode current collector, and the positive electrode material layer contains a positive electrode active material as an electrode active material. For example, each of the positive electrodes in the electrode winding body may be provided with a positive electrode material layer on both surfaces of the positive electrode current collector, or may be provided with a positive electrode material layer only on one surface of the positive electrode current collector. .
 負極は、少なくとも負極材層および負極集電体から構成されている。負極では負極集電体の少なくとも片面に負極材層が設けられており、負極材層には電極活物質として負極活物質が含まれている。例えば、電極巻回体における負極は、それぞれ、負極集電体の両面に負極材層が設けられていてよいし、あるいは、負極集電体の片面にのみ負極材層が設けられていてもよい。 The negative electrode is composed of at least a negative electrode material layer and a negative electrode current collector. In the negative electrode, a negative electrode material layer is provided on at least one surface of the negative electrode current collector, and the negative electrode material layer contains a negative electrode active material as an electrode active material. For example, each of the negative electrodes in the electrode winding body may be provided with a negative electrode material layer on both surfaces of the negative electrode current collector, or may be provided with a negative electrode material layer only on one surface of the negative electrode current collector. .
 正極および負極に含まれる電極活物質、即ち、正極活物質および負極活物質は、二次電池において電子の受け渡しに直接関与する物質であり、充放電、すなわち電池反応を担う正負極の主物質である。より具体的には、「正極材層に含まれる正極活物質」および「負極材層に含まれる負極活物質」に起因して電解質にイオンがもたらされ、かかるイオンが正極と負極との間で移動して電子の受け渡しが行われて充放電がなされる。正極材層および負極材層は特にリチウムイオンを吸蔵放出可能な層であることが好ましい。つまり、非水電解質を介してリチウムイオンが正極と負極との間で移動して電池の充放電が行われる非水電解質二次電池となっていることが好ましい。充放電にリチウムイオンが関与する場合、本発明に係る二次電池は、いわゆる“リチウムイオン電池”に相当し、正極および負極がリチウムイオンを吸蔵放出可能な層を有している。 The electrode active materials contained in the positive electrode and the negative electrode, that is, the positive electrode active material and the negative electrode active material are materials directly involved in the transfer of electrons in the secondary battery, and are the main materials of the positive and negative electrodes responsible for charge / discharge, that is, the battery reaction. is there. More specifically, ions are brought into the electrolyte due to the “positive electrode active material included in the positive electrode material layer” and the “negative electrode active material included in the negative electrode material layer”, and the ions are interposed between the positive electrode and the negative electrode. Then, the electrons are transferred and the electrons are delivered and charged and discharged. The positive electrode material layer and the negative electrode material layer are particularly preferably layers capable of occluding and releasing lithium ions. That is, it is preferable to be a nonaqueous electrolyte secondary battery in which lithium ions move between the positive electrode and the negative electrode through the nonaqueous electrolyte and the battery is charged and discharged. When lithium ions are involved in charging / discharging, the secondary battery according to the present invention corresponds to a so-called “lithium ion battery”, and the positive electrode and the negative electrode have layers capable of occluding and releasing lithium ions.
 正極材層の正極活物質は例えば粒状体から成るところ、粒子同士のより十分な接触と形状保持のためにバインダーが正極材層に含まれていることが好ましい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材層に含まれていてもよい。同様にして、負極材層の負極活物質もまた例えば粒状体から成るところ、粒子同士のより十分な接触と形状保持のためにバインダーが含まれることが好ましく、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材層に含まれていてもよい。このように、複数の成分が含有されて成る形態ゆえ、正極材層および負極材層はそれぞれ“正極合材層”および“負極合材層”などと称すこともできる。 The positive electrode active material of the positive electrode material layer is made of, for example, a granular material, and it is preferable that a binder is included in the positive electrode material layer for more sufficient contact between the particles and shape retention. Furthermore, a conductive additive may be included in the positive electrode material layer in order to facilitate the transmission of electrons that promote the battery reaction. Similarly, the negative electrode active material of the negative electrode material layer is also composed of, for example, a granular material, and it is preferable that a binder is included for more sufficient contact between the particles and shape retention, and transmission of electrons that promote the battery reaction. In order to make smooth, the conductive support agent may be contained in the negative electrode material layer. Thus, because of the form in which a plurality of components are contained, the positive electrode material layer and the negative electrode material layer can also be referred to as “positive electrode composite material layer” and “negative electrode composite material layer”, respectively.
 正極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であることが好ましい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であることが好ましい。つまり、本発明の製造方法で得られる二次電池の正極材層においては、そのようなリチウム遷移金属複合酸化物が正極活物質として好ましくは含まれている。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものであってよい。このような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。あくまでも例示にすぎないが、本発明の製造方法で得られる二次電池では、正極材層に含まれる正極活物質がコバルト酸リチウムとなっていてよい。 The positive electrode active material is preferably a material that contributes to occlusion and release of lithium ions. From this point of view, the positive electrode active material is preferably, for example, a lithium-containing composite oxide. More specifically, the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese, and iron. That is, in the positive electrode material layer of the secondary battery obtained by the production method of the present invention, such a lithium transition metal composite oxide is preferably contained as the positive electrode active material. For example, the positive electrode active material may be lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, or a part of those transition metals replaced with another metal. Although such a positive electrode active material may be included as a single species, two or more types may be included in combination. Although it is only an illustration to the last, in the secondary battery obtained with the manufacturing method of this invention, the positive electrode active material contained in a positive electrode material layer may be lithium cobaltate.
 正極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビリニデン、ビリニデンフルオライド-ヘキサフルオロプロピレン共重合体、ビリニデンフルオライド-テトラフルオロチレン共重合体およびポリテトラフルオロチレンなどから成る群から選択される少なくとも1種を挙げることができる。正極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブや気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。例えば、正極材層のバインダーはポリフッ化ビニリデンであってよく、また、正極材層の導電助剤はカーボンブラックであってよい。あくまでも例示にすぎないが、正極材層のバインダーおよび導電助剤は、ポリフッ化ビニリデンとカーボンブラックとの組合せとなっていてよい。 The binder that can be included in the positive electrode material layer is not particularly limited, but includes polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and Mention may be made of at least one selected from the group consisting of polytetrafluoroethylene and the like. The conductive auxiliary agent that can be included in the positive electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth. Examples thereof include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives. For example, the binder of the positive electrode material layer may be polyvinylidene fluoride, and the conductive additive of the positive electrode material layer may be carbon black. Although it is only an illustration to the last, the binder and conductive support agent of a positive electrode material layer may be a combination of polyvinylidene fluoride and carbon black.
 負極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、負極活物質は例えば各種の炭素材料、酸化物、または、リチウム合金などであることが好ましい。 The negative electrode active material is preferably a material that contributes to occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, or lithium alloys.
 負極活物質の各種の炭素材料としては、黒鉛(天然黒鉛、人造黒鉛)、ハードカーボン、ソフトカーボン、ダイヤモンド状炭素などを挙げることができる。特に、黒鉛は電子伝導性が高く、負極集電体との接着性が優れる点などで好ましい。負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。負極活物質のリチウム合金は、リチウムと合金形成され得る金属であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元、3元またはそれ以上の合金であってよい。このような酸化物は、その構造形態としてアモルファスとなっていることが好ましい。結晶粒界または欠陥といった不均一性に起因する劣化が引き起こされにくくなるからである。あくまでも例示にすぎないが、本発明の製造方法で得られる二次電池では、負極材層の負極活物質が人造黒鉛となっていてよい。 Examples of various carbon materials of the negative electrode active material include graphite (natural graphite, artificial graphite), hard carbon, soft carbon, diamond-like carbon, and the like. In particular, graphite is preferable in that it has high electron conductivity and excellent adhesion to the negative electrode current collector. Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and the like. The lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium. For example, Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, It may be a binary, ternary or higher alloy of a metal such as La and lithium. Such an oxide is preferably amorphous in its structural form. This is because deterioration due to non-uniformity such as crystal grain boundaries or defects is less likely to be caused. Although it is only an illustration to the last, in the secondary battery obtained with the manufacturing method of this invention, the negative electrode active material of a negative electrode material layer may be artificial graphite.
 負極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。例えば、負極材層に含まれるバインダーはスチレンブタジエンゴムとなっていてよい。負極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブや気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。なお、負極材層には、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。 The binder that can be included in the negative electrode material layer is not particularly limited, but is at least one selected from the group consisting of styrene butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin, and polyamideimide resin. Can be mentioned. For example, the binder contained in the negative electrode material layer may be styrene butadiene rubber. The conductive auxiliary agent that can be included in the negative electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth. Examples thereof include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives. In addition, the component resulting from the thickener component (for example, carboxymethylcellulose) used at the time of battery manufacture may be contained in the negative electrode material layer.
 あくまでも例示にすぎないが、負極材層における負極活物質およびバインダーは人造黒鉛とスチレンブタジエンゴムとの組合せになっていてよい。 For illustration purposes only, the negative electrode active material and the binder in the negative electrode material layer may be a combination of artificial graphite and styrene butadiene rubber.
 正極および負極に用いられる正極集電体および負極集電体は電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する部材である。このような集電体は、シート状の金属部材であってよく、多孔または穿孔の形態を有していてよい。例えば、集電体は金属箔、パンチングメタル、網またはエキスパンドメタル等であってよい。正極に用いられる正極集電体は、アルミニウム、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えばアルミニウム箔であってよい。一方、負極に用いられる負極集電体は、銅、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えば銅箔であってよい。 The positive electrode current collector and the negative electrode current collector used for the positive electrode and the negative electrode are members that contribute to collecting and supplying electrons generated in the active material due to the battery reaction. Such a current collector may be a sheet-like metal member and may have a porous or perforated form. For example, the current collector may be a metal foil, a punching metal, a net or an expanded metal. The positive electrode current collector used for the positive electrode is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil. On the other hand, the negative electrode current collector used for the negative electrode is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and may be, for example, a copper foil.
 正極および負極に用いられるセパレータは、正負極の接触による短絡防止および電解質保持などの観点から設けられる部材である。換言すれば、セパレータは、正極と負極と間の電子的接触を防止しつつイオンを通過させる部材であるといえる。好ましくは、セパレータは多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。この点、セパレータとして用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ又はポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータは、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。セパレータの表面が無機粒子コート層や接着層等により覆われていてもよい。セパレータの表面が接着性を有していてもよい。なお、本発明において、セパレータは、その名称によって特に拘泥されるべきでなく、同様の機能を有する固体電解質、ゲル状電解質、絶縁性の無機粒子などであってもよい。 The separator used for the positive electrode and the negative electrode is a member provided from the viewpoint of preventing short circuit due to contact between the positive electrode and the negative electrode and maintaining the electrolyte. In other words, the separator can be said to be a member that allows ions to pass while preventing electronic contact between the positive electrode and the negative electrode. Preferably, the separator is a porous or microporous insulating member and has a film form due to its small thickness. Although only illustrative, a polyolefin microporous film may be used as the separator. In this regard, the microporous membrane used as the separator may include, for example, only polyethylene (PE) or only polypropylene (PP) as the polyolefin. Furthermore, the separator may be a laminate composed of “a microporous membrane made of PE” and “a microporous membrane made of PP”. The surface of the separator may be covered with an inorganic particle coat layer, an adhesive layer, or the like. The surface of the separator may have adhesiveness. In the present invention, the separator is not particularly limited by its name, and may be a solid electrolyte, a gel electrolyte, insulating inorganic particles or the like having the same function.
 本発明に係る二次電池では、正極、負極およびセパレータを少なくとも含む電極構成層から成る電極巻回体が電解質と共に外装体に封入されている。正極および負極がリチウムイオンを吸蔵放出可能な層を有する場合、電解質は有機電解質・有機溶媒などの“非水系”の電解質であることが好ましい(すなわち、電解質が非水電解質となっていることが好ましい)。電解質では電極(正極・負極)から放出された金属イオンが存在することになり、それゆえ、電解質は電池反応における金属イオンの移動を助力することになる。 In the secondary battery according to the present invention, an electrode winding body including an electrode constituent layer including at least a positive electrode, a negative electrode, and a separator is enclosed in an outer package together with an electrolyte. When the positive electrode and the negative electrode have a layer capable of occluding and releasing lithium ions, the electrolyte is preferably a “non-aqueous” electrolyte such as an organic electrolyte or an organic solvent (that is, the electrolyte is a non-aqueous electrolyte). preferable). In the electrolyte, metal ions released from the electrodes (positive electrode and negative electrode) exist, and therefore, the electrolyte assists the movement of the metal ions in the battery reaction.
 非水電解質は、溶媒と溶質とを含む電解質である。具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものが好ましい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。あくまでも例示にすぎないが、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられてよく、例えばエチレンカーボネートとジエチルカーボネートとの混合物が用いられる。また、具体的な非水電解質の溶質としては、例えば、LiPFおよび/またはLiBFなどのLi塩が好ましく用いられる。 A non-aqueous electrolyte is an electrolyte containing a solvent and a solute. As a specific non-aqueous electrolyte solvent, a solvent containing at least carbonate is preferable. Such carbonates may be cyclic carbonates and / or chain carbonates. Although not particularly limited, examples of the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC). be able to. Examples of the chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dipropyl carbonate (DPC). Although it is only an illustration to the last, the combination of cyclic carbonate and chain carbonate may be used as a non-aqueous electrolyte, for example, the mixture of ethylene carbonate and diethyl carbonate is used. In addition, as a specific nonaqueous electrolyte solute, for example, a Li salt such as LiPF 6 and / or LiBF 4 is preferably used.
 二次電池の外装体は、正極、負極及びセパレータを含む電極構成層が積層した電極巻回体を包み込むものであるが、ハードケースの形態であってよく、あるいは、ソフトケースの形態であってもよい。具体的には、外装体は、いわゆる“金属缶”に相当するハードケース型であってもよく、あるいは、いわゆるラミネートフィルムから成る“パウチ”に相当するソフトケース型であってもよい。 The outer package of the secondary battery wraps around the electrode winding body in which the electrode constituent layers including the positive electrode, the negative electrode, and the separator are laminated, but may be in the form of a hard case or in the form of a soft case. Also good. Specifically, the exterior body may be a hard case type corresponding to a so-called “metal can” or a soft case type corresponding to a “pouch” made of a so-called laminate film.
[本発明の製造方法]
 本発明の製造方法は、電極巻回体の作製法に特徴を有している。特に、セパレータを介した正極前駆体と負極前駆体との積層から成る電極前駆積層体を得る際の巻回手法に特徴を有している。具体的には、図2~図4に示すように、巻回時においては電極前駆積層体10を押圧に付しており、その押圧のために押圧ヒータ50を用いる。
[Production method of the present invention]
The production method of the present invention is characterized by a method for producing an electrode winding body. In particular, it has a feature in a winding method when obtaining an electrode precursor laminate comprising a laminate of a positive electrode precursor and a negative electrode precursor via a separator. Specifically, as shown in FIGS. 2 to 4, the electrode precursor laminate 10 is pressed during winding, and a pressing heater 50 is used for the pressing.
 本発明の製造方法では、巻回操作で電極巻回体を得るところ、その巻回時において、被巻回物に外部荷重を供すように押圧ヒータで被巻回物を押圧する。押圧ヒータは、押圧源でもあるとともに、加熱源であるので、押圧ヒータの押圧を通じて、外部荷重を供すだけでなく、熱を被巻回物に供すことができる。このようにして、セパレータを介した正極前駆体と負極前駆体との積層から成る電極前駆積層体を巻回するに際して押圧ヒータの押圧処理を行う。 In the manufacturing method of the present invention, when the electrode winding body is obtained by a winding operation, the wound object is pressed with a pressure heater so that an external load is applied to the wound object at the time of winding. Since the pressing heater is not only a pressing source but also a heating source, not only an external load can be applied but also heat can be supplied to the wound object through the pressing of the pressing heater. Thus, when the electrode precursor laminated body which consists of a lamination | stacking of the positive electrode precursor and negative electrode precursor through a separator is wound, the press process of a press heater is performed.
 本明細書において「正極前駆体」とは、電極巻回体が得られる前の時点における正極を指しており、それゆえ、正極材層および正極集電体から少なくとも構成されている。同様にして、本明細書において「負極前駆体」とは、電極巻回体が得られる前の時点における負極を指しており、それゆえ、負極材層および負極集電体から少なくとも構成されている。 In the present specification, the “positive electrode precursor” refers to the positive electrode before the electrode winding body is obtained, and is therefore at least composed of a positive electrode material layer and a positive electrode current collector. Similarly, in the present specification, the “negative electrode precursor” refers to the negative electrode before the electrode winding body is obtained, and is therefore at least composed of the negative electrode material layer and the negative electrode current collector. .
 本発明のある好適な態様では、押圧ヒータによる押圧によって、電極前駆積層体を加圧および加温の双方に付す加圧熱処理を行う。より具体的には、押圧ヒータの“押圧要素”に起因して電極前駆積層体をその外側から内側(巻芯側)へと押さえ付けると共に、当該押圧ヒータの“ヒータ要素”に起因して電極前駆積層体にその外側から内側(巻芯側)へと熱を伝える。つまり、押圧ヒータでもって、電極前駆積層体に対して押圧を行いつつ、加熱を行う。 In a preferred aspect of the present invention, a pressure heat treatment is performed in which the electrode precursor laminate is subjected to both pressing and heating by pressing with a pressing heater. More specifically, the electrode precursor laminate is pressed from the outside to the inside (core side) due to the “pressing element” of the pressing heater, and the electrode due to the “heater element” of the pressing heater. Heat is transferred to the precursor laminate from the outside to the inside (core side). That is, heating is performed while pressing the electrode precursor laminate with a press heater.
 このように巻回時の電極前駆積層体に対して押圧ヒータを用いると、電極前駆積層体の層間接合がより好適になる。つまり、押圧ヒータで電極前駆積層体に“押圧作用”と“加温作用”との双方を与えると、電極前駆積層体を成す「セパレータと正極前駆体との間」および「セパレータと負極前駆体との間」がより好適に接合される(例えば、それらの間が互いにより十分に接合される)。これは、電極巻回体の電極材とセパレータとの間がより好適に接合することを意味しているので、“巻きずれ”がより効果的に防止される。 Thus, when a pressure heater is used for the electrode precursor laminated body at the time of winding, interlayer bonding of the electrode precursor laminated body becomes more suitable. That is, when both the “pressing action” and the “heating action” are applied to the electrode precursor laminate with a press heater, the “between the separator and the cathode precursor” and the “separator and anode precursor” forming the electrode precursor laminate Are more suitably joined (eg, they are more fully joined together). This means that the electrode material of the electrode winding body and the separator are more suitably joined, so that “winding deviation” is more effectively prevented.
 巻きずれの防止効果は、電極前駆積層体に接着剤層が設けられている場合により顕著となり得る。つまり、押圧ヒータによる“押圧作用”と“加温作用”との双方が電極前駆積層体の接着剤層に対して効果的に作用し、巻きずれがより効果的に防止され得る。それゆえ、本発明の製造方法では電極前駆積層体として接着剤層を含む積層体を用いることが好ましい。また、かかる積層体においては正極前駆体および負極前駆体の少なくとも一方とセパレータとの間に接着剤層が位置付けられることが好ましい。つまり、正極前駆体および負極前駆体のいずれか一方とセパレータとの間に接着剤層が設けられていてよく、あるいは、正極前駆体とセパレータとの間および負極前駆体とセパレータとの間の双方に接着剤層が設けられていてよい。 The effect of preventing the winding slippage can be more prominent when an adhesive layer is provided on the electrode precursor laminate. That is, both “pressing action” and “heating action” by the pressing heater effectively act on the adhesive layer of the electrode precursor laminate, and winding deviation can be prevented more effectively. Therefore, in the production method of the present invention, it is preferable to use a laminate including an adhesive layer as the electrode precursor laminate. In such a laminate, an adhesive layer is preferably positioned between at least one of the positive electrode precursor and the negative electrode precursor and the separator. That is, an adhesive layer may be provided between one of the positive electrode precursor and the negative electrode precursor and the separator, or both between the positive electrode precursor and the separator and between the negative electrode precursor and the separator. An adhesive layer may be provided.
 電極前駆積層体において正極前駆体および負極前駆体の少なくとも一方とセパレータとの間に接着剤層が位置付けられると、「セパレータと正極前駆体との間」および「セパレータと負極前駆体との間」の少なくとも一方がより好適に接合され、より効果的に巻きずれを防止することができる。特に好ましくは正極前駆体と負極前駆体のそれぞれとセパレータとの間に接着剤層が設けられる電極前駆積層体を得ることであり、これにより、「セパレータと正極前駆体との間」および「セパレータと負極前駆体との間」のそれぞれがより好適に接合されることになる。 When the adhesive layer is positioned between at least one of the positive electrode precursor and the negative electrode precursor and the separator in the electrode precursor laminate, “between the separator and the positive electrode precursor” and “between the separator and the negative electrode precursor” At least one of these can be more suitably joined, and winding slippage can be prevented more effectively. Particularly preferred is to obtain an electrode precursor laminate in which an adhesive layer is provided between each of the positive electrode precursor and the negative electrode precursor and the separator, whereby “between the separator and the positive electrode precursor” and “separator And “a negative electrode precursor” are more suitably bonded.
 接着剤層は、セパレータの主面および/または電極材層(正極材層・負極材層)に予め設けられたものであってよい。ある好適な態様では、接着剤層はセパレータの主面に予め設けられている。かかる接着剤層は、セパレータの両主面の少なくとも一方に設けられていてよい。例示するとセパレータの両主面に対して接着剤層が予め設けられていてよく、これにより、正極前駆体と負極前駆体のそれぞれとセパレータとの間に接着剤層が位置付けられた電極前駆積層体をより好適に得ることができる。 The adhesive layer may be provided in advance on the main surface of the separator and / or the electrode material layer (positive electrode material layer / negative electrode material layer). In a preferred embodiment, the adhesive layer is provided in advance on the main surface of the separator. Such an adhesive layer may be provided on at least one of the two main surfaces of the separator. For example, an adhesive layer may be provided in advance on both main surfaces of the separator, whereby an electrode precursor laminate in which the adhesive layer is positioned between each of the positive electrode precursor and the negative electrode precursor and the separator. Can be obtained more suitably.
 本発明における接着剤層を成す接着剤自体は、常套的な二次電池に対して用いられているものであってよい。あくまでも1つの例示にすぎないが、接着剤層は、絶縁特性を有しており、例えばポリフッ化ビニリデン(PVDF)またはアクリル系樹脂を含んで成るものであってよい(必要に応じてアルミナなどの無機フィラーが添加されていてもよい)。押圧ヒータの“加温作用”がより効果的となる観点を特に重視するならば、接着材層は、いわゆる“ホットメルト型”の接着剤を含んで成ることが好ましい。なお、本発明の製造方法では、押圧ヒータの“押圧作用”と“加温作用”との双方を作用させ、接着剤層の接着効果をより効果的に引き出すことができるので、接着剤層をより薄く設ける設けることができる(すなわち、より小さい厚さの接着剤層とすることができ、電池の小型化に寄与する)。つまり、薄層としての接着剤層(すなわち、接着剤フィルム層)が正極前駆体および負極前駆体の少なくとも一方とセパレータとの間に位置付けられ得る。 The adhesive itself constituting the adhesive layer in the present invention may be used for a conventional secondary battery. Although it is only an example to the last, the adhesive bond layer has an insulation characteristic, for example, may comprise polyvinylidene fluoride (PVDF) or an acrylic resin (such as alumina as necessary). An inorganic filler may be added). If the emphasis is particularly placed on the viewpoint that the “heating action” of the pressure heater becomes more effective, the adhesive layer preferably contains a so-called “hot melt type” adhesive. In the production method of the present invention, both the “pressing action” and the “warming action” of the pressure heater can be acted to bring out the adhesive effect of the adhesive layer more effectively. It can be provided thinner (that is, it can be an adhesive layer having a smaller thickness, which contributes to downsizing of the battery). That is, an adhesive layer (that is, an adhesive film layer) as a thin layer can be positioned between at least one of the positive electrode precursor and the negative electrode precursor and the separator.
 ここで、本発明にいう「押圧ヒータ」とは、広義には、押圧を付与することができるヒータを指しており、狭義には、被巻回物に対して“押圧作用”と“加温作用”との双方を供すことができる電池製造具を指している。かかる押圧ヒータは、巻回されている電極前駆積層体に外側から押し当たるように接することによって、電極前駆積層体に対して“押圧作用”と“加温作用”との双方を与えることができる。 Here, the “pressing heater” in the present invention refers to a heater that can apply pressure in a broad sense, and in a narrow sense, “pressing action” and “warming” against a wound object. It refers to a battery manufacturing tool capable of providing both of “operation”. Such a pressure heater can give both “pressing action” and “heating action” to the electrode precursor laminate by contacting the wound electrode precursor laminate so as to press from the outside. .
 押圧ヒータ50は、図3および図4に示すように、対を成す形態を有するものであってよい。つまり、本発明の製造方法で用いる押圧ヒータ50は、対を成すように互いに対向して配置される2つのサブ押圧ヒータ(50A、50B)から構成されていてよい。これにより、巻回時の電極前駆積層体の対向する2つの外側から電極前駆積層体を押圧することができる。例えば、押圧ヒータ50の押圧作用によって、電極前駆積層体を扁平状にしてよい。つまり、電極前駆積層体の対向する両主面への外側からの押圧によって、電極巻回体の立体形状(全体的な立体形状)を扁平状にしてよい。“扁平状”の電極巻回体の場合、最終的に得られる二次電池の外観形状を“扁平状”、すなわち、“板状”または“薄板状”にすることができる。よって、“扁平状”は、モバイル機器などの筐体内の制約された電池設置スペースにとって少なくとも好ましい。本明細書において「扁平状」とは、電極巻回体または二次電池において少なくとも厚さ寸法が、その他の寸法(特に平面視形状を成す寸法)よりも小さいことを意味しており、簡易的には電極巻回体または電池の全体外観形状が“板状”または“薄板状”であることを意味している。 The pressing heater 50 may have a paired form as shown in FIGS. 3 and 4. That is, the pressing heater 50 used in the manufacturing method of the present invention may be configured by two sub pressing heaters (50A, 50B) arranged to face each other so as to form a pair. Thereby, an electrode precursor laminated body can be pressed from two outer sides which the electrode precursor laminated body at the time of winding opposes. For example, the electrode precursor laminate may be flattened by the pressing action of the pressing heater 50. That is, the three-dimensional shape (overall three-dimensional shape) of the electrode winding body may be flattened by pressing from the outside to the opposing main surfaces of the electrode precursor laminate. In the case of the “flat” electrode winding body, the external shape of the finally obtained secondary battery can be “flat”, that is, “plate” or “thin plate”. Therefore, the “flat shape” is at least preferable for a restricted battery installation space in a housing such as a mobile device. In the present specification, the term “flat” means that at least the thickness dimension is smaller than the other dimensions (particularly the dimension forming a plan view shape) in the electrode winding body or the secondary battery, Means that the overall appearance of the electrode winding body or battery is “plate-like” or “thin plate-like”.
 本発明の製造方法で用いる押圧ヒータは、“押圧作用”を供すべく駆動機構(駆動源)を好ましくは有している。特に巻回時の電極前駆積層体と接してそれに対して圧力を掛けることができるように押圧ヒータの胴部が電極前駆積層体に向かって可動・駆動できるようになっていることが好ましい。また、押圧ヒータは、“加温作用”を供すべく熱源を好ましくは有している。特に巻回時の電極前駆積層体と接する押圧ヒータの胴部10(例えば、円筒形状の胴部)が電極前駆積層体よりも高い温度に昇温できるように構成されていることが好ましい。熱源についていえば、押圧ヒータは、その胴部にコイルヒータもしくはバンドヒータが設置されていてよく、あるいは、高温水もしくはスチームなどの高温媒体が押圧ヒータの胴部内部へと供給されるようになっていてもよい。 The pressure heater used in the manufacturing method of the present invention preferably has a drive mechanism (drive source) to provide a “pressing action”. In particular, it is preferable that the body portion of the pressure heater can be moved and driven toward the electrode precursor laminate so that pressure can be applied to the electrode precursor laminate at the time of winding. Further, the pressure heater preferably has a heat source to provide a “warming action”. In particular, it is preferable that the body 10 (for example, a cylindrical body) of the pressure heater that is in contact with the electrode precursor laminate at the time of winding can be heated to a temperature higher than that of the electrode precursor laminate. Speaking of the heat source, the press heater may be provided with a coil heater or a band heater in its body, or a high-temperature medium such as high-temperature water or steam is supplied into the inside of the body of the press heater. It may be.
 図3および図4に示すように、本発明の製造方法では、電極前駆積層体の巻回自体は、巻き芯70を用いて行ってよい。図示するように、セパレータ3’と正極前駆体1’と負極前駆体2’とがそれぞれ巻き芯70に供されつつ、回転する巻き芯70に対してセパレータ3’と正極前駆体1’と負極前駆体2’とがそれぞれ巻き付くようにすることで、回転しながら電極前駆積層体10を形成できる。巻き芯70が用いられる場合、その巻き芯70を挟んで対を成すように押圧ヒータ50(50A,50B)が配置されることが好ましい。これにより、電極前駆積層体が巻回されつつもその対向する両外側から電極前駆積層体を押圧することができる。巻き芯70は、図示するように、例えば平板形状であってよく、ある1つの態様では2つの平板部材から成るものであってよい。 As shown in FIGS. 3 and 4, in the manufacturing method of the present invention, the winding of the electrode precursor laminate itself may be performed using a winding core 70. As illustrated, the separator 3 ′, the positive electrode precursor 1 ′, and the negative electrode precursor 2 ′ are provided to the winding core 70, respectively, while the separator 3 ′, the positive electrode precursor 1 ′, and the negative electrode are rotated with respect to the rotating winding core 70. The electrode precursor laminate 10 can be formed while rotating by causing the precursors 2 'to be wound around each other. When the winding core 70 is used, it is preferable that the pressure heaters 50 (50A, 50B) are arranged so as to form a pair with the winding core 70 interposed therebetween. Thereby, an electrode precursor laminated body can be pressed from both the opposing outer sides, while an electrode precursor laminated body is wound. As shown in the drawing, the winding core 70 may have, for example, a flat plate shape, and in one aspect, may include two flat plate members.
 巻き芯を用いて巻回が行われる場合、図3および図4に示すように、内側の巻き芯70と外側の押圧ヒータ50(50A,50B)との間において電極前駆積層体10を挟持することを通じて加圧熱処理を行うことが好ましい。巻き芯が金属製の芯となっていると(すなわち、巻き芯が伝熱性を有していると)、巻き芯とヒータとの間で伝熱パスが好適に形成されるので、それらの間の電極前駆積層体がより効率的に加温されることになる。このように、ある好適な態様では、金属製の巻き芯(例えば、金属製の断面矩形状の巻き芯)を用いて巻回を行う。 When winding is performed using a winding core, the electrode precursor laminate 10 is sandwiched between the inner winding core 70 and the outer pressing heater 50 (50A, 50B) as shown in FIGS. It is preferable to perform a pressure heat treatment throughout. When the winding core is a metal core (that is, when the winding core has heat transfer properties), a heat transfer path is suitably formed between the winding core and the heater. The electrode precursor laminate is heated more efficiently. Thus, in a suitable aspect, winding is performed using a metal winding core (for example, a metal core having a rectangular cross section).
 ある好適な態様では、押圧ヒータがローラー形態を有している。例えば、本発明の製造方法で用いる押圧ヒータ50の形態は、図4に示すような対を成すローラーとなっていてよい(例えば、押圧ヒータが、対を成す円筒形状のサブローラーから構成されていてもよい)。つまり、かかる態様は、押圧ヒータがローラー・ヒータとなっていることに相当する。かかるローラー・ヒータによって電極前駆積層体が外側から押圧され、電極前駆積層体がより好適に加圧熱処理に付されることになる。 In a preferred aspect, the pressure heater has a roller form. For example, the form of the pressure heater 50 used in the manufacturing method of the present invention may be a pair of rollers as shown in FIG. 4 (for example, the pressure heater is composed of a pair of cylindrical sub-rollers. May be) That is, this mode corresponds to the pressing heater being a roller heater. The electrode precursor laminate is pressed from the outside by such a roller heater, and the electrode precursor laminate is more suitably subjected to pressure heat treatment.
 ローラー形態の場合、巻回する電極前駆積層体の外面上で押圧ヒータが回転しつつ付勢されるので、互いに対向する電極前駆積層体の外面が広範に押圧されることになる(図5参照)。つまり、“巻回する電極前駆積層体”と“回転自在に設けられた押圧ヒータ”との相互作用に起因して、電極前駆積層体の外面が広範に全体的に押圧されることになる。ローラー胴部、例えば円筒形状のローラー胴部は互いの間隔(すなわち、サブローラー50Aとサブローラー50Bとの間に形成される間隙)を広狭自在に駆動・可動できるようになっていてよい。なお、ローラーの胴体は、金属などの剛性材料から成るものが好ましい。また、加圧熱処理時にローラーとセパレーターとの間で不都合な接着が生じないように、ローラーの胴体面に剥離性処理を施しておいてもよい。 In the case of the roller form, the pressing heater is energized while rotating on the outer surface of the wound electrode precursor laminate, so that the outer surfaces of the electrode precursor laminates facing each other are widely pressed (see FIG. 5). ). In other words, due to the interaction between the “winding electrode precursor laminate” and the “rotating press heater”, the outer surface of the electrode precursor laminate is pressed extensively and entirely. A roller body, for example, a cylindrical roller body, may be configured to be able to be driven and moved in a wide and narrow manner with respect to each other (that is, a gap formed between the sub roller 50A and the sub roller 50B). The roller body is preferably made of a rigid material such as metal. Moreover, you may give peelability processing to the trunk | drum surface of a roller so that an inadequate adhesion | attachment may not arise between a roller and a separator at the time of pressurization heat processing.
 このように電極前駆積層体の外面が広範に全体的に押圧される態様では、扁平状の電極巻回体を作製し易くなる。つまり、巻き芯(平らな主面を有する巻き芯)とローラーとの間で電極前駆積層体が挟み込まれて巻き芯の主面上で押圧されることによって、電極前駆積層体の対向する両主面が平らにされ、電極巻回体の立体形状を“扁平状”にすることができる。かかる態様では、ローラー形態を有する押圧ヒータによって層間固定する範囲が電極巻回体のストレート部に相当しているといえる。このような巻回プロセスを経ることによって、最終的に得られる二次電池の外観形状を“板状”または“薄板状”にすることができ、モバイル機器などの筐体内の制約された電池設置スペースにとって好ましい電池を得ることができる。 In such a manner that the outer surface of the electrode precursor laminate is pressed extensively as described above, it becomes easy to produce a flat electrode winding body. In other words, the electrode precursor laminate is sandwiched between the core (a core having a flat main surface) and the roller and pressed on the main surface of the core, thereby opposing both mains of the electrode precursor laminate. The surface is flattened, and the three-dimensional shape of the electrode winding body can be made “flat”. In this aspect, it can be said that the range in which the interlayer is fixed by the pressure heater having the roller form corresponds to the straight portion of the electrode winding body. By going through such a winding process, the final shape of the secondary battery can be made into a “plate” or “thin plate”, and constrained battery installation in a housing such as a mobile device A battery favorable for space can be obtained.
 ある好適な態様では、電極前駆積層体の巻き始めから加圧熱処理を行う。つまり、図6に示すように、電極前駆積層体の巻回処理時の開始時点から電極前駆積層体を加圧および加温の双方に付す。これは、電極前駆積層体のうち最初に曲げ込まれる部分から加圧熱処理を行うことを意味している。このような加圧熱処理を行うことによって、得られる巻回体の全体(断面視でとらえた場合、中央内側から表面外側までの全体)に“押圧作用”と“加温作用”との双方をより効果的に及ぼすことができる。 In a preferred embodiment, pressure heat treatment is performed from the beginning of winding of the electrode precursor laminate. That is, as shown in FIG. 6, the electrode precursor laminate is subjected to both pressurization and heating from the start point of the winding process of the electrode precursor laminate. This means that the pressure heat treatment is performed from the first bent portion of the electrode precursor laminate. By performing such pressure heat treatment, both the “pressing action” and the “warming action” are applied to the entire wound body obtained (when viewed in cross-section, from the center inside to the surface outside). Can be more effective.
 本発明でいう「巻き始め」とは、“正極前駆体層とセパレータとの重合せ”、“負極前駆体層とセパレータとの重合せ”および/または“正極前駆体層とセパレータと負極前駆体層との重合せ”が最初になされる時点を実質的に意味している。簡易的に捉えると、「巻き始め」は、電極巻回体の巻き中央部が形成されることになる巻回時を意味している。 In the present invention, “winding start” means “polymerization of positive electrode precursor layer and separator”, “polymerization of negative electrode precursor layer and separator” and / or “positive electrode precursor layer, separator and negative electrode precursor”. Substantially means the point in time when the “polymerization with the layer” is first made. If it catches simply, "winding start" means the time of winding in which the winding center part of an electrode winding body will be formed.
 本発明の製造方法において、巻き始めから開始した加圧熱処理は、電極前駆積層体の巻き終了まで行ってよい。つまり、電極前駆積層体の巻回処理の間を通じて継続的に加圧熱処理を行ってよい。 In the production method of the present invention, the pressure heat treatment started from the beginning of winding may be performed until the end of winding of the electrode precursor laminate. That is, the pressure heat treatment may be continuously performed during the winding process of the electrode precursor laminate.
 より好ましくは、巻回の各回転において電極前駆積層体が加圧および加温の双方に付されるように逐次的に加圧熱処理を行う。つまり、巻回におけるいずれの回転時においても(すなわち、各回転ごとに)押圧および加温を行う(図7参照)。図7に示す態様から分かるように、ここでいう「巻回の各回転において電極前駆積層体が加圧熱処理される」とは、簡易的にいえば、電極前駆積層体のいずれの回転においても電極前駆積層体の対向する両面が押圧される態様を意味している。 More preferably, pressurization heat treatment is sequentially performed so that the electrode precursor laminate is subjected to both pressurization and heating in each rotation of winding. That is, pressing and heating are performed at any rotation in winding (that is, for each rotation) (see FIG. 7). As can be seen from the embodiment shown in FIG. 7, “the electrode precursor laminate is subjected to pressure heat treatment in each rotation of winding” simply refers to any rotation of the electrode precursor laminate. It means a mode in which both opposing surfaces of the electrode precursor laminate are pressed.
 巻回の各回転において逐次的・継続的に加圧熱処理を行うと、電極巻回体の全体(特に断面視でみた場合の電極巻回体の全体)により均等に加圧熱処理の作用を供すことができる。つまり、電極巻回体の表面側だけでなく巻回中心の近い深部にまでより均等に“押圧作用”と“加温作用”を与えることができる。これは、電極巻回体の全体において層間接合がより均等になり、巻きずれがより効果的に防止され得ることを意味している。換言すれば、各巻回における逐次的な加圧熱処理によって電極巻回体の各層の接合状態を実質的により均一にすることができる。 When the pressure heat treatment is performed sequentially and continuously in each rotation of the winding, the pressure heat treatment is uniformly applied to the entire electrode winding body (particularly, the entire electrode winding body in a cross-sectional view). be able to. In other words, the “pressing action” and the “heating action” can be applied evenly not only to the surface side of the electrode winding body but also to a deep portion near the winding center. This means that the interlayer bonding is more uniform in the entire electrode winding body, and winding deviation can be prevented more effectively. In other words, the bonding state of each layer of the electrode winding body can be made substantially more uniform by sequential pressure heat treatment in each winding.
 本発明の製造方法では、“巻きずれ”がより効果的に防止されるところ、具体的には、電極前駆積層体を成す「セパレータと正極前駆体との間」および「セパレータと負極前駆体との間」がより好適に接合され、巻きずれがより効果的に防止され得る。ここで、巻きずれの防止が特に功をより奏しやすいのは、特異な形状の二次電池を製造する場合である。例えば外観形状として“非矩形状”または“段差形状”などの特異な形状の電極巻回体を得る場合(すなわち、そのような特異形状の二次電池を製造する場合)、電池を構成する電極構成層の形状(平面視形状)が精細となるので、巻きずれに対する許容範囲が一般に狭くシビアになる。この点、本発明では押圧ヒータを用いるので、そのようなシビアな積層条件/巻回条件であっても好適に対処することができ、かかる狭い許容範囲に対応することができる。 In the production method of the present invention, “winding deviation” is more effectively prevented. Specifically, “between the separator and the positive electrode precursor” and “separator and negative electrode precursor” forming the electrode precursor laminate are provided. The “between” is more preferably joined, and winding slippage can be more effectively prevented. Here, the prevention of winding deviation is particularly effective when a secondary battery having a unique shape is manufactured. For example, when obtaining an electrode winding body having an unusual shape such as “non-rectangular shape” or “step shape” as an external shape (that is, when manufacturing a secondary battery having such an unusual shape), an electrode constituting the battery Since the shape of the constituent layer (the shape in plan view) becomes fine, the allowable range for winding deviation is generally narrow and severe. In this respect, since the press heater is used in the present invention, even such severe lamination conditions / winding conditions can be suitably dealt with, and such a narrow allowable range can be dealt with.
 例えば、図8に示すように、平面視にて非矩形状を有する電極巻回体100を得る場合、巻回前の正極前駆体1’、負極前駆体2’およびセパレータ3’が平面視にて“櫛歯形状”を有している。同様にして、図9に示すように、三次元外形として段差形状を含む電極巻回体100を得る場合でも、巻回前の正極前駆体1’、負極前駆体2’およびセパレータ3’が平面視にて“櫛歯形状”を有している。双方とも“櫛歯形状”ゆえ、電極前駆積層体10の平面視形状は、幅狭部分11および幅広部分12を有しており、相対的に精細化した形状となっている。ここでいう「幅狭部分」は、平面視において、相対的に幅寸法が減じられた電極前駆積層体の局所部分を意味する一方、「幅広部分」は、平面視において、相対的に幅寸法が増した電極前駆積層体の局所部分を意味している(ここでいう、“幅寸法”は、図示される平面視の態様から分かるように、巻回に起因して漸次減じられる電極前駆積層体の寸法に対して直交する方向の電極前駆積層体の寸法を実質的に意味している)。つまり、巻回前の正極前駆体1’、負極前駆体2’およびセパレータ3’は、それぞれ、その幅寸法が一定でなく、局所的に減じられた形態又は局所的に増した形態を有している。好ましくは、正極前駆体1’、負極前駆体2’およびセパレータ3’の各々において、“幅狭部分”および“幅広部分”はそれぞれ複数設けられ、“幅狭部分”と“幅広部分”とが交互に連続していることが好ましい。ある好適な態様では、正極前駆体1’、負極前駆体2’およびセパレータ3’の各々において、複数の“幅狭部分”が互いに略同一形状・略同一サイズとなっており、同様にして複数の“幅広部分”も互いに略同一形状・略同一サイズとなっている。換言すれば、巻回前の正極前駆体1’、負極前駆体2’およびセパレータ3’は、それぞれ、その幅寸法が周期的に減じられる又は増すようになっていることが好ましい(より具体的には、巻回に起因して寸法が漸次減じられることになる電極前駆積層体の方向に沿ってみた場合に電極前駆積層体の幅寸法が周期的に減じられる又は増すようになっていることが好ましい)。本発明では、このような“櫛歯形状”を有する電極前駆積層体10が巻回に付されることによって(特に図8および図9に示す“曲げポイント”で大きく曲げられるように巻回することによって)、所望の“非矩形状”または“段差形状”を得ることができる。 For example, as shown in FIG. 8, when obtaining the electrode winding body 100 having a non-rectangular shape in plan view, the positive electrode precursor 1 ′, the negative electrode precursor 2 ′, and the separator 3 ′ before winding are in plan view. It has a “comb shape”. Similarly, as shown in FIG. 9, even when the electrode winding body 100 including a step shape as a three-dimensional outer shape is obtained, the positive electrode precursor 1 ′, the negative electrode precursor 2 ′, and the separator 3 ′ before winding are planar. It has a “comb shape” in view. Since both are “comb shape”, the electrode precursor laminate 10 has a narrow portion 11 and a wide portion 12 in a plan view, and is a relatively refined shape. As used herein, the “narrow part” means a local part of the electrode precursor laminate having a relatively reduced width dimension in plan view, while the “wide part” means a relatively width dimension in plan view. Means the local portion of the electrode precursor laminate (where the “width dimension” is gradually reduced due to winding, as can be seen from the plan view shown in the figure. Substantially means the dimension of the electrode precursor laminate in the direction perpendicular to the body dimensions). That is, the positive electrode precursor 1 ′, the negative electrode precursor 2 ′, and the separator 3 ′ before winding are not constant in width, and have a locally reduced form or a locally increased form. ing. Preferably, in each of the positive electrode precursor 1 ′, the negative electrode precursor 2 ′, and the separator 3 ′, a plurality of “narrow portions” and “wide portions” are provided, and “narrow portions” and “wide portions” are provided. It is preferable that they are alternately continuous. In a preferable aspect, in each of the positive electrode precursor 1 ′, the negative electrode precursor 2 ′, and the separator 3 ′, a plurality of “narrow portions” have substantially the same shape and the same size as each other. The “wide portions” of each have substantially the same shape and size. In other words, the positive electrode precursor 1 ′, the negative electrode precursor 2 ′, and the separator 3 ′ before winding are preferably configured such that their width dimensions are periodically reduced or increased (more specifically, The width of the electrode precursor stack is periodically reduced or increased when viewed along the direction of the electrode precursor stack where the dimensions are gradually reduced due to winding. Is preferred). In the present invention, the electrode precursor laminate 10 having such a “comb-tooth shape” is applied to the winding (in particular, it is wound so as to be largely bent at the “bending point” shown in FIGS. 8 and 9). The desired "non-rectangular shape" or "step shape" can be obtained.
 巻回に付される正極前駆体1’および負極前駆体2’が平面視にて櫛歯形状を有し、電極巻回体として非矩形状または段差形状を含む巻回体を得る場合では、“櫛歯形状”のより精細な形状に起因して、積層精度がより高く求められる。つまり、セパレーター3’を介して正極前駆体1’と負極前駆体2’とを重ね合わせる際、それらの間で精度良く“櫛歯形状”を合わせる必要がある。具体的には、“櫛歯形状”における複数の幅狭部分11および複数の幅広部分12をそれぞれ互いにずれなく精度良く整合させることが必要となる。この点、本発明の製造方法では、押圧ヒータに起因して巻きずれを減じることができるので、より精度良い“櫛歯形状”の整合が可能となる。 In the case where the positive electrode precursor 1 ′ and the negative electrode precursor 2 ′ attached to the winding have a comb-tooth shape in a plan view and a wound body including a non-rectangular shape or a step shape is obtained as an electrode winding body, Due to the finer shape of the “comb shape”, higher lamination accuracy is required. That is, when the positive electrode precursor 1 ′ and the negative electrode precursor 2 ′ are overlapped with each other via the separator 3 ′, it is necessary to accurately match the “comb shape” between them. Specifically, it is necessary to align the plurality of narrow portions 11 and the plurality of wide portions 12 in the “comb-tooth shape” with high accuracy without deviation from each other. In this regard, in the manufacturing method of the present invention, the winding deviation due to the pressure heater can be reduced, so that the “comb shape” can be more accurately aligned.
 このように、本発明の製造方法は、巻きずれに対する許容範囲がより狭い「“非矩形状”および“段差形状”の電極巻回体の作製」に対して好適に対処できるので、そのような特異形状の二次電池の量産化に適している。 As described above, the manufacturing method of the present invention can suitably cope with “production of electrode winding bodies of“ non-rectangular shape ”and“ step shape ”” having a narrower tolerance for winding deviation. Suitable for mass production of peculiar shaped secondary batteries.
 なお、本発明でいう「非矩形状」とは、平面視における電極形状(または「電極巻回体の形状」、以下同様)が正方形および長方形といった矩形状の概念に通常含まれるものでない形状を指しており、特にそのような正方形・長方形から部分的に一部欠いた形状のことを指している。従って、広義には、「非矩形状」は、厚み方向にて上側から見た平面視の電極形状が正方形・長方形でない形状を指しており、狭義には、平面視の電極形状が正方形・長方形をベースにしつつも、それから部分的に一部切欠いた形状(好ましくはベースの正方形・長方形のコーナー部分が切欠かれた形状)となっていることを指している。あくまでも例示にすぎないが、「非矩形状」は、平面視における電極形状が正方形・長方形をベースとし、かかるベース形状よりも小さい平面視サイズの正方形、長方形、半円形、半楕円形、円形・楕円形の一部またはそれらの組合せ形状を当該ベース形状から切り欠いて得られる形状(特にベース形状のコーナー部分から切り欠いて得られる形状)であってよい(図10参照)。図10に示す態様では、矩形状または正方形状のベース形状からそれよりもサイズの小さいサブ矩形またはサブ正方形を当該ベース形状のコーナー部から切り欠いて得られる“非矩形状”が例示されている。 The term “non-rectangular shape” as used in the present invention refers to a shape in which the electrode shape in plan view (or “the shape of the electrode winding body”, hereinafter the same) is not included in the rectangular concept such as a square and a rectangle. It refers to a shape that is partly missing from such a square or rectangle. Accordingly, in a broad sense, “non-rectangular shape” refers to a shape in which the electrode shape in plan view as viewed from above in the thickness direction is not square or rectangular, and in a narrow sense, the electrode shape in plan view is square or rectangular. It is pointed out that it has a shape partially cut away from the base (preferably a shape in which a corner portion of a square or a rectangle of the base is cut out). Although it is merely an example, the “non-rectangular shape” is based on a square / rectangular shape of the electrode in plan view, and a square, rectangular, semi-circular, semi-elliptical, circular / It may be a shape obtained by cutting out a part of an ellipse or a combination thereof from the base shape (particularly a shape obtained by cutting out a corner portion of the base shape) (see FIG. 10). The mode shown in FIG. 10 illustrates a “non-rectangular shape” obtained by cutting a sub-rectangle or sub-square smaller in size from a rectangular or square base shape from the corner portion of the base shape. .
 一方、本発明でいう「段差形状」とは、広義には、電池の主面(または「電極巻回体の主面、以下同様)の高さレベルが異なることでもたらされる階段状の電池外形のことを指しており、狭義には、相対的に低いレベルの電池低面と相対的に高いレベルの電池高面とから成る“階段状”の形状のことを指している。 On the other hand, the “step shape” as used in the present invention is broadly defined as a stepped battery outer shape brought about by different height levels of the main surface of the battery (or “main surface of the electrode winding body”). In a narrow sense, it refers to a “staircase” shape composed of a relatively low level battery low surface and a relatively high level battery high surface.
 本発明の製造方法は、種々の態様で具現化することができる。以下それについて詳述する。 The manufacturing method of the present invention can be embodied in various modes. This will be described in detail below.
(好適な押圧力の態様)
 本発明の製造方法では押圧ヒータの押圧力は、加圧熱処理にとって効果的となる圧力に調整してよい。換言すれば、本発明では巻回時の電極前駆積層体に“加温作用”を与えつつ、“加圧作用”を与えることになるが、そのような処理にとってより効果的な押圧力とすることができる。
(Mode of suitable pressing force)
In the manufacturing method of the present invention, the pressing force of the pressing heater may be adjusted to a pressure that is effective for the pressure heat treatment. In other words, in the present invention, a “pressurizing action” is given to the electrode precursor laminate at the time of winding while giving a “pressurizing action”, but the pressing force is more effective for such processing. be able to.
 例えば、電極前駆積層体に対する押圧ヒータの押圧力は定圧条件としてよい。具体的には、電極前駆積層体の巻き始めからその巻き終りに至るまで、電極前駆積層体に印加する押圧ヒータの押圧力を実質的に一定にしてよい。このように押圧ヒータの押圧力が一定圧条件となると、断面視にて電極巻回体の全体により均等に“押圧作用”を供し易くなる。つまり、電極巻回体の表面側だけでなく巻回中心の近い深部にまでより均等に“押圧作用”を与えることができる。結果として、電極巻回体の全体として層間接合がより均等になり、巻きずれがより効果的に防止されることになる。なお、ここでいう「定圧」とは、厳密に一定の圧力であることに特に限定されず、巻回プロセス時における押圧力の変動値が±10%の範囲に入るものを指している。 For example, the pressing force of the pressing heater against the electrode precursor laminate may be a constant pressure condition. Specifically, the pressing force of the pressure heater applied to the electrode precursor laminate may be made substantially constant from the beginning of winding of the electrode precursor laminate to the end of winding. In this way, when the pressing force of the pressing heater is a constant pressure condition, it becomes easy to provide a “pressing action” evenly to the entire wound electrode body in a sectional view. That is, the “pressing action” can be applied evenly not only to the surface side of the electrode winding body but also to a deep portion near the winding center. As a result, inter-layer bonding becomes more uniform as a whole of the electrode winding body, and winding deviation is more effectively prevented. Here, the “constant pressure” is not particularly limited to a strictly constant pressure, and refers to a pressure value fluctuation value within a range of ± 10% during the winding process.
 あくまでも例示にすぎないが、電極前駆積層体に対する押圧ヒータの押圧力は0.2MPa以上2MPa以下の範囲としてよい。つまり、押圧ヒータによって巻回時の電極前駆積層体に及ぼされる圧力が0.2MPa以上2MPa以下(すなわち、およそ2kgf/cm以上およそ20kgf/cm以下)の範囲内に入るようにすればよい。簡易的には、押圧ヒータにおける押圧力の設定値をそのような値にしてよく、例えば、押圧ヒータに設けられる感圧センサーであって、巻回時の電極前駆積層体から反作用として受ける圧力を検知するための感圧センサーの圧力値が0.2MPa以上2MPa以下となるものでよい。 Although it is only an example to the last, the pressing force of the pressing heater with respect to the electrode precursor laminate may be in the range of 0.2 MPa to 2 MPa. That is, the pressure exerted on the electrode precursor laminate during winding by the pressure heater may be in the range of 0.2 MPa to 2 MPa (that is, about 2 kgf / cm 2 to about 20 kgf / cm 2 ). . For simplicity, the set value of the pressing force in the pressing heater may be set to such a value, for example, a pressure-sensitive sensor provided in the pressing heater, which receives a pressure received as a reaction from the electrode precursor laminate at the time of winding. The pressure value of the pressure sensitive sensor for detection may be 0.2 MPa or more and 2 MPa or less.
 上記から分かるように、本発明における押圧ヒータの押圧力は、広義には、巻回時の電極前駆積層体に及ぼされる外力を意味しているものの、狭義には、押圧ヒータが巻回時に電極前駆積層体から反作用として受ける圧力を意味している。 As can be seen from the above, the pressing force of the pressing heater in the present invention broadly means an external force exerted on the electrode precursor laminate at the time of winding, but in a narrow sense, the pressing heater is an electrode at the time of winding. It means the pressure received as a reaction from the precursor laminate.
 上記の好適な押圧力の態様は、押圧ヒータがローラー形態を有する場合、押圧ヒータによって電極前駆積層体に及ぼされる拘束力が好ましくは0.2MPa以上2MPa以下に相当するといえる。このように電極前駆積層体に対する押圧ヒータの押圧力を0.2MPa以上2MPa以下程度とすることによって、より効果的に“押圧作用”と“加温作用”との双方を電極前駆積層体に及ぼすことができる。 It can be said that the preferable pressing force is equivalent to a restraining force exerted on the electrode precursor laminate by the pressing heater, preferably 0.2 MPa or more and 2 MPa or less when the pressing heater has a roller form. In this way, by setting the pressing force of the pressure heater to the electrode precursor laminate to about 0.2 MPa or more and 2 MPa or less, both “pressing action” and “heating action” are more effectively exerted on the electrode precursor laminate. be able to.
(好適な押圧ヒータ温度の態様)
 本発明の製造方法では押圧ヒータの温度は、加圧熱処理にとって効果的となる温度に調整してよい。換言すれば、本発明では、巻回時の電極前駆積層体に“加圧作用”を与えつつ、“加温作用”を与えることになるが、そのような処理にとってより効果的な温度とすることができる。
(Preferable aspect of pressing heater temperature)
In the production method of the present invention, the temperature of the pressure heater may be adjusted to a temperature that is effective for the pressure heat treatment. In other words, in the present invention, while applying the “pressing action” to the electrode precursor laminate at the time of winding, the “heating action” is given, but the temperature is more effective for such processing. be able to.
 あくまでも例示にすぎないが、押圧ヒータの温度を50℃以上200℃以下の範囲としてよい。つまり、押圧ヒータによって巻回時の電極前駆積層体に及ぼされる温度が50℃以上200℃以下となるようにしてよい。より好ましくは押圧ヒータの温度を70℃以上150℃以下とし、更に好ましくは押圧ヒータの温度を70℃以上100℃以下とする。簡易的には、押圧ヒータにおける温度の設定値をそのような値にすればよい。例えば、巻回時の押圧ヒータ自体の温度を50℃以上200℃以下、好ましくは70℃以上150℃以下、更に好ましくは70℃以上100℃以下とする。 Although it is merely an example, the temperature of the pressure heater may be in the range of 50 ° C. or more and 200 ° C. or less. That is, the temperature exerted on the electrode precursor laminate at the time of winding by the press heater may be 50 ° C. or more and 200 ° C. or less. More preferably, the temperature of the pressing heater is set to 70 ° C. or more and 150 ° C. or less, and further preferably, the temperature of the pressing heater is set to 70 ° C. or more and 100 ° C. or less. For simplicity, the set value of the temperature in the pressure heater may be set to such a value. For example, the temperature of the pressing heater itself during winding is 50 ° C. or higher and 200 ° C. or lower, preferably 70 ° C. or higher and 150 ° C. or lower, and more preferably 70 ° C. or higher and 100 ° C. or lower.
 電極前駆積層体に対する押圧ヒータの温度を上記の温度範囲にすると、より効果的に加圧熱処理を行うことができる。押圧ヒータの温度が特に50℃を下回ると、電極前駆積層体の接着剤層の接着効果をより効果的に引き出すことができなくなる一方、押圧ヒータの温度が特に200℃を上回ると、電極前駆積層体のセパレータに悪影響が生じやすくなる。例えばセパレータが微多孔膜形態を有する場合、押圧ヒータの温度が200℃を上回ると、セパレータの“孔”が収縮してしまう傾向(最終的に冷却された際に孔が収縮する傾向)が出やすくなる。 When the temperature of the pressure heater for the electrode precursor laminate is in the above temperature range, the pressure heat treatment can be performed more effectively. When the temperature of the press heater is particularly lower than 50 ° C., it becomes impossible to extract the adhesive effect of the adhesive layer of the electrode precursor laminate more effectively. On the other hand, when the temperature of the press heater is particularly higher than 200 ° C. The body separator is likely to be adversely affected. For example, when the separator has a microporous membrane shape, when the temperature of the pressure heater exceeds 200 ° C., the “holes” of the separator tend to shrink (they tend to shrink when finally cooled). It becomes easy.
 上記の説明から分かるように、本発明における押圧ヒータの温度は、広義には、押圧ヒータ自体の温度を意味しているものの、狭義には、押圧ヒータにおいて電極前駆積層体と接する面の温度、端的には、そのように押圧ヒータと接する電極前駆積層体における局所部分の温度を意味している。 As can be seen from the above description, the temperature of the pressure heater in the present invention broadly means the temperature of the pressure heater itself, but in a narrow sense, the temperature of the surface in contact with the electrode precursor laminate in the pressure heater, In short, it means the temperature of the local portion in the electrode precursor laminate in contact with the pressure heater.
 以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の態様が考えられることを当業者は容易に理解されよう。 As mentioned above, although the embodiment of the present invention has been described, a typical example is merely illustrated. Therefore, those skilled in the art will easily understand that the present invention is not limited to this, and various modes are conceivable.
 例えば、扁平形状または平板形状の電極巻回体を得る場合、いわゆる“R部分”などの押圧し難い局所的な部分については特に押圧ヒータの押圧に付さない態様であってもよい。かかる態様であっても、本発明では押圧ヒータのヒータ機能によって巨視的にみれば電極巻回体の全体に満遍なく加圧熱処理を施すことができる。 For example, when obtaining a flat or flat-plate-shaped electrode winding body, a local portion that is difficult to press, such as a so-called “R portion”, may not be particularly pressed by the pressing heater. Even in such an aspect, in the present invention, the entire electrode winding body can be uniformly subjected to the pressure heat treatment when viewed macroscopically by the heater function of the pressure heater.
 本発明に係る二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、二次電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量、アームコンピューターおよび電子ペーパーなどのモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。 The secondary battery according to the present invention can be used in various fields where power storage is assumed. For illustration purposes only, secondary batteries are used in the electrical / information / communication field where mobile devices are used (for example, mobile phones, smartphones, notebook computers and digital cameras, activities, arm computers, and electronic paper). Equipment field), household / small industrial applications (for example, power tools, golf carts, household / nursing / industrial robot fields), large industrial applications (for example, forklifts, elevators, bay harbor crane fields), transportation systems Fields (for example, fields such as hybrid vehicles, electric vehicles, buses, trains, electric assist bicycles, electric motorcycles), power system applications (for example, fields such as various power generation, road conditioners, smart grids, general home-installed power storage systems) IoT field, space and deep sea applications (eg space exploration) , It can be used, such as in the field), such as diving research vessel.
 1       正極
 1’      正極前駆体
 2       負極
 2’      負極前駆体
 3       セパレータ
 3’      巻回に付されるセパレータ
 5       電極構成層
 10      電極前駆積層体
 11      幅狭部分
 12      幅広部分
 50      押圧ヒータ
 50A,50B 押圧ヒータ
 70      巻き芯
 100     電極巻回体
DESCRIPTION OF SYMBOLS 1 Positive electrode 1 'Positive electrode precursor 2 Negative electrode 2' Negative electrode precursor 3 Separator 3 'Separator attached to winding 5 Electrode component layer 10 Electrode precursor laminated body 11 Narrow part 12 Wide part 50 Press heater 50A, 50B Press heater 70 Winding core 100 Electrode winding body

Claims (12)

  1. 正極と負極とから構成される電極巻回体を有する二次電池を製造する方法であって、
     セパレータを介した正極前駆体と負極前駆体との積層から成る電極前駆積層体を巻回して前記電極巻回体を形成しており、
     前記巻回においては前記電極前駆積層体を押圧に付し、該押圧のために押圧ヒータを用いる、二次電池の製造方法。
    A method for producing a secondary battery having an electrode winding body composed of a positive electrode and a negative electrode,
    The electrode winding body is formed by winding an electrode precursor stack composed of a stack of a positive electrode precursor and a negative electrode precursor via a separator,
    In the winding, the electrode precursor laminate is subjected to pressing, and a pressing heater is used for the pressing.
  2. 前記押圧ヒータによる前記押圧によって、前記電極前駆積層体を加圧および加温の双方に付す加圧熱処理を行う、請求項1に記載の二次電池の製造方法。 The manufacturing method of the secondary battery of Claim 1 which performs the pressurization heat processing which attach | subjects the said electrode precursor laminated body to both pressurization and heating by the said press by the said press heater.
  3. 前記電極前駆積層体の巻き始めから前記加圧熱処理を行う、請求項2に記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to claim 2, wherein the pressure heat treatment is performed from the beginning of winding of the electrode precursor laminate.
  4. 前記巻回の各回転において前記電極前駆積層体が前記加圧および前記加温の双方に付されるように逐次的に前記加圧熱処理を行う、請求項2または3に記載の二次電池の製造方法。 4. The secondary battery according to claim 2, wherein the pressurization heat treatment is sequentially performed so that the electrode precursor laminate is subjected to both the pressurization and the heating in each rotation of the winding. 5. Production method.
  5. 巻き芯を用いて前記巻回を行っており、該巻き芯と前記押圧ヒータとの間で前記電極前駆積層体を挟持することを通じて前記加圧熱処理を行う、請求項2~4のいずれかに記載の二次電池の製造方法。 The winding according to any one of claims 2 to 4, wherein the winding is performed using a winding core, and the pressure heat treatment is performed by sandwiching the electrode precursor laminate between the winding core and the pressure heater. The manufacturing method of the secondary battery as described.
  6. 前記巻回に付される前記正極前駆体および前記負極前駆体が平面視にて櫛歯形状を有し、前記電極巻回体として非矩形状または段差形状を含む巻回体を形成する、請求項1~5のいずれかに記載の二次電池の製造方法。 The positive electrode precursor and the negative electrode precursor attached to the winding have a comb shape in a plan view, and form a wound body including a non-rectangular shape or a stepped shape as the electrode winding body. Item 6. The method for producing a secondary battery according to any one of Items 1 to 5.
  7. 前記電極前駆積層体として接着剤層が含まれる積層体を用い、該積層体では前記正極前駆体および前記負極前駆体の少なくとも一方と前記セパレータとの間に該接着剤層が位置付けられる、請求項1~6のいずれかに記載の二次電池の製造方法。 The laminate comprising an adhesive layer as the electrode precursor laminate, wherein the adhesive layer is positioned between at least one of the positive electrode precursor and the negative electrode precursor and the separator. The method for producing a secondary battery according to any one of 1 to 6.
  8. 前記押圧ヒータがローラー形態を有する、請求項1~7のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 1 to 7, wherein the pressing heater has a roller shape.
  9. 前記押圧ヒータの温度を50℃以上200℃以下とする、請求項1~8のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 1 to 8, wherein a temperature of the pressing heater is set to 50 ° C or higher and 200 ° C or lower.
  10. 前記電極前駆積層体に対する前記押圧ヒータの押圧力を定圧条件とする、請求項1~9のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 1 to 9, wherein the pressing force of the pressing heater on the electrode precursor laminate is a constant pressure condition.
  11. 前記電極前駆積層体の対向する両主面を前記押圧ヒータによって前記押圧する、請求項1~10のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 1 to 10, wherein the opposing main surfaces of the electrode precursor laminate are pressed by the pressing heater.
  12. 前記両主面の前記押圧によって、前記電極巻回体の立体形状を扁平状にする、請求項11に記載の二次電池の製造方法。 The method of manufacturing a secondary battery according to claim 11, wherein the three-dimensional shape of the electrode winding body is flattened by the pressing of the two main surfaces.
PCT/JP2018/004078 2017-02-23 2018-02-06 Secondary battery production method WO2018155175A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-032438 2017-02-23
JP2017032438 2017-02-23

Publications (1)

Publication Number Publication Date
WO2018155175A1 true WO2018155175A1 (en) 2018-08-30

Family

ID=63254226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004078 WO2018155175A1 (en) 2017-02-23 2018-02-06 Secondary battery production method

Country Status (1)

Country Link
WO (1) WO2018155175A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110380134A (en) * 2019-06-27 2019-10-25 惠州锂威新能源科技有限公司 A kind of abnormity electric core winding technique
CN111211357A (en) * 2018-11-22 2020-05-29 宁德新能源科技有限公司 a wound battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302827A (en) * 1997-04-24 1998-11-13 Nec Corp Manufacture of electrode group of angular battery
JPH11233135A (en) * 1998-02-13 1999-08-27 Toshiba Battery Co Ltd Manufacture of wound type electrode
JP2007142351A (en) * 2005-11-22 2007-06-07 Kaido Seisakusho:Kk Element pressure roller mechanism
JP2008004302A (en) * 2006-06-20 2008-01-10 Matsushita Electric Ind Co Ltd Method for manufacturing lithium secondary battery
JP2011060656A (en) * 2009-09-11 2011-03-24 Panasonic Corp Method of manufacturing electrode group for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2011216399A (en) * 2010-04-01 2011-10-27 Hitachi Vehicle Energy Ltd Square shape lithium secondary battery
JP2013239433A (en) * 2012-04-18 2013-11-28 Gs Yuasa Corp Electricity storage element, winding apparatus, and winding method
JP2014024662A (en) * 2012-07-30 2014-02-06 Ckd Corp Winding device
JP2014216252A (en) * 2013-04-26 2014-11-17 日立オートモティブシステムズ株式会社 Square secondary battery
JP2015053118A (en) * 2013-09-05 2015-03-19 日立マクセル株式会社 Lithium ion secondary battery separator and method for producing the same, lithium ion secondary battery and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302827A (en) * 1997-04-24 1998-11-13 Nec Corp Manufacture of electrode group of angular battery
JPH11233135A (en) * 1998-02-13 1999-08-27 Toshiba Battery Co Ltd Manufacture of wound type electrode
JP2007142351A (en) * 2005-11-22 2007-06-07 Kaido Seisakusho:Kk Element pressure roller mechanism
JP2008004302A (en) * 2006-06-20 2008-01-10 Matsushita Electric Ind Co Ltd Method for manufacturing lithium secondary battery
JP2011060656A (en) * 2009-09-11 2011-03-24 Panasonic Corp Method of manufacturing electrode group for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2011216399A (en) * 2010-04-01 2011-10-27 Hitachi Vehicle Energy Ltd Square shape lithium secondary battery
JP2013239433A (en) * 2012-04-18 2013-11-28 Gs Yuasa Corp Electricity storage element, winding apparatus, and winding method
JP2014024662A (en) * 2012-07-30 2014-02-06 Ckd Corp Winding device
JP2014216252A (en) * 2013-04-26 2014-11-17 日立オートモティブシステムズ株式会社 Square secondary battery
JP2015053118A (en) * 2013-09-05 2015-03-19 日立マクセル株式会社 Lithium ion secondary battery separator and method for producing the same, lithium ion secondary battery and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211357A (en) * 2018-11-22 2020-05-29 宁德新能源科技有限公司 a wound battery
CN111211357B (en) * 2018-11-22 2022-06-10 宁德新能源科技有限公司 Winding battery cell
CN110380134A (en) * 2019-06-27 2019-10-25 惠州锂威新能源科技有限公司 A kind of abnormity electric core winding technique

Similar Documents

Publication Publication Date Title
US10998600B2 (en) Laminated secondary battery and manufacturing method of the same, and device
WO2018154989A1 (en) Secondary battery and method for producing same
US11411252B2 (en) Lithium ion secondary battery and method of manufacturing the same
JP6919572B2 (en) Secondary battery and its manufacturing method
US11437653B2 (en) Laminated secondary battery and manufacturing method of the same, and device
WO2018180152A1 (en) Secondary battery
JP2017212111A (en) Nonaqueous electrolyte secondary battery
CN109155397B (en) Manufacturing method of secondary battery
WO2018155175A1 (en) Secondary battery production method
JP6841323B2 (en) Secondary battery and its manufacturing method
WO2018180599A1 (en) Secondary battery
WO2019009207A1 (en) Battery pack and method for producing battery pack
JP2023069760A (en) Negative electrode for secondary battery and manufacturing method thereof
JP2016225020A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2019029294A (en) Method of manufacturing secondary battery
WO2018155211A1 (en) Secondary battery
WO2023127726A1 (en) Secondary battery
JP2018181705A (en) Secondary battery and manufacturing method thereof
KR102154014B1 (en) An electrode for an electrochemical device and an electrochemical device comprising the same
WO2018163775A1 (en) Secondary battery production method
WO2018154987A1 (en) Secondary battery and method for producing same
WO2018221318A1 (en) Method for manufacturing secondary battery
WO2017208534A1 (en) Secondary battery
WO2019021863A1 (en) Secondary battery manufacturing method
JP2020017398A (en) Power storage element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP