[go: up one dir, main page]

WO2018155587A1 - Reagent for enhancing transparency of biologically derived material - Google Patents

Reagent for enhancing transparency of biologically derived material Download PDF

Info

Publication number
WO2018155587A1
WO2018155587A1 PCT/JP2018/006564 JP2018006564W WO2018155587A1 WO 2018155587 A1 WO2018155587 A1 WO 2018155587A1 JP 2018006564 W JP2018006564 W JP 2018006564W WO 2018155587 A1 WO2018155587 A1 WO 2018155587A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
polyethyleneimine
reagent according
liver
biological material
Prior art date
Application number
PCT/JP2018/006564
Other languages
French (fr)
Japanese (ja)
Inventor
伸太郎 麓
茂 川上
孝洋 西田
Original Assignee
国立大学法人 長崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 長崎大学 filed Critical 国立大学法人 長崎大学
Priority to JP2019501809A priority Critical patent/JP7033795B2/en
Publication of WO2018155587A1 publication Critical patent/WO2018155587A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/04Plant cells or tissues

Definitions

  • the present invention relates to a biological material-clearing reagent, a biological material-clearing method using the reagent, and a biological material-clearing kit containing the reagent.
  • the fixed tissue can be sliced and observed with a microscope to evaluate the distribution in the tissue.
  • planar information it is possible to obtain planar information.
  • the tissue is made transparent and observed with a microscope, so that three-dimensional information can be obtained and the spatial distribution in the tissue can be evaluated.
  • the tissue is made transparent by electrophoresis or a method using a reagent.
  • the electrophoresis method has high transparency efficiency, but has a drawback that a special apparatus is required and the procedure is complicated. Another problem is that small molecules are removed during membrane staining and electrophoresis because lipids are removed.
  • the method using a reagent is transparent by infiltrating the tissue with the reagent, so that a special apparatus is not required and the procedure is simple. Several reagents for tissue clearing have been developed.
  • Non-patent Document 1 Reagents containing formamide
  • Non-patent Document 2 reagents containing fructose
  • Patent Document 3 urea or urea derivatives
  • surfactants and glycerol Reagents Patent Document 1 and the like
  • Patent Document 2 Reagents containing formamide
  • Patent Document 3 reagents containing fructose
  • Patent Document 4 urea or urea derivatives
  • surfactants and glycerol Reagents Patent Document 1 and the like
  • Patent Document 2 As a method of clarifying, urea or urea at a concentration higher than the solution used in the step of infiltrating the biological material with a solution containing urea or a urea derivative at a predetermined concentration (first infiltration step) and the first infiltration step
  • first infiltration step 2 A method of infiltrating a solution containing a derivative into a biological material
  • Patent Document 2 A method of infiltrating a solution containing a derivative into a
  • Non-patent Documents 3 and 4 basic technologies for quantitative comparison between samples have been reported (Non-patent Documents 3 and 4).
  • a tissue When a tissue is made transparent using a conventional reagent, it takes time and the procedure is complicated because the reagent is infiltrated into the tissue for several days to several weeks and replaced with a reagent having a different composition in the middle. Further, when a tissue is clarified using a clarification reagent containing a surfactant, the transparency is high, but the lipid membrane is denatured or removed by the surfactant. On the other hand, when a reagent that does not contain a surfactant is used, the lipid membrane is retained, but the transparency is low and information on deeper tissues cannot be obtained. Furthermore, no reagent capable of adjusting the pH has been reported.
  • the present invention provides a novel biological material-clearing reagent capable of at least partially solving the above-mentioned problems associated with conventional tissue-clearing reagents, and a method for clearing tissue of biological materials using the reagent And a kit for clarifying a biological material containing the reagent, and the like.
  • the inventors of the present invention have made extensive studies to solve the above-mentioned problems, and have found for the first time that polyethyleneimine has an effect of making the tissue transparent.
  • polyethyleneimine for tissue transparency, transparency can be achieved in a short period of time with simple procedures, good transparency can be achieved while retaining the lipid membrane, and the pH of the reagent is within a specific range.
  • the present inventors have found that it can be adjusted to The present inventors have further studied based on these findings and have completed the present invention.
  • a reagent for clarifying a biological material comprising polyethyleneimine.
  • the modified polyethyleneimine is at least one selected from the group consisting of propylene oxide modified polyethyleneimine, octadecyl isocyanate modified polyethyleneimine, and ethylene oxide modified polyethyleneimine.
  • the animal-derived material is derived from at least one organ selected from the group consisting of brain, heart, liver, kidney, spleen, lung, stomach, small intestine, large intestine and muscle. reagent.
  • [14] A method for clarifying a biological material, comprising the step of infiltrating the biological material with the reagent according to any one of [1] to [13]. [15] The method according to [14], wherein the infiltration step is performed only once. [16] The method according to [14] or [15], wherein the infiltration step is performed for 1 hour to 7 days. [17] A kit for clarifying a biological material, comprising the reagent according to any one of [1] to [13].
  • a reagent capable of clearing a biological material with good transparency while retaining a lipid membrane in a short period of time and a simple procedure, and a reagent capable of adjusting pH to a specific range are provided. Moreover, according to this invention, the transparency method of the biological material using the said reagent is provided. Furthermore, according to the present invention, a kit for clarifying a biological material containing the reagent is provided.
  • FIG. 1 is a bright-field image of the liver and kidney of a mouse made transparent in Example 1.
  • FIG. 2 is a bright-field image of the liver and kidney of the mouse clarified in Example 2.
  • FIG. 3 is a bright field image of each tissue of the mouse made transparent in Example 3.
  • FIG. 4 is a bright-field image of the liver and kidney of the mouse clarified in Example 4.
  • FIG. 5 is a bright-field image of spinach leaves and stems clarified in Example 5. The upper row is leaves and the lower row is stems.
  • FIG. 6 shows the blood vessels and gene expression of the mouse kidneys clarified in Example 6.
  • FIG. 7 is a view showing blood vessels and parenchyma of the mouse brain cleared in Example 7.
  • FIG. 8 is a diagram showing gene expression and generation of oxidative stress in the mouse liver cleared in Example 8.
  • FIG. 9 is a graph showing the evaluation of the retention of the liposome membrane by the clearing reagent of the present invention and Scale A2 according to the FRET efficiency in Example 9.
  • FIG. 10 is a bright-field image of the liver and kidney of the mouse clarified in Example 10. In the results of each reagent, the upper row is the kidney and the lower row is the liver.
  • FIG. 11 is a bright field image of the liver of a mouse made transparent in Example 11.
  • FIG. 12 is a view showing a bright-field image of a mouse kidney and various blood vessels from the glass surface, which were made transparent using various clarification reagents in Example 12.
  • FIG. 13 is a bright-field image of the liver of a mouse made transparent in Example 13.
  • FIG. 14 is a bright-field image of the liver and kidney of the mouse clarified in Example 14.
  • FIG. 15 is a bright-field image of the liver and kidney of the mouse clarified in Example 15.
  • FIG. 16 is a bright field image of each tissue of the mouse made transparent in Example 16.
  • FIG. 17 is a bright-field image of the liver and kidney of the mouse clarified in Example 17.
  • FIG. 18 is a diagram showing the spatial distribution of doxorubicin hydrochloride in the liver of a mouse clarified in Example 18.
  • the present invention provides a reagent for transparentizing biological material (hereinafter also referred to as the reagent of the present invention).
  • the reagent of the present invention is characterized by containing polyethyleneimine. The mechanism by which polyethyleneimine makes the biological material transparent is not clear, but is presumably due to the dehydrating action of polyethyleneimine.
  • the polyethyleneimine used in the reagent of the present invention is a polymer obtained by polymerizing ethyleneimine, and may be either linear or branched.
  • the linear polyethyleneimine contains a secondary amine and one primary amine at the end, and has a linear structure.
  • Examples of the branched type polyethyleneimine include polyethyleneimine having a branched structure containing primary, secondary and tertiary amines, and a completely branched dendrimer.
  • the number average molecular weight of polyethyleneimine is not particularly limited, but from the viewpoint of increasing the transparency of the biological material, for example, the lower limit is 300 or more, 400 or more, from the viewpoint of preventing deformation of the biological material, for example, the lower limit is 300 or more, 600 or more, 1400 or more, 1800 or more are mentioned, and the upper limit is 70,000 or less, 25,000 or less.
  • the range of the number average molecular weight of polyethyleneimine include 300 to 70,000, 400 to 25,000, 500 to 12,000, and 600 to 10,000, for example, 10,000.
  • the range of the number average molecular weight may be, for example, 1400 to 70,000, 1800 to 70,000.
  • As the number average molecular weight a molecular weight measured by a boiling point raising method can be used.
  • the polyethyleneimine may be a modified polyethyleneimine.
  • the modified polyethyleneimine include derivatives of polyethyleneimine and isocyanate compounds, epoxy compounds, acrylic compounds, halogen compounds, isothiocyanate compounds, NHS (N-Hydroxysuccinimide) esters, and the like.
  • the isocyanate compound include alkyl isocyanate, and examples of the alkyl isocyanate include tetradecyl isocyanate, pentadecyl isocyanate, hexadecyl isocyanate, heptadecyl isocyanate, octadecyl isocyanate, and nonadecyl isocyanate.
  • Examples of the epoxy compound include alkylene oxide, and examples of the alkylene oxide include ethylene oxide, propylene oxide, butylene oxide, and the like.
  • Examples of the acrylic compound include acrylonitrile.
  • Examples of the halogen compound include alkyl halides.
  • Examples of the isothiocyanate compound include pyridine isothiocyanate, iodophenyl isothiocyanate, ethoxyphenyl isothiocyanate, and chloroethyl isothiocyanate.
  • Examples of NHS (N-Hydroxysuccinimide) ester include methyl polyethylene glycol-NHS.
  • modified polyethyleneimine for example, octadecyl isocyanate modified polyethyleneimine obtained by adding octadecyl isocyanate to polyethyleneimine, ethylene oxide modified polyethyleneimine obtained by adding ethylene oxide to polyethyleneimine, and propylene oxide added to polyethyleneimine
  • modified polyethyleneimine for example, octadecyl isocyanate modified polyethyleneimine obtained by adding octadecyl isocyanate to polyethyleneimine, ethylene oxide modified polyethyleneimine obtained by adding ethylene oxide to polyethyleneimine, and propylene oxide added to polyethyleneimine
  • propylene oxide added to polyethyleneimine examples include propylene oxide-modified polyethyleneimine.
  • Polyethyleneimine may be used alone or in combination of two or more.
  • a combination of polyethyleneimine having a molecular weight of 400 to 2,000 and polyethyleneimine having a molecular weight of 5,000 to 25,000 is used at a ratio of 1: 1 to 4: 1, and polyethyleneimine having a molecular weight of 600 and polyethyleneimine having a molecular weight of 10,000 is 1: 1.
  • Examples include combinations used in a ratio of ⁇ 4: 1.
  • the content of polyethyleneimine in the reagent is not particularly limited, and usually ranges from 10 to 30% w / v%, 15 to 25% w / v%, for example, 20% w / v%.
  • Polyethyleneimine can be produced by a method known per se, or a commercially available polyethyleneimine may be used.
  • commercially available polyethyleneimines include, for example, Wako Pure Chemical Industries, 163-17835, 166-17825, 169-17815, and Nippon Shokubai Co., Ltd., Epomin (registered trademark) SP-003, SP-006, SP-012. , SP-018, SP-200, P-1000, etc.
  • Modified polyethyleneimines are also commercially available, and examples thereof include Nippon Shokubai Co., Ltd., Epomin (registered trademark) RP-20, PP-061 and the like.
  • the reagent of the present invention may further contain urea, formamide, lactamide, and / or a derivative thereof, preferably urea or formamide, lactamide, more preferably urea, or may not contain these.
  • Derivatives include one, two, three, or four of the four hydrogen atoms in the urea formula, one, two, or three of the three hydrogen atoms in the formamide formula. Or one, two, three, four, five or six of the six hydrogen atoms in the formula of lactamide, independently of one another, a halogen atom (eg a fluorine atom, a chlorine atom, a bromine atom) , Iodine atom, etc.), or a hydrocarbon group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms (for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group and the like).
  • a halogen atom eg a fluorine atom, a chlorine atom, a bromine atom
  • the concentration of the above-mentioned amide compound in the reagent is not particularly limited, but usually ranges from 3 to 9M. When two or more amide compounds are used, the total concentration is meant.
  • 3M or more, 4M or more, 4.5M or more, 5M or more, 5.5M or more, 6M or more can be mentioned from the viewpoint of preventing the swelling of the biological material.
  • a preferable urea concentration is, for example, in the range of 4 to 9M, more preferably 4 to 8M, still more preferably 6 to 8M, and particularly preferably 7 to 8M.
  • the reagent of the present invention may further contain a polyhydric alcohol or may not contain these.
  • the transparency can be further increased by including a polyhydric alcohol.
  • the polyhydric alcohol is not particularly limited, and examples thereof include dihydric alcohols and trihydric alcohols. These polymers are also included in the dihydric alcohol and trihydric alcohol. Examples of the dihydric alcohol include ethylene glycol, propylene glycol, tetramethylene glycol, diethylene glycol, dipropylene glycol, and polyethylene glycol.
  • trivalent alcohol examples include glycerin, trimethylol ethane, trimethylol propane, diglycerin, and polyglycerin. Of these, propylene glycol, polyethylene glycol and glycerin are preferred. Polyethylene glycol having an average molecular weight of, for example, 200 to 20,000, preferably 400 to 10,000, more preferably 400 to 8,000 can be used. As the average molecular weight, an average molecular weight measured by a titration method can be used.
  • the solvent in the reagent of the present invention is not particularly limited as long as polyethyleneimine and other optional components are soluble, and examples thereof include water and a buffer solution.
  • examples of the buffer include PBS buffer, HEPES buffer, and Tris buffer.
  • the reagent of the present invention may contain further components such as a pH adjusting agent and an osmotic pressure adjusting agent.
  • the pH of the reagent of the present invention is not particularly limited, but from the viewpoint of increasing the transparency of the biological material, for example, pH ⁇ 4 or more, pH ⁇ 5 or more, pH 5.5 or more, pH 6 or more, pH 7 or more, pH 7.5 or more From the viewpoint of preventing discoloration of the fluorescent protein when observing the fluorescent protein in the transparent biological material, for example, the pH is 12 or less, the pH is 11 or less, and the pH is 10 or less. Therefore, the pH ranges are 4 to 12, pH 5 to 12, pH 5.5 to 12, pH 6 to 12, pH 7 to 12, pH 7.5 to 12, pH 8 to 12, pH 9 to 12, pH 4 -11, pH 5-11, pH 5.5-11, pH 6-11, pH 7-11, pH 7.5-11, pH 8-11, pH 9-11. Alternatively, the pH ranges are pH 5 to 10, pH 5.5 to 10, pH 6 to 10, pH 7 to 10, pH 7.5 to 10, pH 5 to 9, pH 5.5 to 9, pH 6 to 9, pH 7 ⁇ 9, pH ⁇ 7.5 ⁇ 9.
  • the pH adjustment method is not particularly limited, and can be adjusted, for example, by adding an appropriate amount of a pH adjuster to the polyethyleneimine aqueous solution.
  • pH adjusters include phosphoric acid, citric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, pyrophosphoric acid, sulfuric acid, nitric acid, acetic acid, glycolic acid, boric acid, lactic acid, silicic acid, phosphonic acid, and tartaric acid.
  • the reagent of the present invention may be substantially free of surfactant.
  • the term “substantially free of a surfactant” means that the surfactant is not included, or even when it is included, it is less than 0.1% w / v%, preferably less than 0.05% w / v%. More preferably, it is less than 0.025% w / v%.
  • the method for preparing the reagent of the present invention is not particularly limited, and for example, it can be prepared by dissolving polyethyleneimine in a solvent. Furthermore, arbitrary components as described above can be added. Moreover, it can adjust by adding a pH adjuster, adjusting to desired pH, adding an arbitrary component as needed, and melt
  • the bio-derived material targeted by the reagent of the present invention to be clarified is not particularly limited, but a plant or animal-derived material is preferable.
  • the biological material may be an individual (plant or animal) itself, or may be an organ, tissue, or cell.
  • Animal organs are not particularly limited, for example, brain, heart, liver, kidney, pancreas, spleen, lung, stomach, small intestine, large intestine, skin, muscle, spinal cord, eyeball, gonad, thyroid, gallbladder, bone marrow, adrenal gland, digestion Examples include ducts, thymus, submandibular gland, prostate, testis, ovary, placenta, uterus and the like, preferably brain, heart, liver, kidney, spleen, lung, stomach, small intestine, large intestine, muscle, skin and the like.
  • Plant organs are not particularly limited, and examples include leaves, petals, stems, roots, and seeds.
  • the organs of animals and plants may be organs
  • Animals are not particularly limited and include invertebrates and vertebrates, with vertebrates being preferred.
  • vertebrates include fish, amphibians, reptiles, birds, and mammals, with mammals being preferred.
  • Mammals include, for example, rodents (eg, mice, rats, hamsters, guinea pigs, etc.), laboratory animals (eg, rabbits, etc.), livestock (eg, pigs, cows, goats, horses, sheep, etc.), pets ( Examples thereof include dogs and cats), primates (eg, humans, monkeys, orangutans, chimpanzees, etc.).
  • Plants are not particularly limited and include seed plants and spore plants.
  • Seed plants include angiosperms (for example, dicotyledonous plants and monocotyledonous plants) and gymnosperms, and specific examples include spinach and ginkgo biloba. Examples of spore plants include bracken.
  • the biological material may be fixed or may not be fixed.
  • the biological material may be a material expressing a fluorescent protein, or a material stained with a fluorescent chemical substance, a fat-soluble carbocyanine dye, or a coloring chemical substance.
  • Examples of fluorescent proteins include RFP, GFP, BFP, CFP, and YFP.
  • Examples of the fluorescent chemical substance include DAPI® (4 ′, 6-diamidino-2-phenylindole), fluorescein and the like.
  • Examples of the fat-soluble carbocyanine dye include DiI (1,1'-dioctadecyl-3,3,3 ', 3'-tetramethylindocarbocyanine perchlorate), DiD (1,1'-dioctadecyl-3,3,3', 3 '-tetramethylindodicarbocyanineocyanperchlorate), DiO (3,3'-dioctadecyloxacarbo-cyanine perchlorate), DiR (1,1'-dioctadecyltetramethyl indotricarbocyanine iodide).
  • chromogenic chemical substances include Evans Blue, which is a blue pigment, Indocyanine Green, which is a green pigment, Oil Red O, which is a red pigment, and X-gal (5-bromo-4-chloro), which is a chromogenic substrate.
  • Evans Blue which is a blue pigment
  • Indocyanine Green which is a green pigment
  • Oil Red O which is a red pigment
  • X-gal 5-bromo-4-chloro
  • -3-indolyl- ⁇ -D-galactopyranoside DAB (3,3'-diaminobenzidine)
  • BCIP 5-bromo-4-chloro-3-indolyl-phosphate
  • NBT Niitro Blue Tetrazolium Chloride
  • the present invention also provides a method for clarifying biological material (hereinafter also referred to as the method of the present invention).
  • the method of the present invention comprises a step of infiltrating a biological material with the reagent of the present invention.
  • the method for infiltrating the biological material with the reagent of the present invention is not particularly limited, and examples thereof include a method of immersing the material in the reagent of the present invention.
  • the period of infiltration is not particularly limited, but is preferably at least 1 hour from the viewpoint of sufficiently infiltrating the biological material with the reagent of the present invention.
  • the period is preferably, for example, 1 hour to 7 days, more preferably 5 hours to 7 days, still more preferably 12 hours to 7 days, and even more preferably 1 day to 3 days.
  • good transparency can be achieved even for 1 hour to 3 days, or even 1 hour to 1 day.
  • the infiltration temperature is not particularly limited as long as the reagent of the present invention is not significantly denatured.
  • the reagent of the present invention contains urea, from the viewpoint of preventing precipitation of urea, for example, 25 ° C. to 45 ° C. is preferable, and 30 ° C. to 40 ° C. is more preferable.
  • the number of steps of the infiltration is not particularly limited, but with the reagent of the present invention, good transparency can be achieved without performing multiple infiltrations using a plurality of reagents with different concentrations. Can be infiltration.
  • Kit for clarification of biological material The present invention also provides a kit for clarification of biological material (hereinafter also referred to as the kit of the present invention).
  • the kit of the present invention includes the reagent of the present invention.
  • the kit of the present invention may further contain a tissue fixing solution, a washing buffer solution, and the like.
  • the reagent of the present invention or the biological material transparentized by the method of the present invention is stained with a fluorescent chemical substance, a fat-soluble carbocyanine dye, or a chromogenic chemical substance, and a stereomicroscope, It can be observed with a confocal laser microscope or a multiphoton excitation microscope. Further, the tissue homogenate can be clarified, and the concentration of the fluorescent chemical substance, fat-soluble carbocyanine dye, or chromogenic chemical substance in the tissue can be quantitatively measured using a fluorometer, an absorptiometer, or the like. Examples of the fluorescent chemical substance, the fat-soluble carbocyanine dye, and the color-forming chemical substance include those described above.
  • the membrane can be formed using various fluorescent probes, fat-soluble carbocyanine dyes, and the like. Can be dyed.
  • the reagent of the present invention can be adjusted to a pH within a specific range, a reagent whose pH is adjusted according to various fluorescent probes can be used.
  • the transparent biological material can be directly observed with a stereo microscope, a confocal laser microscope, a multi-photon excitation microscope, or the like without slicing. Therefore, for example, evaluation of spatial distribution of DDS such as liposome preparations, evaluation of spatial distribution of gene expression in gene transfer methods, evaluation of localization of various proteins using fluorescent protein-expressing transgenic mice, blood vessels using lipid-soluble carbocyanine dyes And real visualization, cell death visualization, and oxidative stress visualization.
  • DDS spatial distribution of DDS
  • evaluation of spatial distribution of gene expression in gene transfer methods evaluation of localization of various proteins using fluorescent protein-expressing transgenic mice, blood vessels using lipid-soluble carbocyanine dyes
  • real visualization cell death visualization
  • cell death visualization and oxidative stress visualization.
  • a gene encoding a fluorescent protein is targeted by gene transfer methods (for example, hydrodynamics method, tissue suction pressure method, method using bubble liposome and ultrasonic wave, etc.) After introduction into an animal, the organ is removed and the organ is clarified with the reagent of the present invention.
  • gene transfer methods for example, hydrodynamics method, tissue suction pressure method, method using bubble liposome and ultrasonic wave, etc.
  • a fat-soluble carbocyanine dye for example, 1,1′- dioctadecyl-3,3,3 ', 3'-tetramethylindocarbocyanine perchlorate (DiI), 1,1'-dioctadecyl-3,3,3', 3'- tetramethylindodicarbocyanine perchlorate (DiD), 3,3'-dioctadecyloxacarbo-cyanine perchlorate (DiO), 1,1 Examples include a method of perfusing '-dioctadecyltetramethyl indotricarbocyanine diodide (DiR), etc.) to stain a blood vessel, and then removing the organ and clarifying the organ with the reagent of the present invention.
  • DiI 1,1′- dioctadecyl-3,3,3 ', 3'-tetramethylindocarbocyanine perchlorate
  • the target animal is perfused with a fat-soluble carbocyanine dye, the blood vessel is stained, the organ is removed, and the reagent of the present invention is used.
  • a method of clearing the organ a method of immersing the organ in a fat-soluble carbocyanine dye and staining it, and then clarifying with the reagent of the present invention. After staining a blood vessel as described above, the organ is excised and a fat-soluble carbocyanine dye And the like, and a method of clarification with the reagent of the present invention.
  • oxidative stress visualization reagent for example, after exposing an animal to which an oxidative stress visualization reagent or a commercially available oxidative stress visualizing mouse is exposed to oxidative stress, the organ is removed and clarified with the reagent of the present invention.
  • the method etc. are mentioned. Furthermore, these multiple events can be visualized simultaneously by multi-color deep imaging.
  • the cleared biological material can be observed with a stereomicroscope, a confocal laser microscope, a multiphoton excitation microscope, etc. after the clearing reagent is washed once and then sliced.
  • microtubules can be observed with a confocal laser microscope by washing the clarified liver, slicing it, and staining the obtained sections with an anti-tubulin antibody and a fluorescently labeled secondary antibody. .
  • Example 1 Clarification of liver and kidney with polyethyleneimine
  • Polyethyleneimine having a number average molecular weight of 600 was manufactured by Wako Pure Chemical Industries, 163-17835, and polyethyleneimine having a number average molecular weight of 10,000 was manufactured by Wako Pure Chemical Industries, 166-17825.
  • mice under clear anesthesia of the liver and kidney were perfused with the fat-soluble carbocyanine dye 1,1'-dioctadecyl-3,3,3 ', 3'-tetramethylindocarbocyanine perchlorate (DiI) transcardially.
  • the tissue was then fixed by perfusing 4% paraformaldehyde.
  • the liver and kidney were removed and immersed in a polyethyleneimine aqueous solution, and bright field images were obtained after 1 day and 3 days. The results are shown in FIG. Both the liver and kidney were clarified with a polyethyleneimine aqueous solution to the same extent as the 3-day immersion after 1-day immersion.
  • Example 2 Facilitation of liver and kidney transparency with urea Preparation Method of Clarifying Reagent
  • urea was added to prepare an aqueous solution of 20 w / v% polyethyleneimine and 8M urea.
  • 20 w / v% polyethyleneimine, 8M urea was obtained in the same manner as described above except that polyethyleneimine (number average molecular weight 600) or polyethyleneimine (number average molecular weight 10,000) was used and pH 9 was adjusted.
  • An aqueous solution of was prepared.
  • As urea 210-01185 manufactured by Wako Pure Chemical Industries, Ltd. was used.
  • Example 3 Clarification of each tissue with a clarification reagent
  • DiI was perfused into the anesthetized mouse to fix the tissue.
  • the brain, liver, kidney, lung, heart, spleen, stomach, small intestine, large intestine and muscle were removed and immersed in a clearing reagent, and bright field images of each tissue were obtained after 1 day and 3 days. The results are shown in FIG. All tissues were clarified with high transparency by a clarification reagent.
  • Example 4 Temporal change after immersing liver and kidney in clearing reagent A clearing reagent was prepared in the same manner as in Example 3. In the same manner as in Example 1, DiI was perfused into the anesthetized mouse to fix the tissue. The liver and kidney were removed and immersed in a clearing reagent, and bright field images of each tissue were obtained 1 hour to 3 days later. The results are shown in FIG. Although the tissue shrinkage was observed after 1 hour, it was observed that the tissue became transparent. One day later, the tissue returned to its original size, and sufficient transparency was obtained.
  • Example 5 Clearance of spinach leaves and stems Spinach leaves and stems (unfixed) were immersed in a clearing reagent having the same composition as in Example 3, and bright field images were obtained after 1 day and 3 days later. . The results are shown in FIG. 5 (the upper row is leaves and the lower row is stems). Both leaves and stems were clarified with a clarification reagent after one day of immersion, and further clarified after three days of immersion.
  • Example 6 Simultaneous visualization of blood vessels and gene expression Gene Transfer to Kidney Plasmid DNA encoding green fluorescent protein ZsGreen1 was administered into a mouse vein, and then suction was applied to the tissue using a suction device to perform gene transfer. Twenty-four hours after introduction of the clearing gene of the kidney, DiI was perfused to the anesthetized mouse in the same manner as in Example 1 to fix the tissue. The kidney was removed, immersed in a clearing reagent (20 w / v% polyethyleneimine, molecular weight 1,800, urea 8M, pH 9), and 3 days later, the blood vessels stained with gene expression and DiI were observed with a confocal laser microscope did. The results are shown in FIG. The blood vessel and gene expression were visualized simultaneously by the clearing reagent, and it was confirmed that the plasmid administered intravenously leaked from the blood vessel and the gene was expressed outside the blood vessel.
  • a clearing reagent (20 w / v% polyethyleneimine, molecular weight 1,
  • Example 7 Visualization of cerebral blood vessels and parenchyma
  • mice under anesthesia were perfused with DiI to fix the tissue.
  • the brain was removed and roughly cut with a tissue slicer.
  • Example 8 Visualization of Oxidative Stress Occurrence When TdTomato Gene is Introduced After oxidative stress visualization reagent CellROX (registered trademark) deep red is administered intraperitoneally to mice, a plasmid DNA encoding red fluorescent protein tdTomato is hydrodynamically processed. It was introduced into the liver by (rapid intravenous administration of a large volume solution). Thereafter, the mice under anesthesia were fixed by perfusion with 4% paraformaldehyde. After the liver was removed, it was immersed in a clearing reagent prepared by the same method as in Example 7, and observed one day later using a confocal laser microscope. The results are shown in FIG. The generation of oxidative stress was visualized by the clearing reagent, and the positional relationship with the introduced gene expression could be analyzed.
  • CellROX registered trademark
  • Example 9 Measurement of membrane retention using FRET liposomes
  • Liposomes labeled with NBD-DOPE (Avanti Polar Lipids, 810145) and Lissamine rhodamine B-DOPE (Avanti Polar Lipids, 810150) were treated with 0.1 w / surfactant.
  • Mixing with clearing reagent Scale A2 (urea 4 M, glycerin 10 w / v%, Triton X-100 0.1 w / v%) containing v% or the clearing reagent of the present invention
  • the retention of liposome membrane is fluorescent. Evaluation was based on resonance energy (FRET) efficiency.
  • the clearing reagent used was prepared in the same manner as in Example 7. The results are shown in FIG.
  • the retention of the liposome membrane was 81.3% when the reagent of the present invention was used, and 8.27% when the clarifying reagent Scale A2 containing a surfactant was used, and the reagent of the present invention retained the lipid membrane. It was confirmed that the biological material was made transparent.
  • Example 10 Clarification of kidney and liver using reagents of each pH Preparation of clearing reagent According to the method described in Example 3, clearing reagents of pH 7, 9, and 11 were prepared. Using the prepared reagents and PBS as a control, the kidney and liver were clarified by the same method as in Example 2. The results are shown in FIG. 10 (in the results of each reagent, the upper row is the kidney and the lower row is the liver). Each of the clarification reagents clarified the liver and kidney with high transparency by immersion for 1 day. Moreover, the higher the pH, the higher the transparency.
  • Example 11 Improvement of transparency in the liver by adding polyhydric alcohol Preparation of clearing reagent
  • the urea concentration was set at 4M to avoid precipitation at low temperatures.
  • Polyethyleneimine molecular weight 1,800, manufactured by Wako Pure Chemical Industries, 169-178105
  • urea are added with glycerin (Nacalai Tesque, 17018-25), 20 w / v% polyethyleneimine, 4M urea, 10 w
  • An aqueous solution of / v% glycerin, pH 11 was prepared.
  • Example 12 Clarification of kidney using various clarification reagents
  • a clarification reagent Clear containing no surfactant T2 (Non-patent document 1)
  • Scale S non-patent document 5
  • CUBIC containing a high concentration (15 w / v%) surfactant
  • pH 9 and pH 11 clearing reagents prepared by the same method as in Example 9 were used.
  • PBS was used as a control.
  • DiI was perfused into the anesthetized mouse to fix the tissue.
  • the kidney was removed and immersed in various clearing reagents. About the reagent for clearing other than the reagent of this invention and PBS, it immersed according to the method as described in each literature.
  • Clear T2 the reagent of the present invention, and PBS
  • a bright field image is obtained after 1 day, with Scale S after 3 days, and with CUBIC after 9 days. Observed with.
  • the results are shown in FIG.
  • the reagent of the present invention clarified the kidney with high transparency by immersion for 1 day. When the reagent of the present invention was used, blood vessels with a depth of 302 ⁇ m and 705 ⁇ m could be observed from the glass surface after immersion for 1 day.
  • Example 13 Clarification of the liver with low and high molecular weight polyethyleneimines
  • Preparation method of clearing reagent A clearing reagent (20 w / v% polyethyleneimine, 8M urea, pH 11) was prepared in the same manner as in Example 2 except that polyethyleneimine (number average molecular weight 300 or 70,000) was used.
  • Polyethyleneimine having a number average molecular weight of 300 was manufactured by Nippon Shokubai Co., Ltd., SP-003
  • polyethyleneimine having a number average molecular weight of 70,000 was manufactured by Nippon Shokubai Co., Ltd., P-1000.
  • Liver was extracted from a mouse under clear anesthesia of the liver, and the tissue was fixed by immersion in 4% paraformaldehyde. Subsequently, it was immersed in a clearing reagent, and a bright field image was obtained after 1 day. The results are shown in FIG.
  • the liver becomes transparent when polyethyleneimine of any molecular weight is used as a clearing reagent, but the liver swells with a clearing reagent prepared with a molecular weight of 300 of polyethyleneimine.
  • Example 14 Clarification of liver and kidney when using pH 5 clarification reagent Preparation method of clearing reagent
  • the liver and kidney were removed from the mouse under clear anesthesia of the liver and kidney, and the tissue was fixed by immersion in 4% paraformaldehyde. Subsequently, it was immersed in a clearing reagent, and bright field images were obtained after 1 day and 3 days. The results are shown in FIG. Even at pH 5, the liver and kidney were cleared.
  • Example 15 Clarification of each tissue when using a modified polyethyleneimine aqueous solution
  • Preparation method of clearing reagent Add water to propylene oxide modified polyethyleneimine (molecular weight 1400), 10, 20, 50 w / v% propylene oxide modified polyethyleneimine aqueous solution (pH unadjusted (measured values are pH 11.2, 11.4, 11.9)) was prepared.
  • As a propylene oxide-modified polyethyleneimine having a number average molecular weight of 1400 PP-061 manufactured by Nippon Shokubai Co., Ltd. was used.
  • the kidney and liver were removed from a mouse sacrificed by anesthesia with an excessive amount of clearing of the kidney and liver, and the tissue was fixed by immersion in 4% paraformaldehyde. Subsequently, it was immersed in a clearing reagent, and bright field images were obtained after 1 day and 3 days. The results are shown in FIG. The structure was also clarified by a propylene oxide-modified polyethyleneimine aqueous solution. Note that no significant shrinkage was observed even at a high concentration of 50%.
  • Example 16 Clarification of each tissue when using modified polyethyleneimine Preparation method of clearing reagent
  • a clearing reagent (20 w / v% propylene oxide modified polyethyleneimine, A molecular weight of 1400, urea 8M, pH 5, 7.5 or 11) was prepared.
  • a propylene oxide-modified polyethyleneimine having a number average molecular weight of 1400 PP-061 manufactured by Nippon Shokubai Co., Ltd. was used.
  • Example 17 Effect of urea concentration when using modified polyethyleneimine Preparation method of clarification reagent Except for pH and urea concentration, a clarification reagent (20 w / v% propylene oxide-modified polyethyleneimine, molecular weight 1400, urea 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5 or 8 M, pH 10) was prepared.
  • a propylene oxide-modified polyethyleneimine having a number average molecular weight of 1400 PP-061 manufactured by Nippon Shokubai Co., Ltd. was used.
  • the kidney and liver were removed from a mouse sacrificed by anesthesia with an excessive amount of clearing of the kidney and liver, and the tissue was fixed by immersion in 4% paraformaldehyde. Subsequently, it was immersed in a clearing reagent, and bright field images were obtained after 1 day and 3 days. The results are shown in FIG. Transparency increases with increasing urea concentration, but no significant difference was seen above 6 M.
  • Example 18 Visualization of spatial distribution of doxorubicin hydrochloride in the liver
  • a clearing reagent (20 w / v% propylene oxide-modified polyethyleneimine, molecular weight 1400, urea 8M, pH 5.5) was prepared in the same manner as in Example 16 except for pH.
  • Liver- cleared doxorubicin hydrochloride (20 mg / kg) was intravenously administered to mice, and the liver was fixed by perfusion of PBS followed by 4% paraformaldehyde under anesthesia.
  • a reagent capable of clearing a biological material with good transparency while retaining a lipid membrane in a short period of time and a simple procedure, and a reagent capable of adjusting pH to a specific range are provided. Moreover, according to this invention, the transparency method of the biological material using the said reagent is provided. Furthermore, according to the present invention, a kit for clarifying a biological material containing the reagent is provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

The present invention provides: a reagent for enhancing transparency with which it is possible, in a short time and with a simple procedure, to enhance the transparency of a biologically derived material to an excellent degree of transparency while a lipid membrane is held, and to adjust pH within a specific range; a method for enhancing the transparency of a biologically derived material using said reagent; and a kit for enhancing the transparency of a biologically derived material, said kit including said reagent.

Description

生体由来材料の透明化用試薬Reagents for clearing biological materials
 本発明は、生体由来材料の透明化用試薬、当該試薬を用いる生体由来材料の透明化方法、および当該試薬を含む生体由来材料の透明化用キットに関する。 The present invention relates to a biological material-clearing reagent, a biological material-clearing method using the reagent, and a biological material-clearing kit containing the reagent.
 ドラッグデリバリーシステムや遺伝子治療法の開発において、導入したキャリアや遺伝子の体内動態、細胞内動態を評価することは、これらの有効性や安全性を担保するうえで重要である。キャリアや遺伝子を導入後、固定した組織を薄切して顕微鏡で観察することにより、組織における分布の評価が可能であるが、得られるのは平面的な情報である。近年では、キャリアや遺伝子を導入後、組織を透明化して顕微鏡で観察することにより、立体的な情報が得られ、組織における空間分布の評価が可能となっている。 In developing drug delivery systems and gene therapy methods, it is important to evaluate the pharmacokinetics and intracellular kinetics of the introduced carriers and genes in order to ensure their effectiveness and safety. After introducing a carrier or gene, the fixed tissue can be sliced and observed with a microscope to evaluate the distribution in the tissue. However, it is possible to obtain planar information. In recent years, after introducing a carrier or a gene, the tissue is made transparent and observed with a microscope, so that three-dimensional information can be obtained and the spatial distribution in the tissue can be evaluated.
 組織の透明化は、電気泳動法や試薬を用いる方法により行われる。電気泳動法は、透明化効率は高いが、特殊な装置が必要であり手順が煩雑であるなどの欠点がある。また、脂質が除かれるため、膜の染色や電気泳動中に小分子が除かれるという問題もある。試薬を用いる方法は、試薬を組織に浸潤させることにより透明化するため、特殊な装置を必要とせず、手順が簡易である。組織透明化用の試薬がいくつか開発されており、ホルムアミドを含む試薬(非特許文献1)、フルクトースを含む試薬(非特許文献2)、尿素または尿素誘導体と、さらに界面活性剤およびグリセロールとを含む試薬(特許文献1)などが報告されている。また、透明化の方法として、尿素または尿素誘導体を所定の濃度で含む溶液を生物材料中に浸潤する工程(第一浸潤工程)、および第一浸潤工程で用いた溶液より高濃度で尿素または尿素誘導体を含む溶液を生物材料中に浸潤する工程(第二浸潤工程)といった方法が報告されている(特許文献2)。 The tissue is made transparent by electrophoresis or a method using a reagent. The electrophoresis method has high transparency efficiency, but has a drawback that a special apparatus is required and the procedure is complicated. Another problem is that small molecules are removed during membrane staining and electrophoresis because lipids are removed. The method using a reagent is transparent by infiltrating the tissue with the reagent, so that a special apparatus is not required and the procedure is simple. Several reagents for tissue clearing have been developed. Reagents containing formamide (Non-patent Document 1), reagents containing fructose (Non-patent Document 2), urea or urea derivatives, and surfactants and glycerol Reagents (Patent Document 1) and the like have been reported. In addition, as a method of clarifying, urea or urea at a concentration higher than the solution used in the step of infiltrating the biological material with a solution containing urea or a urea derivative at a predetermined concentration (first infiltration step) and the first infiltration step A method of infiltrating a solution containing a derivative into a biological material (second infiltration step) has been reported (Patent Document 2).
 さらに、尿素、アミノアルコールおよび界面活性剤を含む透明化試薬を用いてマウスの脳、心臓、肺、腎臓、肝臓、膵臓、脾臓などやマウスの全身を透明化、イメージングして三次元データとして取得し、サンプル間で定量的に比較するための基盤技術が報告されている(非特許文献3および4)。 In addition, the brain, heart, lung, kidney, liver, pancreas, spleen, etc. of the mouse and the whole body of the mouse are cleared and imaged as 3D data using a clearing reagent containing urea, amino alcohol and surfactant. However, basic technologies for quantitative comparison between samples have been reported (Non-patent Documents 3 and 4).
WO2011/111876WO2011 / 111876 WO2012/147965WO2012 / 147965
 従来の試薬を用いて組織を透明化する場合、試薬を組織に数日から数週間浸潤させ、途中で異なる組成の試薬に交換するため、時間がかかり、手順が煩雑である。また、界面活性剤を含む透明化試薬を用いて組織を透明化する場合、透明度は高いが、界面活性剤によって脂質膜が変性し、または除去される。一方、界面活性剤を含まない試薬を用いる場合、脂質膜は保持されるが、透明度が低く、より深部の組織の情報が得られない。さらに、pHの調整が可能な試薬は報告されていない。 When a tissue is made transparent using a conventional reagent, it takes time and the procedure is complicated because the reagent is infiltrated into the tissue for several days to several weeks and replaced with a reagent having a different composition in the middle. Further, when a tissue is clarified using a clarification reagent containing a surfactant, the transparency is high, but the lipid membrane is denatured or removed by the surfactant. On the other hand, when a reagent that does not contain a surfactant is used, the lipid membrane is retained, but the transparency is low and information on deeper tissues cannot be obtained. Furthermore, no reagent capable of adjusting the pH has been reported.
 したがって、本発明は、従来の組織透明化用試薬に付随する上述の問題点を少なくとも部分的に解決できる新規の生体由来材料の透明化用試薬、当該試薬を用いる生体由来材料の組織透明化方法、および当該試薬を含む生体由来材料の透明化用キットなどを提供することを課題とする。 Therefore, the present invention provides a novel biological material-clearing reagent capable of at least partially solving the above-mentioned problems associated with conventional tissue-clearing reagents, and a method for clearing tissue of biological materials using the reagent And a kit for clarifying a biological material containing the reagent, and the like.
 本発明者らは、上記課題を解決するために鋭意検討したところ、ポリエチレンイミンに組織を透明化する作用があることを初めて見出した。組織透明化のためにポリエチレンイミンを用いることにより、短期間かつ簡易な手順で透明化が可能であること、脂質膜を保持したまま良好な透明度を実現できること、また、試薬のpHを特定の範囲に調整できることを本発明者らは見出した。本発明者らは、これらの発見に基づいてさらに検討を進め、本発明を完成するに至った。 The inventors of the present invention have made extensive studies to solve the above-mentioned problems, and have found for the first time that polyethyleneimine has an effect of making the tissue transparent. By using polyethyleneimine for tissue transparency, transparency can be achieved in a short period of time with simple procedures, good transparency can be achieved while retaining the lipid membrane, and the pH of the reagent is within a specific range. The present inventors have found that it can be adjusted to The present inventors have further studied based on these findings and have completed the present invention.
 本発明は即ち、以下を提供する。
[1]ポリエチレンイミンを含む、生体由来材料の透明化用試薬。
[2]ポリエチレンイミンが、変性ポリエチレンイミンを含む、[1]に記載の試薬。
[3]変性ポリエチレンイミンが、プロピレンオキサイド変性ポリエチレンイミン、オクタデシルイソシアネート変性ポリエチレンイミンおよびエチレンオキサイド変性ポリエチレンイミンからなる群から選択される少なくとも1種である、[2]に記載の試薬。
[4]ポリエチレンイミンの数平均分子量が300~70,000である、[1]~[3]のいずれかに記載の試薬。
[5]ポリエチレンイミンの数平均分子量が400~25,000である、[1]~[3]のいずれかに記載の試薬。
[6]界面活性剤を実質的に含まない、[1]~[5]のいずれかに記載の試薬。
[7]さらに尿素、ホルムアミド、ラクトアミド、およびこれらの誘導体からなる群から選択される少なくとも1種の化合物を含む、[1]~[6]のいずれかに記載の試薬。
[8]さらにグリセリン、ポリエチレングリコールおよびプロピレングリコールからなる群から選択される少なくとも1種の化合物を含む、[1]~[7]のいずれかに記載の試薬。
[9]pHが4~12である、[1]~[8]のいずれかに記載の試薬。
[10]pHが7~11である、[1]~[8]のいずれかに記載の試薬。
[11]生体由来材料が、植物または動物由来の材料である、[1]~[10]のいずれかに記載の試薬。
[12]動物由来の材料が、脳、心臓、肝臓、腎臓、脾臓、肺、胃、小腸、大腸および筋肉からなる群から選択される少なくとも1種の器官に由来する、[11]に記載の試薬。
[13]動物由来の材料が皮膚に由来する、[11]に記載の試薬。
[14][1]~[13]のいずれかに記載の試薬を生体由来材料に浸潤させる工程を含む、生体由来材料の透明化方法。
[15]前記の浸潤させる工程が1回のみ行われる、[14]に記載の方法。
[16]前記の浸潤させる工程が1時間~7日間行われる、[14]または[15]に記載の方法。
[17][1]~[13]のいずれかに記載の試薬を含む、生体由来材料の透明化用キット。
The present invention provides the following.
[1] A reagent for clarifying a biological material, comprising polyethyleneimine.
[2] The reagent according to [1], wherein the polyethyleneimine contains a modified polyethyleneimine.
[3] The reagent according to [2], wherein the modified polyethyleneimine is at least one selected from the group consisting of propylene oxide modified polyethyleneimine, octadecyl isocyanate modified polyethyleneimine, and ethylene oxide modified polyethyleneimine.
[4] The reagent according to any one of [1] to [3], wherein the polyethyleneimine has a number average molecular weight of 300 to 70,000.
[5] The reagent according to any one of [1] to [3], wherein the polyethyleneimine has a number average molecular weight of 400 to 25,000.
[6] The reagent according to any one of [1] to [5], which does not substantially contain a surfactant.
[7] The reagent according to any one of [1] to [6], further comprising at least one compound selected from the group consisting of urea, formamide, lactamide, and derivatives thereof.
[8] The reagent according to any one of [1] to [7], further comprising at least one compound selected from the group consisting of glycerin, polyethylene glycol and propylene glycol.
[9] The reagent according to any one of [1] to [8], wherein the pH is 4 to 12.
[10] The reagent according to any one of [1] to [8], which has a pH of 7 to 11.
[11] The reagent according to any one of [1] to [10], wherein the biological material is a plant or animal-derived material.
[12] The animal-derived material is derived from at least one organ selected from the group consisting of brain, heart, liver, kidney, spleen, lung, stomach, small intestine, large intestine and muscle. reagent.
[13] The reagent according to [11], wherein the animal-derived material is derived from skin.
[14] A method for clarifying a biological material, comprising the step of infiltrating the biological material with the reagent according to any one of [1] to [13].
[15] The method according to [14], wherein the infiltration step is performed only once.
[16] The method according to [14] or [15], wherein the infiltration step is performed for 1 hour to 7 days.
[17] A kit for clarifying a biological material, comprising the reagent according to any one of [1] to [13].
 本発明によれば、短期間かつ簡易な手順で、脂質膜を保持したまま良好な透明度にて生体由来材料を透明化し得る試薬、また、特定の範囲にpHを調整し得る試薬が提供される。また、本発明によれば、当該試薬を用いる生体由来材料の透明化方法が提供される。さらに、本発明によれば、当該試薬を含む生体由来材料の透明化用キットが提供される。 According to the present invention, a reagent capable of clearing a biological material with good transparency while retaining a lipid membrane in a short period of time and a simple procedure, and a reagent capable of adjusting pH to a specific range are provided. . Moreover, according to this invention, the transparency method of the biological material using the said reagent is provided. Furthermore, according to the present invention, a kit for clarifying a biological material containing the reagent is provided.
図1は、実施例1において透明化したマウスの肝臓および腎臓の明視野像である。FIG. 1 is a bright-field image of the liver and kidney of a mouse made transparent in Example 1. 図2は、実施例2において透明化したマウスの肝臓および腎臓の明視野像である。FIG. 2 is a bright-field image of the liver and kidney of the mouse clarified in Example 2. 図3は、実施例3において透明化したマウスの各組織の明視野像である。FIG. 3 is a bright field image of each tissue of the mouse made transparent in Example 3. 図4は、実施例4において透明化したマウスの肝臓および腎臓の明視野像である。FIG. 4 is a bright-field image of the liver and kidney of the mouse clarified in Example 4. 図5は、実施例5において透明化したホウレンソウの葉および茎の明視野像である。上段は葉、下段は茎である。FIG. 5 is a bright-field image of spinach leaves and stems clarified in Example 5. The upper row is leaves and the lower row is stems. 図6は、実施例6において透明化したマウスの腎臓の血管と遺伝子発現を示した図である。FIG. 6 shows the blood vessels and gene expression of the mouse kidneys clarified in Example 6. 図7は、実施例7において透明化したマウスの脳の血管および実質を示した図である。FIG. 7 is a view showing blood vessels and parenchyma of the mouse brain cleared in Example 7. FIG. 図8は、実施例8において透明化したマウスの肝臓における遺伝子発現と酸化ストレスの発生を示した図である。FIG. 8 is a diagram showing gene expression and generation of oxidative stress in the mouse liver cleared in Example 8. 図9は、実施例9において本発明の透明化用試薬およびScale A2によるリポソーム膜の保持性をFRET効率により評価した図である。FIG. 9 is a graph showing the evaluation of the retention of the liposome membrane by the clearing reagent of the present invention and Scale A2 according to the FRET efficiency in Example 9. 図10は、実施例10において透明化したマウスの肝臓および腎臓の明視野像である。各試薬の結果において、上段は腎臓、下段は肝臓である。FIG. 10 is a bright-field image of the liver and kidney of the mouse clarified in Example 10. In the results of each reagent, the upper row is the kidney and the lower row is the liver. 図11は、実施例11において透明化したマウスの肝臓の明視野像である。FIG. 11 is a bright field image of the liver of a mouse made transparent in Example 11. 図12は、実施例12において各種の透明化用試薬を用いて透明化したマウスの腎臓の明視野像、およびガラス面からの各深さの血管を示した図である。FIG. 12 is a view showing a bright-field image of a mouse kidney and various blood vessels from the glass surface, which were made transparent using various clarification reagents in Example 12. 図13は、実施例13において透明化したマウスの肝臓の明視野像である。FIG. 13 is a bright-field image of the liver of a mouse made transparent in Example 13. 図14は、実施例14において透明化したマウスの肝臓および腎臓の明視野像である。FIG. 14 is a bright-field image of the liver and kidney of the mouse clarified in Example 14. 図15は、実施例15において透明化したマウスの肝臓および腎臓の明視野像である。FIG. 15 is a bright-field image of the liver and kidney of the mouse clarified in Example 15. 図16は、実施例16において透明化したマウスの各組織の明視野像である。FIG. 16 is a bright field image of each tissue of the mouse made transparent in Example 16. 図17は、実施例17において透明化したマウスの肝臓および腎臓の明視野像である。FIG. 17 is a bright-field image of the liver and kidney of the mouse clarified in Example 17. 図18は、実施例18において透明化したマウスの肝臓におけるドキソルビシン塩酸塩の空間分布を示した図である。FIG. 18 is a diagram showing the spatial distribution of doxorubicin hydrochloride in the liver of a mouse clarified in Example 18.
1.生体由来材料の透明化用試薬
 本発明は、生体由来材料の透明化用試薬(以下、本発明の試薬ともいう)を提供する。本発明の試薬は、ポリエチレンイミンを含むことを特徴とする。ポリエチレンイミンが生体由来材料を透明化するメカニズムは明らかではないが、ポリエチレンイミンによる脱水作用によるためと推察される。
1. Reagent for clearing biological material The present invention provides a reagent for transparentizing biological material (hereinafter also referred to as the reagent of the present invention). The reagent of the present invention is characterized by containing polyethyleneimine. The mechanism by which polyethyleneimine makes the biological material transparent is not clear, but is presumably due to the dehydrating action of polyethyleneimine.
 本発明の試薬に用いられるポリエチレンイミンは、エチレンイミンを重合したポリマーであり、直鎖型または分岐型のいずれであってもよい。直鎖型のポリエチレンイミンは、第2級アミンおよび末端に1つの第1級アミンを含み、線状の構造を有する。分岐型のポリエチレンイミンとしては、例えば、第1、第2および第3級アミンを含む分岐構造を有するポリエチレンイミンや、完全に分岐したデンドリマーなどが挙げられる。 The polyethyleneimine used in the reagent of the present invention is a polymer obtained by polymerizing ethyleneimine, and may be either linear or branched. The linear polyethyleneimine contains a secondary amine and one primary amine at the end, and has a linear structure. Examples of the branched type polyethyleneimine include polyethyleneimine having a branched structure containing primary, secondary and tertiary amines, and a completely branched dendrimer.
 ポリエチレンイミンの数平均分子量は、特に限定されないが、生体由来材料の透明度を高くするという観点から、例えば、下限は300以上、400以上、生体由来材料の変形を防ぐという観点から、例えば、下限は300以上、600以上、1400以上、1800以上が挙げられ、上限は70,000以下、25,000以下が挙げられる。ポリエチレンイミンの数平均分子量の範囲は、例えば、300~70,000、400~25,000、500~12,000、600~10,000、例えば、10,000が挙げられる。あるいは、数平均分子量の範囲は、例えば、1400~70,000、1800~70,000であってもよい。数平均分子量としては、沸点上昇法により測定した分子量を用いることができる。 The number average molecular weight of polyethyleneimine is not particularly limited, but from the viewpoint of increasing the transparency of the biological material, for example, the lower limit is 300 or more, 400 or more, from the viewpoint of preventing deformation of the biological material, for example, the lower limit is 300 or more, 600 or more, 1400 or more, 1800 or more are mentioned, and the upper limit is 70,000 or less, 25,000 or less. Examples of the range of the number average molecular weight of polyethyleneimine include 300 to 70,000, 400 to 25,000, 500 to 12,000, and 600 to 10,000, for example, 10,000. Alternatively, the range of the number average molecular weight may be, for example, 1400 to 70,000, 1800 to 70,000. As the number average molecular weight, a molecular weight measured by a boiling point raising method can be used.
 ポリエチレンイミンは、変性されたポリエチレンイミンであってもよい。変性ポリエチレンイミンとしては、例えば、ポリエチレンイミンとイソシアネート化合物、エポキシ化合物、アクリル化合物、ハロゲン化合物、イソチオシアネート化合物またはNHS(N-Hydroxysuccinimide)エステルなどとの誘導体が挙げられる。イソシアネート化合物としては、例えば、アルキルイソシアネートなどが挙げられ、アルキルイソシアネートとしては、例えば、テトラデシルイソシアネート、ペンタデシルイソシアネート、ヘキサデシルイソシアネート、ヘプタデシルイソシアネート、オクタデシルイソシアネート、ノナデシルイソシアネートなどが挙げられる。エポキシ化合物としては、例えば、アルキレンオキサイドなどが挙げられ、アルキレンオキサイドとしては、例えば、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなどが挙げられる。アクリル化合物としては、例えば、アクリルニトリルなどが挙げられる。ハロゲン化合物としては、例えば、アルキルハライドなどが挙げられる。イソチオシアネート化合物としては、例えば、ピリジンイソチオシアネート、ヨードフェニルイソチオシアネート、エトキシフェニルイソチオシアネート、クロロエチルイソチオシアネートなどが挙げられる。NHS(N-Hydroxysuccinimide)エステルとしては、メチルポリエチレングリコール-NHSなどが挙げられる。変性ポリエチレンイミンとしては、より具体的には、例えば、ポリエチレンイミンにオクタデシルイソシアネートを付加したオクタデシルイソシアネート変性ポリエチレンイミン、ポリエチレンイミンにエチレンオキサイドを付加したエチレンオキサイド変性ポリエチレンイミン、ポリエチレンイミンにプロピレンオキサイドを付加したプロピレンオキサイド変性ポリエチレンイミンなどが挙げられる。 The polyethyleneimine may be a modified polyethyleneimine. Examples of the modified polyethyleneimine include derivatives of polyethyleneimine and isocyanate compounds, epoxy compounds, acrylic compounds, halogen compounds, isothiocyanate compounds, NHS (N-Hydroxysuccinimide) esters, and the like. Examples of the isocyanate compound include alkyl isocyanate, and examples of the alkyl isocyanate include tetradecyl isocyanate, pentadecyl isocyanate, hexadecyl isocyanate, heptadecyl isocyanate, octadecyl isocyanate, and nonadecyl isocyanate. Examples of the epoxy compound include alkylene oxide, and examples of the alkylene oxide include ethylene oxide, propylene oxide, butylene oxide, and the like. Examples of the acrylic compound include acrylonitrile. Examples of the halogen compound include alkyl halides. Examples of the isothiocyanate compound include pyridine isothiocyanate, iodophenyl isothiocyanate, ethoxyphenyl isothiocyanate, and chloroethyl isothiocyanate. Examples of NHS (N-Hydroxysuccinimide) ester include methyl polyethylene glycol-NHS. More specifically, as modified polyethyleneimine, for example, octadecyl isocyanate modified polyethyleneimine obtained by adding octadecyl isocyanate to polyethyleneimine, ethylene oxide modified polyethyleneimine obtained by adding ethylene oxide to polyethyleneimine, and propylene oxide added to polyethyleneimine Examples include propylene oxide-modified polyethyleneimine.
 ポリエチレンイミンは、1種を単独で用いてもよく、2種以上を併用して用いてもよい。一般に、ポリエチレンイミンの分子量が高いほど、透明度は高いが、組織の収縮が起こる傾向があるので、高分子量のポリエチレンイミンと低分子量のポリエチレンイミンを組み合わせることも有効であり得る。この場合、例えば、分子量400~2,000のポリエチレンイミンと分子量5,000~25,000のポリエチレンイミンを1:1~4:1の比で用いた組み合わせ、分子量600のポリエチレンイミンと分子量10,000のポリエチレンイミンを1:1~4:1の比で用いた組み合わせなどが挙げられる。 Polyethyleneimine may be used alone or in combination of two or more. In general, the higher the molecular weight of polyethyleneimine, the higher the transparency, but there is a tendency for tissue shrinkage to occur, so it may be effective to combine a high molecular weight polyethyleneimine with a low molecular weight polyethyleneimine. In this case, for example, a combination of polyethyleneimine having a molecular weight of 400 to 2,000 and polyethyleneimine having a molecular weight of 5,000 to 25,000 is used at a ratio of 1: 1 to 4: 1, and polyethyleneimine having a molecular weight of 600 and polyethyleneimine having a molecular weight of 10,000 is 1: 1. Examples include combinations used in a ratio of ~ 4: 1.
 試薬中のポリエチレンイミンの含有量は、特に限定されず、通常10~30 w/v %、15~25 w/v %の範囲が挙げられ、例えば、20 w/v %が挙げられる。 The content of polyethyleneimine in the reagent is not particularly limited, and usually ranges from 10 to 30% w / v%, 15 to 25% w / v%, for example, 20% w / v%.
 ポリエチレンイミンは自体公知の方法により製造することができ、あるいは市販のポリエチレンイミンを用いてもよい。市販のポリエチレンイミンとしては、例えば、和光純薬社製、163-17835、166-17825、169-17815、および株式会社日本触媒製、エポミン(登録商標)SP-003、SP-006、SP-012、SP-018、SP-200、P-1000などが挙げられる。また、変性ポリエチレンイミンも市販されており、例えば、株式会社日本触媒製、エポミン(登録商標)RP-20、PP-061などが挙げられる。 Polyethyleneimine can be produced by a method known per se, or a commercially available polyethyleneimine may be used. Examples of commercially available polyethyleneimines include, for example, Wako Pure Chemical Industries, 163-17835, 166-17825, 169-17815, and Nippon Shokubai Co., Ltd., Epomin (registered trademark) SP-003, SP-006, SP-012. , SP-018, SP-200, P-1000, etc. Modified polyethyleneimines are also commercially available, and examples thereof include Nippon Shokubai Co., Ltd., Epomin (registered trademark) RP-20, PP-061 and the like.
 本発明の試薬は、さらに尿素、ホルムアミド、ラクトアミド、および/またはこれらの誘導体、好ましくは尿素またはホルムアミド、ラクトアミド、より好ましくは尿素を含んでもよいし、あるいはこれらを含まなくてもよい。これらのアミド化合物を含むことにより、より早く、かつより高い透明度での透明化を可能とし得る。アミド化合物を含むことによる迅速で高い透明度での透明化のメカニズムは明らかではないが、アミド化合物により生体由来材料の屈折率が均一化されるためと推察される。 The reagent of the present invention may further contain urea, formamide, lactamide, and / or a derivative thereof, preferably urea or formamide, lactamide, more preferably urea, or may not contain these. By including these amide compounds, it is possible to make clearing faster and with higher transparency. The mechanism of rapid and high transparency due to the inclusion of the amide compound is not clear, but it is presumed that the refractive index of the biological material is made uniform by the amide compound.
 誘導体としては、尿素の化学式中の4つの水素原子のうちの1つ、2つ、3つ、もしくは4つ、ホルムアミドの化学式中の3つの水素原子のうちの1つ、2つ、もしくは3つ、またはラクトアミドの化学式中の6つの水素原子のうちの1つ、2つ、3つ、4つ、5つ、もしくは6つが、互いに独立に、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、または炭素数1~6、好ましくは炭素数1~3の炭化水素基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基など)に置換されたものが挙げられる。 Derivatives include one, two, three, or four of the four hydrogen atoms in the urea formula, one, two, or three of the three hydrogen atoms in the formamide formula. Or one, two, three, four, five or six of the six hydrogen atoms in the formula of lactamide, independently of one another, a halogen atom (eg a fluorine atom, a chlorine atom, a bromine atom) , Iodine atom, etc.), or a hydrocarbon group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms (for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group and the like).
 試薬中の上述したアミド化合物の濃度は、特に限定されないが、通常3~9Mの範囲が挙げられる。アミド化合物を2種以上用いる場合、合計の濃度を意味する。例えば、尿素を用いる場合、生体由来材料の膨潤を防ぐという観点から3M以上、4M以上、4.5M以上、5M以上、5.5M以上、6M以上が挙げられる。尿素の析出を防ぐという観点から9M以下、8M以下、7.5M以下、7M以下、6.5Mが挙げられる。よって、好ましい尿素の濃度として、例えば4~9M、より好ましくは4~8M、よりさらに好ましくは6~8M、特に好ましくは7~8Mの範囲が挙げられる。 The concentration of the above-mentioned amide compound in the reagent is not particularly limited, but usually ranges from 3 to 9M. When two or more amide compounds are used, the total concentration is meant. For example, when urea is used, 3M or more, 4M or more, 4.5M or more, 5M or more, 5.5M or more, 6M or more can be mentioned from the viewpoint of preventing the swelling of the biological material. From the viewpoint of preventing precipitation of urea, 9M or less, 8M or less, 7.5M or less, 7M or less, or 6.5M may be mentioned. Therefore, a preferable urea concentration is, for example, in the range of 4 to 9M, more preferably 4 to 8M, still more preferably 6 to 8M, and particularly preferably 7 to 8M.
 本発明の試薬は、さらに多価アルコールを含んでもよいし、あるいはこれらを含まなくてもよい。生体由来材料によっては多価アルコールを含むことにより、透明度をさらに高くすることができる。多価アルコールを含むことによる透明度の向上のメカニズムは明らかではないが、多価アルコールによる脱水作用のためと推察される。多価アルコールは、特に限定されず、例えば、2価アルコール、3価アルコールなどが挙げられる。2価アルコール、3価アルコールには、これらの重合体も含まれる。2価アルコールとしては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコールなど、3価アルコールとしては、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、ジグリセリン、ポリグリセリンなどが挙げられ、好ましくはプロピレングリコール、ポリエチレングリコール、グリセリンである。ポリエチレングリコールとしては、平均分子量が例えば200~20,000、好ましくは400~10,000、より好ましくは400~8,000のものを用いることができる。平均分子量としては、滴定法により測定した平均分子量を用いることができる。 The reagent of the present invention may further contain a polyhydric alcohol or may not contain these. Depending on the biological material, the transparency can be further increased by including a polyhydric alcohol. Although the mechanism for improving the transparency due to the inclusion of the polyhydric alcohol is not clear, it is presumed to be due to the dehydrating action of the polyhydric alcohol. The polyhydric alcohol is not particularly limited, and examples thereof include dihydric alcohols and trihydric alcohols. These polymers are also included in the dihydric alcohol and trihydric alcohol. Examples of the dihydric alcohol include ethylene glycol, propylene glycol, tetramethylene glycol, diethylene glycol, dipropylene glycol, and polyethylene glycol. Examples of the trivalent alcohol include glycerin, trimethylol ethane, trimethylol propane, diglycerin, and polyglycerin. Of these, propylene glycol, polyethylene glycol and glycerin are preferred. Polyethylene glycol having an average molecular weight of, for example, 200 to 20,000, preferably 400 to 10,000, more preferably 400 to 8,000 can be used. As the average molecular weight, an average molecular weight measured by a titration method can be used.
 本発明の試薬における溶媒は、ポリエチレンイミンおよび他の任意の成分が可溶であれば特に限定されず、例えば、水、緩衝液などが挙げられる。緩衝液としては、例えば、PBS緩衝液、HEPES緩衝液、Tris緩衝液などが挙げられる。 The solvent in the reagent of the present invention is not particularly limited as long as polyethyleneimine and other optional components are soluble, and examples thereof include water and a buffer solution. Examples of the buffer include PBS buffer, HEPES buffer, and Tris buffer.
 本発明の試薬は、pH調整剤、浸透圧調整剤などのさらなる成分を含んでいてもよい。 The reagent of the present invention may contain further components such as a pH adjusting agent and an osmotic pressure adjusting agent.
 本発明の試薬のpHは、特に限定されないが、生体由来材料の透明度を高くするという観点から、例えば、pH 4以上、pH 5以上、pH 5.5以上、pH 6以上、pH 7以上、pH 7.5以上が挙げられ、透明化した生体由来材料中の蛍光タンパク質を観察する場合に蛍光タンパク質の褪色を防ぐという観点から、例えば、pH 12以下、pH 11以下、pH 10以下が挙げられる。よって、pHの範囲としては、pH 4~12、pH 5~12、pH 5.5~12、pH 6~12、pH 7~12、pH 7.5~12、pH 8~12、pH 9~12、pH 4~11、pH 5~11、pH 5.5~11、pH 6~11、pH 7~11、pH 7.5~11、pH 8~11、pH 9~11が挙げられる。あるいは、pHの範囲としては、pH 5~10、pH 5.5~10、pH 6~10、pH 7~10、pH 7.5~10、pH 5~9、pH 5.5~9、pH 6~9、pH 7~9、pH 7.5~9であってもよい。 The pH of the reagent of the present invention is not particularly limited, but from the viewpoint of increasing the transparency of the biological material, for example, pH 以上 4 or more, pH 以上 5 or more, pH 5.5 or more, pH 6 or more, pH 7 or more, pH 7.5 or more From the viewpoint of preventing discoloration of the fluorescent protein when observing the fluorescent protein in the transparent biological material, for example, the pH is 12 or less, the pH is 11 or less, and the pH is 10 or less. Therefore, the pH ranges are 4 to 12, pH 5 to 12, pH 5.5 to 12, pH 6 to 12, pH 7 to 12, pH 7.5 to 12, pH 8 to 12, pH 9 to 12, pH 4 -11, pH 5-11, pH 5.5-11, pH 6-11, pH 7-11, pH 7.5-11, pH 8-11, pH 9-11. Alternatively, the pH ranges are pH 5 to 10, pH 5.5 to 10, pH 6 to 10, pH 7 to 10, pH 7.5 to 10, pH 5 to 9, pH 5.5 to 9, pH 6 to 9, pH 7 ˜9, pH 、 7.5˜9.
 pHの調整方法は、特に限定されず、例えば、ポリエチレンイミン水溶液にpH調整剤を適量添加することによって調整できる。pH調整剤としては、例えば、リン酸、クエン酸、塩酸、臭化水素酸、ヨウ化水素酸、ピロリン酸、硫酸、硝酸、酢酸、グリコール酸、ホウ酸、乳酸、ケイ酸、ホスホン酸、酒石酸、コハク酸、リンゴ酸、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、アンモニアなどが挙げられる。 The pH adjustment method is not particularly limited, and can be adjusted, for example, by adding an appropriate amount of a pH adjuster to the polyethyleneimine aqueous solution. Examples of pH adjusters include phosphoric acid, citric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, pyrophosphoric acid, sulfuric acid, nitric acid, acetic acid, glycolic acid, boric acid, lactic acid, silicic acid, phosphonic acid, and tartaric acid. Succinic acid, malic acid, sodium hydrogen carbonate, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, ammonia and the like.
 本発明の試薬は、界面活性剤を実質的に含まないものであってもよい。本明細書において、界面活性剤を実質的に含まないとは、界面活性剤を含まないか、含む場合でも0.1 w/v %未満であることを意味し、好ましくは0.05 w/v %未満、より好ましくは0.025 w/v %未満である。 The reagent of the present invention may be substantially free of surfactant. In the present specification, the term “substantially free of a surfactant” means that the surfactant is not included, or even when it is included, it is less than 0.1% w / v%, preferably less than 0.05% w / v%. More preferably, it is less than 0.025% w / v%.
 本発明の試薬の調製方法は、特に限定されず、例えば、ポリエチレンイミンを溶媒に溶解することにより調製できる。さらに、上述したような任意の成分を加えることができる。また、pH調整剤を添加して所望のpHに調整し、必要に応じて任意の成分を添加し、溶媒に溶解することにより調製することができる。 The method for preparing the reagent of the present invention is not particularly limited, and for example, it can be prepared by dissolving polyethyleneimine in a solvent. Furthermore, arbitrary components as described above can be added. Moreover, it can adjust by adding a pH adjuster, adjusting to desired pH, adding an arbitrary component as needed, and melt | dissolving in a solvent.
 本発明の試薬が透明化の対象とする生体由来材料は特に限定されないが、植物または動物由来の材料が好ましい。生体由来材料は、個体(植物または動物)自体であってもよいし、あるいは器官、組織、細胞であってもよい。動物の器官は特に限定されず、例えば、脳、心臓、肝臓、腎臓、膵臓、脾臓、肺、胃、小腸、大腸、皮膚、筋肉、脊髄、眼球、生殖腺、甲状腺、胆嚢、骨髄、副腎、消化管、胸腺、顎下腺、前立腺、睾丸、卵巣、胎盤、子宮などが挙げられ、好ましくは脳、心臓、肝臓、腎臓、脾臓、肺、胃、小腸、大腸、筋肉、皮膚などである。植物の器官は特に限定されず、例えば、葉、花弁、茎、根、種子などが挙げられる。動物および植物の器官は、器官自体であってもよいし、あるいは、器官のホモジネート、器官を薄切した切片であってもよい。 The bio-derived material targeted by the reagent of the present invention to be clarified is not particularly limited, but a plant or animal-derived material is preferable. The biological material may be an individual (plant or animal) itself, or may be an organ, tissue, or cell. Animal organs are not particularly limited, for example, brain, heart, liver, kidney, pancreas, spleen, lung, stomach, small intestine, large intestine, skin, muscle, spinal cord, eyeball, gonad, thyroid, gallbladder, bone marrow, adrenal gland, digestion Examples include ducts, thymus, submandibular gland, prostate, testis, ovary, placenta, uterus and the like, preferably brain, heart, liver, kidney, spleen, lung, stomach, small intestine, large intestine, muscle, skin and the like. Plant organs are not particularly limited, and examples include leaves, petals, stems, roots, and seeds. The organs of animals and plants may be organs themselves, or organ homogenates and sliced sections of organs.
 動物は特に限定されず、無脊椎動物および脊椎動物を包含するが、脊椎動物が好ましい。脊椎動物としては、例えば、魚類、両生類、爬虫類、鳥類、哺乳動物が挙げられ、好ましくは哺乳動物である。哺乳動物としては、例えば、げっ歯類(例えば、マウス、ラット、ハムスター、モルモットなど)、実験動物(例えば、ウサギなど)、家畜(例えば、ブタ、ウシ、ヤギ、ウマ、ヒツジなど)、ペット(例えば、イヌ、ネコなど)、霊長類(例えば、ヒト、サル、オランウータン、チンパンジーなど)などが挙げられる。 Animals are not particularly limited and include invertebrates and vertebrates, with vertebrates being preferred. Examples of vertebrates include fish, amphibians, reptiles, birds, and mammals, with mammals being preferred. Mammals include, for example, rodents (eg, mice, rats, hamsters, guinea pigs, etc.), laboratory animals (eg, rabbits, etc.), livestock (eg, pigs, cows, goats, horses, sheep, etc.), pets ( Examples thereof include dogs and cats), primates (eg, humans, monkeys, orangutans, chimpanzees, etc.).
 植物は特に限定されず、種子植物および胞子植物を包含する。種子植物としては、被子植物(例えば、双子葉植物、単子葉植物)および裸子植物が挙げられ、具体的には、例えば、ホウレンソウ、イチョウなどが挙げられる。胞子植物としては、例えば、ワラビなどが挙げられる。 Plants are not particularly limited and include seed plants and spore plants. Seed plants include angiosperms (for example, dicotyledonous plants and monocotyledonous plants) and gymnosperms, and specific examples include spinach and ginkgo biloba. Examples of spore plants include bracken.
 生体由来材料は、固定されていてもよいし、固定されていなくてもよい。また、生体由来材料は、蛍光タンパク質を発現させたものであってもよく、蛍光性化学物質、脂溶性カルボシアニン色素、または発色性化学物質などで染色したものであってもよい。 The biological material may be fixed or may not be fixed. In addition, the biological material may be a material expressing a fluorescent protein, or a material stained with a fluorescent chemical substance, a fat-soluble carbocyanine dye, or a coloring chemical substance.
 蛍光タンパク質としては、例えば、RFP、GFP、BFP、CFP、YFPなどが挙げられる。蛍光性化学物質としては、例えば、DAPI (4',6-diamidino-2-phenylindole)、フルオレセインなどが挙げられる。脂溶性カルボシアニン色素としては、例えば、DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate)、DiD (1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate)、DiO (3,3'-dioctadecyloxacarbo-cyanine perchlorate)、DiR (1,1'-dioctadecyltetramethyl indotricarbocyanine iodide)などが挙げられる。発色性化学物質としては、例えば、青色色素であるエバンスブルー、緑色色素であるインドシアニングリーン、赤色色素であるオイルレッドOなどや、発色性基質であるX-gal(5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside)、DAB(3,3'-diaminobenzidine)、BCIP(5-bromo-4-chloro-3-indolyl-phosphate)、NBT(Nitro Blue Tetrazolium Chloride)などが挙げられる。 Examples of fluorescent proteins include RFP, GFP, BFP, CFP, and YFP. Examples of the fluorescent chemical substance include DAPI® (4 ′, 6-diamidino-2-phenylindole), fluorescein and the like. Examples of the fat-soluble carbocyanine dye include DiI (1,1'-dioctadecyl-3,3,3 ', 3'-tetramethylindocarbocyanine perchlorate), DiD (1,1'-dioctadecyl-3,3,3', 3 '-tetramethylindodicarbocyanineocyanperchlorate), DiO (3,3'-dioctadecyloxacarbo-cyanine perchlorate), DiR (1,1'-dioctadecyltetramethyl indotricarbocyanine iodide). Examples of chromogenic chemical substances include Evans Blue, which is a blue pigment, Indocyanine Green, which is a green pigment, Oil Red O, which is a red pigment, and X-gal (5-bromo-4-chloro), which is a chromogenic substrate. -3-indolyl-β-D-galactopyranoside), DAB (3,3'-diaminobenzidine), BCIP (5-bromo-4-chloro-3-indolyl-phosphate), NBT (Nitro Blue Tetrazolium Chloride) .
2. 生体由来材料の透明化方法
 本発明はまた、生体由来材料の透明化方法を提供する(以下、本発明の方法ともいう)。本発明の方法は、本発明の試薬を生体由来材料に浸潤させる工程を含むことを特徴とする。
2. Method for clarifying biological material The present invention also provides a method for clarifying biological material (hereinafter also referred to as the method of the present invention). The method of the present invention comprises a step of infiltrating a biological material with the reagent of the present invention.
 本発明の試薬を生体由来材料に浸潤させる方法は、特に限定されず、例えば、当該材料を本発明の試薬に浸漬する方法が挙げられる。浸潤させる期間は、特に限定されないが、本発明の試薬を生体由来材料に十分に浸潤させるという観点から、少なくとも1時間以上が好ましい。当該期間は、例えば、1時間~7日間が好ましく、5時間~7日間がより好ましく、12時間~7日間がさらに好ましく、1日~3日間がよりさらに好ましい。例えば、腎臓および肝臓などの器官の場合、1時間~3日間、または1時間~1日間程度であっても良好な透明化を達成し得る。浸潤させる温度は、本発明の試薬が著しく変性しない限り特に限定されない。例えば、本発明の試薬が尿素を含む場合、尿素の析出を防ぐという観点から、例えば、25℃~45℃が好ましく、30℃~40℃がより好ましい。 The method for infiltrating the biological material with the reagent of the present invention is not particularly limited, and examples thereof include a method of immersing the material in the reagent of the present invention. The period of infiltration is not particularly limited, but is preferably at least 1 hour from the viewpoint of sufficiently infiltrating the biological material with the reagent of the present invention. The period is preferably, for example, 1 hour to 7 days, more preferably 5 hours to 7 days, still more preferably 12 hours to 7 days, and even more preferably 1 day to 3 days. For example, in the case of organs such as the kidney and liver, good transparency can be achieved even for 1 hour to 3 days, or even 1 hour to 1 day. The infiltration temperature is not particularly limited as long as the reagent of the present invention is not significantly denatured. For example, when the reagent of the present invention contains urea, from the viewpoint of preventing precipitation of urea, for example, 25 ° C. to 45 ° C. is preferable, and 30 ° C. to 40 ° C. is more preferable.
 上記の浸潤させる工程の回数は特に限定されないが、本発明の試薬では、濃度を変えた複数の試薬を用いて複数回の浸潤を行うことなく良好な透明度を実現し得るので、1回のみの浸潤とすることができる。 The number of steps of the infiltration is not particularly limited, but with the reagent of the present invention, good transparency can be achieved without performing multiple infiltrations using a plurality of reagents with different concentrations. Can be infiltration.
3. 生体由来材料の透明化用キット
 本発明はまた、生体由来材料の透明化用キットを提供する(以下、本発明のキットともいう)。本発明のキットは、本発明の試薬を含むことを特徴とする。本発明のキットは、さらに、組織固定液、洗浄用の緩衝液等を含んでいてもよい。
3. Kit for clarification of biological material The present invention also provides a kit for clarification of biological material (hereinafter also referred to as the kit of the present invention). The kit of the present invention includes the reagent of the present invention. The kit of the present invention may further contain a tissue fixing solution, a washing buffer solution, and the like.
4. 透明化した生体由来材料
 本発明の試薬または本発明の方法により透明化した生体由来材料は、蛍光性化学物質、脂溶性カルボシアニン色素、または発色性化学物質などで染色し、実体顕微鏡、共焦点レーザー顕微鏡や多光子励起顕微鏡などで観察することができる。また、組織のホモジネートを透明化処理し、蛍光度計、吸光度計などを用いて、蛍光性化学物質、脂溶性カルボシアニン色素、または発色性化学物質の組織中濃度を定量測定することができる。蛍光性化学物質、脂溶性カルボシアニン色素、および発色性化学物質としては、前記と同様のものが挙げられる。
4. Clear biological material The reagent of the present invention or the biological material transparentized by the method of the present invention is stained with a fluorescent chemical substance, a fat-soluble carbocyanine dye, or a chromogenic chemical substance, and a stereomicroscope, It can be observed with a confocal laser microscope or a multiphoton excitation microscope. Further, the tissue homogenate can be clarified, and the concentration of the fluorescent chemical substance, fat-soluble carbocyanine dye, or chromogenic chemical substance in the tissue can be quantitatively measured using a fluorometer, an absorptiometer, or the like. Examples of the fluorescent chemical substance, the fat-soluble carbocyanine dye, and the color-forming chemical substance include those described above.
 界面活性剤を実質的に含まない実施形態の本発明の試薬は、脂質膜を保持したまま生体由来材料を透明化し得るので、各種の蛍光プローブや、脂溶性カルボシアニン色素などを用いて膜を染色することができる。また、本発明の試薬は特定の範囲のpHに調整が可能であるため、各種の蛍光プローブに応じてpHを調整した試薬を用いることができる。 Since the reagent of the present invention of the embodiment which does not substantially contain a surfactant can make a biological material transparent while retaining the lipid membrane, the membrane can be formed using various fluorescent probes, fat-soluble carbocyanine dyes, and the like. Can be dyed. In addition, since the reagent of the present invention can be adjusted to a pH within a specific range, a reagent whose pH is adjusted according to various fluorescent probes can be used.
 透明化した生体由来材料は、薄切せずにそのまま実体顕微鏡、共焦点レーザー顕微鏡や多光子励起顕微鏡などで観察することができる。したがって、例えば、リポソーム製剤などのDDSの空間分布評価、遺伝子導入法における遺伝子発現の空間分布評価、蛍光タンパク質発現トランスジェニックマウスを用いた各種タンパク質の局在評価、脂溶性カルボシアニン色素を用いた血管や実質の可視化、細胞死の可視化、酸化ストレスの可視化などが可能である。遺伝子導入法における遺伝子発現の空間分布評価としては、例えば、蛍光タンパク質をコードする遺伝子を遺伝子導入法(例えば、ハイドロダイナミクス法、組織吸引圧法、バブルリポソームと超音波を用いた方法など)によって対象の動物に導入後、器官を摘出し、本発明の試薬で器官を透明化する方法、前記のように遺伝子導入後、脂溶性カルボシアニン色素(例えば、1,1'- dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)、1,1'-dioctadecyl-3,3,3',3'- tetramethylindodicarbocyanine perchlorate(DiD)、3,3'-dioctadecyloxacarbo-cyanine perchlorate(DiO)、1,1'-dioctadecyltetramethyl indotricarbocyanine iodide(DiR)など)を灌流して血管を染色後、器官を摘出し、本発明の試薬で器官を透明化する方法などが挙げられる。また、脂溶性カルボシアニン色素を用いた血管や実質の可視化の方法としては、対象の動物に対して脂溶性カルボシアニン色素を灌流して血管を染色後、器官を摘出し、本発明の試薬で器官を透明化する方法、脂溶性カルボシアニン色素に器官を浸漬して染色後、本発明の試薬で透明化する方法、前記のように血管を染色後、器官を摘出して脂溶性カルボシアニン色素に浸漬して染色し、本発明の試薬で透明化する方法などが挙げられる。さらに、酸化ストレスの可視化の方法としては、例えば、酸化ストレス可視化用試薬を投与した動物や市販の酸化ストレス可視化マウスを酸化ストレスにさらした後、器官を摘出し、本発明の試薬で透明化する方法などが挙げられる。さらに、マルチカラーディープイメージングによりこれらの複数イベントを同時に可視化することができる。 The transparent biological material can be directly observed with a stereo microscope, a confocal laser microscope, a multi-photon excitation microscope, or the like without slicing. Therefore, for example, evaluation of spatial distribution of DDS such as liposome preparations, evaluation of spatial distribution of gene expression in gene transfer methods, evaluation of localization of various proteins using fluorescent protein-expressing transgenic mice, blood vessels using lipid-soluble carbocyanine dyes And real visualization, cell death visualization, and oxidative stress visualization. As a spatial distribution evaluation of gene expression in the gene transfer method, for example, a gene encoding a fluorescent protein is targeted by gene transfer methods (for example, hydrodynamics method, tissue suction pressure method, method using bubble liposome and ultrasonic wave, etc.) After introduction into an animal, the organ is removed and the organ is clarified with the reagent of the present invention. After gene introduction as described above, a fat-soluble carbocyanine dye (for example, 1,1′- dioctadecyl-3,3,3 ', 3'-tetramethylindocarbocyanine perchlorate (DiI), 1,1'-dioctadecyl-3,3,3', 3'- tetramethylindodicarbocyanine perchlorate (DiD), 3,3'-dioctadecyloxacarbo-cyanine perchlorate (DiO), 1,1 Examples include a method of perfusing '-dioctadecyltetramethyl indotricarbocyanine diodide (DiR), etc.) to stain a blood vessel, and then removing the organ and clarifying the organ with the reagent of the present invention. In addition, as a method for visualizing blood vessels and parenchyma using a fat-soluble carbocyanine dye, the target animal is perfused with a fat-soluble carbocyanine dye, the blood vessel is stained, the organ is removed, and the reagent of the present invention is used. A method of clearing the organ, a method of immersing the organ in a fat-soluble carbocyanine dye and staining it, and then clarifying with the reagent of the present invention. After staining a blood vessel as described above, the organ is excised and a fat-soluble carbocyanine dye And the like, and a method of clarification with the reagent of the present invention. Furthermore, as a method for visualizing oxidative stress, for example, after exposing an animal to which an oxidative stress visualization reagent or a commercially available oxidative stress visualizing mouse is exposed to oxidative stress, the organ is removed and clarified with the reagent of the present invention. The method etc. are mentioned. Furthermore, these multiple events can be visualized simultaneously by multi-color deep imaging.
 また、透明化した生体由来材料は、一度透明化試薬を洗浄したのち、薄切して、実体顕微鏡、共焦点レーザー顕微鏡や多光子励起顕微鏡などで観察することができる。例えば、透明化した肝臓を洗浄後、薄切し、得られた切片を抗チューブリン抗体および蛍光標識二次抗体で染色することにより、共焦点レーザー顕微鏡を用いて微小管を観察することができる。 Also, the cleared biological material can be observed with a stereomicroscope, a confocal laser microscope, a multiphoton excitation microscope, etc. after the clearing reagent is washed once and then sliced. For example, microtubules can be observed with a confocal laser microscope by washing the clarified liver, slicing it, and staining the obtained sections with an anti-tubulin antibody and a fluorescently labeled secondary antibody. .
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例などにより限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
実施例1:ポリエチレンイミンによる肝臓および腎臓の透明化
ポリエチレンイミン水溶液の調製方法
 少量の水で溶解したポリエチレンイミン(数平均分子量600:10,000=1:1)のpHを5M塩酸でpH 11に調整後、さらに水を加え、20 w/v % ポリエチレンイミン水溶液を調製した。数平均分子量600のポリエチレンイミンは和光純薬社製、163-17835、数平均分子量10,000のポリエチレンイミンは和光純薬社製、166-17825を用いた。
肝臓および腎臓の透明化
 麻酔下のマウスに対し、経心臓的に脂溶性カルボシアニン色素1,1'- dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)を灌流した。続いて4%パラホルムアルデヒドを灌流することで組織を固定した。肝臓および腎臓を摘出し、ポリエチレンイミン水溶液に浸漬し、1日後および3日後に明視野像を取得した。結果を図1に示す。肝臓および腎臓はいずれも、ポリエチレンイミン水溶液により、1日間の浸漬で3日間の浸漬と同程度に透明化した。
Example 1: Clarification of liver and kidney with polyethyleneimine
Preparation method of polyethyleneimine aqueous solution Adjust the pH of polyethyleneimine (number average molecular weight 600: 10,000 = 1: 1) dissolved in a small amount of water to pH 11 with 5M hydrochloric acid, add water, and add 20 w / v% polyethyleneimine An aqueous solution was prepared. Polyethyleneimine having a number average molecular weight of 600 was manufactured by Wako Pure Chemical Industries, 163-17835, and polyethyleneimine having a number average molecular weight of 10,000 was manufactured by Wako Pure Chemical Industries, 166-17825.
The mice under clear anesthesia of the liver and kidney were perfused with the fat-soluble carbocyanine dye 1,1'-dioctadecyl-3,3,3 ', 3'-tetramethylindocarbocyanine perchlorate (DiI) transcardially. The tissue was then fixed by perfusing 4% paraformaldehyde. The liver and kidney were removed and immersed in a polyethyleneimine aqueous solution, and bright field images were obtained after 1 day and 3 days. The results are shown in FIG. Both the liver and kidney were clarified with a polyethyleneimine aqueous solution to the same extent as the 3-day immersion after 1-day immersion.
実施例2:尿素による肝臓および腎臓の透明化の促進
透明化用試薬の調製方法
 実施例1のポリエチレンイミン水溶液を調製する際、尿素を添加して、20 w/v % ポリエチレンイミン、8M 尿素の水溶液を調製した。また、ポリエチレンイミン(数平均分子量600)またはポリエチレンイミン(数平均分子量10,000)を用いた点およびpH 9に調整した点を除き、前記と同様の方法により、20 w/v % ポリエチレンイミン、8M 尿素の水溶液を調製した。尿素は和光純薬社製、210-01185を用いた。
肝臓および腎臓の透明化
 麻酔下のマウスに対して4%パラホルムアルデヒドを灌流し、組織を固定した。肝臓および腎臓を摘出し、透明化用試薬に浸漬し、1日後に明視野像を取得した。結果を図2に示す。いずれの透明化用試薬も1日間の浸漬で、肝臓および腎臓を高い透明度で透明化した。数平均分子量が10,000のポリエチレンイミンを用いた場合、最も透明度が高かった。また、数平均分子量が600のポリエチレンイミンを用いた場合、組織は収縮しなかった。数平均分子量600:10,000=1:1のポリエチレンイミンを用いた場合、組織は収縮せず、尿素を含まない透明化用試薬を用いた場合(図1)よりも透明化が促進された。
Example 2: Facilitation of liver and kidney transparency with urea
Preparation Method of Clarifying Reagent When preparing the polyethyleneimine aqueous solution of Example 1, urea was added to prepare an aqueous solution of 20 w / v% polyethyleneimine and 8M urea. In addition, 20 w / v% polyethyleneimine, 8M urea was obtained in the same manner as described above except that polyethyleneimine (number average molecular weight 600) or polyethyleneimine (number average molecular weight 10,000) was used and pH 9 was adjusted. An aqueous solution of was prepared. As urea, 210-01185 manufactured by Wako Pure Chemical Industries, Ltd. was used.
Mice under clear anesthesia of the liver and kidney were perfused with 4% paraformaldehyde and the tissue was fixed. The liver and kidney were removed and immersed in a clearing reagent, and a bright field image was obtained after 1 day. The results are shown in FIG. Each of the clarification reagents clarified the liver and kidney with high transparency by immersion for 1 day. When polyethyleneimine having a number average molecular weight of 10,000 was used, the transparency was highest. In addition, when polyethyleneimine having a number average molecular weight of 600 was used, the tissue did not shrink. When polyethyleneimine having a number average molecular weight of 600: 10,000 = 1: 1 was used, the tissue was not shrunk and clearing was promoted more than when a clearing reagent containing no urea was used (FIG. 1).
実施例3:透明化用試薬による各組織の透明化
 pH以外、実施例2と同様の方法により、透明化用試薬(20 w/v % ポリエチレンイミン、分子量600:10,000=濃度比1:1、尿素8M、pH 11)を調製した。
 実施例1と同様の方法により、麻酔下のマウスに対してDiIを灌流し、組織を固定した。脳、肝臓、腎臓、肺、心臓、脾臓、胃、小腸、大腸および筋肉を摘出し、透明化用試薬に浸漬し、1日後および3日後に各組織の明視野像を取得した。結果を図3に示す。いずれの組織も透明化用試薬によって高い透明度で透明化した。
Example 3: Clarification of each tissue with a clarification reagent By the same method as in Example 2 except for pH, a clarification reagent (20 w / v% polyethyleneimine, molecular weight 600: 10,000 = concentration ratio 1: 1) Urea 8M, pH 11) was prepared.
In the same manner as in Example 1, DiI was perfused into the anesthetized mouse to fix the tissue. The brain, liver, kidney, lung, heart, spleen, stomach, small intestine, large intestine and muscle were removed and immersed in a clearing reagent, and bright field images of each tissue were obtained after 1 day and 3 days. The results are shown in FIG. All tissues were clarified with high transparency by a clarification reagent.
実施例4:肝臓および腎臓を透明化用試薬に浸漬後の時間変化
 実施例3と同様の方法により、透明化用試薬を調製した。
 実施例1と同様の方法により、麻酔下のマウスに対してDiIを灌流し、組織を固定した。肝臓および腎臓を摘出し、透明化用試薬に浸漬し、1時間~3日後に各組織の明視野像を取得した。結果を図4に示す。1時間後に組織の収縮がみられるものの、組織が透明になることが観察できた。1日後には組織は元の大きさに戻り、充分な透明化効率が得られた。
Example 4: Temporal change after immersing liver and kidney in clearing reagent A clearing reagent was prepared in the same manner as in Example 3.
In the same manner as in Example 1, DiI was perfused into the anesthetized mouse to fix the tissue. The liver and kidney were removed and immersed in a clearing reagent, and bright field images of each tissue were obtained 1 hour to 3 days later. The results are shown in FIG. Although the tissue shrinkage was observed after 1 hour, it was observed that the tissue became transparent. One day later, the tissue returned to its original size, and sufficient transparency was obtained.
実施例5:ホウレンソウの葉および茎の透明化
 ホウレンソウの葉および茎(未固定)を、実施例3と同じ組成の透明化用試薬に浸漬し、1日後および3日後に明視野像を取得した。結果を図5に示す(上段は葉、下段は茎である)。葉および茎はいずれも透明化用試薬によって1日間の浸漬で透明化し、3日間の浸漬でさらに透明化した。
Example 5: Clearance of spinach leaves and stems Spinach leaves and stems (unfixed) were immersed in a clearing reagent having the same composition as in Example 3, and bright field images were obtained after 1 day and 3 days later. . The results are shown in FIG. 5 (the upper row is leaves and the lower row is stems). Both leaves and stems were clarified with a clarification reagent after one day of immersion, and further clarified after three days of immersion.
実施例6:血管と遺伝子発現の同時可視化
腎臓への遺伝子導入
 緑色蛍光タンパク質ZsGreen1をコードしたプラスミドDNAをマウス静脈内に投与後、サクションデバイスを用いて組織に吸引圧をかけ、遺伝子導入を行った。
腎臓の透明化
 遺伝子導入の24時間後に、実施例1と同様の方法により、麻酔下のマウスに対してDiIを灌流し、組織を固定した。腎臓を摘出し、透明化用試薬(20 w/v % ポリエチレンイミン、分子量1,800、尿素8M、pH 9)に浸漬し、3日後に共焦点レーザー顕微鏡にて遺伝子発現とDiIによって染色した血管を観察した。結果を図6に示す。透明化用試薬によって血管と遺伝子発現が同時に可視化され、静脈内に投与したプラスミドが血管から漏れ出して血管の外で遺伝子が発現していることが確認できた。
Example 6: Simultaneous visualization of blood vessels and gene expression
Gene Transfer to Kidney Plasmid DNA encoding green fluorescent protein ZsGreen1 was administered into a mouse vein, and then suction was applied to the tissue using a suction device to perform gene transfer.
Twenty-four hours after introduction of the clearing gene of the kidney, DiI was perfused to the anesthetized mouse in the same manner as in Example 1 to fix the tissue. The kidney was removed, immersed in a clearing reagent (20 w / v% polyethyleneimine, molecular weight 1,800, urea 8M, pH 9), and 3 days later, the blood vessels stained with gene expression and DiI were observed with a confocal laser microscope did. The results are shown in FIG. The blood vessel and gene expression were visualized simultaneously by the clearing reagent, and it was confirmed that the plasmid administered intravenously leaked from the blood vessel and the gene was expressed outside the blood vessel.
実施例7:脳の血管および実質の可視化
 実施例1と同様の方法により、麻酔下のマウスに対してDiIを灌流し、組織を固定した。脳を摘出し、ティシュースライサーで粗切した。切片を1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate (DiD)溶液に浸漬して実質を染色後、透明化用試薬(20 w/v % ポリエチレンイミン、分子量600:10,000=濃度比1:1、尿素8M、pH 9)に浸漬し、1日後に共焦点レーザー顕微鏡で血管および実質を観察した。結果を図7に示す。透明化用試薬によって脳の血管および実質が同時に可視化された。
Example 7: Visualization of cerebral blood vessels and parenchyma In the same manner as in Example 1, mice under anesthesia were perfused with DiI to fix the tissue. The brain was removed and roughly cut with a tissue slicer. After immersing the section in 1,1'-dioctadecyl-3,3,3 ', 3'-tetramethylindodicarbocyanine perchlorate (DiD) solution and staining the substance, the clearing reagent (20 w / v% polyethyleneimine, molecular weight 600: It was immersed in 10,000 = concentration ratio 1: 1, urea 8M, pH 9), and blood vessels and parenchyma were observed with a confocal laser microscope one day later. The results are shown in FIG. Brain blood vessels and parenchyma were visualized simultaneously with the clearing reagent.
実施例8:tdTomato遺伝子を導入した時の酸化ストレスの発生の可視化
 酸化ストレス可視化用試薬CellROX(登録商標)deep redをマウス腹腔内に投与後、赤色蛍光タンパク質tdTomatoをコードしたプラスミドDNAをハイドロダイナミクス法(大容量溶液の急速静脈投与)により肝臓へ導入した。その後、麻酔下のマウスに対し、4%パラホルムアルデヒドを肝臓灌流することで固定した。肝臓を摘出後、実施例7と同様の方法により調製した透明化用試薬に浸漬し、1日後に共焦点レーザー顕微鏡を用いて観察した。結果を図8に示す。透明化用試薬によって酸化ストレスの発生が可視化され、導入した遺伝子発現との位置関係を解析できた。
Example 8 Visualization of Oxidative Stress Occurrence When TdTomato Gene is Introduced After oxidative stress visualization reagent CellROX (registered trademark) deep red is administered intraperitoneally to mice, a plasmid DNA encoding red fluorescent protein tdTomato is hydrodynamically processed. It was introduced into the liver by (rapid intravenous administration of a large volume solution). Thereafter, the mice under anesthesia were fixed by perfusion with 4% paraformaldehyde. After the liver was removed, it was immersed in a clearing reagent prepared by the same method as in Example 7, and observed one day later using a confocal laser microscope. The results are shown in FIG. The generation of oxidative stress was visualized by the clearing reagent, and the positional relationship with the introduced gene expression could be analyzed.
実施例9:FRETリポソームを用いた膜の保持の測定
 NBD-DOPE(Avanti Polar Lipids, 810145)およびLissamine rhodamine B-DOPE(Avanti Polar Lipids, 810150)で標識したリポソームを、界面活性剤を0.1 w/v %含有する透明化試薬Scale A2(尿素 4 M、グリセリン 10 w/v %、Triton X-100 0.1 w/v %)または本発明の透明化用試薬と混合し、リポソーム膜の保持性を蛍光共鳴エネルギー(FRET)効率により評価した。透明化用試薬は実施例7と同様の方法により調製したものを用いた。結果を図9に示す。リポソーム膜の保持性は、本発明の試薬を用いた場合は81.3%、界面活性剤を含有する透明化試薬Scale A2を用いた場合は8.27%であり、本発明の試薬は脂質膜を保持したまま生体由来材料を透明化することが確認できた。
Example 9: Measurement of membrane retention using FRET liposomes Liposomes labeled with NBD-DOPE (Avanti Polar Lipids, 810145) and Lissamine rhodamine B-DOPE (Avanti Polar Lipids, 810150) were treated with 0.1 w / surfactant. Mixing with clearing reagent Scale A2 (urea 4 M, glycerin 10 w / v%, Triton X-100 0.1 w / v%) containing v% or the clearing reagent of the present invention, the retention of liposome membrane is fluorescent. Evaluation was based on resonance energy (FRET) efficiency. The clearing reagent used was prepared in the same manner as in Example 7. The results are shown in FIG. The retention of the liposome membrane was 81.3% when the reagent of the present invention was used, and 8.27% when the clarifying reagent Scale A2 containing a surfactant was used, and the reagent of the present invention retained the lipid membrane. It was confirmed that the biological material was made transparent.
実施例10:各pHの試薬を用いた腎臓および肝臓の透明化
透明化用試薬の調製
 実施例3に記載の方法に準じてpH 7、9、および11の透明化用試薬を調製した。調製した各試薬、およびコントロールとしてPBSを用い、実施例2と同様の方法により、腎臓および肝臓を透明化した。結果を図10に示す(各試薬の結果において、上段は腎臓、下段は肝臓である)。いずれの透明化用試薬も1日間の浸漬で、肝臓および腎臓を高い透明度で透明化した。また、pHが高いほど透明度が高かった。
Example 10: Clarification of kidney and liver using reagents of each pH
Preparation of clearing reagent According to the method described in Example 3, clearing reagents of pH 7, 9, and 11 were prepared. Using the prepared reagents and PBS as a control, the kidney and liver were clarified by the same method as in Example 2. The results are shown in FIG. 10 (in the results of each reagent, the upper row is the kidney and the lower row is the liver). Each of the clarification reagents clarified the liver and kidney with high transparency by immersion for 1 day. Moreover, the higher the pH, the higher the transparency.
実施例11:多価アルコールを加えることによる肝臓における透明度の向上
透明化用試薬の調製
 低温における析出を避けるため、尿素の濃度を4Mに設定した。ポリエチレンイミン(分子量1,800、和光純薬社製、169-17815)、尿素に対し、グリセリン(ナカライテスク社製、17018-25)を添加して、20 w/v % ポリエチレンイミン、4M 尿素、10 w/v % グリセリン、pH 11の水溶液を調製した。また、グリセリンの代わりにポリエチレングリコール(ナカライテスク社製、28215-95、分子量400)、またはプロピレングリコール(ナカライテスク社製、29218-35)を用いた点を除き、前記と同様の方法により透明化用試薬を調製した。
肝臓の透明化
 実施例1と同様の方法により、麻酔下のマウスに対してDiIを灌流し、組織を固定した。肝臓を摘出し、各透明化用試薬に浸漬し、1日後および3日後に明視野像を取得した。結果を図11に示す。グリセリン、ポリエチレングリコールまたはプロピレングリコールを含む透明化用試薬を用いると、肝臓の透明度が向上した。
Example 11: Improvement of transparency in the liver by adding polyhydric alcohol
Preparation of clearing reagent The urea concentration was set at 4M to avoid precipitation at low temperatures. Polyethyleneimine (molecular weight 1,800, manufactured by Wako Pure Chemical Industries, 169-17815) and urea are added with glycerin (Nacalai Tesque, 17018-25), 20 w / v% polyethyleneimine, 4M urea, 10 w An aqueous solution of / v% glycerin, pH 11 was prepared. In addition, it is made transparent by the same method as above except that polyethylene glycol (Nacalai Tesque, 28215-95, molecular weight 400) or propylene glycol (Nacalai Tesque, 29218-35) is used instead of glycerin. Reagents were prepared.
Clarification of liver DiI was perfused to anesthetized mice in the same manner as in Example 1, and the tissue was fixed. The liver was removed and immersed in each clearing reagent, and bright field images were obtained after 1 day and 3 days. The results are shown in FIG. When a clearing reagent containing glycerin, polyethylene glycol or propylene glycol was used, the transparency of the liver was improved.
実施例12:各種の透明化用試薬を用いた腎臓の透明化
 脂質膜保持性およびDiIによる血管染色の観察深度の比較のため、透明化用試薬として、界面活性剤を含有しない透明化試薬ClearT2(非特許文献1)、低濃度(0.2 w/v %)の界面活性剤を含有するScale S(非特許文献5)、高濃度(15 w/v %)の界面活性剤を含有するCUBIC(非特許文献3)、ならびに実施例9と同様の方法により調製したpH 9およびpH 11の透明化用試薬を用いた。また、コントロールとしてPBSを用いた。実施例1と同様の方法により、麻酔下のマウスに対してDiIを灌流し、組織を固定した。腎臓を摘出し、各種の透明化用試薬に浸漬した。本発明の試薬およびPBS以外の透明化用試薬については、各文献に記載の方法に準じて浸漬を行った。ClearT2、本発明の試薬、およびPBSを用いた場合は1日後、Scale Sを用いた場合は3日後、ならびにCUBICを用いた場合は9日後に明視野像を取得し、さらに共焦点レーザー顕微鏡で観察した。結果を図12に示す。本発明の試薬は、1日間の浸漬で、腎臓を高い透明度で透明化した。また、本発明の試薬を用いると、1日間の浸漬で、ガラス面から302μmおよび705μmの深さの血管を観察することができた。pH 11の本発明の試薬を用いると、さらに1000μmの深さの血管を観察することができた。一方でこれに対し、本発明の試薬以外の試薬に1日間以上腎臓を浸漬しても、302μmの深さの血管を観察することができなかった。
Example 12: Clarification of kidney using various clarification reagents For comparison of lipid membrane retention and observation depth of blood vessel staining with DiI, as a clarification reagent, a clarification reagent Clear containing no surfactant T2 (Non-patent document 1), Scale S (non-patent document 5) containing a low concentration (0.2 w / v%) surfactant, CUBIC containing a high concentration (15 w / v%) surfactant (Non-patent Document 3) and pH 9 and pH 11 clearing reagents prepared by the same method as in Example 9 were used. PBS was used as a control. In the same manner as in Example 1, DiI was perfused into the anesthetized mouse to fix the tissue. The kidney was removed and immersed in various clearing reagents. About the reagent for clearing other than the reagent of this invention and PBS, it immersed according to the method as described in each literature. When using Clear T2 , the reagent of the present invention, and PBS, a bright field image is obtained after 1 day, with Scale S after 3 days, and with CUBIC after 9 days. Observed with. The results are shown in FIG. The reagent of the present invention clarified the kidney with high transparency by immersion for 1 day. When the reagent of the present invention was used, blood vessels with a depth of 302 μm and 705 μm could be observed from the glass surface after immersion for 1 day. When the reagent of the present invention having a pH of 11 was used, blood vessels with a depth of 1000 μm could be observed. On the other hand, even when the kidney was immersed in a reagent other than the reagent of the present invention for one day or more, a blood vessel having a depth of 302 μm could not be observed.
実施例13:低分子量および高分子量のポリエチレンイミンを用いた際の肝臓の透明化
透明化用試薬の調製方法
 ポリエチレンイミン(数平均分子量300または70,000)を用いた以外、実施例2と同様の方法により、透明化用試薬(20 w/v % ポリエチレンイミン、8M 尿素、pH 11)を調製した。数平均分子量300のポリエチレンイミンは日本触媒社製、SP-003、数平均分子量70,000のポリエチレンイミンは日本触媒社製、P-1000を用いた。
肝臓の透明化
 麻酔下のマウスより、肝臓を摘出し、4%パラホルムアルデヒドに浸漬することで組織を固定した。続いて透明化用試薬に浸漬し、1日後に明視野像を取得した。結果を図13に示す。透明化用試薬としてどちらの分子量のポリエチレンイミンを使用しても肝臓が透明になるが、ポリエチレンイミンの分子量300で調製した透明化用試薬では肝臓が膨潤した。
Example 13: Clarification of the liver with low and high molecular weight polyethyleneimines
Preparation method of clearing reagent A clearing reagent (20 w / v% polyethyleneimine, 8M urea, pH 11) was prepared in the same manner as in Example 2 except that polyethyleneimine (number average molecular weight 300 or 70,000) was used. Was prepared. Polyethyleneimine having a number average molecular weight of 300 was manufactured by Nippon Shokubai Co., Ltd., SP-003, and polyethyleneimine having a number average molecular weight of 70,000 was manufactured by Nippon Shokubai Co., Ltd., P-1000.
Liver was extracted from a mouse under clear anesthesia of the liver, and the tissue was fixed by immersion in 4% paraformaldehyde. Subsequently, it was immersed in a clearing reagent, and a bright field image was obtained after 1 day. The results are shown in FIG. The liver becomes transparent when polyethyleneimine of any molecular weight is used as a clearing reagent, but the liver swells with a clearing reagent prepared with a molecular weight of 300 of polyethyleneimine.
実施例14:pH 5の透明化用試薬を用いた際の肝臓および腎臓の透明化
透明化用試薬の調製方法
 pHと尿素濃度以外、実施例2と同様の方法により、透明化用試薬(20 w/v % ポリエチレンイミン、分子量600:10,000=濃度比1:1、尿素6M、pH 5)を調製した。
肝臓および腎臓の透明化
 麻酔下のマウスより、肝臓および腎臓を摘出し、4%パラホルムアルデヒドに浸漬することで組織を固定した。続いて透明化用試薬に浸漬し、1日後および3日後に明視野像を取得した。結果を図14に示す。pH 5でも肝臓および腎臓が透明化された。
Example 14: Clarification of liver and kidney when using pH 5 clarification reagent
Preparation method of clearing reagent By the same method as in Example 2 except for pH and urea concentration, clearing reagent (20 w / v% polyethyleneimine, molecular weight 600: 10,000 = concentration ratio 1: 1, urea 6M, pH 5) was prepared.
The liver and kidney were removed from the mouse under clear anesthesia of the liver and kidney, and the tissue was fixed by immersion in 4% paraformaldehyde. Subsequently, it was immersed in a clearing reagent, and bright field images were obtained after 1 day and 3 days. The results are shown in FIG. Even at pH 5, the liver and kidney were cleared.
実施例15:変性ポリエチレンイミン水溶液を用いた際の各組織の透明化
透明化用試薬の調製方法
 プロピレンオキサイド変性ポリエチレンイミン(分子量1400)に水を加え、10、20、50 w/v % プロピレンオキサイド変性ポリエチレンイミン水溶液(pH未調整(測定値はそれぞれpH 11.2、11.4、11.9))を調製した。数平均分子量1400のプロピレンオキサイド変性ポリエチレンイミンは日本触媒社製、PP-061を用いた。
腎臓および肝臓の透明化
 過剰量の麻酔により屠殺したマウスより、腎臓および肝臓を摘出し、4%パラホルムアルデヒドに浸漬することで組織を固定した。続いて透明化用試薬に浸漬し、1日後および3日後に明視野像を取得した。結果を図15に示す。プロピレンオキサイド変性ポリエチレンイミン水溶液によっても組織が透明化された。なお、50%の高濃度においても顕著な収縮は見られなかった。
Example 15: Clarification of each tissue when using a modified polyethyleneimine aqueous solution
Preparation method of clearing reagent Add water to propylene oxide modified polyethyleneimine (molecular weight 1400), 10, 20, 50 w / v% propylene oxide modified polyethyleneimine aqueous solution (pH unadjusted (measured values are pH 11.2, 11.4, 11.9)) was prepared. As a propylene oxide-modified polyethyleneimine having a number average molecular weight of 1400, PP-061 manufactured by Nippon Shokubai Co., Ltd. was used.
The kidney and liver were removed from a mouse sacrificed by anesthesia with an excessive amount of clearing of the kidney and liver, and the tissue was fixed by immersion in 4% paraformaldehyde. Subsequently, it was immersed in a clearing reagent, and bright field images were obtained after 1 day and 3 days. The results are shown in FIG. The structure was also clarified by a propylene oxide-modified polyethyleneimine aqueous solution. Note that no significant shrinkage was observed even at a high concentration of 50%.
実施例16:変性ポリエチレンイミンを用いた際の各組織の透明化
透明化用試薬の調製方法
 ポリエチレンイミンの代わりにプロピレンオキサイド変性ポリエチレンイミンを用いた点およびpH以外、実施例2と同様の方法により、透明化用試薬(20 w/v % プロピレンオキサイド変性ポリエチレンイミン、分子量1400、尿素8M、pH 5、7.5または11)を調製した。数平均分子量1400のプロピレンオキサイド変性ポリエチレンイミンは日本触媒社製、PP-061を用いた。
各組織の透明化
 過剰量の麻酔により屠殺したマウスより、肝臓、腎臓、肺、脾臓、心臓、筋肉、小腸、大腸および皮膚を摘出し、4%パラホルムアルデヒドに浸漬することで組織を固定した。なお、皮膚についてはバリカンで毛を剃ってから固定した。続いて透明化用試薬に浸漬し、1日後および3日後に明視野像を取得した。結果を図16に示す。プロピレンオキサイド変性ポリエチレンイミンを用いても、ポリエチレンイミンと同様に組織を透明化できることが示された。
Example 16: Clarification of each tissue when using modified polyethyleneimine
Preparation method of clearing reagent According to the same method as in Example 2 except that propylene oxide modified polyethyleneimine was used instead of polyethyleneimine and pH, a clearing reagent (20 w / v% propylene oxide modified polyethyleneimine, A molecular weight of 1400, urea 8M, pH 5, 7.5 or 11) was prepared. As a propylene oxide-modified polyethyleneimine having a number average molecular weight of 1400, PP-061 manufactured by Nippon Shokubai Co., Ltd. was used.
Liver, kidney, lung, spleen, heart, muscle, small intestine, large intestine and skin were removed from mice sacrificed by anesthesia with a clear excess of each tissue, and the tissue was fixed by immersion in 4% paraformaldehyde. The skin was fixed after shaving with a clipper. Subsequently, it was immersed in a clearing reagent, and bright field images were obtained after 1 day and 3 days. The results are shown in FIG. It was shown that the structure can be made transparent even when propylene oxide-modified polyethyleneimine is used, like polyethyleneimine.
実施例17:変性ポリエチレンイミンを用いた際の尿素濃度の影響
透明化用試薬の調製方法
 pHおよび尿素濃度以外、実施例16と同様の方法により、透明化用試薬(20 w/v % プロピレンオキサイド変性ポリエチレンイミン、分子量1400、尿素4、4.5、5、5.5、6、6.5、7、7.5または8 M、pH 10)を調製した。数平均分子量1400のプロピレンオキサイド変性ポリエチレンイミンは日本触媒社製、PP-061を用いた。
腎臓および肝臓の透明化
 過剰量の麻酔により屠殺したマウスより、腎臓および肝臓を摘出し、4%パラホルムアルデヒドに浸漬することで組織を固定した。続いて透明化用試薬に浸漬し、1日後および3日後に明視野像を取得した。結果を図17に示す。尿素濃度が高くなるにつれ透明度が高まるが、6 M以上では顕著な差は見られなかった。
Example 17: Effect of urea concentration when using modified polyethyleneimine
Preparation method of clarification reagent Except for pH and urea concentration, a clarification reagent (20 w / v% propylene oxide-modified polyethyleneimine, molecular weight 1400, urea 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5 or 8 M, pH 10) was prepared. As a propylene oxide-modified polyethyleneimine having a number average molecular weight of 1400, PP-061 manufactured by Nippon Shokubai Co., Ltd. was used.
The kidney and liver were removed from a mouse sacrificed by anesthesia with an excessive amount of clearing of the kidney and liver, and the tissue was fixed by immersion in 4% paraformaldehyde. Subsequently, it was immersed in a clearing reagent, and bright field images were obtained after 1 day and 3 days. The results are shown in FIG. Transparency increases with increasing urea concentration, but no significant difference was seen above 6 M.
実施例18:ドキソルビシン塩酸塩の肝臓中空間分布の可視化
透明化用試薬の調製方法
 pH以外、実施例16と同様の方法により、透明化用試薬(20 w/v % プロピレンオキサイド変性ポリエチレンイミン、分子量1400、尿素8M、pH 5.5)を調製した。数平均分子量1400のプロピレンオキサイド変性ポリエチレンイミンは日本触媒社製、PP-061を用いた。
肝臓の透明化
 ドキソルビシン塩酸塩(20 mg/kg)をマウス静脈内に投与し、麻酔下、経門脈的にPBS、続いて4%パラホルムアルデヒドを灌流することで肝臓を固定した。肝臓を摘出後、透明化用試薬に浸漬し、1日後に共焦点レーザー顕微鏡で観察した。結果を図18に示す。pHを調整することで、透明化用試薬に浸漬している際のドキソルビシン塩酸塩の肝臓からの漏出を抑制し、ドキソルビシン塩酸塩の肝臓中空間分布を可視化できた。
Example 18: Visualization of spatial distribution of doxorubicin hydrochloride in the liver
Preparation method of clearing reagent A clearing reagent (20 w / v% propylene oxide-modified polyethyleneimine, molecular weight 1400, urea 8M, pH 5.5) was prepared in the same manner as in Example 16 except for pH. As a propylene oxide-modified polyethyleneimine having a number average molecular weight of 1400, PP-061 manufactured by Nippon Shokubai Co., Ltd. was used.
Liver- cleared doxorubicin hydrochloride (20 mg / kg) was intravenously administered to mice, and the liver was fixed by perfusion of PBS followed by 4% paraformaldehyde under anesthesia. After removing the liver, it was immersed in a clearing reagent and observed with a confocal laser microscope one day later. The results are shown in FIG. By adjusting the pH, leakage of doxorubicin hydrochloride from the liver when immersed in the clearing reagent was suppressed, and the spatial distribution of doxorubicin hydrochloride in the liver could be visualized.
 本出願は、日本でされた特願2017-030702(出願日:2017年2月22日)を基礎としており、その内容はすべて本明細書に包含されるものとする。 This application is based on Japanese Patent Application No. 2017-030702 (filing date: February 22, 2017) filed in Japan, and all the contents thereof are included in this specification.
 本発明によれば、短期間かつ簡易な手順で、脂質膜を保持したまま良好な透明度にて生体由来材料を透明化し得る試薬、また、特定の範囲にpHを調整し得る試薬が提供される。また、本発明によれば、当該試薬を用いる生体由来材料の透明化方法が提供される。さらに、本発明によれば、当該試薬を含む生体由来材料の透明化用キットが提供される。 According to the present invention, a reagent capable of clearing a biological material with good transparency while retaining a lipid membrane in a short period of time and a simple procedure, and a reagent capable of adjusting pH to a specific range are provided. . Moreover, according to this invention, the transparency method of the biological material using the said reagent is provided. Furthermore, according to the present invention, a kit for clarifying a biological material containing the reagent is provided.

Claims (17)

  1.  ポリエチレンイミンを含む、生体由来材料の透明化用試薬。 A reagent for clarification of bio-derived materials containing polyethyleneimine.
  2.  ポリエチレンイミンが、変性ポリエチレンイミンを含む、請求項1に記載の試薬。 The reagent according to claim 1, wherein the polyethyleneimine contains a modified polyethyleneimine.
  3.  変性ポリエチレンイミンが、プロピレンオキサイド変性ポリエチレンイミン、オクタデシルイソシアネート変性ポリエチレンイミンおよびエチレンオキサイド変性ポリエチレンイミンからなる群から選択される少なくとも1種である、請求項2に記載の試薬。 The reagent according to claim 2, wherein the modified polyethyleneimine is at least one selected from the group consisting of propylene oxide modified polyethyleneimine, octadecyl isocyanate modified polyethyleneimine and ethylene oxide modified polyethyleneimine.
  4.  ポリエチレンイミンの数平均分子量が300~70,000である、請求項1~3のいずれか1項に記載の試薬。 The reagent according to any one of claims 1 to 3, wherein the number average molecular weight of polyethyleneimine is 300 to 70,000.
  5.  ポリエチレンイミンの数平均分子量が400~25,000である、請求項1~3のいずれか1項に記載の試薬。 The reagent according to any one of claims 1 to 3, wherein the number average molecular weight of polyethyleneimine is 400 to 25,000.
  6.  界面活性剤を実質的に含まない、請求項1~5のいずれか1項に記載の試薬。 The reagent according to any one of claims 1 to 5, which is substantially free of a surfactant.
  7.  さらに尿素、ホルムアミド、ラクトアミド、およびこれらの誘導体からなる群から選択される少なくとも1種の化合物を含む、請求項1~6のいずれか1項に記載の試薬。 The reagent according to any one of claims 1 to 6, further comprising at least one compound selected from the group consisting of urea, formamide, lactamide, and derivatives thereof.
  8.  さらにグリセリン、ポリエチレングリコールおよびプロピレングリコールからなる群から選択される少なくとも1種の化合物を含む、請求項1~7のいずれか1項に記載の試薬。 The reagent according to any one of claims 1 to 7, further comprising at least one compound selected from the group consisting of glycerin, polyethylene glycol and propylene glycol.
  9.  pHが4~12である、請求項1~8のいずれか1項に記載の試薬。 The reagent according to any one of claims 1 to 8, wherein the pH is 4 to 12.
  10.  pHが7~11である、請求項1~8のいずれか1項に記載の試薬。 The reagent according to any one of claims 1 to 8, which has a pH of 7 to 11.
  11.  生体由来材料が、植物または動物由来の材料である、請求項1~10のいずれか1項に記載の試薬。 The reagent according to any one of claims 1 to 10, wherein the biological material is a plant or animal-derived material.
  12.  動物由来の材料が、脳、心臓、肝臓、腎臓、脾臓、肺、胃、小腸、大腸および筋肉からなる群から選択される少なくとも1種の器官に由来する、請求項11に記載の試薬。 The reagent according to claim 11, wherein the animal-derived material is derived from at least one organ selected from the group consisting of brain, heart, liver, kidney, spleen, lung, stomach, small intestine, large intestine and muscle.
  13.  動物由来の材料が皮膚に由来する、請求項11に記載の試薬。 The reagent according to claim 11, wherein the animal-derived material is derived from skin.
  14.  請求項1~13のいずれか1項に記載の試薬を生体由来材料に浸潤させる工程を含む、生体由来材料の透明化方法。 A method for clarifying a biological material, comprising the step of infiltrating the biological material with the reagent according to any one of claims 1 to 13.
  15.  前記の浸潤させる工程が1回のみ行われる、請求項14に記載の方法。 The method according to claim 14, wherein the infiltration step is performed only once.
  16.  前記の浸潤させる工程が1時間~7日間行われる、請求項14または15に記載の方法。 The method according to claim 14 or 15, wherein the infiltration step is performed for 1 hour to 7 days.
  17.  請求項1~13のいずれか1項に記載の試薬を含む、生体由来材料の透明化用キット。 A kit for clarifying a biological material, comprising the reagent according to any one of claims 1 to 13.
PCT/JP2018/006564 2017-02-22 2018-02-22 Reagent for enhancing transparency of biologically derived material WO2018155587A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019501809A JP7033795B2 (en) 2017-02-22 2018-02-22 Reagents for clearing biological materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-030702 2017-02-22
JP2017030702 2017-02-22

Publications (1)

Publication Number Publication Date
WO2018155587A1 true WO2018155587A1 (en) 2018-08-30

Family

ID=63252839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006564 WO2018155587A1 (en) 2017-02-22 2018-02-22 Reagent for enhancing transparency of biologically derived material

Country Status (2)

Country Link
JP (1) JP7033795B2 (en)
WO (1) WO2018155587A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020106788A1 (en) * 2018-11-21 2020-05-28 Cornell University Optical clearing and auto-fluorescence quenching solutions and method of use for enhanced microscopy imaging of biological tissues
WO2022230750A1 (en) * 2021-04-26 2022-11-03 住友化学株式会社 Method and kit for transparentizing biological material
WO2024071029A1 (en) * 2022-09-30 2024-04-04 学校法人金沢医科大学 Method for producing transparentized biological specimen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537262A (en) * 2000-12-14 2004-12-16 ジェネンテック・インコーポレーテッド Bacterial host strain
WO2012147965A1 (en) * 2011-04-28 2012-11-01 独立行政法人理化学研究所 Method for making biological material transparent and use thereof
WO2016004367A1 (en) * 2014-07-03 2016-01-07 Richard Torres Novel methods of tissue processing and imaging
WO2016117614A1 (en) * 2015-01-20 2016-07-28 国立研究開発法人理化学研究所 Biological-specimen transparentizing agent, system, and use therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537262A (en) * 2000-12-14 2004-12-16 ジェネンテック・インコーポレーテッド Bacterial host strain
WO2012147965A1 (en) * 2011-04-28 2012-11-01 独立行政法人理化学研究所 Method for making biological material transparent and use thereof
WO2016004367A1 (en) * 2014-07-03 2016-01-07 Richard Torres Novel methods of tissue processing and imaging
WO2016117614A1 (en) * 2015-01-20 2016-07-28 国立研究開発法人理化学研究所 Biological-specimen transparentizing agent, system, and use therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUMOTO, S. ET AL.: "Three-Dimensional Imaging of the Intracellular Fate of Plasmid DNA and Transgene Expression: ZsGreenl and Tissue Clearing Method CUBIC Are an Optimal Combination for Multicolor Deep Imaging in Murine Tissues", PLOS ONE, vol. 11, no. 1, 29 January 2016 (2016-01-29), pages 1 - 14, XP055605960 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020106788A1 (en) * 2018-11-21 2020-05-28 Cornell University Optical clearing and auto-fluorescence quenching solutions and method of use for enhanced microscopy imaging of biological tissues
US11994451B2 (en) 2018-11-21 2024-05-28 Cornell University Optical clearing and auto-fluorescence quenching solutions and method of use for enhanced microscopy imaging of biological tissues
WO2022230750A1 (en) * 2021-04-26 2022-11-03 住友化学株式会社 Method and kit for transparentizing biological material
WO2024071029A1 (en) * 2022-09-30 2024-04-04 学校法人金沢医科大学 Method for producing transparentized biological specimen

Also Published As

Publication number Publication date
JP7033795B2 (en) 2022-03-11
JPWO2018155587A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
Richardson et al. Tissue clearing
JP7384789B2 (en) Methods for labeling, clearing and imaging large tissues
US20210131925A1 (en) Method for making biological material transparent and use thereof
US20240142352A1 (en) Biological-specimen transparentizing agent, system, and use therefor
Messal et al. Antigen retrieval and clearing for whole-organ immunofluorescence by FLASH
Hsu et al. EZ Clear for simple, rapid, and robust mouse whole organ clearing
Cooper et al. Visualizing morphogenesis in transgenic zebrafish embryos using BODIPY TR methyl ester dye as a vital counterstain for GFP
EP2711682B1 (en) Clarifying reagent for biological materials and use thereof
KR101563826B1 (en) Mothod for tissue clearing
EP2547999B1 (en) Clearing reagent for biological material, and use thereof
JP6945881B2 (en) A composition for clearing a living tissue and a method for clearing a living tissue using the composition.
WO2018155587A1 (en) Reagent for enhancing transparency of biologically derived material
CN104956201A (en) Method for rendering tissue transparent, reagent for rendering tissue transparent, and tissue observation method
CN110139922B (en) Compositions and methods for clarifying tissue
US12031891B2 (en) Tissue sample preparation system
JPWO2015022883A1 (en) Composition for preparing biological material with excellent light transmittance and use thereof
US10359344B2 (en) Composition for clearing of biotissue and clarity method for biotissue using thereof
US12399090B2 (en) Transparentizing pretreatment method of biological sample having size of at most 1 mm, and transparentizing method of biological sample including same
CN114402060B (en) Compositions and methods for tissue clearing
Aryal et al. Characterization of astrocyte morphology and function using a fast and reliable tissue clearing technique
KR102827998B1 (en) A clearing composition for biological tissue and a method of eletrophoretic clearing using the same
ES3012984T3 (en) Method, solution and kit for preparing a tissue sample for 3d imaging
Gutiérrez Lovera Zebrafish as a model organism for the study of toxicity and effectiveness of new antitumor therapies
Hoffman et al. Fluorescence Imaging of Tumors in Human Patient-Derived Orthotopic Xenograft (PDOX) Mouse Models

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757581

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501809

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757581

Country of ref document: EP

Kind code of ref document: A1