[go: up one dir, main page]

WO2018156039A1 - Centrifugal filtration device and method for concentrating liquid mixtures - Google Patents

Centrifugal filtration device and method for concentrating liquid mixtures Download PDF

Info

Publication number
WO2018156039A1
WO2018156039A1 PCT/PT2018/050006 PT2018050006W WO2018156039A1 WO 2018156039 A1 WO2018156039 A1 WO 2018156039A1 PT 2018050006 W PT2018050006 W PT 2018050006W WO 2018156039 A1 WO2018156039 A1 WO 2018156039A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration
chamber
concentrate
permeate
centrifugal
Prior art date
Application number
PCT/PT2018/050006
Other languages
French (fr)
Portuguese (pt)
Inventor
Vitor Manuel Geraldes FERNANDES
Viriato Sérgio DE ALMEIDA SEMIÃO
Miguel Ângelo Joaquim RODRIGUES
Carlos Duarte DA SILVA COMPLETO
Original Assignee
Instituto Superior Técnico
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Superior Técnico filed Critical Instituto Superior Técnico
Publication of WO2018156039A1 publication Critical patent/WO2018156039A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/087Single membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • B01D21/262Separation of sediment aided by centrifugal force or centripetal force by using a centrifuge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/16Rotary, reciprocated or vibrated modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5021Test tubes specially adapted for centrifugation purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0684Venting, avoiding backpressure, avoid gas bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/084Testing filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a centrifugal filtration device and a method for concentration, fractionation, purification, and / or desalination of small volume liquid samples using reverse osmosis, nanofiltration or ultrafiltration membranes.
  • the centrifugal filtration device is particularly suitable for nanofiltration or reverse osmosis of liquid samples with high osmotic pressures.
  • Liquid mixtures may be fractionated using pressure difference driven membrane separation processes, taking into account the molecular weight of the components of the liquid mixtures and the molecular exclusion limit of the membrane.
  • microfiltration, ultrafiltration, nanofiltration and reverse osmosis membranes can be used, which operate at different pressure ranges.
  • tangential membrane filtration is generally the best alternative for concentrating such mixtures, as tangential flow minimizes concentration bias.
  • centrifugal filtration As its name implies, with this technique the difference in transmembrane pressure is created by centrifugal acceleration inside a centrifuge.
  • centrifugal filtration Compared to the front membrane filtration processes, centrifugal filtration has the advantage of propelling the denser fluid elements that accumulate on the membrane surface away from the axis of rotation under the effect of centrifugal force. With proper membrane orientation, the concentration boundary layer that forms near the membrane can be removed from the membrane by centrifugal force, providing a self-cleaning mechanism, reducing concentration bias and maintaining high filtration flow.
  • centrifugal filtration devices There are several centrifugal filtration devices described in the literature, but all of them have been developed for microfiltration and / or ultrafiltration.
  • This patent describes various embodiments of a centrifugal filtration device wherein the angle between the centrifugal force vector and the membrane surface is preferably less than 15 ° to ensure efficient removal of the concentrated layer in the vicinity of the membrane.
  • the main drawback of this device is that it does not prevent filtration from continuing to complete concentrate dryness.
  • the same problem occurs in centrifugal filtration devices disclosed in U.S. Pat. No. 4,683,058 issued to GF Lyman and G. Mathus, and in U.S. Pat. EP 0298513, issued to A. Szabados, a Since these devices do not have locations where concentrate can accumulate without drying.
  • centrifugal filtration devices comprising a concentrate chamber receiving the concentrate.
  • the concentrate chamber is located at the outermost radial level to maximize the dragging of the heavier and more concentrated fluid elements into that chamber.
  • Examples of devices with this type of concentrate chamber are described in the following patents: Pat. US 4,722,792 issued to T. Miyagi et al. , US 5,647,990, issued to V. Vassarotti, US 6,357,601, issued to WF Bowers et al. , US 8,747,670 issued to L. Bon Subscribe et al.
  • An interesting centrifugal filtration device has been disclosed in U.S. Pat. US 6,719,896 issued to P. Clark, in which the final volume of concentrate is adjusted by the user by clearance of permeate ducts. These permeate ducts are prepared in the device manufacturing process and the user only needs to uncover the ducts corresponding to the desired final concentrate volume.
  • Another significant factor that may influence filtration performance is the angle between the membrane surface and the centrifugal force vector. For a given centrifugal filtration device, this angle varies with the centrifuge rotor type. In a tilting rotor centrifuge the device rotates horizontally, while in a fixed angle rotor centrifuge the device rotates at a given inclination relative to the axis of rotation. Many configurations with different angles between the membrane surface and the axis of the centrifugal filtration device have been disclosed in previous inventions.
  • the membrane In this type of centrifugal filtration device, the membrane is usually placed at the base of a piston that presses against the liquid mixture to be filtered. The permeate passes through the membrane into an internal permeate chamber (inside the piston) and the concentrated fluid is drawn away from the membrane due to centrifugal force (see, for example, the devices disclosed in US Patent 3,661,265, to DJ Greenspan). , US 3,960,727, to HT Hochstrasser, US 4,522,713, to D. Nussbaumer et al., US 4,832,851, to WF Bowers and DB Tiffany, US 5,490,927, to AE Herczeg, and US 6,302,919 to B Chambers et al.
  • Patent 4,632,761 issued to WF Bowers and PN Rigopulos, US Pat. 5,501,841, issued to YC Lee et al., and US Pat. 8,747,670, issued to L. Bon Subscribe et al.).
  • Ultrafiltration membrane devices have a molecular exclusion limit typically between 1 kDa and 1000 kDa. This means that centrifugal filtration devices can now be applied to concentrate or purify viruses, bacteria or macromolecules such as proteins.
  • centrifugal filtration devices For a molecular weight of less than 1 kDa in the range of nanofiltration and reverse osmosis there are no commercially available centrifugal filtration devices. This means that there are no centrifugal filtration devices capable of concentrating small peptides, drugs, toxins, biomarkers, etc. These small molecules can only be concentrated by nanofiltration or reverse osmosis membranes. However, with such membranes, to achieve reasonable filtration flows and solute rejections, as well as high concentration factors, it is necessary to operate at pressures typically between 5 and 80 bar.
  • centrifugal filtration devices to operate at high pressure is not simple.
  • the supply pressure begins to decrease rapidly as soon as the liquid level in the sample chamber decreases. This poses a serious problem as it is at the end of the concentration cycle that the supply pressure must be raised to compensate for the osmotic pressure of the concentrated solution, which is maximum at this final concentration phase.
  • Increasing centrifugal acceleration too much does not adequately solve this problem as nanofiltration and reverse osmosis membranes can compact. irreversibly at high pressures. In fact, when the maximum pressure recommended by membrane manufacturers is far exceeded, severe irreversible membrane compaction is observed (McConnon, 2015), which causes the permeation flow to decrease dramatically throughout the concentration process.
  • An object of the invention is a centrifugal filtration device and a method for the fractionation, purification, concentration and / or desalination of liquid sample mixtures over a wide molecular weight range, including molecular weights below 1 kDa.
  • the device of the invention enables the fractionation, purification, concentration and / or desalination of liquid samples of substance mixtures over a wide range of molecular weights, including the particular case of high osmotic pressure liquid samples, also using nanofiltration and reverse osmosis to perform separation.
  • the pressure can be maintained at high levels throughout the filtration process, which allows to reach higher concentration factors and reduce the filtration time.
  • the centrifugal filtration devices described above have a large part of their volume occupied by the sample chamber extending to the membrane region. However, as the sample is filtered, its volume decreases and the liquid pressure decreases to practically zero. Since the pressure generated by the centrifugal force varies quadratically with the distance from the air / liquid interface of the sample to the membrane, after some time has elapsed since the filtration process began, the low liquid level and the pressure and flow values of permeate are reduced to a small fraction of their initial values. Thus, to achieve a high concentration factor, the filtration time needs to be greatly increased. Low flow operation also results in reduced solute rejection, as rejection tends to decrease with decreasing permeate flow.
  • the filtration pressure can of course be increased by gradually increasing the centrifuge's rotation speed throughout the test.
  • controlling the spin speed of the centrifuge is difficult or even impossible to implement because the liquid level in the sample chamber is not known in real time.
  • a centrifugal filtration device that maintains high pressure throughout most of the filtration process is described herein.
  • the liquid sample in order to maintain the high pressure near the membrane for most of the filtration process, is placed as far as possible from the membrane in terms of radial distance.
  • the liquid sample is placed in a chamber, hereinafter referred to as the sample chamber, located as far as possible from the chamber from which the membrane is located, here designated as a filtration chamber, and both chambers are connected. by a channel as thin as possible, which is called a narrow neck.
  • the sample chamber located as far as possible from the chamber from which the membrane is located, here designated as a filtration chamber, and both chambers are connected. by a channel as thin as possible, which is called a narrow neck.
  • most of the initial liquid sample volume is confined to the sample chamber to ensure an always high liquid height during the filtration cycle.
  • the centrifugal filter device also has a chamber for collecting the sample elements. concentrates moving out of the membrane by centrifugal force. This chamber is called a concentrate chamber.
  • the supply pressure can be advantageously increased by increasing the centrifuge speed, provided this does not compromise the mechanical integrity of the centrifugal filtration device.
  • the liquid sample may be further concentrated to the point where the osmotic pressure of the concentrated solution is reached or the permeate flow tends to zero due to membrane compaction.
  • the centrifugal filtration device of the invention comprises, but is not limited to, a housing comprising a sample chamber, a filtration chamber, a concentrate chamber, a permeate chamber, a narrow neck connecting the sample chamber to the chamber. and a cap to prevent liquid from spilling out of the device.
  • the body of the centrifugal filtration device described above may be made of one piece or several pieces depending on the embodiments of the invention.
  • the system also includes chamber ventilation channels to prevent pressure imbalance between the permeate chamber and the filtration chamber after the centrifuge is stopped.
  • the operating mode of the device is briefly described below.
  • the centrifugal filtration device rotates about the axis of rotation in a In the centrifuge, the filtration process takes place in the filtration chamber, which is fed fresh liquid from the sample chamber through the narrow neck.
  • the centrifugal force scans the heaviest elements of fluid that accumulate on the membrane surface located inside the filtration chamber. This self-cleaning mechanism minimizes concentration polarization in the membrane.
  • the liquid solution permeating through the membrane flows into the permeate chamber through at least one narrow permeate channel or porous support.
  • the method for fractionation, purification, concentration and / or desalination of liquid samples of substance mixtures consists of three main steps.
  • the first step is the introduction of the liquid sample to be processed in the centrifugal filtration device.
  • filtration is performed by placing the centrifugal filtration device in a centrifuge at a rotational speed that creates the desired transmembrane pressure difference, typically between 0 and 10 bar for ultrafiltration and microfiltration, between 10 bar and 60 bar for nanofiltration and between 20 bar and 80 bar for reverse osmosis.
  • the spin speed of the centrifuge can be increased at the end of the step to increase transmembrane pressure and thereby increase the final concentration of concentrated liquid.
  • the separated fluids are removed from the centrifugal filtration device. Removal of the permeate is easy because access to the permeate chamber below the membrane is sufficient.
  • the concentrate can be removed by suctioning it through a thin tube that enters the narrow neck into the filtration chamber. In Alternatively, the concentrate may be returned to the sample chamber through the narrow neck, reversing the position of the centrifugal filtration device and turning the centrifuge at low speed.
  • Table 1 Method for fractionation, purification, concentration and / or desalination of liquid samples of substance mixtures.
  • Step 1 Place the sample into the sample chamber of the centrifugal filtration device.
  • removal of the concentrate may be by suction, using a flexible thin tube through the narrow neck, or by centrifugation at low rotation speed of the inverted centrifugal filtration device.
  • FIG. 1 is a schematic of a generic centrifugal filtration device according to the object of the invention.
  • FIG. 2 is the schematic of the centrifugal filtration device during the filtration process outlining the operating fundamentals.
  • FIG. 3 is the isometric view of the object of the invention according to certain embodiments (in particular with embodiments 1 and 2).
  • FIG. 4 is an exploded view of the object of the invention according to embodiment 1.
  • FIG. 5 is a top view of the object of the invention according to embodiment 1.
  • FIG. 6 is a sectional view of the object of the invention at level A-A of FIG. 5 according to embodiment 1.
  • FIG. 7 is a sectional view of the object of the invention at section level AA of FIG. 5 according to embodiment 1 when placed in a centrifuge at a certain angle with the axis of rotation.
  • FIG. 8 is a sectional view of the object of the invention at section AA level of FIG. 5 according to embodiment 1 when placed in a centrifuge at a given angle with the axis of rotation prior to filtration with a liquid sample in the feed reservoir.
  • FIG. 9 is a cross-sectional view of the object of the invention at section A-A of FIG. 5 according to embodiment 1 when placed in a centrifuge at a certain angle with the axis of rotation at the end of filtration with the permeated liquid already in the permeate chamber.
  • FIG. 10 is an exploded view of the two parts of embodiment 2 differing from embodiment 1 of the object of the invention.
  • FIG. 11 is a top view of the object of the invention according to embodiment 2.
  • FIG. 12 is a sectional view of the object of the invention at section level B-B of FIG. 11 according to embodiment 2.
  • FIG. 13 is the enlarged view of the object of the invention in section C defined in FIG. 12 according to embodiment 2.
  • FIG. 14 is the isometric view of the object of the invention according to embodiment 3.
  • FIG. 15 is an exploded view of the object of the invention according to embodiment 3.
  • FIG. 16 is a top view of the object of the invention according to embodiment 3.
  • FIG. 17 is a cross-sectional view of the object of the invention at section D-D of FIG. 16 according to embodiment 3.
  • FIG. 18 is a cross-sectional view of the object of the invention at section level E-E of FIG. 16 according to embodiment 3.
  • FIG. 19 is a cross-sectional view of the object of the invention at section D-D of FIG. 16 when an extra reservoir is used to collect the concentrate by centrifuging with the inverted centrifugal filtration device according to embodiment 3.
  • FIG. 20 is a graph of a sucrose solution filtration result set obtained with a centrifugal filtration device according to embodiment 1.
  • the present invention relates to a centrifugal filtration device (1) for concentrating liquid mixtures to be inserted into the rotor of a centrifuge comprising: a housing which comprises a sample chamber (2, 102, 302) with at least one vent (123, 312); a permeate chamber (6, 106, 306) with at least one vent (145, 351); at least one filtration chamber (4, 104, 304) with at least a semipermeable membrane (5, 105, 205, 305); a concentrate chamber (7,107,307) downstream of the filtration chamber (4,104,304); and at least one neck (3, 103, 303) connecting the sample chamber (2, 102, 302) to the filtration chamber (4, 104, 304) and whose volume is less than the volume contained in the concentrate chamber (7). , 107, 307) and the filtration chamber (4,104,304).
  • the volume of the neck (33,103,303) is less than 1/5 of the volume contained in the concentrate and filtration chambers.
  • the cross-sectional area of the neck (3,103,303) is less than 1 mm 2 .
  • a long narrow neck between the sample chamber, which is closest to the spin axis of the centrifuge, and the filtration chamber, which is farthest from said axis of rotation preferably a neck with a volume of less than 1/5 of the volume contained in the concentrate and filtration chambers, and a cross-sectional area preferably less than 1 mm 2 , can maintain the pressure at high levels throughout the filtration process, allowing for greater factors to be achieved. concentration and reduce the filtration time.
  • the housing further comprises a concentrate removal channel (133, 333) that connects the sample chamber (102, 302) to the concentrate chamber (107, 307), and through which it can be insert a flexible tube to remove the liquid mixture concentrated.
  • This channel also allows to easily eliminate air pockets in the filtration and concentrate chambers at the beginning of centrifugation.
  • the device further comprises at least one permeate channel (144, 237, 346, 347) which connects the permeate side of the filtration membrane to the permeate chamber and permits the permeate flow to be conducted. to the permeate chamber.
  • the normal vector on the active side of the membrane is at an angle of approximately 90 ° with the centrifugal acceleration vector to maximize the self-cleaning action of the concentration boundary layer.
  • the centrifugal filtration device comprises two filtration chambers (304a, 304b) with two semipermeable membranes (305a, 305b) facing each other on opposite sides of the filtration chamber. 304, and a neck 303 leading into two independent conduits 303a, 303b, which in turn flow into the filtration chambers 304a and 304b.
  • the semipermeable membranes (5, 105, 205, 305) have a molecular exclusion limit in the range of reverse osmosis and nanofiltration, i.e. between 100 Da and 1000 Da.
  • a molecular exclusion limit in the range of reverse osmosis and nanofiltration, i.e. between 100 Da and 1000 Da.
  • membranes nanofiltration or reverse osmosis to achieve reasonable filtration flows and solute rejections, as well as high concentration factors, it is necessary to operate at pressures typically between 5 and 80 bar. THE The device of the invention avoids the rapid decrease of the supply pressure as soon as the liquid level in the sample chamber decreases, keeping the pressure at high levels throughout the filtration process, which allows to reach higher concentration factors and reduce the filtration time. .
  • the semipermeable membranes (5, 105, 205, 305) have a molecular exclusion limit in the range of ultrafiltration or microfiltration, i.e. between 1 kDa and 1000 kDa.
  • the invention further relates to a method for concentrating a liquid mixture comprising the following steps: a) providing a centrifugal filtration device (100, 200 or 300) according to claims 1 to 8;
  • step e) of said method the spin speed of the centrifuge is set to gradually increase from a given starting value to a given ending value throughout the filtration process.
  • FIG. 1 shows a generic sketch of a centrifugal filtration device. This figure is used herein to describe and explain the fundamentals of operation of the object of the invention.
  • Centrifugal filtration device 1 comprises a sample chamber (2), at least one narrow neck (3) connecting the sample chamber (2) to a filtration chamber (4), a semipermeable membrane (5) which allows permeate passage from the filtration chamber (4) to a permeate chamber (6), and a concentrate chamber (7). All components are placed inside a housing and in this case it is assumed that centrifugal acceleration acts horizontally from left to right.
  • FIG. 2 shows the general sketch of the centrifugal filtration device 1 shown in FIG. 1 during operation.
  • the centrifugal filtration device (1) rotates at an angular velocity ⁇ about the axis of rotation of the centrifuge.
  • the liquid sample (2a) placed in the sample chamber (2) flows into the narrow neck (3). From this neck it then flows into the filtration chamber (4) where permeation occurs. Part of the concentrated sample then accumulates in the concentrate chamber (7). As the process A portion of the liquid sample permeates through the membrane (5) and is collected as permeate (6a) in the permeate chamber (6).
  • the centrifugal force creates a self-cleaning mechanism that causes the fluid elements concentrates the membrane deviate from this in the radial direction.
  • the more concentrated fluid elements are projected toward the concentrate chamber (7), which ends up being largely concentrated in the liquid sample (7b).
  • the angle ⁇ between the wall surface (2c) and the centrifugal force vector must be between 90 ° and 180 °.
  • the narrow neck (3) allows the high transmembrane pressure difference to be maintained throughout most of the filtration cycle.
  • the centrifugal filtration device is designed so that the level of the sample feed reaches the narrow neck inlet when the desired concentration factor has already been reached. That way, transmembrane pressure never decays much throughout the filtration cycle.
  • FIG. 3 shows an isometric sketch of embodiment 1, or embodiment 2, of the centrifugal filtration device of the invention.
  • the housing of centrifugal filter device 100 (or 200 for embodiment 2) is comprised of several parts.
  • the cap (110) fits into a hole in the upper surface (121) of the upper part (120).
  • the bottom edge surface of the upper part 120 connects to the membrane support part 140 (240) for embodiment 2 which in turn connects to the bottom part 150 which preferably has , a hemispherical shape, suitable for insertion into typical centrifuge rotors.
  • the support portion (140) has a porous plate or a micro channel surface beneath the membrane to allow the permeate to flow into the permeate chamber (106) within the bottom portion (150) (see FIG. 4).
  • Embodiment 1 uses a single membrane (105) glued by its edges to the upper surface (141) of the membrane support portion (140).
  • the adhesive for bonding the membrane edges to the upper surface (141) must be compatible with the liquid sample solvent and the upper surface material (141).
  • epoxy or polyurethane based adhesives may be used.
  • the membrane support portion 140 is secured between the upper portion 120 and the bottom portion 150.
  • Two o-rings (142 and 143) ensure fluid tightness in the filtration (104), concentrate (107) and permeate (106) chambers.
  • At least one narrow permeate channel (144) interconnects the surface (141) of the membrane support (140) to the permeate chamber (106) at the bottom (150) of the centrifugal filtration device.
  • the upper surface (141) may have a porous plate or a set of grooves to facilitate permeate flow towards the narrow permeate channel (144).
  • the filtration chamber (104) is defined as the void space between the membrane (105) and the lower surface of the inner block (130).
  • the height of the filtration chamber (104) is determined by the height of the edge (132) of the lower surface of the inner block (130). For this reason, the effective membrane area is smaller than the upper surface area (141) of the membrane support (140) and depends on the edge dimensions (132). A clearer description of edge 132 can be seen in FIG. 10.
  • the camera The sample (102) is bounded between the upper part of the inner block (130) and the inner surface of the upper part (120).
  • the sample chamber 102 should be located as far away from the filtration chamber as possible and as close as possible to the axis of rotation.
  • the inner block (130) there are grooved narrow channels connecting the sample chamber (102) to the filtration (104) and concentrate (107) chambers.
  • One of the grooved channels is the narrow neck (103), which corresponds to the narrow neck (3) outlined schematically in FIG. 1.
  • Narrow neck 103 which is not visible in FIG. 3, but is visible in FIG. 6 connects the sample chamber (102) to the filtration chamber (104), allowing the liquid sample to be fed to the filtration chamber.
  • a flexible capillary tube can be inserted into the narrow channel (133) (concentrate removal channel) and thereby sucked out the concentrate from the concentrate chamber (107).
  • the narrow channel (133) (concentrate removal channel) also facilitates the passage of the liquid sample into the filtration chamber at the initial stage of centrifugation, allowing any air pockets to be eliminated.
  • a first vent hole (123) connected to the sample chamber (102). This prevents the occurrence of vacuum at the end of the filtering cycle, which could damage the membrane.
  • a second vent (145) is located in the membrane support portion (140) and connects to the permeate chamber (106). Finally, the upper part 120 may be closed with the lid (110), which has a sealing o-ring (111).
  • FIG. 5 The top view of embodiment 1 of the invention is in FIG. 5 showing the location of the cross-section A-A to be used in FIGS. 6, 7, 8 and 9.
  • FIG. 6 shows the sectional view of embodiment 1 of the invention according to section A-A defined in FIG. 5.
  • the connections between the various chambers and the two ventilation holes are visible in FIG. 6.
  • the narrow neck (103) connects the sample chamber (102) to the filtration chamber (104).
  • the narrow neck (103) is formed by a groove in the inner block (130).
  • the sample chamber (102) is defined as the void space between the inner block (130) and the top part (120).
  • the surface (131) of the inner block (130), which defines the sample chamber, makes an angle ⁇ to the vertical axis of the centrifugal filtration device.
  • FIG. 7 shows a cross-sectional view of embodiment 1 of the invention according to section AA defined in FIG. 5, when the centrifugal filtration device is placed within the fixed angle rotor of a centrifuge with angle ⁇ .
  • angle ⁇ should preferably be between 90 ° and 180 °
  • angle a should preferably be close to angle ⁇ of the rotor so that the membrane is aligned with centrifugal acceleration.
  • FIGs. 8 and FIG. 9 show that of embodiment 1 of the centrifugal filter device positioned in the same configuration shown in FIG. 7, but in two different filtration phases.
  • FIG. 8 shows the initial phase, prior to filtration, where the liquid sample (102a) fills the entire space defined by the sample chamber (102), the narrow neck (103), the second narrow channel (133) (concentrate removal channel). ), the filtration chamber (104) and the concentrate chamber (107).
  • FIG. 9 illustrates the final phase of the filtration process, where permeate chamber 106 already contains most of the permeate liquid 106a that has permeated through the membrane, while concentrated liquid 107a is trapped in the concentrate chamber (10). 107).
  • Embodiment 2 of the invention is similar to embodiment 1 already described, but includes an additional membrane in the filtration chamber. This doubles the membrane area and halves the time required to concentrate the fluid sample.
  • This embodiment 2 of the centrifugal filtration device is illustrated in FIG. 10.
  • the additional membrane (205b) is disposed on the lower surface of the inner block (230) and the second permeate channel (237) connects the permeate side of the membrane (205b) to the permeate chamber (106).
  • the second permeated channel (237) comprises two sections: a channel section (238) within the inner part of the block (230) and another section (246) within the membrane support part (240).
  • the perforated rod (236) connects the channel section (238) in the inner block (230) to the channel section (246) in the membrane holder (240).
  • the second membrane 205b is glued to the lower surface of the inner block 230 using the same type of bonding as previously described for gluing the first membrane.
  • FIG. 11 The top view of embodiment 2 of the invention is shown in FIG. 11 which shows the location of the cross section BB to be used in FIG. 12. Cut section BB changes direction in position aligned with the center of the permeate channel (144) to pass through the middle of the perforated rod (236). The region defined by the dashed line C is enlarged in FIG. 13.
  • the permeated channel 237 is shown in FIG. 13 as a tube with bends. However, sections 238 and 246 of permeate channel 237 may be straight channels made by perforation.
  • FIG. 14 shows an isometric perspective sketch of embodiment 3 of the centrifugal filtration device of the invention.
  • the external portion of the centrifugal filtration device (300) comprises an outer part (350) and a lid (310) at the top thereof. There are also two holes to prevent pressure imbalance at the end of filtration and to prevent membranes from rupturing. On the side surface of the outer part 350 is the hole 351 connected to the permeate chamber. On the top surface of the cap (310) is the hole (312) connected to the sample chamber.
  • the shape of the centrifugal filtration device (300) should preferably be designed so that this device can be inserted into standard centrifuge rotors.
  • FIG. 15 shows the exploded isometric view of embodiment 3 of the invention. All internal parts of centrifugal filtration device (300) are supported on edge (352) of outer part (350).
  • the novelty of embodiment 3 of the invention is the use of an inner block (330) separating the sample chamber (302) from the filtration chamber (304).
  • the membrane 305a is supported in the slot 342, while the membrane 305b is supported in a similar slot on the opposite side.
  • the surfaces of these grooves should preferably have a set of protrusions or porous surfaces to facilitate passage of permeate flow to permeate reservoir (306).
  • Each of the membrane support pieces (340 and 341) has at least one permeate channel (346 and 347), respectively, to conduct permeate flow into the permeate chamber (306).
  • the permeate chamber (306) is defined by the inner walls of the outer shell (350).
  • the membrane support pieces (340 and 341) are attached to the edges (361a and 361b) of the inner part (360).
  • the assembly comprising the parts (340, 341 and 360) is capped by the lid (310) and fits within the outer part (350), the edge (362) of the inner part (360) being supported at the edge (352) of the outside (350).
  • the inner block (330) fits into the inner part (360), creating the filtration chambers (304a and 304b) that lie between the inner block (330) and the membranes (305a and 305b). .
  • the thickness of the filtration channels is determined by the dimensions of the rod (339) of the inner block (330).
  • Inner block (330) is supported by lip engagement (338) at end (363) of inner part (360).
  • the sample chamber (302) is created by a cavity in the top of the inner block (330).
  • the neck 303 connects the deepest part of the sample chamber 302 to the filtration chambers 304a and 304b through the auxiliary narrow channels 303a and 303b.
  • a narrow channel (333) concentrate removal channel
  • This channel also allows to easily eliminate air pockets in the filtration chambers at the beginning of centrifugation.
  • Embodiment 3 of the invention can be further understood using the sectional sections DD and EE outlined in FIG. 16 illustrating the top view of embodiment 3 of the invention.
  • Section DD is seen from the front in FIG. 17.
  • fresh sample liquid flows from the sample chamber (302) into the narrow neck (303).
  • the narrow neck then flows into the ducts (303a and 303b) which in turn flow into the filtration chambers (304a and 304b), where are the membranes (305a and 305b).
  • the concentrated sample is collected in the concentrate chamber of (307).
  • the permeate passes through the channels 346 and 347 and is collected in the permeate chamber 306.
  • FIG. 18 shows the cross-sectional view of embodiment 3 of the invention along section E-E defined in FIG. 16.
  • the narrow channel (333) concentrate removal channel
  • in the center of the device may be used to withdraw concentrated sample at the end of filtration or to facilitate the elimination of air pockets that may initially exist in the filtration chambers.
  • Another option for removing the concentrate from embodiment 3 of the invention is to detach the lid (310) and the outer part (350) from the assembly, insert a reservoir (370) through the opening of the inner block part (330) and perform a low speed spin with the inverted device.
  • This procedure is best understood with the aid of FIG. 19.
  • the additional reservoir (370) is inserted into the top of the inner block (330) and the new assembly is inverted and centrifuged at a low rotational speed. .
  • the concentrated liquid that was in the concentrate chamber 307 flows into the chamber 371, where it can be collected as the concentrated sample 307a, after separating the reservoir 370 from the device.
  • the centrifugal filtration device may utilize reverse osmosis membranes, nanofiltration membranes with a molecular exclusion limit that is typically between 100 Da and 1 kDa, or ultrafiltration membranes with a molecular exclusion limit between 1 kDa and 1000 kDa.
  • centrifugal filtration device To evaluate the performance of the centrifugal filtration device disclosed in this invention, various centrifugal filtration experiments were performed with aqueous sucrose solutions using embodiment 1 of the object of the invention, with an angle ⁇ of 30 ° and an angle ⁇ of 34 °. .
  • the prototype used has a height of 103 mm and a width of 28.7 mm and was manufactured from an aluminum light alloy (with the exception of the Teflon inner block 130 and the polyinitrile o-rings 111, 142 and 143).
  • sample chamber 102 has a volume of about 3.2 mL.
  • Sucrose was selected as the reference solute because it has a molecular weight of 342.3 g / mol which is in the range of nanofiltration molecular exclusion limit.
  • concentration factor CF
  • C a the concentration factor
  • An apparent rejection close to 1 indicates that the membrane prevents the passage of solute to the permeate.
  • NFX nanofiltration membrane manufactured by Synder Filtration (Vacaville, USA) was used.
  • the membrane which according to the manufacturer has a limit of Nominal molecular exclusion between 150 and 300 Da was bonded to the backing using two epoxy resins: Ceys Araldite Standard (Spain) and Omega Omegabond OB-101 (USA).
  • the membrane was glued to the surface (141) of the membrane support portion as described below.
  • a surface-shaped membrane piece (141) was cut from a new membrane sheet.
  • a thin wire (about 1 mm) of Omegabond OB-101 blend was scattered about 2 mm from the edges of either the surface (141) of the centrifugal filter device or the surface of the membrane polyester support (105).
  • the surface of the membrane polyester support (105) was brought into contact with the surface (141) of the membrane support part (140) and the time required for curing the adhesives was waited according to the manufacturers' instructions. glues. After the adhesives were cured, a thin layer of Araldite Standard mixture was spread to about 3 mm from the membrane edge (105) (including the lip) to ensure their sealing. After curing of the glue, the filtration device according to embodiment 1 was fit for use.
  • the permeate and concentrate sucrose concentrations at the end of filtration were determined using the Atago DD-5 differential refractometer (Japan). In all examples a Sorvall RC6 centrifuge with a fixed angle F10-6x500y rotor was used. An adapter was attached to this rotor such that the angle ⁇ was 34 °.
  • the sample chamber volume was about 3.2 mL
  • the narrow neck length was 1.9 cm
  • the volume contained in the narrow neck was 0.018 mL
  • the volume contained in the sample chambers Concentration and filtration was 0.1 mL in Examples 1 and 2 and 0.4 mL in Example 3.
  • the ratio between the volume of the neck and the volume contained in the concentrate and filtration chambers was then always less than 1/5 (this ratio is 0.18 in examples 1 and 2 and 0.04 in example 3).
  • the cross-sectional area of the narrow neck was 1 mm 2 .
  • a 3.2 mL volume of aqueous sucrose solution with a concentration of 7.7 g / l was filtered according to the present method disclosed in the invention (see Table 1).
  • the height of the filtration chamber ie the distance from the membrane surface 105 to the lower surface of the inner part of the block 130, was 0.2 mm.
  • the membrane Prior to filtration of the sample itself, the membrane was washed with water to remove the preservative and protective substances from the membrane placed by the membrane manufacturer. To this end, 3.2 mL of deionized water was filtered into the centrifugal filtration device at a rotation speed of 6000 rpm for 30 minutes and the process repeated once. Under these conditions, the average pressure in the filtration chamber 104 at the beginning of the filtration cycle is 16 bar. After washing the membrane, 3.2 ml of sucrose solution was filtered over 45 minutes at a rotation speed of 6000 rpm. This filtration time was sufficient for all the solution contained in the feed chamber to be filtered.
  • the permeate was removed from the permeate reservoir and the concentrated liquid sample was suctioned from the device using a flexible capillary tube and syringe according to the method described in the present invention. Under these conditions, it was possible to extract from the centrifugal filtration device about 105 ⁇ concentrate, which had an average concentration of 117 g / l sucrose. The apparent rejection obtained in this assay was 97%.
  • this example proves that through embodiment 1 of the object of the invention it is possible to concentrate 3.2 ml of an aqueous sucrose solution with a concentration of 7.7 g / l to obtain 105 ⁇ of concentrated solution to give a concentration factor of 15, with an apparent rejection of 97%.
  • FIG. 20 shows the evolution of the average permeate flow rate at each time interval and the sucrose concentration in the concentrate at the end of each interval.
  • the average permeate flow rate is the average permeate volume that crosses the membrane per unit time and was obtained by determining the accumulated permeate volume in the permeate chamber 106 at the different time intervals shown in FIG. 20.
  • centrifugal filtration device disclosed in this invention achieves high repeatability between assays, and the membrane used in the different assays was always the same, it was possible to determine the average permeate volume between two generic t1 and t2, ie in the time interval [tl, t2], calculating the accumulated permeate volume difference in centrifugal filtration tests with different filtration times tl and t2. Thus, for each interval [tl, t2] a filtration time test t2 was performed always starting from

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Centrifugal Separators (AREA)

Abstract

The present invention relates to a centrifugal filtration device and a method for concentrating, fractionating, purifying and/or desalinating small volumes of liquid samples, using reverse osmosis, nanofiltration or ultrafiltration membranes. The device comprises a shell, which comprises a sample chamber (102) with at least one ventilation orifice (123); a permeate chamber (106) with at least one ventilation orifice (145); a filtration chamber (104) with at least one semi-permeable membrane (105); a concentrate chamber (107) downstream of the filtration chamber (104); and at least one neck (103) connecting the sample chamber (102) to the filtration chamber (104) and the volume of which is less than the volume contained in the concentrate (107) and filtration (104) chambers. The device is particularly suited to performing nanofiltration or reverse osmosis on liquid samples with high osmotic pressures. Filtration takes place by means of the rotation of the centrifugal filtration device about a rotation shaft in a centrifuge. By using a long, narrow neck between the sample chamber, which is closer to the rotation shaft of the centrifuge, and the filtration chamber, which is further away from said rotation shaft, it is possible to maintain the pressure at high levels throughout the filtration process, which allows higher concentration factors to be achieved and the filtration time to be reduced.

Description

DESCRIÇÃO  DESCRIPTION
DISPOSITIVO DE FILTRAÇÃO CENTRÍFUGA E MÉTODO PARA CONCENTRAÇÃO DE MISTURAS LÍQUIDAS CENTRIFUGAL FILTRATION DEVICE AND METHOD FOR CONCENTRATION OF LIQUID MIXTURES
CAMPO DA INVENÇÃO FIELD OF INVENTION
A presente invenção refere-se a um dispositivo de filtração centrífuga e um método para concentração, fracionamento, purificação, e / ou dessalinização de amostras líquidas de pequeno volume, usando membranas de osmose inversa, nanofiltração ou ultrafiltração . O dispositivo de filtração centrífuga é particularmente adequado para fazer nanofiltração ou osmose inversa de amostras líquidas com pressões osmóticas elevadas. The present invention relates to a centrifugal filtration device and a method for concentration, fractionation, purification, and / or desalination of small volume liquid samples using reverse osmosis, nanofiltration or ultrafiltration membranes. The centrifugal filtration device is particularly suitable for nanofiltration or reverse osmosis of liquid samples with high osmotic pressures.
ESTADO DA TÉCNICA TECHNICAL STATE
Misturas líquidas podem ser fracionadas utilizando processos de separação com membranas conduzidos por diferença de pressão, tendo em conta o peso molecular dos componentes das misturas líquidas e o limite de exclusão molecular da membrana. Dependendo da gama de pesos moleculares, podem ser utilizadas membranas de microfiltração, ultrafiltração, nanofiltração e osmose inversa, as quais operam em gamas de pressão diferentes. Para volumes maiores do que centenas de mililitros, a filtração tangencial de membrana é geralmente a melhor alternativa para concentrar essas misturas, uma vez que o escoamento tangencial minimiza a polarização de concentração. Para volumes de misturas líquidas entre poucos mililitros e centenas de mililitros, uma técnica comum para fracionar e concentrar pequenos volumes de misturas liquidas é a filtração centrífuga. Como o próprio nome diz, com esta técnica a diferença de pressão de transmembranar é criada pela aceleração centrífuga no interior de uma centrifugadora . Liquid mixtures may be fractionated using pressure difference driven membrane separation processes, taking into account the molecular weight of the components of the liquid mixtures and the molecular exclusion limit of the membrane. Depending on the molecular weight range, microfiltration, ultrafiltration, nanofiltration and reverse osmosis membranes can be used, which operate at different pressure ranges. For volumes greater than hundreds of milliliters, tangential membrane filtration is generally the best alternative for concentrating such mixtures, as tangential flow minimizes concentration bias. For liquid mix volumes between a few milliliters and hundreds of milliliters, a common technique for fractionating and concentrating small volumes of liquid mixtures is centrifugal filtration. As its name implies, with this technique the difference in transmembrane pressure is created by centrifugal acceleration inside a centrifuge.
Em comparação com os processos de filtração de membrana frontal, a filtração centrífuga tem a vantagem de impelir os elementos de fluido mais densos, que se acumulam na superfície da membrana, para longe do eixo de rotação sob o efeito da força centrífuga. Com a orientação adequada da membrana, a camada limite de concentração que se forma junto da membrana pode ser afastada da membrana pela força centrífuga, proporcionando um mecanismo de auto-limpeza, reduzindo a polarização da concentração e mantendo o fluxo de filtração elevado. Compared to the front membrane filtration processes, centrifugal filtration has the advantage of propelling the denser fluid elements that accumulate on the membrane surface away from the axis of rotation under the effect of centrifugal force. With proper membrane orientation, the concentration boundary layer that forms near the membrane can be removed from the membrane by centrifugal force, providing a self-cleaning mechanism, reducing concentration bias and maintaining high filtration flow.
Há vários dispositivos de filtração centrífuga descritos na literatura, mas todos eles foram desenvolvidos para microfiltração e / ou ultrafiltração . O aparelho, inventado por P.N. Rigopulos, revelado na Pat . US 3,488,768 foi provavelmente o primeiro dispositivo de filtração centrífuga de amostras líquidas de pequeno volume. Esta patente descreve várias concretizações de um dispositivo de filtração centrífuga em que o ângulo entre o vetor de força centrífuga e a superfície da membrana é preferencialmente inferior a 15° para garantir uma remoção eficiente da camada concentrada na vizinhança da membrana. O principal inconveniente deste dispositivo é que ele não impede a filtração de continuar até à secura completa do concentrado. De modo semelhante, o mesmo problema ocorre nos dispositivos de filtração centrífuga revelados na Pat. US 4, 683, 058, concedida a G.F. Lyman e G. Mathus, e na Pat. EP 0298513, concedida a A. Szabados, uma vez que estes dispositivos não apresentam locais onde o concentrado se pode acumular sem secar. There are several centrifugal filtration devices described in the literature, but all of them have been developed for microfiltration and / or ultrafiltration. The apparatus, invented by PN Rigopulos, disclosed in U.S. Pat. US 3,488,768 was probably the first centrifugal filtration device for small volume liquid samples. This patent describes various embodiments of a centrifugal filtration device wherein the angle between the centrifugal force vector and the membrane surface is preferably less than 15 ° to ensure efficient removal of the concentrated layer in the vicinity of the membrane. The main drawback of this device is that it does not prevent filtration from continuing to complete concentrate dryness. Similarly, the same problem occurs in centrifugal filtration devices disclosed in U.S. Pat. No. 4,683,058 issued to GF Lyman and G. Mathus, and in U.S. Pat. EP 0298513, issued to A. Szabados, a Since these devices do not have locations where concentrate can accumulate without drying.
A filtração até à secura pode ser evitada melhorando a conceção dos dispositivos de filtração centrífuga. Na Pat . US. 4,632,761, concedida a W.F. Bowers e P.N. Rigopulos, descreve-se um dispositivo de filtração centrífuga em que a membrana é suportada por uma placa que tem canais de drenagem de permeado. A filtração pára antes da secura, quando o nível de menisco do líquido atinge o nível radial do bordo mais externo da conduta de drenagem do permeado mais exterior e, consequentemente, uma certa quantidade de concentrado permanece no dispositivo no final do processo de filtração, independentemente do tempo de filtração decorrido. A principal desvantagem deste dispositivo resulta do concentrado ainda ficar em contacto com a membrana, o que pode levantar problemas de adsorção de soluto. Filtration to dryness can be avoided by improving the design of centrifugal filtration devices. In Pat. US 4,632,761 issued to W.F. Bowers and P.N. Rigopulos, a centrifugal filtration device is described wherein the membrane is supported by a plate having permeate drainage channels. Filtration stops before dryness, when the liquid meniscus level reaches the radial level of the outermost edge of the outermost permeate drainage conduit, and consequently a certain amount of concentrate remains in the device at the end of the filtration process, regardless of of the elapsed filtration time. The main disadvantage of this device is that the concentrate is still in contact with the membrane, which can raise solute adsorption problems.
Para minimizar o contacto de soluções altamente concentradas com a membrana foram desenvolvidos dispositivos de filtração centrífuga distintos, compreendendo uma câmara de concentrado que recebe o concentrado. Normalmente, a câmara de concentrado está localizada no nível radial mais exterior, de modo a maximizar o arrastamento dos elementos de fluido mais pesados e mais concentrados para essa câmara. Exemplos de dispositivos com este tipo de câmara de concentrado estão descritos nas seguintes patentes: Pat. US 4, 722, 792, concedida a T. Miyagi et al . , US 5, 647, 990, concedida a V. Vassarotti, US 6,357,601, concedida a W.F. Bowers et al . , US 8.747.670, concedida a L. Bonhomme et al . Um interessante dispositivo de filtração centrífuga foi revelado na Pat. US 6,719,896, concedida a P. Clark, na qual o volume final de concentrado é ajustado pelo utilizador por desobstrução das condutas de permeado. Estas condutas de permeado são preparadas no processo de fabrico do dispositivo e o utilizador necessita apenas destapar as condutas correspondentes ao volume de concentrado final desejado. To minimize contact of highly concentrated solutions with the membrane, separate centrifugal filtration devices have been developed comprising a concentrate chamber receiving the concentrate. Typically, the concentrate chamber is located at the outermost radial level to maximize the dragging of the heavier and more concentrated fluid elements into that chamber. Examples of devices with this type of concentrate chamber are described in the following patents: Pat. US 4,722,792 issued to T. Miyagi et al. , US 5,647,990, issued to V. Vassarotti, US 6,357,601, issued to WF Bowers et al. , US 8,747,670 issued to L. Bonhomme et al. An interesting centrifugal filtration device has been disclosed in U.S. Pat. US 6,719,896 issued to P. Clark, in which the final volume of concentrate is adjusted by the user by clearance of permeate ducts. These permeate ducts are prepared in the device manufacturing process and the user only needs to uncover the ducts corresponding to the desired final concentrate volume.
Outro fator significativo que pode influenciar o desempenho da filtração é o ângulo entre a superfície da membrana e o vetor da força centrífuga. Para um dado dispositivo de filtração centrífuga, esse ângulo varia com o tipo de rotor da centrifugadora . Numa centrifugadora de rotor basculante o dispositivo roda na horizontal, enquanto que numa centrifugadora de rotor de ângulo fixo, o dispositivo roda com uma dada inclinação relativamente ao eixo de rotação. Muitas configurações com ângulos diferentes entre a superfície da membrana e o eixo do dispositivo de filtração centrífuga foram reveladas em invenções anteriores. Quando a superfície da membrana é perpendicular ao eixo do dispositivo de filtração centrífuga, não existe alinhamento entre a superfície da membrana e o vetor de força centrífuga, o que conduz a uma fraca auto-limpeza da membrana, no caso de centrifugadoras de ângulo fixo, ou mesmo sem auto-limpeza, no caso de centrifugadoras de rotor basculante, o que pode resultar no entupimento da membrana (ver, por exemplo, as Pat. US 3,583,627, concedidas a O.H. Wilson, US 4,632,761, concedida a W.F. Bowers e P.N. Rigopulos, US 4, 683, 058, concedida a G.F. Lyman e G. Mathus, US 5,601,711, concedida a E. Sklar et al . , US 5, 733, 449, concedida a W.F. Bowers e B. Yankopoulos, US 7,658,982, concedida a D. Schwarzwald e as patentes europeias EP 0298513, concedida a A. Szabados, EP 0709132, emitida a G. Cianci e EP 2260943, concedida a M.M. Klerks) . A ação de autolimpeza da superfície da membrana pode ser fomentada se a superfície da membrana estiver paralela ao eixo do dispositivo de filtração centrífuga ou se estiver inclinada num pequeno ângulo em relação a este eixo (ver, por exemplo, as Patentes US 4,600,507, concedidas a A. Shimizu eAnother significant factor that may influence filtration performance is the angle between the membrane surface and the centrifugal force vector. For a given centrifugal filtration device, this angle varies with the centrifuge rotor type. In a tilting rotor centrifuge the device rotates horizontally, while in a fixed angle rotor centrifuge the device rotates at a given inclination relative to the axis of rotation. Many configurations with different angles between the membrane surface and the axis of the centrifugal filtration device have been disclosed in previous inventions. When the membrane surface is perpendicular to the axis of the centrifugal filtration device, there is no alignment between the membrane surface and the centrifugal force vector, which leads to poor membrane self-cleaning in the case of fixed angle centrifuges, or even without self-cleaning in the case of tilting rotor centrifuges, which may result in membrane clogging (see, for example, U.S. Pat. Nos. 3,583,627, OH Wilson, US 4,632,761, WF Bowers and PN Rigopulos , US 4,683,058, issued to GF Lyman and G. Mathus, US 5,601,711, issued to E. Sklar et al., US 5, 733, 449, issued to WF Bowers and B. Yankopoulos, US 7,658,982, issued to D. Schwarzwald and European Patents EP 0298513, issued to A. Szabados, EP 0709132, issued to G. Cianci and EP 2260943, issued to MM Klerks). The self-cleaning action of the membrane surface may be enhanced if the membrane surface is parallel to the axis of the centrifugal filtration device or if it is inclined at a slight angle to this axis (see, for example, US Patent 4,600,507 issued to A. Shimizu and
5. Otsubo, US 4,722,792, emitidas a T. Miyagi et al., US 4,769,145, concedida a M. Nakajima, US 5,112,484, concedida a P. Zuk Jr . , US 5,647,990, concedida a V. Vassarotti, US 6, 344, 140, concedida a P. Zuk Jr . , US 6,375,855, concedida a V. Vassarotti, e US 8,747,670, concedida a L. Bonhomme et al . ) · Outra medida para manter a membrana limpa é a de inverter a orientação da membrana de tal modo que o vetor normal ao lado ativo da membrana (face da membrana virada para a câmara de permeado) aponta, pelo menos em certa medida, na mesma direção que o do vetor de força centrífuga. Neste tipo de dispositivo de filtração centrífuga, a membrana é, normalmente, colocada na base de um pistão que pressiona contra a mistura líquida a filtrar. O permeado passa através da membrana para uma câmara de permeado interna (no interior do pistão) e o fluido concentrado é arrastado para longe da membrana devido à força centrífuga (ver, por exemplo, os dispositivos revelados nas patentes US 3,661,265, concedida a D.J. Greenspan , US 3,960,727, concedida a H.T. Hochstrasser, US 4,522,713, concedida a D. Nussbaumer et al . , US 4, 832, 851, concedida a W.F. Bowers e D.B. Tiffany, US 5,490,927, concedida a A.E. Herczeg, e US 6,302,919 concedida a B. Chambers et al . 5. Otsubo, US 4,722,792, issued to T. Miyagi et al., US 4,769,145, issued to M. Nakajima, US 5,112,484, issued to P. Zuk Jr. , US 5,647,990, issued to V. Vassarotti, US 6, 344, 140, issued to P. Zuk Jr. , US 6,375,855 to V. Vassarotti, and US 8,747,670 to L. Bonhomme et al. ) · Another measure to keep the membrane clean is to reverse the orientation of the membrane such that the normal vector on the active side of the membrane (membrane face towards the permeate chamber) points, at least to some extent, to the same extent. direction of the centrifugal force vector. In this type of centrifugal filtration device, the membrane is usually placed at the base of a piston that presses against the liquid mixture to be filtered. The permeate passes through the membrane into an internal permeate chamber (inside the piston) and the concentrated fluid is drawn away from the membrane due to centrifugal force (see, for example, the devices disclosed in US Patent 3,661,265, to DJ Greenspan). , US 3,960,727, to HT Hochstrasser, US 4,522,713, to D. Nussbaumer et al., US 4,832,851, to WF Bowers and DB Tiffany, US 5,490,927, to AE Herczeg, and US 6,302,919 to B Chambers et al.
Embora uma maior área de membrana por unidade de volume possa resultar numa maior extensão de adsorção de soluto, nos últimos anos, alguns dos dispositivos de filtração centrífuga inventados maximizam a superfície da membrana de modo a aumentar o fluxo de filtração, como está descrito na Pat . USAlthough a larger membrane area per unit volume may result in a greater extent of solute adsorption, in recent years, some of the invented centrifugal filtration devices have maximized the membrane surface to increase filtration flow, as described in US Pat. . US
6, 357, 601, concedida a W.F. Bowers et al . , e na Pat. US 8,980,107, concedida a M.J. Domanico et al . Em muitos casos, a filtração pode também ser utilizada em conjunto com um processo de adsorção. Neste caso, algum tipo de modificação física ou química da superfície da membrana é primeiro realizada entre esta e um ligando específico que irá ligar, durante a filtração, a uma molécula alvo presente na amostra líquida. Dependendo do objetivo da filtração, a molécula alvo ligada pode então ser recuperada ou descartada. Exemplos de tais dispositivos foram revelados na Pat . US 5,552,325, concedida a S. Nochumson e B.S. Goldberg, US 5, 783, 037, concedido a D.R. Vlock et al . , US 5, 833, 860, concedida a W. Kopaciewicz et al . , US 7, 045, 064, concedida a T.N. Warner. 6,357,601 issued to WF Bowers et al. , and in Pat. US 8,980,107 issued to MJ Domanico et al. In many cases, filtration may also be used in conjunction with an adsorption process. In this case, some kind of physical or chemical modification of the membrane surface is first performed between it and a specific ligand that will bind, during filtration, to a target molecule present in the liquid sample. Depending on the purpose of filtration, the bound target molecule can then be recovered or discarded. Examples of such devices have been disclosed in U.S. Pat. US 5,552,325, issued to S. Nochumson and BS Goldberg, US 5,778,037, to DR Vlock et al. , US 5,833,860, issued to W. Kopaciewicz et al. , US 7,045,064 issued to TN Warner.
Nos dispositivos de filtração centrífuga, a massa de permeado produzido durante o processo de filtração é conduzida para um reservatório de permeado onde é recolhida facilmente no final do processo. No entanto, a massa de concentrado permanece na câmara junto da membrana e é necessário algum tipo de manipulação para retirá-la. Nas invenções divulgadas na literatura, existem três métodos principais para recolher o líquido concentrado: 1) recurso a um tubo acoplado a uma seringa, 2) recurso a uma centrifugação adicional após o processo de filtração, acoplando uma câmara complementar para remoção de concentrado (ver a Pat US 5, 112, 484, concedida a P. Zuk Jr . , e a Pat. US 5,490,927, concedida a A.E. Herczeg) ou 3) recurso a uma centrifugação adicional invertendo o dispositivo de filtração centrífuga (ver a Pat. US 4,632,761, concedida a W.F. Bowers e P.N. Rigopulos, a Pat. US 5, 501, 841, concedida a Y.C. Lee et al . , e a Pat. US 8, 747, 670, concedida a L. Bonhomme et al . ) . Existem vários dispositivos de filtração centrífuga comerciais disponíveis para volumes de amostra desde cerca de 0,5 mL até 100 mL, mas todos eles usam apenas membranas de microfiltração ou de ultrafiltração . Os dispositivos com membranas de ultrafiltração têm um limite de exclusão molecular tipicamente entre 1 kDa e 1000 kDa . Isso significa que, hoje em dia, os dispositivos de filtração centrífuga podem ser aplicados para concentrar ou purificar vírus, bactérias ou macromoléculas , como proteínas. Para um peso molecular inferior a 1 kDa, situado na gama da nanofiltração e osmose inversa, não há dispositivos de filtração de centrífuga disponíveis no mercado. Isto significa que não existem dispositivos de filtração centrífuga capazes de concentrar pequenos peptídeos, drogas, toxinas, biomarcadores , etc. Estas pequenas moléculas apenas podem ser concentradas por membranas de nanofiltração ou osmose inversa. No entanto, com este tipo de membranas, para alcançar fluxos de filtração e rejeições de soluto razoáveis, bem como fatores de concentração elevados, é necessário operar a pressões tipicamente entre 5 e 80 bar. In centrifugal filtration devices, the permeate mass produced during the filtration process is conveyed to a permeate reservoir where it is easily collected at the end of the process. However, the concentrate mass remains in the chamber near the membrane and some manipulation is required to remove it. In the inventions disclosed in the literature, there are three main methods for collecting the concentrated liquid: 1) using a syringe-coupled tube, 2) using additional centrifugation after the filtration process, attaching a complementary concentrate removal chamber (see U.S. Patent 5,112,484 issued to P. Zuk Jr., and U.S. Pat. 5,490,927 issued to AE Herczeg) or 3) further centrifugation by inverting the centrifugal filtration device (see U.S. Patent 4,632,761). , issued to WF Bowers and PN Rigopulos, US Pat. 5,501,841, issued to YC Lee et al., and US Pat. 8,747,670, issued to L. Bonhomme et al.). There are several commercial centrifugal filtration devices available for sample volumes from about 0.5 mL to 100 mL, but all use only microfiltration or ultrafiltration membranes. Ultrafiltration membrane devices have a molecular exclusion limit typically between 1 kDa and 1000 kDa. This means that centrifugal filtration devices can now be applied to concentrate or purify viruses, bacteria or macromolecules such as proteins. For a molecular weight of less than 1 kDa in the range of nanofiltration and reverse osmosis there are no commercially available centrifugal filtration devices. This means that there are no centrifugal filtration devices capable of concentrating small peptides, drugs, toxins, biomarkers, etc. These small molecules can only be concentrated by nanofiltration or reverse osmosis membranes. However, with such membranes, to achieve reasonable filtration flows and solute rejections, as well as high concentration factors, it is necessary to operate at pressures typically between 5 and 80 bar.
A adaptação de dispositivos de filtração centrífuga para operar com alta pressão não é simples. De facto, embora a força centrífuga possa ser aumentada facilmente na centrifugadora, a pressão de alimentação começa a diminuir rapidamente assim que diminui o nível de líquido na câmara de amostra. Isto coloca um problema grave, uma vez que é no final do ciclo de concentração que a pressão de alimentação tem de ser elevada, para compensar a pressão osmótica da solução concentrada, que é máxima nesta fase final de concentração. Aumentar muito a aceleração centrífuga não resolve adequadamente este problema, uma vez que as membranas de nanofiltração e de osmose inversa podem compactar irreversivelmente a altas pressões. De facto, quando de ultrapassa muito a pressão máxima recomendadas pelos fabricantes de membranas, observa-se uma compactação irreversível grave das membranas (McConnon, 2015) , o que faz com que o fluxo de permeação diminua drasticamente ao longo do processo de concentração. Adapting centrifugal filtration devices to operate at high pressure is not simple. In fact, although centrifugal force can easily be increased in the centrifuge, the supply pressure begins to decrease rapidly as soon as the liquid level in the sample chamber decreases. This poses a serious problem as it is at the end of the concentration cycle that the supply pressure must be raised to compensate for the osmotic pressure of the concentrated solution, which is maximum at this final concentration phase. Increasing centrifugal acceleration too much does not adequately solve this problem as nanofiltration and reverse osmosis membranes can compact. irreversibly at high pressures. In fact, when the maximum pressure recommended by membrane manufacturers is far exceeded, severe irreversible membrane compaction is observed (McConnon, 2015), which causes the permeation flow to decrease dramatically throughout the concentration process.
É um objeto da invenção um dispositivo de filtração centrífuga e um método para o fracionamento, purificação, concentração e / ou dessalinização de amostras líquidas de misturas numa vasta gama de peso molecular, incluindo pesos moleculares abaixo de 1 kDa . An object of the invention is a centrifugal filtration device and a method for the fractionation, purification, concentration and / or desalination of liquid sample mixtures over a wide molecular weight range, including molecular weights below 1 kDa.
É um outro objeto da invenção a provisão de um dispositivo de filtração centrífuga que pode usar membranas de microfiltração, ultrafiltração, nanofiltração e de osmose inversa . It is another object of the invention to provide a centrifugal filtration device that can use microfiltration, ultrafiltration, nanofiltration and reverse osmosis membranes.
É um outro objeto do invento a provisão de um dispositivo de filtração centrífuga que é fácil de manusear, e tem procedimentos simples de injeção da amostra, e de remoção do permeado e do concentrado. It is another object of the invention to provide a centrifugal filtration device that is easy to handle, and has simple sample injection, and permeate and concentrate removal procedures.
Os problemas e limitações dos dispositivos de filtração centrífuga descritos no estado-da-arte, relacionados com a dificuldade concentrar e / ou purificar amostras líquidas por nanofiltração e osmose inversa, são superados pela provisão de um método e de um dispositivo para realizar o referido método, tal como está definido nas reivindicações anexas. SUMÁRIO DA INVENÇÃO The problems and limitations of state-of-the-art centrifugal filtration devices, related to the difficulty in concentrating and / or purifying liquid samples by nanofiltration and reverse osmosis, are overcome by providing a method and a device for performing said method. as defined in the appended claims. SUMMARY OF THE INVENTION
O dispositivo da invenção permite realizar o fracionamento, purificação, concentração e/ou de dessalinização de amostras liquidas de misturas de substâncias numa ampla gama de pesos moleculares, incluindo o caso particular de amostras liquidas com elevada pressão osmótica, utilizando também membranas de nanofiltração e de osmose reversa para realizar a separação. Usando um gargalo longo e estreito entre a câmara de amostra, que está mais próxima do eixo de rotação da centrifugadora, e a câmara de filtração, que está mais afastada do referido eixo de rotação, consegue-se manter a pressão a níveis elevados durante todo o processo de filtração, o que permite atingir maiores fatores de concentração e reduzir o tempo de filtração . The device of the invention enables the fractionation, purification, concentration and / or desalination of liquid samples of substance mixtures over a wide range of molecular weights, including the particular case of high osmotic pressure liquid samples, also using nanofiltration and reverse osmosis to perform separation. By using a long, narrow neck between the sample chamber, which is closest to the spin axis of the centrifuge, and the filtration chamber, which is farthest from said axis of rotation, the pressure can be maintained at high levels throughout the filtration process, which allows to reach higher concentration factors and reduce the filtration time.
Os dispositivos de filtração centrífuga anteriormente descritos apresentam uma grande parte do seu volume ocupado pela câmara de amostra que se prolonga até à região da membrana. No entanto, à medida que a amostra vai sendo filtrada, o seu volume vai reduzindo e a pressão do líquido diminui praticamente até zero. Como a pressão gerada pela força centrífuga varia de forma quadrática com a distância da interface ar / líquido da amostra até à membrana, após algum tempo decorrido desde o início do processo de filtração, o nível de líquido baixa e os valores da pressão e fluxo de permeado reduzem-se a uma pequena fração dos seus valores iniciais. Assim, para se atingir um fator de concentração elevado, é necessário aumentar muito o tempo de filtração. A operação a baixos fluxos também tem como consequência uma redução da rejeição de soluto, uma vez que a rejeição tem tendência a diminuir com a diminuição do fluxo de permeado. Para mitigar estes efeitos adversos, ou seja, o aumento do tempo de filtração e a redução do coeficiente de rejeição, a pressão de filtração pode, naturalmente, ser aumentada através do aumento gradual da velocidade de rotação da centrifugadora ao longo do ensaio. No entanto, o controlo da velocidade de rotação da centrifugadora é difícil ou mesmo impossível de implementar, porque o nível de líquido na câmara de amostra não é conhecido em tempo real. Para ultrapassar estas limitações importantes dos dispositivos de filtração centrífuga comuns, é aqui descrito um dispositivo de filtração centrífuga que mantém a pressão a um nível elevado durante a maior parte do processo de filtração. The centrifugal filtration devices described above have a large part of their volume occupied by the sample chamber extending to the membrane region. However, as the sample is filtered, its volume decreases and the liquid pressure decreases to practically zero. Since the pressure generated by the centrifugal force varies quadratically with the distance from the air / liquid interface of the sample to the membrane, after some time has elapsed since the filtration process began, the low liquid level and the pressure and flow values of permeate are reduced to a small fraction of their initial values. Thus, to achieve a high concentration factor, the filtration time needs to be greatly increased. Low flow operation also results in reduced solute rejection, as rejection tends to decrease with decreasing permeate flow. To mitigate these adverse effects, ie increased filtration time and reduced rejection coefficient, the filtration pressure can of course be increased by gradually increasing the centrifuge's rotation speed throughout the test. However, controlling the spin speed of the centrifuge is difficult or even impossible to implement because the liquid level in the sample chamber is not known in real time. To overcome these important limitations of common centrifugal filtration devices, a centrifugal filtration device that maintains high pressure throughout most of the filtration process is described herein.
Nesta invenção, a fim de manter a pressão elevada junto da membrana durante a maior parte do tempo do processo de filtração, a amostra líquida é colocada tão longe quanto possível da membrana, em termos de distância radial. Em termos práticos, isto significa que a amostra líquida é colocada numa câmara, aqui designada como a câmara de amostra, situada tão longe quanto possível da câmara de onde a membrana está localizada, aqui designada como câmara de filtração, e ambas as câmaras estão ligadas por um canal o mais fino possível, que é designado por gargalo estreito. Além disso, a maior parte do volume da amostra líquida inicial está confinada à câmara da amostra, a fim de garantir uma altura de líquido sempre elevada durante o ciclo de filtração. Usando este conceito inovador, a pressão é mantida a um nível elevado durante a maior parte do processo de filtração e a queda de pressão ocorre apenas no final da fase de filtração, em que já só resta na câmara de amostra uma pequena porção da amostra líquida inicial. Para prevenir a filtração até à secura, o dispositivo de filtração centrífuga tem também uma câmara para recolher os elementos de amostra concentrados que se deslocam para fora da membrana por ação da força centrífuga. Esta câmara é designada por câmara de concentrado . In this invention, in order to maintain the high pressure near the membrane for most of the filtration process, the liquid sample is placed as far as possible from the membrane in terms of radial distance. In practical terms, this means that the liquid sample is placed in a chamber, hereinafter referred to as the sample chamber, located as far as possible from the chamber from which the membrane is located, here designated as a filtration chamber, and both chambers are connected. by a channel as thin as possible, which is called a narrow neck. In addition, most of the initial liquid sample volume is confined to the sample chamber to ensure an always high liquid height during the filtration cycle. Using this innovative concept, pressure is maintained at a high level throughout most of the filtration process and pressure drop occurs only at the end of the filtration phase, with only a small portion of the liquid sample remaining in the sample chamber. initial To prevent filtration to dryness, the centrifugal filter device also has a chamber for collecting the sample elements. concentrates moving out of the membrane by centrifugal force. This chamber is called a concentrate chamber.
No final do ciclo de filtração, a pressão de alimentação pode ser vanta osamente aumentada por aumento da velocidade da centrífuga, desde que isso não comprometa a integridade mecânica do dispositivo de filtração centrífuga. Com este procedimento, a amostra líquida pode ser adicionalmente concentrada até ao ponto em que se atinja a pressão osmótica da solução concentrada ou que o fluxo de permeado tenda para zero devido à compactação da membrana. At the end of the filtration cycle, the supply pressure can be advantageously increased by increasing the centrifuge speed, provided this does not compromise the mechanical integrity of the centrifugal filtration device. With this procedure, the liquid sample may be further concentrated to the point where the osmotic pressure of the concentrated solution is reached or the permeate flow tends to zero due to membrane compaction.
BREVE DESCRIÇÃO DA INVENÇÃO BRIEF DESCRIPTION OF THE INVENTION
O dispositivo de filtração centrífuga da invenção compreende, mas não está limitado a, um invólucro que compreende uma câmara de amostra, uma câmara de filtração, uma câmara de concentrado, uma câmara de permeado, um gargalo estreito que liga a câmara de amostra à câmara de filtração e uma tampa para evitar o derramamento de líquido para o exterior do dispositivo. O corpo do dispositivo de filtração centrífuga descrito acima pode ser feito de uma única peça ou de várias peças, dependendo das formas de realização da invenção. Além disso, o sistema inclui também canais de ventilação das câmaras, para evitar que haja desequilíbrio de pressão entre a câmara de permeado e a câmara de filtração, após a paragem da centrifugadora . The centrifugal filtration device of the invention comprises, but is not limited to, a housing comprising a sample chamber, a filtration chamber, a concentrate chamber, a permeate chamber, a narrow neck connecting the sample chamber to the chamber. and a cap to prevent liquid from spilling out of the device. The body of the centrifugal filtration device described above may be made of one piece or several pieces depending on the embodiments of the invention. In addition, the system also includes chamber ventilation channels to prevent pressure imbalance between the permeate chamber and the filtration chamber after the centrifuge is stopped.
O modo de funcionamento do dispositivo é descrito em seguida de forma sucinta. Quando o dispositivo de filtração centrífuga gira em torno do eixo de rotação numa centrifugadora, o processo de filtração ocorre na câmara de filtração, a qual é alimentada com liquido fresco a partir da câmara da amostra através do gargalo estreito. Além disso, durante a rotação do dispositivo de filtração centrífuga em torno do eixo de rotação, a força centrífuga varre os elementos mais pesados do fluido que se acumulam na superfície da membrana localizada no interior da câmara de filtração. Este mecanismo de auto limpeza minimiza a polarização de concentração na membrana. Ao mesmo tempo, a solução líquida que permeia através da membrana escoa para a câmara de permeado, através de pelo menos um canal de permeado estreito ou de um suporte poroso. The operating mode of the device is briefly described below. When the centrifugal filtration device rotates about the axis of rotation in a In the centrifuge, the filtration process takes place in the filtration chamber, which is fed fresh liquid from the sample chamber through the narrow neck. In addition, during rotation of the centrifugal filtration device about the axis of rotation, the centrifugal force scans the heaviest elements of fluid that accumulate on the membrane surface located inside the filtration chamber. This self-cleaning mechanism minimizes concentration polarization in the membrane. At the same time, the liquid solution permeating through the membrane flows into the permeate chamber through at least one narrow permeate channel or porous support.
O método para realizar o fracionamento, purificação, concentração e / ou dessalinização de amostras líquidas de misturas de substâncias consiste em três passos principais. O primeiro passo é a introdução da amostra de líquido a ser processada no dispositivo de filtração centrífuga. No segundo passo, a filtração é realizada colocando o dispositivo de filtração centrífuga numa centrifugadora a uma velocidade de rotação que cria a diferença de pressão transmembranar pretendida, tipicamente entre 0 e 10 bar para ultrafiltração e microfiltração, entre 10 bar e 60 bar para nanofiltração e entre 20 bar e 80 bar para osmose inversa. A velocidade de rotação da centrifugadora pode ser aumentada no final da etapa para aumentar a pressão transmembranar e, com isso, aumentar a concentração final do líquido concentrado. Finalmente, na última etapa, os fluidos separados são removidos do dispositivo de filtração centrífuga. A remoção do permeado é fácil porque basta aceder à câmara de permeado que fica por baixo da membrana. A remoção do concentrado pode ser feita por sucção deste através de um tubo fino que entra pelo gargalo estreito até à câmara de filtração. Em alternativa, o concentrado por ser conduzido novamente para a câmara de amostra através do gargalo estreito, invertendo a posição do dispositivo de filtração centrífuga e ligando a centrifugadora a baixa rotação. The method for fractionation, purification, concentration and / or desalination of liquid samples of substance mixtures consists of three main steps. The first step is the introduction of the liquid sample to be processed in the centrifugal filtration device. In the second step, filtration is performed by placing the centrifugal filtration device in a centrifuge at a rotational speed that creates the desired transmembrane pressure difference, typically between 0 and 10 bar for ultrafiltration and microfiltration, between 10 bar and 60 bar for nanofiltration and between 20 bar and 80 bar for reverse osmosis. The spin speed of the centrifuge can be increased at the end of the step to increase transmembrane pressure and thereby increase the final concentration of concentrated liquid. Finally, in the last step, the separated fluids are removed from the centrifugal filtration device. Removal of the permeate is easy because access to the permeate chamber below the membrane is sufficient. The concentrate can be removed by suctioning it through a thin tube that enters the narrow neck into the filtration chamber. In Alternatively, the concentrate may be returned to the sample chamber through the narrow neck, reversing the position of the centrifugal filtration device and turning the centrifuge at low speed.
A tabela seguinte resume o método para realizar o fracionamento, purificação, concentração e / ou dessalinização de amostras líquidas de misturas de substâncias . The following table summarizes the method for fractionation, purification, concentration and / or desalination of liquid samples of substance mixtures.
Tabela 1 - Método para realizar o fracionamento, purificação, concentração e / ou dessalinização de amostras líquidas de misturas de substâncias. Table 1 - Method for fractionation, purification, concentration and / or desalination of liquid samples of substance mixtures.
Passo 1 Colocar a amostra na câmara de amostra do dispositivo de filtração centrífuga Step 1 Place the sample into the sample chamber of the centrifugal filtration device.
Passo 2 Realizar a filtração centrífuga Step 2 Perform Centrifugal Filtration
• colocar o dispositivo de filtração centrífuga e o contra-peso na centrifugadora, conforme recomendado pelo fabricante da centrifugadora • place the centrifugal filtration device and the counterweight in the centrifuge as recommended by the centrifuge manufacturer
• selecionar a velocidade, ou um perfil temporal de velocidade de rotação, e o tempo de rotação apropriados para o propósito de filtração• select the speed, or a rotational speed time profile, and the rotational time appropriate for the purpose of filtration
• realizar a centrifugação • perform centrifugation
• remover o dispositivo de filtração centrífuga da centrifugadora  • remove centrifugal filtration device from centrifuge
Passo 3 Recolha dos líquidos concentrado e permeado do dispositivo de filtração centrífuga  Step 3 Collection of Concentrated and Permeate Liquids from Centrifugal Filtration Device
• separar a câmara de permeado do dispositivo de filtração centrífuga e recolher o líquido permeado  • separate the permeate chamber from the centrifugal filtration device and collect the permeate
• remover o líquido concentrado; dependendo da forma de realização do dispositivo, a remoção do concentrado pode ser feita por sucção, utilizando um tubo fino flexível através do gargalo estreito, ou por centrifugação a baixa velocidade de rotação do dispositivo de filtração centrífuga invertido DESCRIÇÃO DAS FIGURAS • remove concentrated liquid; Depending on the embodiment of the device, removal of the concentrate may be by suction, using a flexible thin tube through the narrow neck, or by centrifugation at low rotation speed of the inverted centrifugal filtration device. DESCRIPTION OF THE FIGURES
Estes e outros objetivos, características e vantagens da invenção serão mais evidentes a partir da descrição detalhada que se segue, quando lida em conjunto com os desenhos em anexo . These and other objects, features and advantages of the invention will be more apparent from the following detailed description when read in conjunction with the accompanying drawings.
FIG. 1 é o esquema de um dispositivo de filtração centrífuga genérico de acordo com o objeto da invenção. FIG. 1 is a schematic of a generic centrifugal filtration device according to the object of the invention.
FIG. 2 é o esquema do dispositivo de filtração centrífuga, durante o processo de filtração, esboçando os fundamentos de funcionamento. FIG. 2 is the schematic of the centrifugal filtration device during the filtration process outlining the operating fundamentals.
FIG. 3 é a vista isométrica do objeto da invenção de acordo com certas concretizações (em particular com as formas de realização 1 e 2) . FIG. 3 is the isometric view of the object of the invention according to certain embodiments (in particular with embodiments 1 and 2).
FIG. 4 é uma vista explodida do objeto da invenção de acordo com a forma de realização 1. FIG. 4 is an exploded view of the object of the invention according to embodiment 1.
FIG. 5 é a vista de cima do objeto da invenção de acordo com a forma de realização 1. FIG. 5 is a top view of the object of the invention according to embodiment 1.
FIG. 6 é uma vista em corte do objeto da invenção ao nível A-A da FIG. 5, de acordo com a forma de realização 1. FIG. 6 is a sectional view of the object of the invention at level A-A of FIG. 5 according to embodiment 1.
FIG. 7 é uma vista em corte do objeto da invenção ao nível do corte A-A da FIG. 5, de acordo com a forma de realização 1, quando colocado numa centrifugadora num certo ângulo com o eixo de rotação. FIG. 8 é uma vista em corte do objeto da invenção ao nível do corte A-A da FIG. 5, de acordo com a forma de realização 1, quando colocado numa centrifugadora num determinado ângulo com o eixo de rotação, antes da filtração com uma amostra de líquido no reservatório de alimentação. FIG. 7 is a sectional view of the object of the invention at section level AA of FIG. 5 according to embodiment 1 when placed in a centrifuge at a certain angle with the axis of rotation. FIG. 8 is a sectional view of the object of the invention at section AA level of FIG. 5 according to embodiment 1 when placed in a centrifuge at a given angle with the axis of rotation prior to filtration with a liquid sample in the feed reservoir.
FIG. 9 é uma vista em corte do objeto da invenção ao nível do corte A-A da FIG. 5, de acordo com a forma de realização 1, quando colocado numa centrifugadora num certo ângulo com o eixo de rotação, no final da filtração já com o líquido permeado na câmara de permeado. FIG. 9 is a cross-sectional view of the object of the invention at section A-A of FIG. 5 according to embodiment 1 when placed in a centrifuge at a certain angle with the axis of rotation at the end of filtration with the permeated liquid already in the permeate chamber.
FIG. 10 é uma vista explodida das duas partes da forma de realização 2 que diferem da forma de realização 1 do objeto da invenção. FIG. 10 is an exploded view of the two parts of embodiment 2 differing from embodiment 1 of the object of the invention.
FIG. 11 é a vista de cima do objeto da invenção de acordo com a forma de realização 2. FIG. 11 is a top view of the object of the invention according to embodiment 2.
FIG. 12 é uma vista em corte do objeto da invenção ao nível do corte B-B da FIG. 11, de acordo com a forma de realização 2. FIG. 12 is a sectional view of the object of the invention at section level B-B of FIG. 11 according to embodiment 2.
FIG. 13 é a vista ampliada do objeto da invenção na secção C definida na FIG. 12, de acordo com a forma de realização 2. FIG. 13 is the enlarged view of the object of the invention in section C defined in FIG. 12 according to embodiment 2.
FIG. 14 é a vista isométrica do objeto da invenção, acordo com a forma de realização 3. FIG. 14 is the isometric view of the object of the invention according to embodiment 3.
FIG. 15 é uma vista explodida do objeto da invenção, de acordo com a forma de realização 3. FIG. 16 é a vista de cima do objeto da invenção, de acordo com a forma de realização 3. FIG. 15 is an exploded view of the object of the invention according to embodiment 3. FIG. 16 is a top view of the object of the invention according to embodiment 3.
FIG. 17 é uma vista em corte do objeto da invenção ao nível do corte D-D da FIG. 16, de acordo com a forma de realização 3. FIG. 17 is a cross-sectional view of the object of the invention at section D-D of FIG. 16 according to embodiment 3.
FIG. 18 é uma vista em corte do objeto da invenção ao nível do corte E-E da FIG. 16, de acordo com a forma de realização 3. FIG. 18 is a cross-sectional view of the object of the invention at section level E-E of FIG. 16 according to embodiment 3.
FIG. 19 é uma vista em corte do objeto da invenção ao nível do corte D-D da FIG. 16, quando se utiliza um reservatório extra para coletar o concentrado, efetuando uma centrifugação com o dispositivo de filtração centrífuga invertido, de acordo com a forma de realização 3. FIG. 19 is a cross-sectional view of the object of the invention at section D-D of FIG. 16 when an extra reservoir is used to collect the concentrate by centrifuging with the inverted centrifugal filtration device according to embodiment 3.
FIG. 20 é um gráfico de um conjunto de resultados da filtração de uma solução de sacarose, obtidos com um dispositivo de filtração centrífuga, de acordo com a forma de realização 1. FIG. 20 is a graph of a sucrose solution filtration result set obtained with a centrifugal filtration device according to embodiment 1.
DESCRIÇÃO DE TALHADA DA INVENÇÃO DESCRIPTION OF INVENTION
A presente invenção refere-se a um dispositivo de filtração centrífuga (1) para a concentração de misturas líquidas, para ser inserido no rotor de uma centrifugadora que compreende: um invólucro, o qual compreende uma câmara de amostra (2, 102, 302) com pelo menos um orifício de ventilação (123, 312); uma câmara de permeado (6, 106, 306) com pelo menos um orifício de ventilação (145, 351); pelo menos uma câmara de filtração (4, 104, 304) com pelo menos uma membrana semi-permeável (5, 105, 205, 305); uma câmara de concentrado (7, 107, 307) a jusante da câmara de filtração (4, 104, 304); e pelo menos um gargalo (3, 103, 303) que liga a câmara de amostra (2, 102, 302) à câmara de filtração (4, 104, 304) e cujo volume é inferior ao volume contido na câmara de concentrado (7, 107, 307) e na câmara de filtração (4, 104, 304) . The present invention relates to a centrifugal filtration device (1) for concentrating liquid mixtures to be inserted into the rotor of a centrifuge comprising: a housing which comprises a sample chamber (2, 102, 302) with at least one vent (123, 312); a permeate chamber (6, 106, 306) with at least one vent (145, 351); at least one filtration chamber (4, 104, 304) with at least a semipermeable membrane (5, 105, 205, 305); a concentrate chamber (7,107,307) downstream of the filtration chamber (4,104,304); and at least one neck (3, 103, 303) connecting the sample chamber (2, 102, 302) to the filtration chamber (4, 104, 304) and whose volume is less than the volume contained in the concentrate chamber (7). , 107, 307) and the filtration chamber (4,104,304).
Num modo preferencial de realização da invenção, o volume do gargalo (3, 103, 303) é inferior a 1/5 do volume contido nas câmaras de concentrado e de filtração. In a preferred embodiment of the invention, the volume of the neck (33,103,303) is less than 1/5 of the volume contained in the concentrate and filtration chambers.
Num modo preferencial de realização da invenção, a área da secção transversal do gargalo (3, 103, 303) é inferior a 1 mm2. In a preferred embodiment of the invention, the cross-sectional area of the neck (3,103,303) is less than 1 mm 2 .
Usando um gargalo longo e estreito entre a câmara de amostra, que está mais próxima do eixo de rotação da centrifugadora, e a câmara de filtração, que está mais afastada do referido eixo de rotação, preferencialmente um gargalo com um volume que corresponde a menos de 1/5 do volume contido nas câmaras de concentrado e de filtração, e uma secção transversal com uma área preferencialmente inferior a 1 mm2, consegue-se manter a pressão a níveis elevados durante todo o processo de filtração, o que permite atingir maiores fatores de concentração e reduzir o tempo de filtração . Using a long narrow neck between the sample chamber, which is closest to the spin axis of the centrifuge, and the filtration chamber, which is farthest from said axis of rotation, preferably a neck with a volume of less than 1/5 of the volume contained in the concentrate and filtration chambers, and a cross-sectional area preferably less than 1 mm 2 , can maintain the pressure at high levels throughout the filtration process, allowing for greater factors to be achieved. concentration and reduce the filtration time.
Num modo preferencial de realização da invenção, o invólucro compreende adicionalmente um canal de remoção de concentrado (133, 333) que liga a câmara de amostra (102, 302) à câmara de concentrado (107, 307), e através do qual se pode inserir um tubo flexível para remover a mistura líquida concentrada. Este canal também permite eliminar facilmente bolsas de ar que existam nas câmaras de filtração e de concentrado no inicio da centrifugação. Num modo preferencial de realização da invenção, o dispositivo compreende adicionalmente pelo menos um canal de permeado (144, 237, 346, 347) que liga o lado do permeado da membrana de filtração à câmara de permeado, e que permite conduzir o fluxo de permeado para a câmara de permeado. In a preferred embodiment of the invention, the housing further comprises a concentrate removal channel (133, 333) that connects the sample chamber (102, 302) to the concentrate chamber (107, 307), and through which it can be insert a flexible tube to remove the liquid mixture concentrated. This channel also allows to easily eliminate air pockets in the filtration and concentrate chambers at the beginning of centrifugation. In a preferred embodiment of the invention, the device further comprises at least one permeate channel (144, 237, 346, 347) which connects the permeate side of the filtration membrane to the permeate chamber and permits the permeate flow to be conducted. to the permeate chamber.
Num modo ainda mais preferencial de realização da invenção, o vetor normal ao lado ativo da membrana faz um ângulo de aproximadamente 90° com o vetor da aceleração centrífuga, por forma a maximizar a ação de autolimpeza da camada limite de concentração. In an even more preferred embodiment of the invention, the normal vector on the active side of the membrane is at an angle of approximately 90 ° with the centrifugal acceleration vector to maximize the self-cleaning action of the concentration boundary layer.
Num outro modo ainda mais preferencial de realização da invenção, o dispositivo de filtração centrífuga compreende duas câmaras de filtração (304a, 304b) com duas membranas semi-permeáveis (305a, 305b), voltadas uma para a outra em lados opostos da câmara de filtração (304), e um gargalo (303) que desemboca em duas condutas (303a, 303b) independentes, que por sua vez desembocam nas câmaras de filtração (304a e 304b) . In another even more preferred embodiment of the invention, the centrifugal filtration device comprises two filtration chambers (304a, 304b) with two semipermeable membranes (305a, 305b) facing each other on opposite sides of the filtration chamber. 304, and a neck 303 leading into two independent conduits 303a, 303b, which in turn flow into the filtration chambers 304a and 304b.
Num outro modo preferencial de realização da invenção, as membranas semi-permeáveis (5, 105, 205, 305) têm um limite de exclusão molecular na gama da osmose inversa e da nanofiltração, ou seja, entre 100 Da e 1000 Da. Utilizando membranas de nanofiltração ou osmose inversa, para que sejam alcançados fluxos de filtração e rejeições de soluto razoáveis, bem como fatores de concentração elevados, é necessário operar a pressões tipicamente entre 5 e 80 bar. O dispositivo da invenção evita a rápida diminuição da pressão de alimentação assim que diminui o nível de líquido na câmara de amostra, mantendo a pressão a níveis elevados durante todo o processo de filtração, o que permite atingir maiores fatores de concentração e reduzir o tempo de filtração. In another preferred embodiment of the invention the semipermeable membranes (5, 105, 205, 305) have a molecular exclusion limit in the range of reverse osmosis and nanofiltration, i.e. between 100 Da and 1000 Da. Using membranes nanofiltration or reverse osmosis, to achieve reasonable filtration flows and solute rejections, as well as high concentration factors, it is necessary to operate at pressures typically between 5 and 80 bar. THE The device of the invention avoids the rapid decrease of the supply pressure as soon as the liquid level in the sample chamber decreases, keeping the pressure at high levels throughout the filtration process, which allows to reach higher concentration factors and reduce the filtration time. .
Num outro modo preferencial de realização da invenção, as membranas semi-permeáveis (5, 105, 205, 305) têm um limite de exclusão molecular na gama da ultrafiltração ou microfiltração, ou seja, entre 1 kDa e 1000 kDa . In another preferred embodiment of the invention, the semipermeable membranes (5, 105, 205, 305) have a molecular exclusion limit in the range of ultrafiltration or microfiltration, i.e. between 1 kDa and 1000 kDa.
A invenção refere-se ainda a um método para a concentração de uma mistura líquida que compreende as seguintes etapas: a) prover um dispositivo de filtração centrífuga (100, 200 ou 300) de acordo com as reivindicações 1 a 8 ; The invention further relates to a method for concentrating a liquid mixture comprising the following steps: a) providing a centrifugal filtration device (100, 200 or 300) according to claims 1 to 8;
b) prover uma centrifugadora com um rotor capaz de receber o referido dispositivo de filtração centrífuga; b) providing a rotor centrifuge capable of receiving said centrifugal filtration device;
c) introduzir a amostra de mistura líquida a concentrar na câmara de amostra (2, 102, 302); c) introducing the sample of liquid mixture to concentrate into the sample chamber (2, 102, 302);
d) inserir o dispositivo de filtração centrífuga dentro do rotor da centrifugadora; d) inserting the centrifugal filtration device into the centrifuge rotor;
e) ligar a centrifugadora e fixar a velocidade de rotação num valor que permita atingir uma pressão suficiente para a amostra permear através da membrana; e) turning on the centrifuge and setting the rotation speed to a value sufficient to reach a pressure sufficient for the sample to permeate through the membrane;
f) esperar o tempo suficiente para que a amostra permeie através da membrana e se atinja o fator de concentração pretendido ; f) waiting long enough for the sample to permeate through the membrane and achieve the desired concentration factor;
g) retirar o dispositivo de filtração centrífuga do rotor da centrifugadora; g) removing the centrifugal filter device from the centrifuge rotor;
h) retirar do dispositivo de filtração centrífuga o permeado e o concentrado. Num modo preferencial de realização da invenção, no passo e) do dito método, a velocidade de rotação da centrifugadora é definida para aumentar gradualmente, desde um dado valor inicial até um dado valor final, ao longo do processo de filtração. h) removing the permeate and concentrate from the centrifugal filtration device. In a preferred embodiment of the invention, in step e) of said method, the spin speed of the centrifuge is set to gradually increase from a given starting value to a given ending value throughout the filtration process.
Nesta secção descrevem-se em seguida os fundamentos do funcionamento do objeto da invenção e de três concretizações alternativas propostas. This section describes the fundamentals of the operation of the object of the invention and of three proposed alternative embodiments.
A FIG. 1 mostra um esboço genérico de um dispositivo de filtração centrífuga. Esta figura é aqui utilizada para descrever e explicar os fundamentos de operação do objeto da invenção. O dispositivo de filtração centrífuga 1 compreende uma câmara de amostra (2), pelo menos um gargalo estreito (3) que liga a câmara de amostra (2) a uma câmara de filtração (4), uma membrana semi-permeável (5) que permite a passagem de permeado da câmara de filtração (4) para uma câmara de permeado (6), e uma câmara de concentrado (7) . Todos os componentes são colocados no interior de um invólucro e neste caso pressupõe-se que a aceleração centrífuga atua na horizontal, da esquerda para a direita. FIG. 1 shows a generic sketch of a centrifugal filtration device. This figure is used herein to describe and explain the fundamentals of operation of the object of the invention. Centrifugal filtration device 1 comprises a sample chamber (2), at least one narrow neck (3) connecting the sample chamber (2) to a filtration chamber (4), a semipermeable membrane (5) which allows permeate passage from the filtration chamber (4) to a permeate chamber (6), and a concentrate chamber (7). All components are placed inside a housing and in this case it is assumed that centrifugal acceleration acts horizontally from left to right.
A FIG. 2 mostra o esboço genérico do dispositivo de filtração centrífuga (1) representado na FIG. 1 durante a operação. Num determinado momento do ciclo de filtração, o dispositivo de filtração centrífuga (1) gira a uma velocidade angular ω em torno do eixo de rotação da centrifugadora. No início da filtração, a amostra de líquido (2a) colocada na câmara de amostra (2) flui para o gargalo estreito (3) . Deste gargalo, flui depois para a câmara de filtração (4) onde ocorre permeação. Parte da amostra concentrada acumula-se depois na câmara de concentrado (7) . À medida que o processo de filtração prossegue, uma parte da amostra de liquido permeia através da membrana (5), sendo recolhida como permeado (6a) na câmara de permeado (6) . Outra porção da amostra é retida e concentrada pela membrana (5), sendo em parte recolhida como o concentrado (7a) na câmara de concentrado (7) . A filtração ocorre devido ao aumento de pressão provocado pela aceleração centrífuga no interior centrifugadora a alta rotação. Quando o dispositivo de filtração centrífuga (1) é posto em rotação, a diferença pressão, Ap, entre os níveis r... 8 e ?¾. 9 é dada, em boa aproximação, por Ap = £ ω {τ —?†}, em que p é a massa especifica média do líquido entre as posições radiais ?j e ·? . FIG. 2 shows the general sketch of the centrifugal filtration device 1 shown in FIG. 1 during operation. At a given point in the filtration cycle, the centrifugal filtration device (1) rotates at an angular velocity ω about the axis of rotation of the centrifuge. At the beginning of filtration, the liquid sample (2a) placed in the sample chamber (2) flows into the narrow neck (3). From this neck it then flows into the filtration chamber (4) where permeation occurs. Part of the concentrated sample then accumulates in the concentrate chamber (7). As the process A portion of the liquid sample permeates through the membrane (5) and is collected as permeate (6a) in the permeate chamber (6). Another portion of the sample is retained and concentrated by the membrane (5), being partly collected as the concentrate (7a) in the concentrate chamber (7). Filtration occurs due to the pressure increase caused by centrifugal acceleration in the high-speed centrifuge interior. When the centrifugal filtration device (1) is rotated, the pressure difference, Ap, between levels r ... 8 and? ¾. 9 is given, in good approximation, by Ap = £ ω {τ -? †}, where p is the average specific mass of the liquid between radial positions? j and ·? .
Se o ângulo for maior ou igual que 0o e menor que 90°, a força centrífuga cria um mecanismo de auto limpeza que faz com que os elementos de fluido concentrados pela membrana se afastem desta, na direção radial. Para α maior ou igual que 0o e menor que 90°, os elementos de fluido mais concentrados são projetados na direção da câmara de concentrado (7), onde acaba por ficar grande parte da amostra liquida concentrada (7b) . If the angle is greater than or equal to 0 and less than the 90 °, the centrifugal force creates a self-cleaning mechanism that causes the fluid elements concentrates the membrane deviate from this in the radial direction. For α greater or equal to 0 and less than the 90 °, the more concentrated fluid elements are projected toward the concentrate chamber (7), which ends up being largely concentrated in the liquid sample (7b).
Para que todo o fluido da câmara de amostra (2) passe pelo gargalo estreito (3), é necessário que o ângulo β entre a superfície da parede (2c) e o vetor de força centrífuga esteja compreendido entre 90° e 180°. O gargalo estreito (3) permite manter a diferença pressão transmembranar elevada durante quase todo o ciclo de filtração. O dispositivo de filtração centrífuga é desenhado para que o nível da amostra de alimentação atinja a entrada do gargalo estreito, quando já se atingiu o fator de concentração pretendido. Deste modo, a pressão transmembranar nunca decai muito durante todo o ciclo de filtração. For all fluid from the sample chamber (2) to pass through the narrow neck (3), the angle β between the wall surface (2c) and the centrifugal force vector must be between 90 ° and 180 °. The narrow neck (3) allows the high transmembrane pressure difference to be maintained throughout most of the filtration cycle. The centrifugal filtration device is designed so that the level of the sample feed reaches the narrow neck inlet when the desired concentration factor has already been reached. That way, transmembrane pressure never decays much throughout the filtration cycle.
Para evitar danos da membrana, é necessário colocar orifícios de ventilação na câmara de amostra (2) e na câmara de permeado (6) . De outro modo, quando a centrifugadora pára, a pressão na câmara de permeado pode ser maior que a pressão na câmara de alimentação e a membrana pode romper. A localização dos orifícios de ventilação deve ter em conta a orientação dos níveis de líquido na câmara de amostra (2) e de permeado (6), quando centrifugadora está em repouso e em funcionamento, para que não se perca amostra líquida por esses orifícios. A FIG. 3 mostra um esboço isométrico da forma de realização 1, ou da forma de realização 2, do dispositivo de filtração centrífuga da invenção. O invólucro do dispositivo de filtração centrífuga (100) (ou 200 para a forma de realização 2) é composto por várias partes. A tampa (110) encaixa num furo na superfície superior (121) da parte superior (120) . A superfície do bordo inferior da parte superior (120) liga-se à parte de suporte de membrana (140) (240 para a concretização 2) que, por sua vez, se liga à parte de fundo (150), que tem, preferencialmente, uma forma hemisférica, adequada para ser inserida em rotores típicos de centrifugadoras. A parte de suporte (140) tem uma placa porosa ou uma superfície com micro canais por baixo da membrana, para permitir que o permeado escoe para a câmara de permeado (106) existente no interior da parte de fundo (150) (ver FIG. 4) . To prevent membrane damage, vent holes must be provided in the sample chamber (2) and permeate chamber (6). Otherwise, when the centrifuge stops, the pressure in the permeate chamber may be greater than the pressure in the feed chamber and the membrane may rupture. The location of the ventilation holes should take into account the orientation of the liquid levels in the sample (2) and permeate (6) chamber when the centrifuge is at rest and in operation so that no liquid sample is lost through these holes. FIG. 3 shows an isometric sketch of embodiment 1, or embodiment 2, of the centrifugal filtration device of the invention. The housing of centrifugal filter device 100 (or 200 for embodiment 2) is comprised of several parts. The cap (110) fits into a hole in the upper surface (121) of the upper part (120). The bottom edge surface of the upper part 120 connects to the membrane support part 140 (240) for embodiment 2 which in turn connects to the bottom part 150 which preferably has , a hemispherical shape, suitable for insertion into typical centrifuge rotors. The support portion (140) has a porous plate or a micro channel surface beneath the membrane to allow the permeate to flow into the permeate chamber (106) within the bottom portion (150) (see FIG. 4).
Todas as partes que compõem a forma de realização 1 da invenção podem ser vistas na FIG. 4, sob a forma de uma vista explodida do dispositivo de filtração centrífuga (100) representado na FIG. 3. A forma de realização 1 usa uma única membrana (105) colada pelos seus bordos à superfície superior (141) da parte de suporte de membrana (140) . A cola para unir os bordos da membrana à superfície superior (141) tem de ser compatível com o solvente da amostra líquida e com o material da superfície superior (141) . Para o caso de membranas de poliamida com suporte poroso de poliéster em contacto com metal, podem-se usar colas à base de resinas epoxy ou de poliuretano. All parts of embodiment 1 of the invention can be seen in FIG. 4 in the form of a view of the centrifugal filtration device 100 shown in FIG. 3. Embodiment 1 uses a single membrane (105) glued by its edges to the upper surface (141) of the membrane support portion (140). The adhesive for bonding the membrane edges to the upper surface (141) must be compatible with the liquid sample solvent and the upper surface material (141). For metal contact porous polyester backing polyamide membranes, epoxy or polyurethane based adhesives may be used.
A parte de suporte da membrana (140) está presa entre a parte superior (120) e a parte de fundo (150) . Dois o-rings (142 e 143) garantem a estanquicidade do fluido na câmara de filtração (104), de concentrado (107) e de permeado (106) . Pelo menos um canal estreito de permeado (144) interliga a superfície (141) do suporte da membrana (140) à câmara de permeado (106), na parte inferior (150) do dispositivo de filtração centrífuga. A superfície superior (141) pode ter uma placa porosa ou um conjunto de ranhuras para facilitar o escoamento do permeado na direção do canal estreito de permeado (144) . Uma cavidade, delimitada pela parte de suporte de membrana (140) e pela parte superior (120), define a câmara de concentrado (107) . A câmara de filtração (104) é definida como o espaço vazio entre a membrana (105) e a superfície inferior do bloco interno (130) . A altura da câmara de filtração (104) é determinada pela altura do bordo (132) da superfície inferior do bloco interno (130) . Por esta razão, a área efetiva da membrana é menor que a área da superfície superior (141) do suporte de membrana (140) e depende das dimensões do bordo (132) . Uma descrição mais clara do bordo (132) pode ser vista na FIG. 10. A câmara de amostra (102) está delimitada entre a parte superior do bloco interno (130) e superfície interna da parte superior (120) . The membrane support portion 140 is secured between the upper portion 120 and the bottom portion 150. Two o-rings (142 and 143) ensure fluid tightness in the filtration (104), concentrate (107) and permeate (106) chambers. At least one narrow permeate channel (144) interconnects the surface (141) of the membrane support (140) to the permeate chamber (106) at the bottom (150) of the centrifugal filtration device. The upper surface (141) may have a porous plate or a set of grooves to facilitate permeate flow towards the narrow permeate channel (144). A cavity, delimited by the membrane support portion (140) and the upper portion (120), defines the concentrate chamber (107). The filtration chamber (104) is defined as the void space between the membrane (105) and the lower surface of the inner block (130). The height of the filtration chamber (104) is determined by the height of the edge (132) of the lower surface of the inner block (130). For this reason, the effective membrane area is smaller than the upper surface area (141) of the membrane support (140) and depends on the edge dimensions (132). A clearer description of edge 132 can be seen in FIG. 10. The camera The sample (102) is bounded between the upper part of the inner block (130) and the inner surface of the upper part (120).
A câmara de amostra (102) deve estar situada, preferencialmente, tão longe quanto possível da câmara de filtração e o mais próximo quanto possível do eixo de rotação. No bloco interno (130), existem canais estreitos sulcados que conectam a câmara de amostra (102) às câmaras de filtração (104) e de concentrado (107) . Um dos canais sulcados é o gargalo estreito (103), que corresponde ao gargalo estreito (3) esboçado esquematicamente na FIG. 1. O gargalo estreito (103), que não está visível na FIG. 3, mas é visível na FIG. 6, liga a câmara de amostra (102) à câmara de filtração (104), permitindo que a amostra líquida seja alimentada à câmara de filtração. Na forma de realização 1, existe um segundo canal estreito (133) (canal de remoção de concentrado) que liga a câmara de amostra (102) à câmara de concentrado (107) . Através do orifício (122), pode-se inserir um tubo capilar flexível no canal estreito (133) (canal de remoção de concentrado) e dessa forma retirar, por sucção com uma seringa, o concentrado da câmara de concentrado de (107) . O canal estreito (133) (canal de remoção de concentrado) também facilita a passagem da amostra líquida para a câmara de filtração na fase inicial da centrifugação, permitindo eliminar eventuais bolsas de ar. Preferably, the sample chamber 102 should be located as far away from the filtration chamber as possible and as close as possible to the axis of rotation. In the inner block (130), there are grooved narrow channels connecting the sample chamber (102) to the filtration (104) and concentrate (107) chambers. One of the grooved channels is the narrow neck (103), which corresponds to the narrow neck (3) outlined schematically in FIG. 1. Narrow neck 103, which is not visible in FIG. 3, but is visible in FIG. 6 connects the sample chamber (102) to the filtration chamber (104), allowing the liquid sample to be fed to the filtration chamber. In embodiment 1, there is a second narrow channel (133) (concentrate removal channel) that connects the sample chamber (102) to the concentrate chamber (107). Through the bore (122), a flexible capillary tube can be inserted into the narrow channel (133) (concentrate removal channel) and thereby sucked out the concentrate from the concentrate chamber (107). The narrow channel (133) (concentrate removal channel) also facilitates the passage of the liquid sample into the filtration chamber at the initial stage of centrifugation, allowing any air pockets to be eliminated.
Na superfície de topo (121), há um primeiro orifício de ventilação (123) ligado à câmara de amostra (102) . Dessa forma, previne-se a ocorrência de vácuo no final do ciclo de filtragem, o que poderia danificar a membrana. Um segundo orifício de ventilação (145) (ver FIG. 6) está localizado na parte de suporte de membrana (140) e faz ligação à câmara de permeado (106) . Finalmente, a parte superior (120) pode ser fechada com a tampa (110), a qual tem um o-ring de vedação (111) . At the top surface (121), there is a first vent hole (123) connected to the sample chamber (102). This prevents the occurrence of vacuum at the end of the filtering cycle, which could damage the membrane. A second vent (145) (see FIG. 6) is located in the membrane support portion (140) and connects to the permeate chamber (106). Finally, the upper part 120 may be closed with the lid (110), which has a sealing o-ring (111).
A vista de topo da forma de realização 1 da invenção está na FIG. 5, que mostra a localização do corte transversal A-A a ser utilizado nas FIGS. 6, 7, 8 e 9. The top view of embodiment 1 of the invention is in FIG. 5 showing the location of the cross-section A-A to be used in FIGS. 6, 7, 8 and 9.
A FIG. 6 mostra a vista em corte da forma de realização 1 da invenção de acordo com o corte A-A definido na FIG. 5. As conexões entre as várias câmaras e os dois furos de ventilação são visíveis na FIG. 6. Como mencionado acima, o gargalo estreito (103) liga a câmara de amostra (102) à câmara de filtração (104) . O gargalo estreito (103) é formado por um sulco no bloco interno (130) . A câmara da amostra (102) é definida como o espaço vazio entre o bloco interno (130) e a parte de topo (120) . A superfície (131) do bloco interno (130), e que define a câmara de amostra, faz um ângulo γ com o eixo vertical do dispositivo de filtração centrífuga . FIG. 6 shows the sectional view of embodiment 1 of the invention according to section A-A defined in FIG. 5. The connections between the various chambers and the two ventilation holes are visible in FIG. 6. As mentioned above, the narrow neck (103) connects the sample chamber (102) to the filtration chamber (104). The narrow neck (103) is formed by a groove in the inner block (130). The sample chamber (102) is defined as the void space between the inner block (130) and the top part (120). The surface (131) of the inner block (130), which defines the sample chamber, makes an angle γ to the vertical axis of the centrifugal filtration device.
A ligação entre a câmara de amostra (102) e a câmara de concentrado (107) é feita através do segundo canal estreito (133) (canal de remoção de concentrado), o qual é constituído por duas secções (134 e 135) . A secção (134) é um canal perfurado no bloco interno (130), a partir da superfície (131) . A secção (134) está ligada à secção (135), a qual é um sulco gravada no bloco interno (130) . Para minimizar os volumes mortos do gargalo estreito (103) e do segundo canal estreito (133) (canal de remoção de concentrado) , estes dois canais são tão finos quanto possível . A FIG. 7 mostra uma vista em corte da forma de realização 1 da invenção, de acordo com o corte A-A definido na FIG. 5, quando o dispositivo de filtração centrífuga é colocado no interior do rotor de ângulo fixo de uma centrífuga, com ângulo ε. Conforme já foi referido, o ângulo β deve estar compreendido, preferencialmente, entre 90° e 180°, enquanto que o ângulo a deve ser, preferencialmente, próximo do ângulo ε do rotor, para que a membrana fique alinhada com a aceleração centrífuga. The connection between the sample chamber (102) and the concentrate chamber (107) is through the second narrow channel (133) (concentrate removal channel), which consists of two sections (134 and 135). Section 134 is a perforated channel in inner block 130 from surface 131. Section 134 is connected to section 135, which is a groove engraved in the inner block 130. To minimize the dead volumes of narrow neck 103 and second narrow channel 133 (concentrate removal channel), these two channels are as thin as possible. FIG. 7 shows a cross-sectional view of embodiment 1 of the invention according to section AA defined in FIG. 5, when the centrifugal filtration device is placed within the fixed angle rotor of a centrifuge with angle ε. As already mentioned, angle β should preferably be between 90 ° and 180 °, while angle a should preferably be close to angle ε of the rotor so that the membrane is aligned with centrifugal acceleration.
As FIG. 8 e FIG. 9 mostram a da forma de realização 1 do dispositivo de filtração centrífuga posicionado na mesma configuração representada na FIG. 7, mas em duas fases de filtração diferentes. A FIG. 8 mostra a fase inicial, antes da filtração, onde a amostra líquida (102a) preenche todo o espaço definido pela câmara de amostra (102), o gargalo estreito (103), o segundo canal estreito (133) (canal de remoção de concentrado), a câmara de filtração (104) e a câmara de concentrado (107) . A FIG. 9 ilustra a fase final do processo de filtração, onde a câmara de permeado (106) já contém a maior parte do líquido permeado (106a) que permeou através da membrana, enquanto que o líquido concentrado (107a) está retido na câmara de concentrado (107) . A câmara de permeado (106) deve ter um volume igual ou superior ao volume de amostra a processar e o orifício (145) deve estar posicionado de modo a que, mesmo com permeação de toda a amostra, não ocorram fugas de permeado pelo orifício (145) . A forma de realização 2 da invenção é semelhante à forma de realização 1 já descrita, mas inclui uma membrana adicional na câmara de filtração. Deste modo, duplica-se a área de membrana e reduz-se a metade o tempo necessário para concentrar a amostra de fluido. Esta forma de realização 2 do dispositivo de filtração centrífuga está ilustrada na FIG. 10. A membrana adicional (205b) está colocada sobre a superfície inferior da do bloco interno (230) e o segundo canal de permeado (237) liga o lado do permeado da membrana (205b) à câmara de permeado (106) . O segundo canal permeado (237) compreende duas secções: uma secção de canal (238) dentro da parte interna do bloco (230) e outra seção (246) dentro da parte de suporte de membrana (240) . A haste perfurada (236) liga a secção de canal (238) no bloco interno (230) à secção de canal (246) no suporte de membrana (240) . A segunda membrana (205b) é colada à superfície inferior do bloco interno (230), usando o mesmo tipo de colagem que já foi descrito para colar a primeira membrana. FIGs. 8 and FIG. 9 show that of embodiment 1 of the centrifugal filter device positioned in the same configuration shown in FIG. 7, but in two different filtration phases. FIG. 8 shows the initial phase, prior to filtration, where the liquid sample (102a) fills the entire space defined by the sample chamber (102), the narrow neck (103), the second narrow channel (133) (concentrate removal channel). ), the filtration chamber (104) and the concentrate chamber (107). FIG. 9 illustrates the final phase of the filtration process, where permeate chamber 106 already contains most of the permeate liquid 106a that has permeated through the membrane, while concentrated liquid 107a is trapped in the concentrate chamber (10). 107). The permeate chamber (106) must have a volume equal to or greater than the sample volume to be processed and the orifice (145) must be positioned such that, even with permeation of the entire sample, no permeate leakage occurs through the orifice ( 145). Embodiment 2 of the invention is similar to embodiment 1 already described, but includes an additional membrane in the filtration chamber. This doubles the membrane area and halves the time required to concentrate the fluid sample. This embodiment 2 of the centrifugal filtration device is illustrated in FIG. 10. The additional membrane (205b) is disposed on the lower surface of the inner block (230) and the second permeate channel (237) connects the permeate side of the membrane (205b) to the permeate chamber (106). The second permeated channel (237) comprises two sections: a channel section (238) within the inner part of the block (230) and another section (246) within the membrane support part (240). The perforated rod (236) connects the channel section (238) in the inner block (230) to the channel section (246) in the membrane holder (240). The second membrane 205b is glued to the lower surface of the inner block 230 using the same type of bonding as previously described for gluing the first membrane.
A vista de topo da forma de realização 2 da invenção está representado na FIG. 11, a qual mostra a localização do corte transversal B-B a ser usado na FIG. 12. A secção de corte B-B muda de direção na posição alinhada com o centro do canal de permeado (144), a fim de passar através do meio da haste perfurada (236) . A região definida pela linha tracejada C está ampliada na FIG. 13. O canal permeado (237) está representado na FIG. 13 como um tubo com curvaturas. No entanto, as secções (238 e 246) do canal de permeado (237) podem ser canais retos, feitos por perfuração . Outra forma de realização 3 da invenção está esquematizada nas FIGS. 14, 15, 16 e 17. A FIG. 14 mostra um esboço em perspetiva isométrica da forma de realização 3 do dispositivo de filtração centrífuga da invenção. O invólucro externo do dispositivo de filtração centrífuga (300) compreende uma parte exterior (350) e uma tampa (310) na parte superior do mesmo. Existem também dois orifícios para prevenir o desequilíbrio de pressão no final da filtração, e evitar que as membranas rompam. Na superfície lateral da parte externa (350) existe o orifício (351) ligado à câmara de permeado. Na superfície de topo da tampa (310) existe o orifício (312) ligado à câmara de amostra. A forma do dispositivo de filtração centrífuga (300) deve ser, preferencialmente, concebida para este dispositivo poder ser inserido em rotores de centrifugadoras comuns. The top view of embodiment 2 of the invention is shown in FIG. 11 which shows the location of the cross section BB to be used in FIG. 12. Cut section BB changes direction in position aligned with the center of the permeate channel (144) to pass through the middle of the perforated rod (236). The region defined by the dashed line C is enlarged in FIG. 13. The permeated channel 237 is shown in FIG. 13 as a tube with bends. However, sections 238 and 246 of permeate channel 237 may be straight channels made by perforation. Another embodiment of the invention is shown in FIGS. 14, 15, 16 and 17. FIG. 14 shows an isometric perspective sketch of embodiment 3 of the centrifugal filtration device of the invention. The wrapper The external portion of the centrifugal filtration device (300) comprises an outer part (350) and a lid (310) at the top thereof. There are also two holes to prevent pressure imbalance at the end of filtration and to prevent membranes from rupturing. On the side surface of the outer part 350 is the hole 351 connected to the permeate chamber. On the top surface of the cap (310) is the hole (312) connected to the sample chamber. The shape of the centrifugal filtration device (300) should preferably be designed so that this device can be inserted into standard centrifuge rotors.
A FIG. 15 mostra a vista isométrica explodida da forma de realização 3 da invenção. Todas as partes internas do dispositivo de filtração centrífuga (300) estão suportados no bordo (352) da parte exterior (350) . A novidade da forma de realização 3 da invenção é a utilização de um bloco interno (330) que separa a câmara de amostra (302) da câmara de filtração (304) . Nesta forma de realização 3 da invenção existem duas membranas, ou seja a membrana (305a) e a membrana (305b) . A membrana (305a) está apoiada na ranhura (342), enquanto que a membrana (305b) está apoiada em ranhura semelhante do lado oposto. As superfícies destas ranhuras devem ter, preferencialmente, um conjunto de saliências ou superfícies porosas para facilitar a passagem do fluxo do permeado para reservatório de permeado (306) . Cada uma das peças de suporte de membrana (340 e 341) tem pelo menos um canal de permeado, (346 e 347), respetivamente, a fim de conduzir o fluxo de permeado para a câmara de permeado (306) . A câmara de permeado (306) é definida pelas paredes internas do invólucro externo (350) . As peças de suporte de membrana (340 e 341) estão ligadas aos bordos (361a e 361b) da parte interna (360) . O conjunto que compreende as partes (340, 341 e 360) é tapado pela tampa (310) e encaixa no interior da parte externa (350), estando o bordo (362) da parte interna (360) suportado no bordo (352) da parte externa (350) . Nesta forma de realização 3 da invenção, o bloco interno (330) encaixa na parte interna (360), criando as câmaras de filtração (304a e 304b) que ficam compreendidas entre o bloco interno (330) e as membranas (305a e 305b) . A espessura dos canais de filtração é determinada pelas dimensões da haste (339) do bloco interno (330) . FIG. 15 shows the exploded isometric view of embodiment 3 of the invention. All internal parts of centrifugal filtration device (300) are supported on edge (352) of outer part (350). The novelty of embodiment 3 of the invention is the use of an inner block (330) separating the sample chamber (302) from the filtration chamber (304). In this embodiment 3 of the invention there are two membranes, namely membrane (305a) and membrane (305b). The membrane 305a is supported in the slot 342, while the membrane 305b is supported in a similar slot on the opposite side. The surfaces of these grooves should preferably have a set of protrusions or porous surfaces to facilitate passage of permeate flow to permeate reservoir (306). Each of the membrane support pieces (340 and 341) has at least one permeate channel (346 and 347), respectively, to conduct permeate flow into the permeate chamber (306). The permeate chamber (306) is defined by the inner walls of the outer shell (350). The membrane support pieces (340 and 341) are attached to the edges (361a and 361b) of the inner part (360). The assembly comprising the parts (340, 341 and 360) is capped by the lid (310) and fits within the outer part (350), the edge (362) of the inner part (360) being supported at the edge (352) of the outside (350). In this embodiment 3 of the invention, the inner block (330) fits into the inner part (360), creating the filtration chambers (304a and 304b) that lie between the inner block (330) and the membranes (305a and 305b). . The thickness of the filtration channels is determined by the dimensions of the rod (339) of the inner block (330).
A bloco interno (330) é suportado através do encaixe do bordo (338) na extremidade (363) da parte interna (360) . A câmara de amostra (302) é criada por uma cavidade no topo do bloco interno (330) . O gargalo (303) liga a parte mais funda da câmara de amostra (302) às câmaras de filtração (304a e 304b) através dos canais estreitos auxiliares (303a e 303b) . Opcionalmente, pode-se usar um canal estreito (333) (canal de remoção de concentrado) para remover o concentrado no final da filtração, com o auxilio de um tubo capilar flexível. Este canal também permite eliminar facilmente bolsas de ar que existam nas câmaras de filtração no início da centrifugação. Inner block (330) is supported by lip engagement (338) at end (363) of inner part (360). The sample chamber (302) is created by a cavity in the top of the inner block (330). The neck 303 connects the deepest part of the sample chamber 302 to the filtration chambers 304a and 304b through the auxiliary narrow channels 303a and 303b. Optionally, a narrow channel (333) (concentrate removal channel) may be used to remove the concentrate at the end of filtration with the aid of a flexible capillary tube. This channel also allows to easily eliminate air pockets in the filtration chambers at the beginning of centrifugation.
A forma de realização 3 da invenção pode ser ainda melhor entendida com recurso aos cortes seccionais D-D e E-E esquematizados na FIG. 16, que ilustra a vista de topo da forma de realização 3 da invenção. O corte D-D é visto de frente na FIG. 17. Durante a filtração, o líquido da amostra fresco flui da câmara de amostra (302) para o interior do gargalo estreito (303) . O gargalo estreito desemboca depois nas condutas (303a e 303b) que desembocam por sua vez nas câmaras de filtração (304a e 304b), onde estão as membranas (305a e 305b) . A amostra concentrada é recolhida na câmara de concentrado de (307) . O permeado passa pelos canais (346 e 347) e é recolhido na câmara de permeado (306) . Embodiment 3 of the invention can be further understood using the sectional sections DD and EE outlined in FIG. 16 illustrating the top view of embodiment 3 of the invention. Section DD is seen from the front in FIG. 17. During filtration, fresh sample liquid flows from the sample chamber (302) into the narrow neck (303). The narrow neck then flows into the ducts (303a and 303b) which in turn flow into the filtration chambers (304a and 304b), where are the membranes (305a and 305b). The concentrated sample is collected in the concentrate chamber of (307). The permeate passes through the channels 346 and 347 and is collected in the permeate chamber 306.
A FIG. 18 mostra a vista em corte da forma de realização 3 da invenção ao longo da secção E-E definida na FIG. 16. O canal estreito (333) (canal de remoção de concentrado) no centro do dispositivo pode ser utilizado para retirar a amostra concentrada no final da filtração ou para facilitar a eliminação de bolsas de ar que possam existir inicialmente nas câmaras de filtração. FIG. 18 shows the cross-sectional view of embodiment 3 of the invention along section E-E defined in FIG. 16. The narrow channel (333) (concentrate removal channel) in the center of the device may be used to withdraw concentrated sample at the end of filtration or to facilitate the elimination of air pockets that may initially exist in the filtration chambers.
Outra opção para remover o concentrado da forma de realização 3 da invenção é o de separar da montagem a tampa (310) e a parte externa (350), inserir um reservatório (370) através da abertura da parte (330) de bloco interno e efetuar uma centrifugação a baixa rotação com o dispositivo invertido. Este procedimento é melhor entendido com o auxilio da FIG. 19. Depois de retirar a tampa (310) e a parte externa do conjunto (350), o reservatório adicional (370) é inserido no topo do bloco interno (330) e o novo conjunto é invertido e centrifugado a uma velocidade de rotação baixa. Como resultado, o liquido concentrado que estava na câmara de concentrado (307) flui para a câmara (371), onde pode ser recolhido como a amostra concentrada (307a), depois de se separar o reservatório (370) do dispositivo. Another option for removing the concentrate from embodiment 3 of the invention is to detach the lid (310) and the outer part (350) from the assembly, insert a reservoir (370) through the opening of the inner block part (330) and perform a low speed spin with the inverted device. This procedure is best understood with the aid of FIG. 19. After removing the cover (310) and the outside of the assembly (350), the additional reservoir (370) is inserted into the top of the inner block (330) and the new assembly is inverted and centrifuged at a low rotational speed. . As a result, the concentrated liquid that was in the concentrate chamber 307 flows into the chamber 371, where it can be collected as the concentrated sample 307a, after separating the reservoir 370 from the device.
O dispositivo de filtração centrífuga pode utilizar membranas de osmose inversa, membranas de nanofiltração, com um limite de exclusão molecular que está tipicamente entre 100 Da e 1 kDa, ou membranas de ultrafiltração com um limite de exclusão molecular entre 1 kDa e 1000 kDa. EXEMPLOS The centrifugal filtration device may utilize reverse osmosis membranes, nanofiltration membranes with a molecular exclusion limit that is typically between 100 Da and 1 kDa, or ultrafiltration membranes with a molecular exclusion limit between 1 kDa and 1000 kDa. EXAMPLES
Para avaliar o desempenho do dispositivo de filtração centrífuga divulgado nesta invenção, várias experiências de filtração centrífuga foram realizadas com soluções aquosas de sacarose utilizando a forma de realização 1 do objeto da invenção, com um ângulo γ de 30° e um ângulo δ de 34°. O protótipo utilizado tem altura de 103 mm e largura de 28.7 mm, tendo sido manufacturado numa liga leve de alumínio (com exceções do bloco interno (130) em teflon e dos o-rings (111, 142 e 143 de polinitrilo) . Neste protótipo, a câmara de amostra 102 tem um volume de cerca de 3.2 mL . To evaluate the performance of the centrifugal filtration device disclosed in this invention, various centrifugal filtration experiments were performed with aqueous sucrose solutions using embodiment 1 of the object of the invention, with an angle γ of 30 ° and an angle δ of 34 °. . The prototype used has a height of 103 mm and a width of 28.7 mm and was manufactured from an aluminum light alloy (with the exception of the Teflon inner block 130 and the polyinitrile o-rings 111, 142 and 143). , sample chamber 102 has a volume of about 3.2 mL.
A sacarose foi selecionada como soluto de referência, por ter um peso molecular de 342, 3 g / mol que está na gama do limite de exclusão molecular de nanofiltração . A avaliação quantitativa do desempenho do dispositivo de filtração centrífuga foi baseada no fator de concentração e na rejeição aparente. O fator de concentração, CF, é o rácio da concentração final do concentrado, Cc., pela concentração inicial da amostra, Ca, ou seja, CF = C/Ct7. A rejeição aparente, Rs, é calculada como a diferença entre as concentrações da amostra inicial e a do permeado, C^, e ÇB, respectivamente, dividido pela concentração da amostra inicial, ou seja Ra = {Ca— £ρ.)/€α . Uma rejeição aparente próxima de 1 indica que a membrana impede a passagem do soluto para o permeado. Sucrose was selected as the reference solute because it has a molecular weight of 342.3 g / mol which is in the range of nanofiltration molecular exclusion limit. Quantitative evaluation of centrifugal filtration device performance was based on concentration factor and apparent rejection. The concentration factor, CF, is the ratio of the final concentrate concentration, C c ., To the initial sample concentration, C a , ie CF = C / C t7 . Apparent rejection, R s , is calculated as the difference between the initial and permeate sample concentrations, C ^, and Ç B , respectively, divided by the initial sample concentration, ie R a = {C a - £ ρ .) / € α . An apparent rejection close to 1 indicates that the membrane prevents the passage of solute to the permeate.
Em todos os exemplos usou-se a membrana de nanofiltração NFX fabricada pela Synder Filtration (Vacaville, EUA) . A membrana, que tem, segundo o fabricante, um limite de exclusão molecular nominal entre 150 e 300 Da, foi colada ao suporte, usando para isso duas resinas epoxy: Araldite Standard da Ceys (Espanha) e Omegabond OB-101 da Omega (EUA) . A membrana foi colada sobre a superfície (141) da parte de suporte de membrana como a seguir se descreve. Um pedaço de membrana com a forma da superfície (141) foi cortado de uma folha de membrana nova. Um fino fio (cerca de 1 mm) de mistura Omegabond OB-101 foi espalhado a cerca de 2 mm dos bordos, quer da superfície (141) do dispositivo de filtração centrífuga, quer da superfície do suporte de poliéster da membrana (105) . A superfície do suporte de poliéster da membrana (105) foi colocada em contacto com a superfície (141) da parte de suporte de membrana (140) e foi aguardado o tempo necessário para a cura das colas, de acordo com as instruções dos fabricantes das colas. Após a cura das colas, uma fina camada de mistura Araldite Standard foi espalhada até cerca de 3 mm do bordo da membrana (105) (incluindo o rebordo) para garantir a sua selagem. Após a cura da cola, o dispositivo de filtração segundo a forma de realização 1 ficou apto para utilização. In all examples the NFX nanofiltration membrane manufactured by Synder Filtration (Vacaville, USA) was used. The membrane, which according to the manufacturer has a limit of Nominal molecular exclusion between 150 and 300 Da was bonded to the backing using two epoxy resins: Ceys Araldite Standard (Spain) and Omega Omegabond OB-101 (USA). The membrane was glued to the surface (141) of the membrane support portion as described below. A surface-shaped membrane piece (141) was cut from a new membrane sheet. A thin wire (about 1 mm) of Omegabond OB-101 blend was scattered about 2 mm from the edges of either the surface (141) of the centrifugal filter device or the surface of the membrane polyester support (105). The surface of the membrane polyester support (105) was brought into contact with the surface (141) of the membrane support part (140) and the time required for curing the adhesives was waited according to the manufacturers' instructions. glues. After the adhesives were cured, a thin layer of Araldite Standard mixture was spread to about 3 mm from the membrane edge (105) (including the lip) to ensure their sealing. After curing of the glue, the filtration device according to embodiment 1 was fit for use.
As concentrações de sacarose no permeado e no concentrado, no final da filtração, foram determinadas através do uso do refratómetro diferencial DD-5 da Atago (Japão) . Em todos os exemplos usou-se uma centrifugadora RC6 da Sorvall com um rotor de ângulo fixo F10-6x500y. A este rotor acoplou-se um adaptador por forma a que o ângulo ε fosse 34°. Nos exemplos apresentados em seguida, o volume da câmara de amostra foi de cerca de 3.2 mL, o comprimento do gargalo estreito foi de 1.9 cm, o volume contido no gargalo estreito foi de 0.018 ml, e o volume contido nas câmaras de concentrado e de filtração foi de 0.1 mL nos exemplos 1 e 2 e de 0.4 mL no exemplo 3. A razão entre o volume do gargalo e o volume contido nas câmaras de concentrado e de filtração foi então sempre inferior a 1/5 (esta razão é 0.18 nos exemplos 1 e 2 e 0.04 no exemplo 3) . A área da secção transversal do gargalo estreito foi de 1 mm2. The permeate and concentrate sucrose concentrations at the end of filtration were determined using the Atago DD-5 differential refractometer (Japan). In all examples a Sorvall RC6 centrifuge with a fixed angle F10-6x500y rotor was used. An adapter was attached to this rotor such that the angle ε was 34 °. In the examples below, the sample chamber volume was about 3.2 mL, the narrow neck length was 1.9 cm, the volume contained in the narrow neck was 0.018 mL, and the volume contained in the sample chambers. Concentration and filtration was 0.1 mL in Examples 1 and 2 and 0.4 mL in Example 3. The ratio between the volume of the neck and the volume contained in the concentrate and filtration chambers was then always less than 1/5 (this ratio is 0.18 in examples 1 and 2 and 0.04 in example 3). The cross-sectional area of the narrow neck was 1 mm 2 .
Exemplo 1 Example 1
Um volume de 3.2 mL de solução aquosa de sacarose com uma concentração de 7.7 g / L foi filtrada em conformidade com o presente método divulgado na invenção (ver Tabela 1) . A altura da câmara de filtração ou seja, a distância da superfície da membrana 105 à superfície inferior da parte interna do bloco 130, foi de 0.2 mm. A 3.2 mL volume of aqueous sucrose solution with a concentration of 7.7 g / l was filtered according to the present method disclosed in the invention (see Table 1). The height of the filtration chamber, ie the distance from the membrane surface 105 to the lower surface of the inner part of the block 130, was 0.2 mm.
Antes da filtração da própria amostra, a membrana foi lavada com água para remover as substâncias conservantes e protetoras da membrana colocadas pelo fabricante desta. Para isso, filtraram-se 3.2 mL de água desionizada no dispositivo de filtração centrífuga a uma velocidade de rotação de 6000 rpm durante 30 minutos, repetindo-se o processo uma vez. Nestas condições, a pressão média na câmara de filtração 104 no início do ciclo de filtração é 16 bar. Depois da lavagem da membrana, filtrou-se 3.2 ml de solução de sacarose durante 45 minutos a uma velocidade de rotação de 6000 rpm. Este tempo de filtração foi suficiente para que toda a solução contida na câmara de alimentação fosse filtrada. Prior to filtration of the sample itself, the membrane was washed with water to remove the preservative and protective substances from the membrane placed by the membrane manufacturer. To this end, 3.2 mL of deionized water was filtered into the centrifugal filtration device at a rotation speed of 6000 rpm for 30 minutes and the process repeated once. Under these conditions, the average pressure in the filtration chamber 104 at the beginning of the filtration cycle is 16 bar. After washing the membrane, 3.2 ml of sucrose solution was filtered over 45 minutes at a rotation speed of 6000 rpm. This filtration time was sufficient for all the solution contained in the feed chamber to be filtered.
No final do processo de filtração, o permeado foi retirado do reservatório de permeado e a amostra líquida concentrada foi retirada do dispositivo por sucção, usando de um tubo capilar flexível e uma seringa, de acordo com o método descrito na presente invenção. Nestas condições, foi possível extrair do dispositivo de filtração centrífuga cerca de 105 μΐ de concentrado, o qual apresentava uma concentração média de 117 g / L de sacarose. A rejeição aparente obtida neste ensaio foi de 97%. At the end of the filtration process, the permeate was removed from the permeate reservoir and the concentrated liquid sample was suctioned from the device using a flexible capillary tube and syringe according to the method described in the present invention. Under these conditions, it was possible to extract from the centrifugal filtration device about 105 μΐ concentrate, which had an average concentration of 117 g / l sucrose. The apparent rejection obtained in this assay was 97%.
Em resumo, este exemplo prova que através da forma de realização 1 do objeto da invenção é possível concentrar 3.2 mL de uma solução aquosa de sacarose com uma concentração de 7.7 g / L, por forma a obter 105 μΐ de solução concentrada, obtendo-se um fator de concentração de 15, com a uma rejeição aparente de 97%. In summary, this example proves that through embodiment 1 of the object of the invention it is possible to concentrate 3.2 ml of an aqueous sucrose solution with a concentration of 7.7 g / l to obtain 105 μΐ of concentrated solution to give a concentration factor of 15, with an apparent rejection of 97%.
Exemplo 2 Example 2
Uma solução aquosa de sacarose com uma concentração de 30.7 g/L foi filtrada durante 60 minutos a uma velocidade de rotação de 9000 rpm. A membrana neste exemplo foi previamente lavada com água, usando o mesmo procedimento do exemplo 1, mas apenas durante 15 minutos. An aqueous sucrose solution with a concentration of 30.7 g / l was filtered for 60 minutes at a rotation speed of 9000 rpm. The membrane in this example was previously washed with water using the same procedure as example 1, but only for 15 minutes.
Introduziram-se 3.2 mL de solução de sacarose no dispositivo de filtração centrífuga. A pressão média na câmara de filtração 104, no início do ciclo de filtração, foi de 35 bar, para a velocidade de rotação de 9000 rpm. Nestas condições, no final da filtração centrífuga extraiu-se um volume de 325 μL de concentrado, com uma concentração de 233 g/L de sacarose. A rejeição aparente da membrana foi de 99.2%. Em resumo, este exemplo prova que o dispositivo de filtração centrífuga, operando a 9000 rpm durante 60 minutos, é capaz de concentrar uma amostra de 3.2 ml de uma solução aquosa de sacarose, aumentando a sua concentração de 30.7 g / L para 233 g/L. 3.2 mL of sucrose solution was introduced into the centrifugal filtration device. The average pressure in the filtration chamber 104 at the beginning of the filtration cycle was 35 bar for the rotation speed of 9000 rpm. Under these conditions, at the end of centrifugal filtration, a volume of 325 μL concentrate was extracted with a concentration of 233 g / l sucrose. Apparent rejection of the membrane was 99.2%. In summary, this example proves that the centrifugal filtration device, operating at 9000 rpm for 60 minutes, is capable of concentrating a 3.2 ml sample of a solution. sucrose, increasing its concentration from 30.7 g / l to 233 g / l.
Exemplo 3 Example 3
Neste exemplo, estudou-se a evolução temporal da filtração de uma solução aquosa de sacarose com uma concentração de 30.7 g/L, operando a uma velocidade de rotação de 9000 rpm. Para isso, efetuaram-se ensaios de filtração com tempos de filtração crescentes. Neste exemplo, a altura da câmara de filtração do dispositivo de filtração centrífuga foi de 1.3 mm. A FIG. 20 mostra a evolução do caudal médio de permeado em cada um dos intervalos temporais e da concentração de sacarose no concentrado no final de cada um desses intervalos . O caudal médio de permeado é o volume médio de permeado que atravessa a membrana por unidade de tempo e foi obtido determinando o volume de permeado acumulado na câmara de permeado (106) nos diferentes intervalos de tempo assinalados na FIG. 20. Uma vez que com o dispositivo de filtração centrífuga, divulgado nesta o invenção, se obtém elevada repetibilidade entre ensaios, e a membrana utilizada nos diferentes ensaios foi sempre a mesma, foi possível determinar o volume médio de permeado entre dois instantes genéricos tl e t2, ou seja no intervalo temporal [tl,t2], calculando a diferença de volume de permeado acumulado em ensaios de filtração centrífuga com tempos de filtração distintos tl e t2. Assim, para cada intervalo [tl,t2] foi realizado um ensaio de tempo de filtração t2 partindo sempre In this example, the temporal evolution of filtration of an aqueous sucrose solution with a concentration of 30.7 g / l, operating at a rotation speed of 9000 rpm, was studied. For this, filtration tests were performed with increasing filtration times. In this example, the filtration chamber height of the centrifugal filtration device was 1.3 mm. FIG. 20 shows the evolution of the average permeate flow rate at each time interval and the sucrose concentration in the concentrate at the end of each interval. The average permeate flow rate is the average permeate volume that crosses the membrane per unit time and was obtained by determining the accumulated permeate volume in the permeate chamber 106 at the different time intervals shown in FIG. 20. Since the centrifugal filtration device disclosed in this invention achieves high repeatability between assays, and the membrane used in the different assays was always the same, it was possible to determine the average permeate volume between two generic t1 and t2, ie in the time interval [tl, t2], calculating the accumulated permeate volume difference in centrifugal filtration tests with different filtration times tl and t2. Thus, for each interval [tl, t2] a filtration time test t2 was performed always starting from

Claims

das condições iniciais. No fim do ensaio, foram determinados os volumes e concentrações do permeado e do concentrado, e o caudal médio de permeado foi obtido por diferença com o valor do permeado acumulado para o ensaio de tempo de filtração imediatamente anterior (e dividindo pelo tempo do respetivo intervalo) . of the initial conditions. At the end of the assay, permeate and concentrate volumes and concentrations were determined, and the average permeate flow rate was obtained by difference with the accumulated permeate value for the immediately preceding filtration time assay (and dividing by the respective interval time ).
Na FIG. 20, os valores de concentração do concentrado em cada tempo t reportam ao ensaio de filtração com tempo de filtração t. Neste exemplo, a designação de concentrado refere-se à fração de liquido presente na câmara de concentrado (107) e / ou na câmara de filtração (104), após a remoção da fração de liquido remanescente na câmara de amostra (102) . Isto porque, nos intervalos temporais iniciais, apesar de o caudal de permeado ser elevado, o tempo de filtração é insuficiente para que tenha ocorrido filtração total. Por isso, nestes intervalos temporais iniciais existia sempre a presença de liquido na câmara de amostra (102), após a paragem da centrifugadora . No entanto, a análise ao liquido presente na câmara de amostra (102) revelou não ter existido mistura entre esse liquido e os líquidos da câmara de filtração (104) e / ou da câmara de concentrado (107), dado que a sua concentração permaneceu igual à concentração inicial da amostra. In FIG. 20, concentrate concentration values at each time t report to filtration test with filtration time t. In this example, the concentrate designation refers to the fraction of liquid present in the concentrate chamber (107) and / or the filtration chamber (104) after removal of the remaining liquid fraction in the sample chamber (102). This is because at the initial time intervals, although the permeate flow rate is high, the filtration time is insufficient for full filtration to occur. Therefore, at these initial time intervals there was always the presence of liquid in the sample chamber (102) after the centrifuge was stopped. However, analysis of the liquid in the sample chamber (102) revealed that there was no mixture between this liquid and the liquids in the filtration chamber (104) and / or the concentrate chamber (107), as their concentration remained unchanged. equal to the initial concentration of the sample.
Este exemplo mostra que para o dispositivo de filtração centrífuga usado, a concentração máxima, de cerca de 170 g/L de sacarose, atinge-se ao fim de cerca de 40 minutos de filtração. Este tipo de ensaio deve ser sempre feito numa fase inicial, para se identificar o tempo mínimo de filtração necessário para se filtrar toda a amostra e, assim, se atingir o fator máximo de concentração pretendido. Dispositivo de filtração centrífuga (1) para a concentração de misturas líquidas, para ser inserido no rotor de uma centrifugadora caracterizado por compreender: um invólucro, o qual compreende uma câmara de amostra (2, 102, 302) com pelo menos um orifício de ventilação (123, 312); uma câmara de permeado (6, 106, 306) com pelo menos um orifício de ventilação (145, 351); pelo menos uma câmara de filtração (4, 104, 304) com pelo menos uma membrana semi-permeável (5, 105, 205, 305); uma câmara de concentrado (7, 107, 307) a jusante da câmara de filtração (4, 104, 304); e pelo menos um gargalo (3, 103, 303) que liga a câmara de amostra (2, 102, 302) à câmara de filtração (4, 104, 304) e cu o volume é inferior ao volume contido na câmara de concentrado (7, 107, 307) e na câmara de filtração (4, 104, 304) . This example shows that for the centrifugal filtration device used, the maximum concentration of about 170 g / l sucrose is reached after about 40 minutes of filtration. This type of test should always be done at an early stage to identify the minimum filtration time required to filter the entire sample and thus to achieve the desired maximum concentration factor. Centrifugal filtration device (1) for concentrating liquid mixtures for insertion into the rotor of a centrifuge comprising: a housing which comprises a sample chamber (2, 102, 302) with at least one vent hole (123,312); a permeate chamber (6, 106, 306) with at least one vent (145, 351); at least one filtration chamber (4, 104, 304) with at least one semipermeable membrane (5, 105, 205, 305); a concentrate chamber (7,107,307) downstream of the filtration chamber (4,104,304); and at least one neck (3, 103, 303) connecting the sample chamber (2, 102, 302) to the filtration chamber (4, 104, 304) and which volume is less than the volume contained in the concentrate chamber ( 7, 107, 307) and in the filtration chamber (4,104,304).
Dispositivo de filtração centrífuga de acordo com a reivindicação 1 caracterizado por o volume do gargalo (3, 103, 303) ser inferior a 1/5 do volume contido nas câmaras de concentrado e de filtração. Centrifugal filtration device according to claim 1, characterized in that the volume of the neck (3,103,303) is less than 1/5 of the volume contained in the concentrate and filtration chambers.
Dispositivo de filtração centrífuga de acordo com as reivindicações anteriores caracterizado por a área da secção transversal do gargalo (3, 103, 303) ser inferior a 1 mm2. Centrifugal filtration device according to the preceding claims, characterized in that the cross-sectional area of the neck (3, 103, 303) is less than 1 mm 2 .
Dispositivo de filtração centrífuga de acordo com qualquer uma das reivindicações anteriores caracterizado por o referido invólucro compreender adicionalmente um canal de remoção de concentrado (133, 333) que liga a câmara de amostra (102, 302) à câmara de concentrado (107, 307), e através do qual se pode inserir um tubo flexível para remover a mistura líquida concentrada. Centrifugal filtration device according to any one of the preceding claims, characterized in that said housing further comprises a concentrate removal channel (133, 333) connecting the sample chamber (102, 302) to the concentrate chamber (107, 307), and through which a flexible tube may be inserted to remove the concentrated liquid mixture.
Dispositivo de filtração centrífuga de acordo com qualquer uma das reivindicações anteriores caracterizado por compreender adicionalmente pelo menos um canal de permeado (144, 237, 346, 347) que liga o lado do permeado da membrana de filtração à câmara de permeado. Centrifugal filtration device according to any one of the preceding claims, further comprising at least one permeate channel (144, 237, 346, 347) connecting the permeate side of the filtration membrane to the permeate chamber.
Dispositivo de filtração centrífuga de acordo com qualquer uma das reivindicações anteriores caracterizado por o vetor normal ao lado ativo da membrana fazer um ângulo de aproximadamente 90° com o vetor da aceleração centrífuga, por forma a maximizar a ação de autolimpeza da camada limite de concentração. Centrifugal filtration device according to any one of the preceding claims, characterized in that the normal vector on the active side of the membrane is at an angle of approximately 90 ° to the centrifugal acceleration vector so as to maximize the self-cleaning action of the concentration boundary layer.
Dispositivo de filtração centrífuga de acordo com qualquer uma das reivindicações anteriores caracterizado por compreender duas câmaras de filtração (304a, 304b) com duas membranas semi-permeáveis (305a, 305b), voltadas uma para a outra em lados opostos da câmara de filtração (304), e um gargalo (303) que desemboca em duas condutas (303a, 303b) independentes, que por sua vez desembocam nas câmaras de filtração (304a e 304b) . Centrifugal filtration device according to any one of the preceding claims, characterized in that it comprises two filtration chambers (304a, 304b) with two semi-permeable membranes (305a, 305b) facing each other on opposite sides of the filtration chamber (304 ), and a neck (303) which flows into two independent ducts (303a, 303b), which in turn flow into the filtration chambers (304a and 304b).
Dispositivo de filtração centrífuga de acordo com qualquer uma das reivindicações anteriores, caracterizado por as membranas semi-permeáveis (5, 105, 205, 305) terem um limite de exclusão molecular na gama da osmose inversa e da nanofiltração, preferencialmente entre 100 Da e 1000 Da. Centrifugal filtration device according to any one of the preceding claims, characterized in that the semipermeable membranes (5, 105, 205, 305) have a molecular exclusion limit in the range of reverse osmosis and nanofiltration, preferably between 100 Da and 1000 µm. Gives.
9. Dispositivo de filtração centrífuga de acordo com qualquer uma das reivindicações 1-7, caracterizado por as membranas semi-permeáveis (5, 105, 205, 305) terem um limite de exclusão molecular na gama da ultrafiltração ou microfiltração, ou seja, entre 1 kDa e 1000 kDa . Centrifugal filtration device according to any one of claims 1-7, characterized in that the semipermeable membranes (5, 105, 205, 305) have a molecular exclusion limit in the range of ultrafiltration or microfiltration, ie between 1 kDa and 1000 kDa.
10. Método para a concentração de uma mistura líquida caracterizado por compreender as seguintes etapas: a) prover um dispositivo de filtração centrífuga (100, 200,300) de acordo com qualquer uma das reivindicações 1 a 9; A method for concentrating a liquid mixture comprising the following steps: a) providing a centrifugal filtration device (100, 200,300) according to any one of claims 1 to 9;
b) prover uma centrifugadora com um rotor capaz de receber o referido dispositivo de filtração centrífuga; c) introduzir a amostra de mistura líquida a concentrar na câmara de amostra (2, 102, 302) do referido dispositivo (100, 200, 300);  b) providing a rotor centrifuge capable of receiving said centrifugal filtration device; c) introducing the sample of liquid mixture to concentrate into the sample chamber (2, 102, 302) of said device (100, 200, 300);
d) inserir o dispositivo de filtração centrífuga (100, 200, 300) dentro do rotor da centrifugadora;  d) inserting the centrifugal filtration device (100, 200, 300) into the centrifuge rotor;
e) ligar a centrifugadora e fixar a velocidade de rotação num valor que permita atingir uma pressão suficiente para a amostra permear através da, pelo menos uma, membrana semi-permeável do referido dispositivo (100, 200, 300);  e) turning on the centrifuge and setting the speed of rotation to a sufficient pressure to allow the sample to permeate through the at least one semipermeable membrane of said device (100, 200, 300);
f) esperar o tempo suficiente para que a amostra permeie através da referida, pelo menos uma, membrana e se atinja o factor de concentração pré-definido ;  f) waiting long enough for the sample to permeate through said at least one membrane and reach the predefined concentration factor;
g) retirar o dispositivo de filtração centrífuga do rotor da centrifugadora;  g) removing the centrifugal filter device from the centrifuge rotor;
h) retirar do dispositivo de filtração centrífuga o permeado e o concentrado. Método de concentração de uma amostra de mistura liquida de acordo com a reivindicação 10, caracterizado por, no passo e) , a velocidade de rotação da centrifugadora ser aumentada gradualmente, desde um dado valor inicial até um dado valor final, ao longo do processo de filtração. h) removing the permeate and concentrate from the centrifugal filtration device. Method of concentrating a liquid mixture sample according to claim 10, characterized in that, in step e), the spinning speed of the centrifuge is gradually increased from a given initial value to a given final value throughout the process. filtration.
PCT/PT2018/050006 2017-02-24 2018-02-23 Centrifugal filtration device and method for concentrating liquid mixtures WO2018156039A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT109932A PT109932A (en) 2017-02-24 2017-02-24 CENTRIFUGAL FILTRATION DEVICE AND METHOD FOR CONCENTRATION OF LIQUID MIXTURES
PT109932 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018156039A1 true WO2018156039A1 (en) 2018-08-30

Family

ID=61873859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PT2018/050006 WO2018156039A1 (en) 2017-02-24 2018-02-23 Centrifugal filtration device and method for concentrating liquid mixtures

Country Status (2)

Country Link
PT (1) PT109932A (en)
WO (1) WO2018156039A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4317400A4 (en) * 2021-03-24 2025-02-12 Hitachi High-Tech Corporation Centrifugal filtration cartridge and microbial test method
WO2025034126A1 (en) 2023-08-10 2025-02-13 Instituto Superior Técnico Turbo-centrifugal filtration devices and method for membrane characterization, sample concentration or purification by ultrafiltration, nanofiltration, and reverse osmosis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT118865A (en) * 2023-08-10 2025-02-10 Inst Superior Tecnico TURBO-CENTRIFUGAL FILTRATION DEVICES AND METHOD FOR LIQUID FILTRATION, PURIFICATION BY ULTRAFILTRATION, NANOFILTRATION AND HIGH PERFORMANCE REVERSE OSMOSIS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4722792A (en) * 1985-02-09 1988-02-02 Kurashiki Boseki Kabushiki Kaisha Filter for centrifugal separator
US5647990A (en) * 1993-05-21 1997-07-15 Vassarotti; Vincenzo Centrifugal method for concentrating macromolecules from a solution and device for carrying out said method
US6344140B1 (en) * 1997-08-11 2002-02-05 Peter Zuk, Jr. Centrifugal filtration apparatus
US7141167B2 (en) * 2001-04-23 2006-11-28 N F T Nanofiltertechnik Gmbh Filter device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US463276A (en) * 1891-11-17 Wagon end-gate
US573344A (en) * 1896-12-15 mustain

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4722792A (en) * 1985-02-09 1988-02-02 Kurashiki Boseki Kabushiki Kaisha Filter for centrifugal separator
US5647990A (en) * 1993-05-21 1997-07-15 Vassarotti; Vincenzo Centrifugal method for concentrating macromolecules from a solution and device for carrying out said method
US6344140B1 (en) * 1997-08-11 2002-02-05 Peter Zuk, Jr. Centrifugal filtration apparatus
US7141167B2 (en) * 2001-04-23 2006-11-28 N F T Nanofiltertechnik Gmbh Filter device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
COMPLETO CARLOS ET AL: "Centrifugal nanofiltration for small-volume samples", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER BV, NL, vol. 540, 27 June 2017 (2017-06-27), pages 411 - 421, XP085177587, ISSN: 0376-7388, DOI: 10.1016/J.MEMSCI.2017.06.069 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4317400A4 (en) * 2021-03-24 2025-02-12 Hitachi High-Tech Corporation Centrifugal filtration cartridge and microbial test method
WO2025034126A1 (en) 2023-08-10 2025-02-13 Instituto Superior Técnico Turbo-centrifugal filtration devices and method for membrane characterization, sample concentration or purification by ultrafiltration, nanofiltration, and reverse osmosis

Also Published As

Publication number Publication date
PT109932A (en) 2018-09-12

Similar Documents

Publication Publication Date Title
JP3197014B2 (en) Centrifugal method for concentrating macromolecules from solution and apparatus for performing said method
US4522713A (en) Apparatus for static membrane filtration
WO2018156039A1 (en) Centrifugal filtration device and method for concentrating liquid mixtures
KR101099962B1 (en) Fluid distribution module and extracorporeal blood circuit comprising such fluid distribution module
CN100586494C (en) Integrated blood treatment module
CN106573201B (en) Capillary pressure reset mechanism and application
ES2857873T3 (en) Depth filtration device to separate phases of samples
JP7356361B2 (en) Filtration cells and methods for filtering biological samples
JP2003265597A (en) Hemodiafiltration filter and hemodiafiltration device
US20030146154A1 (en) Shear-enhanced system and methods for removing waste materials and liquid from the blood
AU2016295621B2 (en) Method and apparatus for sample separation and collection
US5045207A (en) Multi-concentration disposable liquid concentrating device
US11554201B2 (en) Blood treatment machine comprising a hollow fiber filter module for horizontal arrangement as well as hollow fiber filter module and use thereof
JP2010256304A (en) Circulating blood cell separation filter chip
CN213222732U (en) Straight cylinder type centrifuge
JPS6323099Y2 (en)
JPH07313589A (en) Dialyzing liquid control device for blood dialyzing device
JP2017516529A (en) A method to control fouling and complement protein activation during rotating membrane filtration of plasma from whole blood
US12011692B2 (en) Separation device
CN221268157U (en) Microfluidic device and support
JP4150542B2 (en) Dialysis machine
US6802821B2 (en) Dialyzer
JPH0236619Y2 (en)
JPH07313591A (en) Dialyzing liquid control device for blood dialyzing device
CN117065814A (en) Microfluidic device, support and plasma separation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18715268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18715268

Country of ref document: EP

Kind code of ref document: A1