WO2018158807A1 - 半導体装置、および、電力変換システム - Google Patents
半導体装置、および、電力変換システム Download PDFInfo
- Publication number
- WO2018158807A1 WO2018158807A1 PCT/JP2017/007708 JP2017007708W WO2018158807A1 WO 2018158807 A1 WO2018158807 A1 WO 2018158807A1 JP 2017007708 W JP2017007708 W JP 2017007708W WO 2018158807 A1 WO2018158807 A1 WO 2018158807A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switching element
- semiconductor switching
- voltage
- sense
- sense voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K17/081—Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
- H03K17/0812—Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
- H03K17/08128—Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in composite switches
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K17/082—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
- H03K17/0828—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0027—Measuring means of, e.g. currents through or voltages across the switch
Definitions
- the technique disclosed in this specification relates to a technique for suppressing malfunction of a circuit for protecting a semiconductor switching element from an overcurrent.
- an overcurrent protection circuit for a semiconductor switching element including a sense element a sense current output from the sense element is converted into a sense voltage by a resistor or the like and used for detection of an overcurrent.
- the sense voltage exceeds a certain threshold value, the sense voltage is detected by the comparator in the overcurrent protection circuit. And the semiconductor switching element is protected from the overcurrent of a circuit by interrupting
- a semiconductor switching element such as an insulated gate bipolar transistor (ie, an IGBT) or a metal-oxide-semiconductor field-effect transistor (ie, a MOSFET).
- IGBT insulated gate bipolar transistor
- MOSFET metal-oxide-semiconductor field-effect transistor
- the gate drive current of the semiconductor switching element charges and discharges between the gate and the emitter, and the gate drive current of the semiconductor switching element charges and discharges the capacitance between the gate and the collector. Therefore, the gate-emitter voltage is constant.
- the sense voltage tends to increase as compared with the normal operation. Therefore, by providing a low-pass filter or the like, malfunction of the overcurrent protection circuit due to an increase in the sense voltage is prevented.
- Patent Document 1 Japanese Patent No. 5726037 discloses a malfunction of an overcurrent protection circuit by adjusting a threshold value or a sense voltage of the overcurrent protection circuit during a mirror period immediately after the semiconductor switching element is turned on. A circuit for preventing this is shown.
- Patent Document 2 Japanese Patent Laid-Open No. 5-276761
- the switching characteristics of the overcurrent protection circuit caused by an increase in the sense voltage of the semiconductor switching elements connected in parallel are not uniform in their switching characteristics.
- a technique for bypassing a sense current by a semiconductor switch for a certain period after the semiconductor switching element is turned on and after the turn-off is shown.
- the semiconductor switching element when the semiconductor switching element is turned off and the semiconductor switching element is turned on again during the mirror period immediately after the turn-off or immediately after the end of the mirror period, the semiconductor switching element is turned on again.
- An increase in the sense voltage during the mirror period may be a problem.
- the sense voltage increased in the mirror period immediately after the semiconductor switching element is turned off remains even when the semiconductor switching element is turned on. Therefore, simultaneously with the turn-on of the semiconductor switching element, the sense voltage that has risen during the mirror period causes the overcurrent protection circuit to malfunction.
- Patent Document 2 Japanese Patent Laid-Open No. 5-276661
- the malfunction of the overcurrent protection circuit is prevented by bypassing the sense current immediately after the semiconductor switching element is turned off for a certain period.
- the object of Patent Document 2 Japanese Patent Laid-Open No. 5-276761
- the increase period of the sense voltage due to these factors is generally shorter than the mirror period. Therefore, when the sense voltage rises during the mirror period as described above, if the bypass operation of the sense current is performed by the bypass circuit in Patent Document 2 (Japanese Patent Laid-Open No. 5-276661), the length of the bypass period is not long. It will be enough. That is, the overcurrent protection circuit may malfunction.
- the technology disclosed in the specification of the present application has been made to solve the above-described problems, and is an overcurrent protection circuit that is generated by a sense voltage increase in a mirror period immediately after turn-off of a semiconductor switching element. It is an object of the present invention to provide a technique capable of suppressing the malfunction of the system.
- a semiconductor switching element, a sense resistor that converts a sense current shunted from a main current flowing through the semiconductor switching element into a voltage, and the sense voltage are predetermined.
- An overcurrent protection circuit that outputs a control signal for controlling on-drive and off-drive of the semiconductor switching element based on whether the threshold value is exceeded, and the sense voltage from the overcurrent protection circuit
- a diode that clamps to a voltage obtained by adding a forward voltage to a voltage of a signal output during off-drive to the semiconductor switching element, and the overcurrent protection circuit, when the sense voltage does not exceed the threshold value,
- a signal for driving the semiconductor switching element on or a signal for driving off the semiconductor switching element is controlled. And outputs as a signal, when the sense voltage exceeds the threshold, outputs a signal for turning off driving the semiconductor switching element as the control signal.
- a power conversion device including the semiconductor device, a power source connected to the power conversion device, a power source connected to the power conversion device, and the power source And a load that is input after being converted by the power converter.
- a third aspect of the technology disclosed in the specification of the present application is a semiconductor switching element, a sense resistor that converts a sense current shunted from a main current flowing in the semiconductor switching element into a voltage, and a clamp that clamps the sense voltage A circuit, a determination circuit that determines whether or not the sense voltage exceeds a predetermined threshold value, on-drive and off-drive of the semiconductor switching element based on a determination result in the determination circuit, and A control unit that controls driving of the clamp circuit, and the control unit drives the semiconductor switching element on based on an input signal or turns off the sense voltage when the sense voltage does not exceed the threshold value.
- Driving when the sense voltage exceeds the threshold, driving the semiconductor switching element off, During the predetermined period after the period and the period said semiconductor switching element is turned off driven even without, thereby clamping the sense voltage to the clamping circuit.
- a power converter including the semiconductor device, a power source connected to the power converter, a power source connected to the power converter, and the power source And a load that is input after being converted by the power converter.
- a semiconductor switching element, a sense resistor that converts a sense current shunted from a main current flowing through the semiconductor switching element into a voltage, and the sense voltage are predetermined.
- An overcurrent protection circuit that outputs a control signal for controlling on-drive and off-drive of the semiconductor switching element based on whether the threshold value is exceeded, and the sense voltage from the overcurrent protection circuit
- a diode that clamps to a voltage obtained by adding a forward voltage to a voltage of a signal output during off-drive to the semiconductor switching element, and the overcurrent protection circuit, when the sense voltage does not exceed the threshold value, Based on an input signal, a signal for driving the semiconductor switching element on or a signal for driving off the semiconductor switching element is controlled.
- the sense voltage is clamped using a signal that is output from the overcurrent protection circuit to the semiconductor switching element at the time of off driving, the number of output terminals is different from that in the case of separately mounting a clamp circuit for clamping the sense voltage, and The number of parts can be reduced.
- a power conversion device including the semiconductor device, a power source connected to the power conversion device, a power source connected to the power conversion device, and the power source And a load that is input after being converted by the power converter.
- the power conversion device includes the semiconductor device including the diode. Therefore, the reliability of the semiconductor switching element can be improved by suppressing the malfunction in the determination circuit and the malfunction in the control unit by the operation of the diode.
- a third aspect of the technology disclosed in the specification of the present application is a semiconductor switching element, a sense resistor that converts a sense current shunted from a main current flowing in the semiconductor switching element into a voltage, and a clamp that clamps the sense voltage A circuit, a determination circuit that determines whether or not the sense voltage exceeds a predetermined threshold value, on-drive and off-drive of the semiconductor switching element based on a determination result in the determination circuit, and A control unit that controls driving of the clamp circuit, and the control unit drives the semiconductor switching element on based on an input signal or turns off the sense voltage when the sense voltage does not exceed the threshold value.
- Driving when the sense voltage exceeds the threshold, driving the semiconductor switching element off, During the predetermined period after the period and the period said semiconductor switching element is turned off driven even without, thereby clamping the sense voltage to the clamping circuit.
- the overcurrent protection circuit malfunctions due to a rise in the sense voltage immediately after the semiconductor switching element is turned off, and the overcurrent protection circuit caused by the rise in the sense voltage in the mirror period immediately after the semiconductor switching element is turned on. This malfunction can be appropriately suppressed.
- a power converter including the semiconductor device, a power source connected to the power converter, a power source connected to the power converter, and the power source And a load that is input after being converted by the power converter.
- the power conversion device includes the above semiconductor device including the clamp circuit. Therefore, the operation of the clamp circuit can suppress the malfunction in the determination circuit and the malfunction in the control unit, and can improve the reliability of the semiconductor switching element.
- FIG. 5 is a timing chart illustrating an operation pattern in which a sense voltage V S increases in a mirror period immediately after turn-off of a semiconductor switching element, according to an embodiment.
- 1 is a diagram schematically illustrating a circuit configuration for realizing a semiconductor device according to an embodiment.
- 3 is a timing chart illustrating the operation of the semiconductor device illustrated in FIG. 2.
- 1 is a diagram schematically illustrating a circuit configuration for realizing a semiconductor device according to an embodiment.
- 5 is a timing chart illustrating the operation of the semiconductor device illustrated in FIG. 1 is a diagram schematically illustrating a circuit configuration for realizing a semiconductor device according to an embodiment. 7 is a timing chart illustrating the operation of the semiconductor device illustrated in FIG. 6.
- FIG. 1 is a diagram schematically illustrating a circuit configuration for realizing a semiconductor device according to an embodiment.
- 9 is a timing chart illustrating the operation of the semiconductor device illustrated in FIG. 8.
- 1 is a diagram schematically illustrating a circuit configuration for realizing a semiconductor device according to an embodiment.
- 11 is a timing chart illustrating the operation of the semiconductor device illustrated in FIG. 10.
- 1 is a diagram schematically illustrating a circuit configuration for realizing a semiconductor device according to an embodiment.
- FIG. 1 is a timing chart illustrating an operation pattern in which the sense voltage increases in the mirror period immediately after the semiconductor switching element is turned off.
- the horizontal axis represents time.
- the input voltage VIN is switched from a high-level voltage signal to a low-level voltage signal at the turn-off timing of the semiconductor switching element, that is, at time t1.
- the voltage VIN is switched from a low level voltage signal to a high level voltage signal at the turn-on timing of the semiconductor switching element, that is, at time t2. Note that the overcurrent protection circuit does not operate while the semiconductor switching element is turned off.
- the sense voltage V S rises at the turn-off timing of the semiconductor switching element, that is, at time t1.
- the sense voltage V S is maintained at the increased voltage value even at the turn-on timing of the semiconductor switching element, that is, at time t2.
- the sense voltage V S that has risen in the mirror period immediately after the semiconductor switching element is turned off remains even when the semiconductor switching element is turned on, that is, at time t2. Therefore, simultaneously with the turn-on of the semiconductor switching element, the sense voltage V S that has risen in the mirror period causes the overcurrent protection circuit to malfunction.
- the gate-emitter voltage VGE is switched to a low level voltage signal.
- Patent Document 2 Japanese Patent Laid-Open No. 5-276661
- the malfunction of the overcurrent protection circuit is prevented by bypassing the sense current immediately after the semiconductor switching element is turned off for a certain period.
- Patent Document 2 JP-A-5-276761
- the rising period of the sense voltage V S due to these factors is generally shorter than the mirror period. Therefore, if the increase of the sense voltage V S at the mirror period as described above has occurred, is inadequate in the length of the period of the bypass operation of the sense current by the bypass circuit, there is a risk of malfunction also overcurrent protection circuit .
- FIG. 2 is a diagram schematically illustrating a circuit configuration for realizing the semiconductor device according to the present embodiment. Note that, from the viewpoint of facilitating understanding of the configuration, some components may be omitted or simplified in FIG.
- the semiconductor device includes a semiconductor switching element 12 to be overcurrent protected, a gate resistor 14, a sense resistor 16, a buffer circuit 22, a clamp circuit 30, and a low-pass filter 102. And an overcurrent protection circuit 104.
- the semiconductor switching element 12 is a transistor such as an IGBT having an emitter terminal 12a and a current sense terminal 12b.
- a collector current of the semiconductor switching element 12, that is, a sense current proportional to the main current flows through the current sense terminal 12b.
- the semiconductor switching element 12 is turned on when the drive signal input to the gate terminal 12c is a high-level voltage signal, and when the drive signal input to the gate terminal 12c is a low-level voltage signal. Turns off.
- the gate resistor 14 is connected to the gate terminal 12 c of the semiconductor switching element 12.
- the sense resistor 16 converts the sense current into a sense voltage V S.
- the sense resistor 16 is connected between the emitter terminal 12a of the semiconductor switching element 12 and the current sense terminal 12b. Further, the sense resistor 16 converts a sense current shunted from the main current flowing through the semiconductor switching element 12 into a voltage.
- the buffer circuit 22 generates a drive signal to be input to the gate terminal 12c of the semiconductor switching element 12 based on the signal input from the input unit 18 via the overcurrent protection circuit 104.
- Clamp circuit 30 clamps the rise in the sense voltage V S, that is, to fix the sense voltage V S to the voltage of a constant value.
- the low pass filter 102 includes a resistor 24 and a capacitor 26.
- the overcurrent protection circuit 104 includes a control unit 20, a comparator 28, and a reference voltage source 32.
- the overcurrent protection circuit 104 monitors the main current flowing through the semiconductor switching element 12 based on the sense voltage V S input through the low-pass filter 102.
- the overcurrent protection circuit 104 normally transmits a signal input from the input unit 18 to the buffer circuit 22.
- the overcurrent protection circuit 104 detects that an overcurrent has flown through the semiconductor switching element 12, the overcurrent protection circuit 104 performs a protection operation of the semiconductor switching element 12 such as not transmitting a signal to the buffer circuit 22.
- the reference voltage source 32 outputs a reference voltage V th corresponding to the threshold value of the sense voltage V S at which the overcurrent protection circuit 104 starts the protection operation of the semiconductor switching element 12.
- the sense voltage V S is input to the non-inverting input terminal of the comparator 28, that is, the + terminal via the low-pass filter 102.
- the reference voltage source 32 is connected to the inverting input terminal of the comparator 28, that is, the ⁇ terminal.
- the positive terminal sense voltage V S inputted to the - becomes the Low level of the voltage signal is lower than the reference voltage V th which is input to the terminal, the sense voltage V S inputted to the + terminal Is higher than the reference voltage Vth input to the-terminal, it becomes a high level voltage signal.
- the output of the comparator 28 is input to the control unit 20.
- a signal is input from the input unit 18 to the control unit 20.
- the control unit 20 When the output signal from the comparator 28 is a low level voltage signal, the control unit 20 outputs a signal based on the signal input from the input unit 18 from the first output.
- the control unit 20 when the output signal from the comparator 28 is a high level voltage signal, the control unit 20 outputs from the first output a control signal for blocking the gate of the switching element, that is, a low level voltage signal. By doing so, the control unit 20 protects the semiconductor switching element 12 from an overcurrent.
- control unit 20 outputs a signal for controlling the clamp circuit 30 from the second output.
- the control unit 20 outputs a high level voltage signal from the second output when a low level voltage signal is output from the first output.
- the clamp circuit 30 is branched and connected from the path through which the sense voltage V S is input to the low-pass filter 102, and is connected to the second output of the control unit 20.
- the clamp circuit 30 clamps an increase in the sense voltage V S when a high level voltage signal is input from the second output of the control unit 20.
- the clamp circuit 30 stops its operation when a low level voltage signal is input from the second output of the control unit 20.
- FIG. 3 is a timing chart illustrating the operation of the semiconductor device illustrated in FIG. In FIG. 3, the horizontal axis represents time.
- the clamp circuit 30 is driven by outputting the high level voltage signal from the second output. to continue.
- the rise of the sense voltage V S in the mirror period immediately after the semiconductor switching element 12 is turned off is clamped, that is, the sense voltage V S is fixed to a constant voltage, thereby preventing the overcurrent protection circuit from malfunctioning. Can be suppressed.
- the portion represented by a dotted line represents the waveform of the sense voltage V S when the clamp circuit 30 does not operate.
- FIG. 4 is a diagram schematically illustrating a circuit configuration for realizing the semiconductor device according to the present embodiment.
- the semiconductor device includes a semiconductor switching element 12, a gate resistor 14, a sense resistor 16, a buffer circuit 22, a MOSFET 34, a low-pass filter 102, and an overcurrent protection circuit 104. .
- the MOSFET 34 functions as a clamp circuit.
- a configuration that functions as a clamp circuit for example, a bipolar transistor can be used.
- the MOSFET 34 branches from a path through which the sense voltage V S is input to the low-pass filter 102, has a drain terminal connected thereto, a source terminal connected to the ground, and a gate terminal connected to the second output of the control unit 20. .
- the collector terminal is connected by branching from the path through which the sense voltage V S is input to the low-pass filter 102, the emitter terminal is connected to the ground, and the control unit A base terminal is connected to the 20 second output.
- the MOSFET 34 clamps the sense voltage V S to the ground when a high level voltage signal is input from the second output of the control unit 20.
- FIG. 5 is a timing chart illustrating the operation of the semiconductor device illustrated in FIG. In FIG. 5, the horizontal axis represents time.
- the MOSFET 34 is continuously driven by outputting the high-level voltage signal from the second output while the low-level voltage signal is output from the first output of the control unit 20. By doing so, it is possible to clamp an increase in the sense voltage V S in the mirror period immediately after the semiconductor switching element 12 is turned off, and to suppress malfunction of the overcurrent protection circuit.
- the portion represented by the dotted line represents the waveform of the sense voltage V S when the MOSFET 34 does not operate.
- FIG. 6 is a diagram schematically illustrating a circuit configuration for realizing the semiconductor device according to the present embodiment.
- the semiconductor device includes a semiconductor switching element 12, a gate resistor 14, a sense resistor 16, a buffer circuit 22, a diode 36, a low-pass filter 102, and an overcurrent protection circuit 104.
- the diode 36 functions as a clamp circuit.
- the diode 36 is branched from the path through which the sense voltage V S is input to the low-pass filter 102 and connected to the anode terminal, and the cathode terminal is connected between the first output of the control unit 20 and the buffer circuit 22. .
- the diode 36 clamps the sense voltage V S to a voltage obtained by adding the forward voltage V F to the control signal from the control unit 20 when the semiconductor switching element 12 is driven off. On the other hand, the diode 36 does not pass a current and does not perform a clamping operation when the semiconductor switching element 12 is turned on.
- the sense voltage V S When OFF drive of the semiconductor switching element 12, the sense voltage V S, by clamping the voltage plus the forward voltage V F of the diode 36 to the control signal, compared to the case with a separately etc. MOSFET, the number of output terminals, And the number of parts can be reduced.
- the forward voltage V F is small diode such as a Schottky barrier diode is desirable.
- FIG. 7 is a timing chart illustrating the operation of the semiconductor device illustrated in FIG. In FIG. 7, the horizontal axis represents time.
- the sense voltage V S is clamped to the forward voltage V F of the diode 36 by the diode 36 while the Low level voltage signal is output from the first output of the control unit 20. It will be. Therefore, it is possible to clamp the rise of the sense voltage V S during the mirror period immediately after the semiconductor switching element 12 is turned off, and to suppress the malfunction of the overcurrent protection circuit.
- the portion represented by the dotted line represents the waveform of the sense voltage V S when the diode 36 is not provided.
- FIG. 8 is a diagram schematically illustrating a circuit configuration for realizing the semiconductor device according to the present embodiment.
- the semiconductor device includes a semiconductor switching element 12, a gate resistor 14, a sense resistor 16, a buffer circuit 22, a diode 38, a low-pass filter 102, and an overcurrent protection circuit 104.
- the diode 38 functions as a clamp circuit.
- the diode 38 is branched from the path through which the sense voltage V S is input to the low-pass filter 102, has an anode terminal connected thereto, and has a cathode terminal connected between the buffer circuit 22 and the gate resistor 14.
- the diode 38 clamps the sense voltage V S to a voltage obtained by adding the forward voltage V F to the drive signal from the buffer circuit 22 when the semiconductor switching element 12 is driven off.
- the diode 38 does not pass a current and does not perform a clamping operation when the semiconductor switching element 12 is turned on.
- the current capability of the clamp circuit can be increased.
- the sense voltage V S since that would be clamped to the sum of the voltage drop in the forward voltage V F and the buffer circuit 22 of the diode 38, if the voltage drop across the buffer circuit 22 is large, the sense voltage V The voltage at which S is clamped increases. Therefore, the malfunction prevention function of the overcurrent protection circuit may be weakened.
- FIG. 9 is a timing chart illustrating the operation of the semiconductor device illustrated in FIG. In FIG. 9, the horizontal axis represents time.
- the sense voltage V S is changed to the forward voltage V F of the diode 38 by the diode 38 and the buffer circuit 22. And the voltage drop in the buffer circuit 22 are clamped. Therefore, it is possible to clamp the rise of the sense voltage V S during the mirror period immediately after the semiconductor switching element 12 is turned off, and to suppress the malfunction of the overcurrent protection circuit.
- the portion represented by a dotted line represents the waveform of the sense voltage V S when the diode 38 is not provided.
- FIG. 10 is a diagram schematically illustrating a circuit configuration for realizing the semiconductor device according to the present embodiment.
- the semiconductor device includes a semiconductor switching element 12, a gate resistor 14, a sense resistor 16, a buffer circuit 22, a MOSFET 40, a diode 42, a resistor 44, a low-pass filter 102, And an overcurrent protection circuit 104.
- the diode 42 functions as a clamp circuit.
- the diode 42 branches from the path through which the sense voltage V S is input to the low-pass filter 102, has an anode terminal connected thereto, and has a cathode terminal connected to the drain terminal of the MOSFET 40.
- the MOSFET 40 has a drain terminal connected to the cathode terminal of the diode 42 and a gate terminal connected to the second output of the control unit 20.
- the resistor 44 has one end connected between the gate terminal 12 c of the semiconductor switching element 12 and the gate resistor 14, and the other end connected to the drain terminal of the MOSFET 40.
- FIG. 11 is a timing chart illustrating the operation of the semiconductor device illustrated in FIG. In FIG. 11, the horizontal axis represents time.
- the MOSFET 40 is continuously driven by outputting the High level voltage signal from the second output while the Low level voltage signal is output from the first output of the control unit 20. By doing so, it is possible to sense voltage V S clamped forward voltage V F of the diode 42 in the mirror period immediately after turn-off of the semiconductor switching element 12, to suppress the erroneous operation of the overcurrent protection circuit.
- the portion represented by the dotted line represents the waveform of the sense voltage V S when the clamp circuit does not function.
- FIG. 12 is a diagram schematically illustrating a circuit configuration for realizing the semiconductor device according to the present embodiment.
- the semiconductor device includes a semiconductor switching element 12, a gate resistor 14, a sense resistor 16, a buffer circuit 22, a clamp circuit 46, a low-pass filter 102, and an overcurrent protection circuit 104. Is provided.
- the clamp circuit 46 is connected between the low-pass filter 102 and the comparator 28, and the gate terminal is connected to the second output of the control unit 20.
- the clamp circuit 46 clamps an increase in the sense voltage V S when a high level voltage signal is input from the second output of the control unit 20.
- FIG. 13 is a timing chart illustrating the operation of the semiconductor device according to this embodiment.
- the horizontal axis represents time.
- the clamp circuit is continuously driven by outputting the high level voltage signal from the second output. . Further, after the voltage signal output from the first output of the control unit 20 is switched from the low-level voltage signal to the high-level voltage signal, the high-level voltage is output from the second output for a predetermined period. Output a signal.
- the portion represented by the dotted line represents the waveform of the sense voltage V S when the clamp circuit does not function.
- the low-pass filter 102 sufficiently attenuates the increase in the sense voltage V S in order to suppress malfunction of overcurrent protection due to the increase in the sense voltage V S during the mirror period when the semiconductor switching element 12 is turned on. It is designed with a time constant that can be done. Therefore, the driving of the overcurrent protection circuit 104 is delayed by the time constant of the low-pass filter 102.
- the sense voltage V S during the mirror period is clamped by the clamp circuit. Therefore, it is not necessary to attenuate by the low-pass filter 102.
- the low-pass filter 102 having a smaller time constant can be used, and the reliability of the semiconductor switching element 12 can be improved.
- the overcurrent protection circuit 104 is not driven while the clamp circuit is driven after the semiconductor switching element 12 is turned on. Therefore, when an overcurrent state is entered immediately after the semiconductor switching element 12 is turned on, the delay of the overcurrent protection circuit 104 is increased, and the reliability of the semiconductor switching element 12 may be reduced.
- FIG. 14 is a timing chart illustrating the operation of the semiconductor device according to this embodiment.
- the horizontal axis represents time.
- the clamp circuit is continuously driven by outputting the high level voltage signal from the second output. . Further, even after the voltage signal output from the first output of the control unit 20 is switched from the low-level voltage signal to the high-level voltage signal, the voltage V GE in the semiconductor switching element 12 that is an IGBT is predetermined. A high level voltage signal is output from the second output until the voltage value is exceeded.
- the portion represented by the dotted line represents the waveform of the sense voltage V S when the clamp circuit does not function.
- FIG. 15 is a diagram schematically illustrating a configuration of a power conversion system including a power conversion device according to the present embodiment. Note that, from the viewpoint of facilitating understanding of the configuration, some components may be omitted or simplified in FIG.
- the power conversion system includes a power supply 100, a power conversion device 200, and a load 300.
- the power source 100 is a DC power source and supplies DC power to the power conversion device 200.
- the power source 100 can be composed of various types, and can be composed of, for example, a DC system, a solar battery, a storage battery, or the like.
- the power supply 100 can also be configured by a rectifier circuit connected to an AC system, an AC / DC converter, or the like.
- the power supply 100 may be configured by a DC / DC converter that converts DC power output from the DC system into predetermined power.
- the power conversion device 200 is a three-phase inverter connected between the power supply 100 and the load 300.
- the power conversion device 200 converts DC power supplied from the power supply 100 into AC power.
- the power conversion device 200 supplies AC power to the load 300.
- the power conversion device 200 includes a main conversion circuit 201, a control unit 202, a determination circuit 203, and a clamp circuit 204.
- Main conversion circuit 201 converts DC power into AC power and outputs it.
- the main conversion circuit 201 is a circuit including a plurality of switching elements.
- the control unit 202 outputs a control signal for controlling driving of each semiconductor switching element in the main conversion circuit 201.
- the determination circuit 203 receives an output from a sense element included in each semiconductor switching element and determines whether or not an overcurrent flows through the semiconductor switching element.
- the control unit 202 controls driving of each semiconductor switching element in the main conversion circuit 201 based on the output from the determination circuit 203.
- the clamp circuit 204 is provided between the main conversion circuit 201 and the determination circuit 203 and between the main conversion circuit 201 and the control unit 202.
- the clamp circuit 204 clamps the sense voltage V S output from the main conversion circuit 201 during a period in which the semiconductor switching element in the main conversion circuit 201 is driven off.
- the load 300 is, for example, a three-phase motor that is driven by AC power supplied from the power converter 200.
- the load 300 is not limited to a specific application, and may be an electric motor mounted on various electric devices.
- the load 300 is used as an electric motor for a hybrid vehicle, an electric vehicle, a railway vehicle, an elevator, or an air conditioner, for example.
- the main conversion circuit 201 includes a semiconductor switching element and a reflux diode (not shown here).
- the main conversion circuit 201 converts the DC power supplied from the power supply 100 into AC power by switching the semiconductor switching element, and supplies the AC power to the load 300.
- the main conversion circuit 201 is a two-level three-phase full-bridge circuit, and includes six semiconductor switching elements and 6 free-wheeling diodes antiparallel to the semiconductor switching element.
- the six semiconductor switching elements are connected in series every two semiconductor switching elements to constitute upper and lower arms.
- Each upper and lower arm constitutes a respective phase of the full bridge circuit, that is, a U phase, a V phase, and a W phase.
- the output terminals of the upper and lower arms, that is, the three output terminals of the main conversion circuit 201 are connected to the load 300.
- the control unit 202 generates a control signal for controlling driving of each semiconductor switching element in the main conversion circuit 201. Then, the control unit 202 supplies the control signal to the control electrode of the semiconductor switching element of the main conversion circuit 201.
- a drive signal for turning on each semiconductor switching element in the main conversion circuit 201 and a drive signal for turning off each semiconductor switching element in the main conversion circuit 201 are sent to the respective semiconductor switching elements. Output to the control electrode.
- the drive signal When maintaining the semiconductor switching element in the on state, the drive signal is a voltage signal equal to or higher than the threshold voltage of the semiconductor switching element, that is, an on signal.
- the drive signal When the semiconductor switching element is maintained in the off state, the drive signal is a voltage signal equal to or lower than the threshold voltage of the semiconductor switching element, that is, an off signal.
- the determination circuit 203 has a function of protecting the semiconductor switching element of the main conversion circuit 201 from an overcurrent state. Specifically, the output of the sense element having a correlation with the current flowing through each semiconductor switching element in the main conversion circuit 201 is input to the determination circuit 203. When the output value exceeds a predetermined threshold value, the determination circuit 203 determines that the semiconductor switching element in the main conversion circuit 201 is in an overcurrent state. Then, the determination circuit 203 outputs a signal for cutting off the gate of the semiconductor switching element to the control unit 202.
- the control unit 202 controls the driving of the semiconductor switching element in the main conversion circuit 201 so that desired power is supplied to the load 300. Specifically, based on the power to be supplied to the load 300, the control unit 202 calculates a time during which each semiconductor switching element of the main conversion circuit 201 is in an on state, that is, an on time.
- control unit 202 controls the driving of the semiconductor switching element in the main conversion circuit 201 by pulse width modulation (ie, PWM) control that modulates the on-time of the semiconductor switching element according to the voltage to be output. can do.
- PWM pulse width modulation
- control unit 202 outputs an on signal to the semiconductor switching elements that should be turned on at each time point, and outputs an off signal to the semiconductor switching elements that should be turned off.
- the power conversion device includes a clamp circuit 204 having the same configuration as the clamp circuit exemplified in any of the above embodiments. Therefore, the reliability of the semiconductor switching element can be improved by suppressing the malfunction in the determination circuit 203 and the malfunction in the control unit 202 by the operation of the clamp circuit 204.
- the semiconductor device is applied to a two-level three-phase inverter.
- the use of the semiconductor device according to the present embodiment is not limited to this. It can be applied to a conversion device.
- the semiconductor device according to this embodiment may be applied to a three-level or multi-level power conversion device.
- the semiconductor device according to the present embodiment may be applied to a single-phase inverter.
- the semiconductor device according to the present embodiment may be applied to a DC / DC converter or an AC / DC converter.
- the semiconductor device regarding this Embodiment when applying the semiconductor device regarding this Embodiment to a power converter device, it is not limited to the case where the load mentioned above is an electric motor, For example, an electric discharge machine, a laser processing machine, an induction heating cooker, or non- It can also be used as a power supply device for a power supply system of a contactor, and can also be used as a power conditioner for a photovoltaic power generation system or a power storage system.
- the replacement may be made across a plurality of embodiments.
- the configurations exemplified in different embodiments may be combined to produce the same effect.
- the semiconductor device includes the semiconductor switching element 12, the sense resistor 16, the overcurrent protection circuit 104, and the diode 36.
- the sense resistor 16 converts a sense current shunted from the main current flowing through the semiconductor switching element 12 into a voltage.
- the overcurrent protection circuit 104 outputs a control signal for controlling on driving and off driving of the semiconductor switching element 12 based on whether or not the sense voltage V S exceeds a predetermined threshold value.
- the diode 36 clamps the sense voltage V S to a voltage obtained by adding a forward voltage to a voltage of a signal output from the overcurrent protection circuit 104 to the semiconductor switching element 12 during OFF driving.
- the overcurrent protection circuit 104 When the sense voltage V S does not exceed the threshold value, the overcurrent protection circuit 104 outputs, as a control signal, a signal for driving the semiconductor switching element 12 on or based on the input signal. To do. In addition, when the sense voltage V S exceeds the threshold value, the overcurrent protection circuit 104 outputs a signal for driving the semiconductor switching element 12 off as a control signal.
- the overcurrent protection circuit 104 it is possible to suppress malfunction of the overcurrent protection circuit 104 caused by an increase in the sense voltage V S in the mirror period immediately after the semiconductor switching element 12 is turned off. Specifically, while the signal for driving off the semiconductor switching element 12 is output by the overcurrent protection circuit 104, the diode 36 clamps the sense voltage V S based on the signal, so that the semiconductor switching element 12 is turned off. The malfunction of the overcurrent protection circuit 104 due to the rise of the sense voltage V S in a later period is suppressed.
- the diode 36 clamps the sense voltage V S to a voltage obtained by adding a forward voltage to the control signal. According to such a configuration, for clamping the sense voltage V S by using the control signal output from the overcurrent protection circuit 104, separately, an output terminal than when implementing the clamp circuit for clamping the sense voltage The number and the number of parts can be reduced.
- the semiconductor device includes the buffer circuit 22 that outputs a drive signal for driving the semiconductor switching element 12 based on the control signal output from the overcurrent protection circuit 104.
- the diode 38 clamps the sense voltage V S to a voltage obtained by adding a forward voltage to the drive signal. According to such a configuration, the current capability of the clamp circuit can be increased by clamping based on the output signal from the buffer circuit 22.
- the semiconductor device includes the MOSFET 40.
- the MOSFET 40 is provided between the diode 42 and the overcurrent protection circuit 104.
- the drain terminal of the MOSFET 40 is an output for gate sink and is connected to the gate terminal 12 c of the switching element 12 through the resistor 44 and to the cathode of the diode 42.
- a signal from the overcurrent protection circuit 104 is input to the gate terminal of the MOSFET 40.
- the source terminal of the MOSFET 40 is connected to the ground.
- the diode 42 clamps the sense voltage V S to a forward voltage while the MOSFET 40 is driven. According to such a configuration, when a gate sink current path is provided separately from the main drive output, by connecting the gate sink output and the diode 42, an increase in the number of components is suppressed.
- a clamp circuit can be implemented.
- the power conversion device 200 including the semiconductor device described above, the power source 100 connected to the power conversion device 200, and the load 300 are provided.
- the load 300 is connected to the power conversion device 200, and the output of the power supply 100 is converted by the power conversion device 200 and input.
- the power conversion device 200 includes the semiconductor device including the diode. Therefore, the operation of the diode can improve the reliability of the semiconductor switching element while suppressing the malfunction in the determination circuit 203 and the malfunction in the control unit 202.
- the semiconductor device includes the semiconductor switching element 12, the sense resistor 16, the clamp circuit 30, the determination circuit, and the control unit 20.
- the sense resistor 16 converts a sense current shunted from the main current flowing through the semiconductor switching element 12 into a voltage.
- the clamp circuit 30 clamps the sense voltage V S.
- the determination circuit determines whether or not the sense voltage V S exceeds a predetermined threshold value.
- the control unit 20 controls on driving and off driving of the semiconductor switching element 12 based on the determination result in the determination circuit. Further, the control unit 20 controls driving of the clamp circuit 30 based on the determination result in the determination circuit. Then, when the sense voltage V S does not exceed the threshold value, the control unit 20 drives the semiconductor switching element 12 on or off based on the input signal.
- control unit 20 drives the semiconductor switching element 12 off when the sense voltage V S exceeds the threshold value.
- the control unit 20 includes at least a semiconductor switching element 12 for a predetermined period after the period and the period off driven to clamp the sense voltage V S to the clamp circuit 30.
- the determination circuit corresponds to the comparator 28, for example.
- the semiconductor switching element 12 is IGBT. Then, the control unit 20 has a period during which the semiconductor switching element 12 is turned off, and after that period, the voltage value between the gate and the emitter of the semiconductor switching element 12 becomes equal to or higher than a predetermined voltage value of the semiconductor switching element 12. Until this time, the clamp circuit 30 clamps the sense voltage V S. According to such a configuration, an increase in the sense voltage V S during the mirror period immediately after the semiconductor switching element 12 is turned off can be clamped, and malfunction of the overcurrent protection circuit can be suppressed. Further, it is possible to suppress the malfunction of the overcurrent protection circuit due to the increase in the sense voltage V S during the mirror period immediately after the semiconductor switching element 12 is turned on.
- the clamp circuit is the MOSFET 34.
- the sense voltage V S is input to the drain terminal of the MOSFET 34.
- a signal from the control unit 20 is input to the gate terminal of the MOSFET 34.
- the source terminal of the MOSFET 34 is connected to the ground.
- the semiconductor device includes the low-pass filter 102 to which the sense voltage V S is input. Then, the comparator 28 determines whether or not the sense voltage V S input through the low-pass filter 102 exceeds a threshold value.
- the clamp circuit 46 clamps the sense voltage V S input to the comparator 28 via the low-pass filter 102. According to such a configuration, malfunction of the overcurrent protection circuit 104 caused by an increase in the sense voltage V S at the mirror period immediately after turn-off of the semiconductor switching element 12, and a sense voltage at the mirror period immediately after turn-on of the semiconductor switching element 12 A malfunction of the overcurrent protection circuit 104 caused by an increase in V S can also be appropriately suppressed.
- the power conversion device 200 including the semiconductor device described above, the power source 100 connected to the power conversion device 200, and the load 300 are provided.
- the load 300 is connected to the power conversion device 200, and the output of the power supply 100 is converted by the power conversion device 200 and input.
- the power conversion device 200 includes the above semiconductor device including the clamp circuit. Therefore, the reliability of the semiconductor switching element can be improved by suppressing the malfunction in the determination circuit 203 and the malfunction in the control unit 202 by the operation of the clamp circuit.
- each component in the embodiment described above is a conceptual unit, and one component is composed of a plurality of structures within the scope of the technique disclosed in this specification.
- one component corresponds to a part of a structure and a case where a plurality of components are provided in one structure are included.
- each component in the embodiment described above includes a structure having another structure or shape as long as the same function is exhibited.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Power Conversion In General (AREA)
- Electronic Switches (AREA)
Abstract
半導体スイッチング素子のターンオフ直後のミラー期間におけるセンス電圧の上昇によって生じる、過電流保護回路の誤動作を抑制する。半導体装置は、半導体スイッチング素子12と、センス抵抗16と、センス電圧がしきい値を超えるか否かに基づいて、半導体スイッチング素子12のオン駆動およびオフ駆動を制御する制御信号を出力する過電流保護回路104と、センス電圧をクランプするダイオード36とを備える。過電流保護回路104は、センス電圧がしきい値を超える場合、半導体スイッチング素子12をオフ駆動させる信号を制御信号として出力する。
Description
本願明細書に開示される技術は、半導体スイッチング素子を過電流から保護するための回路の誤動作を抑制するための技術に関するものである。
従来、センス素子を備える半導体スイッチング素子の過電流保護回路では、センス素子が出力するセンス電流を抵抗などでセンス電圧に変換し、過電流の検出に用いている。
センス電圧が一定のしきい値を超えた場合に、過電流保護回路内のコンパレータで当該センス電圧を検出する。そして、半導体スイッチング素子のゲートを遮断することによって、回路の過電流から半導体スイッチング素子を保護する。
ところで、絶縁ゲート型バイポーラトランジスタ(insulated gate bipolar transistor、すなわち、IGBT)、または、金属-酸化膜-半導体電界効果トランジスタ(metal-oxide-semiconductor field-effect transistor、すなわち、MOSFET)などの半導体スイッチング素子の、ターンオン直後およびターンオフ直後には、「ミラー期間」と呼ばれる期間がある。
上記のミラー期間には、半導体スイッチング素子のゲート駆動電流がゲート-エミッタ間を充放電する以外に、半導体スイッチング素子のゲート駆動電流がゲート-コレクタ間の容量を充放電する。そのため、ゲート-エミッタ間の電圧が一定となる。
半導体スイッチング素子がミラー期間の状態にある場合、通常動作時と比べてセンス電圧が増加する傾向がある。そのため、ローパスフィルターなどを設けることによって、センス電圧の増加による過電流保護回路の誤動作を防止している。
たとえば、特許文献1(特許第5726037号公報)には、半導体スイッチング素子のターンオン直後のミラー期間中において、過電流保護回路のしきい値またはセンス電圧を調整することによって、過電流保護回路の誤動作を防止する回路が示されている。
また、たとえば、特許文献2(特開平5-276761号公報)には、並列接続された半導体スイッチング素子のセンス電圧の上昇に起因して生じる過電流保護回路の誤動作について、そのスイッチング特性の不均一性および逆回復電流に着目することによって、半導体スイッチング素子のターンオン後およびターンオフ後の一定期間には、半導体スイッチによってセンス電流をバイパスする技術が示されている。
従来の過電流保護回路では、半導体スイッチング素子のターンオン直後のミラー期間におけるセンス電圧の上昇に着目し、過電流保護の誤動作防止の手段が講じられていた。一方で、半導体スイッチング素子のターンオフ直後のミラー期間におけるセンス電圧の上昇については、あまり考慮されていない。
これは、半導体スイッチング素子のターンオン直後のミラー期間中と同様に、半導体スイッチング素子のターンオフ直後のミラー期間中にもセンス電圧が上昇するが、通常、半導体スイッチング素子のターンオフ中には過電流保護回路の検出をマスクしているため、誤動作することはないためである。
しかしながら、たとえば、半導体スイッチング素子がターンオフし、当該ターンオフの直後のミラー期間の途中またはミラー期間の終了直後に、再度半導体スイッチング素子がターンオンする動作パターンである場合には、半導体スイッチング素子のターンオフ直後のミラー期間におけるセンス電圧の上昇が問題となることがある。
このような動作パターンでは、半導体スイッチング素子のターンオフ直後のミラー期間において上昇したセンス電圧が、半導体スイッチング素子のターンオン時にも残存する。そのため、半導体スイッチング素子のターンオンと同時に、ミラー期間において上昇していたセンス電圧が過電流保護回路を誤動作させることとなる。
ここで、上記の特許文献2(特開平5-276761号公報)では、半導体スイッチング素子のターンオフ直後のセンス電流を一定期間バイパスすることによって、過電流保護回路の誤動作を防止している。しかしながら、特許文献2(特開平5-276761号公報)で対象としているのは、半導体スイッチング素子の不均一性または逆回復電流によるセンス電圧の上昇である。これらの要因によるセンス電圧の上昇期間は、一般にミラー期間よりも短い。したがって、上記のようなミラー期間におけるセンス電圧の上昇が起きた場合、特許文献2(特開平5-276761号公報)におけるバイパス回路によってセンス電流のバイパス動作を行うと、バイパス期間の長さが不十分となる。すなわち、過電流保護回路が誤動作する恐れがある。
本願明細書に開示される技術は、以上に記載されたような問題を解決するためになされたものであり、半導体スイッチング素子のターンオフ直後のミラー期間におけるセンス電圧の上昇によって生じる、過電流保護回路の誤動作を抑制することができる技術を提供することを目的とするものである。
本願明細書に開示される技術の第1の態様は、半導体スイッチング素子と、前記半導体スイッチング素子に流れる主電流から分流されたセンス電流を電圧に変換するセンス抵抗と、前記センス電圧があらかじめ定められたしきい値を超えるか否かに基づいて、前記半導体スイッチング素子のオン駆動およびオフ駆動を制御するための制御信号を出力する過電流保護回路と、前記センス電圧を、前記過電流保護回路から前記半導体スイッチング素子へオフ駆動時に出力される信号の電圧に順方向電圧を加えた電圧にクランプするダイオードとを備え、前記過電流保護回路は、前記センス電圧が前記しきい値を超えない場合、入力される信号に基づいて前記半導体スイッチング素子をオン駆動させる信号、または、オフ駆動させる信号を前記制御信号として出力し、前記センス電圧が前記しきい値を超える場合、前記半導体スイッチング素子をオフ駆動させる信号を前記制御信号として出力する。
本願明細書に開示される技術の第2の態様は、上記の半導体装置を含む電力変換装置と、前記電力変換装置に接続される電源と、前記電力変換装置に接続され、かつ、前記電源の出力が前記電力変換装置において変換されて入力される負荷とを備える。
本願明細書に開示される技術の第3の態様は、半導体スイッチング素子と、前記半導体スイッチング素子に流れる主電流から分流されたセンス電流を電圧に変換するセンス抵抗と、前記センス電圧をクランプするクランプ回路と、前記センス電圧があらかじめ定められたしきい値を超えるか否かを判定する判定回路と、前記判定回路における判定結果に基づいて、前記半導体スイッチング素子のオン駆動およびオフ駆動、および、前記クランプ回路の駆動を制御する制御部とを備え、前記制御部は、前記センス電圧が前記しきい値を超えない場合、入力される信号に基づいて前記半導体スイッチング素子をオン駆動させ、または、オフ駆動させ、前記センス電圧が前記しきい値を超える場合、前記半導体スイッチング素子をオフ駆動させ、少なくとも前記半導体スイッチング素子がオフ駆動する期間および当該期間の後あらかじめ定められた期間の間、前記クランプ回路に前記センス電圧をクランプさせる。
本願明細書に開示される技術の第4の態様は、上記の半導体装置を含む電力変換装置と、前記電力変換装置に接続される電源と、前記電力変換装置に接続され、かつ、前記電源の出力が前記電力変換装置において変換されて入力される負荷とを備える。
本願明細書に開示される技術の第1の態様は、半導体スイッチング素子と、前記半導体スイッチング素子に流れる主電流から分流されたセンス電流を電圧に変換するセンス抵抗と、前記センス電圧があらかじめ定められたしきい値を超えるか否かに基づいて、前記半導体スイッチング素子のオン駆動およびオフ駆動を制御するための制御信号を出力する過電流保護回路と、前記センス電圧を、前記過電流保護回路から前記半導体スイッチング素子へオフ駆動時に出力される信号の電圧に順方向電圧を加えた電圧にクランプするダイオードとを備え、前記過電流保護回路は、前記センス電圧が前記しきい値を超えない場合、入力される信号に基づいて前記半導体スイッチング素子をオン駆動させる信号、または、オフ駆動させる信号を前記制御信号として出力し、前記センス電圧が前記しきい値を超える場合、前記半導体スイッチング素子をオフ駆動させる信号を前記制御信号として出力する。このような構成によれば、半導体スイッチング素子のターンオフ直後におけるセンス電圧の上昇によって生じる、過電流保護回路の誤動作を適切に抑制することができる。具体的には、過電流保護回路によって半導体スイッチング素子をオフ駆動させる信号が出力されている間、ダイオードが当該信号に基づいてセンス電圧をクランプするため、半導体スイッチング素子のターンオフ後の期間にセンス電圧が上昇することによって過電流保護回路が誤動作することが抑制される。また、過電流保護回路から半導体スイッチング素子へオフ駆動時に出力される信号を用いてセンス電圧をクランプするため、別途、センス電圧をクランプするためのクランプ回路を実装する場合よりも出力端子数、および、部品点数を削減することができる。
本願明細書に開示される技術の第2の態様は、上記の半導体装置を含む電力変換装置と、前記電力変換装置に接続される電源と、前記電力変換装置に接続され、かつ、前記電源の出力が前記電力変換装置において変換されて入力される負荷とを備える。このような構成によれば、電力変換装置が、ダイオードを備える上記の半導体装置を含む。そのため、当該ダイオードの動作によって、判定回路における誤動作および制御部における誤動作を抑制しつつ、半導体スイッチング素子の信頼性を高めることができる。
本願明細書に開示される技術の第3の態様は、半導体スイッチング素子と、前記半導体スイッチング素子に流れる主電流から分流されたセンス電流を電圧に変換するセンス抵抗と、前記センス電圧をクランプするクランプ回路と、前記センス電圧があらかじめ定められたしきい値を超えるか否かを判定する判定回路と、前記判定回路における判定結果に基づいて、前記半導体スイッチング素子のオン駆動およびオフ駆動、および、前記クランプ回路の駆動を制御する制御部とを備え、前記制御部は、前記センス電圧が前記しきい値を超えない場合、入力される信号に基づいて前記半導体スイッチング素子をオン駆動させ、または、オフ駆動させ、前記センス電圧が前記しきい値を超える場合、前記半導体スイッチング素子をオフ駆動させ、少なくとも前記半導体スイッチング素子がオフ駆動する期間および当該期間の後あらかじめ定められた期間の間、前記クランプ回路に前記センス電圧をクランプさせる。このような構成によれば、半導体スイッチング素子のターンオフ直後におけるセンス電圧の上昇によって生じる過電流保護回路の誤動作、および、半導体スイッチング素子のターンオン直後のミラー期間におけるセンス電圧の上昇によって生じる過電流保護回路の誤動作についても、適切に抑制することができる。
本願明細書に開示される技術の第4の態様は、上記の半導体装置を含む電力変換装置と、前記電力変換装置に接続される電源と、前記電力変換装置に接続され、かつ、前記電源の出力が前記電力変換装置において変換されて入力される負荷とを備える。このような構成によれば、電力変換装置が、クランプ回路を備える上記の半導体装置を含む。そのため、当該クランプ回路の動作によって、判定回路における誤動作および制御部における誤動作を抑制しつつ、半導体スイッチング素子の信頼性を高めることができる。
本願明細書に開示される技術に関する目的と、特徴と、局面と、利点とは、以下に示される詳細な説明と添付図面とによって、さらに明白となる。
以下、添付される図面を参照しながら実施の形態について説明する。
なお、図面は概略的に示されるものであり、説明の便宜のため、適宜、構成の省略、または、構成の簡略化がなされるものである。また、異なる図面にそれぞれ示される構成などの大きさおよび位置の相互関係は、必ずしも正確に記載されるものではなく、適宜変更され得るものである。
また、以下に示される説明では、同様の構成要素には同じ符号を付して図示し、それらの名称と機能とについても同様のものとする。したがって、それらについての詳細な説明を、重複を避けるために省略する場合がある。
<第1の実施の形態>
以下、本実施の形態に関する半導体装置について説明する。説明の便宜上、まず、半導体スイッチング素子のターンオフ直後のミラー期間におけるセンス電圧の上昇が問題となる場合について説明する。
以下、本実施の形態に関する半導体装置について説明する。説明の便宜上、まず、半導体スイッチング素子のターンオフ直後のミラー期間におけるセンス電圧の上昇が問題となる場合について説明する。
図1は、半導体スイッチング素子のターンオフ直後のミラー期間においてセンス電圧が上昇する動作パターンを例示するタイミングチャートである。図1において、横軸が時間を表す。
図1に例示されるような動作パターン、すなわち、半導体スイッチング素子が時刻t1においてターンオフし、当該ターンオフの直後のミラー期間の途中またはミラー期間の終了直後に、再度、半導体スイッチング素子が時刻t2においてターンオンする動作パターンを想定する。
入力された電圧VINは、半導体スイッチング素子のターンオフのタイミング、すなわち、時刻t1でHighレベルの電圧信号からLowレベルの電圧信号に切り替わる。そして、電圧VINは、半導体スイッチング素子のターンオンのタイミング、すなわち、時刻t2でLowレベルの電圧信号からHighレベルの電圧信号に切り替わる。なお、半導体スイッチング素子がターンオフ状態である間は、過電流保護回路は動作しない。
センス電圧VSは、半導体スイッチング素子のターンオフのタイミング、すなわち、時刻t1で上昇する。そして、センス電圧VSは、半導体スイッチング素子のターンオンのタイミング、すなわち、時刻t2でも、上昇した電圧値に維持される。
このような動作パターンである場合には、半導体スイッチング素子のターンオフ直後のミラー期間において上昇したセンス電圧VSが、半導体スイッチング素子のターンオン時、すなわち、時刻t2においても残存する。そのため、半導体スイッチング素子のターンオンと同時に、ミラー期間において上昇していたセンス電圧VSが過電流保護回路を誤動作させることとなる。
過電流保護回路が誤動作することによって、ゲート-エミッタ間の電圧VGEはLowレベルの電圧信号に切り替えられる。
上記の特許文献2(特開平5-276761号公報)では、半導体スイッチング素子のターンオフ直後センス電流を一定期間バイパスすることによって、過電流保護回路の誤動作を防止している。しかしながら、特許文献2(特開平5-276761号公報)で対象としているのは、半導体スイッチング素子の不均一性または逆回復電流によるセンス電圧VSの上昇である。これらの要因によるセンス電圧VSの上昇期間は、一般にミラー期間よりも短い。したがって、上記のようなミラー期間におけるセンス電圧VSの上昇が起きた場合、バイパス回路によるセンス電流のバイパス動作の期間の長さでは不十分であり、やはり過電流保護回路が誤動作する恐れがある。
<半導体装置の構成について>
図2は、本実施の形態に関する半導体装置を実現するための回路構成を概略的に例示する図である。なお、構成を理解しやすくする観点から、図2においては、一部の構成要素が省略、または、簡略化されて示される場合がある。
図2は、本実施の形態に関する半導体装置を実現するための回路構成を概略的に例示する図である。なお、構成を理解しやすくする観点から、図2においては、一部の構成要素が省略、または、簡略化されて示される場合がある。
図2に例示されるように、半導体装置は、過電流保護の対象となる半導体スイッチング素子12と、ゲート抵抗14と、センス抵抗16と、バッファ回路22と、クランプ回路30と、ローパスフィルター102と、過電流保護回路104とを備える。
半導体スイッチング素子12は、エミッタ端子12aとともに電流センス端子12bを備える、たとえば、IGBTなどのトランジスタである。電流センス端子12bには、半導体スイッチング素子12のコレクタ電流、すなわち、主電流に比例するセンス電流が流れる。
半導体スイッチング素子12は、たとえば、ゲート端子12cに入力される駆動信号がHighレベルの電圧信号である場合にオン状態となり、ゲート端子12cに入力される駆動信号がLowレベルの電圧信号である場合にオフ状態となる。
ゲート抵抗14は、半導体スイッチング素子12のゲート端子12cに接続される。センス抵抗16は、センス電流をセンス電圧VSに変換する。センス抵抗16は、半導体スイッチング素子12のエミッタ端子12aと電流センス端子12bとの間に接続される。また、センス抵抗16は、半導体スイッチング素子12に流れる主電流から分流されたセンス電流を電圧に変換する。
バッファ回路22は、入力部18から過電流保護回路104を介して入力された信号に基づいて、半導体スイッチング素子12のゲート端子12cに入力される駆動信号を生成する。
クランプ回路30は、センス電圧VSの上昇をクランプする、すなわち、センス電圧VSを一定値の電圧に固定する。
ローパスフィルター102は、抵抗24と、コンデンサ26とを備える。
過電流保護回路104は、制御部20と、コンパレータ28と、基準電圧源32とを備える。過電流保護回路104は、ローパスフィルター102を介して入力されるセンス電圧VSに基づいて、半導体スイッチング素子12に流れる主電流を監視する。
過電流保護回路104は、通常は、入力部18から入力される信号をバッファ回路22に伝達する。一方で、過電流保護回路104は、半導体スイッチング素子12に過電流が流れたことを検出した場合には、バッファ回路22に信号を伝達しないなどの、半導体スイッチング素子12の保護動作を行う。
基準電圧源32は、過電流保護回路104が半導体スイッチング素子12の保護動作を開始するセンス電圧VSのしきい値に対応する基準電圧Vthを出力する。
コンパレータ28の非反転入力端子、すなわち、+端子には、ローパスフィルター102を介してセンス電圧VSが入力される。一方で、コンパレータ28の反転入力端子、すなわち、-端子には、基準電圧源32が接続される。
コンパレータ28の出力は、+端子に入力されるセンス電圧VSが-端子に入力される基準電圧Vthよりも低い場合にはLowレベルの電圧信号となり、+端子に入力されるセンス電圧VSが-端子に入力される基準電圧Vthよりも高い場合にはHighレベルの電圧信号となる。コンパレータ28の出力は、制御部20に入力される。
制御部20には、入力部18から信号が入力される。制御部20は、コンパレータ28からの出力信号がLowレベルの電圧信号である場合、入力部18から入力された信号に基づく信号を第1出力から出力する。一方で、制御部20は、コンパレータ28からの出力信号がHighレベルの電圧信号である場合、スイッチング素子のゲートを遮断させる制御信号、すなわち、Lowレベルの電圧信号を第1出力から出力する。そうすることによって、制御部20は、半導体スイッチング素子12を過電流から保護する。
また、制御部20は、クランプ回路30を制御するための信号を第2出力から出力する。制御部20は、第1出力からLowレベルの電圧信号が出力される場合に、第2出力からHighレベルの電圧信号を出力する。
クランプ回路30は、センス電圧VSがローパスフィルター102に入力される経路から分岐して接続され、かつ、制御部20の第2出力に接続される。クランプ回路30は、制御部20の第2出力からHighレベルの電圧信号が入力された場合に、センス電圧VSの上昇をクランプする。一方で、クランプ回路30は、制御部20の第2出力からLowレベルの電圧信号が入力された場合に、動作を停止する。
図3は、図2に例示される半導体装置の動作を例示するタイミングチャートである。図3において、横軸が時間を表す。
図3に例示されるように、制御部20の第1出力からLowレベルの電圧信号が出力されている間、第2出力からHighレベルの電圧信号を出力することによって、クランプ回路30を駆動させ続ける。そうすることによって、半導体スイッチング素子12のターンオフ直後のミラー期間におけるセンス電圧VSの上昇をクランプし、すなわち、センス電圧VSを一定値の電圧に固定することによって、過電流保護回路の誤動作を抑制することができる。
なお、センス電圧VSの電圧値を表す波形のうち、点線で表される部分は、クランプ回路30が動作しない場合のセンス電圧VSの波形を表すものである。
<第2の実施の形態>
本実施の形態に関する半導体装置について説明する。以下の説明においては、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
本実施の形態に関する半導体装置について説明する。以下の説明においては、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
<半導体装置の構成について>
図4は、本実施の形態に関する半導体装置を実現するための回路構成を概略的に例示する図である。
図4は、本実施の形態に関する半導体装置を実現するための回路構成を概略的に例示する図である。
図4に例示されるように、半導体装置は、半導体スイッチング素子12と、ゲート抵抗14と、センス抵抗16と、バッファ回路22と、MOSFET34と、ローパスフィルター102と、過電流保護回路104とを備える。
MOSFET34は、クランプ回路として機能する。なお、クランプ回路として機能する構成として、たとえば、バイポーラトランジスタを用いることもできる。
MOSFET34は、センス電圧VSがローパスフィルター102に入力される経路から分岐してドレイン端子が接続され、ソース端子がグラウンドに接続され、かつ、制御部20の第2出力にゲート端子が接続される。なお、MOSFET34の代わりにバイポーラトランジスタが備えられる場合には、センス電圧VSがローパスフィルター102に入力される経路から分岐してコレクタ端子が接続され、エミッタ端子がグラウンドに接続され、かつ、制御部20の第2出力にベース端子が接続される。MOSFET34は、制御部20の第2出力からHighレベルの電圧信号が入力された場合に、センス電圧VSをグラウンドにクランプする。
図5は、図4に例示される半導体装置の動作を例示するタイミングチャートである。図5において、横軸が時間を表す。
図5に例示されるように、制御部20の第1出力からLowレベルの電圧信号が出力されている間、第2出力からHighレベルの電圧信号を出力することによって、MOSFET34を駆動させ続ける。そうすることによって、半導体スイッチング素子12のターンオフ直後のミラー期間におけるセンス電圧VSの上昇をクランプし、過電流保護回路の誤動作を抑制することができる。
なお、センス電圧VSの電圧値を表す波形のうち、点線で表される部分は、MOSFET34が動作しない場合のセンス電圧VSの波形を表すものである。
<第3の実施の形態>
本実施の形態に関する半導体装置について説明する。以下の説明においては、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
本実施の形態に関する半導体装置について説明する。以下の説明においては、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
<半導体装置の構成について>
図6は、本実施の形態に関する半導体装置を実現するための回路構成を概略的に例示する図である。
図6は、本実施の形態に関する半導体装置を実現するための回路構成を概略的に例示する図である。
図6に例示されるように、半導体装置は、半導体スイッチング素子12と、ゲート抵抗14と、センス抵抗16と、バッファ回路22と、ダイオード36と、ローパスフィルター102と、過電流保護回路104とを備える。
ダイオード36は、クランプ回路として機能する。ダイオード36は、センス電圧VSがローパスフィルター102に入力される経路から分岐してアノード端子が接続され、かつ、制御部20の第1出力とバッファ回路22との間にカソード端子が接続される。ダイオード36は、半導体スイッチング素子12のオフ駆動時に、センス電圧VSを制御部20からの制御信号に順方向電圧VFを加えた電圧にクランプする。一方で、ダイオード36は、半導体スイッチング素子12のオン駆動時には、電流を流さず、クランプ動作をしない。
半導体スイッチング素子12のオフ駆動時に、センス電圧VSを、制御信号にダイオード36の順方向電圧VFを加えた電圧にクランプすることによって、別途MOSFETなどを備える場合に比べて、出力端子数、および、部品点数を削減することができる。
ただし、センス電圧VSは順方向電圧VFにクランプされることとなるため、ダイオード36としては、たとえば、ショットキーバリアダイオードなどの順方向電圧VFが小さいダイオードが望ましい。
図7は、図6に例示される半導体装置の動作を例示するタイミングチャートである。図7において、横軸が時間を表す。
図7に例示されるように、制御部20の第1出力からLowレベルの電圧信号が出力されている間、ダイオード36によって、センス電圧VSはダイオード36の順方向電圧VFにクランプされることとなる。したがって、半導体スイッチング素子12のターンオフ直後のミラー期間におけるセンス電圧VSの上昇をクランプし、過電流保護回路の誤動作を抑制することができる。
なお、センス電圧VSの電圧値を表す波形のうち、点線で表される部分は、ダイオード36が備えられない場合のセンス電圧VSの波形を表すものである。
<第4の実施の形態>
本実施の形態に関する半導体装置について説明する。以下の説明においては、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
本実施の形態に関する半導体装置について説明する。以下の説明においては、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
<半導体装置の構成について>
図8は、本実施の形態に関する半導体装置を実現するための回路構成を概略的に例示する図である。
図8は、本実施の形態に関する半導体装置を実現するための回路構成を概略的に例示する図である。
図8に例示されるように、半導体装置は、半導体スイッチング素子12と、ゲート抵抗14と、センス抵抗16と、バッファ回路22と、ダイオード38と、ローパスフィルター102と、過電流保護回路104とを備える。
ダイオード38は、クランプ回路として機能する。ダイオード38は、センス電圧VSがローパスフィルター102に入力される経路から分岐してアノード端子が接続され、かつ、バッファ回路22とゲート抵抗14との間にカソード端子が接続される。ダイオード38は、半導体スイッチング素子12のオフ駆動時にセンス電圧VSを、バッファ回路22からの駆動信号に順方向電圧VFを加えた電圧にクランプする。一方で、ダイオード38は、半導体スイッチング素子12のオン駆動時には、電流を流さず、クランプ動作をしない。
センス電圧VSをダイオード38の順方向電圧VFに基づいてクランプすることによって、別途MOSFETなどを備える場合に比べて、出力端子数、および、部品点数を削減することができる。
バッファ回路22からの出力信号に基づいてクランプすることによって、クランプ回路の電流能力を大きくすることができる。ただし、センス電圧VSは、ダイオード38の順方向電圧VFとバッファ回路22における電圧降下との和にクランプされることとなるため、バッファ回路22における電圧降下が大きい場合には、センス電圧VSがクランプされる電圧が大きくなる。そのため、過電流保護回路の誤動作抑止機能が弱まる場合がある。
図9は、図8に例示される半導体装置の動作を例示するタイミングチャートである。図9において、横軸が時間を表す。
図9に例示されるように、制御部20の第1出力からLowレベルの電圧信号が出力されている間、ダイオード38およびバッファ回路22によって、センス電圧VSはダイオード38の順方向電圧VFとバッファ回路22における電圧降下との和にクランプされることとなる。したがって、半導体スイッチング素子12のターンオフ直後のミラー期間におけるセンス電圧VSの上昇をクランプし、過電流保護回路の誤動作を抑制することができる。
なお、センス電圧VSの電圧値を表す波形のうち、点線で表される部分は、ダイオード38が備えられない場合のセンス電圧VSの波形を表すものである。
<第5の実施の形態>
本実施の形態に関する半導体装置について説明する。以下の説明においては、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
本実施の形態に関する半導体装置について説明する。以下の説明においては、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
<半導体装置の構成について>
図10は、本実施の形態に関する半導体装置を実現するための回路構成を概略的に例示する図である。
図10は、本実施の形態に関する半導体装置を実現するための回路構成を概略的に例示する図である。
図10に例示されるように、半導体装置は、半導体スイッチング素子12と、ゲート抵抗14と、センス抵抗16と、バッファ回路22と、MOSFET40と、ダイオード42と、抵抗44と、ローパスフィルター102と、過電流保護回路104とを備える。
ダイオード42は、クランプ回路として機能する。ダイオード42は、センス電圧VSがローパスフィルター102に入力される経路から分岐してアノード端子が接続され、かつ、MOSFET40のドレイン端子にカソード端子が接続される。
MOSFET40は、ダイオード42のカソード端子にドレイン端子が接続され、かつ、制御部20の第2出力にゲート端子が接続される。
抵抗44は、一方の端部が半導体スイッチング素子12のゲート端子12cとゲート抵抗14との間に接続され、他方の端部がMOSFET40のドレイン端子に接続される。
図11は、図10に例示される半導体装置の動作を例示するタイミングチャートである。図11において、横軸が時間を表す。
図11に例示されるように、制御部20の第1出力からLowレベルの電圧信号が出力されている間、第2出力からHighレベルの電圧信号を出力することによって、MOSFET40を駆動させ続ける。そうすることによって、半導体スイッチング素子12のターンオフ直後のミラー期間におけるセンス電圧VSをダイオード42の順方向電圧VFにクランプし、過電流保護回路の誤動作を抑制することができる。
なお、センス電圧VSの電圧値を表す波形のうち、点線で表される部分は、クランプ回路が機能しない場合のセンス電圧VSの波形を表すものである。
<第6の実施の形態>
本実施の形態に関する半導体装置について説明する。以下の説明においては、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
本実施の形態に関する半導体装置について説明する。以下の説明においては、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
<半導体装置の構成について>
図12は、本実施の形態に関する半導体装置を実現するための回路構成を概略的に例示する図である。
図12は、本実施の形態に関する半導体装置を実現するための回路構成を概略的に例示する図である。
図12に例示されるように、半導体装置は、半導体スイッチング素子12と、ゲート抵抗14と、センス抵抗16と、バッファ回路22と、クランプ回路46と、ローパスフィルター102と、過電流保護回路104とを備える。
クランプ回路46は、ローパスフィルター102とコンパレータ28との間に接続され、かつ、制御部20の第2出力にゲート端子が接続される。クランプ回路46は、制御部20の第2出力からHighレベルの電圧信号が入力された場合に、センス電圧VSの上昇をクランプする。
<第7の実施の形態>
本実施の形態に関する半導体装置について説明する。以下の説明においては、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
本実施の形態に関する半導体装置について説明する。以下の説明においては、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
<半導体装置の動作について>
図13は、本実施の形態に関する半導体装置の動作を例示するタイミングチャートである。図13において、横軸が時間を表す。
図13は、本実施の形態に関する半導体装置の動作を例示するタイミングチャートである。図13において、横軸が時間を表す。
図13に例示されるように、制御部20の第1出力からLowレベルの電圧信号が出力されている間、第2出力からHighレベルの電圧信号を出力することによって、クランプ回路を駆動させ続ける。さらに、制御部20の第1出力から出力される電圧信号が、Lowレベルの電圧信号からHighレベルの電圧信号に切り替わった後も、あらかじめ定められた期間の間、第2出力からHighレベルの電圧信号を出力する。
そうすることによって、半導体スイッチング素子12のターンオフ直後のミラー期間におけるセンス電圧VSの上昇をクランプし、過電流保護回路の誤動作を抑制することができる。また、半導体スイッチング素子12のターンオン直後のミラー期間におけるセンス電圧VSの上昇によって、過電流保護回路が誤動作することを抑制することができる。
なお、センス電圧VSの電圧値を表す波形のうち、点線で表される部分は、クランプ回路が機能しない場合のセンス電圧VSの波形を表すものである。
また、一般に、ローパスフィルター102は、半導体スイッチング素子12のターンオン時のミラー期間におけるセンス電圧VSの上昇による過電流保護の誤動作を抑制するため、センス電圧VSの上昇を十分に減衰することができるような時定数で設計されている。そのため、ローパスフィルター102の時定数の時間分だけ、過電流保護回路104の駆動が遅れてしまう。
本実施の形態においては、ミラー期間のセンス電圧VSはクランプ回路によってクランプされる。したがって、ローパスフィルター102によって減衰させる必要がない。
そのため、より時定数の小さいローパスフィルター102を用いることができ、半導体スイッチング素子12の信頼性を高めることができる。
ただし、半導体スイッチング素子12のターンオン後でクランプ回路を駆動している期間は、過電流保護回路104が駆動しない。そのため、半導体スイッチング素子12のターンオン後ただちに過電流状態となった場合には、過電流保護回路104の遅延が大きくなり、半導体スイッチング素子12の信頼性が低下する可能性がある。
<第8の実施の形態>
本実施の形態に関する半導体装置について説明する。以下の説明においては、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
本実施の形態に関する半導体装置について説明する。以下の説明においては、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
<半導体装置の動作について>
図14は、本実施の形態に関する半導体装置の動作を例示するタイミングチャートである。図14において、横軸が時間を表す。
図14は、本実施の形態に関する半導体装置の動作を例示するタイミングチャートである。図14において、横軸が時間を表す。
図14に例示されるように、制御部20の第1出力からLowレベルの電圧信号が出力されている間、第2出力からHighレベルの電圧信号を出力することによって、クランプ回路を駆動させ続ける。さらに、制御部20の第1出力から出力される電圧信号が、Lowレベルの電圧信号からHighレベルの電圧信号に切り替わった後も、IGBTである半導体スイッチング素子12における電圧VGEがあらかじめ定められた電圧値以上になるまでの間、第2出力からHighレベルの電圧信号を出力する。
そうすることによって、半導体スイッチング素子12のターンオフ直後のミラー期間におけるセンス電圧VSの上昇をクランプし、過電流保護回路の誤動作を抑制することができる。また、半導体スイッチング素子12のターンオン直後のミラー期間におけるセンス電圧VSの上昇によって、過電流保護回路が誤動作することを抑制することができる。
半導体スイッチング素子12がターンオン直後に過電流状態になると、コレクタ-ゲート間の寄生容量を通じて電圧VGEが即座に上昇する。そして、クランプ回路の動作が停止する。そのため、過電流保護回路の駆動の遅延が少なくなる。
なお、センス電圧VSの電圧値を表す波形のうち、点線で表される部分は、クランプ回路が機能しない場合のセンス電圧VSの波形を表すものである。
<第9の実施の形態>
本実施の形態に関する半導体装置、および、電力変換システムについて説明する。以下の説明においては、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
本実施の形態に関する半導体装置、および、電力変換システムについて説明する。以下の説明においては、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
<半導体装置の構成について>
本実施の形態では、以上に記載された実施の形態に関する半導体装置を電力変換装置に適用した場合について説明する。以下では、以上に記載された実施の形態に関する半導体装置を三相のインバータに適用する場合が説明されるが、以上に記載された実施の形態に関する半導体装置は、そのような用途に限定されるものではない。
本実施の形態では、以上に記載された実施の形態に関する半導体装置を電力変換装置に適用した場合について説明する。以下では、以上に記載された実施の形態に関する半導体装置を三相のインバータに適用する場合が説明されるが、以上に記載された実施の形態に関する半導体装置は、そのような用途に限定されるものではない。
図15は、本実施の形態に関する電力変換装置を備える電力変換システムの構成を概略的に例示する図である。なお、構成を理解しやすくする観点から、図15においては、一部の構成要素が省略、または、簡略化されて示される場合がある。
図15に例示されるように、電力変換システムは、電源100と、電力変換装置200と、負荷300とを備える。
電源100は、直流電源であり、電力変換装置200に直流電力を供給する。電源100は、種々のもので構成することが可能であり、たとえば、直流系統、太陽電池、または、蓄電池などで構成することができる。また、電源100は、交流系統に接続された整流回路、または、AC/DCコンバータなどで構成することもできる。また、電源100を、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成することとしてもよい。
電力変換装置200は、電源100と負荷300との間に接続される三相のインバータである。電力変換装置200は、電源100から供給される直流電力を交流電力に変換する。そして、電力変換装置200は、負荷300に交流電力を供給する。
図15に例示されるように、電力変換装置200は、主変換回路201と、制御部202と、判定回路203と、クランプ回路204とを備える。
主変換回路201は、直流電力を交流電力に変換して出力する。主変換回路201は、複数のスイッチング素子を備える回路である。制御部202は、主変換回路201におけるそれぞれの半導体スイッチング素子の駆動を制御するための制御信号を出力する。
判定回路203は、それぞれの半導体スイッチング素子が有するセンス素子からの出力を受けて半導体スイッチング素子に過電流が流れているか否かを判定する。制御部202は、判定回路203からの出力に基づいて、主変換回路201におけるそれぞれの半導体スイッチング素子の駆動を制御する。
クランプ回路204は、主変換回路201と判定回路203との間、および、主変換回路201と制御部202との間に跨って設けられる。クランプ回路204は、主変換回路201における半導体スイッチング素子がオフ駆動する期間において、主変換回路201から出力されるセンス電圧VSをクランプする。
負荷300は、たとえば、電力変換装置200から供給された交流電力によって駆動する三相の電動機である。なお、負荷300は、特定の用途に限られない、各種電気機器に搭載される電動機であってもよい。負荷300は、たとえば、ハイブリッド自動車、電気自動車、鉄道車両、エレベータ、または、空調機器向けの電動機として用いられる。
以下、電力変換装置200の詳細について説明する。主変換回路201は、半導体スイッチング素子と還流ダイオードとを備える(ここでは、図示しない)。主変換回路201は、半導体スイッチング素子がスイッチングすることによって、電源100から供給される直流電力を交流電力に変換し、さらに、負荷300に供給する。
主変換回路201の具体的な回路構成としては種々のものが想定されるが、本実施の形態に関する主変換回路201は、2レベルの三相フルブリッジ回路であり、6つの半導体スイッチング素子とそれぞれの半導体スイッチング素子に逆並列された6つの還流ダイオードから構成することができる。
6つの半導体スイッチング素子は、2つの半導体スイッチング素子ごとに直列接続されて上下アームを構成する。それぞれの上下アームは、フルブリッジ回路のそれぞれの相、すなわち、U相、V相およびW相を構成する。そして、それぞれの上下アームの出力端子、すなわち、主変換回路201の3つの出力端子は、負荷300に接続される。
制御部202は、主変換回路201におけるそれぞれの半導体スイッチング素子の駆動を制御するための制御信号を生成する。そして、制御部202は、主変換回路201の半導体スイッチング素子の制御電極に当該制御信号を供給する。
具体的には、主変換回路201におけるそれぞれの半導体スイッチング素子をオン状態にする駆動信号と、主変換回路201におけるそれぞれの半導体スイッチング素子をオフ状態にする駆動信号とを、それぞれの半導体スイッチング素子の制御電極に出力する。
半導体スイッチング素子をオン状態に維持する場合、駆動信号は、半導体スイッチング素子のしきい値電圧以上の電圧信号、すなわち、オン信号である。また、半導体スイッチング素子をオフ状態に維持する場合、駆動信号は、半導体スイッチング素子のしきい値電圧以下の電圧信号、すなわち、オフ信号である。
判定回路203は、主変換回路201の半導体スイッチング素子を過電流状態から保護する機能を有する。具体的には、主変換回路201におけるそれぞれの半導体スイッチング素子を流れる電流と相関を有するセンス素子の出力が判定回路203に入力される。そして、当該出力値があらかじめ定められたしきい値を超えた場合に、判定回路203は、主変換回路201における半導体スイッチング素子が過電流状態にあると判定する。そして、判定回路203は、半導体スイッチング素子のゲートを遮断するための信号を制御部202に出力する。
制御部202は、負荷300に所望の電力が供給されるように、主変換回路201における半導体スイッチング素子の駆動を制御する。具体的には、制御部202は、負荷300に供給すべき電力に基づいて、主変換回路201のそれぞれの半導体スイッチング素子がオン状態となるべき時間、すなわち、オン時間を算出する。
たとえば、制御部202は、出力すべき電圧に応じて半導体スイッチング素子のオン時間を変調するパルス幅変調(pulse width modulation、すなわち、PWM)制御によって、主変換回路201における半導体スイッチング素子の駆動を制御することができる。
そして、制御部202は、それぞれの時点においてオン状態となるべき半導体スイッチング素子にはオン信号を、オフ状態となるべき半導体スイッチング素子にはオフ信号をそれぞれ出力する。
本実施の形態に関する電力変換装置は、上記のいずれかの実施の形態において例示されたクランプ回路と同様の構成であるクランプ回路204を備える。そのため、クランプ回路204の動作によって、判定回路203における誤動作および制御部202における誤動作を抑制しつつ、半導体スイッチング素子の信頼性を高めることができる。
本実施の形態では、半導体装置を2レベルの三相のインバータに適用する場合が説明されたが、本実施の形態に関する半導体装置の用途は、これに限られるものではなく、たとえば、種々の電力変換装置に適用することができる。
本実施の形態では、半導体装置を2レベルの三相のインバータに適用する場合が説明されたが、3レベルまたはマルチレベルの電力変換装置に本実施の形態に関する半導体装置が適用されてもよいし、単相負荷に電力を供給する場合には単相のインバータに本実施の形態に関する半導体装置が適用されてもよい。
また、直流負荷などに電力を供給する場合には、DC/DCコンバータまたはAC/DCコンバータに本実施の形態に関する半導体装置が適用されてもよい。
また、本実施の形態に関する半導体装置を電力変換装置に適用する場合、上述した負荷が電動機である場合に限定されるものではなく、たとえば、放電加工機、レーザー加工機、誘導加熱調理器または非接触器の給電システムの電源装置として用いることもでき、さらには、太陽光発電システムまたは蓄電システムなどのパワーコンディショナーとして用いることもできる。
<以上に記載された実施の形態によって生じる効果について>
次に、以上に記載された実施の形態によって生じる効果を例示する。なお、以下の説明においては、以上に記載された実施の形態に例示された具体的な構成に基づいて当該効果が記載されるが、同様の効果が生じる範囲で、本願明細書に例示される他の具体的な構成と置き換えられてもよい。
次に、以上に記載された実施の形態によって生じる効果を例示する。なお、以下の説明においては、以上に記載された実施の形態に例示された具体的な構成に基づいて当該効果が記載されるが、同様の効果が生じる範囲で、本願明細書に例示される他の具体的な構成と置き換えられてもよい。
また、当該置き換えは、複数の実施の形態に跨ってなされてもよい。すなわち、異なる実施の形態において例示されたそれぞれの構成が組み合わされて、同様の効果が生じる場合であってもよい。
以上に記載された実施の形態によれば、半導体装置は、半導体スイッチング素子12と、センス抵抗16と、過電流保護回路104と、ダイオード36とを備える。センス抵抗16は、半導体スイッチング素子12に流れる主電流から分流されたセンス電流を電圧に変換する。過電流保護回路104は、センス電圧VSがあらかじめ定められたしきい値を超えるか否かに基づいて、半導体スイッチング素子12のオン駆動およびオフ駆動を制御するための制御信号を出力する。ダイオード36は、センス電圧VSを、過電流保護回路104から半導体スイッチング素子12へオフ駆動時に出力される信号の電圧に順方向電圧を加えた電圧にクランプする。そして、過電流保護回路104は、センス電圧VSがしきい値を超えない場合、入力される信号に基づいて半導体スイッチング素子12をオン駆動させる信号、または、オフ駆動させる信号を制御信号として出力する。また、過電流保護回路104は、センス電圧VSがしきい値を超える場合、半導体スイッチング素子12をオフ駆動させる信号を制御信号として出力する。
このような構成によれば、半導体スイッチング素子12のターンオフ直後のミラー期間におけるセンス電圧VSの上昇によって生じる、過電流保護回路104の誤動作を抑制することができる。具体的には、過電流保護回路104によって半導体スイッチング素子12をオフ駆動させる信号が出力されている間、ダイオード36が当該信号に基づいてセンス電圧VSをクランプするため、半導体スイッチング素子12のターンオフ後の期間にセンス電圧VSが上昇することによって過電流保護回路104が誤動作することが抑制される。また、過電流保護回路104から半導体スイッチング素子12へオフ駆動時に出力される信号を用いてセンス電圧VSをクランプするため、別途、センス電圧をクランプするためのクランプ回路を実装する場合よりも出力端子数、および、部品点数を削減することができる。
なお、これらの構成以外の本願明細書に例示される他の構成については適宜省略することができる。すなわち、少なくともこれらの構成を備えていれば、以上に記載された効果を生じさせることができる。
しかしながら、本願明細書に例示される他の構成のうちの少なくとも1つを以上に記載された構成に適宜追加した場合、すなわち、以上に記載された構成としては記載されなかった本願明細書に例示される他の構成を以上に記載された構成に追加した場合でも、同様に以上に記載された効果を生じさせることができる。
また、以上に記載された実施の形態によれば、ダイオード36は、センス電圧VSを、制御信号に順方向電圧を加えた電圧にクランプするものである。このような構成によれば、過電流保護回路104から出力される制御信号を用いてセンス電圧VSをクランプするため、別途、センス電圧をクランプするためのクランプ回路を実装する場合よりも出力端子数、および、部品点数を削減することができる。
また、以上に記載された実施の形態によれば、半導体装置は、過電流保護回路104から出力される制御信号に基づいて、半導体スイッチング素子12を駆動させる駆動信号を出力するバッファ回路22を備える。また、ダイオード38は、センス電圧VSを、駆動信号に順方向電圧を加えた電圧にクランプするものである。このような構成によれば、バッファ回路22からの出力信号に基づいてクランプすることによって、クランプ回路の電流能力を大きくすることができる。
また、以上に記載された実施の形態によれば、半導体装置は、MOSFET40を備える。MOSFET40は、ダイオード42と過電流保護回路104との間に設けられる。また、MOSFET40のドレイン端子はゲートシンク用の出力であり、抵抗44を介してスイッチング素子12のゲート端子12cに接続されるとともに、ダイオード42のカソードに接続される。また、MOSFET40のゲート端子には過電流保護回路104からの信号が入力される。また、MOSFET40のソース端子はグラウンドに接続される。また、ダイオード42は、センス電圧VSを、MOSFET40が駆動している間、順方向電圧にクランプするものである。このような構成によれば、主の駆動出力とは別に、ゲートシンク用の電流経路を有する場合、当該ゲートシンク用の出力とダイオード42とを接続することによって、部品点数の増加を抑えつつ、クランプ回路を実装することができる。
また、以上に記載された実施の形態によれば、上記の半導体装置を含む電力変換装置200と、電力変換装置200に接続される電源100と、負荷300とを備える。負荷300は、電力変換装置200に接続され、かつ、電源100の出力が電力変換装置200において変換されて入力される。このような構成によれば、電力変換装置200が、ダイオードを備える上記の半導体装置を含む。そのため、当該ダイオードの動作によって、判定回路203における誤動作および制御部202における誤動作を抑制しつつ、半導体スイッチング素子の信頼性を高めることができる。
また、以上に記載された実施の形態によれば、半導体装置は、半導体スイッチング素子12と、センス抵抗16と、クランプ回路30と、判定回路と、制御部20とを備える。センス抵抗16は、半導体スイッチング素子12に流れる主電流から分流されたセンス電流を電圧に変換する。クランプ回路30は、センス電圧VSをクランプする。判定回路は、センス電圧VSがあらかじめ定められたしきい値を超えるか否かを判定する。制御部20は、判定回路における判定結果に基づいて、半導体スイッチング素子12のオン駆動およびオフ駆動を制御する。また、制御部20は、判定回路における判定結果に基づいて、クランプ回路30の駆動を制御する。そして、制御部20は、センス電圧VSがしきい値を超えない場合、入力される信号に基づいて半導体スイッチング素子12をオン駆動させ、または、オフ駆動させる。また、制御部20は、センス電圧VSがしきい値を超える場合、半導体スイッチング素子12をオフ駆動させる。また、制御部20は、少なくとも半導体スイッチング素子12がオフ駆動する期間および当該期間の後あらかじめ定められた期間の間、クランプ回路30にセンス電圧VSをクランプさせる。ここで、判定回路は、たとえば、コンパレータ28に対応するものである。
このような構成によれば、半導体スイッチング素子12のターンオフ直後のミラー期間におけるセンス電圧VSの上昇によって生じる過電流保護回路104の誤動作、および、半導体スイッチング素子12のターンオン直後のミラー期間におけるセンス電圧VSの上昇によって生じる過電流保護回路104の誤動作についても抑制することができる。
なお、これらの構成以外の本願明細書に例示される他の構成については適宜省略することができる。すなわち、少なくともこれらの構成を備えていれば、以上に記載された効果を生じさせることができる。
しかしながら、本願明細書に例示される他の構成のうちの少なくとも1つを以上に記載された構成に適宜追加した場合、すなわち、以上に記載された構成としては記載されなかった本願明細書に例示される他の構成を以上に記載された構成に追加した場合でも、同様に以上に記載された効果を生じさせることができる。
また、以上に記載された実施の形態によれば、半導体スイッチング素子12は、IGBTである。そして、制御部20は、半導体スイッチング素子12がオフ駆動する期間、および、当該期間の後半導体スイッチング素子12のゲート-エミッタ間の電圧値が半導体スイッチング素子12があらかじめ定められた電圧値以上になるまでの間、クランプ回路30にセンス電圧VSをクランプさせる。このような構成によれば、半導体スイッチング素子12のターンオフ直後のミラー期間におけるセンス電圧VSの上昇をクランプし、過電流保護回路の誤動作を抑制することができる。また、半導体スイッチング素子12のターンオン直後のミラー期間におけるセンス電圧VSの上昇によって、過電流保護回路が誤動作することを抑制することができる。半導体スイッチング素子12がターンオン直後に過電流状態になると、コレクタ-ゲート間の寄生容量を通じて電圧VGEが即座に上昇する。そして、クランプ回路の動作が停止する。そのため、過電流保護回路の駆動の遅延が少なくなる。
また、以上に記載された実施の形態によれば、クランプ回路は、MOSFET34である。そして、MOSFET34のドレイン端子にはセンス電圧VSが入力される。また、MOSFET34のゲート端子には制御部20からの信号が入力される。また、MOSFET34のソース端子はグラウンドに接続される。このような構成によれば、半導体スイッチング素子12のターンオフ直後のミラー期間におけるセンス電圧VSの上昇によって生じる過電流保護回路104の誤動作、および、半導体スイッチング素子12のターンオン直後のミラー期間におけるセンス電圧VSの上昇によって生じる過電流保護回路104の誤動作についても、適切に抑制することができる。
また、以上に記載された実施の形態によれば、半導体装置は、センス電圧VSが入力されるローパスフィルター102を備える。そして、コンパレータ28は、ローパスフィルター102を介して入力されたセンス電圧VSがしきい値を超えるか否かを判定する。また、クランプ回路46は、ローパスフィルター102を介してコンパレータ28に入力されるセンス電圧VSをクランプする。このような構成によれば、半導体スイッチング素子12のターンオフ直後のミラー期間におけるセンス電圧VSの上昇によって生じる過電流保護回路104の誤動作、および、半導体スイッチング素子12のターンオン直後のミラー期間におけるセンス電圧VSの上昇によって生じる過電流保護回路104の誤動作についても、適切に抑制することができる。
また、以上に記載された実施の形態によれば、上記の半導体装置を含む電力変換装置200と、電力変換装置200に接続される電源100と、負荷300とを備える。負荷300は、電力変換装置200に接続され、かつ、電源100の出力が電力変換装置200において変換されて入力される。このような構成によれば、電力変換装置200が、クランプ回路を備える上記の半導体装置を含む。そのため、当該クランプ回路の動作によって、判定回路203における誤動作および制御部202における誤動作を抑制しつつ、半導体スイッチング素子の信頼性を高めることができる。
<以上に記載された実施の形態における変形例について>
以上に記載された実施の形態では、それぞれの構成要素の材質、材料、寸法、形状、相対的配置関係または実施の条件などについても記載する場合があるが、これらはすべての局面において例示であって、本願明細書に記載されたものに限られることはないものとする。
以上に記載された実施の形態では、それぞれの構成要素の材質、材料、寸法、形状、相対的配置関係または実施の条件などについても記載する場合があるが、これらはすべての局面において例示であって、本願明細書に記載されたものに限られることはないものとする。
したがって、例示されていない無数の変形例、および、均等物が、本願明細書に開示される技術の範囲内において想定される。たとえば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの実施の形態における少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
また、矛盾が生じない限り、以上に記載された実施の形態において「1つ」備えられるものとして記載された構成要素は、「1つ以上」備えられていてもよいものとする。
さらに、以上に記載された実施の形態におけるそれぞれの構成要素は概念的な単位であって、本願明細書に開示される技術の範囲内には、1つの構成要素が複数の構造物から成る場合と、1つの構成要素がある構造物の一部に対応する場合と、さらには、複数の構成要素が1つの構造物に備えられる場合とを含むものとする。
また、以上に記載された実施の形態におけるそれぞれの構成要素には、同一の機能を発揮する限り、他の構造または形状を有する構造物が含まれるものとする。
また、本願明細書における説明は、本技術に関するすべての目的のために参照され、いずれも、従来技術であると認めるものではない。
12 半導体スイッチング素子、12a エミッタ端子、12b 電流センス端子、12c ゲート端子、14 ゲート抵抗、16 センス抵抗、18 入力部、20,202 制御部、22 バッファ回路、24,44 抵抗、26 コンデンサ、28 コンパレータ、30,46,204 クランプ回路、32 基準電圧源、34,40 MOSFET、36,38,42 ダイオード、100 電源、102 ローパスフィルター、104 過電流保護回路、200 電力変換装置、201 主変換回路、203 判定回路、300 負荷、t1,t2 時刻、VF 順方向電圧、VS センス電圧。
Claims (10)
- 半導体スイッチング素子(12)と、
前記半導体スイッチング素子(12)に流れる主電流から分流されたセンス電流を電圧に変換するセンス抵抗(16)と、
前記センス電圧があらかじめ定められたしきい値を超えるか否かに基づいて、前記半導体スイッチング素子(12)のオン駆動およびオフ駆動を制御するための制御信号を出力する過電流保護回路(104)と、
前記センス電圧を、前記過電流保護回路(104)から前記半導体スイッチング素子(12)へオフ駆動時に出力される信号の電圧に順方向電圧を加えた電圧にクランプするダイオード(36、38、42)とを備え、
前記過電流保護回路(104)は、
前記センス電圧が前記しきい値を超えない場合、入力される信号に基づいて前記半導体スイッチング素子(12)をオン駆動させる信号、または、オフ駆動させる信号を前記制御信号として出力し、
前記センス電圧が前記しきい値を超える場合、前記半導体スイッチング素子(12)をオフ駆動させる信号を前記制御信号として出力する、
半導体装置。 - 前記ダイオード(36)は、前記センス電圧を、前記制御信号に順方向電圧を加えた電圧にクランプする、
請求項1に記載の半導体装置。 - 前記過電流保護回路(104)から出力される前記制御信号に基づいて、前記半導体スイッチング素子(12)を駆動させる駆動信号を出力するバッファ回路(22)をさらに備え、
前記ダイオード(38)は、前記センス電圧を、前記駆動信号に順方向電圧を加えた電圧にクランプする、
請求項1または請求項2に記載の半導体装置。 - 前記ダイオード(42)と前記過電流保護回路(104)との間に設けられるMOSFET(40)をさらに備え、
前記MOSFET(40)のドレイン端子には前記ダイオード(42)のカソードが接続され、
前記MOSFET(40)のゲート端子には前記過電流保護回路(104)からの信号が入力され、
前記MOSFET(40)のソース端子はグラウンドに接続され、
前記ダイオード(42)は、前記センス電圧を順方向電圧にクランプする、
請求項3に記載の半導体装置。 - 請求項1から請求項4のうちのいずれか1項に記載された半導体装置を含む電力変換装置(200)と、
前記電力変換装置(200)に接続される電源(100)と、
前記電力変換装置(200)に接続され、かつ、前記電源(100)の出力が前記電力変換装置(200)において変換されて入力される負荷(300)とを備える、
電力変換システム。 - 半導体スイッチング素子(12)と、
前記半導体スイッチング素子(12)に流れる主電流から分流されたセンス電流を電圧に変換するセンス抵抗(16)と、
前記センス電圧をクランプするクランプ回路(30、34、46)と、
前記センス電圧があらかじめ定められたしきい値を超えるか否かを判定する判定回路(28)と、
前記判定回路(28)における判定結果に基づいて、前記半導体スイッチング素子(12)のオン駆動およびオフ駆動、および、前記クランプ回路(30、34、46)の駆動を制御する制御部(20)とを備え、
前記制御部(20)は、
前記センス電圧が前記しきい値を超えない場合、入力される信号に基づいて前記半導体スイッチング素子(12)をオン駆動させ、または、オフ駆動させ、
前記センス電圧が前記しきい値を超える場合、前記半導体スイッチング素子(12)をオフ駆動させ、
少なくとも前記半導体スイッチング素子(12)がオフ駆動する期間および当該期間の後あらかじめ定められた期間の間、前記クランプ回路(30、34、46)に前記センス電圧をクランプさせる、
半導体装置。 - 前記半導体スイッチング素子(12)は、IGBTであり、
前記制御部(20)は、
前記半導体スイッチング素子(12)がオフ駆動する期間、および、当該期間の後前記半導体スイッチング素子(12)のゲート-エミッタ間の電圧値が前記半導体スイッチング素子(12)があらかじめ定められた電圧値以上になるまでの間、前記クランプ回路(30、34、46)に前記センス電圧をクランプさせる、
請求項6に記載の半導体装置。 - 前記クランプ回路(34)は、MOSFETであり、
前記クランプ回路(34)のドレイン端子には前記センス電圧が入力され、
前記クランプ回路(34)のゲート端子には前記制御部(20)からの信号が入力され、
前記クランプ回路(34)のソース端子はグラウンドに接続される、
請求項6または請求項7に記載の半導体装置。 - 前記センス電圧が入力されるローパスフィルター(102)をさらに備え、
前記判定回路(28)は、前記ローパスフィルター(102)を介して入力された前記センス電圧が前記しきい値を超えるか否かを判定し、
前記クランプ回路(46)は、前記ローパスフィルター(102)を介して前記判定回路(28)に入力される前記センス電圧をクランプする、
請求項6から請求項8のうちのいずれか1項に記載の半導体装置。 - 請求項6から請求項9のうちのいずれか1項に記載された半導体装置を含む電力変換装置(200)と、
前記電力変換装置(200)に接続される電源(100)と、
前記電力変換装置(200)に接続され、かつ、前記電源(100)の出力が前記電力変換装置(200)において変換されて入力される負荷(300)とを備える、
電力変換システム。
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2017/007708 WO2018158807A1 (ja) | 2017-02-28 | 2017-02-28 | 半導体装置、および、電力変換システム |
| JP2019502311A JP6735900B2 (ja) | 2017-02-28 | 2017-02-28 | 半導体装置、および、電力変換システム |
| US16/473,236 US11139808B2 (en) | 2017-02-28 | 2017-02-28 | Semiconductor device and power conversion system |
| DE112017007140.2T DE112017007140T5 (de) | 2017-02-28 | 2017-02-28 | Halbleitervorrichtung und Leistungsumwandlungssystem |
| CN201780087343.8A CN110337784B (zh) | 2017-02-28 | 2017-02-28 | 半导体装置及电力转换系统 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2017/007708 WO2018158807A1 (ja) | 2017-02-28 | 2017-02-28 | 半導体装置、および、電力変換システム |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018158807A1 true WO2018158807A1 (ja) | 2018-09-07 |
Family
ID=63370705
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2017/007708 Ceased WO2018158807A1 (ja) | 2017-02-28 | 2017-02-28 | 半導体装置、および、電力変換システム |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US11139808B2 (ja) |
| JP (1) | JP6735900B2 (ja) |
| CN (1) | CN110337784B (ja) |
| DE (1) | DE112017007140T5 (ja) |
| WO (1) | WO2018158807A1 (ja) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2021005950A (ja) * | 2019-06-26 | 2021-01-14 | 株式会社デンソー | トランジスタ駆動回路及びトランジスタのゲート電圧制御方法 |
| KR102252571B1 (ko) * | 2020-10-23 | 2021-05-14 | 콘티넨탈 오토모티브 게엠베하 | 트랜지스터 출력 보호 회로 및 그 동작 방법 |
| US11545970B2 (en) | 2019-07-03 | 2023-01-03 | Fuji Electric Co., Ltd. | Current detection circuit, current detection method, and semiconductor module |
| US11581886B2 (en) | 2019-07-03 | 2023-02-14 | Fuji Electric Co., Ltd. | Current detection circuit, current detection method, and semiconductor module |
| JPWO2023032024A1 (ja) * | 2021-08-31 | 2023-03-09 |
Families Citing this family (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3425784B1 (en) * | 2011-05-05 | 2023-09-06 | PSEMI Corporation | Dc-dc converter with modular stages |
| US8723491B2 (en) | 2011-12-19 | 2014-05-13 | Arctic Sand Technologies, Inc. | Control of power converters with capacitive energy transfer |
| WO2020000053A1 (en) * | 2018-06-29 | 2020-01-02 | Breville Pty Limited | Improved induction heating circuit, protection circuit and cooling system for an appliance |
| JP2020167612A (ja) * | 2019-03-29 | 2020-10-08 | 住友電装株式会社 | 給電制御装置 |
| US10720913B1 (en) * | 2019-05-28 | 2020-07-21 | Infineon Technologies Austria Ag | Integrated failsafe pulldown circuit for GaN switch |
| TWI707528B (zh) * | 2019-06-17 | 2020-10-11 | 瑞昱半導體股份有限公司 | 開關控制電路 |
| US10958268B1 (en) | 2019-09-04 | 2021-03-23 | Infineon Technologies Austria Ag | Transformer-based driver for power switches |
| US11057029B2 (en) | 2019-11-25 | 2021-07-06 | Silicon Laboratories Inc. | Gate driver with integrated miller clamp |
| JP7181851B2 (ja) * | 2019-12-13 | 2022-12-01 | 日立Astemo株式会社 | 電力変換装置 |
| US10979032B1 (en) | 2020-01-08 | 2021-04-13 | Infineon Technologies Austria Ag | Time-programmable failsafe pulldown circuit for GaN switch |
| US10917081B1 (en) * | 2020-03-11 | 2021-02-09 | Silicon Laboratories Inc. | Adjustable soft shutdown and current booster for gate driver |
| CN115428143A (zh) * | 2020-04-27 | 2022-12-02 | 罗姆股份有限公司 | 半导体装置 |
| CN111835183A (zh) * | 2020-08-19 | 2020-10-27 | 巨风芯科技(深圳)有限公司 | 一种米勒钳位保护电路、驱动电路、芯片及智能igbt模块 |
| US11362646B1 (en) | 2020-12-04 | 2022-06-14 | Skyworks Solutions, Inc. | Variable current drive for isolated gate drivers |
| US12155332B2 (en) | 2020-12-06 | 2024-11-26 | Skyworks Solutions, Inc. | Updating control parameters of a gate driver during operation |
| CN112953174B (zh) * | 2021-02-08 | 2022-11-25 | 北京交通大学 | 基于dv/dt检测的抑制SiC MOSFET串扰的钳位有源驱动电路 |
| US11641197B2 (en) | 2021-04-28 | 2023-05-02 | Skyworks Solutions, Inc. | Gate driver output protection circuit |
| CN113595541B (zh) * | 2021-08-03 | 2024-06-18 | 珠海格力电器股份有限公司 | 开关管控制装置及开关管设备 |
| US11762406B2 (en) * | 2021-09-09 | 2023-09-19 | GM Global Technology Operations LLC | Voltage control and noise isolation for a fuse system |
| TWI814206B (zh) * | 2022-01-12 | 2023-09-01 | 台達電子工業股份有限公司 | 三相功率轉換器之輸出電流的箝位控制方法 |
| CN116470820A (zh) | 2022-01-12 | 2023-07-21 | 台达电子工业股份有限公司 | 三相功率转换器的输出电流的箝位控制方法 |
| US12176887B2 (en) | 2022-10-17 | 2024-12-24 | Infineon Technologies Austria Ag | Transformer-based drive for GaN devices |
| CN116192109B (zh) * | 2023-01-19 | 2024-08-27 | 苏州纳芯微电子股份有限公司 | 分级关断驱动电路、装置及安全芯片 |
| US12368383B2 (en) | 2023-03-13 | 2025-07-22 | Infineon Technologies Austria Ag | Isolated DC/DC converter and power electronics system |
| CN117394835A (zh) * | 2023-10-23 | 2024-01-12 | 明芝兰(江苏)电子科技有限公司 | 电子开关驱动电路、电子开关及控制方法 |
| JP2025137939A (ja) * | 2024-03-11 | 2025-09-25 | 新電元工業株式会社 | 半導体回路 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06164344A (ja) * | 1992-11-25 | 1994-06-10 | Fuji Electric Co Ltd | 半導体装置 |
| JP2005151631A (ja) * | 2003-11-12 | 2005-06-09 | Mitsubishi Electric Corp | 半導体装置および過電流の基準レベルのデータ設定方法 |
| JP2014064355A (ja) * | 2012-09-20 | 2014-04-10 | Fuji Electric Co Ltd | 半導体駆動装置 |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05276761A (ja) | 1992-03-19 | 1993-10-22 | Hitachi Ltd | パワー半導体素子の過電流検出方法及び回路並びにこれを用いたインバータ装置 |
| US6633473B1 (en) * | 1999-09-20 | 2003-10-14 | Mitsubishi Denki Kabushiki Kaisha | Overcurrent control circuit of power semiconductor device |
| US6807040B2 (en) * | 2001-04-19 | 2004-10-19 | Texas Instruments Incorporated | Over-current protection circuit and method |
| JP5392287B2 (ja) * | 2011-03-24 | 2014-01-22 | 株式会社デンソー | 負荷駆動装置 |
| JP5726037B2 (ja) * | 2011-09-30 | 2015-05-27 | 三菱電機株式会社 | 半導体装置 |
| JP7087371B2 (ja) * | 2017-12-18 | 2022-06-21 | 富士電機株式会社 | 半導体装置およびパワーモジュール |
-
2017
- 2017-02-28 WO PCT/JP2017/007708 patent/WO2018158807A1/ja not_active Ceased
- 2017-02-28 CN CN201780087343.8A patent/CN110337784B/zh active Active
- 2017-02-28 JP JP2019502311A patent/JP6735900B2/ja active Active
- 2017-02-28 DE DE112017007140.2T patent/DE112017007140T5/de active Pending
- 2017-02-28 US US16/473,236 patent/US11139808B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06164344A (ja) * | 1992-11-25 | 1994-06-10 | Fuji Electric Co Ltd | 半導体装置 |
| JP2005151631A (ja) * | 2003-11-12 | 2005-06-09 | Mitsubishi Electric Corp | 半導体装置および過電流の基準レベルのデータ設定方法 |
| JP2014064355A (ja) * | 2012-09-20 | 2014-04-10 | Fuji Electric Co Ltd | 半導体駆動装置 |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2021005950A (ja) * | 2019-06-26 | 2021-01-14 | 株式会社デンソー | トランジスタ駆動回路及びトランジスタのゲート電圧制御方法 |
| US11545970B2 (en) | 2019-07-03 | 2023-01-03 | Fuji Electric Co., Ltd. | Current detection circuit, current detection method, and semiconductor module |
| US11581886B2 (en) | 2019-07-03 | 2023-02-14 | Fuji Electric Co., Ltd. | Current detection circuit, current detection method, and semiconductor module |
| KR102252571B1 (ko) * | 2020-10-23 | 2021-05-14 | 콘티넨탈 오토모티브 게엠베하 | 트랜지스터 출력 보호 회로 및 그 동작 방법 |
| JPWO2023032024A1 (ja) * | 2021-08-31 | 2023-03-09 | ||
| JP7621501B2 (ja) | 2021-08-31 | 2025-01-24 | 三菱電機株式会社 | 半導体駆動装置およびそれを備える電力変換装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| JP6735900B2 (ja) | 2020-08-05 |
| DE112017007140T5 (de) | 2019-11-07 |
| JPWO2018158807A1 (ja) | 2019-06-27 |
| US11139808B2 (en) | 2021-10-05 |
| US20190372567A1 (en) | 2019-12-05 |
| CN110337784B (zh) | 2023-06-09 |
| CN110337784A (zh) | 2019-10-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6735900B2 (ja) | 半導体装置、および、電力変換システム | |
| CN105553235B (zh) | 半导体驱动装置及使用该半导体驱动装置的电力变换装置 | |
| EP3219010B1 (en) | Resistor emulation and gate boost | |
| JP3598933B2 (ja) | 電力変換装置 | |
| JP2009011013A (ja) | 電力変換装置 | |
| WO2015111154A1 (ja) | スイッチング回路、インバータ回路、及びモータ制御装置 | |
| US9768764B2 (en) | Power conversion apparatus | |
| WO2016207969A1 (ja) | 充電共用インバータ | |
| JP4204534B2 (ja) | 電力変換装置 | |
| JP4212546B2 (ja) | 電力変換装置 | |
| JP6758486B2 (ja) | 半導体素子の駆動装置および電力変換装置 | |
| US10141834B2 (en) | Multi-phase power conversion device control circuit | |
| JP2011229011A (ja) | スイッチングトランジスタの制御回路およびそれを用いた電力変換装置 | |
| JP2018061301A (ja) | 半導体駆動装置ならびにそれを用いた電力変換装置 | |
| US11404953B2 (en) | Drive circuit for power semiconductor element and power semiconductor module employing the same | |
| JP7595785B2 (ja) | 電力用半導体素子の駆動回路、電力用半導体モジュール、および電力変換装置 | |
| JP5298557B2 (ja) | 電圧駆動型半導体素子のゲート駆動装置 | |
| US20240348240A1 (en) | Redundant active discharge circuit and control method, and inverter | |
| US9853572B2 (en) | Bridge leg circuit | |
| US8907716B2 (en) | Systems and methods for control of power semiconductor devices | |
| JP6004988B2 (ja) | 電力用半導体素子のゲート制御装置 | |
| JP2022026735A (ja) | 電力変換装置 | |
| US20250030414A1 (en) | Solid state power controller, power management system and power converter | |
| US20230261562A1 (en) | Power conversion device and control method thereof | |
| KR20180010673A (ko) | 컨버터 및 이를 구비한 가전기기 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17898496 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2019502311 Country of ref document: JP Kind code of ref document: A |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17898496 Country of ref document: EP Kind code of ref document: A1 |