WO2018159349A1 - モータ、動力装置、及びブルドーザ - Google Patents
モータ、動力装置、及びブルドーザ Download PDFInfo
- Publication number
- WO2018159349A1 WO2018159349A1 PCT/JP2018/005659 JP2018005659W WO2018159349A1 WO 2018159349 A1 WO2018159349 A1 WO 2018159349A1 JP 2018005659 W JP2018005659 W JP 2018005659W WO 2018159349 A1 WO2018159349 A1 WO 2018159349A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor core
- radius
- weight plate
- motor
- stator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/01—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
- H02K11/012—Shields associated with rotating parts, e.g. rotor cores or rotary shafts
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/06—Means for converting reciprocating motion into rotary motion or vice versa
- H02K7/061—Means for converting reciprocating motion into rotary motion or vice versa using rotary unbalanced masses
- H02K7/063—Means for converting reciprocating motion into rotary motion or vice versa using rotary unbalanced masses integrally combined with motor parts, e.g. motors with eccentric rotors
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/76—Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
- E02F3/7609—Scraper blade mounted forwardly of the tractor on a pair of pivoting arms which are linked to the sides of the tractor, e.g. bulldozers
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/76—Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
- E02F3/80—Component parts
- E02F3/84—Drives or control devices therefor, e.g. hydraulic drive systems
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/76—Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
- E02F3/80—Component parts
- E02F3/84—Drives or control devices therefor, e.g. hydraulic drive systems
- E02F3/844—Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/02—Travelling-gear, e.g. associated with slewing gears
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/24—Rotor cores with salient poles ; Variable reluctance rotors
- H02K1/246—Variable reluctance rotors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/28—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
- H02K1/30—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/04—Balancing means
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2058—Electric or electro-mechanical or mechanical control devices of vehicle sub-units
- E02F9/2062—Control of propulsion units
- E02F9/207—Control of propulsion units of the type electric propulsion units, e.g. electric motors or generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2201/00—Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
- H02K2201/03—Machines characterised by aspects of the air-gap between rotor and stator
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
Definitions
- the present invention relates to the motor field, and more particularly to a motor, a power unit, and a bulldozer.
- US Pat. No. 06769167 discloses a synchronous reluctance motor provided with a stator and a rotor.
- the rotor includes a rotor core, and one end plate for fixing the rotor core to each end of the rotor core. Is provided.
- the end plate is preferably a metal member. However, since the metal member is connected to the magnetic flux generated from the stator together with the rotor, iron loss occurs.
- Japanese Patent Publication No. 3517319 discloses a motor in which extra iron loss is improved by changing the material of the end plate to a non-metallic material and dispersing and assembling between the rotor cores. However, in this case, the function of dynamic balance is lost, and the magnetic space inside the rotor core is occupied.
- embodiments of the present invention provide a motor, a power unit, and a bulldozer.
- a rotation shaft extending along a central axis, a cylindrical rotor core provided on a radially outer side of the rotation shaft, and both ends of the rotor core in the axial direction are provided.
- a motor comprising a rotor having two disk-shaped weight plates, and a stator arranged to face the rotor in a radial direction, the radius of the weight plate being smaller than the radius of the rotor core A difference between the radius of the rotor core and the radius of the weight plate is larger than an air gap between a radially outer side of the rotor core and a radially inner side of the stator.
- a magnetic insulation sheet is further provided between the weight plate and the rotor core, and the rotor core radius A, the weight plate radius B, the shaft of the weight plate
- the height h 3 in the direction, the height h 2 in the axial direction of the magnetic insulating sheet, and the air gap g are However, It becomes.
- the axial height R of the rotor core, the axial height h 2 of the magnetic insulation sheet, and the axial height S of the stator are: Satisfy the relationship.
- a coil is wound around the stator, the radius A of the rotor core, the radius B of the weight plate, the height h 2 in the axial direction of the magnetic insulating sheet, The axial height h 1 of the portion of the coil exposed from the stator and the air gap g are Satisfy the relationship.
- a power unit including any of the motors described above is provided.
- An aspect of an embodiment of the present invention provides a bulldozer including an endless track and a power shovel, further including the above-described power device for supplying power to the endless track and the power shovel.
- the beneficial effect of the embodiment of the present invention is that changing the weight plate radius reduces iron loss on the weight plate and further improves the overall efficiency of the motor in a convenient manner. is there.
- FIG. 1 is a schematic view of a part of a motor in an embodiment of the present invention as viewed from the side.
- FIG. 2 is a schematic view of the magnitude relationship between the radius of the rotor core of the motor and the radius of the weight plate in the embodiment of the present invention.
- the output characteristics of the motor can be changed by changing the shape of the magnetic flux barrier.
- the output characteristics of the motor may be improved by using a core having a different structure, but it is relatively difficult in terms of manufacturing and assembly, and the manufacturing cost is considered to be higher.
- the efficiency of the motor is always limited by the iron loss on the weight plate, and the overall efficiency of the motor is reduced. Cannot be further improved.
- an embodiment of the present invention provides a motor, a power unit, and a bulldozer.
- a direction parallel to the direction extending along the central axis is referred to as an “axial direction”
- a radial direction centered on the central axis is referred to as a “radial direction”
- the central axis is the center.
- the circumferential direction is referred to as the “circumferential direction”. It should be noted that the definition of each direction in the present specification is based on the convenience of the description of the embodiment of the present invention, and does not limit the direction of use or manufacturing of the motor.
- Embodiment 1 An embodiment of the present invention provides a motor, and FIG. 1 is a schematic view of a part of the motor as viewed from the side.
- FIG. 2 is a schematic diagram of the magnitude relationship between the radius of the rotor core of the motor and the radius of the weight plate.
- the motor 10 includes a rotor 11 and a stator 12.
- the rotor 11 is provided with a rotating shaft 112 extending along the central axis O, a cylindrical rotor core 111 provided on the outer side in the radial direction of the rotating shaft 112, and both ends of the cylindrical rotor core 111 in the axial direction. It has two disk-shaped weight plates 113 and 114. That is, the rotor core 111 is disposed between the weight plate 113 positioned on one side in the axial direction and the weight plate 114 positioned on the other side in the axial direction.
- the stator 12 is disposed to face the rotor 11 in the radial direction.
- the radius B of the weight plates 113 and 114 is smaller than the radius A of the rotor core 111, and the radius A of the rotor core 111 and the radius B of the weight plates 113 and 114 Is larger than the air gap g between the radially outer side of the rotor core 111 and the radially inner side of the stator 12.
- the magnetic leakage generated by the coil 121 of the stator 12 is reduced in the magnetic leakage that is not connected to the rotor, and the magnetic leakage that is connected to the weight plates 113 and 114 is reduced.
- the iron loss on the weight plates 113 and 114 is reduced, and the overall efficiency of the motor can be improved by a convenient method, thereby efficiently reducing the manufacturing cost of the motor.
- the rotor core 111 may be a laminated core formed by laminating a plurality of circular plate-like members.
- the circular plate-like member is, for example, a circular silicon steel plate, and is laminated along the direction of the central axis O to be in a mutually insulated state.
- the present invention is not limited to this, and the rotor core may be configured in other forms.
- the rotating shaft 112 passes through the rotor core 111 and the weight plates 113 and 114 in the axial direction.
- the rotor core can be fixed.
- the weight plates 113 and 114 may be provided in a disk shape. Further, by adding a balance weight on the weight plates 113 and 114 according to the application scene and actual necessity, it is possible to prevent the rotor from being eccentric and to stabilize the dynamic balance of the rotor.
- the weight plates 113 and 114 may be arranged in a manner in which they are in direct contact with both ends of the rotor core 111 in the axial direction.
- Other members may be provided between the rotor core 111 and the weight plate 113 and between the rotor core 111 and the weight plate 114. The present invention does not further limit that point.
- a magnetic insulating sheet 115 located on one axial side is provided between the weight plate 113 located on one axial side and the rotor core 111. May be. Between the weight plate 114 positioned on the other side in the axial direction and the rotor core 111, a magnetic insulating sheet 116 positioned on the other side in the axial direction may be provided.
- the radius A of the rotor core 111, the radius B of the weight plates 113 and 114, the height h 3 in the axial direction of the weight plates 113 and 114, the height h 2 in the axial direction of the magnetic insulating sheets 115 and 116, and the air gap g are The positional relationship defined by the following formula 2 may be satisfied.
- the positional relationship between the rotor core 111, the weight plates 113 and 114, the magnetic insulating sheets 115 and 116, and the stator 12 in the axial direction and the radial direction is determined, and the weight plates 113 and 114 the axial height h 3, the axial height of the magnetic insulation sheets 115 and 116 Bigger than.
- the rotating shaft 112 passes through the rotor core 111, the magnetic insulating sheets 115 and 116, and the weight plates 113 and 114 in the axial direction.
- the magnetic insulating sheets 115 and 116 may be arranged in a disk shape, and may be installed so that the size in the radial direction corresponds to the size of the rotor core 111.
- the magnetic insulating sheets 115 and 116 may be made of an alloy material having a good magnetic shielding effect.
- the embodiment of the present invention is not limited to this, and may be a member having a magnetic shielding effect of another type.
- the axial height R of the rotor core 111, the axial height h 2 of the magnetic insulation sheets 115 and 116, the axial direction of the stator 12 may satisfy the positional relationship defined by the following Expression 3.
- a coil 121 is wound around the stator 12, and the radius A of the rotor core 111, the radius B of the weight plates 113 and 114, the magnetic insulation
- the axial height h 2 of the sheets 115 and 116, the axial height h 1 of the portion of the coil 121 exposed from the stator 12, and the air gap g satisfy the positional relationship defined by the following Equation 4. Also good.
- a rotating magnetic field is generated by the coil 121 and the rotor 11 is rotated.
- different coil forms and specifications may be selected according to application situations or actual needs. The present application does not further limit this point.
- Example 2 In an example of the present invention, a power unit provided with the motor described in Example 1 is further provided. In the first embodiment, since the motor has already been described in detail, the contents are omitted here.
- the power unit may be applied to a bulldozer endless track (crawler) and a power shovel, but the present invention is not limited thereto.
- the performance of the motor can be improved by a convenient system, the overall efficiency of the motor can be improved, and further, the efficiency of the power plant is improved by a convenient system. Can be made.
- Embodiment 3 In an embodiment of the present invention, there is further provided a bulldozer including an endless track, a power shovel, and the power plant described in Embodiment 2, and the power plant supplies power to the endless track and the power shovel. Is to do.
- the power unit includes the motor described in Example 1.
- the motor since the motor has already been described in detail, the contents are omitted here.
- the performance of the motor can be improved by a convenient method, the overall efficiency of the motor is improved, and further, the efficiency of the power unit in the bulldozer is improved by a convenient method. be able to.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
本発明の実施例は、モータ、動力装置、及びブルドーザを提供し、当該モータは、中心軸線に沿って延伸する回転軸と、前記回転軸の径方向の外側に設けられた円筒状のロータコアと、前記円筒状のロータコアの軸方向の両端に設けられた円盤状の2つのウェイトプレートとを有するロータと、前記ロータと径方向に対向して配置されるステータと、を備え、前記ウェイトプレートの半径は前記ロータコアの半径よりも小さく、前記ロータコアの半径と前記ウェイトプレートの半径との差は、前記ロータコアの径方向の外側と前記ステータの径方向の内側との間の空気隙間よりも大きい。本願の実施例によれば、ウェイトプレート上の鉄損を便利的な方式により低減することができ、モータの全体的な効率を向上させることができる。
Description
本発明は、モータ分野に関し、特に、モータ、動力装置、及びブルドーザに関する。
米国特許公報第06769167号公報には、ステータとロータとが設けられた同期リラクタンスモータが開示され、当該ロータがロータコアを含み、ロータコアの両端にはそれぞれ、当該ロータコアを固定するための1つのエンドプレートが設けられている。当該ロータコアを固定するには、当該エンドプレートを金属部材にすることが望ましい。しかしながら、当該金属部材がロータとともに、ステータから生じる磁束に結びつくため、鉄損が発生した。
日本国特許公報第3517319号公報には、エンドプレートの材料を非金属材料に変更して、ロータコア間に分散して組み立てることで、余分な鉄損を改善したモータが開示されている。しかし、そうすると、動的バランスの機能がなくなり、ロータコア内部の導磁空間も占めるようになった。
ここで注意すべきなのは、上記の技術背景に対する紹介は、本発明の技術案に対してより明瞭かつ完全な説明を行うことに利便を図りながら、当業者が理解しやすいように供するものに過ぎない。それらの方案が本発明の背景技術の部分に記載されていることだけで、上記の技術方案が当業者により公知されたものであると認定してはならない。
背景技術において指摘された上記の問題を解決するために、本発明の実施例は、モータ、動力装置、及びブルドーザを提供する。
本発明の一実施例の態様では、中心軸線に沿って延伸する回転軸と、前記回転軸の径方向の外側に設けられた円筒状のロータコアと、前記ロータコアの軸方向の両端に設けられた円盤状の2つのウェイトプレートとを有するロータと、前記ロータと径方向に対向して配置されるステータと、を備えたモータであって、前記ウェイトプレートの半径は、前記ロータコアの半径よりも小さく、前記ロータコアの半径と前記ウェイトプレートの半径との差は、前記ロータコアの径方向の外側と前記ステータの径方向の内側との間の空気隙間よりも大きい、ことを特徴とするモータを提供する。
本発明の一実施例の態様では、前記ウェイトプレートと前記ロータコアとの間には、磁気絶縁シートがさらに設けられており、前記ロータコアの半径A、前記ウェイトプレートの半径B、前記ウェイトプレートの軸方向の高さh3、前記磁気絶縁シートの軸方向の高さh2、および、前記空気隙間gは、
という関係を満たし、ただし、
となる。
という関係を満たし、ただし、
となる。
本発明の一実施例の態様では、前記ステータには、コイルが巻きつけられており、前記ロータコアの半径A、前記ウェイトプレートの半径B、前記磁気絶縁シートの軸方向の高さh2、前記コイルの前記ステータから露出した部分の軸方向の高さh1、および、前記空気隙間gは、
という関係を満たす。
という関係を満たす。
本発明の一実施例の態様では、上述のいずれかに記載のモータを含む動力装置を提供する。
本発明の一実施例の態様では、無限軌道とパワーショベルを含むブルドーザであって、前記無限軌道と前記パワーショベルに動力を供給するための上述の動力装置をさらに含むブルドーザを提供する。
本発明の実施例による有益な効果は、ウェイトプレートの半径を変更することで、ウェイトプレート上の鉄損を低減し、さらに、モータの全体的な効率を便利的な方式により向上させるということである。
後述する説明と図面を参照して、本発明の特定な実施の形態は詳しく開示され、本発明の原理が使用されることも示された。理解すべきことは、本発明の実施の形態は、範囲上にそれで限定されない。添付される特許請求の範囲の精神及び請求項の範囲内において、本発明の実施の形態は多くの変更、修正及び均等物を含む。
1つの実施の形態の記載及び/又は示された特徴に対して、同様又は類似する様態で1つ又は更に多くのその他の実施の形態に使用され、その他の実施の形態の特徴と組み合わせ、或はその他の実施の形態の特徴を切り替えることができる。
強調すべきことは、術語である「備える/含む」は本文で特徴、整体部材、ステップ又は部材の存在を示すために使われているが、1つ又は更に多くのその他の特徴、整体部材、ステップ又は部材の存在或は付加が排除されるわけではない。
添付図面は本発明の実施例をさらに理解するために供されるもので、明細書の一部を構成し、本発明の好ましい実施形態を例示するとともに、文字記載と合わせて本発明の原理を説明するものである。自明なことに、後述する添付図面はただ本発明のいくつかの実施例に過ぎず、当業者にとって、創造的な労力を払わないことを前提として、それらの添付図面に基づいて、他の添付図面を取得することができる。
図1は、本発明の実施例におけるモータの一部を側面から見た概略図である。
図2は、本発明の実施例におけるモータのロータコアの半径とウェイトプレートの半径との大小関係の概略図である。
図面を参照して、下記の明細書によれば、本発明の上記及びその他の特徴がより明瞭になるであろう。明細書及び図面から、本発明の特定実施形態は具体的に開示され、本発明の原理を採用可能な実施形態の一部が示されるが、本発明は記載される実施形態に限らないということにも注意すべきである。逆に、本発明には、添付される請求の範囲内に属するすべての修正、変形及び均等物を含むこととする。
従来技術では、磁束バリアの形状を変化させることで、モータの出力特性を変更することができる。しかし、そのような方式では、求められる出力特性に対して、全てのロータコアの鋼板を新たに製造しなければならないので、新たな費用が発生する。または、異なる構造のコアを使用して、モータの出力特性を向上してもよいが、製造や組み立ての面では比較的に困難であり、製造コストがさらに高いと考えられる。かつ、従来技術におけるそれらの改良方式では、いずれも、ウェイトプレート上に発生した鉄損が考慮されないので、モータの効率が常にウェイトプレート上の鉄損によって制限されてしまい、モータの全体的な効率をさらに向上することができなくなる。
上記の問題を同時に解決するために、本発明の実施例は、モータ、動力装置、及びブルドーザを提供する。本明細書において、中心軸線に沿って延伸する方向に対して平行な方向が「軸方向」と呼ばれ、中心軸線を中心とした半径方向が「径方向」と呼ばれ、中心軸線を中心とした円周方向が「周方向」と呼ばれることとなる。注意すべきなのは、本明細書における各方向に対する定義は、本発明の実施例の説明の便宜上によるものであり、モータの使用や製造時の方向を限定するものではないということである。
実施例1:本発明の実施例はモータを提供し、図1は、モータの一部を側面から見た概略図である。図2は、モータのロータコアの半径とウェイトプレートの半径との大小関係の概略図である。
図1に示すように、モータ10は、ロータ11とステータ12を含む。ロータ11は、中心軸線Oに沿って延伸する回転軸112と、回転軸112の径方向の外側に設けられた円筒状のロータコア111と、円筒状のロータコア111の軸方向の両端に設けられた円盤状の2つのウェイトプレート113、114とを有する。即ち、ロータコア111は、軸方向一方側に位置するウェイトプレート113と軸方向他方側に位置するウェイトプレート114の間に配置される。ステータ12は、ロータ11と径方向に対向して配置される。
本実施例では、図1と図2に示すように、ウェイトプレート113、114の半径Bは、ロータコア111の半径Aよりも小さく、かつ、ロータコア111の半径Aとウェイトプレート113、114の半径Bとの差は、ロータコア111の径方向の外側とステータ12の径方向の内側との間の空気隙間gよりも大きい。
上記の構造により、ステータ12のコイル121で発生した磁束が、ロータに結びつかない磁気漏れにおいて、ウェイトプレート113、114と結びつく当該磁気漏れが低減される。それにより、ウェイトプレート113、114上の鉄損が低減され、さらに、モータの全体的な効率を便利的な方式により向上させることができ、モータの製造コストを効率よく低減した。
本実施例では、ロータコア111は、複数の円形板状部材により積層されて形成された積層コアであってもよい。当該円形板状部材は、例えば、円形状の珪素鋼板であり、中心軸線Oの方向に沿って積層されて、相互絶縁した状態となる。しかし、本発明はそれに限らず、他の形式によってロータコアが構成されてもよい。
本実施例では、回転軸112は、軸方向において、ロータコア111とウェイトプレート113、114を貫通する。ウェイトプレート113、114をロータコア111の両端に設けることで、ロータコアを固定することができる。ウェイトプレート113、114は、円盤状に設けられてもよい。そして、応用場面及び実際な必要に応じて、ウェイトプレート113、114上にバランスウェイトを追加することで、ロータの偏心を防止し、ロータの動的バランスを安定させることができる。
本実施例では、ウェイトプレート113、114は、ロータコア111の軸方向の両端に直接接触した方式で配置されてもよい。ロータコア111とウェイトプレート113との間、ロータコア111とウェイトプレート114との間に他の部材が設けられてもよい。本発明は、その点をさらに限定しない。
本発明の実施例における一実施の形態では、図1に示すように、軸方向一方側に位置するウェイトプレート113とロータコア111との間に、軸方向一方側に位置する磁気絶縁シート115が設けられてもよい。軸方向他方側に位置するウェイトプレート114とロータコア111との間に、軸方向他方側に位置する磁気絶縁シート116が設けられてもよい。ロータコア111の半径A、ウェイトプレート113、114の半径B、ウェイトプレート113、114の軸方向の高さh3、磁気絶縁シート115、116の軸方向の高さh2、および、空気隙間gは、以下の式2により定められる位置関係を満たしてもよい。
上記の式2により、ロータコア111、ウェイトプレート113、114、磁気絶縁シート115、116、および、ステータ12の、軸方向及び径方向の位置関係が定められており、かつ、ウェイトプレート113、114の軸方向の高さh3は、磁気絶縁シート115、116の軸方向の高さ
よりも大きい。ロータコア、ウェイトプレート、磁気絶縁シート及びステータを上記の方式により配置することで、ウェイトプレートの半径の値の範囲をさらに限定し、さらに、ウェイトプレートを通過するステータの磁界の磁束を低減することができ、ウェイトプレート上の鉄損が低減される。
よりも大きい。ロータコア、ウェイトプレート、磁気絶縁シート及びステータを上記の方式により配置することで、ウェイトプレートの半径の値の範囲をさらに限定し、さらに、ウェイトプレートを通過するステータの磁界の磁束を低減することができ、ウェイトプレート上の鉄損が低減される。
本実施の形態では、回転軸112は、軸方向において、ロータコア111、磁気絶縁シート115、116、および、ウェイトプレート113、114を貫通する。磁気絶縁シート115、116は円盤状に配置されてもよく、径方向のサイズがロータコア111のサイズに相当するように設置されてもよい。磁気絶縁シート115、116は、磁気シールド効果が良い合金材料で製造されてもよいが、本発明の実施例はそれに限らず、他の形式による磁気シールド効果を有する部材であってもよい。
本発明の実施例の一実施の形態では、図1に示すように、ロータコア111の軸方向の高さR、磁気絶縁シート115、116の軸方向の高さh2、ステータ12の軸方向の高さSは、以下の式3により定められる位置関係を満たしてもよい。
上記の式3により、ロータコア111の軸方向の高さRと磁気絶縁シート115、116の軸方向の高さh2との合計は、ステータ12の軸方向の高さSよりも大きいことが定められる。上記の式3の条件を満たすように、ロータコア、磁気絶縁シート、およびステータの軸方向の位置を配置することで、ウェイトプレート113、114上の鉄損をさらに低減することができ、モータの効率を効率よく向上することができる。
本発明の実施例の一実施の形態では、図1に示すように、ステータ12には、コイル121が巻きつけられており、ロータコア111の半径A、ウェイトプレート113、114の半径B、磁気絶縁シート115、116の軸方向の高さh2、コイル121のステータ12から露出した部分の軸方向の高さh1、および、空気隙間gは、以下の式4により定められる位置関係を満たしてもよい。
上記の式4により、ロータコア111、ウェイトプレート113、114、磁気絶縁シート115、116、ステータコイル121、および、空気隙間gの径方向及び軸方向の位置関係がさらに定められる。上記の式4の条件を満たすように、ロータコア、ウェイトプレート、磁気絶縁シート、および、ステータの位置関係を配置することで、ウェイトプレート113、114上の鉄損をさらに低減することができ、モータの効率を効率よく向上することができる。
本実施の形態では、コイル121で回転磁界が発生されて、ロータ11を回転させるが、応用場面または実際な必要に応じて、異なるコイルの形態や仕様を選択してもよい。本願は、その点をさらに限定しない。
本実施例では、ウェイトプレートの半径を変化させることで、ウェイトプレートと結びつくステータコイルで発生した磁気漏れが低減される。それにより、ウェイトプレート上の鉄損が低減され、モータの全体的な効率が向上する。かつ、本実施例に記載のモータのウェイトプレートは、従来のロータコアと合わせて直接に使用することができるので、ロータの磁束バリアの形状を新たに設計する必要がなく、モータの改造コストを低減し、さらに、モータの性能を便利的な方式により向上させることができる。
実施例2:本発明の実施例では、実施例1に記載のモータを備えた動力装置をさらに提供する。実施例1では、当該モータを既に詳しく説明したので、その内容がここで省略されることにした。
本実施例では、当該動力装置は、ブルドーザの無限軌道(クローラー)とパワーショベルに適用されてもよいが、本発明はそれに限らない。
本実施例における動力装置のモータによれば、モータの性能を便利的な方式により向上させることができ、モータの全体的な効率を向上させ、さらに、動力装置の効率を便利的な方式により向上させることができる。
実施例3:本発明の実施例では、無限軌道、パワーショベル、および実施例2に記載の動力装置を含むブルドーザをさらに提供し、当該動力装置は、前記無限軌道と前記パワーショベルに動力を供給するためのものである。
本実施例では、当該動力装置は、実施例1に記載のモータを備えた。実施例1では、当該モータを既に詳しく説明したので、その内容がここで省略されることにした。
本実施例におけるブルドーザによれば、モータの性能を便利的な方式により向上させることができ、モータの全体的な効率を向上させ、さらに、ブルドーザにおける動力装置の効率を便利的な方式により向上させることができる。
以上、具体的な実施の形態を結び付けて、本発明を説明した。しかし、当業者が理解すべきことは、それらの記載はいずれも例示的なものに過ぎず、本発明の保護範囲に対する限定ではない。当業者は本発明の精神と原理に基づいて、本発明に対して種々変形や修正を行うことができるが、それらの変形と修正も本発明の範囲内に入っている。
112 回転軸、11 ロータ、111 ロータコア、113・114 ウェイトプレート、12 ステータ
Claims (6)
- 中心軸線に沿って延伸する回転軸と、
前記回転軸の径方向の外側に設けられた円筒状のウェイトプレートコアと、
円筒状の前記ロータコアの軸方向の両端に設けられた円盤状の2つのウェイトプレートと、
を有するロータと、
前記ロータと径方向に対向して配置されるステータと、
を備えたモータであって、
前記ウェイトプレートの半径は、前記ロータコアの半径よりも小さく、
前記ロータコアの半径と前記ウェイトプレートの半径との差は、前記ロータコアの径方向の外側と前記ステータの径方向の内側との間の空気隙間よりも大きい、ことを特徴とするモータ。 - 請求項1~4のいずれか1項に記載のモータを含む、ことを特徴とする動力装置。
- 無限軌道とパワーショベルを含むブルドーザであって、
前記無限軌道と前記パワーショベルに動力を供給するための、請求項5に記載の動力装置をさらに含む、ことを特徴とするブルドーザ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019502885A JPWO2018159349A1 (ja) | 2017-02-28 | 2018-02-19 | モータ、動力装置、及びブルドーザ |
US16/477,223 US11469648B2 (en) | 2017-02-28 | 2018-02-19 | Motor, power unit, and bulldozer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710112915.5 | 2017-02-28 | ||
CN201710112915.5A CN108512355B (zh) | 2017-02-28 | 2017-02-28 | 马达、动力装置以及推土机 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159349A1 true WO2018159349A1 (ja) | 2018-09-07 |
Family
ID=63370579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/005659 Ceased WO2018159349A1 (ja) | 2017-02-28 | 2018-02-19 | モータ、動力装置、及びブルドーザ |
Country Status (4)
Country | Link |
---|---|
US (1) | US11469648B2 (ja) |
JP (1) | JPWO2018159349A1 (ja) |
CN (1) | CN108512355B (ja) |
WO (1) | WO2018159349A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7268551B2 (ja) * | 2019-09-11 | 2023-05-08 | 株式会社デンソー | 回転電機 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS622839A (ja) * | 1985-06-27 | 1987-01-08 | Fanuc Ltd | 交流モ−タの永久磁石界磁形回転子 |
JP2005304177A (ja) * | 2004-04-12 | 2005-10-27 | Toyota Motor Corp | 電動機および電動機の回転子に用いられるエンドプレート |
JP2009136090A (ja) * | 2007-11-30 | 2009-06-18 | Sumitomo Electric Ind Ltd | ロータプレート |
JP2009177861A (ja) * | 2008-01-21 | 2009-08-06 | Sumitomo Electric Ind Ltd | ロータプレート及びロータ |
US8276255B2 (en) * | 2009-03-11 | 2012-10-02 | GM Global Technology Operations LLC | Methods for producing and mounting balance rings to vehicular electric machines |
JP2012235652A (ja) * | 2011-05-09 | 2012-11-29 | Daikin Ind Ltd | 回転子および回転電機 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3517319B2 (ja) | 1996-03-25 | 2004-04-12 | オークマ株式会社 | 同期電動機のロータ |
JPH10108396A (ja) * | 1996-09-30 | 1998-04-24 | Osada Res Inst Ltd | ブラシレスモータ |
JP4168487B2 (ja) * | 1998-08-28 | 2008-10-22 | 松下電器産業株式会社 | 回転子、電動機、全密閉型圧縮機 |
GB2378323B (en) | 2001-07-28 | 2005-07-27 | Lg Electronics Inc | Rotor for synchronous reluctance motor and manufacturing method thereof |
JP2006002762A (ja) * | 2004-05-18 | 2006-01-05 | Nippon Densan Corp | 送風機 |
JP4760566B2 (ja) * | 2006-06-21 | 2011-08-31 | 日本電産株式会社 | 巻線取付方法 |
JP2008101772A (ja) * | 2006-09-20 | 2008-05-01 | Nippon Densan Corp | スリーブユニットの製造方法、スリーブユニットおよびモータ |
US9190880B2 (en) * | 2010-12-27 | 2015-11-17 | Nidec Corporation | Spindle motor, and disk drive apparatus including the spindle motor |
US8873198B1 (en) * | 2011-09-30 | 2014-10-28 | Nidec Corporation | Motor and disk drive apparatus |
JP5773164B2 (ja) * | 2012-01-31 | 2015-09-02 | 日本電産株式会社 | 電機子およびモータ |
JP2013204784A (ja) * | 2012-03-29 | 2013-10-07 | Nippon Densan Corp | 軸受装置および送風ファン |
SG193668A1 (en) * | 2012-03-30 | 2013-10-30 | Nidec Corp | Brushless motor, disk drive apparatus, and method of manufacturing the brushless motor |
US8693138B2 (en) * | 2012-05-10 | 2014-04-08 | Nidec Corporation | Base unit |
JP2014003830A (ja) * | 2012-06-19 | 2014-01-09 | Nippon Densan Corp | ベースプレート、ベースユニット、モータ、ディスク駆動装置、およびベースプレートの製造方法 |
JP2014055531A (ja) * | 2012-09-11 | 2014-03-27 | Nippon Densan Corp | 遠心ファン |
JP2014103726A (ja) * | 2012-11-19 | 2014-06-05 | Nippon Densan Corp | スピンドルモータおよびディスク駆動装置 |
JP2014103727A (ja) * | 2012-11-19 | 2014-06-05 | Nippon Densan Corp | スピンドルモータおよびディスク駆動装置 |
JP5607708B2 (ja) * | 2012-12-04 | 2014-10-15 | ファナック株式会社 | 電動機の固定子 |
US8941946B2 (en) * | 2013-03-14 | 2015-01-27 | Nidec Corporation | Motor including dynamic bearing with seal portion and disk drive apparatus including the same |
US9001461B1 (en) * | 2013-09-24 | 2015-04-07 | Nidec Corporation | Spindle motor and disk drive apparatus |
JP6349719B2 (ja) * | 2013-12-20 | 2018-07-04 | 日本電産株式会社 | インナーロータ型モータ |
JP6372651B2 (ja) * | 2014-04-11 | 2018-08-15 | 日本電産株式会社 | 自冷式モータ |
JP6464822B2 (ja) * | 2015-02-27 | 2019-02-06 | 日本電産株式会社 | モータ |
US9721608B2 (en) * | 2015-03-13 | 2017-08-01 | Nidec Corporation | Spindle motor and disk drive apparatus |
JP6627302B2 (ja) * | 2015-07-21 | 2020-01-08 | 日本電産株式会社 | モータ |
JP2017028895A (ja) * | 2015-07-24 | 2017-02-02 | 日本電産株式会社 | スピンドルモータおよびディスク駆動装置 |
JP6674609B2 (ja) * | 2015-12-28 | 2020-04-01 | 日本電産株式会社 | ベースユニット、およびディスク駆動装置 |
JP7028175B2 (ja) * | 2016-09-02 | 2022-03-02 | 日本電産株式会社 | ステータ、ステータの製造方法及びモータ |
JP6730233B2 (ja) * | 2017-07-26 | 2020-07-29 | ファナック株式会社 | 回転子、回転電機及び回転子の製造方法 |
-
2017
- 2017-02-28 CN CN201710112915.5A patent/CN108512355B/zh not_active Expired - Fee Related
-
2018
- 2018-02-19 JP JP2019502885A patent/JPWO2018159349A1/ja active Pending
- 2018-02-19 US US16/477,223 patent/US11469648B2/en active Active
- 2018-02-19 WO PCT/JP2018/005659 patent/WO2018159349A1/ja not_active Ceased
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS622839A (ja) * | 1985-06-27 | 1987-01-08 | Fanuc Ltd | 交流モ−タの永久磁石界磁形回転子 |
JP2005304177A (ja) * | 2004-04-12 | 2005-10-27 | Toyota Motor Corp | 電動機および電動機の回転子に用いられるエンドプレート |
JP2009136090A (ja) * | 2007-11-30 | 2009-06-18 | Sumitomo Electric Ind Ltd | ロータプレート |
JP2009177861A (ja) * | 2008-01-21 | 2009-08-06 | Sumitomo Electric Ind Ltd | ロータプレート及びロータ |
US8276255B2 (en) * | 2009-03-11 | 2012-10-02 | GM Global Technology Operations LLC | Methods for producing and mounting balance rings to vehicular electric machines |
JP2012235652A (ja) * | 2011-05-09 | 2012-11-29 | Daikin Ind Ltd | 回転子および回転電機 |
Also Published As
Publication number | Publication date |
---|---|
US20190372427A1 (en) | 2019-12-05 |
US11469648B2 (en) | 2022-10-11 |
CN108512355A (zh) | 2018-09-07 |
CN108512355B (zh) | 2020-10-16 |
JPWO2018159349A1 (ja) | 2020-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9071118B2 (en) | Axial motor | |
US11165293B2 (en) | Rotor and motor | |
JP5262583B2 (ja) | レゾルバ一体型回転電機及びロータコア | |
CN110140279A (zh) | 旋转电机用转子 | |
WO2017195498A1 (ja) | 回転子および回転電機 | |
JP4457777B2 (ja) | 回転電機 | |
JP2008148447A (ja) | 電動パワーステアリング装置用モータ | |
US12119714B1 (en) | Rotor for a high speed electrical machine | |
JP2007336624A (ja) | 多相クローティース型永久磁石モータ | |
CN110620456A (zh) | 转子铁芯、永磁电机及压缩机 | |
WO2018159349A1 (ja) | モータ、動力装置、及びブルドーザ | |
JP5471653B2 (ja) | 永久磁石式電動モータ | |
US11018534B2 (en) | Rotor, motor including rotor, and power unit including motor | |
JPWO2020054029A1 (ja) | かご形回転子および回転電機 | |
JP2010142000A (ja) | ステータコア,ステータおよびアキシャル型モータ | |
JP2014236648A (ja) | 回転電機および回転電機の回転子 | |
JP6399071B2 (ja) | 回転電機 | |
JP2009038897A (ja) | アキシャルギャップ型モータ | |
JP6385969B2 (ja) | 単相ブラシレスモータ | |
JP2018207602A (ja) | モータ | |
CN104242511A (zh) | 电动机装置 | |
US20240213835A1 (en) | Motor | |
JP2019162005A (ja) | ブラシレスモータ、及び送風装置 | |
US20240356389A1 (en) | Rotary electric machine | |
JP2006136080A (ja) | 三相磁石式発電機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18760769 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019502885 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18760769 Country of ref document: EP Kind code of ref document: A1 |