[go: up one dir, main page]

WO2018159368A1 - ドライエッチング剤、ドライエッチング方法及び半導体装置の製造方法 - Google Patents

ドライエッチング剤、ドライエッチング方法及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2018159368A1
WO2018159368A1 PCT/JP2018/005824 JP2018005824W WO2018159368A1 WO 2018159368 A1 WO2018159368 A1 WO 2018159368A1 JP 2018005824 W JP2018005824 W JP 2018005824W WO 2018159368 A1 WO2018159368 A1 WO 2018159368A1
Authority
WO
WIPO (PCT)
Prior art keywords
dry etching
gas
oxide
silicon
etching agent
Prior art date
Application number
PCT/JP2018/005824
Other languages
English (en)
French (fr)
Inventor
啓之 大森
章史 八尾
崇 柏葉
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to US16/473,664 priority Critical patent/US11566177B2/en
Priority to KR1020197028185A priority patent/KR102303686B1/ko
Publication of WO2018159368A1 publication Critical patent/WO2018159368A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • H01L21/32137Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/83Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
    • H10D62/832Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
    • H10D62/8325Silicon carbide

Definitions

  • the present invention relates to a dry etching agent containing hydrofluoroalkylene oxide, a dry etching method using the same, and the like.
  • the dry etching method is a method in which a plasma is generated in a vacuum space to form a fine pattern on a material surface in units of molecules.
  • etching of semiconductor materials such as silicon dioxide (SiO 2 )
  • SiO 2 silicon dioxide
  • polysilicon, silicon nitride, etc. used as a base material CF 4 , CHF 3 , Perfluorocarbons (PFCs) and hydrofluorocarbons (HFCs) such as C 2 F 6 , C 3 F 8 and C 4 F 8 have been used.
  • PFCs Perfluorocarbons
  • HFCs hydrofluorocarbons
  • Patent Document 1 discloses a method of using a reactive gas containing a perfluoroketone having 4 to 7 carbon atoms as a cleaning gas or an etching gas as an alternative to PFCs and HFCs.
  • these decomposition products of perfluoroketone are not necessarily preferable as an etching gas because they contain not only a small amount of PFC having a high GWP but also a substance having a relatively high boiling point.
  • Patent Document 2 discloses a method of using a hydrofluoroether having 2 to 6 carbon atoms as a dry etching gas. Like Patent Document 1, these linear hydrofluoroethers generally have GWP. It was expensive and unfavorable for the global environment.
  • Patent Document 4 discloses a method of dry etching a semiconductor material with a gas containing perfluoro cyclic ethers such as hexafluoropropylene oxide as essential components.
  • PFCs and HFCs are regulated substances because of their high GWP.
  • Perfluoroketones, linear hydrofluoroethers, hydrofluorovinyl ethers, and perfluoroethers that are substitutes for them are rarely decomposed substances. Since a high GWP PFC is included and manufacturing is difficult and not economical, development of a dry etching agent having a small influence on the global environment and a required performance is required.
  • etching performance in the case of plasma etching, for example, F radicals are produced from CF 4 gas and SiO 2 is etched, so that etching is isotropic. In dry etching requiring fine processing, an etching agent capable of anisotropic etching rather than isotropic is desired.
  • the present invention provides a dry etching agent that has a low global environmental load, can be anisotropically etched without using a special apparatus, and can obtain a good processed shape, and a dry etching method using the same. For the purpose.
  • hydrofluoroalkylene oxide As a result of intensive studies, the present inventors have found hydrofluoroalkylene oxide as a substance that is suitable for anisotropic etching in dry etching and has a smaller influence on the global environment.
  • the present invention provides a dry etching agent containing hydrofluoroalkylene oxide.
  • An additive gas such as an oxidizing gas or a reducing gas and an inert gas can be added to the dry etching agent.
  • the hydrofluoroalkylene oxide contained in the dry etching agent in the present invention has one oxygen atom in the molecule, has a three-membered ring structure, and has intramolecular strain. It has a high degradability due to OH radicals and the like, and its contribution to global warming is much lower than that of PFCs and HFCs such as CF 4 and CF 3 H, so that it has the effect of reducing the burden on the environment.
  • hydrofluoroalkylene oxide has a CF 3 structure in the molecule, is likely to form CF 3 + , has intramolecular hydrogen, and is a cyclic compound.
  • the low ratio is advantageous for protecting the sidewalls of the holes and grooves, so that anisotropic etching can be achieved.
  • hydrofluoroalkylene oxide examples include 1,3,3,3-tetrafluoropropylene oxide, 2,3,3,3-tetrafluoropropylene oxide, 1,1,3,3,3-pentafluoropropylene oxide.
  • the hydrofluoroalkylene oxide used in the present invention can be obtained by a known method such as a method of oxidizing a hydrofluoroolefin.
  • a known method such as a method of oxidizing a hydrofluoroolefin.
  • Patent Document 5 as a method for synthesizing an epoxide having a fluorinated alkyl group, a corresponding epoxide is obtained by subjecting a substituted olefin having a fluoroalkyl group to an oxidation reaction using hypofluoric acid (HOF). Can be obtained using this reaction.
  • Patent Document 6 discloses an oxidation reaction using sodium hypochlorite (NaClO) for perfluoropropene. Hydrofluoroalkylene oxide can be obtained using this reaction.
  • 1,3,3,3-tetrafluoropropene oxide is obtained through a multi-step reaction using ethyl 1,3,3,3-tetrafluoroacetoacetate as a starting material.
  • the method is disclosed in Non-Patent Document 1.
  • Hydrofluoroalkylene oxide can be obtained using this reaction.
  • Hydrofluoroalkylene oxide has hydrogen in the molecule, removes excess F radicals as HF, and appropriately deposits on the mask to act as a protective film. Thereby, the selectivity with respect to a to-be-etched layer improves. In addition, it is considered that the selectivity of anisotropic etching with respect to isotropic etching by F radicals is improved by depositing it as a protective film on the sidewalls of trenches and holes formed in the etched layer during the etching process. In addition, since it has a cyclic structure containing oxygen, a part of the active species is removed as CO 2 by its own oxygen, and an effect of preventing the blocking of holes due to the deposition of an excessive protective film is expected.
  • 1,3,3,3-tetrafluoropropylene oxide, 2,3,3,3-tetrafluoropropylene oxide, 1,1,3,3,3- Pentafluoropropylene oxide or 1,2,3,3,3-pentafluoropropylene oxide is particularly desirable.
  • 1,1,1,2,3-pentafluoropropene, hexafluoro-2-butyne, hexafluoro-1,3-butadiene, hexafluoropropene and the like are used as an etching gas.
  • These fluorinated olefin compounds have a large number of fluorine atoms themselves and are high in the etching rate with respect to silicon oxide-based materials.
  • the polymer component is used as a mixed gas with oxygen in order to control the deposition amount.
  • the hydrofluoroalkylene oxide used in the present invention can be used even if diluted with an inert gas such as N 2 , He, Ar, Ne, or Kr.
  • an inert gas such as N 2 , He, Ar, Ne, or Kr.
  • a higher etching rate can be obtained due to a synergistic effect with hydrofluoroalkylene oxide.
  • the addition amount of the inert gas depends on the shape, performance, and target membrane characteristics of the apparatus such as output and displacement, but is preferably 1/10 to 20 times the flow rate of the hydrofluoroalkylene oxide.
  • the dry etching agent of the present invention can be carried out under various dry etching conditions, and various additives can be added depending on the physical properties, productivity, and fine accuracy of the target film.
  • the hydrofluoroalkylene oxide used in the present invention is preferably contained in an amount of 1 to 60% by volume in the dry etching agent supplied to the chamber. Although details will be described later, the hydrofluoroalkylene oxide is 1 to 60% by volume, and an additive gas (herein, “additive gas” refers to an oxidizing gas such as O 2 and F 2 , or H 2 , A reducing gas such as CO.) And an inert gas are preferably mixed in a volume% range described later.
  • additive gas refers to an oxidizing gas such as O 2 and F 2 , or H 2 , A reducing gas such as CO.
  • the process window can be drastically expanded, and it is possible to cope with processing that requires a low side etch rate and high aspect ratio without any special substrate excitation operation.
  • an oxidizing gas as an additive gas when it is desired to increase the etching rate.
  • O 2 , COF 2 , F 2 , NF 3 , and Cl 2 are preferable, and O 2 is particularly preferable because the metal etching rate can be further accelerated.
  • the addition amount of the oxidizing gas depends on the shape of the apparatus such as output, the performance and the characteristics of the target film, but is usually 1/10 to 30 times the flow rate of the hydrofluoroalkylene oxide, preferably 1/10. 10 times.
  • the oxidizing gas is added in an amount exceeding 30 times, the excellent anisotropic etching performance of the hydrofluoroalkylene oxide may be impaired.
  • the flow rate of the oxidizing gas mentioned above is less than 1/10, the deposit in which the hydrofluoroalkylene oxide is polymerized may increase remarkably.
  • the amount of reducing gas added is too large, the amount of F radicals acting on the etching may be significantly reduced and productivity may be reduced.
  • the etching rate of SiO 2 does not change, but the etching rate of Si decreases and the selectivity increases. Therefore, SiO 2 is selected with respect to the underlying silicon. It is possible to etch.
  • the amount of reducing gas added depends on the shape and performance of the apparatus such as the output, and the characteristics of the target film, but is usually 1/100 to 3 times the flow rate of hydrofluoroalkylene oxide, preferably 1/25. It is 1 time from.
  • addition gas 1 type or 2 or more types can also be mixed and added, and those skilled in the art can adjust suitably.
  • an inert gas such as N 2 , He, Ar, Ne, or Kr is added together with the additive gas.
  • the dry etching agent used in the present invention contains hydrofluoroalkylene oxide
  • a preferable composition in the etching agent is shown below together with volume%.
  • the sum total of the volume% of each gas is 100%.
  • etching a workpiece in which a film of a different material is exposed another halogen-containing gas can be added for the purpose of controlling an etching selection ratio between different materials.
  • CF 4 , CF 3 H, CF 2 H 2 , CFH for the purpose of controlling the selection ratio of SiN / SiO 2 and the selection ratio of the metal material constituting the electrode of the semiconductor device and the silicon-based material.
  • the F / C ratio of the etching gas can be varied, the type and amount of active species contained in the plasma can be controlled, and the etching rate of each film type can be changed.
  • the amount of these compounds added preferably varies the F / C ratio so as not to inhibit the selective etching, and is desirably 0.01 to 2 times the volume of the hydrofluoroalkylene oxide.
  • fluorinated iodomethane such as CF 3 I, CF 2 I 2 and CFI 3 can be added for the purpose of improving the etching rate.
  • the etching method using the dry etching agent of the present invention can be effectively applied to semiconductor materials.
  • a silicon-based material such as silicon, silicon dioxide, silicon nitride, silicon carbide, silicon oxyfluoride, or silicon carbide oxide can be given.
  • the etching method using the dry etching agent of the present invention is not particularly limited, and various etching methods such as reactive ion etching (RIE), electron cyclotron resonance (ECR) plasma etching, microwave etching, and reaction conditions are used. be able to.
  • the etching method used in the present invention is performed by generating plasma of a target hydrofluoroalkylene oxide in an etching apparatus and etching a predetermined portion of the target workpiece in the apparatus. For example, in the manufacture of a semiconductor device, a silicon-based material film is formed on a silicon wafer, a resist film having a specific opening is applied on top, and the resist film opening is formed so as to remove the silicon-based material film. Etch.
  • the etching method according to the present invention has a structure in which mechanical element parts, sensors, actuators, and electronic circuits are stacked on a single silicon substrate, glass substrate, organic material, or the like, a so-called micro electro mechanical system (MEMS). It can also be applied to etching at the time of manufacturing (abbreviated Systems). Further, by applying the method of the present invention, it is possible to manufacture semiconductor devices in existing products such as a magnetic recording head, a pressure sensor, and an acceleration sensor using MEMS.
  • MEMS micro electro mechanical system
  • a high-frequency induction type or microwave type apparatus is preferably used.
  • etching it is preferable to perform the etching at a gas pressure of 0.133 to 133 Pa in order to efficiently perform anisotropic etching.
  • the pressure is lower than 0.133 Pa, the etching rate is slow.
  • the pressure exceeds 133 Pa, the resist selectivity may be impaired.
  • Etching can be performed with the same volume flow rate ratio of the hydrofluoroalkylene oxide, the additive gas, and the inert gas at the time of etching.
  • gas flow rate to be used depends on the size of the etching apparatus, those skilled in the art can appropriately adjust it according to the apparatus.
  • the temperature at which etching is performed is preferably 300 ° C. or lower, and is preferably 240 ° C. or lower for performing anisotropic etching. If the temperature exceeds 300 ° C., the tendency of the etching to proceed isotropic is increased, and the required processing accuracy cannot be obtained, and the resist is remarkably etched, which is not preferable.
  • the reaction time for performing the etching treatment is not particularly limited, but is generally about 5 to 30 minutes. However, since it depends on the progress after the etching treatment, it is preferable for those skilled in the art to adjust appropriately while observing the state of etching.
  • the selectivity of the etching rate between silicon and silicon oxide film when processing contact holes is improved by mixing with the reducing gas mentioned above or optimizing pressure, flow rate, temperature, etc. You can make it.
  • Examples 1 to 7 show examples in which the dry etching agent of the present invention is applied to contact hole processing and the interlayer insulating film (SiO 2 ) or the silicon nitride film is etched.
  • Example 7 shows an example in which CF 3 I is added and etched with 10% of trans-1,3,3,3-tetraflupropylene oxide (abbreviated as t-TFO).
  • FIG. 1 Schematic diagram of the experimental apparatus used in this example is shown in FIG. 1
  • the pressure in the chamber 11 is set to 2 Pa, and the process gas is supplied from the high frequency power source 13 (13.56 MHz, 0.22 W / cm 2 ).
  • the activated species generated by exciting the substrate were supplied to the sample 18 placed on the lower electrode 14 for etching.
  • a SiO 2 film or a silicon nitride film having a thickness of 5 ⁇ m was formed on a single crystal silicon wafer, and a resist provided with an opening having a line width of 0.3 ⁇ m was applied on the film.
  • the sample 18 was etched for 30 minutes at a process pressure of 2 Pa with a process gas having the composition shown in Table 1 using C 4 F 8 , C 4 F 6 , CF 4 , or t-TFO.
  • the silicon wafer cross-section was observed with an SEM to evaluate the etching rate, the aspect ratio, and the side etch rate.
  • the aspect ratio is represented by (c / b) ⁇ 100 as shown in FIG.
  • the dry etching agent in the present invention is SiO 2 and Si 3 N 4 as compared with CF 4 , C 4 F 8 and C 4 F 6 shown in Comparative Examples 1 to 8 .
  • it has a high aspect ratio and a low side etch rate, and an excellent contact hole processed shape is obtained.
  • Example 5 by adding a small amount of hydrogen, etching with a higher aspect ratio and lower side etch rate was possible in SiO 2 etching than in the case of not adding it.
  • the addition of CF 3 I contributes to the etching rate improvement and is useful.
  • the dry etching agent in the present invention has a higher aspect ratio than the conventionally known CF 4 , C 4 F 8 , and C 4 F 6 of Comparative Examples 1 to 8. A good contact hole processed shape with a low side etch rate is obtained.
  • the agent containing hydrofluoroalkylene oxide targeted in the present invention can be used as a dry etching agent. Moreover, the etching method using the same can also be used as a semiconductor manufacturing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本発明は、地球環境負荷が小さく、かつ、特殊な装置を使用することなく異方性エッチングが可能で、良好な加工形状が得られるドライエッチング剤、及びそれを用いたドライエッチング方法を提供することを目的とする。本発明のドライエッチング剤は、少なくとも、化学式CF3-CxyzO(x=2または3、y=1,2,3,4または5、z=2x-1-y)で表され、酸素原子を含む三員環構造を有するハイドロフルオロアルキレンオキサイドを含む。また、本発明のドライエッチング方法では、このドライエッチング剤をプラズマ化して得られるプラズマガスを用いて、二酸化シリコン、窒化シリコン、多結晶シリコン、アモルファスシリコン、及び炭化シリコンからなる群より選ばれる少なくとも1種のシリコン系材料を選択的にエッチングする。

Description

ドライエッチング剤、ドライエッチング方法及び半導体装置の製造方法
 本発明は、ハイドロフルオロアルキレンオキサイドを含むドライエッチング剤、及びそれを用いたドライエッチング方法などに関する。
 今日、半導体製造においては、極めて微細な処理技術が求められており、湿式法に代わりドライエッチング法が主流になっている。ドライエッチング法は、真空空間において、プラズマを発生させて、物質表面上に微細なパターンを分子単位で形成させる方法である。
 二酸化ケイ素(SiO2)等の半導体材料のエッチングにおいては、下地材として用いられるシリコン、ポリシリコン、チッ化ケイ素等に対するSiO2のエッチング速度を大きくするため、エッチング剤として、CF4、CHF3、C26、C38、C48等のパーフルオロカーボン(PFC)類やハイドロフルオロカーボン(HFC)類が用いられてきた。
 しかしながら、これらのPFC類やHFC類は、いずれも大気寿命の長い物質であり、高い地球温暖化係数(GWP)を有していることから京都議定書(COP3)において排出規制物質となっている。半導体産業においては、経済性が高く、微細化が可能な低GWPの代替物質が求められてきた。
 そこで、特許文献1には、PFC類やHFC類の代替物質として、4~7個の炭素原子を有するパーフルオロケトンを含有する反応性ガスをクリーニングガスやエッチングガスとして用いる方法が開示されている。しかしながら、これらのパーフルオロケトンの分解物質には少なからず高GWPのPFCが含まれることや、沸点が比較的高い物質が含まれることから、必ずしもエッチングガスとして好ましくなかった。
 特許文献2には2~6個の炭素原子を有するハイドロフルオロエーテルをドライエッチングガスとして用いる方法が開示されているが、特許文献1と同様、これらの直鎖のハイドロフルオロエーテルについても総じてGWPが高く、地球環境的には好ましくなかった。
 このような背景の下、更なる低GWPを有し、かつ工業的にも製造が容易な化合物の開発が求められてきており、分子内に二重結合、三重結合を有する不飽和フルオロカーボンを用いてエッチング用途として検討されてきた。これに関連する従来技術として、特許文献3にはCa2a+1OCF=CF2を含むエーテル類、CF3CF=CFH、CF3CH=CF2等のフッ素化オレフィン類をSi膜、SiO2膜、Si34膜、または高融点金属シリサイト膜をエッチングする方法が開示されている。
 また、特許文献4には、ヘキサフルオロプロピレンオキサイドなどのパーフルオロ環状エーテル類を必須成分とするガスにより半導体材料をドライエッチングする方法が開示されている。
特表2004-536448号公報 特開平10-140151号公報 特開平10-223614号公報 特公平03-043776号公報 特表平5-500945号公報 特開昭58-134086号公報
E. T. McBee. et al., J. Am. Chem. Soc., 1953, 75, 4091-4092.
 PFC類やHFC類はGWPが高いため規制対象物質であり、それらの代替物質であるパーフルオロケトン類、直鎖状ハイドロフルオロエーテル類、ハイドロフルオロビニルエーテル類やパーフルオロエーテル類は、分解物質に少なからず高GWPのPFCが含まれることや製造が難しく経済的でないことから、地球環境に対する影響が小さく、かつ必要とされる性能を有するドライエッチング剤の開発が求められている。
 エッチング性能については、プラズマエッチングの場合、例えばCF4のガスからFラジカルを作り、SiO2をエッチングすると等方性にエッチングされる。微細加工が要求されるドライエッチングにおいては、等方性よりも異方性エッチングが可能なエッチング剤が望まれている。
 本発明は、地球環境負荷が小さく、かつ、特殊な装置を使用することなく異方性エッチングが可能で、良好な加工形状が得られるドライエッチング剤、及びそれを用いたドライエッチング方法を提供することを目的とする。
 本発明者らは、鋭意検討を重ねた結果、ドライエッチングにおいて異方性エッチングに好適で、かつ地球環境への影響がより小さい物質としてハイドロフルオロアルキレンオキサイドを見出した。
 すなわち、本発明では、ハイドロフルオロアルキレンオキサイドを含むドライエッチング剤を提供する。ドライエッチング剤には、酸化性ガス又は還元性ガス等の添加ガス、及び、不活性ガスを添加することができる。
 本発明におけるドライエッチング剤に含まれるハイドロフルオロアルキレンオキサイドは、分子内に1個の酸素原子を有し、且つ三員環構造であり分子内歪みを有するため、直鎖のエーテル類に比べて大気中でのOHラジカル等による分解性が高く、地球温暖化への寄与もCF4やCF3H等のPFC類やHFC類より格段に低いことから、環境への負荷が軽いという効果を奏す。
 また、ハイドロフルオロアルキレンオキサイドは、エッチング性能という観点においても、分子内にCF3の構造を含み、CF3 +が形成されやすく、さらに分子内水素を有し且つ環状化合物であるため、F/C比が低いことから孔や溝の側壁保護に有利であり、そのため異方性エッチングを達成することができる。
本発明で用いた実験装置の概略図である。 エッチング処理により得られる、シリコンウェハ上の開口部を示す図である。
 以下、本発明におけるドライエッチング剤について詳細に説明する。
 本発明のドライエッチング剤は、少なくとも化学式CF3-CxyzO(x=2または3、y=1,2,3,4または5、z=2x-1-y)で表される酸素原子を含む三員環構造を有するハイドロフルオロアルキレンオキサイドを含む。
 ハイドロフルオロアルキレンオキサイドの具体例としては、1,3,3,3-テトラフルオロプロピレンオキサイド、2,3,3,3-テトラフルオロプロピレンオキサイド、1,1,3,3,3-ペンタフルオロプロピレンオキサイド、1,2,3,3,3-ペンタフルオロプロピレンオキサイド、1,4,4,4-テトラフルオロブチレンオキサイド、2,4,4,4-テトラフルオロブチレンオキサイド、3,4,4,4-テトラフルオロブチレンオキサイド、1,1,4,4,4-ペンタフルオロブチレンオキサイド、1,2,4,4,4-ペンタフルオロブチレンオキサイド、1,3,4,4,4-ペンタフルオロブチレンオキサイド、2,3,4,4,4-ペンタフルオロブチレンオキサイド、3,3,4,4,4-ペンタフルオロブチレンオキサイド、1,1,2,4,4,4-ヘキサフルオロブチレンオキサイド、1,1,3,4,4,4-ヘキサフルオロブチレンオキサイド、1,2,3,4,4,4-ヘキサフルオロブチレンオキサイド、2,3,3,4,4,4-ヘキサフルオロブチレンオキサイド、1,3,3,4,4,4-ヘキサフルオロブチレンオキサイド、1,1,2,3,4,4,4-ヘプタフルオロブチレンオキサイド、1,1,3,3,4,4,4-ヘプタフルオロブチレンオキサイド、1,2,3,3,4,4,4-ヘプタフルオロブチレンオキサイド、などが挙げられる。なお、これらの化合物にはトランス体とシス体といった立体異性体が存在し、さらに、それぞれに対して鏡像異性体が存在する。しかし、本発明においては、いずれかの異性体もしくは両者の混合物として用いることができる。
 本発明において使用するハイドロフルオロアルキレンオキサイドは、ハイドロフルオロオレフィンを酸化する方法などの公知の方法により得ることができる。
 例えば、特許文献5には、フッ素化アルキル基を持つエポキシドの合成方法として、フルオロアルキル基を持つ置換オレフィンに対し、次亜フッ素酸(HOF)を用いて酸化反応を行うことで、対応するエポキシドを製造できることが開示されているので、この反応を用いて得ることができる。また、特許文献6には、パーフルオロプロペンに対する、次亜塩素酸ナトリウム(NaClO)を用いた酸化反応が開示されている。この反応を用いてハイドロフルオロアルキレンオキサイドを得ることができる。
 ハイドロフルオロオレフィンの酸化以外の方法として、1,3,3,3-テトラフルオロアセト酢酸エチルを出発原料とし、多段階工程の反応を経て、1,3,3,3-テトラフルオロプロペンオキシドを得る方法が、非特許文献1に開示されている。この反応を用いてハイドロフルオロアルキレンオキサイドを得ることができる。
 ハイドロフルオロアルキレンオキサイドは、分子内に水素を有し、過剰なFラジカルをHFとして除去するとともに、マスク上に適度に堆積して保護膜として作用する。これにより、被エッチング層に対する選択性が向上する。また、エッチング過程においても被エッチング層に形成されたトレンチやホールの側壁に保護膜として堆積することにより、Fラジカルによる等方的エッチングに対し、異方性エッチングの選択性を向上すると考えられる。また、酸素を含む環状構造を有することから、活性種の一部は自らの酸素によってCO2として除去され、過剰な保護膜の堆積によるホールの閉塞などを予防する効果が期待される。
 なお、エッチングガスとして用いる場合には、取り扱いの上で適度な蒸気圧を有することが望ましい。そのため、上記化合物の中では比較的蒸気圧の高い、1,3,3,3-テトラフルオロプロピレンオキサイドや2,3,3,3-テトラフルオロプロピレンオキサイド、1,1,3,3,3-ペンタフルオロプロピレンオキサイド、または、1,2,3,3,3-ペンタフルオロプロピレンオキサイドが特に望ましい。
 前述したように、1,1,1,2,3-ペンタフルオロプロペン、ヘキサフルオロ-2-ブチン、ヘキサフルオロ-1,3-ブタジエン、ヘキサフルオロプロペン等をエッチングガスとして用いることは既に知られている。これらのフッ素化オレフィン化合物はそれ自身、多くのフッ素原子を持ち、酸化シリコン系材料に対し高いエッチング速度を有することからも、一見好ましい方法である。通常、これらの化合物をエッチングガスとして用いる場合には、ポリマー成分が堆積量をコントロールするため酸素との混合ガスとして使用する。しかしながら、酸素量が適切でないと二重結合もしくは三重結合部位を持つ為ポリマー化の進行が著しく、過剰なポリマー成分が堆積することによって、エッチング装置内を汚染したりマスク上に堆積してエッチング形状に異常をきたしたりすることがあった。一方で、本発明の対象とするハイドロフルオロアルキレンオキサイドは、二重結合又は三重結合を持たないため、ポリマー成分の過剰な生成を抑制することができる。
 本発明において使用するハイドロフルオロアルキレンオキサイドは、N2、He、Ar、Ne、Kr等の不活性ガスで希釈しても使用可能である。特にArではハイドロフルオロアルキレンオキサイドとの相乗効果によって、より高いエッチングレートが得られる。不活性ガスの添加量は出力、排気量等の装置の形状、性能や対象膜特性に依存するが、ハイドロフルオロアルキレンオキサイドの流量の1/10から20倍が好ましい。
 本発明のドライエッチング剤は、各種ドライエッチング条件下で実施可能であり、対象膜の物性、生産性、微細精度等によって、種々の添加剤を加えることが可能である。
 本発明において使用するハイドロフルオロアルキレンオキサイドは、チャンバーに供給するドライエッチング剤中に1~60体積%含有させることが好ましい。また、詳細は後述するが、ハイドロフルオロアルキレンオキサイドを1~60体積%とし、添加ガス(なお、ここで言う「添加ガス」とは、O2、F2等の酸化性ガス、若しくはH2、CO等の還元性ガスを示す。)、及び不活性ガスをそれぞれ後述する体積%の範囲で混合させることが好ましい。
 添加ガスを混合することにより飛躍的にプロセスウインドウを広げることができ、特殊な基板の励起操作等なしにサイドエッチ率が小さく高アスペクト比が要求される加工にも対応できる。
 生産性を上げるために、エッチング速度を上げたい時は、添加ガスとして酸化性ガスを添加することが好ましい。酸化性ガスとして、具体的には、O2、O3、CO、CO2、COCl2、COF2、CF3OF、NO2等の含酸素ガスや、F2、NF3、Cl2、Br2、I2、CFCl3、CF2Cl2、CF3Cl、YFn(Y=Cl、Br、I、1≦n≦7)等の含ハロゲンガスが挙げられる。この中でも、金属のエッチング速度を更に加速することができることから、O2、COF2、F2、NF3、Cl2が好ましく、O2が特に好ましい。
 酸化性ガスの添加量は出力等の装置の形状、性能や対象膜の特性に依存するが、通常、ハイドロフルオロアルキレンオキサイドの流量に対し1/10から30倍であり、好ましくは、1/10から10倍である。
 もし、酸化性ガスを30倍を超える量で添加する場合、ハイドロフルオロアルキレンオキサイドの優れた異方性エッチング性能が損なわれることがある。前述した酸化性ガスの流量が1/10より少ない場合には、ハイドロフルオロアルキレンオキサイドが高分子化した堆積物が著しく増加することがある。
 また、等方的なエッチングを促進するFラジカル量の低減を所望するときは、CH4、C22、C24、C26、C34、C36、C38、HF、HI、HBr、HCl、NO、NH3、H2に例示される還元性ガスの添加が有効である。
 還元性ガスの添加量が多すぎる場合には、エッチングに働くFラジカルが著しく減量して、生産性が低下することがある。特に、H2、C22を添加するとSiO2のエッチング速度は変化しないのに対して、Siのエッチング速度は低下し、選択性が上がることから、下地のシリコンに対してSiO2を選択的にエッチングすることが可能である。
 還元性ガスの添加量は出力等の装置の形状、性能や対象膜の特性に依存するが、通常、ハイドロフルオロアルキレンオキサイドの流量に対し1/100から3倍であり、好ましくは、1/25から1倍である。
 なお、添加ガスについては、1種類、もしくは2種類以上を混合して添加することもでき、当業者が適宜調整することができる。
 なお、本発明では、添加ガスと共に、N2、He、Ar、Ne、Kr等の不活性ガスを添加する。
 このように、本発明において使用するドライエッチング剤は、ハイドロフルオロアルキレンオキサイドを含むものであるが、当該エッチング剤における好ましい組成を、体積%と共に以下に示す。なお、各ガスの体積%の合計は100%である。
 例えば、ハイドロフルオロアルキレンオキサイド、及び添加ガス、及び、不活性ガスを共存させる場合の体積%は、それぞれ当該オキサイド:添加ガス:不活性ガス=1~60%:1~60%:5~98%とすることが好ましく、さらに、4~40%:4~40%:20~92%とすることが特に好ましい。
 また、異なる材料の膜が露出する被加工物に対してエッチングをする際に、異なる材料間のエッチング選択比の制御などを目的として、他の含ハロゲンガスを添加することができる。例えば、SiN/SiO2の選択比の制御や、半導体装置の電極を構成する金属材料と、シリコン系材料との選択比の制御を目的に、CF4、CF3H、CF22、CFH3、C26、C242、C25H、C38、C37H、C362、C353、C344、C335、C35H、C33H、C3ClF3H、C48、C46、C58、C510、C36、C3HF5、C324、及び、C333からなる群から選ばれる少なくとも1種のガス)を加えてエッチングすることができる。これらの化合物を添加することによりエッチングガスのF/C比を変動することができ、プラズマ中に含まれる活性種の種類と量を制御し、各膜種のエッチング速度を変化させられる。これらの化合物の添加量は、選択的エッチングを阻害しないようにF/C比を変動することが好ましく、ハイドロフルオロアルキレンオキサイドに対し0.01~2体積倍が望ましい。また、エッチング速度の向上などを目的として、CF3I、CF22、CFI3等のフッ化ヨウ化メタンを添加できる。
 次に、本発明におけるドライエッチング剤を用いたエッチング方法について説明する。
 特に、本発明のドライエッチング剤を用いたエッチング方法は、半導体材料に対して有効に適用できる。半導体材料として、シリコン、二酸化シリコン、窒化シリコン、炭化シリコン、酸化フッ化シリコンまたは炭化酸化シリコンのシリコン系材料、を挙げることができる。
 また、本発明のドライエッチング剤を用いたエッチング方法は、反応性イオンエッチング(RIE)、電子サイクロトロン共鳴(ECR)プラズマエッチング、マイクロ波エッチング等の各種エッチング方法、並びに反応条件は特に限定せず用いることができる。本発明で用いるエッチング方法は、エッチング処理装置内で対象とするハイドロフルオロアルキレンオキサイドのプラズマを発生させ、装置内にある対象の被加工物の所定部位に対してエッチングすることにより行う。例えば半導体装置の製造において、シリコンウェハ上にシリコン系材料膜を成膜し、特定の開口部を設けたレジスト膜を上部に塗布し、シリコン系材料膜を除去するようにレジスト膜の開口部をエッチングする。
 なお、本発明に係るエッチング方法は、機械要素部品、センサー、アクチュエータ、電子回路を一つのシリコン基板、ガラス基板、有機材料等の上に積層した構造、いわゆる微小電気機械システム(MEMS;Micro Electro Mechanical Systemsの略)の製造時におけるエッチングにも適用できる。また、本発明の方法を応用することにより、MEMSを利用した磁気記録ヘッド、圧力センサー、加速度センサー等の既存製品における半導体装置の製造も可能となる。
 エッチングを行う際のプラズマ発生装置に関しては、特に限定はないが、例えば、高周波誘導方式及びマイクロ波方式の装置等が好ましく用いられる。
 エッチングを行う際の圧力は、異方性エッチングを効率よく行うために、ガス圧力は0.133~133Paの圧力で行うことが好ましい。0.133Paより低い圧力ではエッチング速度が遅くなり、一方、133Paを超える圧力ではレジスト選択比が損なわれることがある。
 エッチングを行う際のハイドロフルオロアルキレンオキサイド、及び、添加ガス、及び、不活性ガスそれぞれの体積流量比率は、前述した体積%と同じ比率でもってエッチングを行うことができる。
 また、使用するガス流量は、エッチング装置のサイズに依存する為、当業者がその装置に応じて適宜調整することができる。
 また、エッチングを行う際の温度は300℃以下が好ましく、特に異方性エッチングを行うためには240℃以下とすることが望ましい。300℃を超える高温では等方的にエッチングが進行する傾向が強まり、必要とする加工精度が得られないこと、また、レジストが著しくエッチングされるために好ましくない。
 エッチング処理を行う反応時間は、特に限定はされないが、概ね5分~30分程度である。しかしながらエッチング処理後の経過に依存する為、当業者がエッチングの状況を観察しながら適宜調整するのが良い。
 なお、前述した還元性ガス等と混合して使用したり、圧力、流量、温度等を最適化することにより、例えばコンタクトホールの加工時のシリコンとシリコン酸化膜とのエッチング速度の選択性を向上させたりすることができる。
 以下、実施例により本発明を詳細に説明するが、本発明はかかる実施例に限定されるものではない。
 本発明のドライエッチング剤をコンタクトホール加工に適用し、層間絶縁膜(SiO2)または窒化珪素膜をエッチングした例を実施例1~実施例に示す。実施例7には、CF3Iをトランス-1,3,3,3-テトラフルプロピレンオキサイド(t-TFOと略す)の10%添加してエッチングした例を示す。また、パーフルオロカーボンであるCF4やC48(オクタフルオロシクロブタン)、C46(ヘキサフルオロ1,3ブタジエン、CF2=CF-CF=CF2)をそれぞれ使用した場合を比較例1~比較例8として示す。
 本実施例に用いる実験装置の概略図を図1に示す。
 チャンバー11内の上部電極5に接続されたガス導入口16からプロセスガスを導入後、チャンバー11内圧力を2Paに設定し、高周波電源13(13.56MHz、0.22W/cm2)によりプロセスガスを励起させ生成した活性種を、下部電極14上に設置した試料18に対し供給しエッチングを行った。
 試料18としては、単結晶シリコンウェハ上にSiO2膜または窒化珪素膜を5μm成膜し、膜上に線幅0.3μmの開口部を設けたレジストを塗布したものを用いた。試料18に対して、C48、C46、CF4、又はt-TFOを用いた表1に記載の組成のプロセスガスにてプロセス圧力2Paにてエッチングを30分間行った。エッチング処理後、シリコンウェハ断面をSEM観察することで、エッチング速度、アスペクト比及びサイドエッチ率を評価した。アスペクト比は、図2に示すように、(c/b)×100で表される。サイドエッチ率R(%)は、サイドエッチ(側壁の削れ量)と開口部線幅との比率を意味し、具体的には図2に示すように、R=(a/b)×100で表わされる。
 エッチング試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~実施例4より、本発明におけるドライエッチング剤は、比較例1~比較例8に示すCF4、C48,C46と比較して、SiO2およびSi34に対し高アスペクト比、低サイドエッチ率であり、良好なコンタクトホール加工形状が得られている。また、実施例5に示すように微量の水素を添加することにより、SiO2エッチングにおいて、添加しない場合に比べて高いアスペクト比かつ低サイドエッチ率でのエッチングができた。また、実施例7に示すようにCF3Iの添加はエッチング速度向上に寄与しており、有用である。
 実施例1~実施例7より、本発明におけるドライエッチング剤は、比較例1~比較例8の従来知られたCF4、C48、C46に比べて、アスペクト比が高く、サイドエッチ率が小さい、良好なコンタクトホール加工形状が得られている。
 本発明で対象とするハイドロフルオロアルキレンオキサイドを含む剤は、ドライエッチング剤として利用できる。また、それを用いたエッチング方法は、半導体の製造方法としても利用できる。
 10: 反応装置
 11: チャンバー
 12: 圧力計
 13: 高周波電源
 14: 下部電極
 15: 上部電極
 16: ガス導入口
 17: ガス排出ライン
 18: 試料
 24: 基板
 25: エッチング対象層
 26: レジスト膜
 27: サイドエッチ

Claims (15)

  1.  少なくとも、化学式CF3-CxyzO(x=2または3、y=1,2,3,4または5、z=2x-1-y)で表され、酸素原子を含む三員環構造を有するハイドロフルオロアルキレンオキサイドを含むドライエッチング剤。
  2.  さらに、不活性ガスを含む請求項1に記載のドライエッチング剤。
  3.  さらに、添加ガス、及び不活性ガスを含む請求項1に記載のドライエッチング剤。
  4.  添加ガスが酸化性ガス、又は還元性ガスである、請求項3に記載のドライエッチング剤。
  5.  前記酸化性ガスが、含酸素ガス及び含ハロゲンガスからなる群から選ばれる少なくとも1種のガスであり、
     前記含酸素ガスが、O2、O3、CO、CO2、COCl2、COF2、CF3OF、及びNO2からなる群から選ばれる少なくとも1種のガスであり、
     前記含ハロゲンガスが、F2、NF3、Cl2、Br2、I2、CFCl3、CF2Cl2、CF3Cl、及びYFn(式中、YはCl、Br、又はIを表し、nは整数を表し、1≦n≦7である。)からなる群から選ばれる少なくとも1種のガスであり、
     前記還元性ガスが、CH4、C22、C24、C26、C34、C36、C38、HF、HI、HBr、HCl、NO、NH3、及びH2からなる群より選ばれる少なくとも1種のガスである、請求項4に記載のドライエッチング剤。
  6.  前記不活性ガスがN2、He、Ar、Ne、及びKrからなる群より選ばれる少なくとも1種のガスである、請求項2~5のいずれか1項に記載のドライエッチング剤。
  7.  前記ハイドロフルオロアルキレンオキサイドの含有率が、1~60体積%である請求項1~6のいずれか1項に記載のドライエッチング剤。
  8.  CF4、CF3H、CF22、CFH3、C26、C242、C25H、C38、C37H、C362、C353、C344、C335、C35H、C33H、C48、C46、C58、C510、36、C3HF5、C324、C333、CF3I、CF22、及びCFI3からなる群より選ばれる少なくとも1種のガスをさらに含む、請求項1~7のいずれか1項に記載のドライエッチング剤。
  9.  前記ハイドロフルオロアルキレンオキサイドが、1,3,3,3-テトラフルオロプロピレンオキサイド、2,3,3,3-テトラフルオロプロピレンオキサイド、1,1,3,3,3-ペンタフルオロプロピレンオキサイド、及び、1,2,3,3,3-ペンタフルオロプロピレンオキサイドからなる群から選ばれる少なくとも1種である、請求項1~8のいずれか1項に記載のドライエッチング剤。
  10.  前記ハイドロフルオロアルキレンオキサイドが1,3,3,3-テトラフルオロプロピレンオキサイドである、請求項9に記載のドライエッチング剤。
  11.  ドライエッチング剤をプラズマ化して得られるプラズマガスを用いて、シリコン系材料を選択的にエッチングするドライエッチング方法であって、
     前記ドライエッチング剤は、少なくとも、化学式CF3-CxyzO(x=2または3、y=1,2,3,4または5、z=2x-1-y)で表され、酸素原子を含む三員環構造を有するハイドロフルオロアルキレンオキサイドを含み、
     前記シリコン系材料は、二酸化シリコン、窒化シリコン、多結晶シリコン、アモルファスシリコン、及び炭化シリコンからなる群より選ばれる少なくとも1種である、ドライエッチング方法。
  12.  前記ドライエッチング剤は、(A)前記ハイドロフルオロアルキレンオキサイドと、(B)H2、O2、CO、及びCOF2からなる群より選ばれる少なくとも1種以上のガスと、Arのみからなり、
     (A)、(B)、及びArの体積流量比は、それぞれ1~60%:1~60%:5~98%(但し、各々のガスの体積流量比の合計は100%である。)であり、
     前記シリコン系材料は、二酸化シリコン及び窒化シリコンからなる群より選ばれる少なくとも1種である、請求項11に記載のドライエッチング方法。
  13.  前記ハイドロフルオロアルキレンオキサイドが1,3,3,3-テトラフルオロプロピレンオキサイドである、請求項11又は12に記載のドライエッチング方法。
  14.  さらに、水素と不活性ガスを含むドライエッチング剤を用いて、二酸化シリコンを選択的にエッチングする、請求項11に記載のドライエッチング方法。
  15.  基板上に、二酸化シリコン、窒化シリコン、多結晶シリコン、アモルファスシリコン、及び炭化シリコンからなる群より選ばれる少なくとも1種のシリコン系材料膜を形成する工程と、
     前記シリコン系材料膜の上に、所定の開口部を有するレジスト膜を形成する工程と、
     請求項11に記載のドライエッチング方法を用いて、前記開口部から前記シリコン系材料膜をエッチングする工程と、
    を含むことを特徴とする半導体装置の製造方法。
PCT/JP2018/005824 2017-02-28 2018-02-20 ドライエッチング剤、ドライエッチング方法及び半導体装置の製造方法 WO2018159368A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/473,664 US11566177B2 (en) 2017-02-28 2018-02-20 Dry etching agent, dry etching method and method for producing semiconductor device
KR1020197028185A KR102303686B1 (ko) 2017-02-28 2018-02-20 드라이 에칭제, 드라이 에칭 방법 및 반도체 장치의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-035848 2017-02-28
JP2017035848 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159368A1 true WO2018159368A1 (ja) 2018-09-07

Family

ID=63370964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005824 WO2018159368A1 (ja) 2017-02-28 2018-02-20 ドライエッチング剤、ドライエッチング方法及び半導体装置の製造方法

Country Status (5)

Country Link
US (1) US11566177B2 (ja)
JP (1) JP6989770B2 (ja)
KR (1) KR102303686B1 (ja)
TW (1) TWI664317B (ja)
WO (1) WO2018159368A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614891A (zh) * 2019-03-22 2021-11-05 中央硝子株式会社 干蚀刻方法及半导体装置的制造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021965A1 (ja) 2018-07-27 2020-01-30 三菱マテリアル株式会社 錫合金めっき液
KR102388963B1 (ko) * 2020-05-07 2022-04-20 아주대학교산학협력단 퍼플루오로프로필카비놀(Perfluoropropyl carbinol)을 이용한 플라즈마 식각 방법
KR20230006007A (ko) * 2020-07-09 2023-01-10 쇼와 덴코 가부시키가이샤 에칭 방법 및 반도체 소자의 제조 방법
JP2024504118A (ja) * 2021-01-21 2024-01-30 ラム リサーチ コーポレーション エッチングフロント金属触媒を用いる高アスペクト比メモリのプロファイル最適化
TW202245053A (zh) * 2021-03-31 2022-11-16 日商東京威力科創股份有限公司 蝕刻方法及蝕刻處理裝置
US20240290628A1 (en) * 2023-02-24 2024-08-29 American Air Liquide, Inc. Etching method using oxygen-containing hydrofluorocarbon
US20240290627A1 (en) * 2023-02-24 2024-08-29 American Air Liquide, Inc. Etching method using oxygen-containing hydrofluorocarbon

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077429A (ja) * 1983-10-04 1985-05-02 Asahi Glass Co Ltd ドライエツチング方法
JPH01319714A (ja) * 1988-06-22 1989-12-26 Sumitomo Electric Ind Ltd 被覆光ファイバ
JPH09137274A (ja) * 1995-08-24 1997-05-27 Univ Nagoya ラジカル制御による薄膜形成および微細加工方法と装置
JPH1027781A (ja) * 1996-07-10 1998-01-27 Daikin Ind Ltd エッチングガスおよびクリーニングガス
JP2005051236A (ja) * 2003-07-15 2005-02-24 Air Products & Chemicals Inc フルオロカーボンエッチングプラズマ中における次亜フッ素酸塩、フルオロペルオキシド及び(又は)フルオロトリオキシドの酸化剤としての使用
JP2017050413A (ja) * 2015-09-02 2017-03-09 日本ゼオン株式会社 プラズマエッチング方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58134086A (ja) 1982-02-04 1983-08-10 Asahi Chem Ind Co Ltd ヘキサフルオロプロピレンオキシドの合成法
JPH0343776A (ja) 1989-07-11 1991-02-25 Ricoh Co Ltd 加熱ローラー型定着装置の温度制御装置
AU641185B2 (en) 1989-10-12 1993-09-16 E.I. Du Pont De Nemours And Company Epoxidation of fluorine containing olefins
US5084583A (en) 1989-10-12 1992-01-28 E. I. Du Pont De Nemours And Company Epoxidation of fluorine containing olefins
JPH0936091A (ja) 1995-07-20 1997-02-07 Toshiba Corp 半導体装置の製造方法
US5894136A (en) * 1996-01-15 1999-04-13 Lg Electronics Inc. Liquid crystal display having a bottom gate TFT switch having a wider active semiconductor layer than a conductive layer on same
JPH1092773A (ja) * 1996-09-17 1998-04-10 Toshiba Corp 表面処理装置及び表面処理方法
JP2972786B2 (ja) 1996-11-05 1999-11-08 工業技術院長 ドライエッチング用ガス
JP3071405B2 (ja) * 1996-12-13 2000-07-31 アサヒビール株式会社 メタン生成活性測定装置
JPH10223614A (ja) 1997-02-12 1998-08-21 Daikin Ind Ltd エッチングガスおよびクリーニングガス
US6540930B2 (en) 2001-04-24 2003-04-01 3M Innovative Properties Company Use of perfluoroketones as vapor reactor cleaning, etching, and doping gases
JP2011124239A (ja) 2008-03-31 2011-06-23 Daikin Industries Ltd ドライエッチングガス及びそれを用いたドライエッチング方法
JP2010258047A (ja) 2009-04-21 2010-11-11 Tohoku Univ レジスト膜除去装置及びレジス膜除去方法
JP5434970B2 (ja) * 2010-07-12 2014-03-05 セントラル硝子株式会社 ドライエッチング剤
US20150037979A1 (en) * 2013-08-02 2015-02-05 Lam Research Corporation Conformal sidewall passivation
KR20170134374A (ko) * 2015-02-13 2017-12-06 노보머, 인코포레이티드 연속 카보닐화 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077429A (ja) * 1983-10-04 1985-05-02 Asahi Glass Co Ltd ドライエツチング方法
JPH01319714A (ja) * 1988-06-22 1989-12-26 Sumitomo Electric Ind Ltd 被覆光ファイバ
JPH09137274A (ja) * 1995-08-24 1997-05-27 Univ Nagoya ラジカル制御による薄膜形成および微細加工方法と装置
JPH1027781A (ja) * 1996-07-10 1998-01-27 Daikin Ind Ltd エッチングガスおよびクリーニングガス
JP2005051236A (ja) * 2003-07-15 2005-02-24 Air Products & Chemicals Inc フルオロカーボンエッチングプラズマ中における次亜フッ素酸塩、フルオロペルオキシド及び(又は)フルオロトリオキシドの酸化剤としての使用
JP2017050413A (ja) * 2015-09-02 2017-03-09 日本ゼオン株式会社 プラズマエッチング方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MCBEE, E. T. ET AL.: "1,3,3,3-Tetrafluoropropylene Oxide", JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 75, no. 16, 1953, pages 4091 - 4092, XP009118677 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614891A (zh) * 2019-03-22 2021-11-05 中央硝子株式会社 干蚀刻方法及半导体装置的制造方法

Also Published As

Publication number Publication date
KR102303686B1 (ko) 2021-09-17
JP6989770B2 (ja) 2022-01-12
US11566177B2 (en) 2023-01-31
JP2018141146A (ja) 2018-09-13
KR20190124258A (ko) 2019-11-04
TW201835383A (zh) 2018-10-01
US20190345385A1 (en) 2019-11-14
TWI664317B (zh) 2019-07-01

Similar Documents

Publication Publication Date Title
JP6989770B2 (ja) ドライエッチング剤、ドライエッチング方法及び半導体装置の製造方法
CN103718277B (zh) 干蚀刻剂
JP5434970B2 (ja) ドライエッチング剤
CN114512399B (zh) 干式蚀刻方法
TWI491710B (zh) Dry etchants and dry etching methods using them
WO2016068004A1 (ja) プラズマエッチング方法
JP6544215B2 (ja) ドライエッチング方法
JP5958600B2 (ja) ドライエッチング方法
JP2011176292A (ja) ドライエッチング剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197028185

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18761430

Country of ref document: EP

Kind code of ref document: A1