[go: up one dir, main page]

WO2018159373A1 - 光モジュールおよび光監視装置 - Google Patents

光モジュールおよび光監視装置 Download PDF

Info

Publication number
WO2018159373A1
WO2018159373A1 PCT/JP2018/005876 JP2018005876W WO2018159373A1 WO 2018159373 A1 WO2018159373 A1 WO 2018159373A1 JP 2018005876 W JP2018005876 W JP 2018005876W WO 2018159373 A1 WO2018159373 A1 WO 2018159373A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
monitoring unit
specific
branched
Prior art date
Application number
PCT/JP2018/005876
Other languages
English (en)
French (fr)
Inventor
功 冨田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2018159373A1 publication Critical patent/WO2018159373A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Definitions

  • the present invention relates to an optical module or the like, for example, an optical module or the like having an optical monitoring function for receiving and monitoring emitted light that is light emitted from a light source unit.
  • optical modules included in an optical network are required to be downsized in addition to increasing the information communication speed and increasing the amount of information communication. Furthermore, when the optical module is used for optical communication, it is necessary to adjust the wavelength of the output light to a certain level with high accuracy.
  • FIG. 6 is a top view showing the structure of a general optical module 500 in a transparent manner.
  • FIG. 7 is a cross-sectional view showing a configuration of a general optical module 500, which is a cross-sectional view taken along the line BB of FIG.
  • the general optical module 500 includes an optical monitoring unit 510, a light source light output unit 520, and a housing 530.
  • the optical fiber 700 is connected to the end of a general optical module 500 via a condenser lens 600.
  • the optical monitoring unit 510 includes an optical branching unit 511, a filter 512, a specific light monitoring unit 513, an emitted light monitoring unit 514, and an optical monitoring unit side temperature adjustment unit 515.
  • a Peltier element 516 is provided.
  • the light branching unit 511, the filter 512, the specific light monitoring unit 513, the emitted light monitoring unit 514, and the light monitoring unit side temperature adjustment unit 515 are provided on the Peltier element 516.
  • the light branching unit 511 branches the light incident from the light source light output unit 520 into the first branched light ⁇ 1 and the second branched light ⁇ 2.
  • the filter 512 transmits only a specific wavelength band in the incident first branched light ⁇ 1 and emits it as specific light.
  • the specific light monitoring unit 513 receives and monitors the specific light ⁇ 3 transmitted through the filter 512 and output.
  • the outgoing light monitoring unit 514 receives and monitors the second branched light ⁇ 2 without passing through the filter 512.
  • the light monitoring unit side temperature adjustment unit 515 adjusts the temperature in the light monitoring unit 510.
  • the light source light output unit 520 includes a light source unit 521, a resonance unit 522, a lens 523, a lens 524, a light source light output unit side temperature adjustment unit 525, and an isolator 526.
  • a Peltier element 527 is provided.
  • the light source unit 521, the resonance unit 522, the lens 523, the lens 524, the light source light output unit side temperature adjustment unit 525, and the isolator 526 are provided on the Peltier element 527.
  • the light source unit 521 generates light source light and emits the light to the front side (lens 524 side) and the rear side (resonance unit 522 side).
  • the resonating unit 522 resonates the output light of the light source unit 521 and emits the resonated light to the light monitoring unit 510 via the lens 523.
  • a ring resonator can be used for the resonance part 522.
  • the light branching unit 511 branches the light emitted from the light source unit 521 into the first branched light ⁇ 1 and the second branched light ⁇ 2. To do.
  • the first branched light ⁇ 1 passes through the filter 512 and enters the specific light monitoring unit 513.
  • the second branched light ⁇ 2 enters the outgoing light monitoring unit 514 without passing through the filter 512.
  • the specific light monitoring unit 513 receives and monitors the specific light ⁇ 3 transmitted through the filter 512 and emitted.
  • the emitted light monitoring unit 514 receives and monitors the second branched light ⁇ 2.
  • the light monitoring unit 510 determines whether the output value of the specific light ⁇ 3 that is the monitoring result of the specific light monitoring unit 513 and the output value of the second branched light ⁇ 2 that is the monitoring result of the emitted light monitoring unit 514 are changed over time. Detect wavelength shift. Then, the light monitoring unit side temperature adjustment unit 515 adjusts the temperatures in the light monitoring unit 510 and the light source light output unit 520 so that there is no wavelength shift. Thereby, the wavelength of the light emitted from the light source unit 521 to the optical fiber 700 via the isolator 526 and the condenser lens 600 can be stabilized.
  • JP 2008-227170 A JP 2012-008140 A JP 2003-110190 A Japanese Patent Laid-Open No. 2002-237651
  • the first branched light ⁇ 1 and the second branched light ⁇ 2 are orthogonal to each other so that the optical branching unit 511, the filter 512, and the specific light monitoring are performed.
  • the light branching unit 511 emits light along the direction parallel to the mounting surfaces of the unit 513 and the outgoing light monitoring unit 514. For this reason, there is a problem that the mounting area of the light monitoring unit 510, that is, the area occupied by the mounting surface of the light monitoring unit 510 is increased. In Patent Documents 1-3, there is no problem that the area occupied by the light monitoring unit on the mounting surface becomes large.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an optical module and the like that can reduce the area occupied on the mounting surface.
  • An optical module of the present invention includes a light source unit that generates and emits light, a light monitoring unit that receives emitted light that is light emitted from the light source unit, and a housing that houses the light source unit and the light monitoring unit.
  • a light branching unit for branching the emitted light into a first branched light and a second branched light, and only a specific wavelength band among the first branched light.
  • a specific light monitoring unit that receives and monitors the specific light transmitted and emitted by the filter, and receives the second branched light without passing through the filter.
  • the emitted light monitoring unit for monitoring, and the filter is disposed between the light branching unit and the specific light monitoring unit, and the first branched light, the second branched light, and the
  • the surface including the specific light includes the specific light monitoring unit and the emission light monitoring.
  • An optical monitoring device includes an optical branching unit that splits outgoing light, which is light emitted from a light source unit, into first branched light and second branched light, and the first branched light.
  • a filter that transmits and emits only a specific wavelength band as specific light, a specific light monitor that receives and monitors the specific light transmitted and emitted by the filter, and the first light without passing through the filter.
  • An outgoing light monitoring unit that receives and monitors the two branched lights, and the surface including the first branched light, the second branched light, and the specific light includes the specific light monitoring part, the outgoing light monitoring part, It is provided so as to extend in a direction perpendicular to the mounting surface on which the optical branching unit and the filter are mounted.
  • optical module and the like it is possible to reduce the area occupied on the mounting surface.
  • FIG. 1 is a top view showing the configuration of the optical module 100 in a transparent manner.
  • FIG. 2 is a cross-sectional view showing a configuration of the optical module 100, which is a cross-sectional view taken along the line AA in FIG.
  • the light monitoring unit side temperature adjusting unit 115, the Peltier element 116 includes a light monitoring unit 110, a light source light output unit 120, and a housing 130.
  • the optical fiber 300 is connected to the end of the optical module 100 via the condenser lens 200.
  • the light monitoring unit 110 is also called a “wavelength locker” because it has a function of adjusting the wavelength of emitted light to be constant.
  • the light monitoring unit 110 and the light source light output unit 120 are accommodated in a housing 130.
  • the optical monitoring unit 110 includes an optical branching unit 111, a filter 112, a specific light monitoring unit 113, an emitted light monitoring unit 114, and an optical monitoring unit side temperature adjustment unit 115.
  • the Peltier element 116 is provided.
  • the light monitoring unit 110 receives emitted light that is light emitted from the light source unit 121 described later.
  • the light branching unit 111, the filter 112, the specific light monitoring unit 113, the emitted light monitoring unit 114, and the light monitoring unit side temperature adjustment unit 115 are provided on the Peltier element 116.
  • the light monitoring unit side temperature adjustment unit 115 and the Peltier element 116 are not essential components of the present embodiment. Accordingly, the light monitoring unit 110 can be configured by omitting these.
  • the light branching unit 111 is arranged on the light source light output unit 120 side.
  • the light branching unit 111 splits the light incident from the light source light output unit 120 side into the first branched light ⁇ 1 and the second branched light ⁇ 2 and emits it.
  • the first branched light ⁇ 1 enters the filter 112.
  • the second branched light ⁇ 2 enters the outgoing light monitoring unit 114 without passing through the filter 112.
  • the light incident from the light source light output unit 120 side is emitted light which is light emitted from the light source unit 121 described later.
  • a prism is used for the light branching unit 111.
  • the filter 112 is provided so as to face the optical branching unit 111.
  • the filter 112 is disposed between the light branching unit 111 and the specific light monitoring unit 113.
  • the filter 112 transmits only a specific wavelength band of the incident first branched light ⁇ 1 and emits it as the specific light ⁇ 3.
  • an etalon element is used for the filter 112 for example.
  • An etalon is a wavelength filter that utilizes multiple interference between two opposing reflecting surfaces. Further, as a feature of the etalon, a sharp transmission waveform having a periodic transmission peak and a narrow half-value width is obtained in the wavelength (frequency) region.
  • the specific light monitoring unit 113 is provided so as to face the light branching unit 111 via the filter 112. Therefore, the first branched light ⁇ 1 passes through the filter 112 and enters the specific light monitoring unit 113.
  • the specific light monitoring unit 113 receives and monitors the specific light ⁇ 3.
  • the specific light ⁇ 3 is light transmitted through the filter 112 and emitted as described above.
  • a monitoring PD Photo Diode
  • the outgoing light monitoring unit 114 is provided to face the light branching unit 111 without passing through the filter 112. For this reason, the second branched light ⁇ ⁇ b> 2 enters the outgoing light monitoring unit 114 without passing through the filter 112.
  • the emitted light monitoring unit 114 receives the second branched light ⁇ 2 without passing through the filter 112 and monitors it.
  • a monitor PD can be used for the emitted light monitoring unit 114.
  • the light monitoring unit side temperature adjustment unit 115 is provided in the vicinity of the filter 112.
  • the light monitoring unit side temperature adjustment unit 115 uses the Peltier element 116 to adjust the temperature in the light monitoring unit 110.
  • a control circuit including a thermistor is used for the light monitoring unit side temperature adjustment unit 115.
  • the first branched light ⁇ 1, the second branched light ⁇ 2, and the specific light ⁇ 3 are set on the same plane. Further, the first branched light ⁇ 1 and the second branched light ⁇ 2 are set to be parallel to each other. The first branched light ⁇ 1 and the specific light ⁇ 3 are set to be parallel to each other.
  • the surface including the first branched light ⁇ 1, the second branched light ⁇ 2, and the specific light ⁇ 3 is provided so as to extend in a direction perpendicular to the mounting surface 116a that is the upper surface of the Peltier element 116. It has been.
  • the optical branching unit 111, the filter 112, the specific light monitoring unit 113, the emitted light monitoring unit 114, and the light monitoring unit side temperature adjustment unit 115 are mounted on the mounting surface 116a that is the upper surface of the Peltier element 116. . If the light branching unit 111, the filter 112, the specific light monitoring unit 113, the emitted light monitoring unit 114, and the light monitoring unit side temperature adjustment unit 115 can be mounted, the mounting surface 116a can be configured. Therefore, the mounting surface 116 a is not limited to the upper surface of the Peltier element 116.
  • the light source light output unit 120 includes a light source unit 121, a resonance unit 122, a lens 123, a lens 124, a light source light output unit side temperature adjustment unit 125, and an isolator 126.
  • the Peltier device 127 is provided.
  • a planar lightwave circuit (Planar Lightwave Circuit) PLC including a light source unit 121 and a resonance unit 122 is configured.
  • the light source unit 121, the resonance unit 122, the lens 123, the lens 124, the light source light output unit side temperature adjustment unit 125, and the isolator 126 are provided on the Peltier element 127.
  • the light source light output unit side temperature adjustment unit 125, the isolator 126, and the Peltier element 127 are not essential components of the present embodiment. Therefore, the light source light output unit 120 can be configured by omitting these.
  • the light source unit 121 is provided between the resonance unit 122 and the lens 124.
  • an SOA semiconductor Optical Amplifier
  • the resonance unit 122 is provided between the lens 123 and the light source unit 121.
  • a ring resonator can be used for the resonance unit 122.
  • the resonating unit 122 is provided with a heater (not shown) so that the temperature of the resonating unit 122 can be changed.
  • the PLC outputs the light source light from the end surface on the lens 124 side of the light source unit 121 toward the lens 124 and also toward the lens 123.
  • the lens 123 is provided on the light monitoring unit 110 side.
  • the lens 123 is provided so as to face the light branching unit 111.
  • the lens 123 emits the light emitted from the resonance unit 122 to the light branching unit 111 side.
  • a collimating lens is used for the lens 123.
  • the lens 124 is provided on the condenser lens 200 side.
  • the lens 124 is provided between the light source unit 121 and the isolator 126.
  • the lens 124 causes the light source light emitted from the light source unit 121 to enter the optical fiber 300 through the isolator 126 and the condenser lens 200.
  • a collimating lens is used for the lens 124.
  • the light source light output unit side temperature adjustment unit 125 is provided in the light source light output unit 120 and in the vicinity of the light source unit 121.
  • the light source light output unit side temperature adjustment unit 125 adjusts the temperature in the light source light output unit 120 using the Peltier element 127.
  • a control circuit including a thermistor is used for the light source light output unit side temperature adjustment unit 125.
  • the isolator 126 is provided on the optical fiber 300 side of the housing 130.
  • the isolator 126 is provided between the lens 124 and the condenser lens 200.
  • the isolator 126 transmits only light traveling in the forward direction and blocks light traveling in the reverse direction. Specifically, the isolator 126 transmits light incident from the lens 124 toward the condenser lens 200 side. On the other hand, the isolator 126 blocks light incident from the condenser lens 200 side.
  • the housing 130 accommodates the light monitoring unit 110 and the light source light output unit 120.
  • a material of the housing 130 for example, a metal member such as a stainless material is used.
  • the housing 130 has a plurality of terminals 131 and a mounting portion 132.
  • at least the plurality of terminals 131 and the attachment portion 132 are not essential components of the present embodiment. Accordingly, the casing 130 can be configured by omitting these.
  • the plurality of terminals 131 are provided outside the housing 130 so as to extend outward from the housing.
  • the housing 130 is mounted on an electronic board (not shown).
  • the plurality of terminals 131 are attached to the pads formed on the electronic substrate by soldering.
  • the plurality of attachment portions 132 are provided outside the housing 130 and in the vicinity of the four corners.
  • the plurality of attachment portions 132 are fixed to attachment holes (not shown) formed in the electronic substrate by screwing or the like.
  • the condenser lens 200 is attached between one end of the housing 130 and the optical fiber 300.
  • the condenser lens 200 condenses the light source light emitted through the lens 124 and the isolator 126 and emits the light toward the optical fiber 300.
  • the optical fiber 300 is attached to the housing 130 via the condenser lens 200.
  • the optical fiber 300 transmits light emitted from the optical module 100 to an external device (not shown).
  • FIG. 3 is a diagram illustrating an operation flow of the optical module 100.
  • the PLC emits light source light (S1). Specifically, the PLC generates light source light and emits the light to the front side (lens 124 side) and the rear side (resonance unit 122 side).
  • the light output from the PLC is output from the lens 124 side end surface of the light source unit 121 and enters the optical fiber 300 via the lens 124 and the isolator 126.
  • the light output from the PLC is incident on the light branching unit 111 of the light monitoring unit 110 via the resonance unit 122 and the lens 123 (S2).
  • the light branching unit 111 branches the incident light into the first branched light ⁇ 1 and the second branched light ⁇ 2 (S3). Specifically, when receiving the light incident from the light source light output unit 120 side, the light branching unit 111 branches the incident light into the first branched light ⁇ 1 and the second branched light ⁇ 2, and emits it.
  • the first branched light ⁇ 1 is incident on the filter 112 (S4).
  • the filter 112 transmits only the specific wavelength band of the incident first branched light ⁇ 1 and emits it as the specific light ⁇ 3 (S5).
  • the specific light ⁇ 3 enters the specific light monitoring unit 113 (S6).
  • the specific light monitoring unit 113 receives the specific light ⁇ 3 and monitors it (S7).
  • the first branched light ⁇ 1, the second branched light ⁇ 2, and the specific light ⁇ 3 are set on the same plane. Further, the first branched light ⁇ 1 and the second branched light ⁇ 2 are set to be parallel to each other. Similarly, the first branched light ⁇ 1 and the specific light ⁇ 3 are set to be parallel to each other.
  • the second branched light ⁇ 2 enters the outgoing light monitoring unit 114 (S8). At this time, the second branched light ⁇ 2 enters the outgoing light monitoring unit 114 without passing through the filter 112.
  • the emitted light monitoring unit 114 receives the second branched light ⁇ 2 and monitors it (S9).
  • the light monitoring unit 110 calculates the ratio of the output values of the specific light ⁇ 3 and the second branched light ⁇ 2 based on the specific light ⁇ 3 and the second branched light ⁇ 2 (S10). Then, the light monitoring unit 510 is based on the ratio between the output value of the specific light ⁇ 3 that is the monitoring result of the specific light monitoring unit 513 and the output value of the second branched light ⁇ 2 that is the monitoring result of the emitted light monitoring unit 514. The specific light ⁇ 3 wavelength ⁇ is detected.
  • the light monitoring unit 110 adjusts the temperature of a heater (not shown) attached to the resonance unit 122 so that the detected value ⁇ of the wavelength of the specific light ⁇ 3 approaches the target value ⁇ 0 of the wavelength of the specific light ⁇ 3.
  • the temperature of the ring portion of the resonance unit 122 is adjusted. (S11).
  • the ring diameter of the resonance part 122 is adjusted, and the wavelength of the light output from PLC is adjusted.
  • the detected value ⁇ of the wavelength of the specific light ⁇ 3 can be brought close to the target value ⁇ 0 of the wavelength of the specific light ⁇ 3.
  • the wavelength of light emitted from the light source unit 121 to the optical fiber 300 via the isolator 126 and the condenser lens 200 can be stabilized.
  • the light monitoring unit 110 can be configured as the light monitoring device 110A as follows.
  • FIG. 4 is a top view showing the configuration of the optical monitoring device 110A according to the embodiment of the present invention in a transparent manner.
  • FIG. 5 is a cross-sectional view showing the configuration of the optical monitoring device 110A.
  • the optical monitoring device 110A includes an optical branching unit 111, a filter 112, a specific light monitoring unit 113, an emitted light monitoring unit 114, and an optical monitoring unit side temperature adjustment unit 115.
  • a housing 117 is provided.
  • the optical monitoring unit 110 shown in FIGS. 1 and 2 is compared with the optical monitoring device 110A shown in FIGS. 110 A of optical monitoring apparatuses differ from the optical monitoring part 110 by the point which has the housing
  • FIG. 1 the optical monitoring unit 110 shown in FIGS. 1 and 2 is compared with the optical monitoring device 110A shown in FIGS. 110 A of optical monitoring apparatuses differ from the optical monitoring part 110 by the point which has the housing
  • the housing 117 houses the light branching unit 111, the filter 112, the specific light monitoring unit 113, the emitted light monitoring unit 114, and the light monitoring unit side temperature adjustment unit 115.
  • the casing 117 has an opening 117a.
  • the light source light enters the light branching portion 111 in the casing 117 through the opening 117a.
  • optical monitoring device 110A is provided, for example, on the Peltier element 116 shown in FIGS. Thereby, the optical monitoring device 110A has the same function as the optical monitoring unit 110.
  • the optical module 100 includes the light source unit 121, the light monitoring unit 110, and the housing 130.
  • the light source unit 121 generates and emits light.
  • the light monitoring unit 110 receives emitted light that is light emitted from the light source unit 121.
  • the housing 130 accommodates the light source unit 121 and the light monitoring unit 110.
  • the light monitoring unit 110 includes a light branching unit 111, a filter 112, a specific light monitoring unit 113, and an emitted light monitoring unit 114.
  • the light branching unit 111 branches the emitted light into the first branched light ⁇ 1 and the second branched light ⁇ 2, and emits it.
  • the filter 112 transmits and emits only the specific wavelength band of the first branched light ⁇ 1 as the specific light ⁇ 3.
  • the specific light monitoring unit 113 receives and monitors the specific light ⁇ 3 transmitted through the filter 112 and emitted.
  • the emitted light monitoring unit 114 receives and monitors the second branched light ⁇ 2 without passing through the filter 112.
  • the filter 112 is disposed between the light branching unit 111 and the specific light monitoring unit 113.
  • the surface including the first branched light ⁇ 1, the second branched light ⁇ 2, and the specific light ⁇ 3 is a mounting surface 116a on which the specific light monitoring unit 113, the emitted light monitoring unit 114, the light branching unit 111, and the filter 112 are mounted. Are provided so as to extend in a direction perpendicular to the direction.
  • the specific light monitoring unit 113, the emitted light monitoring unit 114, the light branching unit 111, and the filter 112 are placed on the surface including the first branched light ⁇ 1, the second branched light ⁇ 2, and the specific light ⁇ 3. It is provided so as to extend in a direction perpendicular to the mounting surface 116a (here, it is not necessarily a completely perpendicular direction, and an error of about several degrees (°) is included). For this reason, the area which the specific light monitoring part 113, the emitted light monitoring part 114, the light branching part 111, and the filter 112 occupy in the mounting surface 116a can be made the smallest.
  • the optical module 100 the exclusive area on the mounting surface 116a can be reduced. Therefore, the size of the light monitoring unit 110 can be reduced as compared with the light monitoring unit 510 described with reference to FIGS. 6 and 7. Furthermore, the size of the optical module 100 can be reduced as compared with the general optical module 500.
  • the specific light monitoring unit 113 and the emitted light monitoring unit 114 are provided on the same base material. Thereby, the number of parts can be reduced.
  • the light source unit 121 emits outgoing light to the optical monitoring unit 110 and the optical fiber 300 connected to the housing 130. Thereby, the light emitted from the light source unit 121 can be incident on the optical fiber 300.
  • the light monitoring device (light monitoring unit 110) in the embodiment of the present invention includes a light branching unit 111, a filter 112, a specific light monitoring unit 113, and an emitted light monitoring unit 114.
  • the light branching unit 111 branches the emitted light, which is the light emitted from the light source unit 121, into the first branched light ⁇ 1 and the second branched light ⁇ 2, and outputs the branched light.
  • the filter 112 transmits and emits only the specific wavelength band of the first branched light ⁇ 1 as the specific light ⁇ 3.
  • the specific light monitoring unit 113 receives and monitors the specific light ⁇ 3 transmitted through the filter 112 and emitted.
  • the emitted light monitoring unit 114 receives and monitors the second branched light ⁇ 2 without passing through the filter 112.
  • the filter 112 is disposed between the light branching unit 111 and the specific light monitoring unit 113.
  • the surface including the first branched light ⁇ 1, the second branched light ⁇ 2, and the specific light ⁇ 3 is a mounting surface 116a on which the specific light monitoring unit 113, the emitted light monitoring unit 114, the light branching unit 111, and the filter 112 are mounted.
  • the specific light monitoring unit 113 and the emitted light monitoring unit 114 are provided on the same base material. Even if it is such a structure, there can exist an effect similar to the optical module 100 mentioned above.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

[課題]載置面上での専有面積を低減すること。 [解決手段]光分岐部111は、出射光を第1の分岐光α1および第2の分岐光α2に分岐して出射する。フィルタ112は、第1の分岐光α1のうちで特定の波長帯域のみを特定光α3として透過して出射する。特定光監視部113は、フィルタ112により透過されて出射された特定光α3を受光して監視する。出射光監視部114は、フィルタ112を介さずに第2の分岐光α2を受光して監視する。フィルタ112は、光分岐部111および特定光監視部113の間に配置されている。第1の分岐光α1、第2の分岐光α2および特定光α3を含む面は、特定光監視部113、出射光監視部114、光分岐部111およびフィルタ112が載置される載置面116aに対して垂直な方向に延在するように、設けられている。

Description

光モジュールおよび光監視装置
 本発明は、光モジュール等に関し、例えば、光源部により出射される光である出射光を受光して監視する光監視機能を有する光モジュール等に関する。
 近年、通信情報量の急激な増加に伴って、伝送容量の拡大が要求されている。光通信技術においても、伝送容量の拡大の要求に伴って、光ネットワークシステムの情報通信速度の高速化や情報通信量の大容量化が推進されている。また、光ネットワークに含まれる光モジュールに対しては、情報通信速度の高速化や情報通信量の大容量化に加えて、小型化も要求されている。さらに、光モジュールを光通信に用いる場合、出力する光の波長を一定に精度良く調整する必要もある。
 出力光の波長調整機能を有する光モジュールの一例を説明する。
 図6は、一般的な光モジュール500の構成を透過して示す上面図である。図7は、一般的な光モジュール500の構成を示す断面図であって、図6のB-B切断線で切断した断面図である。
 図6および図7に示されるように、一般的な光モジュール500は、光監視部510と、光源光出力部520と、筐体530とを備えている。また、光ファイバー700は、集光レンズ600を介して、一般的な光モジュール500の端部に接続されている。
 図6および図7に示されるように、光監視部510は、光分岐部511と、フィルタ512と、特定光監視部513と、出射光監視部514と、光監視部側温度調整部515と、ペルチェ素子516を備えている。光分岐部511、フィルタ512、特定光監視部513、出射光監視部514および光監視部側温度調整部515は、ペルチェ素子516上に設けられている。
 光分岐部511は、光源光出力部520から入射する光を、第1の分岐光β1と第2の分岐光β2に分岐する。フィルタ512は、入射される第1の分岐光β1のうちで特定の波長帯域のみを透過して特定光として出射する。特定光監視部513は、フィルタ512により透過されて出力された特定光β3を受光して監視する。出射光監視部514は、フィルタ512を介すことなく、第2の分岐光β2を受光して、監視する。光監視部側温度調整部515は、光監視部510内の温度を調整する。
 図6および図7に示されるように、光源光出力部520は、光源部521と、共振部522と、レンズ523と、レンズ524と、光源光出力部側温度調整部525と、アイソレータ526と、ペルチェ素子527を備えている。光源部521、共振部522、レンズ523、レンズ524、光源光出力部側温度調整部525およびアイソレータ526は、ペルチェ素子527上に設けられている。光源部521は、光源光を生成し、これを前方側(レンズ524側)および後方側(共振部522側)へ出射する。共振部522は、光源部521の出力光を共振させ、レンズ523を介して共振後の光を光監視部510へ出射する。共振部522には、たとえば、リング共振器を用いることができる。
 一般的な光モジュール500は、光源部521の出射光が光監視部510に入射すると、光分岐部511は光源部521の出射光を第1の分岐光β1および第2の分岐光β2に分岐する。第1の分岐光β1は、フィルタ512を通って、特定光監視部513に入射する。第2の分岐光β2は、フィルタ512を通らずに、出射光監視部514に入射する。特定光監視部513は、フィルタ512により透過されて出射された特定光β3を受光して監視する。出射光監視部514は、第2の分岐光β2を受光して監視する。光監視部510は、特定光監視部513の監視結果である特定光β3の出力値と、出射光監視部514の監視結果である第2の分岐光β2の出力値の差分の経時変化から、波長のずれを検出する。そして、光監視部側温度調整部515は、波長のずれが無くなるように、光監視部510内および光源光出力部520内の温度を調整する。これにより、光源部521からアイソレータ526および集光レンズ600を介して光ファイバー700へ出射される光の波長を安定させることができる。
 なお、関連する技術が、特許文献1-4にも開示されている。
特開2008-227170号公報 特開2012-008140号公報 特開2003-110190号公報 特開2002-237651号公報
 しかしながら、図6および図7に示される一般的な光モジュール500では、第1の分岐光β1および第2の分岐光β2は、互いに直交するように、光分岐部511、フィルタ512、特定光監視部513および出射光監視部514の載置面に対して平行方向に沿って、光分岐部511から出射される。このため、光監視部510の実装面積、すなわち光監視部510の載置面で占める面積が大きくなってしまうという問題があった。なお、特許文献1-3は、いずれも、光監視部が載置面上で占める面積が大きくなることを問題としていない。
 本発明は、このような事情を鑑みてなされたものであり、本発明の目的は、載置面上での専有面積を低減することができる光モジュール等を提供することにある。
 本発明の光モジュールは、光を生成して出射する光源部と、前記光源部により出射される光である出射光を受光する光監視部と、前記光源部および前記光監視部を収容する筐体を備え、前記光監視部は、前記出射光を第1の分岐光および第2の分岐光に分岐して出射する光分岐部と、前記第1の分岐光のうちで特定の波長帯域のみを特定光として透過して出射するフィルタと、前記フィルタにより透過されて出射された前記特定光を受光して監視する特定光監視部と、前記フィルタを介さずに前記第2の分岐光を受光して監視する出射光監視部とを有し、前記フィルタは、前記光分岐部および前記特定光監視部の間に配置されており、前記第1の分岐光、前記第2の分岐光および前記特定光を含む面は、前記特定光監視部、前記出射光監視部、前記光分岐部および前記フィルタが載置される載置面に対して垂直な方向に延在するように、設けられている。
 本発明の光監視装置は、光源部により出射される光である出射光を第1の分岐光および第2の分岐光に分岐して出射する光分岐部と、前記第1の分岐光のうちで特定の波長帯域のみを特定光として透過して出射するフィルタと、前記フィルタにより透過されて出射された前記特定光を受光して監視する特定光監視部と、前記フィルタを介さずに前記第2の分岐光を受光して監視する出射光監視部と、前記第1の分岐光、前記第2の分岐光および前記特定光を含む面は、前記特定光監視部、前記出射光監視部、前記光分岐部および前記フィルタが載置される載置面に対して垂直な方向に延在するように、設けられている。
 本発明にかかる光モジュール等によれば、載置面上での専有面積を低減することができる。
本発明の実施の形態における光モジュールの構成を透過して示す上面図である。 本発明の実施の形態における光モジュールの構成を示す断面図である。 本発明の第1の実施の形態における光モジュールの動作フローを示す図である。 本発明の実施の形態における光監視装置の構成を透過して示す上面図である。 本発明の実施の形態における光監視装置の構成を示す断面図である。 一般的な光モジュールの構成を透過して示す上面図である。 一般的な光モジュールの構成を示す断面図である。
<実施の形態>
 本発明の第1の実施の形態における光モジュール100の構成について説明する。図1は、光モジュール100の構成を透過して示す上面図である。図2は、光モジュール100の構成を示す断面図であって、図1のA-A切断線で切断した断面図である。
る。
 図1および図2に示されるように、光監視部側温度調整部115と、ペルチェ素子116は、光監視部110と、光源光出力部120と、筐体130とを備えている。また、光ファイバー300は、集光レンズ200を介して、光モジュール100の端部に接続されている。
 なお、光監視部110は、出射する光の波長を一定に調整する機能を有するため、「波長ロッカ」とも呼ばれている。
 光監視部110および光源光出力部120は、筐体130に収容されている。
 図1および図2に示されるように、光監視部110は、光分岐部111と、フィルタ112と、特定光監視部113と、出射光監視部114と、光監視部側温度調整部115と、ペルチェ素子116を備えている。光監視部110は、後述の光源部121により出射される光である出射光を受光する。
 光分岐部111、フィルタ112、特定光監視部113、出射光監視部114および光監視部側温度調整部115は、ペルチェ素子116上に設けられている。ここで、少なくとも、光監視部側温度調整部115およびペルチェ素子116は、本実施形態の必須の構成要素ではない。したがって、これらを省略して、光監視部110を構成することもできる。
 図1および図2に示されるように、光分岐部111は、光源光出力部120側に配置されている。光分岐部111は、光源光出力部120側から入射する光を第1の分岐光α1および第2の分岐光α2に分岐して出射する。
 第1の分岐光α1は、フィルタ112に入射する。第2の分岐光α2は、フィルタ112を通らないで、出射光監視部114に入射する。ここで、光源光出力部120側から入射する光は、後述の光源部121により出射される光である出射光である。なお、光分岐部111には、たとえば、プリズムが用いられる。
 図1および図2に示されるように、フィルタ112は、光分岐部111と向かい合うように設けられている。また、フィルタ112は、光分岐部111および特定光監視部113の間に配置されている。フィルタ112は、入射される第1の分岐光α1のうちで特定の波長帯域のみを透過して特定光α3として出射する。フィルタ112には、たとえば、エタロン(etalon)素子が用いられる。エタロンは、2つの対向する反射面の多重干渉を利用した波長フィルタである。また、エタロンの特徴として、波長(周波数)領域において、周期的な透過ピークを持ち、半値幅の狭い鋭い透過波形が得られる。
 図1および図2に示されるように、特定光監視部113は、フィルタ112を介して、光分岐部111と向かい合うように設けられている。このため、第1の分岐光α1は、フィルタ112を通って、特定光監視部113に入射する。特定光監視部113は、特定光α3を受光して監視する。なお、特定光α3とは、前述の通り、フィルタ112により透過されて出射された光である。特定光監視部113には、たとえば、モニタ用PD(Photo Diode:フォトダイオード)を用いることができる。
 図1および図2に示されるように、出射光監視部114は、フィルタ112を介すことなく、光分岐部111と向かい合うように設けられている。このため、第2の分岐光α2は、フィルタ112を通らずに、出射光監視部114に入射する。出射光監視部114は、第2の分岐光α2を、フィルタ112を介すことなく、受光して、これを監視する。なお、出射光監視部114には、たとえば、モニタ用PDを用いることができる。
 図1に示されるように、光監視部側温度調整部115は、フィルタ112の近傍に設けられている。光監視部側温度調整部115は、ペルチェ素子116を用いて、光監視部110内の温度を調整する。光監視部側温度調整部115には、たとえば、サーミスタを含む制御回路が用いられる。
 ここで、図1および図2に示されるように、第1の分岐光α1、第2の分岐光α2および特定光α3は、同一面上に設定されている。また、第1の分岐光α1および第2の分岐光α2は、互いに平行になるように設定されている。また、第1の分岐光α1と特定光α3は互いに平行になるように設定されている。
 また、第1の分岐光α1、第2の分岐光α2および特定光α3を含む面は、ペルチェ素子116の上面である載置面116aに対して、垂直な方向に延在するように、設けられている。なお、ペルチェ素子116の上面である載置面116aには、光分岐部111、フィルタ112、特定光監視部113、出射光監視部114および光監視部側温度調整部115が載置されている。なお、光分岐部111、フィルタ112、特定光監視部113、出射光監視部114および光監視部側温度調整部115を載置することができれば、載置面116aを構成することができる。したがって、載置面116aは、ペルチェ素子116の上面に限定されない。
 図1および図2に示されるように、光源光出力部120は、光源部121と、共振部122と、レンズ123と、レンズ124と、光源光出力部側温度調整部125と、アイソレータ126と、ペルチェ素子127を備えている。また、図1に示されるように、光源部121と、共振部122とを含む平面光波回路(Planar Lightwave Circuit)PLCを構成する。 光源部121、共振部122、レンズ123、レンズ124、光源光出力部側温度調整部125およびアイソレータ126は、ペルチェ素子127上に設けられている。
 ここで、少なくとも、光源光出力部側温度調整部125と、アイソレータ126と、ペルチェ素子127は、本実施形態の必須の構成要素ではない。したがって、これらを省略して、光源光出力部120を構成することもできる。
 図1および図2に示されるように、光源部121は、共振部122およびレンズ124の間に設けられている。光源部121には、たとえば、SOA(Semiconductor Optical Amplifier:半導体光増幅器)を用いることができる。
 図1および図2に示されるように、共振部122は、レンズ123および光源部121の間に設けられている。共振部122には、たとえば、リング共振器を用いることができる。なお、共振部122には、共振部122の温度を変更できるように、ヒータ(不図示)が設けられている。
 ここで、PLCは、光源光を、光源部121のレンズ124側端面からレンズ124へ向けて出力するとともに、レンズ123へ向けて出力する。
 図1および図2に示されるように、レンズ123は、光監視部110側に設けられている。レンズ123は、光分岐部111と向き合うように設けられている。レンズ123は、共振部122により出射される光を、光分岐部111側へ出射する。レンズ123には、たとえば、コリメートレンズが用いられる。
 図1および図2に示されるように、レンズ124は、集光レンズ200側に設けられている。レンズ124は、光源部121およびアイソレータ126の間に、設けられている。レンズ124は、光源部121により出射される光源光を、アイソレータ126および集光レンズ200を介して、光ファイバー300に入射させる。レンズ124には、たとえば、コリメートレンズが用いられる。
 図1に示されるように、光源光出力部側温度調整部125は、光源光出力部120内であって、光源部121の近傍に設けられている。光源光出力部側温度調整部125は、ペルチェ素子127を用いて光源光出力部120内の温度を調整する。光源光出力部側温度調整部125には、たとえば、サーミスタを含む制御回路が用いられる。
 図1および図2に示されるように、アイソレータ126は、筐体130のうち、光ファイバー300側に、設けられている。アイソレータ126は、レンズ124および集光レンズ200の間に、設けられている。アイソレータ126は、順方向に進む光のみを透過し、逆方向に進む光を遮断する。具体的には、アイソレータ126は、レンズ124から入射する光を、集光レンズ200側へ向けて透過する。一方、アイソレータ126は、集光レンズ200側から入射する光を遮断する。
 図1および図2に示されるように、筐体130は、光監視部110および光源光出力部120を収容する。筐体130の材料には、たとえば、ステンレス材のような金属部材が用いられている。筐体130は、複数の端子131および取り付け部132を有している。ここで、少なくとも、複数の端子131および取り付け部132は、本実施形態の必須の構成要素ではない。したがって、これらを省略して、筐体130を構成することもできる。
 図1に示されるように、複数の端子131は、筐体130の外部に、筐体の外方に向けて延出するように、設けられている。筐体130は、電子基板(不図示)上に取り付けられる。この際、複数の端子131は、電子基板上に形成されたパッドに、半田付けにより、取り付けられる。
 図1に示されるように、複数の取り付け部132は、筐体130の外部であって、四隅近傍に設けられている。複数の取り付け部132は、電子基板に形成された取り付け孔(不図示)に、ネジ止め等により、固定される。
 図1および図2に示されるように、集光レンズ200は、筐体130の一端部および光ファイバー300の間に取り付けられる。集光レンズ200は、レンズ124およびアイソレータ126を介して出射された光源光を集光して、光ファイバー300内に向けて出射する。
 図1および図2に示されるように、光ファイバー300は、集光レンズ200を介して、筐体130に取り付けられている。光ファイバー300は、光モジュール100から出射される光を、外部装置(不図示)へ伝送する。
 以上の通り、光モジュール100の構成について、説明した。
 次に、光モジュール100の動作について、説明する。図3は、光モジュール100の動作フローを示す図である。
 図3に示されるように、PLCが、光源光を出射する(S1)。具体的には、PLCは、光源光を生成し、これを前方側(レンズ124側)および後方側(共振部122側)へ出射する。
 PLCから出力された光は、光源部121のレンズ124側端面から出力され、レンズ124およびアイソレータ126を介して光ファイバー300に入射する。また、PLCから出力された光は、共振部122およびレンズ123を介して、光監視部110の光分岐部111に入射する(S2)。
 光分岐部111が、入射光を第1の分岐光α1と第2の分岐光α2に分岐する(S3)。具体的には、光分岐部111は、光源光出力部120側から入射する光を受け取ると、この入射光を第1の分岐光α1および第2の分岐光α2に分岐して出射する。
 第1の分岐光α1は、フィルタ112に入射する(S4)。フィルタ112は、入射される第1の分岐光α1のうちで特定の波長帯域のみを透過して特定光α3として出射する(S5)。特定光α3は、特定光監視部113に入射する(S6)。特定光監視部113は、特定光α3を受光して、これを監視する(S7)。
 ここで、図1および図2に示されるように、第1の分岐光α1、第2の分岐光α2および特定光α3は、同一面上に設定されている。また、第1の分岐光α1と、第2の分岐光α2は、互いに平行になるように設定されている。同様に第1の分岐光α1と、特定光α3は、互いに平行になるように設定されている。
 第2の分岐光α2は、出射光監視部114に入射する(S8)。このとき、第2の分岐光α2は、フィルタ112を通らずに、出射光監視部114に入射する。
 出射光監視部114は、第2の分岐光α2を受光して、これを監視する(S9)。
 光監視部110は、特定光α3および第2の分岐光α2に基づいて、特定光α3および第2の分岐光α2の出力値の比を算出する(S10)。そして、光監視部510は、特定光監視部513の監視結果である特定光α3の出力値と、出射光監視部514の監視結果である第2の分岐光α2の出力値の比に基づいて、特定光α3波長λを検出する。
 そして、特定光α3の波長の検出値λが特定光α3の波長の目標値λ0に近づくように、光監視部110は、共振部122に取り付けられたヒータ(不図示)の温度を調整することで、共振部122のリング部分の温度を調整する。(S11)。これにより、共振部122のリング径が調整され、PLCから出力される光の波長が調整される。このようなフィードバック制御により、特定光α3の波長の検出値λを特定光α3の波長の目標値λ0に近づけることができる。
 これにより、光源部121からアイソレータ126および集光レンズ200を介して光ファイバー300へ出射される光の波長を安定させることができる。
 以上の通り、光モジュール100の動作について説明した。
 なお、光監視部110を次のように光監視装置110Aとして構成することができる。
 図4は、本発明の実施の形態における光監視装置110Aの構成を透過して示す上面図である。図5は、光監視装置110Aの構成を示す断面図である。
 図4および図5に示されるように、光監視装置110Aは、光分岐部111と、フィルタ112と、特定光監視部113と、出射光監視部114と、光監視部側温度調整部115と、筐体117を備えている。
 ここで、図1および図2に示される光監視部110と、図4および図5に示される光監視装置110Aを対比する。光監視装置110Aは、筐体117を有し、ペルチェ素子116を有さない点で、光監視部110と相違する。
 筐体117は、光分岐部111と、フィルタ112と、特定光監視部113と、出射光監視部114と、光監視部側温度調整部115を、収容する。
 また、筐体117は、開口部117aを有する。光源光は、この開口部117aを介して、筐体117内の光分岐部111に入射する。
 なお、光監視装置110Aは、たとえば、図1および図2のペルチェ素子116の上に、設けられる。これにより、光監視装置110Aは、光監視部110と同様の機能を奏する。
 以上の通り、本発明の実施の形態における光モジュール100は、光源部121と、光監視部110と、筐体130を備えている。光源部121は、光を生成して出射する。光監視部110は、光源部121により出射される光である出射光を受光する。筐体130は、光源部121および光監視部110を収容する。光監視部110は、光分岐部111と、フィルタ112と、特定光監視部113と、出射光監視部114とを有する。光分岐部111は、出射光を第1の分岐光α1および第2の分岐光α2に分岐して出射する。フィルタ112は、第1の分岐光α1のうちで特定の波長帯域のみを特定光α3として透過して出射する。特定光監視部113は、フィルタ112により透過されて出射された特定光α3を受光して監視する。出射光監視部114は、フィルタ112を介さずに第2の分岐光α2を受光して監視する。フィルタ112は、光分岐部111および特定光監視部113の間に配置されている。第1の分岐光α1、第2の分岐光α2および特定光α3を含む面は、特定光監視部113、出射光監視部114、光分岐部111およびフィルタ112が載置される載置面116aに対して垂直な方向に延在するように、設けられている。
 このように、第1の分岐光α1、第2の分岐光α2および特定光α3を含む面は、特定光監視部113、出射光監視部114、光分岐部111およびフィルタ112が載置される載置面116aに対して垂直な方向(ここでは、完全に垂直な方向である必要はなく、数度(°)程度の誤差も含まれる。)に延在するように、設けられている。このため、特定光監視部113、出射光監視部114、光分岐部111およびフィルタ112が載置面116aで占める面積を最も小さくすることができる。この結果、光モジュール100によれば、載置面116a上での専有面積を低減することができる。したがって、図6および図7を用いて説明した光監視部510と比較して、光監視部110の大きさを小さくすることができる。さらに、一般的な光モジュール500と比較して、光モジュール100の大きさを小さくすることができる。
 また、本発明の実施の形態における光モジュール100において、特定光監視部113および出射光監視部114は、同一の基材上に設けられている。これにより、部品点数を減らすことができる。
 また、本発明の実施の形態における光モジュール100において、光源部121は、光監視部110と、筐体130に接続された光ファイバー300とに、出射光を出射する。これにより、光源部121の出射光を光ファイバー300に入射することができる。
 本発明の実施の形態における光監視装置(光監視部110)は、光分岐部111と、フィルタ112と、特定光監視部113と、出射光監視部114とを有する。光分岐部111は、光源部121により出射される光である出射光を第1の分岐光α1および第2の分岐光α2に分岐して出射する。フィルタ112は、第1の分岐光α1のうちで特定の波長帯域のみを特定光α3として透過して出射する。特定光監視部113は、フィルタ112により透過されて出射された特定光α3を受光して監視する。出射光監視部114は、フィルタ112を介さずに第2の分岐光α2を受光して監視する。フィルタ112は、光分岐部111および特定光監視部113の間に配置されている。第1の分岐光α1、第2の分岐光α2および特定光α3を含む面は、特定光監視部113、出射光監視部114、光分岐部111およびフィルタ112が載置される載置面116aに対して垂直な方向に延在するように、設けられている。
 このような構成であっても、上述した光モジュール100と同様の効果を奏することができる。
 また、本発明の実施の形態における光監視装置(光監視部110)において、特定光監視部113および出射光監視部114は、同一の基材上に設けられている。このような構成であっても、上述した光モジュール100と同様の効果を奏することができる。
 以上、実施の形態をもとに本発明を説明した。実施の形態は例示であり、本発明の主旨から逸脱しない限り、上述各実施の形態に対して、さまざまな変更、増減、組合せを加えてもよい。これらの変更、増減、組合せが加えられた変形例も本発明の範囲にあることは当業者に理解されるところである。
 この出願は、2017年2月28日に出願された日本出願特願2017-035844を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 100  光モジュール
 110  光監視部
 110A  光監視装置
 111  光分岐部
 112  フィルタ
 113  特定光監視部
 114  出射光監視部
 115  光監視部側温度調整部
 116  ペルチェ素子
 116a  載置面
 117  筐体
 120  光源光出力部
 121  光源部
 122  共振部
 123  レンズ
 124  レンズ
 125  光源光出力部側温度調整部
 126  アイソレータ
 127  ペルチェ素子
 130  筐体
 200  集光レンズ
 300  光ファイバー
 500  一般的な光モジュール
 510  光監視部
 511  光分岐部
 512  フィルタ
 513  特定光監視部
 514  出射光監視部
 515  光監視部側温度調整部
 516  ペルチェ素子
 520  光源光出力部
 521  光源部
 522  共振部
 523  レンズ
 524  レンズ
 525  光源光出力部側温度調整部
 526  アイソレータ
 527  ペルチェ素子
 530  筐体
 600  集光レンズ
 700  光ファイバー

Claims (5)

  1.  光を生成して出射する光源部と、
     前記光源部により出射される光である出射光を受光する光監視部と、
     前記光源部および前記光監視部を収容する筐体を備え、
     前記光監視部は、
     前記出射光を第1の分岐光および第2の分岐光に分岐して出射する光分岐部と、
     前記第1の分岐光のうちで特定の波長帯域のみを特定光として透過して出射するフィルタと、
     前記フィルタにより透過されて出射された前記特定光を受光して監視する特定光監視部と、
     前記フィルタを介さずに前記第2の分岐光を受光して監視する出射光監視部とを有し、
     前記フィルタは、前記光分岐部および前記特定光監視部の間に配置されており、
     前記第1の分岐光、前記第2の分岐光および前記特定光を含む面は、前記特定光監視部、前記出射光監視部、前記光分岐部および前記フィルタが載置される載置面に対して垂直な方向に延在するように、設けられている光モジュール。
  2.  前記特定光監視部および前記出射光監視部は、同一の基材上に設けられている請求項1に記載の光モジュール。
  3.  前記光源部は、前記光監視部と、前記筐体に接続された光ファイバーとに、前記出射光を出射する請求項1または2に記載の光モジュール。
  4.  光源部により出射される光である出射光を第1の分岐光および第2の分岐光に分岐して出射する光分岐部と、
     前記第1の分岐光のうちで特定の波長帯域のみを特定光として透過して出射するフィルタと、
     前記フィルタにより透過されて出射された前記特定光を受光して監視する特定光監視部と、
     前記フィルタを介さずに前記第2の分岐光を受光して監視する出射光監視部と、
     前記第1の分岐光、前記第2の分岐光および前記特定光を含む面は、前記特定光監視部、前記出射光監視部、前記光分岐部および前記フィルタが載置される載置面に対して垂直な方向に延在するように、設けられている光監視装置。
  5.  前記特定光監視部および前記出射光監視部は、同一の基材上に設けられている請求項4に記載の光監視装置。
PCT/JP2018/005876 2017-02-28 2018-02-20 光モジュールおよび光監視装置 WO2018159373A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-035844 2017-02-28
JP2017035844 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159373A1 true WO2018159373A1 (ja) 2018-09-07

Family

ID=63371095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005876 WO2018159373A1 (ja) 2017-02-28 2018-02-20 光モジュールおよび光監視装置

Country Status (1)

Country Link
WO (1) WO2018159373A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237651A (ja) * 2000-12-06 2002-08-23 Mitsubishi Electric Corp 波長モニタ装置および半導体レーザ装置
US7009716B2 (en) * 2003-08-26 2006-03-07 Electronics And Telecommunications Research Institute System for monitoring optical output/wavelength
JP2008053555A (ja) * 2006-08-25 2008-03-06 Fujitsu Ltd 波長ロッカー
JP2008227170A (ja) * 2007-03-13 2008-09-25 Nec Electronics Corp 光モジュール
JP2010232337A (ja) * 2009-03-26 2010-10-14 Fujitsu Optical Components Ltd 光源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237651A (ja) * 2000-12-06 2002-08-23 Mitsubishi Electric Corp 波長モニタ装置および半導体レーザ装置
US7009716B2 (en) * 2003-08-26 2006-03-07 Electronics And Telecommunications Research Institute System for monitoring optical output/wavelength
JP2008053555A (ja) * 2006-08-25 2008-03-06 Fujitsu Ltd 波長ロッカー
JP2008227170A (ja) * 2007-03-13 2008-09-25 Nec Electronics Corp 光モジュール
JP2010232337A (ja) * 2009-03-26 2010-10-14 Fujitsu Optical Components Ltd 光源装置

Similar Documents

Publication Publication Date Title
US8277132B2 (en) Bidirectional optical transceiver module
JP6244672B2 (ja) 光源モジュール、および光送受信装置
US20150023672A1 (en) Wavelength-Tunable Laser Output Method and Tunable Laser Apparatus
US9992560B2 (en) Light detection module and light module
KR100587950B1 (ko) 파장분할다중화시스템에서 다중파장 안정화를 위한 광출력-파장 감시 장치
JP2011238698A (ja) レーザモジュール
JP6165074B2 (ja) 波長モニタ及び波長モニタリング方法
US20030072336A1 (en) Miniaturized internal laser stabilizing apparatus with inline output for fiber optic applications
JP2014165384A (ja) 半導体レーザモジュール
JP2009004525A (ja) 光源モジュール
JP6610670B2 (ja) 光源モジュール、および光源モジュールの製造方法
JP2003008140A (ja) 半導体レーザ制御モジュールとその応用装置
JP2003008140A5 (ja)
WO2018159373A1 (ja) 光モジュールおよび光監視装置
JP5153432B2 (ja) 波長ロッカモジュール
KR100343310B1 (ko) 파장안정화 광원 모듈
JP2005032968A (ja) 光送信モジュール
JP2003258374A (ja) 波長安定化半導体レーザモジュール
JP2010239079A (ja) 半導体レーザモジュール
JP6849524B2 (ja) 半導体レーザ光源
JP2004247585A (ja) 波長安定化ユニット及び波長安定化光送信モジュール
KR101429208B1 (ko) 광소자
JP2011077069A (ja) 波長可変光源モジュール及び波長可変光送信器
JP2010232337A (ja) 光源装置
JP2004095920A (ja) 半導体レーザ装置及びその製造方法並びに半導体レーザモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP