WO2018159430A1 - Heat-insulating body, heat-insulating box body, heat-insulating door, and refrigerator-freezer - Google Patents
Heat-insulating body, heat-insulating box body, heat-insulating door, and refrigerator-freezer Download PDFInfo
- Publication number
- WO2018159430A1 WO2018159430A1 PCT/JP2018/006347 JP2018006347W WO2018159430A1 WO 2018159430 A1 WO2018159430 A1 WO 2018159430A1 JP 2018006347 W JP2018006347 W JP 2018006347W WO 2018159430 A1 WO2018159430 A1 WO 2018159430A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- door
- box
- heat insulating
- refrigerator
- Prior art date
Links
- 229920005749 polyurethane resin Polymers 0.000 claims abstract description 31
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229920005862 polyol Polymers 0.000 claims abstract description 17
- 150000003077 polyols Chemical class 0.000 claims abstract description 17
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000009835 boiling Methods 0.000 claims abstract description 9
- 229920001228 polyisocyanate Polymers 0.000 claims abstract description 8
- 239000005056 polyisocyanate Substances 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 238000009413 insulation Methods 0.000 claims description 50
- 229920005830 Polyurethane Foam Polymers 0.000 claims description 43
- 239000011496 polyurethane foam Substances 0.000 claims description 43
- 229920005989 resin Polymers 0.000 claims description 43
- 239000011347 resin Substances 0.000 claims description 43
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 28
- 239000004088 foaming agent Substances 0.000 claims description 22
- 239000012212 insulator Substances 0.000 claims description 19
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 14
- 239000001569 carbon dioxide Substances 0.000 claims description 14
- 238000001816 cooling Methods 0.000 claims description 10
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 31
- 230000000052 comparative effect Effects 0.000 description 13
- 238000005187 foaming Methods 0.000 description 13
- 238000003860 storage Methods 0.000 description 8
- 239000006260 foam Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000004604 Blowing Agent Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- CDOOAUSHHFGWSA-OWOJBTEDSA-N (e)-1,3,3,3-tetrafluoroprop-1-ene Chemical group F\C=C\C(F)(F)F CDOOAUSHHFGWSA-OWOJBTEDSA-N 0.000 description 1
- NLOLSXYRJFEOTA-UPHRSURJSA-N (z)-1,1,1,4,4,4-hexafluorobut-2-ene Chemical compound FC(F)(F)\C=C/C(F)(F)F NLOLSXYRJFEOTA-UPHRSURJSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 238000010097 foam moulding Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/02—Shape or form of insulating materials, with or without coverings integral with the insulating materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/02—Doors; Covers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/06—Walls
Definitions
- the present disclosure relates to a heat insulator having a foamed polyurethane resin filled and foamed inside, a heat insulating box having a heat insulator, a heat insulating door having a heat insulator, and a refrigerator / freezer including at least one of them.
- the foamed polyurethane resin is obtained by foaming by adding a foaming agent to polyol and polyisocyanate which are raw materials.
- a foaming agent CFC and HCFC were used as the foaming agent, but problems of ozone layer destruction and global warming have been pointed out, and in recent years, foamed polyurethane resins using cyclopentane, which is non-fluorocarbon, have become mainstream.
- the foamed polyurethane resin using cyclopentane as a foaming agent has a problem that the thermal conductivity of the gas is higher than that of CFC and HCFC, and the heat insulation performance of the foamed polyurethane resin is inferior.
- the present disclosure has been made in view of the conventional problems as described above, and provides a heat insulator having excellent heat insulation performance of a polyurethane foam resin. Moreover, this indication provides the heat insulation box which has the said heat insulating body, the heat insulating door which has the said heat insulating body, and a refrigerator-freezer provided with at least one of these.
- a heat insulator includes a polyurethane foam resin and a space in which the polyurethane foam resin is filled and foamed.
- the foamed polyurethane resin is a mixture of at least a polyol component, a polyisocyanate component, a first foaming agent that is a hydrofluoroolefin having a boiling point of 10 ° C. or less under atmospheric pressure, and a second foaming agent that is cyclopentane. Is injected into the space, foamed and cured.
- Such a configuration can reduce the thermal conductivity of the gas in the foamed polyurethane resin bubbles and reduce the formation of large bubbles in the foam due to bumping. Further, with such a configuration, the foamed polyurethane resin can be foamed without generating large bubbles. Therefore, with such a configuration, the heat insulating performance of the polyurethane foam resin and the heat insulating performance of the heat insulator provided with the polyurethane foam resin can be improved.
- the thermal conductivity of the first foaming agent is preferably 15.0 mW / mK or less.
- the first foaming agent HFO has a lower thermal conductivity of gas than carbon dioxide, so that the heat insulation performance of the foamed polyurethane resin and the heat insulation performance of the heat insulator provided with the foamed polyurethane resin. Can be increased.
- the first blowing agent has a solubility in the polyol component, preferably higher than or equal to the solubility of carbon dioxide in the polyol component.
- the solubility with respect to the polyol component is higher than that of carbon dioxide, the polyurethane foam resin is vaporized relatively slowly at the time of foaming, and can be foamed without generating large bubbles.
- the heat insulation performance of a polyurethane foam resin and the heat insulation performance of the heat insulating body provided with the foam polyurethane resin can be improved.
- the first foaming agent is preferably HFO1234ze or HFO1233zd. Since the first foaming agent is composed of HFO1234ze or HFO1233zd whose gas thermal conductivity is lower than that of carbon dioxide, the heat insulation performance of the polyurethane foam resin and the heat insulation performance of the heat insulator provided with the polyurethane foam resin are improved. Can do.
- the core density of the foamed polyurethane resin is preferably 50 kg / m 3 or less. According to such a configuration, from the viewpoint of density, the thermal conductivity of the polyurethane foam resin can be lowered, so that the heat insulation performance of the polyurethane foam resin and the heat insulation performance of the heat insulator provided with the polyurethane foam resin can be improved. .
- the first foaming agent is preferably added in an amount of 1% to 10% with respect to the polyurethane foam resin. According to such a configuration, it is possible to suppress bumping when the polyurethane foam resin is injected, and it is possible to reduce the occurrence of large bubbles in the polyurethane foam resin. Therefore, with such a configuration, the heat insulation performance of the foamed polyurethane resin and the heat insulation performance of the heat insulator provided with the foamed polyurethane resin can be enhanced.
- the heat insulating box according to an example of the present disclosure may be configured by a heat insulating body having at least one of the characteristics of the heat insulating body, and the heat insulating body may have a box shape. With such a configuration, a heat insulation box having excellent heat insulation performance can be obtained.
- a heat insulating door according to an example of the present disclosure is configured by a heat insulating body having at least one of the characteristics of the heat insulating body. With such a configuration, a heat insulating door having excellent heat insulating performance can be obtained.
- a refrigerator-freezer includes a box provided with an opening in one direction, a door disposed so as to close the opening of the box and form a sealed space, and the box, And a cooling device for cooling the sealed space formed by the door.
- the box may be formed of a heat insulating box having at least one of the features of the heat insulator. With such a configuration, a refrigerator-freezer having excellent heat insulation performance can be obtained.
- a refrigerator-freezer includes a box provided with an opening in one direction, a door disposed so as to close the opening of the box and form a sealed space, and the box, And a cooling device for cooling the sealed space formed by the door.
- the door may be formed of a heat insulating door having at least one of the features of the heat insulator.
- FIG. 1 is a cross-sectional view of a heat insulating door according to the first embodiment of the present disclosure.
- FIG. 2 is a schematic diagram illustrating a method for manufacturing a heat insulating door according to the first embodiment of the present disclosure.
- FIG. 3 is a cross-sectional view of the refrigerator-freezer according to the second embodiment of the present disclosure.
- FIG. 1 is a cross-sectional view of a heat insulating door that is a heat insulating body in Embodiment 1 of the present disclosure.
- FIG. 2 is a schematic diagram illustrating a method for manufacturing a heat insulating door that is a heat insulating body according to the first embodiment of the present disclosure.
- the heat insulating door 101 according to the first embodiment of the present disclosure includes an outer surface material 102 that forms the heat insulating door 101, and an inner surface material 103.
- the heat insulating door 101 according to the first embodiment of the present disclosure has a closed space formed by the outer surface material 102 and the inner surface material 103.
- the heat insulating door 101 according to the first embodiment of the present disclosure includes a polyurethane foam resin 104 formed by foam filling in a closed space between the outer surface material 102 and the inner surface material 103.
- the first foaming agent and the second foaming agent are mixed with the polyol 108.
- the first blowing agent is trans-1,1,1,3-tetrafluoropropene (HFO1234ze).
- HFO1234ze has a boiling point of ⁇ 18.95 ° C. at atmospheric pressure, and a thermal conductivity of gas at 25 ° C. of 0.0136 W / mK.
- the second blowing agent is cyclopentane.
- the polyisocyanate 109 is mixed with the polyol 108 in which the cyclopentane 105 and the HFO 1234ze 106 are mixed and injected onto the outer surface material 102, and then the inner surface material 103 is immediately attached to the outer surface material.
- Cyclopentane 105 and HFO 1234ze 106 are foamed and molded in the space between 102 and the inner surface material 103. Thereby, the heat insulation door 101 is manufactured.
- an injection port is provided in either the outer surface material 102 or the inner surface material 103, and the polyurethane foam resin 104 is injected from the injection port into a space formed by attaching the outer surface material 102 and the inner surface material 103 in advance.
- the polyol 108 may be mixed with water, a foam stabilizer, a catalyst, and the like in advance.
- the heat insulating door 101 configured as described above has a space formed between the outer surface material 102 and the inner surface material 103. Moreover, the heat insulation door 101 of this Embodiment has the polyurethane foam resin 104 by which the said space was filled and foamed.
- the polyurethane foam resin 104 has at least a polyol 108, a polyisocyanate 109, a liquid cyclopentane 105 that is a liquid hydrocarbon at room temperature, and a boiling point under atmospheric pressure.
- a mixture with HFO1234ze106 which is HFO at 10 ° C. or lower, is injected into the space, foamed and cured.
- the heat insulating door 101 of the present embodiment is made of a polyurethane foam resin 104 using HFO 1234ze 106 having a lower thermal conductivity in a gaseous state than carbon dioxide.
- the thermal conductivity of the foamed polyurethane resin 104 formed by foaming is lowered, and the heat insulating performance of the heat insulating door 101 can be improved.
- the boiling point of HFO1234ze106 is about ⁇ 19 ° C., but since the solubility in the polyol 108 component is higher than that of carbon dioxide, it can be foamed without causing large bubbles by vaporizing relatively slowly during foaming. Thereby, the heat insulation performance of the polyurethane foam resin 104 can be improved, and the heat insulation performance of the heat insulation door 101 can be improved.
- HFO1336mzz may be used instead of HFO1234ze106. Since HFO1336mzz has a lower thermal conductivity of gas than HFO1234ze106, the thermal conductivity of the foamed polyurethane resin 104 is reduced, and the thermal insulation performance of the thermal insulation door 101 can be improved.
- FIG. 3 is a schematic diagram of the refrigerator-freezer according to the second embodiment of the present disclosure.
- the refrigerator-freezer 201 is disposed so as to close the heat insulating box 202 provided with an opening in one direction, and the opening of the heat insulating box 202.
- the heat insulating door 203 includes a cooling device 205 that cools a sealed space (storage chamber 204) formed by the heat insulating box 202 and the heat insulating door 203.
- the space formed by the heat insulation box 202 and the heat insulation door 203 is used as a storage room 204 such as a vegetable room, a refrigerator room, and a freezer room.
- a plurality of the heat insulating doors 203 are disposed so as to close the opening of the heat insulating box 202.
- a plurality of storage chambers 204 are formed in the heat insulating box 202.
- At least the heat insulating door 203 of the refrigerator compartment which is the uppermost storage chamber 204 of the refrigerator / freezer 201, includes an outer surface member 102 (see FIG. 1) on the outside and an inner surface member 103 (see FIG. 1) on the inner side. It is comprised from the foaming polyurethane resin 104 (refer FIG. 1) foam-filled and formed in the substantially closed space between the outer surface material 102 and the inner surface material 103.
- FIG. The inner surface material 103 has a convex portion provided on the outer peripheral portion of the surface opposite to the surface in contact with the polyurethane foam resin 104.
- a shelf on which things such as plastic bottles, bottles and eggs are placed is installed on the heat insulating door 203 so as to be easy to use.
- the inner surface material 103 is provided with convex portions necessary for fixing the shelf.
- not only a convex part but the recessed part may be provided in order to fix a shelf.
- the cooling device 205 includes a compressor 205a, a condenser 205b, expansion means (not shown), and an evaporator 205c. Expansion means such as a capillary tube and an expansion valve are disposed between the condenser 205b and the evaporator 205c.
- the compressor 205a, the condenser 205b, and the evaporator 205c are connected to each other by pipes to constitute a refrigeration cycle. The cool air produced by this refrigeration cycle is supplied to the storage chambers 204 to cool the interior of each storage chamber 204.
- the foamed polyurethane resin 104 is formed by foaming with cyclopentane 105 and HFO 1234ze 106, as in the first embodiment.
- an inlet is provided on the back or bottom of the heat insulating box 202, and the heat insulating box 202 is installed with its opening facing down. Then, the raw material is injected vertically or horizontally.
- the heat insulating box 202 and the heat insulating door 203 are formed of a heat insulating body having at least one feature of the heat insulating body 101 exemplified in the first embodiment.
- the foamed polyurethane resin 104 filled and foamed in the space between the outer surface material 102 and the inner surface material is at least a polyol 108, a polyisocyanate 109, and a normal temperature.
- the HFO 1234ze 106 having a lower thermal conductivity in the gas state than carbon dioxide that has been conventionally used is used for the polyurethane foam resin 104 constituting the heat insulating door 203. Therefore, with such a configuration, the thermal conductivity of the foamed polyurethane resin 104 is reduced, and the heat insulating performance of the heat insulating door 203 can be improved.
- HFO1234ze106 has a boiling point of ⁇ 19 ° C., but HFO1234ze106 has a higher solubility in the polyol 108 component than carbon dioxide, and therefore it vaporizes relatively slowly during foaming, and foams without generating large bubbles (voids). it can. Thereby, the heat insulation performance of the polyurethane foam resin 104 and the heat insulation performance of the heat insulation door 203 can be made high, and the heat insulation performance of the refrigerator-freezer 201 can be improved.
- HFO1336mzz Z-1,1,1,4,4,4-hexafluoro-2-butene (HFO1336mzz) may be used instead of HFO1234ze.
- HFO1336mzz has a boiling point of 7 ° C. at atmospheric pressure, and a thermal conductivity of gas at 25 ° C. of 10.5 W / mK. Since HFO1336mzz has a lower gas thermal conductivity than HFO1234ze106, the thermal conductivity of the foamed polyurethane resin 104 is low, and the heat insulating performance of the refrigerator-freezer 201 can be improved.
- HFO1234ze or HFO1336mzz which is a polyurethane foam resin applicable to the refrigerator-freezer 201
- Evaluation is performed by cutting out the foamed polyurethane resin 104 from the refrigerator-freezer 201 and evaluating the thermal conductivity and voids.
- the void is a bubble larger than the average diameter of the foamed polyurethane resin 104.
- the number of voids was measured by cutting the polyurethane foam resin 104 in the foaming direction, observing the cross section, and counting the number of voids.
- the foaming direction is a direction perpendicular to the wall thickness.
- the addition amount described here is wt% with respect to the polyurethane foam resin 104.
- HFO1234ze is used as the first foaming agent.
- the amount of carbon dioxide added is 0.5 wt%.
- Example 1 the amount of HFO1234ze added is 0.5 wt%. In contrast to Comparative Example 1, in Example 1, since the addition amount is small, the number of voids is small, but the thermal conductivity hardly changes.
- Example 2 the amount of HFO1234ze added is 1.0 wt%. With this addition amount, the number of voids is smaller than that of Comparative Example 1, and the thermal conductivity can be lowered by about 1 mW / mK.
- Example 3 the amount of HFO1234ze added is 5.0 wt%. With this addition amount, the number of voids is smaller than that of Comparative Example 1, and the thermal conductivity can be lowered by about 1 mW / mK.
- Example 4 the amount of HFO1234ze added is 10.0 wt%. With this addition amount, the number of voids is slightly greater than in Example 2 and Example 3. The thermal conductivity can be lowered by about 0.7 mW / mK compared to Comparative Example 1.
- Example 5 the amount of HFO1234ze added is 15.0 wt%. With this addition amount, the number of voids increases. For this reason, the thermal conductivity is higher than that of Comparative Example 1 by 0.5 mW / mK.
- the amount of HFO 1234ze added is 1 wt% or more and 10% or less in Examples 2 to 4.
- the core density of the polyurethane foam resin 104 is 50 kg / m 3 or less.
- the core density is the density of the portion excluding the skin layer on the surface of the polyurethane foam resin 104.
- the addition amount described here is wt% with respect to the polyurethane foam resin 104.
- HFO1336mzz is used as the first foaming agent.
- the amount of carbon dioxide added is 0.5 wt%.
- Example 6 the amount of HFO 1336mzz added is 0.7 wt%. In contrast to Comparative Example 1, in Example 6, since the addition amount is small, the number of voids is small, but the thermal conductivity changes only slightly.
- Example 7 the amount of HFO1336mzz added is 1.4 wt%. With this addition amount, the number of voids is smaller than that of Comparative Example 1, and the thermal conductivity can be lowered by about 1.3 mW / mK.
- Example 8 the amount of HFO1336mzz added is 7.0 wt%. With this addition amount, the number of voids is smaller than that in Comparative Example 1, and the thermal conductivity can be lowered by about 1.5 mW / mK.
- Example 9 the amount of HFO 1336mzz added is 14.0 wt%. With this added amount, the number of voids is slightly greater than in Examples 7 and 8. The thermal conductivity can be lowered by about 1.2 mW / mK compared to Comparative Example 1.
- Example 10 the amount of HFO 1336mzz added is 21.0 wt%. With this addition amount, the number of voids increases. Therefore, the thermal conductivity is higher than that of Comparative Example 1 by 0.2 mW / mK.
- Example 7 to Example 8 As a comprehensive evaluation, it is preferable that the addition amount of Example 7 to Example 8, that is, HFO 1336mzz is 1.4 wt% or more and 14% or less.
- the core density of the polyurethane foam resin 104 is 50 kg / m 3 or less.
- the core density is the density of the portion excluding the skin layer on the surface of the polyurethane foam resin 104.
- the present disclosure can reduce the thermal conductivity of the polyurethane foam resin and can reduce the generation of large bubbles during foaming due to bumping, and has improved heat insulation performance, heat insulation box, heat insulation door And a refrigerator-freezer. Therefore, it can be applied not only to refrigerators and refrigerators but also to containers and storages that require high heat insulation performance.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Refrigerator Housings (AREA)
- Thermal Insulation (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
A heat-insulating door (101) is provided with a foamed polyurethane resin (104) foamed and filled in a space between an outer surface material (102) and an inner surface material (103). A mixture of at least polyol, polyisocyanate, cyclopentane, and HFO1234ze, which is a hydrofluoroolefin having a boiling point of 10°C or less under atmospheric pressure, is injected into a space, foamed, and cured to form the foamed polyurethane resin (104).
Description
本開示は、内部に充填発泡された発泡ポリウレタン樹脂を有する断熱体と、断熱体を有する断熱箱体と、断熱体を有する断熱扉と、これらのうち少なくとも一つを備える冷凍冷蔵庫とに関する。
The present disclosure relates to a heat insulator having a foamed polyurethane resin filled and foamed inside, a heat insulating box having a heat insulator, a heat insulating door having a heat insulator, and a refrigerator / freezer including at least one of them.
近年、地球環境保護の観点から、熱エネルギを効率的に利用する技術開発に対する社会的要望が高まっている。このような背景から、冷凍冷蔵庫において、各種部品及び機器全体の省エネルギ設計に加えて、高性能断熱技術の開発に注力されている。一般的に、冷凍冷蔵庫では、断熱材料として、発泡ポリウレタン樹脂が使用されている。
In recent years, from the viewpoint of protecting the global environment, there is an increasing social demand for technology development that efficiently uses thermal energy. From such a background, in the refrigerator-freezer, in addition to the energy-saving design of various parts and the entire device, the development of high-performance heat insulation technology is focused. In general, in a refrigerator-freezer, a polyurethane foam resin is used as a heat insulating material.
発泡ポリウレタン樹脂は、原料であるポリオール及びポリイソシアネートに発泡剤が加えられて、発泡成形されて得られる。発泡剤として、以前は、CFC及びHCFCが用いられていたが、オゾン層破壊及び地球温暖化の問題が指摘され、近年はノンフロンであるシクロペンタンを用いた発泡ポリウレタン樹脂が主流となっている。しかし、シクロペンタンを発泡剤とした発泡ポリウレタン樹脂は、CFC及びHCFCに比べて、ガスの熱伝導率が高く、発泡ポリウレタン樹脂の断熱性能が劣るという問題がある。
The foamed polyurethane resin is obtained by foaming by adding a foaming agent to polyol and polyisocyanate which are raw materials. Previously, CFC and HCFC were used as the foaming agent, but problems of ozone layer destruction and global warming have been pointed out, and in recent years, foamed polyurethane resins using cyclopentane, which is non-fluorocarbon, have become mainstream. However, the foamed polyurethane resin using cyclopentane as a foaming agent has a problem that the thermal conductivity of the gas is higher than that of CFC and HCFC, and the heat insulation performance of the foamed polyurethane resin is inferior.
そこで、発泡剤として、二酸化炭素を用い、発泡気泡の微細化を図ることで輻射伝熱を小さくし、熱伝導率を低くすることで、上記問題の解決を図っているものがある(例えば、特許文献1参照)。
Therefore, carbon dioxide is used as a foaming agent, and there is a solution that solves the above problem by reducing the radiant heat transfer by reducing the size of the foamed bubbles and lowering the thermal conductivity (for example, Patent Document 1).
しかしながら、発泡剤として二酸化炭素を用いる場合には、以下のような課題がある。二酸化炭素のガスの熱伝導率が高いため、発泡ポリウレタン樹脂の断熱性能が悪化する。また、空間に原料を注入する時に突沸し、発泡ポリウレタン樹脂に大きな気泡が生じ、断熱性能が悪化する。
However, when carbon dioxide is used as a foaming agent, there are the following problems. Since the thermal conductivity of carbon dioxide gas is high, the heat insulation performance of the polyurethane foam resin is deteriorated. In addition, when the raw material is injected into the space, it suddenly boils, large bubbles are generated in the polyurethane foam resin, and the heat insulation performance deteriorates.
本開示は、上記のような従来の課題に鑑みてなされたものであり、発泡ポリウレタン樹脂の断熱性能の優れた断熱体を提供する。また、本開示は、上記断熱体を有する断熱箱体、上記断熱体を有する断熱扉、及び、これらうち少なくとも一つを備える冷凍冷蔵庫を提供する。
The present disclosure has been made in view of the conventional problems as described above, and provides a heat insulator having excellent heat insulation performance of a polyurethane foam resin. Moreover, this indication provides the heat insulation box which has the said heat insulating body, the heat insulating door which has the said heat insulating body, and a refrigerator-freezer provided with at least one of these.
具体的には、本開示の一例による断熱体は、発泡ポリウレタン樹脂と、発泡ポリウレタン樹脂が充填発泡される空間とを備える。発泡ポリウレタン樹脂は、少なくとも、ポリオール成分と、ポリイソシアネート成分と、大気圧下における沸点が10℃以下のハイドロフルオロオレフィンである第1の発泡剤と、シクロペンタンである第2の発泡剤との混合物が、空間に注入されて、発泡し硬化されて構成されている。
Specifically, a heat insulator according to an example of the present disclosure includes a polyurethane foam resin and a space in which the polyurethane foam resin is filled and foamed. The foamed polyurethane resin is a mixture of at least a polyol component, a polyisocyanate component, a first foaming agent that is a hydrofluoroolefin having a boiling point of 10 ° C. or less under atmospheric pressure, and a second foaming agent that is cyclopentane. Is injected into the space, foamed and cured.
このような構成により、発泡ポリウレタン樹脂の気泡内のガスの熱伝導率を低くするとともに、突沸によるフォームへの大きな気泡の生成を低減することができる。また、このような構成により、発泡ポリウレタン樹脂が、大きな気泡を生じることなく発泡することができる。よって、このような構成により、発泡ポリウレタン樹脂の断熱性能、及び、発泡ポリウレタン樹脂を備えた断熱体の断熱性能を、向上させることができる。
Such a configuration can reduce the thermal conductivity of the gas in the foamed polyurethane resin bubbles and reduce the formation of large bubbles in the foam due to bumping. Further, with such a configuration, the foamed polyurethane resin can be foamed without generating large bubbles. Therefore, with such a configuration, the heat insulating performance of the polyurethane foam resin and the heat insulating performance of the heat insulator provided with the polyurethane foam resin can be improved.
また、本開示の一例による断熱体において、第1の発泡剤の熱伝導率は、好ましくは15.0mW/mK以下である。このような構成によれば、第1の発泡剤であるHFOは、二酸化炭素よりガスの熱伝導率が低いので、発泡ポリウレタン樹脂の断熱性能、及び、発泡ポリウレタン樹脂を備えた断熱体の断熱性能を高めることができる。
In the heat insulator according to an example of the present disclosure, the thermal conductivity of the first foaming agent is preferably 15.0 mW / mK or less. According to such a configuration, the first foaming agent HFO has a lower thermal conductivity of gas than carbon dioxide, so that the heat insulation performance of the foamed polyurethane resin and the heat insulation performance of the heat insulator provided with the foamed polyurethane resin. Can be increased.
また、本開示の一例による断熱体において、第1の発泡剤は、ポリオール成分に対する溶解度が、好ましくは、ポリオール成分に対する二酸化炭素の溶解度以上である。このような構成によれば、二酸化炭素よりポリオール成分に対する溶解度が高いため、発泡ポリウレタン樹脂は、発泡時に比較的緩やかに気化し、大きな気泡を生じることなく発泡することができる。これにより、発泡ポリウレタン樹脂の断熱性能、及び、発泡ポリウレタン樹脂を備えた断熱体の断熱性能を高めることができる。
Further, in the heat insulator according to an example of the present disclosure, the first blowing agent has a solubility in the polyol component, preferably higher than or equal to the solubility of carbon dioxide in the polyol component. According to such a configuration, since the solubility with respect to the polyol component is higher than that of carbon dioxide, the polyurethane foam resin is vaporized relatively slowly at the time of foaming, and can be foamed without generating large bubbles. Thereby, the heat insulation performance of a polyurethane foam resin and the heat insulation performance of the heat insulating body provided with the foam polyurethane resin can be improved.
また、本開示の一例による断熱体において、第1の発泡剤は、好ましくは、HFO1234zeまたはHFO1233zdである。第1の発泡剤が、二酸化炭素よりガスの熱伝導率が低いHFO1234zeまたはHFO1233zdで構成されているので、発泡ポリウレタン樹脂の断熱性能、及び、発泡ポリウレタン樹脂を備えた断熱体の断熱性能を高めることができる。
In the heat insulator according to an example of the present disclosure, the first foaming agent is preferably HFO1234ze or HFO1233zd. Since the first foaming agent is composed of HFO1234ze or HFO1233zd whose gas thermal conductivity is lower than that of carbon dioxide, the heat insulation performance of the polyurethane foam resin and the heat insulation performance of the heat insulator provided with the polyurethane foam resin are improved. Can do.
また、本開示の一例による断熱体において、発泡ポリウレタン樹脂のコア密度は、好ましくは50kg/m3以下である。このような構成によれば、密度からみると、発泡ポリウレタン樹脂の熱伝導率を低くできるので、発泡ポリウレタン樹脂の断熱性能、及び、発泡ポリウレタン樹脂を備えた断熱体の断熱性能を高めることができる。
In the heat insulator according to an example of the present disclosure, the core density of the foamed polyurethane resin is preferably 50 kg / m 3 or less. According to such a configuration, from the viewpoint of density, the thermal conductivity of the polyurethane foam resin can be lowered, so that the heat insulation performance of the polyurethane foam resin and the heat insulation performance of the heat insulator provided with the polyurethane foam resin can be improved. .
また、本開示の一例による断熱体において、第1の発泡剤は、発泡ポリウレタン樹脂に対する添加量が、好ましくは1%以上10%以下である。このような構成によれば、発泡ポリウレタン樹脂の注入時に突沸することを抑えることができ、発泡ポリウレタン樹脂に大きな気泡が生じることを低減することができる。よって、このような構成により、発泡ポリウレタン樹脂の断熱性能、及び、発泡ポリウレタン樹脂を備えた断熱体の断熱性能を高めることができる。
In the heat insulator according to an example of the present disclosure, the first foaming agent is preferably added in an amount of 1% to 10% with respect to the polyurethane foam resin. According to such a configuration, it is possible to suppress bumping when the polyurethane foam resin is injected, and it is possible to reduce the occurrence of large bubbles in the polyurethane foam resin. Therefore, with such a configuration, the heat insulation performance of the foamed polyurethane resin and the heat insulation performance of the heat insulator provided with the foamed polyurethane resin can be enhanced.
また、本開示の一例による断熱箱体は、上記の断熱体の特徴のうち少なくともいずれか一つを有する断熱体で構成され、断熱体が箱状の形状を有していてもよい。このような構成により、優れた断熱性能を有する断熱箱体が得られる。
Further, the heat insulating box according to an example of the present disclosure may be configured by a heat insulating body having at least one of the characteristics of the heat insulating body, and the heat insulating body may have a box shape. With such a configuration, a heat insulation box having excellent heat insulation performance can be obtained.
また、本開示の一例による断熱扉は、上記の断熱体の特徴のうち少なくともいずれか一つを有する断熱体で構成されている。このような構成により、優れた断熱性能を有する断熱扉が得られる。
In addition, a heat insulating door according to an example of the present disclosure is configured by a heat insulating body having at least one of the characteristics of the heat insulating body. With such a configuration, a heat insulating door having excellent heat insulating performance can be obtained.
また、本開示の一例による冷凍冷蔵庫は、一方向に開口部が設けられた箱体と、箱体の開口部を閉じて密閉空間が形成されるように配設された扉と、箱体と扉とから形成される密閉空間を冷却する冷却装置とを備える。箱体は、上記の断熱体の特徴のうち少なくともいずれか一つを有する断熱箱体で構成されていてもよい。このような構成により、優れた断熱性能を有する冷凍冷蔵庫が得られる。
In addition, a refrigerator-freezer according to an example of the present disclosure includes a box provided with an opening in one direction, a door disposed so as to close the opening of the box and form a sealed space, and the box, And a cooling device for cooling the sealed space formed by the door. The box may be formed of a heat insulating box having at least one of the features of the heat insulator. With such a configuration, a refrigerator-freezer having excellent heat insulation performance can be obtained.
また、本開示の一例による冷凍冷蔵庫は、一方向に開口部が設けられた箱体と、箱体の開口部を閉じて密閉空間が形成されるように配設された扉と、箱体と扉とから形成される密閉空間を冷却する冷却装置とを備える。扉は、上記の断熱体の特徴のうち少なくともいずれか一つを有する断熱扉で構成されていてもよい。このような構成により、優れた断熱性能を有する冷凍冷蔵庫が得られる。
In addition, a refrigerator-freezer according to an example of the present disclosure includes a box provided with an opening in one direction, a door disposed so as to close the opening of the box and form a sealed space, and the box, And a cooling device for cooling the sealed space formed by the door. The door may be formed of a heat insulating door having at least one of the features of the heat insulator. With such a configuration, a refrigerator-freezer having excellent heat insulation performance can be obtained.
以下、本開示の実施の形態の例を、図面を参照しながら説明する。なお、以下の実施の形態によって本開示が限定されるものではない。
Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the drawings. Note that the present disclosure is not limited to the following embodiments.
(実施の形態1)
図1は、本開示の実施の形態1における断熱体である断熱扉の断面図である。図2は、本開示の実施の形態1における断熱体である断熱扉の製造方法を示す概略図である。 (Embodiment 1)
FIG. 1 is a cross-sectional view of a heat insulating door that is a heat insulating body in Embodiment 1 of the present disclosure. FIG. 2 is a schematic diagram illustrating a method for manufacturing a heat insulating door that is a heat insulating body according to the first embodiment of the present disclosure.
図1は、本開示の実施の形態1における断熱体である断熱扉の断面図である。図2は、本開示の実施の形態1における断熱体である断熱扉の製造方法を示す概略図である。 (Embodiment 1)
FIG. 1 is a cross-sectional view of a heat insulating door that is a heat insulating body in Embodiment 1 of the present disclosure. FIG. 2 is a schematic diagram illustrating a method for manufacturing a heat insulating door that is a heat insulating body according to the first embodiment of the present disclosure.
図1及び図2に示すように、本開示の実施の形態1の断熱扉101は、断熱扉101を形成する外側の外面材102と、内側の内面材103とを有する。また、本開示の実施の形態1の断熱扉101は、外面材102と内面材103とにより形成される閉ざされた空間を有する。また、本開示の実施の形態1の断熱扉101は、外面材102と内面材103との間の閉ざされた空間に発泡充填されて形成された発泡ポリウレタン樹脂104を有する。
As shown in FIGS. 1 and 2, the heat insulating door 101 according to the first embodiment of the present disclosure includes an outer surface material 102 that forms the heat insulating door 101, and an inner surface material 103. In addition, the heat insulating door 101 according to the first embodiment of the present disclosure has a closed space formed by the outer surface material 102 and the inner surface material 103. In addition, the heat insulating door 101 according to the first embodiment of the present disclosure includes a polyurethane foam resin 104 formed by foam filling in a closed space between the outer surface material 102 and the inner surface material 103.
次に、断熱扉101の製造方法を説明する(図2参照)。まず、第1の発泡剤と第2の発泡剤とをポリオール108に混合する。第1の発泡剤は、トランス-1,1,1,3-テトラフルオロプロペン(HFO1234ze)である。HFO1234zeは、大気圧での沸点が-18.95℃であり、25℃でのガスの熱伝導率が0.0136W/mKである。第2の発泡剤は、シクロペンタンである。
Next, a method for manufacturing the heat insulating door 101 will be described (see FIG. 2). First, the first foaming agent and the second foaming agent are mixed with the polyol 108. The first blowing agent is trans-1,1,1,3-tetrafluoropropene (HFO1234ze). HFO1234ze has a boiling point of −18.95 ° C. at atmospheric pressure, and a thermal conductivity of gas at 25 ° C. of 0.0136 W / mK. The second blowing agent is cyclopentane.
次に、ミキシングヘッド107において、シクロペンタン105とHFO1234ze106とが混合されたポリオール108にポリイソシアネート109を混合し、外面材102の上に注入し、その後、すぐに内面材103を取り付けて、外面材102と内面材103との間の空間にシクロペンタン105及びHFO1234ze106が発泡し成形される。これにより、断熱扉101が製造される。
Next, in the mixing head 107, the polyisocyanate 109 is mixed with the polyol 108 in which the cyclopentane 105 and the HFO 1234ze 106 are mixed and injected onto the outer surface material 102, and then the inner surface material 103 is immediately attached to the outer surface material. Cyclopentane 105 and HFO 1234ze 106 are foamed and molded in the space between 102 and the inner surface material 103. Thereby, the heat insulation door 101 is manufactured.
発泡成形は、内面材103及び外面材102が発泡ポリウレタン樹脂104の発泡圧で変形しないように、内面材103及び外面材102の発泡ポリウレタン樹脂104と逆側が、発泡治具により固定された状態(図示なし)で行われる。
In the foam molding, a state where the inner surface material 103 and the outer surface material 102 opposite to the foamed polyurethane resin 104 are fixed by a foaming jig so that the inner surface material 103 and the outer surface material 102 are not deformed by the foaming pressure of the foamed polyurethane resin 104 ( (Not shown).
なお、外面材102または内面材103のいずれか一方に、注入口を設け、注入口から、外面材102と内面材103とが予め取り付けられて形成された空間に、発泡ポリウレタン樹脂104を注入してもよい。ポリオール108には、予め、水、整泡剤及び触媒などが混合されていてもよい。
In addition, an injection port is provided in either the outer surface material 102 or the inner surface material 103, and the polyurethane foam resin 104 is injected from the injection port into a space formed by attaching the outer surface material 102 and the inner surface material 103 in advance. May be. The polyol 108 may be mixed with water, a foam stabilizer, a catalyst, and the like in advance.
以上のように構成された本実施の形態の断熱扉101は、外面材102と内面材103との間に形成された空間を有する。また、本実施の形態の断熱扉101は、上記空間に充填発泡された発泡ポリウレタン樹脂104を有する。また、本実施の形態の断熱扉101において、発泡ポリウレタン樹脂104は、少なくとも、ポリオール108と、ポリイソシアネート109と、常温で液体の炭化水素である液状のシクロペンタン105と、大気圧下における沸点が10℃以下のHFOであるHFO1234ze106との混合物が、上記空間に注入されて、発泡し硬化したものである。
The heat insulating door 101 according to the present embodiment configured as described above has a space formed between the outer surface material 102 and the inner surface material 103. Moreover, the heat insulation door 101 of this Embodiment has the polyurethane foam resin 104 by which the said space was filled and foamed. In the heat insulating door 101 of the present embodiment, the polyurethane foam resin 104 has at least a polyol 108, a polyisocyanate 109, a liquid cyclopentane 105 that is a liquid hydrocarbon at room temperature, and a boiling point under atmospheric pressure. A mixture with HFO1234ze106, which is HFO at 10 ° C. or lower, is injected into the space, foamed and cured.
また、本実施の形態の断熱扉101は、二酸化炭素より気体状態での熱伝導率が低いHFO1234ze106が使用された発泡ポリウレタン樹脂104で構成されている。
Further, the heat insulating door 101 of the present embodiment is made of a polyurethane foam resin 104 using HFO 1234ze 106 having a lower thermal conductivity in a gaseous state than carbon dioxide.
このような構成により、発泡成形された発泡ポリウレタン樹脂104の熱伝導率が低くなり、断熱扉101の断熱性能を向上させることができる。
With such a configuration, the thermal conductivity of the foamed polyurethane resin 104 formed by foaming is lowered, and the heat insulating performance of the heat insulating door 101 can be improved.
また、HFO1234ze106の沸点は、約-19℃であるが、二酸化炭素よりポリオール108成分に対する溶解度が高いため、発泡時に比較的緩やかに気化し、大きな気泡を生じることなく、発泡することができる。これにより、発泡ポリウレタン樹脂104の断熱性能を高めることができ、断熱扉101の断熱性能を向上させることができる。
The boiling point of HFO1234ze106 is about −19 ° C., but since the solubility in the polyol 108 component is higher than that of carbon dioxide, it can be foamed without causing large bubbles by vaporizing relatively slowly during foaming. Thereby, the heat insulation performance of the polyurethane foam resin 104 can be improved, and the heat insulation performance of the heat insulation door 101 can be improved.
なお、HFO1234ze106の代わりに、HFO1336mzzを用いてもよい。HFO1336mzzは、HFO1234ze106よりも更にガスの熱伝導率が低いため、発泡成形された発泡ポリウレタン樹脂104の熱伝導率が低くなり、断熱扉101の断熱性能を向上させることができる。
Note that HFO1336mzz may be used instead of HFO1234ze106. Since HFO1336mzz has a lower thermal conductivity of gas than HFO1234ze106, the thermal conductivity of the foamed polyurethane resin 104 is reduced, and the thermal insulation performance of the thermal insulation door 101 can be improved.
(実施の形態2)
図3は、本開示の実施の形態2における冷凍冷蔵庫の概略図である。 (Embodiment 2)
FIG. 3 is a schematic diagram of the refrigerator-freezer according to the second embodiment of the present disclosure.
図3は、本開示の実施の形態2における冷凍冷蔵庫の概略図である。 (Embodiment 2)
FIG. 3 is a schematic diagram of the refrigerator-freezer according to the second embodiment of the present disclosure.
なお、本開示の実施の形態2の冷凍冷蔵庫の断熱扉の製造方法は、図2に示した実施の形態1の製造方法と同様であるので、ここでは説明は省略する。
In addition, since the manufacturing method of the heat insulation door of the refrigerator-freezer of Embodiment 2 of this indication is the same as the manufacturing method of Embodiment 1 shown in FIG. 2, description is abbreviate | omitted here.
図3に示すように、本開示の実施の形態2の冷凍冷蔵庫201は、1方向に開口部が設けられた断熱箱体202と、断熱箱体202の開口部を閉じるように配設された断熱扉203と、断熱箱体202と断熱扉203とから形成される密閉空間(収納室204)を冷却する冷却装置205とで構成されている。
As shown in FIG. 3, the refrigerator-freezer 201 according to the second embodiment of the present disclosure is disposed so as to close the heat insulating box 202 provided with an opening in one direction, and the opening of the heat insulating box 202. The heat insulating door 203 includes a cooling device 205 that cools a sealed space (storage chamber 204) formed by the heat insulating box 202 and the heat insulating door 203.
断熱箱体202と断熱扉203とで形成される空間は、野菜室、冷蔵室、及び冷凍室などの収納室204として使用される。断熱扉203は、断熱箱体202の開口部を閉じるように、複数枚、配設されている。また、断熱箱体202には、複数の収納室204が形成されている。
The space formed by the heat insulation box 202 and the heat insulation door 203 is used as a storage room 204 such as a vegetable room, a refrigerator room, and a freezer room. A plurality of the heat insulating doors 203 are disposed so as to close the opening of the heat insulating box 202. A plurality of storage chambers 204 are formed in the heat insulating box 202.
少なくとも冷凍冷蔵庫201の一番上の収納室204である冷蔵室の断熱扉203は、扉を形成する外側の外面材102(図1参照)と、内側の内面材103(図1参照)と、外面材102と内面材103との間の略閉ざされた空間に発泡充填形成された発泡ポリウレタン樹脂104(図1参照)とから構成されている。内面材103は、発泡ポリウレタン樹脂104と接触する面とは反対側の面の外周部に設けられた凸部を有する。
At least the heat insulating door 203 of the refrigerator compartment, which is the uppermost storage chamber 204 of the refrigerator / freezer 201, includes an outer surface member 102 (see FIG. 1) on the outside and an inner surface member 103 (see FIG. 1) on the inner side. It is comprised from the foaming polyurethane resin 104 (refer FIG. 1) foam-filled and formed in the substantially closed space between the outer surface material 102 and the inner surface material 103. FIG. The inner surface material 103 has a convex portion provided on the outer peripheral portion of the surface opposite to the surface in contact with the polyurethane foam resin 104.
冷蔵室において、使用し易いように、ペットボトル、ビン及び卵等のものを乗せる棚が、断熱扉203に設置されている。内面材103には、棚を固定するために必要な凸部が設けられている。なお、棚を固定するために凸部だけでなく凹部が設けられていてもよい。断熱扉203が閉じられたとき、内面材103の外周部の凸部は、冷蔵室内に収まり、冷蔵室内の冷気が外部に漏れることを抑制する。さらに、図示していないが、冷気漏れ抑制のため、凸部外周にガスケットなどを装着するとより効果的である。
In the refrigerator compartment, a shelf on which things such as plastic bottles, bottles and eggs are placed is installed on the heat insulating door 203 so as to be easy to use. The inner surface material 103 is provided with convex portions necessary for fixing the shelf. In addition, not only a convex part but the recessed part may be provided in order to fix a shelf. When the heat insulation door 203 is closed, the convex part of the outer peripheral part of the inner surface material 103 is accommodated in the refrigerator compartment, and it suppresses that the cool air in a refrigerator compartment leaks outside. Furthermore, although not shown, it is more effective to attach a gasket or the like to the outer periphery of the convex portion in order to suppress cold air leakage.
冷却装置205は、圧縮機205aと、凝縮器205bと、膨張手段(図示せず)と、蒸発器205cとから構成されている。凝縮器205bと蒸発器205cとの間には、キャピラリーチューブ及び膨張弁などの膨張部手段が配設されている。圧縮機205a、凝縮器205b、及び、蒸発器205cは、互いに配管接続されて冷凍サイクルを構成している。この冷凍サイクルでつくられた冷気が、収納室204へ供給されて各収納室204内部を冷却する。
The cooling device 205 includes a compressor 205a, a condenser 205b, expansion means (not shown), and an evaporator 205c. Expansion means such as a capillary tube and an expansion valve are disposed between the condenser 205b and the evaporator 205c. The compressor 205a, the condenser 205b, and the evaporator 205c are connected to each other by pipes to constitute a refrigeration cycle. The cool air produced by this refrigeration cycle is supplied to the storage chambers 204 to cool the interior of each storage chamber 204.
発泡ポリウレタン樹脂104は、上記実施の形態1と同様に、シクロペンタン105及びHFO1234ze106によって発泡成形されて構成されている。なお、断熱箱体202に発泡ポリウレタン樹脂104の原料を充填する場合、一般的に、断熱箱体202の背面または底面に注入口を設け、断熱箱体202を、その開口部を下にして設置して、鉛直または水平方向に原料を注入する。
The foamed polyurethane resin 104 is formed by foaming with cyclopentane 105 and HFO 1234ze 106, as in the first embodiment. In addition, when filling the raw material of the polyurethane foam resin 104 into the heat insulating box 202, generally, an inlet is provided on the back or bottom of the heat insulating box 202, and the heat insulating box 202 is installed with its opening facing down. Then, the raw material is injected vertically or horizontally.
以上のように構成された冷凍冷蔵庫201において、断熱箱体202及び断熱扉203は、上記実施の形態1で例示した断熱体101の特徴を少なくとも一つ有する断熱体で構成されている。具体的には、本実施の形態の断熱扉203は、外面材102と内面材との間の空間に充填発泡された発泡ポリウレタン樹脂104が、少なくとも、ポリオール108と、ポリイソシアネート109と、常温で液体の炭化水素である液状のシクロペンタン105と、大気圧下における沸点が10℃以下のHFOであるHFO1234ze106との混合物が、空間に注入されて、発泡し硬化して構成された断熱体で構成されている。
In the refrigerator-freezer 201 configured as described above, the heat insulating box 202 and the heat insulating door 203 are formed of a heat insulating body having at least one feature of the heat insulating body 101 exemplified in the first embodiment. Specifically, in the heat insulating door 203 of the present embodiment, the foamed polyurethane resin 104 filled and foamed in the space between the outer surface material 102 and the inner surface material is at least a polyol 108, a polyisocyanate 109, and a normal temperature. A mixture of liquid cyclopentane 105, which is a liquid hydrocarbon, and HFO 1234ze 106, which is an HFO having a boiling point of 10 ° C. or less under atmospheric pressure, is injected into the space, and is formed of a heat insulating body configured by foaming and curing. Has been.
本開示の冷凍冷蔵庫201においては、従来使われていた二酸化炭素より気体状態での熱伝導率が低いHFO1234ze106が、断熱扉203を構成する発泡ポリウレタン樹脂104に使用されている。よって、このような構成により、発泡成形された発泡ポリウレタン樹脂104の熱伝導率が低くなり、断熱扉203の断熱性能を向上させることができる。また、HFO1234ze106の沸点は-19℃であるが、HFO1234ze106は、二酸化炭素よりポリオール108成分に対する溶解度が高いため、発泡時に比較的緩やかに気化し、大きな気泡(ボイド)を生じることなく発泡することができる。これにより、発泡ポリウレタン樹脂104の断熱性能、及び、断熱扉203の断熱性能を高くすることができ、冷凍冷蔵庫201の断熱性能を向上させることができる。
In the refrigerator-freezer 201 of the present disclosure, the HFO 1234ze 106 having a lower thermal conductivity in the gas state than carbon dioxide that has been conventionally used is used for the polyurethane foam resin 104 constituting the heat insulating door 203. Therefore, with such a configuration, the thermal conductivity of the foamed polyurethane resin 104 is reduced, and the heat insulating performance of the heat insulating door 203 can be improved. HFO1234ze106 has a boiling point of −19 ° C., but HFO1234ze106 has a higher solubility in the polyol 108 component than carbon dioxide, and therefore it vaporizes relatively slowly during foaming, and foams without generating large bubbles (voids). it can. Thereby, the heat insulation performance of the polyurethane foam resin 104 and the heat insulation performance of the heat insulation door 203 can be made high, and the heat insulation performance of the refrigerator-freezer 201 can be improved.
なお、HFO1234zeの代わりに、Z-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO1336mzz)を用いてもよい。HFO1336mzzは、大気圧での沸点が7℃であり、25℃でのガスの熱伝導率が10.5W/mKである。HFO1336mzzは、HFO1234ze106よりも更にガスの熱伝導率が低いため、発泡成形された発泡ポリウレタン樹脂104の熱伝導率が低くなり、冷凍冷蔵庫201の断熱性能を向上させることができる。
Note that Z-1,1,1,4,4,4-hexafluoro-2-butene (HFO1336mzz) may be used instead of HFO1234ze. HFO1336mzz has a boiling point of 7 ° C. at atmospheric pressure, and a thermal conductivity of gas at 25 ° C. of 10.5 W / mK. Since HFO1336mzz has a lower gas thermal conductivity than HFO1234ze106, the thermal conductivity of the foamed polyurethane resin 104 is low, and the heat insulating performance of the refrigerator-freezer 201 can be improved.
以下に、冷凍冷蔵庫201に適用可能な発泡ポリウレタン樹脂のHFO1234zeまたはHFO1336mzzの添加量に対する熱伝導率とボイドとの関係について、実施例及び比較例を挙げて説明する。
Hereinafter, the relationship between the thermal conductivity and the void with respect to the addition amount of HFO1234ze or HFO1336mzz, which is a polyurethane foam resin applicable to the refrigerator-freezer 201, will be described with examples and comparative examples.
評価は、冷凍冷蔵庫201から発泡ポリウレタン樹脂104を切り出し、熱伝導率及びボイドを評価することで行われる。
Evaluation is performed by cutting out the foamed polyurethane resin 104 from the refrigerator-freezer 201 and evaluating the thermal conductivity and voids.
ボイドとは、発泡ポリウレタン樹脂104の気泡の平均径より大きい気泡である。ボイドの数は、発泡ポリウレタン樹脂104を発泡方向に切断し、断面を観察して、ボイドの数を数えることにより測定したものである。冷凍冷蔵庫201の場合、発泡方向とは壁厚に垂直な方向のことである。
The void is a bubble larger than the average diameter of the foamed polyurethane resin 104. The number of voids was measured by cutting the polyurethane foam resin 104 in the foaming direction, observing the cross section, and counting the number of voids. In the case of the refrigerator-freezer 201, the foaming direction is a direction perpendicular to the wall thickness.
実施例を(表1)に示す。
Examples are shown in (Table 1).
ここで記載する添加量は、発泡ポリウレタン樹脂104に対する重量%である。実施例1~実施例5は、第1の発泡剤として、HFO1234zeが用いられている。比較例1は、二酸化炭素の添加量が0.5wt%である。
The addition amount described here is wt% with respect to the polyurethane foam resin 104. In Examples 1 to 5, HFO1234ze is used as the first foaming agent. In Comparative Example 1, the amount of carbon dioxide added is 0.5 wt%.
実施例1では、HFO1234zeの添加量が0.5wt%である。比較例1に対して、実施例1では、添加量が少ないため、ボイドの数は少ないが、熱伝導率はほとんど変化しない。
In Example 1, the amount of HFO1234ze added is 0.5 wt%. In contrast to Comparative Example 1, in Example 1, since the addition amount is small, the number of voids is small, but the thermal conductivity hardly changes.
実施例2では、HFO1234zeの添加量が1.0wt%である。この添加量では、比較例1に対して、ボイドの数は少なく、熱伝導率を約1mW/mK低くすることができる。
In Example 2, the amount of HFO1234ze added is 1.0 wt%. With this addition amount, the number of voids is smaller than that of Comparative Example 1, and the thermal conductivity can be lowered by about 1 mW / mK.
実施例3では、HFO1234zeの添加量が5.0wt%である。この添加量では、比較例1に対して、ボイドの数は少なく、熱伝導率を約1mW/mK低くすることができる。
In Example 3, the amount of HFO1234ze added is 5.0 wt%. With this addition amount, the number of voids is smaller than that of Comparative Example 1, and the thermal conductivity can be lowered by about 1 mW / mK.
実施例4では、HFO1234zeの添加量が10.0wt%である。この添加量では、ボイドの数は実施例2及び実施例3よりは少し増える。熱伝導率は、比較例1に対して、約0.7mW/mK低くすることができる。
In Example 4, the amount of HFO1234ze added is 10.0 wt%. With this addition amount, the number of voids is slightly greater than in Example 2 and Example 3. The thermal conductivity can be lowered by about 0.7 mW / mK compared to Comparative Example 1.
実施例5では、HFO1234zeの添加量が15.0wt%である。この添加量では、ボイドの数が増えてしまう。このため、熱伝導率が、比較例1に対して、0.5mW/mK高くなってしまう。
In Example 5, the amount of HFO1234ze added is 15.0 wt%. With this addition amount, the number of voids increases. For this reason, the thermal conductivity is higher than that of Comparative Example 1 by 0.5 mW / mK.
総合的な評価としては、実施例2~実施例4、つまり、HFO1234zeの添加量が1wt%以上10%以下であることが好ましい。実施例2~実施例4では、発泡ポリウレタン樹脂104のコア密度は、50kg/m3以下である。コア密度とは、発泡ポリウレタン樹脂104の表面のスキン層を除いた部分の密度のことである。
As a comprehensive evaluation, it is preferable that the amount of HFO 1234ze added is 1 wt% or more and 10% or less in Examples 2 to 4. In Examples 2 to 4, the core density of the polyurethane foam resin 104 is 50 kg / m 3 or less. The core density is the density of the portion excluding the skin layer on the surface of the polyurethane foam resin 104.
以上の結果より、HFO1234zeの添加量が1wt%以上10%以下にすることで、注入時に突沸することを抑えることができ、発泡ポリウレタン樹脂104に大きな気泡が生じることを低減することができるので、発泡ポリウレタン樹脂104の断熱性能を高めることができる。これにより、冷凍冷蔵庫201の断熱性能を向上させることができる。
From the above results, by making the addition amount of HFO1234ze 1 wt% or more and 10% or less, it is possible to suppress bumping at the time of injection, and it is possible to reduce the occurrence of large bubbles in the polyurethane foam resin 104. The heat insulation performance of the polyurethane foam resin 104 can be enhanced. Thereby, the heat insulation performance of the refrigerator-freezer 201 can be improved.
別の実施例を(表2)に示す。
Another example is shown in (Table 2).
ここで記載する添加量は、発泡ポリウレタン樹脂104に対する重量%である。実施例6~実施例10は、第1の発泡剤として、HFO1336mzzが用いられている。比較例1は、二酸化炭素の添加量が0.5wt%である。
The addition amount described here is wt% with respect to the polyurethane foam resin 104. In Examples 6 to 10, HFO1336mzz is used as the first foaming agent. In Comparative Example 1, the amount of carbon dioxide added is 0.5 wt%.
実施例6では、HFO1336mzzの添加量が0.7wt%である。比較例1に対して、実施例6では、添加量が少ないため、ボイドの数は少ないが、熱伝導率は少ししか変化しない。
In Example 6, the amount of HFO 1336mzz added is 0.7 wt%. In contrast to Comparative Example 1, in Example 6, since the addition amount is small, the number of voids is small, but the thermal conductivity changes only slightly.
実施例7では、HFO1336mzzの添加量が1.4wt%である。この添加量では、比較例1に対して、ボイドの数は少なく、熱伝導率を約1.3mW/mK低くすることができる。
In Example 7, the amount of HFO1336mzz added is 1.4 wt%. With this addition amount, the number of voids is smaller than that of Comparative Example 1, and the thermal conductivity can be lowered by about 1.3 mW / mK.
実施例8では、HFO1336mzzの添加量が7.0wt%である。この添加量では、比較例1に対して、ボイドの数は少なく、熱伝導率を約1.5mW/mK低くすることができる。
In Example 8, the amount of HFO1336mzz added is 7.0 wt%. With this addition amount, the number of voids is smaller than that in Comparative Example 1, and the thermal conductivity can be lowered by about 1.5 mW / mK.
実施例9では、HFO1336mzzの添加量が14.0wt%である。この添加量では、ボイドの数は実施例7及び8よりは少し増える。熱伝導率は、比較例1に対して、約1.2mW/mK低くすることができる。
In Example 9, the amount of HFO 1336mzz added is 14.0 wt%. With this added amount, the number of voids is slightly greater than in Examples 7 and 8. The thermal conductivity can be lowered by about 1.2 mW / mK compared to Comparative Example 1.
実施例10では、HFO1336mzzの添加量が21.0wt%である。この添加量では、ボイドの数が増えてしまう。そのため、熱伝導率が、比較例1に対して、0.2mW/mK高くなってしまう。
In Example 10, the amount of HFO 1336mzz added is 21.0 wt%. With this addition amount, the number of voids increases. Therefore, the thermal conductivity is higher than that of Comparative Example 1 by 0.2 mW / mK.
総合的な評価としては、実施例7~実施例8、つまり、HFO1336mzzの添加量が1.4wt%以上14%以下であることが好ましい。実施例7~実施例8では、発泡ポリウレタン樹脂104のコア密度は、50kg/m3以下である。コア密度とは、発泡ポリウレタン樹脂104の表面のスキン層を除いた部分の密度のことである。
As a comprehensive evaluation, it is preferable that the addition amount of Example 7 to Example 8, that is, HFO 1336mzz is 1.4 wt% or more and 14% or less. In Examples 7 to 8, the core density of the polyurethane foam resin 104 is 50 kg / m 3 or less. The core density is the density of the portion excluding the skin layer on the surface of the polyurethane foam resin 104.
以上の結果より、HFO1336mzzの添加量が1.4wt%以上14%以下にすることで、注入時に突沸することを抑えることができ、発泡ポリウレタン樹脂104に大きな気泡が生じることを低減することができる。よって、発泡ポリウレタン樹脂104の断熱性能を高めることができる。これにより、冷凍冷蔵庫201の断熱性能を向上させることができる。
From the above results, by making the addition amount of HFO 1336mzz 1.4 wt% or more and 14% or less, bumping at the time of injection can be suppressed, and generation of large bubbles in the polyurethane foam resin 104 can be reduced. . Therefore, the heat insulation performance of the polyurethane foam resin 104 can be enhanced. Thereby, the heat insulation performance of the refrigerator-freezer 201 can be improved.
本開示は、発泡ポリウレタン樹脂の熱伝導率を低減することができるとともに、突沸による発泡時の大きな気泡の生成を低減することができ、断熱性能が向上された断熱体、断熱箱体、断熱扉、及び冷凍冷蔵庫を提供する。よって、冷凍冷蔵庫はもちろん、高い断熱性能を要する容器及び貯蔵庫などにも適用することができる。
The present disclosure can reduce the thermal conductivity of the polyurethane foam resin and can reduce the generation of large bubbles during foaming due to bumping, and has improved heat insulation performance, heat insulation box, heat insulation door And a refrigerator-freezer. Therefore, it can be applied not only to refrigerators and refrigerators but also to containers and storages that require high heat insulation performance.
101 断熱扉
102 外面材
103 内面材
104 発泡ポリウレタン樹脂
105 シクロペンタン
106 HFO1234ze
108 ポリオール
109 ポリイソシアネート
201 冷凍冷蔵庫
202 断熱箱体
203 断熱扉
204 収納室
205 冷却装置
205a 圧縮機
205b 凝縮器
205c 蒸発器 DESCRIPTION OFSYMBOLS 101 Heat insulation door 102 Outer surface material 103 Inner surface material 104 Foam polyurethane resin 105 Cyclopentane 106 HFO1234ze
108Polyol 109 Polyisocyanate 201 Refrigeration refrigerator 202 Heat insulation box 203 Heat insulation door 204 Storage chamber 205 Cooling device 205a Compressor 205b Condenser 205c Evaporator
102 外面材
103 内面材
104 発泡ポリウレタン樹脂
105 シクロペンタン
106 HFO1234ze
108 ポリオール
109 ポリイソシアネート
201 冷凍冷蔵庫
202 断熱箱体
203 断熱扉
204 収納室
205 冷却装置
205a 圧縮機
205b 凝縮器
205c 蒸発器 DESCRIPTION OF
108
Claims (10)
- 発泡ポリウレタン樹脂と、
前記発泡ポリウレタン樹脂が充填発泡される空間とを備え、
前記発泡ポリウレタン樹脂は、少なくとも、ポリオール成分と、ポリイソシアネート成分と、大気圧下における沸点が10℃以下のハイドロフルオロオレフィンである第1の発泡剤と、シクロペンタンである第2の発泡剤との混合物が、前記空間に注入されて、発泡、硬化したものであることを特徴とする断熱体。 Polyurethane foam resin,
A space in which the foamed polyurethane resin is filled and foamed,
The foamed polyurethane resin comprises at least a polyol component, a polyisocyanate component, a first foaming agent that is a hydrofluoroolefin having a boiling point of 10 ° C. or less under atmospheric pressure, and a second foaming agent that is cyclopentane. A heat insulator, wherein the mixture is injected into the space and foamed and cured. - 前記第1の発泡剤の熱伝導率は、15.0mW/mK以下である
請求項1に記載の断熱体。 The heat insulator according to claim 1, wherein the thermal conductivity of the first foaming agent is 15.0 mW / mK or less. - 前記第1の発泡剤は、前記ポリオール成分に対する溶解度が、前記ポリオール成分に対する二酸化炭素の溶解度以上である
請求項1または請求項2に記載の断熱体。 3. The heat insulating body according to claim 1, wherein the first foaming agent has a solubility in the polyol component equal to or higher than a solubility of carbon dioxide in the polyol component. - 前記第1の発泡剤が、HFO1234zeまたはHFO1336mzzである
請求項1から3のいずれか一項に記載の断熱体。 The heat insulating body according to any one of claims 1 to 3, wherein the first foaming agent is HFO1234ze or HFO1336mzz. - 前記発泡ポリウレタン樹脂のコア密度が、50kg/m3以下である
請求項1から3のいずれか一項に記載の断熱体。 The heat insulating body according to any one of claims 1 to 3, wherein a core density of the polyurethane foam resin is 50 kg / m 3 or less. - 前記第1の発泡剤は、前記発泡ポリウレタン樹脂に対する添加量が、1%以上10%以下である
請求項1から5のいずれか一項に記載の断熱体。 6. The heat insulating body according to claim 1, wherein the first foaming agent has an addition amount of 1% to 10% with respect to the foamed polyurethane resin. - 請求項1から6のいずれか一項に記載の断熱体が箱状の形状を有する断熱箱体。 The heat insulation box which the heat insulation as described in any one of Claim 1 to 6 has a box shape.
- 請求項1から6のいずれか一項に記載の断熱体を有する断熱扉。 The heat insulation door which has a heat insulating body as described in any one of Claim 1 to 6.
- 一方向に開口部が設けられた箱体と、前記箱体の前記開口部を閉じて密閉空間が形成されるように配設された扉と、前記箱体と前記扉とから形成される前記密閉空間を冷却する冷却装置とからなる冷凍冷蔵庫において、前記箱体が請求項7に記載の断熱箱体である冷凍冷蔵庫。 A box provided with an opening in one direction; a door disposed to close the opening of the box to form a sealed space; and the box and the door. The refrigerator-freezer which consists of a cooling device which cools airtight space, The refrigerator-freezer whose said box is the heat insulation box of Claim 7.
- 一方向に開口部が設けられた箱体と、前記箱体の前記開口部を閉じて密閉空間が形成されるように配設された扉と、前記箱体と前記扉とから形成される前記密閉空間を冷却する冷却装置とからなる冷凍冷蔵庫において、前記扉が請求項8に記載の断熱扉である冷凍冷蔵庫。 A box provided with an opening in one direction; a door disposed to close the opening of the box to form a sealed space; and the box and the door. A refrigerator-freezer comprising a cooling device for cooling a sealed space, wherein the door is a heat-insulating door according to claim 8.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019502919A JPWO2018159430A1 (en) | 2017-03-01 | 2018-02-22 | Insulation, insulation box, insulation door and refrigerator |
CN201880014526.1A CN110382578A (en) | 2017-03-01 | 2018-02-22 | Heat insulator, heat insulating box, insulated door and freezing-cooling storeroom |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-038345 | 2017-03-01 | ||
JP2017038345 | 2017-03-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159430A1 true WO2018159430A1 (en) | 2018-09-07 |
Family
ID=63371324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/006347 WO2018159430A1 (en) | 2017-03-01 | 2018-02-22 | Heat-insulating body, heat-insulating box body, heat-insulating door, and refrigerator-freezer |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2018159430A1 (en) |
CN (1) | CN110382578A (en) |
WO (1) | WO2018159430A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023085796A (en) * | 2021-12-09 | 2023-06-21 | 株式会社ジェイエスピー | Manufacturing method of polystyrene-based resin extruded foam board |
JP2023105071A (en) * | 2019-02-27 | 2023-07-28 | 旭有機材株式会社 | Polyol chemical composition |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015500362A (en) * | 2011-12-09 | 2015-01-05 | ハネウェル・インターナショナル・インコーポレーテッド | Articles made from foam and foam comprising HCFO or HFO blowing agent |
WO2015112849A1 (en) * | 2014-01-27 | 2015-07-30 | E. I. Du Pont De Nemours And Company | Cryogenic insulation foam |
JP2016074912A (en) * | 2009-12-16 | 2016-05-12 | ハネウェル・インターナショナル・インコーポレーテッド | Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene |
JP2016121363A (en) * | 2009-09-09 | 2016-07-07 | アーケマ・インコーポレイテッド | Improved polyurethane foaming process using halogenated olefin blowing agents and foam properties |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0915912A2 (en) * | 2008-07-17 | 2018-03-06 | Panasonic Corporation | thermal insulation material, thermal insulation box, thermal insulation door, and freezer cooler |
AU2012346370B2 (en) * | 2011-12-02 | 2016-07-14 | The Chemours Company Fc, Llc. | Foam expansion agent compositions containing Z-1,1,1,4,4,4-hexafluoro-2-butene and their uses in the preparation of polyurethane and polyisocyanurate polymer foams |
CN104788642A (en) * | 2015-05-11 | 2015-07-22 | 南京林业大学 | Hard polyurethane foam for ultralow-temperature insulation and preparation method thereof |
CN105601978B (en) * | 2015-11-10 | 2018-05-11 | 南京红宝丽聚氨酯有限公司 | A kind of hard polyurethane foams |
CN105985503B (en) * | 2016-06-20 | 2019-04-02 | 海信容声(广东)冰箱有限公司 | A kind of negative-pressure foaming polyurethane reaction composition and the method using the composition preparation polyurethane foam |
-
2018
- 2018-02-22 WO PCT/JP2018/006347 patent/WO2018159430A1/en active Application Filing
- 2018-02-22 JP JP2019502919A patent/JPWO2018159430A1/en active Pending
- 2018-02-22 CN CN201880014526.1A patent/CN110382578A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016121363A (en) * | 2009-09-09 | 2016-07-07 | アーケマ・インコーポレイテッド | Improved polyurethane foaming process using halogenated olefin blowing agents and foam properties |
JP2016074912A (en) * | 2009-12-16 | 2016-05-12 | ハネウェル・インターナショナル・インコーポレーテッド | Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene |
JP2015500362A (en) * | 2011-12-09 | 2015-01-05 | ハネウェル・インターナショナル・インコーポレーテッド | Articles made from foam and foam comprising HCFO or HFO blowing agent |
WO2015112849A1 (en) * | 2014-01-27 | 2015-07-30 | E. I. Du Pont De Nemours And Company | Cryogenic insulation foam |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023105071A (en) * | 2019-02-27 | 2023-07-28 | 旭有機材株式会社 | Polyol chemical composition |
JP7733060B2 (en) | 2019-02-27 | 2025-09-02 | 旭有機材株式会社 | Polyol chemical composition |
JP2023085796A (en) * | 2021-12-09 | 2023-06-21 | 株式会社ジェイエスピー | Manufacturing method of polystyrene-based resin extruded foam board |
JP7667730B2 (en) | 2021-12-09 | 2025-04-23 | 株式会社ジェイエスピー | Manufacturing method of polystyrene resin extruded foam board |
Also Published As
Publication number | Publication date |
---|---|
CN110382578A (en) | 2019-10-25 |
JPWO2018159430A1 (en) | 2019-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI471516B (en) | Insulation, insulation box, insulated doors and frozen storage | |
JP2011196644A (en) | Heat insulation box, method of manufacturing heat insulation box, and refrigerator-freezer | |
JP2010236770A (en) | Insulated box and refrigerator-freezer | |
TWI524041B (en) | An insulated box, and a refrigerator and a drinking water storage device provided with the insulated cabinet | |
KR20140137108A (en) | refrigerator and manufacturing method thereof | |
US20170268715A1 (en) | Heat-insulating wall, heat-insulating box and method for producing the same | |
JP2001248782A (en) | Deformation method of vacuum insulation material, fixing method of vacuum insulation material, freezing / refrigeration container and heat insulation box | |
CN105985503A (en) | Polyurethane reaction composition for negative pressure foaming and method for preparing polyurethane foam by using composition | |
WO2018159430A1 (en) | Heat-insulating body, heat-insulating box body, heat-insulating door, and refrigerator-freezer | |
JP2018179407A (en) | refrigerator | |
CN106750489B (en) | Foaming agent and hard polyurethane foam | |
JP2025114323A (en) | Insulation body, insulated box, insulated door and refrigerator | |
JP2011163639A (en) | Heat insulating door, method of manufacturing heat insulating door, and refrige-freezer | |
JPH07103640A (en) | Heat insulating box body | |
JP2012220128A (en) | Heat insulation box, method of manufacturing the heat insulation box, and refrigerator-freezer | |
JP5891106B2 (en) | Rigid urethane foam, insulated door and insulated box for refrigerator using rigid urethane foam, premix polyol for producing rigid urethane foam, and method for producing insulated box or insulated door | |
JP5889707B2 (en) | Premix polyol composition for rigid urethane foam, method for producing rigid urethane foam using the same, and insulated door body | |
JP2012159240A (en) | Heat insulation box body, and refrigerator-freezer | |
JP2017015319A (en) | Heat insulation box | |
JP5878423B2 (en) | Rigid polyurethane foam and premix polyol for manufacturing rigid polyurethane foam | |
JP5801247B2 (en) | Heat insulation door, heat insulation box and method for manufacturing heat insulation door | |
JP2011099573A (en) | Method of manufacturing heat insulating housing | |
JP2009002629A (en) | Heat insulation box | |
JP2011094897A (en) | Heat insulating case body, refrigerator-freezer, method of manufacturing the heat insulating case body and method of manufacturing the refrigerator-freezer | |
KR101584898B1 (en) | Heat insulating material and refrigerator having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18760342 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019502919 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18760342 Country of ref document: EP Kind code of ref document: A1 |