WO2018159524A1 - Electrode catalyst, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack - Google Patents
Electrode catalyst, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack Download PDFInfo
- Publication number
- WO2018159524A1 WO2018159524A1 PCT/JP2018/006928 JP2018006928W WO2018159524A1 WO 2018159524 A1 WO2018159524 A1 WO 2018159524A1 JP 2018006928 W JP2018006928 W JP 2018006928W WO 2018159524 A1 WO2018159524 A1 WO 2018159524A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- catalyst
- core
- gas diffusion
- shell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to an electrode catalyst. More specifically, the present invention relates to an electrode catalyst suitably used for a gas diffusion electrode, and relates to an electrode catalyst suitably used for a gas diffusion electrode of a fuel cell. The present invention also relates to a composition for forming a gas diffusion electrode, a membrane / electrode assembly, and a fuel cell stack comprising the electrode catalyst particles.
- PEFC polymer electrolyte fuel cell
- a noble metal catalyst composed of noble metal particles of a platinum group element such as platinum (Pt) is used.
- Pt platinum group element
- a “Pt-supported carbon catalyst” in which Pt fine particles are supported on conductive carbon powder (hereinafter referred to as “Pt / C catalyst” if necessary) is known (for example, Pt / C catalyst having a Pt loading of 50 wt% manufactured by NE CHEMCAT, trade name: “NE-F50”, etc.).
- the ratio of the cost occupied by the noble metal catalyst such as Pt is large in the manufacturing cost of PEFC, which is a problem for reducing the cost of PEFC and popularizing PEFC.
- research and development of a low noble metalization technology or a de noble metalization technology of a catalyst has been advanced.
- Patent Document 1 discloses a particle composite material (core-shell catalyst particle) having a configuration in which palladium (Pd) or a Pd alloy (corresponding to a core part) is covered with an atomic thin layer of Pt atoms (corresponding to a shell part). Is disclosed.
- this patent document 1 describes, as an example, core-shell catalyst particles in which the core part is a layer made of Pd particles and the shell part is made of Pt. Further, a configuration including a metal element other than the core Pt group as a constituent element has been studied. On the contrary, a configuration in which a metal element other than the Pt group is included in the shell portion as a constituent element has been proposed. For example, as a configuration including tungsten (W) as a constituent element of the core portion, a configuration having a core portion made of W alone, a W alloy, and a W oxide has been proposed (for example, Patent Documents 2 to 9). Further, as a configuration including W as a constituent element of the shell portion, a configuration having a shell portion made of W alone, a W alloy, and a W oxide has been proposed (for example, Patent Document 10).
- W tungsten
- Patent Documents 2 to 5 disclose configurations having a core portion containing W oxide.
- particles that are an alloy of a reduction product (WO 2-y , 0 ⁇ y ⁇ 2) having a core part of WO 2 and a shell part of WO 2 and Pd are supported on a carbon support.
- Patent Document 2 A synthesis example of the catalyst having the structure is disclosed (Patent Document 2, Example 8).
- Patent Document 3 discloses platinum-metal oxide composite particles having W oxide (such as sodium tungsten oxide) as a core portion and Pt as a shell portion.
- Patent Document 4 metal oxide particles composed of two or more solid solutions selected from a single element of W or a group of metal elements containing W are used as base particles (core part), and a group of Pt (zero-valent) or Pt is included.
- Catalyst particles having a structure in which two or more solid solutions selected from metal elements are used as a metal coating layer (shell portion) have been proposed.
- Patent Document 5 proposes a catalyst particle having a structure in which W oxide is used as a base particle (core part) and one or more metals such as Pt (shell part) covering at least a part of the surface of the base particle. Yes.
- Patent Documents 6 to 9 disclose a structure having a core portion containing W alone or a W alloy (W solid solution).
- Patent Document 6 discloses catalyst particles having W alone, an alloy of W and a metal selected from another group of metals, a mixture thereof as an inner core (core part), and Pt or Pt alloy as an outer shell part.
- a core particle (core part) made of a metal atom other than Pt or an alloy of a metal atom other than Pt (core part), and a metal particle having a shell layer (shell part) made of Pt on the surface of the core particle are electrically conductive carriers.
- a Pt-containing catalyst having a structure supported on the catalyst is disclosed.
- Patent Document 7 discloses a core particle (core part) having a face-centered cubic crystal structure made of W alone or a W alloy as a material, and a shell layer (shell) having a face-centered cubic crystal structure made of a metal such as Pt. Part) is disclosed.
- Patent Document 9 discloses core-shell type fine particles having a core particle (core part) made of W alone or a W alloy as a material and a shell layer (shell part) made of a metal such as Pt.
- Patent Document 11 a catalyst in which Pt or a Pt alloy is supported on W carbide particles has been proposed as an electrode catalyst for a fuel cell (Patent Document 11).
- Patent Document 11 W carbide particles (particles of a mixture of WC and W 2 C or particles composed of WC) are generated on the conductive carbon to modify the surface of the conductive carbon.
- a catalyst having Pt particles supported on the particles is disclosed.
- Patent Document 12 discloses a catalyst in which Pt particles are supported on particles mainly composed of WC. However, a configuration in which catalyst particles are supported on a conductive carbon support has not been studied.
- Non-Patent Document 1 discloses a catalyst in which Pt particles are supported on particles mainly composed of W 2 C.
- a configuration in which catalyst particles are supported on a conductive carbon support has not been studied.
- a structure intended to improve the catalytic activity as well as the amount of Pt has been proposed (for example, Patent Documents). 13).
- Patent Document 13 discloses a center particle (core part) containing a Pd alloy, an outermost layer (shell part) containing Pt, and an intermediate layer made of only Pd (zero valence) between the center particle and the outermost layer.
- electrode catalyst fine particles for a fuel cell having a child core-shell structure provided with There have been proposed electrode catalyst fine particles for a fuel cell having a child core-shell structure provided with.
- the present invention relates to an electrode catalyst for a fuel cell comprising a conductive carrier and catalyst particles having a core-shell structure supported on the carrier, and for an electrode having a core portion containing a W compound (particularly W carbide) as a main constituent.
- a W compound particularly W carbide
- Patent Document 2 in which a structure having a core portion containing W oxide is disclosed, a reduction product (WO 2-y , 0) having a core portion of WO 2 and a shell portion of WO 2 on a carbon support.
- Patent Document 2 a reduction product having a core portion of WO 2 and a shell portion of WO 2 on a carbon support.
- Patent Document 2 a catalyst having a structure in which particles that are an alloy of ⁇ y ⁇ 2) and Pd are supported
- the catalytic activity of this example is Pd on a carbon support. It is shown that the improvement is made with respect to the comparative example (Patent Document 2, Comparative Example 2) in which particles are supported (Patent Document 2, FIG. 11).
- Patent Document 2 Comparative Example 2 in which particles are supported
- Patent Documents 3 to 5 which disclose other configurations having a core portion containing W oxide, do not describe examples corresponding to catalysts having a core portion containing W oxide, and are durable. Sex has not been demonstrated. That is, Patent Document 3 does not describe an example. Further, Patent Document 4 and Patent Document 5 do not describe examples of catalysts having a structure using conductive carbon as a carrier. Further, when the configuration of the example is expressed by “shell part / core part”, the example is “Pt / CeO 2 ”, “reduction-precipitated Pt (zero valence) and Ru simple substance / CeO 2 ”, “reduction precipitation”. Pt (zero valence) and Ru simple substance / CeO 2 .ZrO 2 solid solution ”, which is only a result of a toxic substance purification performance evaluation test.
- Patent Documents 6 to 9 which disclose a structure having a core portion containing W alone or a W alloy (W solid solution) have a core portion containing W alone or a W alloy (W solid solution).
- W solid solution W alone or a W alloy
- About patent document 6, what is described as an Example and performance evaluation is expressed as "Pt / Ag” (Patent Document 6, Example 1, Example 4), “Shell part / core part”, " This is only the configuration of “Pt / Au” (Patent Document 6, Example 2, and Example 3).
- performance evaluation it is only described that “a high specific activity can be obtained in an electrochemical test using an RDE (rotating ring disk electrode)”, and the details of how much durability is improved are unknown.
- Patent Document 7 the performance evaluation is described as an example, and only the configuration of “Pt / Ru” (Patent Document 7, Example 1) is expressed by “shell part / core part”.
- Patent Document 8 and Patent Document 9 an example of synthesizing “W core fine particles (fine particles of W simple substance)” is described, but there is no description of an example in which a shell portion is formed and used as a catalyst.
- What is described as an example and evaluated for performance is only the configuration of “Pt / Ru” and “Pt / Ni” when expressed as “shell part / core part” (paragraph [0111] of Patent Document 8, Example 1 and Example 2 of Patent Document 9).
- Patent Document 11 in which a catalyst in which Pt or a Pt alloy is supported on W carbide particles is proposed, W carbide particles are generated on the conductive carbon by surface modification of the conductive carbon.
- a catalyst in which Pt particles are supported on the particles is disclosed (Patent Document 11, Example 1, Example 2). Specifically, if the configuration of the examples (“Example 1” and “Example 2” in Patent Document 11) is expressed as “shell part / core part”, Pt / (mixture of WC and W 2 C), Pt / (particles made of WC). The durability of the catalyst (the degree of deterioration of the initial performance) is estimated by an accelerated deterioration test.
- Patent Document 12 in which a catalyst in which Pt or a Pt alloy is supported on W carbide particles is proposed, an example of a configuration in which catalyst particles are supported on a conductive carbon carrier is not described.
- the catalyst having Pt particles supported on WC synthesized via a specific precursor compound such as W 2 N and WS 2 improves CO poisoning resistance and anode catalyst It is shown that the activity is improved.
- Patent Document 12 it is unclear whether the configuration of this example is an effective configuration in terms of obtaining excellent durability as compared with the conventional Pt / C catalyst.
- Non-Patent Document 1 in which a catalyst in which Pt or a Pt alloy is supported on W carbide particles is proposed, an example of a configuration in which catalyst particles are supported on a conductive carbon support is not described.
- An example of a catalyst having a structure in which Pt particles are supported on W 2 C is disclosed.
- this example discloses that catalytic activity such as ECSA is improved as compared with a catalyst having a structure in which alloy particles of Pt and Ru are supported on a carbon support.
- the configuration of this example is an effective configuration in terms of obtaining excellent durability as compared with the conventional Pt / C catalyst.
- the present invention has been made in view of such technical circumstances, and provides an electrode catalyst that has superior durability compared to conventional Pt / C catalysts and can contribute to cost reduction.
- Another object of the present invention is to provide a gas diffusion electrode forming composition, a gas diffusion electrode, a membrane / electrode assembly (MEA), and a fuel cell stack, each including the electrode catalyst.
- the present inventors have a configuration capable of obtaining excellent durability as compared with a conventional Pt / C catalyst in the case of adopting a W-based material as a constituent material of the core portion with the intention of reducing the amount of Pt used.
- the inventors of the present invention are effective in a configuration including a core portion including at least W carbide and a two-layer shell portion. More specifically, the Pd is provided between the core portion and the shell portion including Pt (zero valence).
- the inventors have found that it is effective to provide a shell portion including (zero valence) (a configuration that is neither disclosed nor suggested in the prior art) and have completed the present invention. More specifically, the present invention includes the following technical matters.
- a conductive carrier Catalyst particles supported on the carrier; Contains
- the catalyst particles have a core part formed on the carrier, a first shell part formed on the core part, and a second shell part formed on the first shell part.
- the core portion includes WC and W carbide including WC 1-x (0 ⁇ x ⁇ 1),
- the first shell portion includes Pd (zero valence),
- the second shell portion contains Pt (zero valence),
- the core particles serving as the precursor of the core part satisfy the condition of the following formula (1).
- An electrode catalyst is provided.
- I1 indicates the peak intensity of a peak attributed to WC obtained by X-ray diffraction measurement of the core particle
- I2 is obtained by X-ray diffraction measurement of the core particle.
- the peak intensity of the peak attributed to WC 1-x (0 ⁇ x ⁇ 1) is shown.
- the electrode catalyst of the present invention has superior durability and low cost compared to the conventional Pt / C catalyst by adopting the above-described configuration. Can contribute to
- the “W carbide” indicates a form in which a tungsten (W) atom and a carbon (C) atom exist as a compound having a bond.
- W 2 C may further be included in the core part within a range where the effects of the present invention are obtained.
- the core particles serving as the precursor of the core part further satisfy the condition of the following formula (2). 0.02 ⁇ ⁇ I3 / (I1 + I2 + I3) ⁇ ⁇ 0.30 (1)
- I1 represents the same peak intensity as I1 in the formula (1)
- I2 represents the same peak intensity as I2 in the formula (1)
- I3 represents X of the core particle. The peak intensity of the peak attributed to W 2 C obtained by line diffraction measurement is shown.
- the W carbide includes WC, WC 1-x (0 ⁇ x ⁇ 1), and may further include W 2 C.
- WC, WC 1-x (0 ⁇ x ⁇ 1), and W 2 C are “Binary Alloy Phase Diagrams, Second Edition (author / editor H. Okamoto et al, publisher / publisher ASM International)”. This corresponds to the ⁇ phase (WC), ⁇ phase (WC 1-x ), and ⁇ phase (W 2 C) described on page 896, “WC Phase Diagram”.
- WC, WC 1-x (0 ⁇ x ⁇ 1), and W 2 C are also described in, for example, the following papers. M. Gubisch, Y.
- the W carbide contained in the core particle that is a precursor of the core part of the electrode catalyst is confirmed by X-ray diffraction measurement (hereinafter referred to as “XRD measurement” if necessary). be able to.
- X-ray diffraction spectrum is measured by irradiating X-ray (Cu—K ⁇ ray) to the core particle powder which is a precursor of the electrode catalyst core part, and WC, WC 1-x (0 ⁇ x ⁇ 1), W 2 C and the like can be confirmed by the presence or absence by observing characteristic peaks attributed to each W carbide.
- a peak attributed to WC as a peak at a diffraction angle 2 ⁇ ( ⁇ 0.3 °) of X-ray diffraction, for example, 31.513 °, 35.639 °, 48.300 °, 64.016 °. , A characteristic peak observed in the vicinity of 65.790 °.
- the peak attributed to WC 1-x is a peak at a diffraction angle 2 ⁇ ( ⁇ 0.3 °) of X-ray diffraction, for example, 36.977 °, 42.887 °, 62.027 °, 74
- the characteristic peaks observed in the vicinity of 198 ° and 78.227 ° are listed.
- a peak at a diffraction angle 2 ⁇ ( ⁇ 0.3 °) of X-ray diffraction is 34.535 °, 38.066 °, 39.592 °, 52.332 °.
- the characteristic peak observed in the vicinity of 61.879 ° is raised.
- I3 means a diffraction angle 2 ⁇ ( ⁇ 0.3 °) of the vicinity of 39.300 ° among peaks attributed to W 2 C obtained by X-ray diffraction measurement of the core particles. The peak intensity of the peak is shown.
- the configuration of the catalyst particles supported on the support (main constituent material) / the configuration of the conductive support (main It is written " More specifically, it is expressed as “shell configuration / core configuration / support configuration”. More specifically, it is expressed as “configuration of second shell portion / configuration of first shell portion / configuration of core portion / configuration of carrier”.
- the structure of the electrode catalyst is “a second shell portion made of Pt (zero valence), a first shell portion made of Pd (zero valence), a core portion mainly composed of W carbide, and a carrier made of conductive carbon. ”Is expressed as“ Pt / Pd / WC / C ”.
- the core portion may further contain W oxide as long as the effects of the present invention are obtained.
- W zero valence
- W zero valence
- this invention provides the composition for gas diffusion electrode formation containing the electrode catalyst of any one of the above-mentioned this invention. Since the composition for forming a gas diffusion electrode of the present invention contains the electrode catalyst of the present invention, it has superior durability compared to conventional Pt / C catalysts and can contribute to cost reduction. A gas diffusion electrode can be easily manufactured.
- this invention provides the gas diffusion electrode containing the catalyst for electrodes of the above-mentioned this invention.
- the gas diffusion electrode of the present invention includes the electrode catalyst of the present invention. Therefore, it becomes easy to set it as the structure which has the outstanding durability compared with the conventional Pt / C catalyst, and can contribute to cost reduction.
- this invention provides the membrane electrode assembly (MEA) containing the gas diffusion electrode of the above-mentioned this invention. Since the membrane-electrode assembly (MEA) of the present invention includes the gas diffusion electrode of the present invention, it has superior durability compared to conventional Pt / C catalysts and contributes to cost reduction. It becomes easy to set it as the structure which can be performed.
- the present invention also provides a fuel cell stack including the above-described membrane-electrode assembly (MEA) of the present invention.
- MEA membrane-electrode assembly
- the fuel cell stack of the present invention since it includes the membrane-electrode assembly (MEA) of the present invention, the fuel cell stack has excellent durability compared with the conventional Pt / C catalyst, and is low in cost. It becomes easy to make it the structure which can contribute to.
- the present invention also provides a gas diffusion electrode forming composition, a gas diffusion electrode, a membrane / electrode assembly (MEA), and a fuel cell stack comprising such an electrode catalyst.
- FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the electrode catalyst (core-shell catalyst) of the present invention.
- FIG. 2 is a schematic cross-sectional view showing another preferred embodiment of the electrode catalyst (core-shell catalyst) of the present invention.
- the electrode catalyst 10 of the present invention includes a carrier 2 and catalyst particles 3 having a so-called “core-shell structure” formed on the carrier 2.
- the catalyst particle 3 includes a so-called “core shell” including a core portion 4 formed on the carrier 2 and a shell portion 7 (first shell portion 5 and second shell portion 6) formed on the core portion 4. Structure ".
- the electrode catalyst 10 has a structure in which the core part 4 is a core (core) on the carrier 2 and the surface of the core part 4 is covered with the first shell part 5 and the second shell part 6 being the shell part 7. have.
- the constituent elements (chemical composition) of the core portion, the constituent elements (chemical composition) of the first shell portion 5 and the second shell portion 6 are different.
- the electrode catalyst only needs to have a shell portion formed on at least a part of the surface of the core portion.
- the electrode catalyst 10 is preferably in a state in which substantially the entire surface of the core portion 4 is covered by the shell portion 7. .
- the electrode catalyst 1 is covered with a part of the surface of the core part 4 and the surface of the core part 4 is partially exposed within the range in which the effect of the present invention can be obtained ( For example, a state in which a part 4s of the surface of the core portion 4 shown in FIG.
- the shell part 7a and the shell part 7b may be partially formed on part of the surface of the core part 4 as in the electrode catalyst 10A shown in FIG.
- the second shell portion 6a covers a substantially entire surface of the first shell portion 5a.
- a part of the surface of the first shell portion 5b is covered and the surface of the first shell portion 5b is partially exposed (for example, 2 may be a state in which a part 5s of the surface of the first shell portion 5b shown in FIG. 2 is exposed.
- the electrode catalyst of the present invention may be in a state where the electrode catalyst 10 shown in FIG. 1 and the electrode catalyst 10A shown in FIG.
- the shell portion 7a and the shell portion 7b may be mixed with respect to the same core portion 4 as shown in FIG. .
- only the shell portion 7 a may be formed on the same core portion 4, and only the shell portion 7 b is formed on the same core portion 4. May be in a state where any of the states is formed (not shown).
- the electrode catalyst 1 includes, on the carrier 2, in addition to at least one of the electrode catalyst 10 and the electrode catalyst 10A described above, A state in which “particles of only the core portion 4 not covered” are supported may be included (not shown).
- the electrode catalyst 1 includes “particles consisting only of constituent elements of the shell portion 7 in addition to at least one of the electrode catalyst 10 and the electrode catalyst 10A described above. "May be included in a state where it is not in contact with the core portion 4 (not shown).
- the electrode catalyst 1 includes, in addition to at least one of the above-described electrode catalyst 10 and electrode catalyst 10A, “a core portion not covered with the shell portion 7. A state in which “only four particles” and “particles composed only of the constituent elements of the shell portion 7” are independently supported may be included.
- a preferable range is suitably set by the design concept of the catalyst for electrodes.
- Pt constituting the second shell portion 6 it is preferably a layer composed of one atom (one atomic layer).
- the thickness of the second shell portion 6 is equivalent to twice the diameter of one atom of the metal element (when approximating a sphere) when the metal element constituting the second shell portion 6 is one kind. It is preferable that the thickness be
- a layer composed of one atom one atom formed by juxtaposing two or more types of atoms on the surface of the core portion 4.
- the thickness corresponding to the layer) is preferable.
- the thickness is preferably 1 to 5 nm, and more preferably 2 to 10 nm.
- the “average particle diameter” refers to an average value of the diameters of particles composed of an arbitrary number of particle groups, as observed with an electron micrograph.
- the thickness of the first shell portion 5 is preferably equal to or less than the thickness of the second shell portion 6. This is preferable because the amount of Pd used can be reduced and the amount of Pd eluted when used as an electrode catalyst can be reduced.
- the carrier 2 is not particularly limited as long as it can carry a composite composed of the core part 4, the first shell part 5, and the second shell part 6 and has a large surface area. Furthermore, it is preferable that the support
- Carrier 2 is glassy carbon (GC), fine carbon, carbon black, graphite, carbon fiber, activated carbon, pulverized product of activated carbon, carbon nanofiber, carbon nanotube, etc., or glass or ceramics material such as oxide. It can be adopted as appropriate.
- a carbon-based material is preferable from the viewpoint of the adsorptivity with the core portion 4 and the BET specific surface area of the carrier 2.
- conductive carbon is preferable, and as the conductive carbon, conductive carbon black is particularly preferable. Examples of the conductive carbon black include trade names “Ketjen Black EC300J”, “Ketjen Black EC600”, “Carbon EPC” and the like (manufactured by Lion Chemical Co., Ltd.).
- the core portion 4 has a configuration including WC and W carbide including WC 1-x (0 ⁇ x ⁇ 1). Further, the core portion 4 may further include W 2 C. Further, the core portion 4 may further contain W oxide as the W compound as another component of the W carbide. Further, when a component other than the W compound is included, the component is preferably W (zero valent). Furthermore, the core part 4 has the core particle
- the core particles as the precursor of the core is further satisfies the condition of formula (2) It is preferable. 0.02 ⁇ ⁇ I2 / (I1 + I2 + I3) ⁇ ⁇ 0.30 (2)
- I1 indicates the peak intensity of a peak attributed to WC obtained by X-ray diffraction measurement of the core particle
- I2 indicates WC obtained by X-ray diffraction measurement of the core particle.
- the peak intensity of the peak attributed to 1-x (0 ⁇ x ⁇ 1) is shown.
- the peak intensity of nearby peaks is shown.
- I1 indicates the same peak intensity as I1 in Formula (1)
- I2 indicates the same peak intensity as I2 in Formula (1)
- I3 Indicates the peak intensity of the peak attributed to W 2 C obtained by X-ray diffraction measurement of the core particles.
- the first shell portion 5 includes Pd (zero valence). From the viewpoints of obtaining the effects of the present invention more reliably and manufacturing easiness, the first shell portion 5 is preferably composed of Pd (zero valence) as a main component (50 wt% or more). More preferably, it is composed of 0 valence).
- the second shell portion 6 contains Pt (zero valence). From the viewpoints of obtaining the effects of the present invention more reliably and manufacturing easiness, the second shell portion 6 is preferably composed of Pt (zero valence) as a main component (50 wt% or more), Pt ( More preferably, it is composed of 0 valence).
- the cores of the electrode catalyst 10 and the electrode catalyst 10A so that the value of ⁇ I2 / (I1 + I2) ⁇ in the above formula (1) is 0.03 to 0.75.
- the present inventors have found that the effects of the present invention can be obtained by constituting the core particles that are the precursors of the parts.
- the present inventors when the value of ⁇ I2 / (I1 + I2) ⁇ in the above formula (1) is 0.03 or more, the present inventors have WC 1-x (0 ⁇ x ⁇ 1) with respect to WC in the core particle. ) Is relatively increased and durability is expected to improve. On the other hand, when the value of ⁇ I2 / (I1 + I2) ⁇ is 0.75 or less, the present inventors set the content of WC 1-x (0 ⁇ x ⁇ 1) relative to WC to an amount necessary for improving durability. It is speculated that sufficient conductivity of the core particles can be ensured while ensuring the same.
- the method for producing electrode catalyst 10 (10A) includes a “core particle forming step” in which core particles containing W carbide and W oxide are formed on a support, and the surface of the core particles obtained through the core particle forming step.
- the first shell part 5 (5a, 5b) is formed on at least a part of the first shell part forming step, and the second shell part is formed on at least a part of the surface of the particles obtained through the first shell part forming step.
- the electrode catalyst 10 (10A) includes catalyst particles 3 (3a) that are catalyst components of the electrode catalyst, that is, the core portion 4, the first shell portion 5 (5a, 5b), and the second shell portion 6 (6a, 6b). ) Are sequentially supported on the carrier 2.
- the method for producing the electrode catalyst 10 (10A) is not particularly limited as long as the catalyst particles 3 (3a) as the catalyst component can be supported on the carrier 2.
- an impregnation method in which a solution containing a catalyst component is brought into contact with the support 2 and the support component 2 is impregnated with the catalyst component
- a liquid phase reduction method in which a reducing agent is added to the solution containing the catalyst component
- UPD underpotential deposition
- other electrochemical deposition methods chemical reduction methods, reduction deposition methods using adsorbed hydrogen, alloy catalyst surface leaching methods, displacement plating methods, sputtering methods, vacuum deposition methods and the like
- the above-mentioned known methods are combined so as to satisfy the condition of the formula (1) described above, preferably the condition of the formula (2) described above, etc. It is preferable to adjust the raw materials, the mixing ratio of the raw materials, the reaction conditions for the synthesis reaction, and the like.
- a treatment for reducing the W oxide present on the surface of the core particles is performed. You may give it. For example, a reduction treatment of the surface of the core particle or a W oxide removal treatment with an acid may be performed.
- the core particles of the electrode catalyst 10 and the electrode catalyst 10A so as to satisfy preferable conditions such as the condition represented by the above-described formula (1) and the condition represented by the formula (2)
- preferable conditions such as the condition represented by the above-described formula (1) and the condition represented by the formula (2)
- Analyze the chemical composition and structure of the product (catalyst) using various known analytical methods feed back the analysis results obtained to the manufacturing process, select the raw material to be selected, the blending ratio of the raw material, the selected synthesis reaction. Examples thereof include a method for preparing / changing the reaction conditions of the synthesis reaction.
- FIG. 3 shows a gas diffusion electrode forming composition containing the electrode catalyst of the present invention, a gas diffusion electrode produced using this gas diffusion electrode forming composition, and a membrane / electrode assembly comprising this gas diffusion electrode
- FIG. 2 is a schematic diagram showing a preferred embodiment of a fuel cell stack including a MEMBRANE ELECTRODE ASSEMBLY (hereinafter abbreviated as “MEA” as necessary).
- the fuel cell stack 40 shown in FIG. 3 has a configuration in which the MEA 42 is a unit cell and a plurality of the unit cells are stacked.
- the fuel cell stack 40 includes an anode 43 (negative electrode) that is a gas diffusion electrode, a cathode 44 (positive electrode) that is a gas diffusion electrode, and an electrolyte membrane 45 disposed between these electrodes. have.
- the fuel cell stack 40 has a configuration in which the MEA 42 is sandwiched between a separator 46 and a separator 48.
- the gas diffusion electrode forming composition, the anode 43 and the cathode 44, and the MEA 42, which are members of the fuel cell stack 40 including the electrode catalyst of the present invention, will be described.
- the electrode catalyst of the present invention can be used as a so-called catalyst ink component to form the gas diffusion electrode forming composition of the present invention.
- the gas diffusion electrode forming composition of the present invention is characterized by containing the electrode catalyst of the present invention.
- the composition for forming a gas diffusion electrode contains the electrode catalyst and an ionomer solution as main components.
- the composition of the ionomer solution is not particularly limited.
- the ionomer solution may contain a polymer electrolyte having hydrogen ion conductivity, water, and alcohol.
- the polymer electrolyte contained in the ionomer solution is not particularly limited.
- the polymer electrolyte can be exemplified by a perfluorocarbon resin having a known sulfonic acid group or carboxylic acid group.
- a perfluorocarbon resin having a known sulfonic acid group or carboxylic acid group.
- polymer electrolytes having hydrogen ion conductivity Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.) It can be illustrated.
- the composition for forming a gas diffusion electrode can be prepared by mixing, crushing, and stirring an electrode catalyst and an ionomer solution.
- the composition for forming a gas diffusion electrode can be prepared using a pulverizing mixer such as a ball mill or an ultrasonic disperser.
- the pulverization conditions and the stirring conditions when operating the pulverization mixer can be appropriately set according to the mode of the gas diffusion electrode forming composition.
- Each composition of the electrode catalyst, water, alcohol, and polymer electrolyte having hydrogen ion conductivity contained in the gas diffusion electrode forming composition has a good dispersion state of the electrode catalyst, and the electrode catalyst is gas diffused. It is appropriately set so that the entire catalyst layer of the electrode can be widely spread and the power generation performance of the fuel cell can be improved.
- the anode 43 which is a gas diffusion electrode, has a configuration including a gas diffusion layer 43a and a catalyst layer 43b formed on the surface of the gas diffusion layer 43a on the electrolyte membrane 45 side.
- the cathode 44 has a gas diffusion layer (not shown) and a catalyst layer (not shown) formed on the surface of the gas diffusion layer on the electrolyte membrane 45 side.
- the electrode catalyst of the present invention may be contained in at least one of the anode 43 and the cathode 44.
- the gas diffusion electrode of this invention can be used as an anode and can also be used as a cathode.
- the catalyst layer 43b is a layer in the anode 43 where a chemical reaction is performed in which the hydrogen gas sent from the gas diffusion layer 43a is dissociated into hydrogen ions by the action of the electrode catalyst 10 contained in the catalyst layer 43b. Further, the catalyst layer 43b is formed of the electrode catalyst 10 in which, in the cathode 44, the catalyst layer 43b contains air (oxygen gas) sent from the gas diffusion layer 43a and hydrogen ions that have moved through the electrolyte membrane from the anode. It is a layer in which a chemical reaction that binds by action takes place.
- the catalyst layer 43b is formed using the gas diffusion electrode forming composition.
- the catalyst layer 43b preferably has a large surface area so that the reaction between the electrode catalyst 10 and the hydrogen gas or air (oxygen gas) sent from the gas diffusion layer 43a can be sufficiently performed.
- the catalyst layer 43b is preferably formed so as to have a uniform thickness throughout. The thickness of the catalyst layer 43b may be appropriately adjusted and is not limited, but is preferably 2 to 200 ⁇ m.
- the gas diffusion layer provided in the anode 43 serving as the gas diffusion electrode and the cathode 44 serving as the gas diffusion electrode is introduced into the gas flow path formed between the separator 46 and the anode 43 from the outside of the fuel cell stack 40.
- This is a layer provided for diffusing the hydrogen gas and the air (oxygen gas) introduced into the gas flow path formed between the separator 48 and the cathode 44 into each catalyst layer.
- the gas diffusion layer has a role of supporting the catalyst layer and immobilizing it on the surface of the gas diffusion electrode.
- the gas diffusion layer has a function / structure that allows hydrogen gas or air (oxygen gas) to pass through well and reach the catalyst layer. For this reason, it is preferable that the gas diffusion layer has water repellency.
- the gas diffusion layer has a water repellent component such as polyethylene terephthalate (PTFE).
- the member which can be used for the gas diffusion layer is not particularly limited, and a known member used for the gas diffusion layer of the fuel cell electrode can be used.
- a known member used for the gas diffusion layer of the fuel cell electrode can be used.
- carbon paper, carbon paper as a main raw material, and carbon powder, ion-exchanged water as optional components, and a secondary material made of polyethylene terephthalate dispersion as a binder are applied to carbon paper.
- the anode 43 that is a gas diffusion electrode and the cathode 44 that is a gas diffusion electrode may include an intermediate layer (not shown) between the gas diffusion layer and the catalyst layer.
- the gas diffusion electrode of this invention should just be manufactured so that the electrode catalyst of this invention may become a structural component of a catalyst layer, and a manufacturing method is not specifically limited, A well-known manufacturing method is employable.
- the gas diffusion electrode is formed by applying a gas diffusion electrode forming composition containing an electrode catalyst, a polymer electrolyte having hydrogen ion conductivity, and an ionomer to the gas diffusion layer, and You may manufacture through the process of drying the gas diffusion layer with which the composition was apply
- An MEA 42 that is a preferred embodiment of the MEA of the present invention shown in FIG. 3 has a configuration including an anode 43, a cathode 44, and an electrolyte membrane 45.
- the MEA 42 has a configuration in which at least one of an anode and a cathode includes a gas diffusion electrode containing the electrode catalyst of the present invention.
- the MEA 42 can be manufactured by laminating the anode 43, the electrolyte 300, and the cathode 44 in this order, and then press-bonding them.
- a fuel cell stack 40 that is a preferred embodiment of the fuel cell stack of the present invention shown in FIG. 3 has a configuration in which a separator 46 is disposed outside the anode 43 of the MEA 42 and a separator 48 is disposed outside the cathode 44.
- One unit cell single cell
- this unit cell single cell
- two or more units are integrated (not shown).
- the fuel cell system is completed by attaching and assembling peripheral devices to the fuel cell stack 40.
- This Pt / Pd / W / C powder is prepared by preparing a mixed solution of the following Pd / W / C powder, potassium chloroplatinate, and water, and adding a reducing agent to the Pt / Pd / W / C powder. It was obtained by reducing the ions.
- Pd / W / C powder in which a first shell portion made of Pd is formed on W / C “Pd / W / C” powder in which a first shell portion made of Pd is formed on W of the following “W / C” powder particles ⁇ trade name “NE-F02W00-AA”, NE CHEMCAT Made) ⁇ .
- This Pd / W / C powder was prepared by preparing a mixed solution of the following W / C powder, sodium tetrachloropalladium (II) and water, and adding a reducing agent to the palladium in the liquid obtained. It can be obtained by reducing ions.
- This W / C powder is a powder containing a commercially available carbon black powder (specific surface area 750 to 850 m 2 / g), a commercially available tungstate, and a commercially available water-soluble polymer (carbon source) in a reducing atmosphere. It was prepared by heat treatment.
- XRD measurement was performed with the following apparatus and measurement conditions.
- the apparatus name “X′PertPRO” manufactured by Panallytical was used as the apparatus.
- the Pt loading rate L Pt (wt%), the Pd loading rate L Pd (wt%), and the W loading rate L W (wt%) were measured by the following methods.
- the electrode catalyst of Example 1 was immersed in aqua regia to dissolve the metal. Next, insoluble component carbon was removed from the aqua regia. Next, aqua regia without carbon was analyzed by ICP. The results of ICP analysis are shown in Table 1.
- the first shell made of Pd was formed on at least a part of the surface of the core part particles made of W carbide and W oxide.
- a catalyst particle having a core-shell structure in which a second shell portion layer made of Pt is formed on at least a part of the first shell portion layer is supported on a conductive carbon carrier. (See FIG. 1 and FIG. 2).
- Pd / W / C powder in which a first shell portion made of Pd is formed on W / C “Pd / W / C” powder in which a first shell portion made of Pd is formed on W of the following “W / C” powder particles ⁇ trade name “NE-G02W00-AA”, NE CHEMCAT Made) ⁇ .
- This Pd / W / C powder was prepared by preparing a mixed solution of the following W / C powder, sodium tetrachloropalladium (II) and water, and adding a reducing agent to the palladium in the liquid obtained. It can be obtained by reducing ions.
- W / C powder (core particle serving as a precursor of the core of the electrode catalyst)
- W / C powder ⁇ trade name “NE-G00W00-A”, manufactured by NE CHEMCAT) ⁇ in which core particles composed of W carbide and W oxide were supported on carbon black powder was prepared.
- the W / C powder was measured by the following XRD measurement, and the peak intensity ratio ⁇ I2 / (I1 + I2) ⁇ in which WC, W 2 C, and WC 1-x (0 ⁇ x ⁇ 1) are shown in Table 1 was obtained. , ⁇ I2 / (I1 + I2 + I3) ⁇ , respectively.
- This W / C powder is a powder containing a commercially available carbon black powder (specific surface area 200 to 300 m 2 / g), a commercially available tungstate, and a commercially available water-soluble polymer (carbon source) in a reducing atmosphere. It was prepared by heat treatment.
- the electrode catalyst of Example 2 was subjected to ICP analysis of the electrode catalyst under the same conditions as the electrode catalyst of Example 1. The results of each analysis are shown in Table 1. Next, also for the electrode catalyst of Example 2, as a result of confirming the STEM-HAADF image and the EDS elementary mapping image, at least part of the surface of the particle of the core portion composed of W carbide and W oxide was formed from Pd.
- the catalyst particles having the core-shell structure in which the first shell layer is formed and the second shell portion layer made of Pt is formed on at least a part of the first shell layer are supported on the conductive carbon carrier. It was confirmed that it has the configuration (see FIGS. 1 and 2).
- Example 3 to Example 6 XRD measurement results ⁇ I2 / (I1 + I2) ⁇ and ⁇ I2 / (I1 + I2 + I3) ⁇ of core particles that are precursors of the core part of the electrode catalyst shown in Table 1, ICP analysis results (L Example 3 to Example 3 were carried out using the same preparation conditions and the same raw materials as in Example 2 except that the amount of raw materials charged, reaction conditions, etc. were finely adjusted to have Pt , L Pd , L W ). The electrode catalyst of Example 6 was produced. ICP analysis was performed under the same conditions as in Example 1.
- the electrode catalysts of Examples 3 to 6 as a result of confirming the STEM-HAADF image and the EDS elementary mapping image, it was found that at least a part of the surface of the core particle composed of W carbide and W oxide was present.
- the catalyst particles having the core-shell structure in which the first shell layer made of Pd is formed and the second shell layer made of Pt is formed on at least a part of the first shell layer are conductive carbon. It was confirmed that the structure supported on the carrier (see FIGS. 1 and 2) was provided.
- Example 7 to 10 XRD measurement results ⁇ I2 / (I1 + I2) ⁇ and ⁇ I2 / (I1 + I2 + I3) ⁇ of core particles that are precursors of the core part of the electrode catalyst shown in Table 1, ICP analysis results (L Pt 1 , L Pd , L W ), Examples 7 to 5 were carried out using the same raw materials and preparation conditions as in Example 1 except that the amount of raw materials charged and reaction conditions were finely adjusted. The electrode catalyst of Example 10 was prepared. XPS analysis and ICP analysis were also performed under the same conditions as in Example 1.
- the electrode catalysts of Examples 7 to 10 as a result of confirming the STEM-HAADF image and the EDS elementary mapping image, it was found that at least a part of the surface of the core particle composed of W carbide and W oxide was present.
- the catalyst particles having the core-shell structure in which the first shell layer made of Pd is formed and the second shell layer made of Pt is formed on at least a part of the first shell layer are conductive carbon. It was confirmed that the structure supported on the carrier (see FIGS. 1 and 2) was provided.
- a Pt / C catalyst (trade name: “SA50BH”) manufactured by NE CHEMCAT with a Pt loading rate of 50 wt% was prepared.
- SA50BH Pt / C catalyst
- This catalyst uses the same carrier as the electrode catalyst of Example 1 as a raw material.
- the electrode catalyst of Comparative Example 1 was subjected to XRD analysis and ICP analysis under the same conditions as those of the electrode catalyst of Example 1. The results are shown in Table 1.
- Pd / W / C powder in which a first shell portion made of Pd is formed on W / C “Pd / W / C” powder in which a first shell portion made of Pd is formed on W of the following “W / C” powder particles ⁇ trade name “NE-G02W00-DB”, NE CHEMCAT Made) ⁇ .
- This Pd / W / C powder was prepared by preparing a mixed solution of the following W / C powder, sodium tetrachloropalladium (II) and water, and adding a reducing agent to the palladium in the liquid obtained. It can be obtained by reducing ions.
- the electrode catalyst of Comparative Example 2 was also subjected to ICP analysis of the electrode catalyst under the same conditions as those of the electrode catalyst of Example 1. The results are shown in Table 1. In addition, as a result of confirming the STEM-HAADF image and the EDS elementary mapping image, the electrode catalyst of Comparative Example 2 was confirmed to have a configuration (see FIGS. 1 and 2).
- the W carbide was composed only of WC.
- the electrode catalysts of Comparative Examples 3 to 4 as a result of confirming the STEM-HAADF image and the EDS elementary mapping image, it was found that at least a part of the surface of the core particle composed of W carbide and W oxide was present.
- the catalyst particles having the core-shell structure in which the first shell layer made of Pd is formed and the second shell layer made of Pt is formed on at least a part of the first shell layer are conductive carbon. It was confirmed that the structure supported on the carrier (see FIGS. 1 and 2) was provided.
- composition was applied to the entire electrode surface of the rotating disk electrode WE to form a coating film.
- the coating film made of this gas diffusion electrode forming composition was dried at a temperature of 23 ° C. and a humidity of 50% RH for 2.5 hours to form a catalyst layer CL on the surface of the rotating disk electrode WE.
- FIG. 4 is a schematic diagram showing a schematic configuration of a rotating disk electrode measuring apparatus 50 used in the rotating disk electrode method (RDE method).
- the rotating disk electrode measuring device 50 mainly includes a measurement cell 51, a reference electrode RE, a counter electrode CE, and a rotating disk electrode WE. Furthermore, when evaluating a catalyst, electrolyte solution ES is put into the measurement cell 51.
- the measurement cell 51 has a substantially cylindrical shape having an opening on the upper surface, and a fixing member 52 for the rotating disk electrode WE that also serves as a lid capable of gas sealing is disposed in the opening.
- a gas sealable opening for fixing the electrode main body portion of the rotating disk electrode WE while being inserted into the measurement cell 51 is provided at the center of the fixing member 52.
- a substantially L-shaped Lugin tube 53 is arranged next to the measurement cell 51.
- one end portion of the Luggin tube 53 has a Luggin capillary structure, and is inserted into the measurement cell 51, so that the electrolyte ES of the measurement cell 51 also enters the Luggin tube 53.
- the other end of the Lugin tube 53 has an opening, and the reference electrode RE is inserted into the Lugin tube 53 through the opening.
- “Model HSV110” manufactured by Hokuto Denko Co., Ltd. was used as the rotating disk electrode measuring device 50.
- an Ag / AgCl saturated electrode was used as the reference electrode RE, a Pt mesh with Pt black was used as the counter electrode CE, and an electrode having a diameter of 5.0 mm ⁇ and an area of 19.6 mm 2 was used as the rotating disk electrode WE. . Furthermore, using the HCl0 4 of 0.1M as the electrolyte ES.
- V-1) [Initial ECSA measurement]
- I Potential sweep process The potential (vsRHE) of the rotating disk electrode WE with respect to the reference electrode RE was swept in a so-called "rectangular wave potential sweep mode" shown in FIG. More specifically, a potential sweep was performed for 6 cycles with the operation shown in (A) to (D) below as one cycle.
- A Potential at start of sweep: +600 mV
- B Sweep from +600 mV to +1000 mV
- C Hold potential at +1000 mV for 3 seconds
- D Sweep from +1000 mV to +600 mV
- E Hold potential at +600 mV 3 seconds.
- the ECSA value obtained in the last “(ii) CV measurement” (the ECSA value after the potential sweep process in which the total number of potential sweeps is 12420 cycles) was obtained.
- the retention rate of ESCA (% ) was calculated.
- the ESCA retention rate (%) after 12420 cycles of potential sweep obtained for the electrode catalyst of Comparative Example 1 and the electrode catalysts of Examples 1 to 10 and Comparative Examples 2 to 4 In order to compare the obtained ESCA maintenance rate (%) after the number of potential sweeps 12420 cycles, the ESCA maintenance rate (%) after the number of potential sweeps 12420 cycles obtained for the electrode catalyst of Comparative Example 1 was calculated. The relative value of the retention rate (%) of ESCA after 12420 cycles of potential sweeps of other catalysts when 1.00 was set was calculated. The relative value results obtained for Examples 1 to 10 and Comparative Examples 1 to 4 are shown in Table 1.
- the electrode catalyst of the present invention has excellent durability compared to conventional Pt / C catalysts and can contribute to cost reduction. Accordingly, the present invention is an electrode catalyst that can be applied not only to the electric equipment industry such as fuel cells, fuel cell vehicles, and portable mobiles, but also to energy farms, cogeneration systems, etc. Contribute to development.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
Description
本発明は、電極用触媒に関する。より詳しくは、ガス拡散電極に好適に使用される電極用触媒に関し、燃料電池のガス拡散電極により好適に使用される電極用触媒に関する。
また本発明は、上記電極用触媒粒子を含む、ガス拡散電極形成用組成物、膜・電極接合体、及び、燃料電池スタックに関する。
The present invention relates to an electrode catalyst. More specifically, the present invention relates to an electrode catalyst suitably used for a gas diffusion electrode, and relates to an electrode catalyst suitably used for a gas diffusion electrode of a fuel cell.
The present invention also relates to a composition for forming a gas diffusion electrode, a membrane / electrode assembly, and a fuel cell stack comprising the electrode catalyst particles.
固体高分子形燃料電池(Polymer Electrolyte Fuel Cell:以下、必要に応じて「PEFC」という)は、燃料電池自動車、家庭用コジェネレーションシステムの電源としての研究開発が行われている。 The polymer electrolyte fuel cell (hereinafter referred to as “PEFC” as required) is being researched and developed as a power source for fuel cell vehicles and household cogeneration systems.
PEFCのガス拡散電極に使用される触媒には、白金(Pt)等の白金族元素の貴金属粒子からなる貴金属触媒が用いられている。
例えば、典型的な従来の触媒としては、導電性カーボン粉末上にPt微粒子を担持させた「Pt担持カーボン触媒」(以下、必要に応じ「Pt/C触媒」という)が知られている(例えば、N.E.CHEMCAT社製のPt担持率50wt%のPt/C触媒、商品名:「NE-F50」など)。
PEFCの製造コストの中でPt等の貴金属触媒が占めるコストの割合は大きく、PEFCの低コスト化、PEFCの普及に向けた課題になっている。
この課題を解決するために、触媒の低貴金属化技術、又は、脱貴金属化技術の研究開発が進められている。
As a catalyst used for a PEFC gas diffusion electrode, a noble metal catalyst composed of noble metal particles of a platinum group element such as platinum (Pt) is used.
For example, as a typical conventional catalyst, a “Pt-supported carbon catalyst” in which Pt fine particles are supported on conductive carbon powder (hereinafter referred to as “Pt / C catalyst” if necessary) is known (for example, Pt / C catalyst having a Pt loading of 50 wt% manufactured by NE CHEMCAT, trade name: “NE-F50”, etc.).
The ratio of the cost occupied by the noble metal catalyst such as Pt is large in the manufacturing cost of PEFC, which is a problem for reducing the cost of PEFC and popularizing PEFC.
In order to solve this problem, research and development of a low noble metalization technology or a de noble metalization technology of a catalyst has been advanced.
これらの研究開発の中で、白金の使用量を低減するため、従来、非白金元素からなるコア部とPtからなるシェル部から形成されるコアシェル構造を有する触媒粒子(以下、必要に応じ「コアシェル触媒粒子」という)が検討されており、多数の報告がなされている。
例えば、特許文献1には、パラジウム(Pd)又はPd合金(コア部に相当)がPt原子の原子的薄層(シェル部に相当)によって被覆された構成を有する粒子複合材(コアシェル触媒粒子)が開示されている。更に、この特許文献1には、実施例としてコア部がPd粒子で、シェル部がPtからなる層であるコアシェル触媒粒子が記載されている。
更に、コア部Pt族以外の金属元素を構成元素として含む構成も検討されている。また、これとは逆に、シェル部に、Pt族以外の金属元素を構成元素として含む構成も提案されている。
例えば、タングステン(W)をコア部の構成元素として含む構成としては、W単体、W合金、W酸化物からなるコア部を有する構成が提案されている(例えば、特許文献2~9)。
更に、Wをシェル部の構成元素として含む構成としては、W単体、W合金、W酸化物からなるシェル部を有する構成が提案されている(例えば、特許文献10)。
In these research and development, in order to reduce the amount of platinum used, conventionally, catalyst particles having a core-shell structure formed of a core portion made of a non-platinum element and a shell portion made of Pt (hereinafter referred to as “core-shell” "Catalyst particles" are being studied, and many reports have been made.
For example, Patent Document 1 discloses a particle composite material (core-shell catalyst particle) having a configuration in which palladium (Pd) or a Pd alloy (corresponding to a core part) is covered with an atomic thin layer of Pt atoms (corresponding to a shell part). Is disclosed. Furthermore, this patent document 1 describes, as an example, core-shell catalyst particles in which the core part is a layer made of Pd particles and the shell part is made of Pt.
Further, a configuration including a metal element other than the core Pt group as a constituent element has been studied. On the contrary, a configuration in which a metal element other than the Pt group is included in the shell portion as a constituent element has been proposed.
For example, as a configuration including tungsten (W) as a constituent element of the core portion, a configuration having a core portion made of W alone, a W alloy, and a W oxide has been proposed (for example, Patent Documents 2 to 9).
Further, as a configuration including W as a constituent element of the shell portion, a configuration having a shell portion made of W alone, a W alloy, and a W oxide has been proposed (for example, Patent Document 10).
より詳細には、特許文献2~特許文献5には、W酸化物を含むコア部を有する構成が開示されている。
特許文献2においては、炭素担体上に、コア部がWO2、シェル部がWO2の還元生成物(WO2-y、0<y≦2)とPdとの合金である粒子を担持させた構成の触媒の合成例が開示されている(特許文献2、実施例8)。
特許文献3には、W酸化物(酸化タングステンナトリウムなど)をコア部、Ptなどをシェル部とする白金-金属酸化物複合粒子が開示されている。
特許文献4には、W単体またはWを含む一群の金属元素から選択される2以上の固溶体からなる金属酸化物粒子を基粒子(コア部)とし、Pt(0価)またはPtを含む一群の金属元素から選択される2以上の固溶体を金属被覆層(シェル部)とする構成の触媒粒子が提案されている。
特許文献5には、W酸化物を基粒子(コア部)とし、基粒子の表面の少なくとも一部を被覆する一種以上のPtなどの金属(シェル部)とする構成の触媒粒子が提案されている。
More specifically, Patent Documents 2 to 5 disclose configurations having a core portion containing W oxide.
In Patent Document 2, particles that are an alloy of a reduction product (WO 2-y , 0 <y ≦ 2) having a core part of WO 2 and a shell part of WO 2 and Pd are supported on a carbon support. A synthesis example of the catalyst having the structure is disclosed (Patent Document 2, Example 8).
Patent Document 3 discloses platinum-metal oxide composite particles having W oxide (such as sodium tungsten oxide) as a core portion and Pt as a shell portion.
In Patent Document 4, metal oxide particles composed of two or more solid solutions selected from a single element of W or a group of metal elements containing W are used as base particles (core part), and a group of Pt (zero-valent) or Pt is included. Catalyst particles having a structure in which two or more solid solutions selected from metal elements are used as a metal coating layer (shell portion) have been proposed.
Patent Document 5 proposes a catalyst particle having a structure in which W oxide is used as a base particle (core part) and one or more metals such as Pt (shell part) covering at least a part of the surface of the base particle. Yes.
また、特許文献6~特許文献9には、W単体、又はW合金(W固溶体)を含むコア部を有する構成が開示されている。
特許文献6には、W単体、Wと他の一群の金属から選ばれる金属との合金、それらの混合物を内部コア(コア部)、PtやPt合金などを外部シェル部とする触媒粒子が開示されている。
特許文献7には、Pt以外の金属原子又はPt以外の金属原子による合金からなるコア粒子(コア部)、コア粒子の表面にPtからなるシェル層(シェル部)とする金属粒子が導電性担体に担持された構成のPt含有触媒が開示されている。Wは、コア部、シェル部の両方の構成材料として開示されている(特許文献7、段落番号0020、段落番号0021)。
特許文献8には、W単体、或いは、W合金を材料とする面心立方結晶構造を有するコア粒子(コア部)、Ptなどの金属を材料とする面心立方結晶構造を有するシェル層(シェル部)とするコアシェル型微粒子が開示されている。
特許文献9には、W単体、或いは、W合金を材料とするコア粒子(コア部)、Ptなどの金属を材料とするシェル層(シェル部)とするコアシェル型微粒子が開示されている。
Patent Documents 6 to 9 disclose a structure having a core portion containing W alone or a W alloy (W solid solution).
Patent Document 6 discloses catalyst particles having W alone, an alloy of W and a metal selected from another group of metals, a mixture thereof as an inner core (core part), and Pt or Pt alloy as an outer shell part. Has been.
In Patent Document 7, a core particle (core part) made of a metal atom other than Pt or an alloy of a metal atom other than Pt (core part), and a metal particle having a shell layer (shell part) made of Pt on the surface of the core particle are electrically conductive carriers. A Pt-containing catalyst having a structure supported on the catalyst is disclosed. W is disclosed as a constituent material of both the core part and the shell part (Patent Document 7, paragraph number 0020, paragraph number 0021).
Patent Document 8 discloses a core particle (core part) having a face-centered cubic crystal structure made of W alone or a W alloy as a material, and a shell layer (shell) having a face-centered cubic crystal structure made of a metal such as Pt. Part) is disclosed.
Patent Document 9 discloses core-shell type fine particles having a core particle (core part) made of W alone or a W alloy as a material and a shell layer (shell part) made of a metal such as Pt.
また、コアシェル構造を有する触媒粒子に該当するかについては不明確であるが、燃料電池用の電極触媒として、W炭化物の粒子にPt又はPt合金を担持した触媒も提案されている(特許文献11~12、非特許文献1)。
特許文献11には、導電性カーボン上に、当該導電性カーボンの表面改質にW炭化物の粒子(WCとW2Cの混合物の粒子、又は、WCからなる粒子)を生成させ、更に、この粒子上にPt粒子を担持させた触媒が開示されている。
特許文献12には、WCを主成分とする粒子上にPt粒子を担持させた触媒が開示されている。ただし、導電性カーボン担体上に触媒粒子を担持させた構成は検討されていない。
非特許文献1には、W2Cを主成分とする粒子上にPt粒子を担持させた触媒が開示されている。ただし、導電性カーボン担体上に触媒粒子を担持させた構成は検討されていない。
更に、非Pt元素からなるコア部とPtからなるシェル部から形成されるコアシェル構造を有する触媒粒子において、Pt量の低減とともに触媒活性の向上も意図した構成も提案されている(例えば、特許文献13)。
例えば、特許文献13には、Pd合金を含む中心粒子(コア部)と、Ptを含む最外層(シェル部)と、中心粒子と最外層との間にPd(0価)のみからなる中間層を設けた子コアシェル構造を有する燃料電池用電極触媒微粒子が提案されている。
Further, although it is unclear as to whether the catalyst particles have a core-shell structure, a catalyst in which Pt or a Pt alloy is supported on W carbide particles has been proposed as an electrode catalyst for a fuel cell (Patent Document 11). To 12, Non-Patent Document 1).
In Patent Document 11, W carbide particles (particles of a mixture of WC and W 2 C or particles composed of WC) are generated on the conductive carbon to modify the surface of the conductive carbon. A catalyst having Pt particles supported on the particles is disclosed.
Patent Document 12 discloses a catalyst in which Pt particles are supported on particles mainly composed of WC. However, a configuration in which catalyst particles are supported on a conductive carbon support has not been studied.
Non-Patent Document 1 discloses a catalyst in which Pt particles are supported on particles mainly composed of W 2 C. However, a configuration in which catalyst particles are supported on a conductive carbon support has not been studied.
Further, in a catalyst particle having a core-shell structure formed of a core part made of a non-Pt element and a shell part made of Pt, a structure intended to improve the catalytic activity as well as the amount of Pt has been proposed (for example, Patent Documents). 13).
For example, Patent Document 13 discloses a center particle (core part) containing a Pd alloy, an outermost layer (shell part) containing Pt, and an intermediate layer made of only Pd (zero valence) between the center particle and the outermost layer. There have been proposed electrode catalyst fine particles for a fuel cell having a child core-shell structure provided with.
なお、本件特許出願人は、上記文献公知発明が記載された刊行物として、以下の刊行物を提示する。 In addition, this patent applicant presents the following publications as publications in which the above-mentioned literature known invention is described.
しかしながら、導電性の担体上と当該担体上に担持されたコアシェル構造を有する触媒粒子を含む燃料電池用電極触媒に関し、W化合物(特にW炭化物)を主な構成成分として含むコア部を有する電極用触媒について着目して上述の従来技術をみた場合、Pt使用量の低減に加えて、従来のPt/C触媒と比較して優れた耐久性を得るための構成の検討、並びに、実施例によるその実証が十分になされておらず、未だ改善の余地があることを本発明者らは見出した。
すなわち、W酸化物を含むコア部を有する構成が開示されている特許文献2においては、炭素担体上に、コア部がWO2、シェル部がWO2の還元生成物(WO2-y、0<y≦2)とPdとの合金である粒子を担持させた構成の触媒の実施例の記載があり(特許文献2、実施例8)、この実施例の触媒活性が、炭素担体上にPd粒子を担持させた比較例(特許文献2、比較例2)に対して向上することが示されている(特許文献2、図11)。しかしながら、この実施例の構成が、従来のPt/C触媒と比較して優れた耐久性を得る観点で有効な構成なのか不明である。
However, the present invention relates to an electrode catalyst for a fuel cell comprising a conductive carrier and catalyst particles having a core-shell structure supported on the carrier, and for an electrode having a core portion containing a W compound (particularly W carbide) as a main constituent. When focusing on the catalyst and looking at the above-mentioned conventional technology, in addition to reducing the amount of Pt used, the study of the structure for obtaining superior durability compared with the conventional Pt / C catalyst, and the embodiment The present inventors have found that sufficient demonstration has not been made and there is still room for improvement.
That is, in Patent Document 2 in which a structure having a core portion containing W oxide is disclosed, a reduction product (WO 2-y , 0) having a core portion of WO 2 and a shell portion of WO 2 on a carbon support. There is a description of an example of a catalyst having a structure in which particles that are an alloy of <y ≦ 2) and Pd are supported (Patent Document 2, Example 8), and the catalytic activity of this example is Pd on a carbon support. It is shown that the improvement is made with respect to the comparative example (Patent Document 2, Comparative Example 2) in which particles are supported (Patent Document 2, FIG. 11). However, it is unclear whether the configuration of this example is an effective configuration in terms of obtaining excellent durability as compared with the conventional Pt / C catalyst.
また、その他のW酸化物を含むコア部を有する構成が開示されている特許文献3~特許文献5おいてはW酸化物を含むコア部を有する触媒に相当する実施例の記載がなく、耐久性の実証がなされていない。
すなわち、特許文献3には実施例の記載がない。また、特許文献4及び特許文献5には、導電性カーボンを担体とする構成の触媒の実施例の記載がない。更に、実施例の構成を「シェル部/コア部」で表記すると、実施例は、「Pt/CeO2」、「還元析出させたPt(0価)とRu単体/CeO2」、「還元析出させたPt(0価)とRu単体/CeO2・ZrO2固溶体」であり、有毒物質の浄化性能評価試験結果のみである。
In addition, Patent Documents 3 to 5, which disclose other configurations having a core portion containing W oxide, do not describe examples corresponding to catalysts having a core portion containing W oxide, and are durable. Sex has not been demonstrated.
That is, Patent Document 3 does not describe an example. Further, Patent Document 4 and Patent Document 5 do not describe examples of catalysts having a structure using conductive carbon as a carrier. Further, when the configuration of the example is expressed by “shell part / core part”, the example is “Pt / CeO 2 ”, “reduction-precipitated Pt (zero valence) and Ru simple substance / CeO 2 ”, “reduction precipitation”. Pt (zero valence) and Ru simple substance / CeO 2 .ZrO 2 solid solution ”, which is only a result of a toxic substance purification performance evaluation test.
また、W単体、又はW合金(W固溶体)を含むコア部を有する構成が開示されている特許文献6~特許文献9には、W単体、又はW合金(W固溶体)を含むコア部を有する触媒に相当する実施例の記載がなく、耐久性の実証がなされていない。
特許文献6については、実施例として記載され性能評価されているのは、「シェル部/コア部」で表記すると、「Pt/Ag」(特許文献6、実施例1、実施例4)、「Pt/Au」(特許文献6、実施例2、実施例3)の構成のみである。性能評価についても「RDE(回転リングディスク電極)による電気化学的試験において、高い比活性が得られる」とだけ記載されておりどの程度の耐久性向上があるか詳細は不明である。
特許文献7については、実施例として記載され性能評価されているのは、「シェル部/コア部」で表記すると、「Pt/Ru」(特許文献7、実施例1)の構成のみである。
特許文献8及び特許文献9については、「Wコア微粒子(W単体の微粒子)」を合成した例は記載されているが、これにシェル部を形成し触媒とした実施例の記載はない。実施例として記載され性能評価されているのは、「シェル部/コア部」で表記すると、「Pt/Ru」、「Pt/Ni」の構成のみである(特許文献8の段落[0111]、特許文献9の実施例1及び実施例2)。
Further, Patent Documents 6 to 9 which disclose a structure having a core portion containing W alone or a W alloy (W solid solution) have a core portion containing W alone or a W alloy (W solid solution). There is no description of examples corresponding to the catalyst, and durability has not been demonstrated.
About patent document 6, what is described as an Example and performance evaluation is expressed as "Pt / Ag" (Patent Document 6, Example 1, Example 4), "Shell part / core part", " This is only the configuration of “Pt / Au” (Patent Document 6, Example 2, and Example 3). Regarding performance evaluation, it is only described that “a high specific activity can be obtained in an electrochemical test using an RDE (rotating ring disk electrode)”, and the details of how much durability is improved are unknown.
With respect to Patent Document 7, the performance evaluation is described as an example, and only the configuration of “Pt / Ru” (Patent Document 7, Example 1) is expressed by “shell part / core part”.
In Patent Document 8 and Patent Document 9, an example of synthesizing “W core fine particles (fine particles of W simple substance)” is described, but there is no description of an example in which a shell portion is formed and used as a catalyst. What is described as an example and evaluated for performance is only the configuration of “Pt / Ru” and “Pt / Ni” when expressed as “shell part / core part” (paragraph [0111] of Patent Document 8, Example 1 and Example 2 of Patent Document 9).
また、W炭化物の粒子にPt又はPt合金を担持した触媒が提案されている特許文献11については、導電性カーボン上に、当該導電性カーボンの表面改質によりW炭化物の粒子を生成させ、更に、この粒子上にPt粒子を担持させた触媒が開示されている(特許文献11、例1、例2)。
具体的には、実施例(特許文献11では「例1」、「例2」)の構成を仮に「シェル部/コア部」で表記すると、Pt/(WCとW2Cとの混合物)、Pt/(WCからなる粒子)である。
触媒の耐久性(初期性能の低下の度合い)を加速劣化試験によって推定している。具体的には、カソードの酸素還元反応に関する触媒活性について、0.5~1.3Vの間の150電位サイクルを酸素飽和電解質中で50mV/sの速度で実施し、性能の低下を測定して、従来のPt/C触媒に比較して性能低下が改善されることが開示されている。
しかしながら、特許文献11に開示された実施例の触媒粒子がコアシェル構造を有しているか不明である。
Further, in Patent Document 11 in which a catalyst in which Pt or a Pt alloy is supported on W carbide particles is proposed, W carbide particles are generated on the conductive carbon by surface modification of the conductive carbon. A catalyst in which Pt particles are supported on the particles is disclosed (Patent Document 11, Example 1, Example 2).
Specifically, if the configuration of the examples (“Example 1” and “Example 2” in Patent Document 11) is expressed as “shell part / core part”, Pt / (mixture of WC and W 2 C), Pt / (particles made of WC).
The durability of the catalyst (the degree of deterioration of the initial performance) is estimated by an accelerated deterioration test. Specifically, for the catalytic activity related to the oxygen reduction reaction of the cathode, a 150 potential cycle between 0.5 and 1.3 V was carried out at a rate of 50 mV / s in an oxygen saturated electrolyte, and the decrease in performance was measured. , It is disclosed that performance degradation is improved compared to conventional Pt / C catalysts.
However, it is unclear whether the catalyst particles of Examples disclosed in Patent Document 11 have a core-shell structure.
また、W炭化物の粒子にPt又はPt合金を担持した触媒が提案されている特許文献12については、導電性カーボン担体上に触媒粒子を担持させた構成の実施例は記載されていない。W2N、WS2等の特定の前駆化合物を経由して合成されたWCにPt粒子を担持した触媒(特許文献12、実施例1~6)により、耐CO被毒性の改善と、アノード触媒活性の向上がみられることが示されている。しかしながら、この例の構成が、従来のPt/C触媒と比較して優れた耐久性を得る観点で有効な構成なのか不明である。
更に、W炭化物の粒子にPt又はPt合金を担持した触媒が提案されている非特許文献1については、導電性カーボン担体上に触媒粒子を担持させた構成の実施例は記載されていない。Pt粒子をW2C上に担持した構成の触媒の例が開示されている。更に、この例が、PtとRuとの合金粒子をカーボン担体上に担持した構成の触媒に比較して、ECSAなどの触媒活性が向上することが開示されている。しかしながら、この例の構成が、従来のPt/C触媒と比較して優れた耐久性を得る観点で有効な構成なのか不明である。
Further, in Patent Document 12 in which a catalyst in which Pt or a Pt alloy is supported on W carbide particles is proposed, an example of a configuration in which catalyst particles are supported on a conductive carbon carrier is not described. The catalyst having Pt particles supported on WC synthesized via a specific precursor compound such as W 2 N and WS 2 (Patent Document 12, Examples 1 to 6) improves CO poisoning resistance and anode catalyst It is shown that the activity is improved. However, it is unclear whether the configuration of this example is an effective configuration in terms of obtaining excellent durability as compared with the conventional Pt / C catalyst.
Further, in Non-Patent Document 1, in which a catalyst in which Pt or a Pt alloy is supported on W carbide particles is proposed, an example of a configuration in which catalyst particles are supported on a conductive carbon support is not described. An example of a catalyst having a structure in which Pt particles are supported on W 2 C is disclosed. Furthermore, this example discloses that catalytic activity such as ECSA is improved as compared with a catalyst having a structure in which alloy particles of Pt and Ru are supported on a carbon support. However, it is unclear whether the configuration of this example is an effective configuration in terms of obtaining excellent durability as compared with the conventional Pt / C catalyst.
本発明は、かかる技術的事情に鑑みてなされたものであって、従来のPt/C触媒と比較して優れた耐久性を有し、かつ、低コスト化に寄与できる電極用触媒を提供することを目的とする。
また、本発明は、上記電極用触媒を含む、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体(MEA)、及び、燃料電池スタックを提供することを目的とする。
The present invention has been made in view of such technical circumstances, and provides an electrode catalyst that has superior durability compared to conventional Pt / C catalysts and can contribute to cost reduction. For the purpose.
Another object of the present invention is to provide a gas diffusion electrode forming composition, a gas diffusion electrode, a membrane / electrode assembly (MEA), and a fuel cell stack, each including the electrode catalyst.
本件発明者等は、Pt使用量の低減を意図してコア部の構成材料としてW系材料を採用する場合について、従来のPt/C触媒と比較して優れた耐久性を得ることのできる構成について鋭意検討を行った。
その結果、本発明者らは、少なくともW炭化物を含むコア部、2層のシェル部からなる構成が有効で、より詳しくは、コア部とPt(0価)を含むシェル部との間にPd(0価)を含むシェル部を設ける構成(従来技術に開示も示唆もされていない構成)とすることが有効であることを見出し、本発明を完成するに至った。
より具体的には、本発明は、以下の技術的事項から構成される。
The present inventors have a configuration capable of obtaining excellent durability as compared with a conventional Pt / C catalyst in the case of adopting a W-based material as a constituent material of the core portion with the intention of reducing the amount of Pt used. We conducted an intensive study.
As a result, the inventors of the present invention are effective in a configuration including a core portion including at least W carbide and a two-layer shell portion. More specifically, the Pd is provided between the core portion and the shell portion including Pt (zero valence). The inventors have found that it is effective to provide a shell portion including (zero valence) (a configuration that is neither disclosed nor suggested in the prior art) and have completed the present invention.
More specifically, the present invention includes the following technical matters.
すなわち、本発明は、
導電性を有する担体と、
前記担体上に担持される触媒粒子と、
を含んでおり、
前記触媒粒子が、前記担体上に形成されるコア部と、前記コア部上に形成される第1シェル部と、前記第1シェル部上に形成される第2シェル部と、を有しており、
前記コア部にはWC、及び、WC1-x(0<x<1)を含むW炭化物が含まれており、
前記第1シェル部にはPd(0価)が含まれており、
前記第2シェル部にはPt(0価)が含まれており、
前記コア部の前駆体となるコア粒子が下記式(1)の条件を満たしている、
電極用触媒を提供する。
0.03≦{I2/(I1+I2)}≦0.75・・・(1)
ここで、式(1)中、「I1」は前記コア粒子のX線回折測定により得られるWCに帰属されるピークのピーク強度を示し、「I2」は前記コア粒子のX線回折測定により得られるWC1-x(0<x<1)に帰属されるピークのピーク強度を示す。
That is, the present invention
A conductive carrier;
Catalyst particles supported on the carrier;
Contains
The catalyst particles have a core part formed on the carrier, a first shell part formed on the core part, and a second shell part formed on the first shell part. And
The core portion includes WC and W carbide including WC 1-x (0 <x <1),
The first shell portion includes Pd (zero valence),
The second shell portion contains Pt (zero valence),
The core particles serving as the precursor of the core part satisfy the condition of the following formula (1).
An electrode catalyst is provided.
0.03 ≦ {I2 / (I1 + I2)} ≦ 0.75 (1)
Here, in formula (1), “I1” indicates the peak intensity of a peak attributed to WC obtained by X-ray diffraction measurement of the core particle, and “I2” is obtained by X-ray diffraction measurement of the core particle. The peak intensity of the peak attributed to WC 1-x (0 <x <1) is shown.
詳細なメカニズムは十分に解明されていないが、上記の構成とすることにより、本発明の電極用触媒は、従来のPt/C触媒と比較して優れた耐久性を有し、かつ、低コスト化に寄与できる。 Although the detailed mechanism has not been sufficiently elucidated, the electrode catalyst of the present invention has superior durability and low cost compared to the conventional Pt / C catalyst by adopting the above-described configuration. Can contribute to
ここで、本発明において、「W炭化物」とは、タングステン(W)原子と炭素(C)原子が、結合を持って化合物として存在する形態であるものを示す。 Here, in the present invention, the “W carbide” indicates a form in which a tungsten (W) atom and a carbon (C) atom exist as a compound having a bond.
また、本発明の電極用触媒においては、本発明の効果が得られる範囲で、コア部には、W2Cが更に含まれていてもよい。 Further, in the electrode catalyst of the present invention, W 2 C may further be included in the core part within a range where the effects of the present invention are obtained.
更に、本発明の電極用触媒においてコア部にW2Cが更に含まれる場合、前記コア部の前駆体となるコア粒子が下記式(2)の条件を更に満たしていることが好ましい。
0.02≦{I3/(I1+I2+I3)}≦0.30・・・(1)
[式(2)中、I1は前記式(1)中のI1と同一のピーク強度を示し、I2は前記式(1)中のI2と同一のピーク強度を示し、I3は前記コア粒子のX線回折測定により得られるW2Cに帰属されるピークのピーク強度を示す。
Furthermore, in the electrode catalyst of the present invention, when W 2 C is further contained in the core part, it is preferable that the core particles serving as the precursor of the core part further satisfy the condition of the following formula (2).
0.02 ≦ {I3 / (I1 + I2 + I3)} ≦ 0.30 (1)
[In formula (2), I1 represents the same peak intensity as I1 in the formula (1), I2 represents the same peak intensity as I2 in the formula (1), and I3 represents X of the core particle. The peak intensity of the peak attributed to W 2 C obtained by line diffraction measurement is shown.
本発明においては、W炭化物には、WC、WC1-x(0<x<1)が含まれており、更にW2Cが含まれる場合がある。ここで、WC、WC1-x(0<x<1)、W2Cは、「Binary Alloy Phase Diagrams , Second Edition(著者・編者H. Okamoto et al、出版社・発行元ASM International)」の896ページ、「W-C Phase Diagram」に記載されているδ相(WC)、γ相(WC1-x)、β相(W2C)に相当する。WC、WC1-x(0<x<1)、W2Cは、例えば、以下の論文にも記載されている。M. Gubisch, Y. Liu et al., “Tribological characteristics of WC1-x, W2C and WC tungsten carbide films“. Elsevier,Tribology and Interface Engineering Serie, Life cycle Tribology, volume 48, 2005, 409-417。
In the present invention, the W carbide includes WC, WC 1-x (0 <x <1), and may further include W 2 C. Here, WC, WC 1-x (0 <x <1), and W 2 C are “Binary Alloy Phase Diagrams, Second Edition (author / editor H. Okamoto et al, publisher / publisher ASM International)”. This corresponds to the δ phase (WC), γ phase (WC 1-x ), and β phase (W 2 C) described on page 896, “WC Phase Diagram”. WC, WC 1-x (0 <x <1), and W 2 C are also described in, for example, the following papers. M. Gubisch, Y. Liu et al., “Tribological characteristics of WC 1-x , W 2 C and WC tungsten carbide films”. Elsevier, Tribology and Interface Engineering Serie, Life cycle Tribology,
また、本発明において、電極用触媒のコア部の前駆体となるコア粒子に含まれるW炭化物はX線回折測定(X‐ray diffraction、以下、必要に応じて「XRD測定」という)で確認することができる。 In the present invention, the W carbide contained in the core particle that is a precursor of the core part of the electrode catalyst is confirmed by X-ray diffraction measurement (hereinafter referred to as “XRD measurement” if necessary). be able to.
即ち、本発明においては、電極用触媒コア部の前駆体となるコア粒子の粉末に対してX線(Cu-Kα線)を照射してX線回折スペクトルを測定し、WC、WC1-x(0<x<1)、W2Cなど各W炭化物に帰属される特徴的なピーク観測することによりの有無により確認することができる。 That is, in the present invention, X-ray diffraction spectrum is measured by irradiating X-ray (Cu—Kα ray) to the core particle powder which is a precursor of the electrode catalyst core part, and WC, WC 1-x (0 <x <1), W 2 C and the like can be confirmed by the presence or absence by observing characteristic peaks attributed to each W carbide.
例えば、WCに帰属されるピークとしては、X線回折の回折角2θ(±0.3゜)のピークとして、例えば、31.513゜、35.639゜、48.300゜、64.016゜、65.790゜の付近に観測される特徴的ピークがあげられる。 For example, as a peak attributed to WC, as a peak at a diffraction angle 2θ (± 0.3 °) of X-ray diffraction, for example, 31.513 °, 35.639 °, 48.300 °, 64.016 °. , A characteristic peak observed in the vicinity of 65.790 °.
例えば、WC1-xに帰属されるピークとしては、X線回折の回折角2θ(±0.3゜)のピークとして、例えば、36.977゜、42.887゜、62.027゜、74.198゜、78.227゜の付近に観測される特徴的ピークがあげられる。 For example, the peak attributed to WC 1-x is a peak at a diffraction angle 2θ (± 0.3 °) of X-ray diffraction, for example, 36.977 °, 42.887 °, 62.027 °, 74 The characteristic peaks observed in the vicinity of 198 ° and 78.227 ° are listed.
例えば、W2Cに帰属されるピークとしては、X線回折の回折角2θ(±0.3゜)のピークとして、34.535゜、38.066゜、39.592゜、52.332゜、61.879゜の付近に観測される特徴的ピークがあげられる。 For example, as a peak attributed to W 2 C, a peak at a diffraction angle 2θ (± 0.3 °) of X-ray diffraction is 34.535 °, 38.066 °, 39.592 °, 52.332 °. The characteristic peak observed in the vicinity of 61.879 ° is raised.
ここで、本発明において、「I1」とは、コア粒子のX線回折測定により得られるWCに帰属されるピークのうち、X線回折の回折角2θ(±0.3゜)=48.200°付近のピークのピーク強度を示す。
また、「I2」とは、コア粒子のX線回折測定により得られるWC1-x(0<x<1)に帰属されるピークのうち、X線回折の回折角2θ(±0.3゜)=42.700°付近のピークのピーク強度を示す。
また、「I3」とは、コア粒子のX線回折測定により得られるW2Cに帰属されるピークのうち、X線回折の回折角2θ(±0.3゜)=39.300°付近のピークのピーク強度を示す。
Here, in the present invention, “I1” means a diffraction angle 2θ (± 0.3 °) of X-ray diffraction = 48.200 among peaks attributed to WC obtained by X-ray diffraction measurement of core particles. The peak intensity of the peak near ° is shown.
“I2” means a diffraction angle 2θ (± 0.3 °) of X-ray diffraction among peaks attributed to WC 1-x (0 <x <1) obtained by X-ray diffraction measurement of core particles. ) = Peak intensity of a peak near 42.700 °.
In addition, “I3” means a diffraction angle 2θ (± 0.3 °) of the vicinity of 39.300 ° among peaks attributed to W 2 C obtained by X-ray diffraction measurement of the core particles. The peak intensity of the peak is shown.
なお、本明細書において、電極用触媒の構成を説明する際に、必要に応じて、「担体上に担持される触媒粒子の構成(主な構成材料)/導電性を有する担体の構成(主な構成材料)」と表記する。より詳しくは、「シェル部の構成/コア部の構成/担体の構成」と表記する。更により詳しくは、「第2シェル部の構成/第1シェル部の構成/コア部の構成/担体の構成」と表記する。例えば、電極用触媒の構成が、「Pt(0価)からなる第2シェル部、Pd(0価)からなる第1シェル部、W炭化物を主成分とするコア部、導電性カーボンからなる担体」を有する構成の場合、「Pt/Pd/WC/C」と表記する。 In the present specification, when describing the configuration of the electrode catalyst, if necessary, “the configuration of the catalyst particles supported on the support (main constituent material) / the configuration of the conductive support (main It is written " More specifically, it is expressed as “shell configuration / core configuration / support configuration”. More specifically, it is expressed as “configuration of second shell portion / configuration of first shell portion / configuration of core portion / configuration of carrier”. For example, the structure of the electrode catalyst is “a second shell portion made of Pt (zero valence), a first shell portion made of Pd (zero valence), a core portion mainly composed of W carbide, and a carrier made of conductive carbon. ”Is expressed as“ Pt / Pd / WC / C ”.
また、本発明の電極用触媒においては、本発明の効果が得られる範囲で、コア部には、W酸化物が更に含まれていてもよい。 In addition, in the electrode catalyst of the present invention, the core portion may further contain W oxide as long as the effects of the present invention are obtained.
更に、本発明の電極用触媒においては、本発明の効果が得られる範囲で、コア部には、W(0価)が更に含まれていてもよい。 Furthermore, in the electrode catalyst of the present invention, W (zero valence) may further be included in the core portion within a range where the effects of the present invention are obtained.
さらに、本発明は、上述の本発明のいずれかの電極用触媒が含まれている、ガス拡散電極形成用組成物を提供する。
本発明のガス拡散電極形成用組成物は、本発明の電極用触媒を含んでいるため、従来のPt/C触媒と比較して優れた耐久性を有し、かつ、低コスト化に寄与できるガス拡散電極を容易に製造することができる。
Furthermore, this invention provides the composition for gas diffusion electrode formation containing the electrode catalyst of any one of the above-mentioned this invention.
Since the composition for forming a gas diffusion electrode of the present invention contains the electrode catalyst of the present invention, it has superior durability compared to conventional Pt / C catalysts and can contribute to cost reduction. A gas diffusion electrode can be easily manufactured.
また、本発明は、上述の本発明のいずれかの電極用触媒が含まれている、ガス拡散電極を提供する。
本発明のガス拡散電極は、本発明の電極用触媒を含んで構成されている。そのため、従来のPt/C触媒と比較して優れた耐久性を有し、かつ、低コスト化に寄与できる構成とすることが容易となる。
Moreover, this invention provides the gas diffusion electrode containing the catalyst for electrodes of the above-mentioned this invention.
The gas diffusion electrode of the present invention includes the electrode catalyst of the present invention. Therefore, it becomes easy to set it as the structure which has the outstanding durability compared with the conventional Pt / C catalyst, and can contribute to cost reduction.
さらに、本発明は、上述の本発明のガス拡散電極が含まれている、膜・電極接合体(MEA)を提供する。
本発明の膜・電極接合体(MEA)は、本発明のガス拡散電極を含んでいるため、従来のPt/C触媒と比較して優れた耐久性を有し、かつ、低コスト化に寄与できる構成とすることが容易となる。
Furthermore, this invention provides the membrane electrode assembly (MEA) containing the gas diffusion electrode of the above-mentioned this invention.
Since the membrane-electrode assembly (MEA) of the present invention includes the gas diffusion electrode of the present invention, it has superior durability compared to conventional Pt / C catalysts and contributes to cost reduction. It becomes easy to set it as the structure which can be performed.
また、本発明は、上述の本発明の膜・電極接合体(MEA)が含まれていることを特徴とする燃料電池スタックを提供する。
本発明の燃料電池スタックによれば、本発明の膜・電極接合体(MEA)を含んでいるため、従来のPt/C触媒と比較して優れた耐久性を有し、かつ、低コスト化に寄与できる構成とすることが容易となる。
The present invention also provides a fuel cell stack including the above-described membrane-electrode assembly (MEA) of the present invention.
According to the fuel cell stack of the present invention, since it includes the membrane-electrode assembly (MEA) of the present invention, the fuel cell stack has excellent durability compared with the conventional Pt / C catalyst, and is low in cost. It becomes easy to make it the structure which can contribute to.
本発明によれば、従来のPt/C触媒と比較して優れた耐久性を有し、かつ、低コスト化に寄与できる電極用触媒が提供される。
また、本発明によれば、かかる電極用触媒を含む、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体(MEA)、燃料電池スタックが提供される。
ADVANTAGE OF THE INVENTION According to this invention, it has the durability outstanding compared with the conventional Pt / C catalyst, and the catalyst for electrodes which can contribute to cost reduction is provided.
The present invention also provides a gas diffusion electrode forming composition, a gas diffusion electrode, a membrane / electrode assembly (MEA), and a fuel cell stack comprising such an electrode catalyst.
以下、適宜図面を参照しながら、本発明の好適な実施形態について詳細に説明する。
<電極用触媒>
図1は、本発明の電極用触媒(コアシェル触媒)の好適な一形態を示す模式断面図である。また、図2は、本発明の電極用触媒(コアシェル触媒)の別の好適な一形態を示す模式断面図である。
図1に示されるように、本発明の電極用触媒10は、担体2と、担体2上に形成されるいわゆる「コアシェル構造」を有する触媒粒子3を含んでいる。
更に、触媒粒子3は、担体2上に形成されるコア部4と、コア部4上に形成されるシェル部7(第1シェル部5及び第2シェル部6)とを含む、いわゆる「コアシェル構造」を有する。
すなわち、電極用触媒10は、担体2にコア部4を核(コア)とし、第1シェル部5および第2シェル部6がシェル部7となってコア部4の表面を被覆している構造を有している。
また、コア部の構成元素(化学組成)と、第1シェル部5と、第2シェル部6との構成元素(化学組成)は異なる構成となっている。
Hereinafter, preferred embodiments of the present invention will be described in detail with appropriate reference to the drawings.
<Catalyst for electrode>
FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the electrode catalyst (core-shell catalyst) of the present invention. FIG. 2 is a schematic cross-sectional view showing another preferred embodiment of the electrode catalyst (core-shell catalyst) of the present invention.
As shown in FIG. 1, the electrode catalyst 10 of the present invention includes a carrier 2 and catalyst particles 3 having a so-called “core-shell structure” formed on the carrier 2.
Further, the catalyst particle 3 includes a so-called “core shell” including a core portion 4 formed on the carrier 2 and a shell portion 7 (first shell portion 5 and second shell portion 6) formed on the core portion 4. Structure ".
That is, the electrode catalyst 10 has a structure in which the core part 4 is a core (core) on the carrier 2 and the surface of the core part 4 is covered with the first shell part 5 and the second shell part 6 being the shell part 7. have.
In addition, the constituent elements (chemical composition) of the core portion, the constituent elements (chemical composition) of the first shell portion 5 and the second shell portion 6 are different.
本発明においては、電極用触媒は、コア部の表面の少なくとも一部の上にシェル部が形成されていればよい。
例えば、本発明の効果をより確実に得る観点からは、図1に示すように、電極用触媒10は、シェル部7によってコア部4の表面の略全域が被覆された状態であることが好ましい。
また、図2に示すように、本発明の効果を得られる範囲において、電極用触媒1は、コア部4の表面の一部が被覆され、コア部4の表面が部分的に露出した状態(例えば、図2に示すコア部4の表面の一部4sが露出した状態)であってもよい。別の表現をすれば、図2に示す電極用触媒10Aのように、コア部4の表面の一部の上にシェル部7a、シェル部7bが部分的に形成されていてもよい。
更に、この場合、図2に示すように、第2シェル部6aによって第1シェル部5aの表面の略全域が被覆された状態であることが好ましい。
また、図2に示すように、本発明の効果を得られる範囲において、第1シェル部5bの表面の一部が被覆され、第1シェル部5bの表面が部分的に露出した状態(例えば、図2に示す第1シェル部5bの表面の一部5sが露出した状態)であってもよい。
更に、本発明の電極触媒は、本発明の効果を得られる範囲において、図1に示した電極用触媒10と、図2に示した電極用触媒10Aとが混在した状態であってもよい。
In the present invention, the electrode catalyst only needs to have a shell portion formed on at least a part of the surface of the core portion.
For example, from the viewpoint of obtaining the effect of the present invention more reliably, as shown in FIG. 1, the electrode catalyst 10 is preferably in a state in which substantially the entire surface of the core portion 4 is covered by the shell portion 7. .
In addition, as shown in FIG. 2, the electrode catalyst 1 is covered with a part of the surface of the core part 4 and the surface of the core part 4 is partially exposed within the range in which the effect of the present invention can be obtained ( For example, a state in which a part 4s of the surface of the core portion 4 shown in FIG. In other words, the shell part 7a and the shell part 7b may be partially formed on part of the surface of the core part 4 as in the electrode catalyst 10A shown in FIG.
Furthermore, in this case, as shown in FIG. 2, it is preferable that the second shell portion 6a covers a substantially entire surface of the first shell portion 5a.
In addition, as shown in FIG. 2, in a range where the effect of the present invention can be obtained, a part of the surface of the first shell portion 5b is covered and the surface of the first shell portion 5b is partially exposed (for example, 2 may be a state in which a part 5s of the surface of the first shell portion 5b shown in FIG. 2 is exposed.
Furthermore, the electrode catalyst of the present invention may be in a state where the electrode catalyst 10 shown in FIG. 1 and the electrode catalyst 10A shown in FIG.
更に、本発明においては、本発明の効果を得られる範囲において、図2に示したように、同一のコア部4に対し、シェル部7aとシェル部7bとが混在した状態であってもよい。また、本発明においては、本発明の効果を得られる範囲において、同一のコア部4に対しシェル部7aのみが形成された状態であってもよく、同一のコア部4に対しシェル部7bのみが形成された状態であってもよい(何れの状態も図示せず)。
また、本発明の効果を得られる範囲において、電極用触媒1には、担体2上に、上述の電極用触媒10および電極用触媒10Aのうちの少なくとも1種に加えて、「シェル部7に被覆されていないコア部4のみの粒子」が担持された状態が含まれていてもよい(図示せず)。
更に、本発明の効果を得られる範囲において、電極用触媒1には、上述の電極用触媒10および電極用触媒10Aのうちの少なくとも1種に加えて「シェル部7の構成元素のみからなる粒子」がコア部4に接触していない状態で担持された状態が含まれていてもよい(図示せず)。
また、本発明の効果を得られる範囲において、電極用触媒1には、上述の電極用触媒10および電極用触媒10Aのうちの少なくとも1種に加えて「シェル部7に被覆されていないコア部4のみの粒子」と、「シェル部7の構成元素のみからなる粒子」とが、それぞれ独立に担持された状態が含まれていてもよい。
Furthermore, in the present invention, as long as the effect of the present invention can be obtained, the shell portion 7a and the shell portion 7b may be mixed with respect to the same core portion 4 as shown in FIG. . Further, in the present invention, as long as the effects of the present invention can be obtained, only the shell portion 7 a may be formed on the same core portion 4, and only the shell portion 7 b is formed on the same core portion 4. May be in a state where any of the states is formed (not shown).
In addition, within the range in which the effects of the present invention can be obtained, the electrode catalyst 1 includes, on the carrier 2, in addition to at least one of the electrode catalyst 10 and the electrode catalyst 10A described above, A state in which “particles of only the core portion 4 not covered” are supported may be included (not shown).
Furthermore, within the range in which the effect of the present invention can be obtained, the electrode catalyst 1 includes “particles consisting only of constituent elements of the shell portion 7 in addition to at least one of the electrode catalyst 10 and the electrode catalyst 10A described above. "May be included in a state where it is not in contact with the core portion 4 (not shown).
In addition, within the range where the effects of the present invention can be obtained, the electrode catalyst 1 includes, in addition to at least one of the above-described electrode catalyst 10 and electrode catalyst 10A, “a core portion not covered with the shell portion 7. A state in which “only four particles” and “particles composed only of the constituent elements of the shell portion 7” are independently supported may be included.
第1シェル部5と第2シェル部6の厚さについては、電極用触媒の設計思想によって好ましい範囲が適宜設定される。
例えば、第2シェル部6を構成するPtの使用量を最小限にすることを意図している場合には、1原子で構成される層(1原子層)であることが好ましく、この場合には、第2シェル部6の厚さは、当該第2シェル部6を構成する金属元素が1種類の場合には、この金属元素の1原子の直径(球形近似した場合)の2倍に相当する厚さであることが好ましい。
また、当該第2シェル部6を構成する金属元素が2種類以上の場合には、1原子で構成される層(2種類以上の原子がコア部4の表面に並置されて形成される1原子層)に相当する厚さであることが好ましい。
また、例えば、第2シェル部6の厚さをより大きくすることにより耐久性の向上を図る場合には、1~5nmが好ましく、2~10nmがより好ましい。
なお、本発明において「平均粒子径」とは、電子顕微鏡写真観察による、任意の数粒子群からなる粒子の直径の平均値のことをいう。
第1シェル部5の厚さは、第2シェル部6の厚さ以下であることが好ましい。これにより、Pdの使用量を低減でき、電極触媒として使用される場合のPdの溶出量も低減できるので好ましい。
About the thickness of the 1st shell part 5 and the 2nd shell part 6, a preferable range is suitably set by the design concept of the catalyst for electrodes.
For example, when it is intended to minimize the use amount of Pt constituting the second shell portion 6, it is preferably a layer composed of one atom (one atomic layer). The thickness of the second shell portion 6 is equivalent to twice the diameter of one atom of the metal element (when approximating a sphere) when the metal element constituting the second shell portion 6 is one kind. It is preferable that the thickness be
When there are two or more types of metal elements constituting the second shell portion 6, a layer composed of one atom (one atom formed by juxtaposing two or more types of atoms on the surface of the core portion 4. The thickness corresponding to the layer) is preferable.
For example, when the durability is improved by increasing the thickness of the second shell portion 6, the thickness is preferably 1 to 5 nm, and more preferably 2 to 10 nm.
In the present invention, the “average particle diameter” refers to an average value of the diameters of particles composed of an arbitrary number of particle groups, as observed with an electron micrograph.
The thickness of the first shell portion 5 is preferably equal to or less than the thickness of the second shell portion 6. This is preferable because the amount of Pd used can be reduced and the amount of Pd eluted when used as an electrode catalyst can be reduced.
担体2は、コア部4と第1シェル部5と第2シェル部6とからなる複合体を担持することができ、かつ表面積の大きいものであれば特に制限されない。
さらに、担体2は、電極用触媒1を含んだガス拡散電極形成用組成物中で良好な分散性を有し、優れた導電性を有するものであることが好ましい。
The carrier 2 is not particularly limited as long as it can carry a composite composed of the core part 4, the first shell part 5, and the second shell part 6 and has a large surface area.
Furthermore, it is preferable that the support | carrier 2 has a favorable dispersibility in the composition for gas diffusion electrode formation containing the electrode catalyst 1, and has the outstanding electroconductivity.
担体2は、グラッシーカーボン(GC)、ファインカーボン、カーボンブラック、黒鉛、炭素繊維、活性炭、活性炭の粉砕物、カーボンナノファイバー、カーボンナノチューブ等の炭素系材料や酸化物等のガラス系あるいはセラミックス系材料などから適宜採択することができる。
これらの中で、コア部4との吸着性及び担体2が有するBET比表面積の観点から、炭素系材料が好ましい。
更に、炭素系材料としては、導電性カーボンが好ましく、特に、導電性カーボンとしては、導電性カーボンブラックが好ましい。
導電性カーボンブラックとしては、商品名「ケッチェンブラックEC300J」、「ケッチェンブラックEC600」、「カーボンEPC」等(ライオン化学株式会社製)を例示することができる。
Carrier 2 is glassy carbon (GC), fine carbon, carbon black, graphite, carbon fiber, activated carbon, pulverized product of activated carbon, carbon nanofiber, carbon nanotube, etc., or glass or ceramics material such as oxide. It can be adopted as appropriate.
Among these, a carbon-based material is preferable from the viewpoint of the adsorptivity with the core portion 4 and the BET specific surface area of the carrier 2.
Furthermore, as the carbon-based material, conductive carbon is preferable, and as the conductive carbon, conductive carbon black is particularly preferable.
Examples of the conductive carbon black include trade names “Ketjen Black EC300J”, “Ketjen Black EC600”, “Carbon EPC” and the like (manufactured by Lion Chemical Co., Ltd.).
コア部4は、WC、及び、WC1-x(0<x<1)を含むW炭化物含む構成を有している。また、コア部4にはW2Cが更に含まれていてもよい。更に、コア部4には、W化合物としてはW炭化物の他の成分としてはW酸化物が更に含まれていてもよい。また、W化合物以外の成分が含まれる場合には、その成分としてはW(0価)であることが好ましい。
更に、コア部4は、十分な耐久性を得る観点から、コア部の前駆体となるコア粒子が下記式(1)の条件を満たしている。
0.03≦{I2/(I1+I2)}≦0.75・・・(1)
The core portion 4 has a configuration including WC and W carbide including WC 1-x (0 <x <1). Further, the core portion 4 may further include W 2 C. Further, the core portion 4 may further contain W oxide as the W compound as another component of the W carbide. Further, when a component other than the W compound is included, the component is preferably W (zero valent).
Furthermore, the core part 4 has the core particle | grains used as the precursor of a core part satisfy | fills the conditions of following formula (1) from a viewpoint of obtaining sufficient durability.
0.03 ≦ {I2 / (I1 + I2)} ≦ 0.75 (1)
また、コア部4にW2Cが更に含まれている場合には、十分な耐久性を得る観点から、コア部の前駆体となるコア粒子が下記式(2)の条件を更に満たしていることが好ましい。
0.02≦{I2/(I1+I2+I3)}≦0.30・・・(2)
Further, when the core portion 4 W 2 C is further contained, from the viewpoint of obtaining a sufficient durability, the core particles as the precursor of the core is further satisfies the condition of formula (2) It is preferable.
0.02 ≦ {I2 / (I1 + I2 + I3)} ≦ 0.30 (2)
ここで、式(1)中、「I1」はコア粒子のX線回折測定により得られるWCに帰属されるピークのピーク強度を示し、「I2」はコア粒子のX線回折測定により得られるWC1-x(0<x<1)に帰属されるピークのピーク強度を示す。
より具体的には、「I1」とは、コア粒子のX線回折測定により得られるWCに帰属されるピークのうち、X線回折の回折角2θ(±0.3゜)=48.200°付近のピークのピーク強度を示す。
また、「I2」とは、コア粒子のX線回折測定により得られるWC1-x(0<x<1)に帰属されるピークのうち、X線回折の回折角2θ(±0.3゜)=42.700°付近のピークのピーク強度を示す。
Here, in formula (1), “I1” indicates the peak intensity of a peak attributed to WC obtained by X-ray diffraction measurement of the core particle, and “I2” indicates WC obtained by X-ray diffraction measurement of the core particle. The peak intensity of the peak attributed to 1-x (0 <x <1) is shown.
More specifically, “I1” refers to a diffraction angle 2θ (± 0.3 °) = 48.200 ° of X-ray diffraction among peaks attributed to WC obtained by X-ray diffraction measurement of core particles. The peak intensity of nearby peaks is shown.
“I2” means a diffraction angle 2θ (± 0.3 °) of X-ray diffraction among peaks attributed to WC 1-x (0 <x <1) obtained by X-ray diffraction measurement of core particles. ) = Peak intensity of a peak near 42.700 °.
ここで、式(2)中、「I1」は式(1)中のI1と同一のピーク強度を示し、「I2」は式(1)中のI2と同一のピーク強度を示し、「I3」はコア粒子のX線回折測定により得られるW2Cに帰属されるピークのピーク強度を示す。
また、式(2)中、「I3」とは、コア粒子のX線回折測定により得られるW2Cに帰属されるピークのうち、X線回折の回折角2θ(±0.3゜)=39.300°付近のピークのピーク強度を示す。
Here, in Formula (2), “I1” indicates the same peak intensity as I1 in Formula (1), “I2” indicates the same peak intensity as I2 in Formula (1), and “I3” Indicates the peak intensity of the peak attributed to W 2 C obtained by X-ray diffraction measurement of the core particles.
In the formula (2), “I3” means a diffraction angle 2θ (± 0.3 °) of X-ray diffraction among peaks attributed to W 2 C obtained by X-ray diffraction measurement of core particles = The peak intensity of a peak near 39.300 ° is shown.
第1シェル部5は、Pd(0価)が含まれている。本発明の効果をより確実に得る観点、製造容易性などの観点から、第1シェル部5は、Pd(0価)を主成分(50wt%以上)として構成されていることが好ましく、Pd(0価)から構成されていることがより好ましい。 The first shell portion 5 includes Pd (zero valence). From the viewpoints of obtaining the effects of the present invention more reliably and manufacturing easiness, the first shell portion 5 is preferably composed of Pd (zero valence) as a main component (50 wt% or more). More preferably, it is composed of 0 valence).
第2シェル部6は、Pt(0価)が含まれている。本発明の効果をより確実に得る観点、製造容易性などの観点から、第2シェル部6は、Pt(0価)を主成分(50wt%以上)として構成されていることが好ましく、Pt(0価)から構成されていることがより好ましい。 The second shell portion 6 contains Pt (zero valence). From the viewpoints of obtaining the effects of the present invention more reliably and manufacturing easiness, the second shell portion 6 is preferably composed of Pt (zero valence) as a main component (50 wt% or more), Pt ( More preferably, it is composed of 0 valence).
詳細なメカニズムは十分に解明されていないが、上記式(1)の{I2/(I1+I2)}の値が0.03~0.75となるように電極用触媒10及び電極用触媒10Aのコア部の前駆体となるコア粒子を構成することにより、本発明の効果が得られることを本発明者らは見出した。 Although the detailed mechanism has not been fully elucidated, the cores of the electrode catalyst 10 and the electrode catalyst 10A so that the value of {I2 / (I1 + I2)} in the above formula (1) is 0.03 to 0.75. The present inventors have found that the effects of the present invention can be obtained by constituting the core particles that are the precursors of the parts.
ここで、本発明者らは、上記式(1)の{I2/(I1+I2)}の値が0.03以上であると、コア粒子中において、WCに対するWC1-x(0<x<1)の割合が相対的に増えて耐久性が向上すると推察している。一方、本発明者らは、{I2/(I1+I2)}の値が0.75以下であると、WCに対するWC1-x(0<x<1)の含有量を耐久性向上に必要な量に確保しつつ、コア粒子の十分な導電性を確保できると推察している。 Here, when the value of {I2 / (I1 + I2)} in the above formula (1) is 0.03 or more, the present inventors have WC 1-x (0 <x <1) with respect to WC in the core particle. ) Is relatively increased and durability is expected to improve. On the other hand, when the value of {I2 / (I1 + I2)} is 0.75 or less, the present inventors set the content of WC 1-x (0 <x <1) relative to WC to an amount necessary for improving durability. It is speculated that sufficient conductivity of the core particles can be ensured while ensuring the same.
また、詳細なメカニズムは十分に解明されていないが、コア部4にW2Cが更に含まれている場合、上記式(2)の{I2/(I1+I2+I3)}の値が0.02~0.30となるように電極用触媒10及び電極用触媒10Aのコア部の前駆体となるコア粒子を構成することにより、本発明の効果がより容易に得られることを本発明者らは見出した。 Further, although the detailed mechanism has not been sufficiently elucidated, when W 2 C is further included in the core portion 4, the value of {I2 / (I1 + I2 + I3)} in the above formula (2) is 0.02 to 0 The present inventors have found that the effects of the present invention can be obtained more easily by configuring the core particles serving as the precursor of the core portion of the electrode catalyst 10 and the electrode catalyst 10A so as to be .30. .
ここで、本発明者らは、{I2/(I1+I2+I3)}の値が0.02以上であると、コア粒子中において、WC、W2Cに対するWC1-x(0<x<1)の割合が相対的に増えて耐久性が向上すると推察している。一方、本発明者らは、{I2/(I1+I2+I3)}の値が0.30以下であると、WC、W2Cに対するWC1-x(0<x<1)の含有量を耐久性向上に必要な量を容易に確保しつつ、コア粒子の十分な導電性を容易に確保できると推察している。 Here, when the value of {I2 / (I1 + I2 + I3)} is 0.02 or more, the inventors of the present invention have WC 1-x (0 <x <1) with respect to WC and W 2 C in the core particle. It is speculated that the proportion will increase relatively and durability will improve. On the other hand, when the value of {I2 / (I1 + I2 + I3)} is 0.30 or less, the inventors improved the content of WC 1-x (0 <x <1) with respect to WC and W 2 C. It is presumed that sufficient conductivity of the core particles can be easily secured while easily securing the amount necessary for the above.
<電極用触媒の製造方法>
電極用触媒10(10A)の製造方法は、W炭化物と、W酸化物とを含むコア粒子を担体上に形成する「コア粒子形成工程」と、コア粒子形成工程を経て得られるコア粒子の表面の少なくとも一部に第1シェル部5(5a、5b)を形成する「第1シェル部形成工程」と、第1シェル部形成工程を経て得られる粒子の表面の少なくとも一部に第2シェル部6(6a、6b)を形成する「第2シェル部形成工程」とを含む構成を有する。
<Method for producing electrode catalyst>
The method for producing electrode catalyst 10 (10A) includes a “core particle forming step” in which core particles containing W carbide and W oxide are formed on a support, and the surface of the core particles obtained through the core particle forming step. The first shell part 5 (5a, 5b) is formed on at least a part of the first shell part forming step, and the second shell part is formed on at least a part of the surface of the particles obtained through the first shell part forming step. 6 (6a, 6b) and the “second shell part forming step”.
電極用触媒10(10A)は、電極用触媒の触媒成分である触媒粒子3(3a)、すなわち、コア部4、第1シェル部5(5a、5b)、第2シェル部6(6a、6b)を担体2に順次担持させることより製造される。
電極用触媒10(10A)の製造方法は、担体2に触媒成分である触媒粒子3(3a)を担持させることができる方法であれば、特に制限されるものではない。
例えば、担体2に触媒成分を含有する溶液を接触させ、担体2に触媒成分を含浸させる含浸法、触媒成分を含有する溶液に還元剤を投入して行う液相還元法、アンダーポテンシャル析出(UPD)法等の電気化学的析出法、化学還元法、吸着水素による還元析出法、合金触媒の表面浸出法、置換めっき法、スパッタリング法、真空蒸着法等を採用した製造方法を例示することができる。
ただし、「コア粒子形成工程」においては、先に述べた式(1)の条件、好ましくは先に述べた式(2)の条件を満たすように、上述の公知の手法を組み合わせるなどして、原料、原料の配合比、合成反応の反応条件などを調整することが好ましい。
The electrode catalyst 10 (10A) includes catalyst particles 3 (3a) that are catalyst components of the electrode catalyst, that is, the core portion 4, the first shell portion 5 (5a, 5b), and the second shell portion 6 (6a, 6b). ) Are sequentially supported on the carrier 2.
The method for producing the electrode catalyst 10 (10A) is not particularly limited as long as the catalyst particles 3 (3a) as the catalyst component can be supported on the carrier 2.
For example, an impregnation method in which a solution containing a catalyst component is brought into contact with the support 2 and the support component 2 is impregnated with the catalyst component, a liquid phase reduction method in which a reducing agent is added to the solution containing the catalyst component, underpotential deposition (UPD ) And other electrochemical deposition methods, chemical reduction methods, reduction deposition methods using adsorbed hydrogen, alloy catalyst surface leaching methods, displacement plating methods, sputtering methods, vacuum deposition methods and the like can be exemplified. .
However, in the “core particle forming step”, the above-mentioned known methods are combined so as to satisfy the condition of the formula (1) described above, preferably the condition of the formula (2) described above, etc. It is preferable to adjust the raw materials, the mixing ratio of the raw materials, the reaction conditions for the synthesis reaction, and the like.
更に、「コア粒子形成工程」を経て得られるコア粒子について、「第1シェル部形成工程」で第1シェル部を形成する前に、コア粒子の表面に存在するW酸化物を低減する処理を施してもよい。例えば、コア粒子の表面の還元処理や、酸によるW酸化物除去処理などをしてもよい。
なお、電極用触媒10及び電極用触媒10Aのコア粒子を上述した式(1)で示した条件、式(2)で示した条件などの好ましい条件を満たすように構成する方法としては、例えば、生成物(触媒)の化学組成や構造を各種の公知の分析手法を用いて分析し、得られる分析結果を製造プロセスにフィードバックし、選択する原料、その原料の配合比、選択する合成反応、その合成反応の反応条件などを調製・変更する方法などがあげられる。
Further, for the core particles obtained through the “core particle forming step”, before forming the first shell portion in the “first shell portion forming step”, a treatment for reducing the W oxide present on the surface of the core particles is performed. You may give it. For example, a reduction treatment of the surface of the core particle or a W oxide removal treatment with an acid may be performed.
In addition, as a method of configuring the core particles of the electrode catalyst 10 and the electrode catalyst 10A so as to satisfy preferable conditions such as the condition represented by the above-described formula (1) and the condition represented by the formula (2), for example, Analyze the chemical composition and structure of the product (catalyst) using various known analytical methods, feed back the analysis results obtained to the manufacturing process, select the raw material to be selected, the blending ratio of the raw material, the selected synthesis reaction, Examples thereof include a method for preparing / changing the reaction conditions of the synthesis reaction.
<燃料電池セルの構造>
図3は本発明の電極用触媒を含むガス拡散電極形成用組成物、このガス拡散電極形成用組成物を用いて製造されたガス拡散電極、このガス拡散電極を備えた膜・電極接合体(Membrane Electrode Assembly:以下、必要に応じて「MEA」と略する)、及びこのMEAを備えた燃料電池スタックの好適な一実施形態を示す模式図である。
図3に示された燃料電池スタック40は、MEA42を一単位セルとし、この一単位セルを複数積み重ねた構成を有している。
<Structure of fuel cell>
FIG. 3 shows a gas diffusion electrode forming composition containing the electrode catalyst of the present invention, a gas diffusion electrode produced using this gas diffusion electrode forming composition, and a membrane / electrode assembly comprising this gas diffusion electrode ( FIG. 2 is a schematic diagram showing a preferred embodiment of a fuel cell stack including a MEMBRANE ELECTRODE ASSEMBLY (hereinafter abbreviated as “MEA” as necessary).
The
更に、燃料電池スタック40は、ガス拡散電極であるアノード43(負極)と、ガス拡散電極であるカソード44(正極)と、これらの電極の間に配置される電解質膜45と、を備えたMEA42を有している。
また、燃料電池スタック40は、このMEA42がセパレータ46及びセパレータ48により挟持された構成を有している。
Further, the
The
以下、本発明の電極用触媒を含む燃料電池スタック40の部材である、ガス拡散電極形成用組成物、ガス拡散電極であるアノード43及びカソード44、並びにMEA42について説明する。
Hereinafter, the gas diffusion electrode forming composition, the
<ガス拡散電極形成用組成物>
本発明の電極用触媒をいわゆる触媒インク成分として用い、本発明のガス拡散電極形成用組成物とすることができる。
本発明のガス拡散電極形成用組成物は、本発明の電極用触媒が含有されていることを特徴とする。
ガス拡散電極形成用組成物は上記電極用触媒とイオノマー溶液を主要成分とする。イオノマー溶液の組成は特に限定されない。例えば、イオノマー溶液には、水素イオン伝導性を有する高分子電解質と水とアルコールとが含有されていてもよい。
<Composition for forming gas diffusion electrode>
The electrode catalyst of the present invention can be used as a so-called catalyst ink component to form the gas diffusion electrode forming composition of the present invention.
The gas diffusion electrode forming composition of the present invention is characterized by containing the electrode catalyst of the present invention.
The composition for forming a gas diffusion electrode contains the electrode catalyst and an ionomer solution as main components. The composition of the ionomer solution is not particularly limited. For example, the ionomer solution may contain a polymer electrolyte having hydrogen ion conductivity, water, and alcohol.
イオノマー溶液に含有される高分子電解質は、特に制限されるものではない。例えば、高分子電解質は、公知のスルホン酸基、カルボン酸基を有するパーフルオロカーボン樹脂を例示することができる。容易に入手可能な水素イオン伝導性を有する高分子電解質としては、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)を例示することができる。 The polymer electrolyte contained in the ionomer solution is not particularly limited. For example, the polymer electrolyte can be exemplified by a perfluorocarbon resin having a known sulfonic acid group or carboxylic acid group. As readily available polymer electrolytes having hydrogen ion conductivity, Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.) It can be illustrated.
ガス拡散電極形成用組成物は、電極用触媒、イオノマー溶液を混合し、粉砕、撹拌することにより作製することができる。
ガス拡散電極形成用組成物の作製は、ボールミル、超音波分散機等の粉砕混合機を使用して調製することができる。粉砕混合機を操作する際の粉砕条件及び撹拌条件は、ガス拡散電極形成用組成物の態様に応じて適宜設定することができる。
ガス拡散電極形成用組成物に含まれる電極用触媒、水、アルコール、水素イオン伝導性を有する高分子電解質の各組成は、電極用触媒の分散状態が良好であり、かつ電極用触媒をガス拡散電極の触媒層全体に広く行き渡らせることができ、燃料電池が備える発電性能を向上させることができるように適宜設定される。
The composition for forming a gas diffusion electrode can be prepared by mixing, crushing, and stirring an electrode catalyst and an ionomer solution.
The composition for forming a gas diffusion electrode can be prepared using a pulverizing mixer such as a ball mill or an ultrasonic disperser. The pulverization conditions and the stirring conditions when operating the pulverization mixer can be appropriately set according to the mode of the gas diffusion electrode forming composition.
Each composition of the electrode catalyst, water, alcohol, and polymer electrolyte having hydrogen ion conductivity contained in the gas diffusion electrode forming composition has a good dispersion state of the electrode catalyst, and the electrode catalyst is gas diffused. It is appropriately set so that the entire catalyst layer of the electrode can be widely spread and the power generation performance of the fuel cell can be improved.
<ガス拡散電極>
ガス拡散電極であるアノード43は、ガス拡散層43aと、ガス拡散層43aの電解質膜45側の面に形成された触媒層43bとを備えた構成を有している。
カソード44もアノード43と同様にガス拡散層(図示せず)と、ガス拡散層の電解質膜45側の面に形成された触媒層(図示せず)とを備えた構成を有している。
本発明の電極用触媒は、アノード43及びカソード44のうちの少なくとも一方の触媒層に含有されていればよい。
なお、本発明のガス拡散電極は、アノードとして用いることができ、カソードとしても用いることができる。
<Gas diffusion electrode>
The
Similarly to the
The electrode catalyst of the present invention may be contained in at least one of the
In addition, the gas diffusion electrode of this invention can be used as an anode and can also be used as a cathode.
(電極用触媒層)
触媒層43bは、アノード43において、ガス拡散層43aから送られた水素ガスが触媒層43bに含まれている電極用触媒10の作用により水素イオンに解離する化学反応が行われる層である。また、触媒層43bは、カソード44において、ガス拡散層43aから送られた空気(酸素ガス)とアノードから電解質膜中を移動してきた水素イオンが触媒層43bに含まれている電極用触媒10の作用により結合する化学反応が行われる層である。
(Catalyst layer for electrodes)
The
触媒層43bは、上記ガス拡散電極形成用組成物を用いて形成されている。触媒層43bは、電極用触媒10とガス拡散層43aから送られた水素ガス又は空気(酸素ガス)との反応を十分に行わせることができるように大きい表面積を有していることが好ましい。また、触媒層43bは、全体に亘って均一な厚みを有するように形成されていることが好ましい。触媒層43bの厚みは、適宜調整すればよく、制限されるものではないが、2~200μmであることが好ましい。
The
(ガス拡散層)
ガス拡散電極であるアノード43、ガス拡散電極であるカソード44が備えているガス拡散層は、燃料電池スタック40の外部より、セパレータ46とアノード43との間に形成されているガス流路に導入される水素ガス、セパレータ48とカソード44との間に形成されているガス流路に導入される空気(酸素ガス)をそれぞれの触媒層に拡散するために設けられている層である。
また、ガス拡散層は、触媒層を支持して、ガス拡散電極の表面に固定化する役割を有している。
(Gas diffusion layer)
The gas diffusion layer provided in the
The gas diffusion layer has a role of supporting the catalyst layer and immobilizing it on the surface of the gas diffusion electrode.
ガス拡散層は、水素ガス又は空気(酸素ガス)を良好に通過させて触媒層に到達させる機能・構造を有している。このため、ガス拡散層は撥水性を有していることが好ましい。例えば、ガス拡散層は、ポリエチレンテレフタレート(PTFE)等の撥水成分を有している。 The gas diffusion layer has a function / structure that allows hydrogen gas or air (oxygen gas) to pass through well and reach the catalyst layer. For this reason, it is preferable that the gas diffusion layer has water repellency. For example, the gas diffusion layer has a water repellent component such as polyethylene terephthalate (PTFE).
ガス拡散層に用いることができる部材は、特に制限されるものではなく、燃料電池用電極のガス拡散層に用いられている公知の部材を用いることができる。例えば、カーボンペーパー、カーボンペーパーを主原料とし、その任意成分としてカーボン粉末、イオン交換水、バインダーとしてポリエチレンテレフタレートディスパージョンからなる副原料をカーボンペーパーに塗布したものが挙げられる。
ガス拡散電極であるアノード43、ガス拡散電極であるカソード44は、ガス拡散層、触媒層との間に中間層(図示せず)を備えていてもよい。
The member which can be used for the gas diffusion layer is not particularly limited, and a known member used for the gas diffusion layer of the fuel cell electrode can be used. For example, carbon paper, carbon paper as a main raw material, and carbon powder, ion-exchanged water as optional components, and a secondary material made of polyethylene terephthalate dispersion as a binder are applied to carbon paper.
The
(ガス拡散電極の製造方法)
ガス拡散電極の製造方法について説明する。本発明のガス拡散電極は本発明の電極用触媒を触媒層の構成成分となるように製造されていればよく、製造方法は特に限定されず公知の製造方法を採用することができる。
例えば、ガス拡散電極は、電極用触媒と水素イオン伝導性を有する高分子電解質と、イオノマーとを含有するガス拡散電極形成用組成物をガス拡散層に塗布する工程と、このガス拡散電極形成用組成物が塗布されたガス拡散層を乾燥させ、触媒層を形成させる工程とを経て製造してもよい。
(Manufacturing method of gas diffusion electrode)
A method for manufacturing the gas diffusion electrode will be described. The gas diffusion electrode of this invention should just be manufactured so that the electrode catalyst of this invention may become a structural component of a catalyst layer, and a manufacturing method is not specifically limited, A well-known manufacturing method is employable.
For example, the gas diffusion electrode is formed by applying a gas diffusion electrode forming composition containing an electrode catalyst, a polymer electrolyte having hydrogen ion conductivity, and an ionomer to the gas diffusion layer, and You may manufacture through the process of drying the gas diffusion layer with which the composition was apply | coated, and forming a catalyst layer.
<膜・電極接合体(MEA)>
図3に示す本発明のMEAの好適な一実施形態であるMEA42は、アノード43と、カソード44と、電解質膜45とを備えた構成を有している。MEA42は、アノード及びカソードのうちの少なくとも一方に本発明の電極用触媒が含有されたガス拡散電極を備えた構成を有している。
MEA42は、アノード43、電解質300及びカソード44をこの順序により積層した後、圧着することにより製造することができる。
<Membrane / electrode assembly (MEA)>
An
The
<燃料電池スタック>
図3に示す本発明の燃料電池スタックの好適な一実施形態である燃料電池スタック40は、MEA42のアノード43の外側にセパレータ46が配置され、カソード44の外側にセパレータ48が配置された構成を一単位セル(単電池)とし、この一単位セル(単電池)を1個のみとする構成、又は、2個以上集積させた構成(図示せず)を有している。
なお、燃料電池スタック40に周辺機器を取り付け、組み立てることにより、燃料電池システムが完成する。
<Fuel cell stack>
A
The fuel cell system is completed by attaching and assembling peripheral devices to the
以下、実施例により本発明を更に具体的に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
(I)実施例及び比較例の電極用触媒の準備(I) Preparation of electrode catalysts of Examples and Comparative Examples
(実施例1)
<電極用触媒の製造>
Example 1
<Manufacture of electrode catalyst>
[Pd/W/C上にPtからなる第2シェル部を形成した「Pt/Pd/W/C」粉末]
下記の「Pd/W/C」粉末の粒子のPd上にPtからなる第2シェル部が形成された「Pt/Pd/W/C」粉末{商品名「NE-F12W10-AAA」、N.E.CHEMCAT社製)}を実施例1の電極触媒として製造した。
このPt/Pd/W/C粉末は、下記のPd/W/C粉末と、塩化白金酸カリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でPtイオンを還元処理することにより得られた。
[“Pt / Pd / W / C” powder in which a second shell portion made of Pt is formed on Pd / W / C]
“Pt / Pd / W / C” powder {trade name “NE-F12W10-AAA”, N.P., on which a second shell portion made of Pt is formed on Pd of the particles of the following “Pd / W / C” powder. E. CHEMCAT)} was produced as the electrode catalyst of Example 1.
This Pt / Pd / W / C powder is prepared by preparing a mixed solution of the following Pd / W / C powder, potassium chloroplatinate, and water, and adding a reducing agent to the Pt / Pd / W / C powder. It was obtained by reducing the ions.
[W/C上にPdからなる第1シェル部を形成した「Pd/W/C」粉末]
下記の「W/C」粉末の粒子のW上にPdからなる第1シェル部が形成された「Pd/W/C」粉末{商品名「NE-F02W00-AA」、N.E.CHEMCAT社製)}を用意した。
このPd/W/C粉末は、下記のW/C粉末と、テトラクロロパラジウム(II)酸ナトリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でパラジウムイオンを還元処理することにより得られる。
[“Pd / W / C” powder in which a first shell portion made of Pd is formed on W / C]
“Pd / W / C” powder in which a first shell portion made of Pd is formed on W of the following “W / C” powder particles {trade name “NE-F02W00-AA”, NE CHEMCAT Made)}.
This Pd / W / C powder was prepared by preparing a mixed solution of the following W / C powder, sodium tetrachloropalladium (II) and water, and adding a reducing agent to the palladium in the liquid obtained. It can be obtained by reducing ions.
[コア粒子担持カーボン「W/C」粉末(電極用触媒のコア部の前駆体となるコア粒子)]
W炭化物とW酸化物とからなるコア粒子がカーボンブラック粉末上に担持されたW/C粉末{商品名「NE-F00W00-A」、N.E.CHEMCAT社製)}を用意した。
なお、このW/C粉末は、下記のXRD測定の結果、WC、W2C、WC1-x(0<x<1)を表1に示すピーク強度比{I2/(I1+I2)}、{I2/(I1+I2+I3)}でそれぞれ含んでいることを確認した。
このW/C粉末は、市販のカーボンブラック粉末(比表面積750~850m2/g)と、市販のタングステン酸塩と、市販の水溶性ポリマー(炭素源)とを含む粉末を、還元雰囲気下で熱処理して調整したものである。
[Core particle-supported carbon “W / C” powder (core particle serving as a precursor of the core of the electrode catalyst)]
A W / C powder {trade name “NE-F00W00-A”, manufactured by NE CHEMCAT)} in which core particles composed of W carbide and W oxide were supported on carbon black powder was prepared.
The W / C powder was measured by the following XRD measurement, and the peak intensity ratio {I2 / (I1 + I2)} in which WC, W 2 C, and WC 1-x (0 <x <1) are shown in Table 1 was obtained. , {I2 / (I1 + I2 + I3)}, respectively.
This W / C powder is a powder containing a commercially available carbon black powder (specific surface area 750 to 850 m 2 / g), a commercially available tungstate, and a commercially available water-soluble polymer (carbon source) in a reducing atmosphere. It was prepared by heat treatment.
<X線回折測定>
本実施例においてXRD測定は以下の装置及び測定条件にて実施した。装置はPanalytical社製の装置名「X‘PertPRO」を使用した。測定条件は、管電流:40mA、管電圧:45kV、ターゲット:Cu、ステップサイズ(ステップ幅): 0.017°=2θとした。
<X-ray diffraction measurement>
In this example, XRD measurement was performed with the following apparatus and measurement conditions. As the apparatus, the apparatus name “X′PertPRO” manufactured by Panallytical was used. The measurement conditions were tube current: 40 mA, tube voltage: 45 kV, target: Cu, step size (step width): 0.017 ° = 2θ.
この測定条件のもとで、コア粒子のX線回折測定を実施し、WCに帰属されるピークのうち、X線回折の回折角2θ(±0.3゜)=48.200°付近のピークのピーク強度を「I1」とした。また、コア粒子のX線回折測定により得られるWC1-x(0<x<1)に帰属されるピークのうち、X線回折の回折角2θ(±0.3゜)=42.700°付近のピークのピーク強度を「I2」とした。更に、コア粒子のX線回折測定により得られるW2Cに帰属されるピークのうち、X線回折の回折角2θ(±0.3゜)=39.300°付近のピークのピーク強度を「I3」とした。 Under this measurement condition, X-ray diffraction measurement of the core particle was performed, and among the peaks attributed to WC, the peak at the diffraction angle 2θ (± 0.3 °) = 48.200 ° of X-ray diffraction The peak intensity was set to “I1”. Of the peaks attributed to WC 1-x (0 <x <1) obtained by X-ray diffraction measurement of the core particles, the diffraction angle 2θ (± 0.3 °) of X-ray diffraction = 42.700 °. The peak intensity of the nearby peak was defined as “I2”. Further, among the peaks attributed to W 2 C obtained by X-ray diffraction measurement of the core particles, the peak intensity of the peak near the diffraction angle 2θ (± 0.3 °) = 39.300 ° of X-ray diffraction is expressed as “ I3 ".
<担持率の測定(ICP分析)>
実施例1の電極用触媒について、Pt担持率LPt(wt%)と、Pd担持率LPd(wt%)、Wの担持率LW(wt%)を以下の方法で測定した。
実施例1の電極用触媒を王水に浸し、金属を溶解させた。次に、王水から不溶成分のカーボンを除去した。次に、カーボンを除いた王水をICP分析した。
ICP分析の結果を表1に示す。
<Measurement of loading rate (ICP analysis)>
For the electrode catalyst of Example 1, the Pt loading rate L Pt (wt%), the Pd loading rate L Pd (wt%), and the W loading rate L W (wt%) were measured by the following methods.
The electrode catalyst of Example 1 was immersed in aqua regia to dissolve the metal. Next, insoluble component carbon was removed from the aqua regia. Next, aqua regia without carbon was analyzed by ICP.
The results of ICP analysis are shown in Table 1.
<電極用触媒の表面観察・構造観察>
実施例1の電極用触媒について、STEM-HAADF 像、EDS elemental mapping 像を確認した結果、W炭化物とW酸化物とからなるコア部の粒子の表面の少なくとも一部に、Pdからなる第1シェル部の層が形成され、更に、第1シェル部の層の少なくとも一部にPtからなる第2シェル部の層が形成されたコアシェル構造を有する触媒粒子が導電性カーボン担体に担持されている構成(図1、図2参照)を有していることが確認できた。
<Surface observation and structure observation of electrode catalyst>
As a result of confirming the STEM-HAADF image and the EDS elementary mapping image of the electrode catalyst of Example 1, the first shell made of Pd was formed on at least a part of the surface of the core part particles made of W carbide and W oxide. And a catalyst particle having a core-shell structure in which a second shell portion layer made of Pt is formed on at least a part of the first shell portion layer is supported on a conductive carbon carrier. (See FIG. 1 and FIG. 2).
(実施例2)
<電極用触媒の製造>
(Example 2)
<Manufacture of electrode catalyst>
[Pd/W/C上にPtからなる第2シェル部を形成した「Pt/Pd/W/C」粉末]
下記の「Pd/W/C」粉末の粒子のPd上にPtからなる第2シェル部が形成された「Pt/Pd/W/C」粉末{商品名「NE-G12W10-AAA」、N.E.CHEMCAT社製)}を実施例2の電極触媒として製造した。
このPt/Pd/W/C粉末は、下記のPd/W/C粉末と、塩化白金酸カリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でPtイオンを還元処理することにより得られた。
[“Pt / Pd / W / C” powder in which a second shell portion made of Pt is formed on Pd / W / C]
“Pt / Pd / W / C” powder in which a second shell portion made of Pt is formed on Pd of the following “Pd / W / C” powder particles {trade name “NE-G12W10-AAA”, N. E. CHEMCAT)) was produced as the electrode catalyst of Example 2.
This Pt / Pd / W / C powder is prepared by preparing a mixed solution of the following Pd / W / C powder, potassium chloroplatinate, and water, and adding a reducing agent to the Pt / Pd / W / C powder. It was obtained by reducing the ions.
[W/C上にPdからなる第1シェル部を形成した「Pd/W/C」粉末]
下記の「W/C」粉末の粒子のW上にPdからなる第1シェル部が形成された「Pd/W/C」粉末{商品名「NE-G02W00-AA」、N.E.CHEMCAT社製)}を用意した。
このPd/W/C粉末は、下記のW/C粉末と、テトラクロロパラジウム(II)酸ナトリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でパラジウムイオンを還元処理することにより得られる。
[“Pd / W / C” powder in which a first shell portion made of Pd is formed on W / C]
“Pd / W / C” powder in which a first shell portion made of Pd is formed on W of the following “W / C” powder particles {trade name “NE-G02W00-AA”, NE CHEMCAT Made)}.
This Pd / W / C powder was prepared by preparing a mixed solution of the following W / C powder, sodium tetrachloropalladium (II) and water, and adding a reducing agent to the palladium in the liquid obtained. It can be obtained by reducing ions.
[コア粒子担持カーボン「W/C」粉末(電極用触媒のコア部の前駆体となるコア粒子)]
W炭化物とW酸化物とからなるコア粒子がカーボンブラック粉末上に担持されたW/C粉末{商品名「NE-G00W00-A」、N.E.CHEMCAT社製)}を用意した。
なお、このW/C粉末は、下記のXRD測定の結果、WC、W2C、WC1-x(0<x<1)を表1に示すピーク強度比{I2/(I1+I2)}、{I2/(I1+I2+I3)}でそれぞれ含んでいることを確認した。
このW/C粉末は、市販のカーボンブラック粉末(比表面積200~300m2/g)と、市販のタングステン酸塩と、市販の水溶性ポリマー(炭素源)とを含む粉末を、還元雰囲気下で熱処理して調整したものである。
実施例2の電極用触媒について、実施例1の電極用触媒と同一の条件で、電極用触媒のICP分析を行った。それぞれの分析結果を表1に示す。
次に、実施例2の電極用触媒についても、STEM-HAADF 像、EDS elemental mapping 像を確認した結果、W炭化物とW酸化物とからなるコア部の粒子の表面の少なくとも一部に、Pdからなる第1シェル部の層が形成され、更に、第1シェル部の層の少なくとも一部にPtからなる第2シェル部の層が形成されたコアシェル構造を有する触媒粒子が導電性カーボン担体に担持されている構成(図1、図2参照)を有していることが確認できた。
[Core particle-supported carbon “W / C” powder (core particle serving as a precursor of the core of the electrode catalyst)]
W / C powder {trade name “NE-G00W00-A”, manufactured by NE CHEMCAT)} in which core particles composed of W carbide and W oxide were supported on carbon black powder was prepared.
The W / C powder was measured by the following XRD measurement, and the peak intensity ratio {I2 / (I1 + I2)} in which WC, W 2 C, and WC 1-x (0 <x <1) are shown in Table 1 was obtained. , {I2 / (I1 + I2 + I3)}, respectively.
This W / C powder is a powder containing a commercially available carbon black powder (specific surface area 200 to 300 m 2 / g), a commercially available tungstate, and a commercially available water-soluble polymer (carbon source) in a reducing atmosphere. It was prepared by heat treatment.
The electrode catalyst of Example 2 was subjected to ICP analysis of the electrode catalyst under the same conditions as the electrode catalyst of Example 1. The results of each analysis are shown in Table 1.
Next, also for the electrode catalyst of Example 2, as a result of confirming the STEM-HAADF image and the EDS elementary mapping image, at least part of the surface of the particle of the core portion composed of W carbide and W oxide was formed from Pd. The catalyst particles having the core-shell structure in which the first shell layer is formed and the second shell portion layer made of Pt is formed on at least a part of the first shell layer are supported on the conductive carbon carrier. It was confirmed that it has the configuration (see FIGS. 1 and 2).
(実施例3~実施例6)
表1に示した電極用触媒のコア部の前駆体となるコア粒子のXRD測定の結果{I2/(I1+I2)}及び{I2/(I1+I2+I3)}、触媒粒子全体のICP分析結果(LPt、LPd、LW)、を有するように原料の仕込み量、反応条件等を微調整したこと以外は実施例2と同様の調製条件、同一の原料を使用して、実施例3~実施例6の電極用触媒を製造した。
また、ICP分析は実施例1と同一の条件で実施した。
更に、実施例3~実施例6の電極用触媒についても、STEM-HAADF 像、EDS elemental mapping 像を確認した結果、W炭化物とW酸化物とからなるコア部の粒子の表面の少なくとも一部に、Pdからなる第1シェル部の層が形成され、更に、第1シェル部の層の少なくとも一部にPtからなる第2シェル部の層が形成されたコアシェル構造を有する触媒粒子が導電性カーボン担体に担持されている構成(図1、図2参照)を有していることが確認できた。
(Example 3 to Example 6)
XRD measurement results {I2 / (I1 + I2)} and {I2 / (I1 + I2 + I3)} of core particles that are precursors of the core part of the electrode catalyst shown in Table 1, ICP analysis results (L Example 3 to Example 3 were carried out using the same preparation conditions and the same raw materials as in Example 2 except that the amount of raw materials charged, reaction conditions, etc. were finely adjusted to have Pt , L Pd , L W ). The electrode catalyst of Example 6 was produced.
ICP analysis was performed under the same conditions as in Example 1.
Further, with respect to the electrode catalysts of Examples 3 to 6, as a result of confirming the STEM-HAADF image and the EDS elementary mapping image, it was found that at least a part of the surface of the core particle composed of W carbide and W oxide was present. The catalyst particles having the core-shell structure in which the first shell layer made of Pd is formed and the second shell layer made of Pt is formed on at least a part of the first shell layer are conductive carbon. It was confirmed that the structure supported on the carrier (see FIGS. 1 and 2) was provided.
(実施例7~実施例10)
表1に示した電極用触媒のコア部の前駆体となるコア粒子のXRD測定の結果{I2/(I1+I2)}及び{I2/(I1+I2+I3)}、触媒粒子全体のICP分析結果(LPt、LPd、LW)、を有するように原料の仕込み量、反応条件等を微調整したこと以外は実施例1と同様の調製条件、同一の原料を使用して、実施例7~実施例10の電極用触媒を製造した。
また、XPS分析、ICP分析も実施例1と同一の条件で実施した。
更に、実施例7~実施例10の電極用触媒についても、STEM-HAADF 像、EDS elemental mapping 像を確認した結果、W炭化物とW酸化物とからなるコア部の粒子の表面の少なくとも一部に、Pdからなる第1シェル部の層が形成され、更に、第1シェル部の層の少なくとも一部にPtからなる第2シェル部の層が形成されたコアシェル構造を有する触媒粒子が導電性カーボン担体に担持されている構成(図1、図2参照)を有していることが確認できた。
(Examples 7 to 10)
XRD measurement results {I2 / (I1 + I2)} and {I2 / (I1 + I2 + I3)} of core particles that are precursors of the core part of the electrode catalyst shown in Table 1, ICP analysis results (L Pt 1 , L Pd , L W ), Examples 7 to 5 were carried out using the same raw materials and preparation conditions as in Example 1 except that the amount of raw materials charged and reaction conditions were finely adjusted. The electrode catalyst of Example 10 was prepared.
XPS analysis and ICP analysis were also performed under the same conditions as in Example 1.
Further, with respect to the electrode catalysts of Examples 7 to 10, as a result of confirming the STEM-HAADF image and the EDS elementary mapping image, it was found that at least a part of the surface of the core particle composed of W carbide and W oxide was present. The catalyst particles having the core-shell structure in which the first shell layer made of Pd is formed and the second shell layer made of Pt is formed on at least a part of the first shell layer are conductive carbon. It was confirmed that the structure supported on the carrier (see FIGS. 1 and 2) was provided.
(比較例1)
Pt/C触媒として、N.E.CHEMCAT社製のPt担持率50wt%のPt/C触媒(商品名:「SA50BH」)を用意した。この触媒は、実施例1の電極用触媒と同一の担体を原料とするものである。
この比較例1の電極用触媒についても実施例1の電極触媒と同一の条件でXRD分析、ICP分析を実施した。その結果を表1に示す。
(Comparative Example 1)
As a Pt / C catalyst, a Pt / C catalyst (trade name: “SA50BH”) manufactured by NE CHEMCAT with a Pt loading rate of 50 wt% was prepared. This catalyst uses the same carrier as the electrode catalyst of Example 1 as a raw material.
The electrode catalyst of Comparative Example 1 was subjected to XRD analysis and ICP analysis under the same conditions as those of the electrode catalyst of Example 1. The results are shown in Table 1.
(比較例2)
<電極用触媒の製造>
(Comparative Example 2)
<Manufacture of electrode catalyst>
[Pd/W/C上にPtからなる第2シェル部を形成した「Pt/Pd/W/C」粉末]
下記の「Pd/W/C」粉末の粒子のPd上にPtからなる第2シェル部が形成された「Pt/Pd/W/C」粉末{商品名「NE-G12W09-ADB」、N.E.CHEMCAT社製)}を比較例2の電極触媒として用意した。
このPt/Pd/W/C粉末は、下記のPd/W/C粉末と、塩化白金酸カリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でPtイオンを還元処理することにより得られた。
[“Pt / Pd / W / C” powder in which a second shell portion made of Pt is formed on Pd / W / C]
“Pt / Pd / W / C” powder in which a second shell portion made of Pt is formed on Pd of the following “Pd / W / C” powder particles {trade name “NE-G12W09-ADB”; E. CHEMCAT)} was prepared as an electrode catalyst for Comparative Example 2.
This Pt / Pd / W / C powder is prepared by preparing a mixed solution of the following Pd / W / C powder, potassium chloroplatinate, and water, and adding a reducing agent to the Pt / Pd / W / C powder. It was obtained by reducing the ions.
[W/C上にPdからなる第1シェル部を形成した「Pd/W/C」粉末]
下記の「W/C」粉末の粒子のW上にPdからなる第1シェル部が形成された「Pd/W/C」粉末{商品名「NE-G02W00-DB」、N.E.CHEMCAT社製)}を用意した。
このPd/W/C粉末は、下記のW/C粉末と、テトラクロロパラジウム(II)酸ナトリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でパラジウムイオンを還元処理することにより得られる。
[“Pd / W / C” powder in which a first shell portion made of Pd is formed on W / C]
“Pd / W / C” powder in which a first shell portion made of Pd is formed on W of the following “W / C” powder particles {trade name “NE-G02W00-DB”, NE CHEMCAT Made)}.
This Pd / W / C powder was prepared by preparing a mixed solution of the following W / C powder, sodium tetrachloropalladium (II) and water, and adding a reducing agent to the palladium in the liquid obtained. It can be obtained by reducing ions.
[コア粒子担持カーボン「W/C」粉末(電極用触媒のコア部の前駆体となるコア粒子)]
W炭化物とW酸化物とからなるコア粒子がカーボンブラック粉末上に担持されたW/C粉末{商品名「NE-G00W00-B」、N.E.CHEMCAT社製)}を用意した。
なお、このW/C粉末は、XRD測定の結果、W炭化物はWCのみからなることが確認された。
このW/C粉末は、市販のカーボンブラック粉末(比表面積200~300m2/g)と、市販のタングステン酸塩とを含む粉末を、炭化水素ガス(炭素源)を含む還元雰囲気下で熱処理して調整したものである。
この比較例2の電極用触媒についても実施例1の電極触媒と同一の条件で電極用触媒のICP分析を実施した。その結果を表1に示す。
また、比較例2の電極用触媒についても、STEM-HAADF 像、EDS elemental mapping 像を確認した結果、構成(図1、図2参照)を有していることが確認できた。
[Core particle-supported carbon “W / C” powder (core particle serving as a precursor of the core of the electrode catalyst)]
W / C powder {trade name “NE-G00W00-B”, manufactured by NE CHEMCAT)} in which core particles composed of W carbide and W oxide were supported on carbon black powder was prepared.
As a result of XRD measurement, it was confirmed that this W / C powder consists of WC only.
This W / C powder is obtained by heat-treating a powder containing a commercially available carbon black powder (specific surface area 200 to 300 m 2 / g) and a commercially available tungstate salt in a reducing atmosphere containing a hydrocarbon gas (carbon source). Adjusted.
The electrode catalyst of Comparative Example 2 was also subjected to ICP analysis of the electrode catalyst under the same conditions as those of the electrode catalyst of Example 1. The results are shown in Table 1.
In addition, as a result of confirming the STEM-HAADF image and the EDS elementary mapping image, the electrode catalyst of Comparative Example 2 was confirmed to have a configuration (see FIGS. 1 and 2).
(比較例3~比較例4)
表1に示した電極用触媒のコア部の前駆体となるコア粒子のXRD測定の結果{I2/(I1+I2)}及び{I2/(I1+I2+I3)}、触媒粒子全体のICP分析結果(LPt、LPd、LW)を有するように原料の仕込み量、反応条件等を微調整したこと以外は同様の調製条件、同一の原料を使用して、比較例3~比較例4の電極用触媒を製造した。
また、ICP分析も実施例1と同一の条件で実施した。
なお、比較例3のW/C粉末及び比較例4のW/C粉末についても比較例2のW/C粉末と同様に、XRD測定の結果、W炭化物はWCのみからなることが確認された。
更に、比較例3~比較例4の電極用触媒についても、STEM-HAADF 像、EDS elemental mapping 像を確認した結果、W炭化物とW酸化物とからなるコア部の粒子の表面の少なくとも一部に、Pdからなる第1シェル部の層が形成され、更に、第1シェル部の層の少なくとも一部にPtからなる第2シェル部の層が形成されたコアシェル構造を有する触媒粒子が導電性カーボン担体に担持されている構成(図1、図2参照)を有していることが確認できた。
(Comparative Examples 3 to 4)
XRD measurement results {I2 / (I1 + I2)} and {I2 / (I1 + I2 + I3)} of core particles that are precursors of the core part of the electrode catalyst shown in Table 1, ICP analysis results (L For the electrodes of Comparative Examples 3 to 4, using the same preparation conditions and the same raw materials except that the amount of raw materials charged, reaction conditions, etc. were finely adjusted so as to have Pt , L Pd , L W ) A catalyst was prepared.
ICP analysis was also performed under the same conditions as in Example 1.
As for the W / C powder of Comparative Example 3 and the W / C powder of Comparative Example 4, as in the case of the W / C powder of Comparative Example 2, as a result of XRD measurement, it was confirmed that the W carbide was composed only of WC. .
Further, with respect to the electrode catalysts of Comparative Examples 3 to 4, as a result of confirming the STEM-HAADF image and the EDS elementary mapping image, it was found that at least a part of the surface of the core particle composed of W carbide and W oxide was present. The catalyst particles having the core-shell structure in which the first shell layer made of Pd is formed and the second shell layer made of Pt is formed on at least a part of the first shell layer are conductive carbon. It was confirmed that the structure supported on the carrier (see FIGS. 1 and 2) was provided.
(II)ガス拡散電極形成用組成物の製造
実施例1~実施例10、比較例1~比較例4の電極用触媒の粉末を約8.0mg秤取り、超純水2.5mLとともにサンプル瓶に入れて超音波を照射しながら混合して電極用触媒のスラリー(懸濁液)を作製した。
次に、別の容器に超純水10.0mLと10wt%ナフィオン(登録商標)分散水溶液((株)ワコーケミカル製、商品名「DE1020CS」)20μLを混合して、ナフィオン-超純水溶液を作製した。
このナフィオン-超純水溶液2.5mLを電極用触媒のスラリー(懸濁液)が入ったサンプル瓶に投入し、室温にて15分間、超音波を照射し、十分に撹拌して、ガス拡散電極形成用組成物とした。
(II) Production of Gas Diffusion Electrode Composition Composition About 8.0 mg of electrode catalyst powders of Examples 1 to 10 and Comparative Examples 1 to 4 were weighed and sample bottles together with 2.5 mL of ultrapure water. The mixture was mixed while being irradiated with ultrasonic waves to prepare a slurry (suspension) of the electrode catalyst.
Next, 10.0 mL of ultrapure water and 20 μL of a 10 wt% Nafion (registered trademark) aqueous dispersion (trade name “DE1020CS” manufactured by Wako Chemical Co., Ltd.) are mixed in another container to prepare a Nafion-ultrapure aqueous solution. did.
Put 2.5 mL of this Nafion-ultra-pure aqueous solution into a sample bottle containing a slurry (suspension) of electrode catalyst, irradiate with ultrasonic waves at room temperature for 15 minutes, stir well, and gas diffusion electrode A forming composition was obtained.
(III)評価試験用の電極への触媒層の形成
後述する回転ディスク電極法(RDE法)による電極触媒の評価試験の準備として、回転ディスク電極WE(図4参照)の電極面上に、実施例1の電極用触媒の粉末を含む触媒層CL(図4参照)、実施例2の電極用触媒の粉末を含む触媒層CL(図4参照)、比較例1の電極用触媒の粉末を含む触媒層CL(図4参照)、比較例2の電極用触媒の粉末を含む触媒層CL(図4参照)を以下の手順で形成した。
すなわち、ガス拡散電極形成用組成物を10μL分取して、回転ディスク電極WEの清浄な表面に滴下した。その後、回転ディスク電極WEの電極面全体に当該組成物を塗布し、塗布膜を形成した。このガス拡散電極形成用組成物からなる塗布膜を温度23℃、湿度50%RHにて、2.5時間乾燥処理し、回転ディスク電極WEの表面に触媒層CLを形成した。
(III) Formation of catalyst layer on electrode for evaluation test As preparation for an electrode catalyst evaluation test by the rotating disk electrode method (RDE method) described later, it was carried out on the electrode surface of the rotating disk electrode WE (see FIG. 4). The catalyst layer CL containing the electrode catalyst powder of Example 1 (see FIG. 4), the catalyst layer CL containing the electrode catalyst powder of Example 2 (see FIG. 4), and the electrode catalyst powder of Comparative Example 1 A catalyst layer CL (see FIG. 4) and a catalyst layer CL (see FIG. 4) containing the electrode catalyst powder of Comparative Example 2 were formed by the following procedure.
That is, 10 μL of the gas diffusion electrode forming composition was taken and dropped onto the clean surface of the rotating disk electrode WE. Thereafter, the composition was applied to the entire electrode surface of the rotating disk electrode WE to form a coating film. The coating film made of this gas diffusion electrode forming composition was dried at a temperature of 23 ° C. and a humidity of 50% RH for 2.5 hours to form a catalyst layer CL on the surface of the rotating disk electrode WE.
(IV)電極用触媒の触媒活性の評価試験
次に、実施例1~実施例10の電極触媒を含む触媒層CLが形成された回転ディスク電極WEと、比較例1~比較例4の電極触媒を含む触媒層CLが形成された回転ディスク電極WEとを使用し、耐久性の評価試験を以下の手順で実施した。
(IV) Evaluation Test of Catalyst Activity of Electrode Catalyst Next, the rotating disk electrode WE on which the catalyst layer CL containing the electrode catalyst of Example 1 to Example 10 was formed, and the electrode catalyst of Comparative Example 1 to Comparative Example 4 And a rotating disk electrode WE on which a catalyst layer CL containing a carbon black was formed, and a durability evaluation test was performed according to the following procedure.
[回転ディスク電極測定装置の構成]
図4は、回転ディスク電極法(RDE法)に用いる回転ディスク電極測定装置50の概略構成を示す模式図である。
図4に示すように、回転ディスク電極測定装置50は、主として、測定セル51と、参照電極REと、対極CEと、回転ディスク電極WEとから構成されている。更に、触媒の評価を実施する場合には、測定セル51中に電解液ESが入れられる。
測定セル51は上面に開口部を有する略円柱状の形状を有しており、開口部には、ガスシール可能な蓋を兼ねた回転ディスク電極WEの固定部材52が配置されている。固定部材52の中央部には回転ディスク電極WEの電極本体部分を測定セル51内に挿入しつつ固定するためのガスシール可能な開口部が設けられている。
測定セル51の隣には、略L字状のルギン管53が配置されている。更にルギン管53の一方の先端部分はルギン毛細管の構造を有し、測定セル51の内部に挿入されており、測定セル51の電解液ESがルギン管53内部にも入るように構成されている。ルギン管53の他方に先端には開口部があり、当該開口部から参照電極REがルギン管53内に挿入される構成となっている。
なお、回転ディスク電極測定装置50としては、北斗電工株式会社製「モデルHSV110」を使用した。また、参照電極REとしてはAg/AgCl飽和電極、対極CEとしてはPt黒付Ptメッシュ、回転ディスク電極WEとしてはグラッシーカーボン社製、径5.0mmφ、面積19.6mm2の電極をそれぞれ使用した。更に、電解液ESとして0.1MのHCl04を用いた。
[Configuration of rotating disk electrode measuring device]
FIG. 4 is a schematic diagram showing a schematic configuration of a rotating disk
As shown in FIG. 4, the rotating disk
The
Next to the
As the rotating disk
(V)電極用触媒の耐久性の評価試験
初期の電気化学表面積(ECSA)の評価試験に使用したものとは別の実施例1~実施例10の電極触媒を含む触媒層CLが形成された回転ディスク電極WEと、比較例1~比較例4の電極触媒を含む触媒層CLが形成された回転ディスク電極WEとをそれぞれ用意し、RDE法により、以下の手順でECSAの測定を行い、耐久性の評価を行った。
(V) Durability Evaluation Test of Electrode Catalyst A catalyst layer CL containing the electrode catalyst of Examples 1 to 10 different from that used in the initial electrochemical surface area (ECSA) evaluation test was formed. A rotating disk electrode WE and a rotating disk electrode WE on which a catalyst layer CL containing the electrode catalysts of Comparative Examples 1 to 4 was prepared, respectively, were subjected to ECSA measurement by the RDE method according to the following procedure, and were durable. Sexuality was evaluated.
[回転ディスク電極WEのクリーニング]
[回転ディスク電極WEのクリーニング]
図4に示すように、上記回転ディスク電極測定装置50内において、HClO4電解液ES中に回転ディスク電極WEを浸した後、測定セル51の側面に連結されたガス導入管54からアルゴンガスを測定セル51中に導入することにより、アルゴンガスで電解液ES中の酸素を30分以上パージした。
その後、参照電極REに対する回転ディスク電極WEの電位(vsRHE)を、+85mV~+1085mV、走査速度50mv/secとする、いわゆる「三角波の電位掃引モード」で20サイクル、掃引した。
[Cleaning of rotating disk electrode WE]
[Cleaning of rotating disk electrode WE]
As shown in FIG. 4, in the rotating disk
Thereafter, the potential (vsRHE) of the rotating disk electrode WE with respect to the reference electrode RE was swept for 20 cycles in a so-called “triangular wave potential sweep mode” in which +85 mV to +1085 mV and a scanning speed of 50 mV / sec.
(V-1)[初期のECSAの測定]
(i)電位掃引処理
参照電極REに対する回転ディスク電極WEの電位(vsRHE)を、図5に示すいわゆる「矩形波の電位掃引モード」で掃引した。
より詳しくは、以下(A)~(D)で示す操作を1サイクルとした電位掃引を6サイクル行った。
(A)掃引開始時の電位:+600mV、(B)+600mVから+1000mVへの掃引、(C)+1000mVでの電位保持3秒、(D)+1000mVから+600mVへの掃引、(E)+600mVでの電位保持3秒。
(ii)CV測定
次に、回転ディスク電極WEの電位(vsRHE)を、測定開始の電位+119mV、+50mV~1200mV、走査速度50mV/secとする「三角波の電位掃引モード」にて2サイクル、CV測定を行った。なお、回転ディスク電極WEの回転速度は1600rpmとした。
2サイクル目のCV測定結果から、水素脱着波に基づく初期のECSAの値を算出した。結果を表1に示す。
(V-1) [Initial ECSA measurement]
(I) Potential sweep process The potential (vsRHE) of the rotating disk electrode WE with respect to the reference electrode RE was swept in a so-called "rectangular wave potential sweep mode" shown in FIG.
More specifically, a potential sweep was performed for 6 cycles with the operation shown in (A) to (D) below as one cycle.
(A) Potential at start of sweep: +600 mV, (B) Sweep from +600 mV to +1000 mV, (C) Hold potential at +1000 mV for 3 seconds, (D) Sweep from +1000 mV to +600 mV, (E) Hold potential at +600 mV 3 seconds.
(Ii) CV measurement Next, CV measurement is performed for 2 cycles in the “triangular wave potential sweep mode” in which the potential (vsRHE) of the rotating disk electrode WE is set to the measurement start potential +119 mV, +50 mV to 1200 mV, and the scanning speed is 50 mV / sec. Went. The rotational speed of the rotating disk electrode WE was 1600 rpm.
From the CV measurement result at the second cycle, the initial ECSA value based on the hydrogen desorption wave was calculated. The results are shown in Table 1.
(V-2)[電位掃引回数12420サイクル後のECSAの測定]
初期のECSAの測定に引き続き、上述の「(i)電位掃引処理」を、電位掃引回数を12サイクルとしたこと以外は同一の条件で実施した。次に、上述の「(ii)CV測定」を同一の条件で実施した。
このようにして、電位掃引回数を順次変化させて「(i)電位掃引処理」を実施し、その都度上述の「(ii)CV測定」を同一の条件で実施した。電位掃引回数は、22、40、80、160、300、600、800、1000、1000、8400サイクルと順次変化させた。
これにより、最後の「(ii)CV測定」において得られるECSAの値(電位掃引回数が合計12420サイクルとなる電位掃引処理を施された後のECSAの値)を求めた。
また、この最後の「(ii)CV測定」において得られる水素脱着波に基づくECSAの値を「初期のECSAの値」で除すことにより、電位掃引回数12420サイクル後のESCAの維持率(%)を算出した。
次に、比較例1の電極用触媒について得られた電位掃引回数12420サイクル後のESCAの維持率(%)と、実施例1~実施例10、比較例2~比較例4の電極用触媒について得られた電位掃引回数12420サイクル後のESCAの維持率(%)とを比較するために、比較例1の電極用触媒について得られた電位掃引回数12420サイクル後のESCAの維持率(%)を1.00とした場合の他の触媒の電位掃引回数12420サイクル後のESCAの維持率(%)の相対値を算出した。
実施例1~実施例10、比較例1~比較例4について得られた相対値の結果を表1に示す。
(V-2) [Measurement of ECSA after 12420 cycles of potential sweep]
Subsequent to the initial ECSA measurement, the above “(i) potential sweep process” was performed under the same conditions except that the number of potential sweeps was 12 cycles. Next, the above “(ii) CV measurement” was performed under the same conditions.
In this way, “(i) potential sweep process” was performed by sequentially changing the number of potential sweeps, and “(ii) CV measurement” described above was performed under the same conditions each time. The number of potential sweeps was sequentially changed to 22, 40, 80, 160, 300, 600, 800, 1000, 1000, and 8400 cycles.
Thus, the ECSA value obtained in the last “(ii) CV measurement” (the ECSA value after the potential sweep process in which the total number of potential sweeps is 12420 cycles) was obtained.
In addition, by dividing the ECSA value based on the hydrogen desorption wave obtained in the last “(ii) CV measurement” by the “initial ECSA value”, the retention rate of ESCA (% ) Was calculated.
Next, the ESCA retention rate (%) after 12420 cycles of potential sweep obtained for the electrode catalyst of Comparative Example 1 and the electrode catalysts of Examples 1 to 10 and Comparative Examples 2 to 4 In order to compare the obtained ESCA maintenance rate (%) after the number of potential sweeps 12420 cycles, the ESCA maintenance rate (%) after the number of potential sweeps 12420 cycles obtained for the electrode catalyst of Comparative Example 1 was calculated. The relative value of the retention rate (%) of ESCA after 12420 cycles of potential sweeps of other catalysts when 1.00 was set was calculated.
The relative value results obtained for Examples 1 to 10 and Comparative Examples 1 to 4 are shown in Table 1.
表1に示した「ESCAの維持率の相対値」の結果から、実施例1~実施例10の電極用触媒は、比較例1~比較例4の電極用触媒と比較し、優れた耐久性を有していることが明らかとなった。 以上の結果から、本実施例の電極用触媒は、従来のPt/C触媒と比較して優れた耐久性を有していることが明らかとなった。更に、本実施例の電極用触媒は、コア部の材料をタングステン化合物としているため、白金使用量を削減でき、低コスト化に寄与できることが明らかとなった。 From the results of “Relative value of ESCA retention rate” shown in Table 1, the electrode catalysts of Examples 1 to 10 have superior durability compared to the electrode catalysts of Comparative Examples 1 to 4. It became clear to have. From the above results, it has been clarified that the electrode catalyst of this example has superior durability compared to the conventional Pt / C catalyst. Furthermore, since the electrode catalyst of this example uses a tungsten compound as the core material, it has been clarified that the amount of platinum used can be reduced and the cost can be reduced.
本発明の電極用触媒は、従来のPt/C触媒と比較して優れた耐久性を有し、かつ、低コスト化に寄与できる。
従って、本発明は、燃料電池、燃料電池自動車、携帯モバイル等の電機機器産業のみならず、エネファーム、コジェネレーションシステム等に適用することができる電極用触媒であり、エネルギー産業、環境技術関連の発達に寄与する。
The electrode catalyst of the present invention has excellent durability compared to conventional Pt / C catalysts and can contribute to cost reduction.
Accordingly, the present invention is an electrode catalyst that can be applied not only to the electric equipment industry such as fuel cells, fuel cell vehicles, and portable mobiles, but also to energy farms, cogeneration systems, etc. Contribute to development.
2・・・担体、
3・・・触媒粒子、
4・・・コア部、
5・・・第1シェル部、
6・・・第2シェル部、
7・・・シェル部、
10、10A・・・電極用触媒、
40・・・燃料電池スタック40、
42・・・MEA、
43・・・アノード、
43a・・・ガス拡散層、
43b・・・触媒層、
44・・・カソード、
45・・・電解質膜、
46・・・セパレータ、
48・・・セパレータ、
50・・・回転ディスク電極測定装置、
51・・・測定セル、
52・・・固定部材、
53・・・ルギン管、
CE・・・対極、
CL・・・触媒層、
ES・・・電解液、
RE・・・参照電極、
WE・・・回転ディスク電極。
2 ... carrier
3 ... catalyst particles,
4 ... Core part,
5 ... 1st shell part,
6 ... 2nd shell part,
7 ... Shell part,
10, 10A ... electrode catalyst,
40:
42 ... MEA,
43 ... anode,
43a ... Gas diffusion layer,
43b ... catalyst layer,
44... Cathode
45 ... electrolyte membrane,
46 ... Separator,
48 ... separator,
50... Rotating disk electrode measuring device,
51 ... Measurement cell,
52... Fixing member,
53 ... Lugin tube,
CE ... Counter electrode,
CL: catalyst layer,
ES ... electrolyte,
RE: Reference electrode,
WE: rotating disk electrode.
Claims (9)
前記担体上に担持される触媒粒子と、
を含んでおり、
前記触媒粒子が、前記担体上に形成されるコア部と、前記コア部上に形成される第1シェル部と、前記第1シェル部上に形成される第2シェル部と、を有しており、
前記コア部にはWC、及び、WC1-x(0<x<1)を含むW炭化物が含まれており、
前記第1シェル部にはPd(0価)が含まれており、
前記第2シェル部にはPt(0価)が含まれており、
前記コア部の前駆体となるコア粒子が下記式(1)の条件を満たしている、
電極用触媒。
0.03≦{I2/(I1+I2)}≦0.75・・・(1)
[式(1)中、I1は前記コア粒子のX線回折測定により得られるWCに帰属されるピークのピーク強度を示し、I2は前記コア粒子のX線回折測定により得られるWC1-x(0<x<1)に帰属されるピークのピーク強度を示す。] A conductive carrier;
Catalyst particles supported on the carrier;
Contains
The catalyst particles have a core part formed on the carrier, a first shell part formed on the core part, and a second shell part formed on the first shell part. And
The core portion includes WC and W carbide including WC 1-x (0 <x <1),
The first shell portion includes Pd (zero valence),
The second shell portion contains Pt (zero valence),
The core particles serving as the precursor of the core part satisfy the condition of the following formula (1).
Electrode catalyst.
0.03 ≦ {I2 / (I1 + I2)} ≦ 0.75 (1)
[In the formula (1), I1 represents the peak intensity of a peak attributed to WC obtained by X-ray diffraction measurement of the core particle, and I2 represents WC 1-x (which is obtained by X-ray diffraction measurement of the core particle. The peak intensity of the peak attributed to 0 <x <1) is shown. ]
請求項2に記載の電極用触媒。
0.02≦{I3/(I1+I2+I3)}≦0.30・・・(1)
[式(2)中、I1は前記式(1)中のI1と同一のピーク強度を示し、I2は前記式(1)中のI2と同一のピーク強度を示し、I3は前記コア粒子のX線回折測定により得られるW2Cに帰属されるピークのピーク強度を示す。] The core particles that are the precursor of the core part further satisfy the condition of the following formula (2),
The electrode catalyst according to claim 2.
0.02 ≦ {I3 / (I1 + I2 + I3)} ≦ 0.30 (1)
[In formula (2), I1 represents the same peak intensity as I1 in the formula (1), I2 represents the same peak intensity as I2 in the formula (1), and I3 represents X of the core particle. The peak intensity of the peak attributed to W 2 C obtained by line diffraction measurement is shown. ]
ガス拡散電極形成用組成物。 The electrode catalyst according to any one of claims 1 to 5 is included.
A composition for forming a gas diffusion electrode.
ガス拡散電極。 The electrode catalyst according to any one of claims 1 to 6 is included,
Gas diffusion electrode.
A fuel cell stack comprising the membrane-electrode assembly (MEA) according to claim 8.
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017038757A JP2020074260A (en) | 2017-03-01 | 2017-03-01 | Electrode catalyst, composition of matter for gas diffusion electrode formation, gas diffusion electrode, membrane/electrode assembly, fuel cell stack |
| JP2017-038756 | 2017-03-01 | ||
| JP2017-038757 | 2017-03-01 | ||
| JP2017038756A JP2020074259A (en) | 2017-03-01 | 2017-03-01 | Electrode catalyst, composition of matter for gas diffusion electrode formation, gas diffusion electrode, membrane/electrode assembly, fuel cell stack |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018159524A1 true WO2018159524A1 (en) | 2018-09-07 |
Family
ID=63370841
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2018/006928 Ceased WO2018159524A1 (en) | 2017-03-01 | 2018-02-26 | Electrode catalyst, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2018159524A1 (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008021610A (en) * | 2006-07-14 | 2008-01-31 | Mitsubishi Chemicals Corp | PEFC type fuel cell and catalyst |
| WO2016031251A1 (en) * | 2014-08-28 | 2016-03-03 | エヌ・イー ケムキャット株式会社 | Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack |
-
2018
- 2018-02-26 WO PCT/JP2018/006928 patent/WO2018159524A1/en not_active Ceased
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008021610A (en) * | 2006-07-14 | 2008-01-31 | Mitsubishi Chemicals Corp | PEFC type fuel cell and catalyst |
| WO2016031251A1 (en) * | 2014-08-28 | 2016-03-03 | エヌ・イー ケムキャット株式会社 | Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5887453B1 (en) | Electrode catalyst, gas diffusion electrode forming composition, gas diffusion electrode, membrane / electrode assembly, fuel cell stack | |
| JP5846670B2 (en) | Electrode catalyst, gas diffusion electrode forming composition, gas diffusion electrode, membrane / electrode assembly, fuel cell stack | |
| JP6009112B1 (en) | Electrode catalyst, gas diffusion electrode forming composition, gas diffusion electrode, membrane / electrode assembly, fuel cell stack, method for producing electrode catalyst, and composite particles | |
| JP5846673B2 (en) | Electrode catalyst, gas diffusion electrode forming composition, gas diffusion electrode, membrane / electrode assembly, fuel cell stack | |
| JP6133483B2 (en) | Electrode catalyst, gas diffusion electrode forming composition, gas diffusion electrode, membrane / electrode assembly, fuel cell stack | |
| JP2020074260A (en) | Electrode catalyst, composition of matter for gas diffusion electrode formation, gas diffusion electrode, membrane/electrode assembly, fuel cell stack | |
| WO2018159524A1 (en) | Electrode catalyst, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack | |
| WO2018180676A1 (en) | Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, film–electrode assembly, and fuel cell stack | |
| JP6946112B2 (en) | Electrode catalyst, gas diffusion electrode forming composition, gas diffusion electrode, membrane / electrode assembly, fuel cell stack | |
| WO2017150010A1 (en) | Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack | |
| WO2017150009A1 (en) | Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack | |
| JP2020074259A (en) | Electrode catalyst, composition of matter for gas diffusion electrode formation, gas diffusion electrode, membrane/electrode assembly, fuel cell stack | |
| WO2018180675A1 (en) | Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, film–electrode assembly, and fuel cell stack | |
| JP2017157551A (en) | Electrode catalyst, composition for gas diffusion electrode formation, gas diffusion electrode, membrane-electrode assembly and fuel cell stack |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18761218 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 18761218 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: JP |